WO2015146357A1 - 燃焼器、ジェットエンジン、飛しょう体及びジェットエンジンの動作方法 - Google Patents

燃焼器、ジェットエンジン、飛しょう体及びジェットエンジンの動作方法 Download PDF

Info

Publication number
WO2015146357A1
WO2015146357A1 PCT/JP2015/054027 JP2015054027W WO2015146357A1 WO 2015146357 A1 WO2015146357 A1 WO 2015146357A1 JP 2015054027 W JP2015054027 W JP 2015054027W WO 2015146357 A1 WO2015146357 A1 WO 2015146357A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustor
flame
igniter
jet engine
fuel
Prior art date
Application number
PCT/JP2015/054027
Other languages
English (en)
French (fr)
Inventor
祥彦 上野
緒人 山本
鈴木 佑
正二郎 古谷
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US15/121,172 priority Critical patent/US10697397B2/en
Priority to EP15768446.5A priority patent/EP3098428B1/en
Publication of WO2015146357A1 publication Critical patent/WO2015146357A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K7/00Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
    • F02K7/10Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof characterised by having ram-action compression, i.e. aero-thermo-dynamic-ducts or ram-jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/264Ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • F02K9/32Constructional parts; Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/74Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof combined with another jet-propulsion plant
    • F02K9/78Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof combined with another jet-propulsion plant with an air-breathing jet-propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/95Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by starting or ignition means or arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/80Application in supersonic vehicles excluding hypersonic vehicles or ram, scram or rocket propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting

