WO2015145948A1 - Semiconductor wafer transfer apparatus and solar cell manufacturing method using same - Google Patents

Semiconductor wafer transfer apparatus and solar cell manufacturing method using same Download PDF

Info

Publication number
WO2015145948A1
WO2015145948A1 PCT/JP2015/000706 JP2015000706W WO2015145948A1 WO 2015145948 A1 WO2015145948 A1 WO 2015145948A1 JP 2015000706 W JP2015000706 W JP 2015000706W WO 2015145948 A1 WO2015145948 A1 WO 2015145948A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
arms
cassette
pair
solar cell
Prior art date
Application number
PCT/JP2015/000706
Other languages
French (fr)
Japanese (ja)
Inventor
博喜 湯川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015145948A1 publication Critical patent/WO2015145948A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0014Gripping heads and other end effectors having fork, comb or plate shaped means for engaging the lower surface on a object to be transported
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • B25J15/0616Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells

Definitions

  • the present invention relates to a solar cell manufacturing technique, and more particularly, to a semiconductor wafer transfer device for transferring a semiconductor wafer and a solar cell manufacturing method using the same.
  • multiple glass substrates can be accommodated in multiple upper and lower stages at predetermined intervals before the process of forming a transparent electrode film on a glass substrate or forming a thin film transistor.
  • a substrate pick is used to remove the glass substrate from the substrate cassette.
  • the pick-up for picking up a substrate includes a pair of arms, and the substrate lifting surface of each arm is formed to have a mountain shape in a cross section perpendicular to the loading / unloading direction of the arm with respect to the cassette (see, for example, Patent Document 1).
  • an etching process or the like is performed on the semiconductor wafer.
  • a plurality of semiconductor wafers subjected to the etching process are also stored in the cassette. At that time, both edge portions of the semiconductor wafer are supported by the cassette. Since the thickness of the semiconductor wafer that has been subjected to the etching process is thinner than the thickness of the original semiconductor wafer, the central portion of the semiconductor wafer is more likely to bend downward than before the etching process. In a situation where such semiconductor wafers are already stored in the cassette, contact between the semiconductor wafers should be suppressed when a new semiconductor wafer is inserted into the cassette.
  • a semiconductor wafer transfer device is used.
  • the semiconductor wafer is attracted to the upper surface side of the arm in the semiconductor wafer transfer device.
  • the cross section of the arm has a chevron shape, it is possible to obtain an adsorption force that is insufficient for the adsorption of the semiconductor wafer.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique for suppressing contact between semiconductor wafers when a semiconductor wafer is stored in a cassette when a solar cell is manufactured. There is.
  • a semiconductor wafer transfer apparatus includes a pair of arms each having a flat suction surface for sucking a semiconductor wafer disposed on the upper surface side, and a pair of arms. And a connecting member for connecting the respective one side ends.
  • the inner sides facing each other are inclined so as to be lower than the outer side opposite to the inner side.
  • Another aspect of the present invention is a method for manufacturing a solar cell.
  • the method includes the steps of etching a semiconductor wafer, and storing the etched semiconductor wafer in a cassette in which a plurality of semiconductor wafers can be juxtaposed by supporting both edge portions of the semiconductor wafer. And a step of moving the cassette in which the etched semiconductor wafer is housed, and a step of forming an amorphous silicon layer on the semiconductor wafer housed in the moved cassette.
  • the suction surfaces arranged on the upper surface side of each of the pair of arms included in the semiconductor wafer transfer apparatus, and the inner sides facing each other are lower than the outer side opposite to the inner side.
  • the semiconductor wafer is adsorbed on the inclined adsorption surface.
  • FIG. 2A to 2E are views showing cross sections of the solar cell in each step of the manufacturing procedure of the solar cell shown in FIG. It is a top view which shows the structure of the semiconductor wafer transfer apparatus which concerns on embodiment. It is sectional drawing which shows the structure of the semiconductor wafer conveyance apparatus of FIG. It is a top view which shows the structure at the time of adsorb
  • the present embodiment relates to a process of moving an etched semiconductor wafer to a vacuum film forming apparatus in the course of manufacturing a solar cell.
  • a cassette that can store a plurality of semiconductor wafers is used for the movement.