Definitions

  • the present invention relates to a combustor, a jet engine, a flying object, and a method for operating the jet engine.
  • Turbojet engines including turbofan engines, ramjet engines, and scramjet engines are known as jet engines that fly faster than the speed of sound. These are jet engines that operate by taking in air. In particular, in the ramjet engine and the scramjet engine, the speed of the taken-in air strongly depends on the flying speed.
  • FIG. 1 and 2 are schematic cross-sectional views schematically showing the configuration of a combustor of a jet engine.
  • the combustor includes a fuel injector and an igniter.
  • the fuel injector is provided on the wall of the combustor.
  • the fuel injector injects fuel toward the space 150.
  • the igniter emits a flame toward the space 150 (FIG. 1).
  • the flame generated by the igniter ignites a mixture of mainstream air and the fuel.
  • the flame generated by the ignition propagates to the flame holder, and the flame is held in the flame holder.
  • the flame held by the flame holder burns the air-fuel mixture of the mainstream air and the fuel (FIG. 2).
  • the combustion gas is discharged from the nozzle behind the combustor, and the jet engine obtains thrust.
  • a method for igniting the air-fuel mixture there is known a method in which a small solid rocket motor igniter is installed in a deep recess provided on the wall of the combustor and the air-fuel mixture is ignited using a flame generated from the igniter. (FIG. 1).
  • the concave portion in which the igniter is installed has a deep shape. .
  • the longest length of the concave portion along the flow direction of the mainstream air is l and the maximum depth of the concave portion is d, the length l and the depth d are such that l ⁇ d Configured to meet.
  • the flame generated by the igniter propagates along the arrow 160 by burning the air-fuel mixture. Then, the propagated flame is held in the flame holder.
  • a method is known in which a low speed region of the air-fuel mixture is formed by a shallow recess provided on the wall of the combustor and the flame is held using the low speed region (FIG. 2).
  • the longest length of the concave portion along the flow direction of the mainstream air is L and the maximum depth of the concave portion is D
  • the length L and the depth D are such that L> D Configured to meet.
  • Japanese Patent Publication No. 6-60597 discloses a scramjet combustor ignition and flame holding method.
  • An object of the present invention is to contribute to improvement in engine performance and simplification of engine design by utilizing, as a flame holder (flame holding space), a cavity generated when the igniter disappears after the igniter is activated.
  • an optional object of the present invention is to eliminate the propagation of flame from ignition to flame holding, thereby making it possible to achieve stable ignition, flame holding and igniter downsizing, a combustor, a jet engine, It is to provide a method for operating a flying object and a jet engine.
  • the combustor is a combustor that burns fuel using air taken in from an inlet.
  • the combustor includes an injector that injects the fuel, a flame holder provided on a wall surface of the combustor, and an igniter for igniting a mixture of the air and the fuel.
  • the flame holding unit maintains a flame used for combustion of the fuel injected from the injector.
  • the igniter is installed in the flame holding portion, and is configured to form a flame holding space in the flame holding portion by disappearance.
  • a method of operating a jet engine includes an inlet that takes in air, a combustor that burns fuel using the air to generate combustion gas, and delivers the combustion gas from behind the jet engine.
  • a method of operating a jet engine comprising a nozzle.
  • the combustor includes an injector that injects the fuel, a flame holder provided on a wall surface of the combustor, and an igniter installed in the flame holder.
  • the flame holding unit maintains a flame used for combustion of the fuel injected from the injector.
  • the igniter is installed in the flame holding portion, and is configured to form a flame holding space in the flame holding portion by disappearance.
  • the operation method of the jet engine includes a step of taking air from the inlet, a step of igniting a mixture of the air and the fuel by the igniter, and the igniter disappearing after the igniter is operated.
  • the flame holding space formed by the step of holding the flame used for the combustion of the fuel, and the flame holding the flame, the air-fuel mixture of the air and the fuel is burned, and by combustion And a step of delivering the generated combustion gas from the nozzle.
  • a combustor a jet engine, a flying object, and a jet engine operating method that contribute to improvement in engine performance, simplification of engine design, stable ignition, flame holding, and downsizing of an igniter.
  • FIG. 1 is a schematic cross-sectional view schematically showing the configuration of a conventional combustor of a jet engine, and shows a state when an igniter is operated.
  • FIG. 2 is a schematic cross-sectional view schematically showing a configuration of a combustor of a conventional jet engine, and is a diagram showing a state after the igniter is operated and at the time of flame holding.
  • FIG. 3 is a perspective view showing an example of the configuration of the flying object according to the embodiment.
  • FIG. 4 is a schematic cross-sectional view schematically showing the configuration of the jet engine according to the embodiment.
  • FIG. 5 is a schematic cross-sectional view schematically showing the configuration of the combustor of the jet engine according to the first embodiment, and is a diagram showing a state when the igniter is operated.
  • FIG. 6 is a schematic cross-sectional view schematically showing the configuration of the combustor of the jet engine according to the first embodiment, and is a view showing a state after the igniter is operated and during flame holding.
  • FIG. 7 is a perspective view showing an example of the position and shape of the flame-holding recess 66 in the jet engine of the first embodiment.
  • the body 3 only a part of lower wall which comprises the flow path of mainstream air is described.
  • FIG. 8 is a schematic cross-sectional view schematically showing a configuration of a combustor of a jet engine according to a modification of the first embodiment, and is a diagram showing a state when the igniter is operated.
  • FIG. 9 is a schematic cross-sectional view schematically showing a configuration of a combustor of a jet engine according to a modification of the first embodiment, and is a diagram showing a state after the igniter is actuated and at the time of flame holding.
  • FIG. 10 is a schematic cross-sectional view schematically showing the configuration of the combustor of the jet engine according to the second embodiment, and shows the state when the igniter is operated and when the flame is held.
  • FIG. 11 is a schematic cross-sectional view schematically showing the configuration of the combustor of the jet engine according to the second embodiment, and is a view showing a state after the igniter is activated and during flame holding.
  • FIG. 12 is a schematic cross-sectional view schematically showing the configuration of the combustor of the jet engine according to the third embodiment, and shows the state when the igniter is operated and when the flame is held.
  • FIG. 13 is a schematic sectional drawing which shows typically the structure of the combustor of the jet engine of 3rd Embodiment, and is a figure which shows the state at the time of flame holding after an igniter action
  • FIG. 14 is a schematic cross-sectional view schematically showing the configuration of the combustor of the jet engine according to the fourth embodiment, and shows the state when the igniter is activated and when the flame is held.
  • FIG. 15 is a schematic sectional drawing which shows typically the structure of the combustor of the jet engine of 5th Embodiment.
  • FIG. 3 is a perspective view showing an example of the configuration of the flying object 1 according to the embodiment.
  • the flying body 1 includes a jet engine 2 and a propulsion device 5.
  • the propulsion device 5 accelerates the flying object 1 from a speed at the start of flying to a desired speed when flying the flying object 1 from the launching device.
  • the speed at the start of flying is zero when the flying object 1 is launched from a stationary launching device, and the flying object is moving (or in flight) (or ,
  • the flying speed of the moving object (or flying object) is the moving speed (or flying speed) of the moving object (or flying object).
  • a specific example of the propulsion device 5 is a rocket motor.
  • the propulsion device 5 may be any device as long as it can accelerate the flying object to a desired speed. For example, when the flying object 1 is loaded on another second flying object and accelerated to a desired speed, the second flying object becomes the propulsion device 5.
  • the jet engine 2 After the propulsion device 5 is separated from the flying object 1, the jet engine 2 further accelerates the flying object 1 to fly toward the target.
  • the jet engine 2 includes a body 3 and a cowl 4.
  • the airframe 3 and the cowl 4 constitute an inlet, a combustor, and a nozzle of the jet engine 2 as described later.
  • the jet engine 2 takes in air from the front at the inlet, mixes the air and fuel with the combustor, burns them, expands the combustion gas with the nozzles, and sends them back. Thereby, the jet engine 2 obtains a propulsive force.
  • the jet engine 2 is composed of the lower part of the body 3 and the cowl 4, but the jet engine 2 may be composed of a cylindrical body installed in the lower part or inside of the body 3. In this case, the front part of the cylindrical body constitutes an inlet, the central part constitutes a combustor, and the rear part constitutes a nozzle.
  • FIG. 4 is a schematic cross-sectional view schematically showing the configuration of the jet engine of the embodiment.
  • the jet engine 2 includes an airframe 3 and a cowl 4 provided so as to form a space 50 through which gas can flow under the airframe 3.
  • the lower part in front of the airframe 3 and the front part of the cowl 4 constitute an inlet 6 for introducing air into the space 50.
  • An inlet cover 9 is provided in front of the inlet 6 so as to be separable.
  • the inlet cover 9 is attached in front of the inlet 6 until the engine is started.
  • the inlet cover 9 is used to reduce the aerodynamic resistance of the fuselage and prevent foreign matter from entering the engine until the engine is started.
  • the lower part in the middle of the fuselage 3 and the middle part of the cowl 4 constitute a combustor 7 that mixes and burns fuel and air.
  • the lower part behind the airframe 3 and the rear part of the cowl 4 constitute a nozzle 8 that expands and discharges combustion gas.
  • the combustor 7 includes an igniter 61, a fuel injector 62, and a flame holding recess 66.
  • FIG. 5 is a schematic cross-sectional view schematically showing the configuration of the combustor of the jet engine according to the first embodiment, and is a diagram showing a state when the igniter is operated.
  • FIG. 6 is a schematic cross-sectional view schematically showing the configuration of the combustor of the jet engine according to the first embodiment, and is a diagram showing a state after the igniter is activated and when the flame is held.
  • FIGS. 5 and 6 are enlarged views of the combustor 7 portion in FIG. 5 and 6 are shown with the top and bottom reversed with respect to FIG. That is, the upper side in FIG. 4 is the lower side in FIGS. 5 and 6, and the lower side in FIG. 4 is the upper side in FIGS. 5 and 6.
  • the upper side of FIGS. 5 and 6 is the upper side
  • the lower side of FIGS. 5 and 6 is the lower side
  • the left side of FIGS. 5 and 6 (that is, the upstream side of the mainstream air flow) is the upstream side
  • the right side of FIG. 5 and FIG. 6 (that is, the downstream side of the mainstream air flow) is referred to as the downstream side.
  • the combustor 7 includes an igniter 61, a fuel injector 62, and a flame holding recess 66.
  • the fuel injector 62 is provided on the wall portion of the body 3 and on the wall portion of the combustor 7.
  • the fuel injector 62 injects the fuel stored in the airframe 3 toward the space 50.
  • the igniter 61 is, for example, a solid rocket motor (solid RM).
  • solid rocket motor is defined as a device that burns solid fuel and emits a flame.
  • Examples of the material for the solid rocket motor include (1) nitrocellulose + nitroglycerin (flame temperature: 1700 degrees Celsius to 3150 degrees Celsius, burning speed: 0.6 to 2.3 cm / s), (2) AN / C 2 H 4 O (flame temperature: 1800 degrees Celsius, burning rate: 0.1 to 0.4 cm / s), (3) AP / C 2 H 4 O / Al (flame temperature: 2800 degrees Celsius to 3600 degrees Celsius) Degree, burning rate: 0.8 to 1.4 cm / s).
  • the igniter 61 radiates the flame 71 toward the space 50.
  • the igniter 61 is started by electric energy or thermal energy generated by the igniter actuator 63.
  • the igniter actuator 63 is started in response to an operation signal or the like from the igniter controller 64 being transmitted through the cable 65 or the like.
  • the igniter 61 is installed in a flame holding part provided on the wall surface of the combustor 7, for example, a flame holding concave part 66.
  • the igniter 61 disappears by operating.
  • the solid rocket motor disappears by burning the solid fuel constituting the solid rocket motor.
  • the space formed by disappearance functions as the flame holding space 67.
  • the igniter 61 radiates the flame 71 toward the space 50 by operating.
  • the mixture of the mainstream air and the fuel from the fuel injector 62 is burned by the flame 71 to form a flame 72.
  • the flame 72 is also formed in a space formed by the disappearance of the igniter 61. Since the space, that is, the flame holding space 67 is an area where low-speed mixed airflow exists, the flame 72 formed in the space, that is, the flame holding space 67 is flame-held.
  • FIG. 7 is a perspective view showing an example of the position and shape of the flame retaining recess 66 in the jet engine of the present embodiment.
  • the flame holding recess 66 is provided over the entire width of the combustor along the span direction (lateral width direction) of the jet engine.
  • the shape of the flame holding recess 66 is a rectangular parallelepiped recess.
  • the shape of the flame holding recess 66 may be other shapes.
  • the flame holding recess 66 may be provided over a part of the width of the combustor 7.
  • a plurality of flame-holding recesses 66 may be provided along the span direction.
  • the flame holding recess 66 is preferably a shallow recess.
  • the longest length of the flame-holding recess 66 along the main flow direction of air is L and the maximum depth of the recess 66 is D
  • the length L and the depth D satisfy L> D. It is preferable to set so as to satisfy. More preferably, the length L and the depth D are set so as to satisfy 10D> L> 2D.
  • the inlet cover 9 is separated from the inlet 6. And in the space 50, high-speed air flows in and the flow of mainstream air is formed.
  • fuel is injected from the fuel injector 62 toward the flow of mainstream air, that is, into the space 50. Main air and fuel are mixed to form a mixed air flow.
  • the operation signal from the igniter actuator 64 is transmitted to the igniter actuator 63 via the cable 65 and the like.
  • the igniter actuator 63 starts the igniter 61.
  • the igniter 61 radiates the flame 71 toward the space 50 by operation.
  • the flame 71 forms a flame 72 by burning the air-fuel mixture of the mixed airflow.
  • the igniter 61 disappears due to the operation to form a disappearing space.
  • the disappearing space functions as a flame holding space 67 for the flame 72.
  • the flame held by the flame holding space 67 continuously burns the air-fuel mixture of the mixed airflow.
  • Combustion gas generated by the combustion is discharged from the nozzle 8.
  • the flying object 1 flies with the thrust of the released combustion gas.
  • a recess for installing an igniter and a recess for a flame holder may be provided separately.
  • a space for installing an igniter and a space for installing a flame holder are secured separately.
  • the space after the disappearance of the igniter 61 is used as the flame holding space 67. For this reason, it is not necessary to ensure the installation space of the igniter 61 separately.
  • both the vicinity of the recess for installing the igniter and the recess for the flame holder are suitable for combustion. It is necessary to feed a fuel-fuel mixture. For this reason, the design of the engine is relatively complicated.
  • the combustor 7 if the air / fuel ratio mixture suitable for combustion is designed to be fed into the flame holding recess 66, the flame holding recess An air / fuel ratio mixture suitable for combustion is also sent to the igniter 61 and the flame holding space 67 located in the area 66. This simplifies engine design.
  • the flame generated by the igniter does not misfire when propagating to the recess for the flame holder. It is necessary to. For this reason, it is necessary to relatively increase the output of the igniter. As a result, the igniter becomes larger.
  • the combustor 7 according to some embodiments, it is not necessary to propagate the flame generated by the igniter to the recess for the flame holder. For this reason, it is possible to make the output of an igniter relatively small.
  • the recessed portion in which the igniter is installed has a deep shape. It is possible to install the igniter in the flame-holding concave portion which is a shallow concave portion.
  • a cavity generated by disappearance of the igniter after the igniter is activated (a recess in which the igniter was installed). ) May be detrimental from an aerodynamic point of view.
  • the presence of the cavity causes a disturbance in the fluid flow or a shock wave, resulting in a decrease in engine performance.
  • a cavity (recessed portion where the igniter was installed) generated by the disappearance of the igniter 61 after the igniter is operated has a harmful shape. Without being used as a flame holding space 67.
  • the flame holding portion is the flame holding recess 66.
  • the flame-holding portion is a flame-holding step portion 66 ′ (a portion receding downward from the upstream combustor wall surface, that is, in a direction away from the mainstream air). It is also possible.
  • the igniter 61 is installed in the flame-holding step portion 66 ′. The space after the disappearance of the igniter 61 becomes the flame holding space 67 ′.
  • the modified example of the first embodiment has the same effect as the first embodiment.
  • FIG. 10 is a schematic cross-sectional view schematically showing the configuration of the combustor of the jet engine according to the second embodiment, and shows the state when the igniter is operated and when the flame is held.
  • FIG. 11 is a schematic cross-sectional view schematically showing the configuration of the combustor of the jet engine according to the second embodiment, and shows the state after the igniter is activated and when the flame is held.
  • the same reference numerals are used for the same components as those in the first embodiment.
  • the igniter 61 is installed only in a part of the flame holding recess 66, and the portion where the igniter 61 is not installed is flame holding. It differs in that it functions as the space 67.
  • the inlet cover 9 is separated from the inlet 6. And in the space 50, high-speed air flows in and the flow of mainstream air is formed.
  • fuel is injected from the fuel injector 62 toward the flow of mainstream air, that is, into the space 50. Main air and fuel are mixed to form a mixed air flow.
  • the operation signal from the igniter actuator 64 is transmitted to the igniter actuator 63 via the cable 65 and the like.
  • the igniter actuator 63 starts the igniter 61.
  • the igniter 61 radiates the flame 71 toward the space 50 by operation.
  • a portion of the flame holding recess 66 where the igniter 61 is not installed functions as a flame holding space 67 for the flame 71.
  • the flame 71 forms a flame 72 by burning the air-fuel mixture of the mixed airflow.
  • the igniter 61 disappears due to the operation to form a disappearing space.
  • the vanishing space functions as the flame holding space 67 of the flame 72 together with the portion of the flame holding recess 66 where the igniter 61 is not installed.
  • the flame held by the flame holding space 67 continuously burns the air-fuel mixture of the mixed airflow. Combustion gas generated by the combustion is discharged from the nozzle 8.
  • the flying object 1 flies with the thrust of the released combustion gas.
  • This embodiment has the following effects in addition to the same effects as the first embodiment. That is, in the state immediately after the start of the igniter 61, the portion of the flame holding recess 66 where the igniter 61 is not installed functions as a flame holding space 67 for the flame 71. For this reason, even if the flame 71 has a weak heating power, the flame 71 is reliably held.
  • FIG. 12 is a schematic cross-sectional view schematically showing the configuration of the combustor of the jet engine according to the third embodiment, and shows the state when the igniter is operated and when the flame is held.
  • FIG. 13 is a schematic cross-sectional view schematically showing the configuration of the combustor of the jet engine according to the third embodiment, and shows the state after the igniter is actuated and at the time of flame holding.
  • the same reference numerals are used for the same components as those in the second embodiment.
  • the third embodiment is identical to the second embodiment in that the igniter 61 is embedded only in a part of the flame holding recess 66.
  • the position where the igniter 61 is embedded is different, and the third embodiment is different in that a barrier material 68 that covers a part of the surface of the igniter 61 is provided in the third embodiment.
  • the barrier material 68 is held on the surface of the igniter 61 by the adhesion between the material of the barrier material 68 and the material of the igniter 61.
  • the barrier material 68 and the surface of the igniter 61 may be bonded to each other via a bonding member such as an adhesive or a screw.
  • a portion of the surface of the igniter 61 that is not covered with the barrier material 68 constitutes a throat portion 69 (throat portion) from which the flame 71 is emitted.
  • the igniter actuator 63 is disposed adjacent to the throat 69.
  • the inlet cover 9 is separated from the inlet 6. And in the space 50, high-speed air flows in and the flow of mainstream air is formed.
  • fuel is injected from the fuel injector 62 toward the flow of mainstream air, that is, into the space 50. Main air and fuel are mixed to form a mixed air flow.
  • the operation signal from the igniter actuator 64 is transmitted to the igniter actuator 63 via the cable 65 and the like.
  • the igniter actuator 63 starts the igniter 61.
  • the igniter 61 radiates the flame 71 toward the space 50 or the flame holding space 67 (the portion of the flame holding recess 66 where the igniter 61 is not installed) by operation.
  • the flame 71 Since the flame 71 is radiated through the throat 69, it is powerful. In addition, in the state immediately after the start of the igniter 61, a portion of the flame holding recess 66 where the igniter 61 is not installed functions as a flame holding space 67 for the flame 71.
  • the flame 71 forms a flame 72 by burning the air-fuel mixture or the air-fuel mixture flowing into the flame holding space 67. Further, the igniter 61 disappears due to the operation to form a disappearing space.
  • the vanishing space functions as the flame holding space 67 of the flame 72 together with the portion of the flame holding recess 66 where the igniter 61 is not installed.
  • the flame held by the flame-holding space 67 continuously burns the air-fuel mixture of the mixed airflow.
  • Combustion gas generated by the combustion is discharged from the nozzle 8.
  • the flying object 1 flies with the thrust of the released combustion gas. It should be noted that, due to the disappearance of the igniter 61, the barrier material 68 held by the igniter 61 leaves the flame holding recess 66 and is discharged from the rear of the nozzle 8 together with the combustion gas.
  • this embodiment also has the following effects.
  • FIG. 14 is a schematic cross-sectional view schematically showing the configuration of the combustor of the jet engine according to the fourth embodiment, and shows the state when the igniter is activated and when the flame is held.
  • the same reference numerals are used for the same components as those in the third embodiment.
  • the fourth embodiment is identical to the third embodiment in that a barrier material 68 that covers a part of the surface of the igniter 61 is provided.
  • a part of the barrier material 68 is inserted between the igniter 61 and the wall surface of the combustor 7 and is held between the igniter 61 and the wall surface of the combustor 7. Are different from each other.
  • This embodiment has the following effects in addition to the same effects as the third embodiment. That is, since a part of the barrier material 68 is inserted between the igniter 61 and the wall surface of the combustor 7, the barrier material 68 is reliably held until the igniter 61 disappears.
  • FIG. 15 is a schematic sectional drawing which shows typically the structure of the combustor of the jet engine of 5th Embodiment.
  • the same reference numerals are used for the same components as those in the second embodiment.
  • the fifth embodiment differs from the second embodiment in that a plurality of igniters 61 are spaced apart from each other in the flame holding recess 66.
  • this embodiment also has the following effects. That is, since the plurality of igniters 61 are spaced apart from each other in the flame holding recess 66, the plurality of igniters 61 simultaneously burn in a wide range in the flame holding recess 66, so that the air-fuel mixture is mixed. Is more reliable.
  • This embodiment describes an example in which a jet engine is applied to a flying object, but the flying object includes an aircraft or a rocket.
  • the present invention is not limited to the above embodiments, and it is obvious that the embodiments can be appropriately modified or changed within the scope of the technical idea of the present invention.
  • the igniter 61 may be automatically ignited and operated by heat and pressure generated by compression of air taken in from the inlet 6.
  • the inlet cover 9 is described in FIG. 4, it is not essential to provide the inlet cover 9, and a nozzle cover may be provided behind the nozzle 8 instead of the inlet cover 9.
  • the configuration of the jet engine may be simplified by providing neither the inlet cover 9 nor the nozzle cover.
  • a solid rocket motor is employed as the igniter 61.
  • a spark plug, a laser igniter, or the like may be employed as the igniter 61.
  • the igniter 61 may be provided so as to be detachable from the flame-holding portion (flame-holding recess 66 or flame-holding step portion 66 ′).
  • the space after the igniter 61 is detached (after disappearance) can be used as the flame holding space by detaching the igniter 61 after the operation from the flame holding portion.
  • the igniter 61 after being detached is preferably discharged from the rear of the nozzle 8 together with the combustion gas.
  • the heat generated by the operation of the igniter 61 may be used to disconnect the igniter 61 from the flame holding portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