  • support shelves are provided for supporting the respective edge portions of the semiconductor wafer.
  • the support shelves are provided in a plurality of stages in the vertical direction of the side surface in order to support a plurality of semiconductor wafers.
  • the center portion bends downward when supported by the support shelf.
  • FIG. 1 is a flowchart showing a manufacturing procedure of the solar cell according to the embodiment.
  • 2A to 2E are views showing cross sections of the solar cell in each step of the manufacturing procedure of the solar cell shown in FIG.
  • a semiconductor wafer is generated by slicing the ingot (S10).
  • S10 the ingot
  • the semiconductor wafer 20 has surface damage and contamination due to scratches generated during slicing.
  • the surface damage and contamination of the semiconductor wafer are removed (S12).
  • the removing step about 10 to 20 ⁇ m of the surface of the semiconductor wafer is etched. As shown in FIG. 2B, scratches on the surface of the semiconductor wafer 20 are removed. If the etching by the removal process is insufficient, the open circuit voltage (Voc) is lowered.
  • the open circuit voltage is a voltage in a state where nothing is connected between the positive electrode and the negative electrode of the solar cell.
  • the semiconductor wafer is etched to form an uneven shape on the light receiving surface (S14). As shown in FIG. 2 (c), even if light that escapes to the outside by a single reflection is formed on the surface of the semiconductor wafer 20 by forming an uneven shape on the surface of the semiconductor wafer 20, it is inclined. The surface can be reflected several times and introduced into the semiconductor wafer 20. As a result, more light can be absorbed inside the solar cell, and the characteristics of the solar cell are improved. Note that the thickness of the semiconductor wafer is further reduced by performing the etching.
  • the etched semiconductor wafer is stored in the cassette by using a semiconductor wafer transfer device (not shown) (S16).
  • a semiconductor wafer transfer device (not shown)
  • manufacturing of a solar cell is automated, and loading and unloading of a semiconductor wafer to a vacuum film forming apparatus described later is automated using a robot or the like.
  • a semiconductor wafer transfer device is used during such loading and unloading of a semiconductor wafer.
  • the semiconductor wafer transfer apparatus includes a pair of arms, and the etched semiconductor wafer is adsorbed to the adsorption surfaces arranged on the upper surfaces of the pair of arms.
  • the semiconductor wafer adsorbed by the pair of arms is near the central portion of the pair of arms. Sag downward.
  • the cassette can juxtapose a plurality of semiconductor wafers by supporting both edge portions of the semiconductor wafer. By supporting both edge portions, the semiconductor wafer housed in the cassette bends downward near the central portion, similar to the semiconductor wafer placed on the pair of arms. Since both have the same shape, when the semiconductor wafer adsorbed by the semiconductor wafer transfer device is inserted into the cassette, the contact between the semiconductor wafer and the already accommodated semiconductor wafer is prevented. In the moving process, the cassette in which the etched semiconductor wafer is stored is moved to the vacuum film forming apparatus (S18).
  • an amorphous silicon layer is formed on the semiconductor wafer stored in the moved cassette by a vacuum film forming apparatus (S20).
  • a vacuum film forming apparatus S20
  • an n-type amorphous silicon layer 30 is formed on a semiconductor wafer 20 of an n-type crystalline silicon substrate, and is opposite to the surface of the semiconductor wafer 20 on which the n-type amorphous silicon layer 30 is formed.
  • a p-type amorphous silicon layer 32 is formed on the surface.
  • a passivation layer may be provided between the semiconductor wafer 20 and the n-type amorphous silicon layer 30 and between the semiconductor wafer 20 and the p-type amorphous silicon layer 32.
  • substantially intrinsic i-type amorphous silicon, silicon nitride, or silicon oxide is used for the passivation layer.
  • the n-type amorphous silicon layer 30 and the p-type amorphous silicon layer are formed using a vacuum film formation method such as a CVD method, for example.
  • Transparent conductive layers 34 and 36 are provided on the n-type amorphous silicon layer 30 and the p-type amorphous silicon layer 32.
  • the transparent conductive layers 34 and 36 include, for example, indium oxide, tin oxide, and zinc oxide.
  • the transparent conductive layers 34 and 36 are formed by using a vacuum film forming method such as a sputtering method, for example.