 ジェットエンジンの燃焼器(7)は、燃料噴射器(62)と、空気と燃料との混合気に着火するための点火器(61)と、保炎部(66、66')とを備えている。点火器(61)は、保炎部(66、66')内に配置される。点火器(61)作動後に、点火器(61)は消失し、消失後の空間が保炎空間(67、67')として機能する。

Description

燃焼器、ジェットエンジン、飛しょう体及びジェットエンジンの動作方法
 本発明は、燃焼器、ジェットエンジン、飛しょう体及びジェットエンジンの動作方法に関する。
 音速より速く飛しょうする機体のジェットエンジンとして、ターボジェットエンジン(ターボファンエンジン等を含む)、ラムジェットエンジン、スクラムジェットエンジンが知られている。これらは空気を取り入れて作動するジェットエンジンであり、特にラムジェットエンジン、スクラムジェットエンジンでは取り入れた空気の速度は飛しょう速度に強く依存する。
 図1、図2は、ジェットエンジンの燃焼器の構成を模式的に示す概略断面図である。前記燃焼器は、燃料噴射器と、点火器とを備えている。燃料噴射器は、前記燃焼器の壁に設けられている。燃料噴射器は、空間150へ向けて燃料を噴射する。点火器は、火炎を空間150に向けて放射する(図1)。点火器により生成された火炎は、主流空気と前記燃料との混合気を着火させる。着火により生成された炎は、保炎器まで伝播し、保炎器において炎は保炎される。保炎器で保炎された炎は、主流空気と前記燃料との混合気を燃焼させる(図2)。そして、燃焼ガスは、燃焼器後方のノズルから排出され、ジェットエンジンは推力を得る。
 前記混合気への着火方法としては、燃焼器の壁面に設けられた深い凹部等に小型の固体ロケットモータ点火器を設置し、点火器から発生する火炎を用いて混合気を着火させる方法が知られている(図1)。着火に際しては、点火器から発生する火炎を空間150に向けて勢い良く放射し、かつ固体燃料の充填率を高めるために、点火器が設置される凹部は、深さの深い形状が採用される。一般的には、前記凹部の前記主流空気の流れ方向に沿った最長長さをl、前記凹部の最大深さをdとしたとき、前記長さlと前記深さdとは、l<dを満たすように構成される。
 点火器により生成された火炎は、混合気を燃焼させることで、矢印160に沿って伝播する。そして、伝播した炎は、保炎器内で保炎される。
 そして、保炎メカニズムとしては、燃焼器の壁面に設けられた浅い凹部等により、混合気の低速領域を形成し、当該低速領域を用いて保炎する方法が知られている(図2)。一般的には、前記凹部の前記主流空気の流れ方向に沿った最長長さをL、前記凹部の最大深さをDとしたとき、前記長さLと前記深さDとは、L>Dを満たすように構成される。
 関連する技術として、特公平6-60597号公報に、スクラムジェット燃焼器の点火、保炎法が開示されている。
特公平6-60597号公報
 本発明の目的は、点火器作動後に、点火器が消失することにより生成される空洞を保炎器(保炎空間)として活用することで、エンジン性能の向上及びエンジン設計の簡素化に寄与する燃焼器、ジェットエンジン、飛しょう体及びジェットエンジンの作動方法を提供することにある。また、本発明の任意付加的な目的は、着火から保炎までに火炎の伝播を不要とすることで、安定的な着火、保炎及び点火器の小型化に寄与する燃焼器、ジェットエンジン、飛しょう体及びジェットエンジンの作動方法を提供することにある。
 いくつかの実施形態に係る燃焼器は、インレットから取り込まれた空気を用いて燃料を燃焼する燃焼器である。前記燃焼器は、前記燃料を噴射する噴射器と、前記燃焼器の壁面に設けられた保炎部と、前記空気と前記燃料との混合気に着火するための点火器と、を備える。前記保炎部は、前記噴射器から噴射された前記燃料の燃焼に用いる炎を維持する。前記点火器は、前記保炎部内に設置され、消失により前記保炎部内に保炎空間を形成するように構成されている。
 いくつかの実施形態に係るジェットエンジンの動作方法は、空気を取り込むインレットと、前記空気を用いて燃料を燃焼させ燃焼ガスを生成する燃焼器と、前記燃焼ガスを前記ジェットエンジンの後方から送出するノズルとを具備するジェットエンジンの動作方法である。前記燃焼器は、前記燃料を噴射する噴射器と、前記燃焼器の壁面に設けられた保炎部と、前記保炎部内に設置された点火器とを備える。前記保炎部は、前記噴射器から噴射された前記燃料の燃焼に用いる炎を維持する。前記点火器は、前記保炎部内に設置され、消失により前記保炎部内に保炎空間を形成するように構成されている。前記ジェットエンジンの動作方法は、前記インレットから空気を取り込む工程と、前記点火器により前記空気と前記燃料との混合気に着火する工程と、前記点火器の作動後に、前記点火器が消失することにより形成された保炎空間を用いて、前記燃料の燃焼に用いる炎を保炎する工程と、保炎された前記炎を用いて、前記空気と前記燃料との混合気を燃焼させ、燃焼により生成された燃焼ガスを前記ノズルから送出する工程とを備える。
 本発明により、エンジン性能の向上、エンジン設計の簡素化、安定的な着火、保炎及び点火器の小型化に寄与する燃焼器、ジェットエンジン、飛しょう体及びジェットエンジンの作動方法を提供できる。
 添付の図面は、実施形態の説明を助けるために本明細書に組み込まれる。なお、図面は、本発明を、図示された例および説明された例に限定するものとして解釈されるべきではない。
図1は、従来のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動時の状態を示す図である。 図2は、従来のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動後、及び、保炎時の状態を示す図である。 図3は、実施の形態に係る飛しょう体の構成の一例を示す斜視図である。 図4は、実施の形態のジェットエンジンの構成を模式的に示す概略断面図である。 図5は、第1の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動時の状態を示す図である。 図6は、第1の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動後、及び、保炎時の状態を示す図である。 図7は、第1の実施形態のジェットエンジンにおいて、保炎用凹部66の位置、形状の一例を示す斜視図である。なお、機体3は、主流空気の流路を構成する下壁の一部のみを記載している。 図8は、第1の実施形態の変形例のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動時の状態を示す図である。 図9は、第1の実施形態の変形例のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動後、及び、保炎時の状態を示す図である。 図10は、第2の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動時、及び、保炎時の状態を示す図である。 図11は、第2の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動後、及び、保炎時の状態を示す図である。 図12は、第3の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動時、及び、保炎時の状態を示す図である。 図13は、第3の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動後、及び、保炎時の状態を示す図である。 図14は、第4の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動時、及び、保炎時の状態を示す図である。 図15は、第5の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図である。
 以下、実施の形態に係る燃焼器、ジェットエンジン、飛しょう体及びジェットエンジンの動作方法に関して、添付図面を参照して説明する。ここでは、ジェットエンジンを飛しょう体に適用した例について説明する。以下の詳細な説明においては、実施形態の包括的な理解を提供するために、説明の目的で多くの詳細な特定事項が開示される。しかし、一又は複数の実施形態は、これらの詳細な特定事項なしで実行可能であることが明らかである。
 実施の形態に係る飛しょう体1の構成について説明する。図3は、実施の形態に係る飛しょう体1の構成の一例を示す斜視図である。飛しょう体1は、ジェットエンジン2と、推進装置5とを具備している。推進装置5は、飛しょう体1を発射装置から飛行させるとき、飛しょう体1を飛しょう開始時の速度から所望の速度まで加速する。ただし、飛しょう開始時の速度は、飛しょう体1が静止している発射装置から発射されるときは、速度ゼロであり、飛しょう体が移動中(または、飛行中)の移動体(または、飛行体)の発射装置から発射されるときは、その移動体(または、飛行体)の移動速度(または、飛行速度)である。推進装置5の具体例としては、ロケットモータを挙げることができる。しかし、推進装置5は、飛しょう体を所望の速度まで加速できるものであれば、どのような装置であっても構わない。例えば、飛しょう体1を、別の第2の飛しょう体に積載して、所望の速度まで加速する場合には、当該第2の飛しょう体が推進装置5となる。
 ジェットエンジン2は、飛しょう体1から推進装置5が分離された後、飛しょう体1を更に加速して、目標へ向かって飛しょうさせる。ジェットエンジン2は、機体3とカウル4とを備えている。機体3とカウル4とは、後述されるように、ジェットエンジン2のインレット、燃焼器及びノズルを構成している。ジェットエンジン2は、インレットにて前方から空気を取り入れ、燃焼器にてその空気と燃料とを混合し、燃焼させ、ノズルにてその燃焼ガスを膨張させ、後方へ送出する。それにより、ジェットエンジン2は推進力を得る。なお、図3において、ジェットエンジン2は、機体3の下部とカウル4とで構成されているが、ジェットエンジン2を機体3の下部又は内部に設置される筒状体で構成してもよい。この場合、筒状体の前方部分がインレットを構成し、中央部分が燃焼器を構成し、後方部分がノズルを構成することとなる。
 図4は、実施の形態のジェットエンジンの構成を模式的に示す概略断面図である。ジェットエンジン2は、機体3と、機体3の下方に気体の流通可能な空間50を形成するように設けられたカウル4とを備えている。機体3の前方の下方部分とカウル4の前方部分とは、空間50へ空気を導入するインレット6を構成している。また、インレット6の前方には、インレットカバー9が分離可能に設けられている。インレットカバー9は、エンジン始動時までインレット6の前方に装着される。そして、インレットカバー9は、エンジン始動時までの間、機体の空力抵抗の低減、及び、エンジンへの異物混入防止に利用される。機体3の中間の下方部分とカウル4の中間部分とは、燃料と空気とを混合し燃焼させる燃焼器7を構成している。機体3の後方の下方部分とカウル4の後方部分とは、燃焼ガスを膨張させて放出するノズル8を構成している。また、燃焼器7は、点火器61と、燃料噴射器62と、保炎用凹部66とを備えている。
 以下、実施形態について、詳細に説明する。
(第1の実施形態)
 以下、図5、図6を用いて、第1の実施形態に係るジェットエンジンの燃焼器について説明する。図5は、第1の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動時の状態を示す図である。また、図6は、第1の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動後、及び、保炎時の状態を示す図である。
 図5及び図6は、図4における燃焼器7の部分を拡大した図である。なお、図5及び図6は、図4に対して、天地を逆転して記載している。すなわち、図4の上側が、図5及び図6における下側であり、図4の下側が、図5及び図6における上側である。以下において、便宜的に、図5及び図6の上側を上方、図5及び図6の下側を下方、図5及び図6の左側(すなわち、主流空気の流れの上流側)を上流側、図5及び図6の右側(すなわち、主流空気の流れの下流側)を下流側と呼ぶこととする。
 燃焼器7は、点火器61と、燃料噴射器62と、保炎用凹部66とを備えている。燃料噴射器62は、機体3の壁部であって、燃焼器7の壁部に設けられている。燃料噴射器62は、機体3に格納された燃料を空間50へ向けて噴射する。点火器61は、例えば、固体ロケットモータ(固体RM)である。本明細書において、固体ロケットモータは、固体燃料を燃焼させて、火炎を放射する装置と定義される。なお、固体ロケットモータの材料としては、例えば、(1)ニトロセルロース+ニトログリセリン(火炎温度:摂氏1700度~摂氏3150度、燃焼速度:0.6~2.3cm/s)、(2)AN/CO(火炎温度:摂氏1800度、燃焼速度:0.1~0.4cm/s)、(3)AP/CO/Al(火炎温度:摂氏2800度~摂氏3600度、燃焼速度:0.8~1.4cm/s)等を挙げることができる。点火器61は、火炎71を空間50に向けて放射する。点火器61は、点火器作動器63が生成する電気エネルギー又は熱エネルギー等によって始動する。また、点火器作動器63は、点火器制御器64からの作動信号等がケーブル65等を介して伝達されることに応じて、始動する。
 ここで、点火器61について更に説明する。点火器61は、燃焼器7の壁面に設けられた保炎部、例えば、保炎用凹部66に設置されている。点火器61は、作動することにより消失する。例えば、点火器61として、固体ロケットモータを採用した場合には、固体ロケットモータを構成する固体燃料が燃焼することで、固体ロケットモータは消失する。そして、図6に示されるように、消失により形成された空間が保炎空間67として機能する。
 他方、点火器61は、作動することにより、火炎71を空間50に向けて放射する。主流空気と燃料噴射器62からの燃料との混合気は、前記火炎71により燃焼して、炎72を形成する。炎72は、点火器61の消失により形成された空間にも形成される。当該空間、すなわち、保炎空間67は、低速の混合気流の存在する領域であるため、当該空間内、すなわち、保炎空間67内で形成された炎72は、保炎される。
 続いて、図5~7を用いて、保炎用凹部66の形状について説明する。図7は、本実施形態のジェットエンジンにおいて、保炎用凹部66の位置、形状の一例を示す斜視図である。なお、機体3は、主流空気の流路を構成する下壁の一部のみを記載している。図7では、保炎用凹部66が、ジェットエンジンのスパン方向(横幅方向)に沿って、燃焼器の全幅にわたって設けられている。そして、保炎用凹部66の形状は、直方体状の凹部である。しかし、保炎用凹部66の形状は、その他の形状であっても良い。また、保炎用凹部66は、燃焼器7の一部の幅にわたって設けられていても良い。保炎用凹部66が燃焼器7の一部の幅にわたって設けられる場合には、保炎用凹部66を、スパン方向に沿って複数設けても良い。なお、空力的観点及び安定的保炎の観点から、保炎用凹部66は浅い凹部であることが好ましい。例えば、保炎用凹部66の空気の主流方向に沿った最長長さをL、前記凹部66の最大深さをDとしたとき、前記長さLと前記深さDとは、L>Dを満たすように設定するのが好ましい。前記長さLと前記深さDとは、10D>L>2Dを満たすように設定するのがより好ましい。
 次に、本発明の実施の形態に係る飛しょう体1及びジェットエンジン2の動作方法について説明する。
 まず、飛しょう体が所望の速度に達した後、インレットカバー9がインレット6から分離される。そして、空間50内には、高速の空気が流入し、主流空気の流れが形成される。次に、主流空気の流れ、すなわち、空間50内に向けて、燃料噴射器62から燃料が噴射される。主流空気と燃料とは、混合されて、混合気流を形成する。また、燃料の噴射と時を前後して、点火器作動器64からの作動信号が、ケーブル65等を介して、点火器作動器63に伝達される。点火器作動器63は、点火器61を始動させる。点火器61は、作動により、火炎71を空間50に向けて放射する。火炎71は、前記混合気流の混合気を燃焼させて、炎72を形成する。また、点火器61は、作動により消失して、消失空間を形成する。そして、当該消失空間は、前記炎72の保炎空間67として機能する。保炎空間67により、保炎された炎は、混合気流の混合気を継続的に燃焼させる。燃焼により生じた燃焼ガスは、ノズル8から放出される。放出される燃焼ガスにより、前記飛しょう体1は、推力を得て飛しょうする。
 一般的なジェットエンジンでは、点火器設置用の凹部と、保炎器用の凹部とが別々に設けられる場合がある。このようなジェットエンジンでは、点火器設置用のスペースと、保炎器設置用のスペースとが、別々に確保される。これに対し、いくつかの実施の形態に係る燃焼器7では、点火器61の消失後の空間を保炎空間67として使用している。このため、点火器61の設置スペースを別途確保する必要がない。
 また、点火器設置用の凹部と、保炎器用の凹部とが別々に設けられるジェットエンジンでは、点火器設置用の凹部近傍と、保炎器用の凹部との両方に、燃焼に適した空気/燃料比の混合気を送り込む必要がある。このため、エンジンの設計は、相対的に複雑となる。これに対し、いくつかの実施の形態に係る燃焼器7では、保炎用凹部66に対して、燃焼に適した空気/燃料比の混合気を送り込むように設計すれば、当該保炎用凹部66内に位置する点火器61及び保炎空間67に対しても、燃焼に適した空気/燃料比の混合気が送り込まれる。このため、エンジンの設計が簡素化される。
 また、点火器設置用の凹部と、保炎器用の凹部とが別々に設けられるジェットエンジンでは、点火器により生成された火炎を、保炎器用の凹部まで、伝播させる必要がある。これに対し、いくつかの実施の形態に係る燃焼器7では、点火器により生成された火炎を、保炎器用の凹部まで、伝播させる必要がない。このため、着火および保炎が不安定化することがない。
 また、点火器設置用の凹部と、保炎器用の凹部とが別々に設けられるジェットエンジンでは、点火器により生成された火炎を、保炎器用の凹部まで伝播させる際に、炎が失火しないようにする必要がある。このため、点火器の出力を相対的に大きくする必要がある。その結果、点火器が大型化する。これに対し、いくつかの実施の形態に係る燃焼器7では、点火器により生成された火炎を、保炎器用の凹部まで、伝播させる必要がない。このため、点火器の出力を相対的に小さくすることが可能である。その結果、従来では、点火器から発生する火炎を空間に向けて勢い良く放射し、かつ固体燃料の充填率を高めるために、点火器が設置される凹部は、深さの深い形状が採用されていたとの技術常識を覆し、浅い凹部である保炎用凹部に点火器を設置することが可能となる。
 また、点火器設置用の凹部と、保炎器用の凹部とが別々に設けられるジェットエンジンでは、点火器作動後に、点火器が消失することにより生成される空洞(点火器が設置されていた凹部)が、空気力学的な観点からみて、有害形状になる場合がある。例えば、当該空洞の存在により、流体流れに擾乱が生じ、又は、衝撃波が発生し、その結果、エンジン性能は低下する。これに対し、いくつかの実施の形態に係る燃焼器7では、点火器作動後に、点火器61が消失することにより生成される空洞(点火器が設置されていた凹部)が、有害形状となることなく、保炎空間67として利用される。
(第1の実施形態の変形例)
 第1の実施形態では、保炎部は、保炎用凹部66であった。しかし、保炎部を、図8、図9に示されるように、保炎用段差部66’(上流側の燃焼器壁面よりも下方、すなわち、主流空気から遠ざかる方向に後退した部分)とすることも可能である。この場合、保炎用段差部66’に、点火器61を設置する。そして、点火器61の消失後の空間が、保炎空間67’となる。
 第1の実施形態の変形例は、第1の実施形態と同様の効果を奏する。
(第2の実施形態)