  • silver paste electrodes are printed on the light receiving surface and the back surface (S22). As shown in FIG. 2E, a silver paste electrode 38 is formed on the transparent conductive layers 34 and 36 by screen printing. The silver paste electrode 38 may be cured by baking or drying.
  • FIG. 3 is a top view showing the configuration of the semiconductor wafer transfer apparatus 100 according to the embodiment of the present invention.
  • the semiconductor wafer transfer apparatus 100 includes a first arm 10a, a second arm 10b, collectively referred to as an arm 10, a connecting member 12, a first suction surface 14a, generally referred to as a suction surface 14, and a second suction surface 14b.
  • the first arm 10a and the second arm 10b are arranged substantially in parallel to form a pair of arms 10.
  • the connecting member 12 connects one end of each of the pair of arms 10. It can be said that such a connecting member 12 supports one end of each of the first arm 10a and the second arm 10b. Therefore, the arm 10 is protruded from the connecting member 12 in the semiconductor wafer transport direction.
  • the first suction surface 14a is disposed on the upper surface side of the first arm 10a, and the second suction surface 14b is disposed on the upper surface side of the second arm 10b.
  • the suction surface 14 includes holes (not shown), and the semiconductor wafer is sucked onto the suction surface 14 by sucking air from the holes. By such adsorption, a semiconductor wafer is placed on the pair of arms 10.
  • FIG. 4 is used.
  • FIG. 4 is a cross-sectional view taken along the line A-A ′ showing the configuration of the semiconductor wafer transfer apparatus 100.
  • the first suction surface 14a and the second suction surface 14b are flat surfaces and are inclined so that the inner sides facing each other are lower than the outer side opposite to the inner side.
  • positioning each arm 10 horizontally becomes lower inside than the outer side.
  • the structure of the surface opposite to the first suction surface 14a and the second suction surface 14b of the arm 10 is not particularly limited, it is preferable to incline similarly to the first suction surface 14a and the second suction surface 14b.
  • FIG. 5 is a top view showing a configuration when the semiconductor wafer 20 is attracted to the semiconductor wafer transfer apparatus 100. This corresponds to step 16 in FIG. 1, and the semiconductor wafer 20 is placed on the semiconductor wafer transfer apparatus 100 shown in FIG.
  • the semiconductor wafer 20 includes a central portion 22, a first end side edge portion 24 a and a second end side edge portion 24 b collectively referred to as an end side edge portion 24.
  • the semiconductor wafer 20 here is etched as described above.
  • the suction surfaces 14 of the pair of arms 10 are in contact with inner portions of the first end side edge portion 24a and the second end side edge portion 24b facing each other in the semiconductor wafer 20 to be transported. Further, it is desirable that the semiconductor wafer 20 be placed on the pair of arms 10 so as to be line symmetric with respect to the symmetry axis of the pair of arms 10. Therefore, as a relative positional relationship between the pair of arms 10 and the semiconductor wafer 20, the distance between the first end side edge 24a and the first arm 10a, and the distance between the second end side edge 24b and the second arm 10b. Are arranged in contact with the semiconductor wafer 20 so that they are substantially the same.
  • the central portion 22 of the semiconductor wafer 20 passes through the axis of symmetry.
  • the central portion 22 is a central portion of the semiconductor wafer 20 and includes a center of gravity.
  • the central portion 22 does not have to be a single point, and may be a region having a predetermined area.
  • the length of the pair of arms 10 is shorter than the vertical length of the semiconductor wafer 20.
  • the length of the pair of arms 10 may be longer than the vertical length of the semiconductor wafer 20.
  • FIG. 6 is a B-B ′ sectional view showing the configuration of the semiconductor wafer transfer apparatus 100.
  • the semiconductor wafer 20 is adsorbed by the first arm 10a on the first adsorbing surface 14a and adsorbed by the second arm 10b on the second adsorbing surface 14b. Between the first suction surface 14a and the second suction surface 14b, the semiconductor wafer 20 warps in a concave state with the central portion 22 as the center. Therefore, the center part 22 is arrange
  • the first end side edge portion 24a and the second end side edge portion 24b are higher than the uppermost portions of the first suction surface 14a and the second suction surface 14b. Placed in.