 以下、図10、図11を用いて、第2の実施形態に係るジェットエンジンの燃焼器について説明する。図10は、第2の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動時、及び、保炎時の状態を示す図である。また、図11は、第2の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動後、及び、保炎時の状態を示す図である。
 第2の実施形態において、第1の実施形態と同じ構成要素については、同じ図番を用いている。第2の実施形態は、第1の実施形態と比較して、点火器61が、保炎用凹部66の一部のみに設置されており、点火器61が設置されていない部分が、保炎空間67として機能する点で異なる。
 次に、本発明の実施の形態に係る飛しょう体1及びジェットエンジン2の動作方法について説明する。
 まず、飛しょう体が所望の速度に達した後、インレットカバー9がインレット6から分離される。そして、空間50内には、高速の空気が流入し、主流空気の流れが形成される。次に、主流空気の流れ、すなわち、空間50内に向けて、燃料噴射器62から燃料が噴射される。主流空気と燃料とは、混合されて、混合気流を形成する。また、燃料の噴射と時を前後して、点火器作動器64からの作動信号が、ケーブル65等を介して、点火器作動器63に伝達される。点火器作動器63は、点火器61を始動させる。点火器61は、作動により、火炎71を空間50に向けて放射する。点火器61の始動直後の状態において、保炎用凹部66のうち点火器61の設置されていなかった部分が、火炎71に対する保炎空間67として機能する。火炎71は、前記混合気流の混合気を燃焼させて、炎72を形成する。また、点火器61は、作動により消失して、消失空間を形成する。そして、当該消失空間は、保炎用凹部66のうち点火器61の設置されていなかった部分とともに、前記炎72の保炎空間67として機能する。保炎空間67により、保炎された炎は、混合気流の混合気を継続的に燃焼させる。燃焼により生じた燃焼ガスは、ノズル8から放出される。放出される燃焼ガスにより、前記飛しょう体1は、推力を得て飛しょうする。
 本実施形態は、第1の実施形態と同様の効果を奏するのに加え、以下の効果も奏する。すなわち、点火器61の始動直後の状態において、保炎用凹部66のうち点火器61の設置されていなかった部分が、火炎71に対する保炎空間67として機能する。このため、火炎71は、仮に火力が弱いものであっても、確実に保炎される。
(第3の実施形態)
 以下、図12、図13を用いて、第3の実施形態に係るジェットエンジンの燃焼器について説明する。図12は、第3の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動時、及び、保炎時の状態を示す図である。また、図13は、第3の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動後、及び、保炎時の状態を示す図である。
 第3の実施形態において、第2の実施形態と同じ構成要素については、同じ図番を用いている。第3の実施形態は、第2の実施形態と比較して、点火器61が、保炎用凹部66の一部のみに埋め込まれている点では一致する。他方、点火器61が埋め込まれている位置が相違するとともに、第3の実施形態では、点火器61の表面の一部を覆うバリア材68が設けられている点で、両者は異なる。
 バリア材68は、バリア材68の材料と点火器61の材料との密着力により、点火器61の表面に保持される。あるいは、代替的に、バリア材68と点火器61の表面との間を、接着剤又はネジ等の接合部材を介して接合しても良い。
 第3の実施形態において、点火器61の表面のうち、バリア材68で覆われていない部分は、火炎71が放射される喉部69(スロート部)を構成する。点火器作動器63は、喉部69に隣接して配置される。
 次に、本発明の実施の形態に係る飛しょう体1及びジェットエンジン2の動作方法について説明する。
 まず、飛しょう体が所望の速度に達した後、インレットカバー9がインレット6から分離される。そして、空間50内には、高速の空気が流入し、主流空気の流れが形成される。次に、主流空気の流れ、すなわち、空間50内に向けて、燃料噴射器62から燃料が噴射される。主流空気と燃料とは、混合されて、混合気流を形成する。また、燃料の噴射と時を前後して、点火器作動器64からの作動信号が、ケーブル65等を介して、点火器作動器63に伝達される。点火器作動器63は、点火器61を始動させる。点火器61は、作動により、火炎71を、空間50又は保炎空間67(保炎用凹部66のうち点火器61の設置されていなかった部分)に向けて放射する。火炎71は、喉部69を介して放射されるため、強力である。加えて、点火器61の始動直後の状態において、保炎用凹部66のうち点火器61の設置されていなかった部分が、火炎71に対する保炎空間67として機能する。火炎71は、前記混合気流の混合気又は保炎空間67内に流入する混合気を燃焼させて、炎72を形成する。また、点火器61は、作動により消失して、消失空間を形成する。そして、当該消失空間は、保炎用凹部66のうち点火器61の設置されていなかった部分とともに、前記炎72の保炎空間67として機能する。保炎空間67により保炎された炎は、混合気流の混合気を継続的に燃焼させる。燃焼により生じた燃焼ガスは、ノズル8から放出される。放出される燃焼ガスにより、前記飛しょう体1は、推力を得て飛しょうする。なお、点火器61の消失により、点火器61に保持されていたバリア材68は、保炎用凹部66を離脱し、燃焼ガスとともにノズル8の後方から放出される。
 本実施形態は、第2の実施形態と同様の効果を奏するのに加え、以下の効果も奏する。第1に、点火器61の火炎が、喉部69を介して放射されるため、強力である。すなわち、点火器の火炎放出部が狭くなることにより固体ロケットモータ等の点火器の燃焼圧が上昇し、燃焼速度が増加し、火炎が強力化する。第2に、保炎空間67等に集中して火炎を噴射することができるため、混合気への着火特性が向上する。
(第4の実施形態)
 以下、図14を用いて、第4の実施形態に係るジェットエンジンの燃焼器について説明する。図14は、第4の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図であり、点火器作動時、及び、保炎時の状態を示す図である。
 第4の実施形態において、第3の実施形態と同じ構成要素については、同じ図番を用いている。第4の実施形態は、第3の実施形態と比較して、点火器61の表面の一部を覆うバリア材68が設けられている点で一致する。他方、第4の実施形態では、前記バリア材68の一部が、点火器61と燃焼器7の壁面との間に挿入されて、点火器61と燃焼器7の壁面との間で保持されている点で、両者は異なる。
 本実施形態は、第3の実施形態と同様の効果を奏するのに加え、以下の効果も奏する。すなわち、バリア材68の一部が、点火器61と燃焼器7の壁面との間に挿入されているため、点火器61の消失までは、バリア材68が、確実に保持される。
(第5の実施形態)
 以下、図15を用いて、第5の実施形態に係るジェットエンジンの燃焼器について説明する。図15は、第5の実施形態のジェットエンジンの燃焼器の構成を模式的に示す概略断面図である。
 第5の実施形態において、第2の実施形態と同じ構成要素については、同じ図番を用いている。第5の実施形態は、第2の実施形態と比較して、保炎用凹部66内において、複数の点火器61が、離間して配置されている点で異なる。
 本実施形態は、第2の実施形態と同様の効果を奏するのに加え、以下の効果も奏する。すなわち、保炎用凹部66内において、複数の点火器61が、離間して配置されているため、複数の点火器61が同時に、保炎用凹部66内で広範囲に燃焼するため、混合気への着火がより確実となる。
 本実施の形態はジェットエンジンを飛しょう体に適用した例示ついて説明しているが、当該飛しょう体には、航空機又はロケット等も包含される。
 本発明は上記各実施形態に限定されず、本発明の技術思想の範囲内において、各実施形態は適宜変形又は変更され得ることは明らかである。例えば、点火器61の作動を、点火器作動器63、点火器制御器64、ケーブル65等を設けることなく行うことも可能である。一例として、インレットカバー9をインレット6から分離した後に、インレット6から取り込まれた空気の圧縮により生じる熱および圧力により、点火器61が自動的に発火して作動するようにしてもよい。さらに、図4には、インレットカバー9が記載されているが、インレットカバー9を設けることは、必須ではなく、インレットカバー9の代わりに、ノズル8の後方にノズルカバーを設けても良い。あるいは、インレットカバー9もノズルカバーも設けないようにして、ジェットエンジンの構成を簡素化してもよい。また、上記各実施形態では、点火器61として、固体ロケットモータを採用しているが、代替的に、点火器61として、スパークプラグ、レーザ点火器等を採用してもよい。この場合には、点火器61を保炎部(保炎用凹部66又は保炎用段差部66’等)に対して離脱可能に設けるとよい。そして、作動後の点火器61を、保炎部から離脱させることで、点火器61離脱後(消失後)の空間を保炎空間として用いることができる。なお、離脱後の点火器61は、燃焼ガスとともにノズル8の後方から放出されるようにするとよい。離脱させるメカニズムとしては、例えば、点火器61の作動に伴う熱を利用して、点火器61と保炎部との連結を切り離すようにするとよい。
 また、各実施形態又は変形例で用いられる種々の技術は、技術的矛盾が生じない限り、他の実施形態又は変形例にも適用可能である。例えば、第1の実施形態において、第3の実施形態のバリア材68を設ける構成を組み合わせること等が可能である。
 本出願は、2014年3月26日に出願された日本国特許出願第2014-64123号を基礎とする優先権を主張し、当該基礎出願の開示の全てを引用により本出願に取り込む。

Claims (12)

  1.  インレットから取り込まれた空気を用いて燃料を燃焼する燃焼器であって、
     前記燃料を噴射する噴射器と、
     前記燃焼器の壁面に設けられた保炎部であって、前記噴射器から噴射された前記燃料の燃焼に用いる炎を維持するための保炎部と、
     前記空気と前記燃料との混合気に着火するための点火器と、
    を備え、
     前記点火器は、前記保炎部内に設置され、消失により前記保炎部内に保炎空間を形成するように構成されている
    燃焼器。
  2.  請求項1に記載の燃焼器において、
     前記点火器は、燃焼により消失して前記保炎部内に保炎空間を形成するように構成された固体ロケットモータである
    燃焼器。
  3.  請求項1に記載の燃焼器において、
     前記燃焼器の壁面に設けられた保炎部は、前記燃焼器の壁面に設けられた保炎用凹部である
    燃焼器。
  4.  請求項3に記載の燃焼器において、
     前記保炎用凹部の前記取り込まれた空気の主流方向に沿った最長長さをL、前記凹部の最大深さをDとしたとき、前記長さLと前記深さDとは、L>Dを満たすように設定されている
    燃焼器。
  5.  請求項3又は4に記載の燃焼器において、
     前記点火器は、前記保炎用凹部の全体に設置されている
    燃焼器。
  6.  請求項3又は4に記載の燃焼器において、
     前記点火器は、前記保炎用凹部の一部に設置されており、前記保炎用凹部のうち前記点火器が設置されていない部分が存在する
    燃焼器。
  7.  請求項1乃至6のいずれか一項に記載の燃焼器において、
     前記点火器の周囲の少なくとも一部は、前記燃焼器の壁面とは異なるバリア材で覆われている
    燃焼器。
  8.  請求項7に記載の燃焼器において、
     前記点火器と前記燃焼器の壁面との間に前記バリア材の一部が挿入されている
    燃焼器。
  9.  請求項1乃至8のいずれか一項に記載の燃焼器において、
     前記点火器は、前記インレットから取り込まれた前記空気の圧縮により生じる熱および圧力により自動的に発火して作動するように構成されている
    燃焼器。
  10.  請求項1乃至9のいずれか一項に記載の燃焼器と、前記燃焼器の前方に配置されたインレットと、前記燃焼器の後方に配置されたノズルとを備える
    ジェットエンジン。
  11.  請求項10に記載のジェットエンジンを備える飛しょう体であって、
     前記ジェットエンジンとは別に設けられ、前記ジェットエンジンの作動前に作動して前記飛しょう体に推力を付与する推力付与装置を備える
    飛しょう体。
  12.  ジェットエンジンの動作方法であって、
     ここで、前記ジェットエンジンは、
      空気を取り込むインレットと、
      前記空気を用いて燃料を燃焼させ燃焼ガスを生成する燃焼器と、
      前記燃焼ガスを前記ジェットエンジンの後方から送出するノズルと、
     を備え、
      前記燃焼器は、
       前記燃料を噴射する噴射器と、
       前記燃焼器の壁面に設けられた保炎部であって、前記噴射器から噴射された前記燃料の燃焼に用いる炎を維持するための保炎部と、
       前記保炎部内に設置された点火器であって、前記空気と前記燃料との混合気に着火するための点火器と、
      を備え、
     前記ジェットエンジンの動作方法は、
      前記インレットから空気を取り込む工程と、
      前記点火器により前記空気と前記燃料との混合気に着火する工程と、
      前記点火器の作動後に、前記点火器が消失することにより形成された保炎空間を用いて、前記燃料の燃焼に用いる炎を保炎する工程と、
      保炎された前記炎を用いて、前記空気と前記燃料との混合気を燃焼させ、燃焼により生成された燃焼ガスを前記ノズルから送出する工程と、
     を備える
    ジェットエンジンの動作方法。
PCT/JP2015/054027 2014-03-26 2015-02-13 燃焼器、ジェットエンジン、飛しょう体及びジェットエンジンの動作方法 WO2015146357A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/121,172 US10697397B2 (en) 2014-03-26 2015-02-13 Combustor, jet engine, flying body, and operation method of jet engine
EP15768446.5A EP3098428B1 (en) 2014-03-26 2015-02-13 Combustor, jet engine, flying body, and method for operating the jet engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-064123 2014-03-26
JP2014064123A JP6310292B2 (ja) 2014-03-26 2014-03-26 燃焼器、ジェットエンジン、飛しょう体及びジェットエンジンの動作方法

Publications (1)

Publication Number Publication Date
WO2015146357A1 true WO2015146357A1 (ja) 2015-10-01