  • the inclination angle of the first suction surface 14a and the second suction surface 14b and falling from the outer side to the inner side maintains the continuity of the warpage of the concave state due to the weight of the semiconductor wafer 20. It is considered to be an angle. Further, as described above, since the first suction surface 14a and the second suction surface 14b are flat, the contact area with the semiconductor wafer 20 is widened, and the suction force of the semiconductor wafer 20 is increased.
  • FIG. 7 is a cross-sectional view showing a configuration of the cassette 50 according to the embodiment. This corresponds to step 16 in FIG.
  • the cassette 50 includes a first support shelf 52a and a second support shelf 52b collectively referred to as a support shelf 52.
  • reference numerals are given only to the components related to one semiconductor wafer 20, and the reference numerals are omitted for the rest.
  • FIG. 7 is shown in the same direction as FIG. 6, the back direction of the figure corresponds to the upward direction of FIG.
  • a first support shelf 52a and a second support shelf 52b are protruded in a plurality of stages at intervals in the vertical direction of FIG. 7 on both side walls in the cassette 50.
  • the cassette 50 includes a plurality of semiconductor wafers. 20 can be juxtaposed in the vertical direction.
  • the semiconductor wafer transfer apparatus 100 shown in FIGS. 5 and 6 is attached to a transfer robot (not shown) and inserted between the first support shelf 52a and the second support shelf 52b in the cassette 50. More specifically, the semiconductor wafer 20 is inserted to a predetermined position by feeding the pair of arms 10 from the near side of FIG. Thereafter, the pair of arms 10 is slightly lowered, the first support shelf 52a supports the first end side edge 24a, and the second support shelf 52b supports the second end side edge 24b. The semiconductor wafer 20 is stored in the cassette 50.
  • the semiconductor wafer transfer device 100 is moved so as to pull out the pair of arms 10 from the cassette 50, taking care not to contact the semiconductor wafer 20 stored on the lower side.
  • the semiconductor wafer 20 thus housed in the first support shelf 52a and the second support shelf 52b is supported by the first end side edge portion 24a and the second end side edge portion 24b, so that the central portion 22 is formed. Bends to hang down.
  • the warp of the semiconductor wafer 20 at this time is a concave direction similar to the warp generated when the semiconductor wafer 20 is placed on the pair of arms 10 and is warped by the same weight. Therefore, the upper surface of the semiconductor wafer 20 on the pair of arms 10 does not contact the semiconductor wafer accommodated in the upper stage. Further, the lower surface of the semiconductor wafer 20 on the pair of arms 10 does not contact the semiconductor wafer housed in the lower stage.
  • the flat suction surface is inclined so that the inner side is lower than the outer side, so that a sufficient suction force for placing the semiconductor wafer can be obtained.
  • the semiconductor wafer can be bent downward at the central portion between the pair of arms.
  • the semiconductor wafer is bent downward in the central portion between the pair of arms, the same shape as that of other semiconductor wafers already stored in the cassette can be realized.
  • the semiconductor wafer to be inserted from now on has the same shape as other semiconductor wafers already stored in the cassette, the semiconductor wafer when storing the semiconductor wafer in the cassette when manufacturing a solar cell. The contact between them can be suppressed.
  • the surface opposite to the suction surface of the arm is also inclined similarly to the suction surface, contact with the arm semiconductor wafer can be further suppressed.
  • the semiconductor wafer is transferred using the arm having the suction surface inclined so that the inner side is lower than the outer side during the period from the etching step S14 to the forming step S20 where the semiconductor wafer is thinnest. To do. Thereby, when manufacturing a solar cell, the contact between the semiconductor wafers when the semiconductor wafers are stored in the cassette can be further suppressed.
  • the semiconductor wafer transfer apparatus 100 includes a pair of arms 10 each having a flat suction surface 14 for sucking the semiconductor wafer 20 disposed on the upper surface side, and one side of each of the pair of arms 10. And a connecting member 12 for connecting the ends.
  • the inner sides facing each other are inclined so as to be lower than the outer side opposite to the inner side.
  • Another aspect of the present invention is a method for manufacturing a solar cell.
  • the semiconductor wafer 20 is etched in a cassette 50 in which a plurality of semiconductor wafers 20 can be juxtaposed by supporting a step of etching the semiconductor wafer 20 and both edge portions of the semiconductor wafer 20.
  • a step of moving the cassette 50 storing the etched semiconductor wafer 20 and a step of forming an amorphous silicon layer on the semiconductor wafer 20 stored in the moved cassette 50.
  • the suction surfaces 14 arranged on the upper surface side of each of the pair of arms 10 included in the semiconductor wafer transfer apparatus 100, and the inner side facing each other is more than the outer side opposite to the inner side.
  • the semiconductor wafer 20 is sucked onto the suction surface 14 inclined so as to be lowered.
  • an amorphous silicon solar cell is manufactured as the solar cell.
  • the present invention is not limited to this.
  • a crystalline silicon solar cell may be manufactured as a solar cell.
  • a pn junction is formed by thermally diffusing phosphorus or boron instead of forming the amorphous silicon layer in the vacuum film forming apparatus.
  • the present embodiment can be used for manufacturing various types of solar cells.

Abstract

A flat first suction surface (14a) and a flat second suction surface (14b) for sucking a semiconductor wafer are disposed on the upper surface side of a first arm (10a) and a second arm (10b), respectively. A connecting member (12) connects together one side end of the first arm (10a) and one side end of the second arm (10b). The first suction surface (14a) and the second suction surface (14b) of respective first arm (10a) and second arm (10b) are sloped such that the inner sides facing each other are lower than the outer sides that are on the sides opposite to the inner sides.

Description

半導体ウエハ搬送装置およびそれを利用した太陽電池の製造方法Semiconductor wafer transfer device and method for manufacturing solar cell using the same
 本発明は、太陽電池の製造技術に関し、特に、半導体ウエハを搬送する半導体ウエハ搬送装置およびそれを利用した太陽電池の製造方法に関する。 The present invention relates to a solar cell manufacturing technique, and more particularly, to a semiconductor wafer transfer device for transferring a semiconductor wafer and a solar cell manufacturing method using the same.
 液晶表示装置の製造工程において、ガラス基板上に透明電極膜を形成したり、薄膜トランジスタを形成したりする処理の前の段階では、複数のガラス基板が、所定間隔をおいて上下複数段に収容可能な基板カセットに収容されている。基板カセットからガラス基板を取り出すために、基板取り出し用ピックが使用される。基板取り出し用ピックは、一対のアームを含み、各アームの基板持ち上げ面がアームのカセットに対する出入方向に対し垂直な断面において山形を呈するように形成されている(例えば、特許文献1参照)。 In the manufacturing process of a liquid crystal display device, multiple glass substrates can be accommodated in multiple upper and lower stages at predetermined intervals before the process of forming a transparent electrode film on a glass substrate or forming a thin film transistor. Stored in a simple substrate cassette. A substrate pick is used to remove the glass substrate from the substrate cassette. The pick-up for picking up a substrate includes a pair of arms, and the substrate lifting surface of each arm is formed to have a mountain shape in a cross section perpendicular to the loading / unloading direction of the arm with respect to the cassette (see, for example, Patent Document 1).
特開平9-27533号公報Japanese Patent Laid-Open No. 9-27533
 太陽電池の製造工程では、半導体ウエハに対して、エッチング処理等がなされる。エッチング処理がなされた半導体ウエハも、カセットに複数収納される。その際、半導体ウエハの両端縁部がカセットに支持される。エッチング処理がなされた半導体ウエハの厚みは元の半導体ウエハの厚みよりも薄くなるので、エッチング処理前に比べて半導体ウエハの中央部が下方に撓みやすい。このような半導体ウエハがカセットに既に収納されている状況下において、新たな半導体ウエハをカセットに挿入する際、半導体ウエハ間の接触が抑制されるべきである。一方、カセットに半導体ウエハを挿入したり、カセットから半導体ウエハを取り出したりする場合には、半導体ウエハ搬送装置が使用される。特に、半導体ウエハ搬送装置におけるアームの上面側に半導体ウエハが吸着される。しかしながら、アームの断面が山形を呈している場合、半導体ウエハの吸着には不十分な吸着力しか得ることができない。 In the manufacturing process of the solar cell, an etching process or the like is performed on the semiconductor wafer. A plurality of semiconductor wafers subjected to the etching process are also stored in the cassette. At that time, both edge portions of the semiconductor wafer are supported by the cassette. Since the thickness of the semiconductor wafer that has been subjected to the etching process is thinner than the thickness of the original semiconductor wafer, the central portion of the semiconductor wafer is more likely to bend downward than before the etching process. In a situation where such semiconductor wafers are already stored in the cassette, contact between the semiconductor wafers should be suppressed when a new semiconductor wafer is inserted into the cassette. On the other hand, when a semiconductor wafer is inserted into or removed from a cassette, a semiconductor wafer transfer device is used. In particular, the semiconductor wafer is attracted to the upper surface side of the arm in the semiconductor wafer transfer device. However, when the cross section of the arm has a chevron shape, it is possible to obtain an adsorption force that is insufficient for the adsorption of the semiconductor wafer.
 本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、太陽電池を製造する際に、半導体ウエハをカセットに収納する際の半導体ウエハ間の接触を抑制する技術を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique for suppressing contact between semiconductor wafers when a semiconductor wafer is stored in a cassette when a solar cell is manufactured. There is.
 上記課題を解決するために、本発明のある態様の半導体ウエハ搬送装置は、半導体ウエハを吸着させるための平らな吸着面が上面側にそれぞれ配置された1対のアームと、1対のアームのそれぞれの片側端を連結する連結部材とを備える。1対のアームのそれぞれの吸着面において、互いに対向した内側が、内側とは反対の外側よりも下がるように傾斜する。 In order to solve the above-described problems, a semiconductor wafer transfer apparatus according to an aspect of the present invention includes a pair of arms each having a flat suction surface for sucking a semiconductor wafer disposed on the upper surface side, and a pair of arms. And a connecting member for connecting the respective one side ends. In each of the suction surfaces of the pair of arms, the inner sides facing each other are inclined so as to be lower than the outer side opposite to the inner side.
 本発明の別の態様は、太陽電池の製造方法である。この方法は、半導体ウエハに対して、エッチングを行うステップと、半導体ウエハの両端縁部を支持することによって、複数の半導体ウエハを並置可能なカセットに、エッチングを行った半導体ウエハを収納するステップと、エッチングを行った半導体ウエハが収納されたカセットを移動させるステップと、移動させたカセットに収納された半導体ウエハに対して、アモルファスシリコン層を形成するステップとを備える。収納するステップでは、半導体ウエハ搬送装置に含まれた1対のアームのそれぞれの上面側に配置された吸着面であって、かつ互いに対向した内側が、内側とは反対の外側よりも下がるように傾斜した吸着面に半導体ウエハを吸着させる。 Another aspect of the present invention is a method for manufacturing a solar cell. The method includes the steps of etching a semiconductor wafer, and storing the etched semiconductor wafer in a cassette in which a plurality of semiconductor wafers can be juxtaposed by supporting both edge portions of the semiconductor wafer. And a step of moving the cassette in which the etched semiconductor wafer is housed, and a step of forming an amorphous silicon layer on the semiconductor wafer housed in the moved cassette. In the storing step, the suction surfaces arranged on the upper surface side of each of the pair of arms included in the semiconductor wafer transfer apparatus, and the inner sides facing each other are lower than the outer side opposite to the inner side. The semiconductor wafer is adsorbed on the inclined adsorption surface.
 本発明によれば、太陽電池を製造する際に、半導体ウエハをカセットに収納する際の半導体ウエハ間の接触を抑制できる。 According to the present invention, when a solar cell is manufactured, contact between semiconductor wafers when the semiconductor wafer is stored in a cassette can be suppressed.
実施形態に係る太陽電池の製造手順を示すフローチャートである。It is a flowchart which shows the manufacturing procedure of the solar cell which concerns on embodiment. 図2(a)-(e)は、図1に示す太陽電池の製造手順の各工程における、太陽電池の断面を示す図である。2A to 2E are views showing cross sections of the solar cell in each step of the manufacturing procedure of the solar cell shown in FIG. 実施形態に係る半導体ウエハ搬送装置の構成を示す上面図である。It is a top view which shows the structure of the semiconductor wafer transfer apparatus which concerns on embodiment. 図3の半導体ウエハ搬送装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor wafer conveyance apparatus of FIG. 図3の半導体ウエハ搬送装置に半導体ウエハを吸着させた場合の構成を示す上面図である。It is a top view which shows the structure at the time of adsorb