Family

ID=54194895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054027 WO2015146357A1 (ja) 2014-03-26 2015-02-13 燃焼器、ジェットエンジン、飛しょう体及びジェットエンジンの動作方法

Country Status (4)

Country Link
US (1) US10697397B2 (ja)
EP (1) EP3098428B1 (ja)
JP (1) JP6310292B2 (ja)
WO (1) WO2015146357A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158857A1 (ja) * 2016-03-16 2017-09-21 三菱重工業株式会社 ジェットエンジン、飛しょう体、およびジェットエンジンの動作方法
WO2017158856A1 (ja) * 2016-03-16 2017-09-21 三菱重工業株式会社 ジェットエンジン、および飛しょう体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10837369B2 (en) 2017-08-23 2020-11-17 General Electric Company Igniter assembly for a gas turbine combustor
CN110821711B (zh) * 2019-11-07 2020-10-16 西安航天动力研究所 一种燃烧室的点火、稳燃结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667233A (en) * 1969-11-14 1972-06-06 Us Air Force Dual mode supersonic combustion ramjet engine
JP3032377B2 (ja) * 1992-06-05 2000-04-17 ダイセル化学工業株式会社 ラムジェットエンジンの点火手段
US20070044449A1 (en) * 2005-05-19 2007-03-01 O'brien Walter F Improved Plasma Torch for Ignition, Flameholding and Enhancement of Combustion in High Speed Flows
JP2011508126A (ja) * 2006-11-10 2011-03-10 アエロジェット ジェネラル コーポレイション 複合サイクルミサイルエンジンシステム
WO2011155248A1 (ja) * 2010-06-10 2011-12-15 学校法人早稲田大学 エンジン
JP2012013008A (ja) * 2010-07-01 2012-01-19 Mitsubishi Heavy Ind Ltd 超音速燃焼器の着火方法及び着火制御装置
JP2012207555A (ja) * 2011-03-29 2012-10-25 Mitsubishi Heavy Ind Ltd スクラムジェットエンジン
JP2012207610A (ja) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd スクラムジェットエンジン

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2989922A (en) * 1953-02-17 1961-06-27 Marvin H Greenwood Ramjet propulsion device
US3942320A (en) 1973-04-09 1976-03-09 The United States Of America As Represented By The Secretary Of The Air Force Solid boron fuel burner for ramjet
US4441312A (en) 1979-06-22 1984-04-10 The United States Of America As Represented By The Secretary Of The Air Force Combined cycle ramjet engine
US5010728A (en) * 1985-10-18 1991-04-30 Williams International Corporation Solid fuel turbine engine
US5072582A (en) 1989-03-23 1991-12-17 General Electric Company Scramjet combustor
US5223651A (en) 1990-03-08 1993-06-29 Avco Corporation Supersonic combustion engine and method of combustion initiation and distribution
JPH0633731B2 (ja) * 1991-04-15 1994-05-02 防衛庁技術研究本部長 ラムロケットの保炎装置
JPH0660597A (ja) 1992-08-03 1994-03-04 Mitsubishi Electric Corp テープカセット
FR2701293B1 (fr) 1993-02-05 1995-04-28 Europ Propulsion Moteur combiné intégrant les modes éjecteur à air turbocomprimé refroidi ou liquéfié statoréacteur et super-statoréacteur.
US5857339A (en) * 1995-05-23 1999-01-12 The United States Of America As Represented By The Secretary Of The Air Force Combustor flame stabilizing structure
US5660357A (en) 1995-07-24 1997-08-26 Northrop Grumman Corporation Airstream ejected missile engine inlet cover
JP3032377U (ja) 1996-06-12 1996-12-17 祐輔 兼田 加熱カッター装置
US6293091B1 (en) * 1999-04-22 2001-09-25 Trw Inc. Axisymmetrical annular plug propulsion system for integrated rocket/ramjet or rocket/scramjet
US6584765B1 (en) 2001-12-21 2003-07-01 United Technologies Corporation Pulse detonation engine having an aerodynamic valve
US6739121B2 (en) * 2002-01-22 2004-05-25 Environmental Areoscience Corp. Flame holder for a hybrid rocket motor
FR2844557B1 (fr) * 2002-09-12 2006-03-03 Snecma Propulsion Solide Systeme et procede de controle des oscillations de pression d'origine hydrodynamique pour propulseur a propergol solide
US8256203B1 (en) * 2007-01-26 2012-09-04 The University Of Alabama In Huntsville Rocket based combined cycle propulsion unit having external rocket thrusters
JP4719182B2 (ja) 2007-05-14 2011-07-06 三菱重工業株式会社 2パルスロケットモータ
TWI422741B (zh) * 2010-02-24 2014-01-11 Nat Applied Res Laboratories 發動機
US20110314791A1 (en) * 2010-06-25 2011-12-29 Haynes Jeffrey D Method for combustion system
JP5529650B2 (ja) * 2010-07-01 2014-06-25 三菱重工業株式会社 超音速燃焼器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667233A (en) * 1969-11-14 1972-06-06 Us Air Force Dual mode supersonic combustion ramjet engine
JP3032377B2 (ja) * 1992-06-05 2000-04-17 ダイセル化学工業株式会社 ラムジェットエンジンの点火手段
US20070044449A1 (en) * 2005-05-19 2007-03-01 O'brien Walter F Improved Plasma Torch for Ignition, Flameholding and Enhancement of Combustion in High Speed Flows
JP2011508126A (ja) * 2006-11-10 2011-03-10 アエロジェット ジェネラル コーポレイション 複合サイクルミサイルエンジンシステム
WO2011155248A1 (ja) * 2010-06-10 2011-12-15 学校法人早稲田大学 エンジン
JP2012013008A (ja) * 2010-07-01 2012-01-19 Mitsubishi Heavy Ind Ltd 超音速燃焼器の着火方法及び着火制御装置
JP2012207555A (ja) * 2011-03-29 2012-10-25 Mitsubishi Heavy Ind Ltd スクラムジェットエンジン
JP2012207610A (ja) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd スクラムジェットエンジン

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158857A1 (ja) * 2016-03-16 2017-09-21 三菱重工業株式会社 ジェットエンジン、飛しょう体、およびジェットエンジンの動作方法
WO2017158856A1 (ja) * 2016-03-16 2017-09-21 三菱重工業株式会社 ジェットエンジン、および飛しょう体
US11248562B2 (en) 2016-03-16 2022-02-15 Mitsubishi Heavy Industries, Ltd. Jet engine, flying object, and operation method of jet engine

Also Published As

Publication number Publication date
JP2015183680A (ja) 2015-10-22
EP3098428A4 (en) 2017-03-15
EP3098428A1 (en) 2016-11-30
US20170030297A1 (en) 2017-02-02
US10697397B2 (en) 2020-06-30
JP6310292B2 (ja) 2018-04-11
EP3098428B1 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6719933B2 (ja) ジェットエンジン、飛しょう体、および、ジェットエンジンの動作方法
WO2015146357A1 (ja) 燃焼器、ジェットエンジン、飛しょう体及びジェットエンジンの動作方法
JP6268529B2 (ja) ジェットエンジン、飛しょう体及びジェットエンジンの動作方法
Han et al. Deflagration-to-detonation transition induced by hot jets in a supersonic premixed airstream
US11067036B2 (en) Combustor and jet engine having the same
KR101126861B1 (ko) 극초음속 공기흡입식 복합사이클 엔진장치 및 그의 엔진모드
EP3647578B1 (en) Scramjet engine and flying object
KR101320625B1 (ko) 스크램제트 엔진
KR101268393B1 (ko) 하이브리드 추진기관
US10451007B1 (en) Enhanced operability dual mode ramjet and scramjet engine ignition system
WO2017158856A1 (ja) ジェットエンジン、および飛しょう体
JP6204250B2 (ja) ジェットエンジン、飛しょう体及びジェットエンジンの動作方法
JP7121556B2 (ja) ラムジェットエンジン
JP6788522B2 (ja) スクラムジェットエンジン
RU2529935C1 (ru) Гиперзвуковой прямоточный воздушно-реактивный двигатель и способ организации рабочего процесса
JP5777294B2 (ja) 飛しょう体
KR20100046754A (ko) 선형 램제트 엔진 및 이를 이용한 동축반전 로터 비행체
JPH03157299A (ja) 空気導入式ロケット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768446

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015768446

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768446

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15121172

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE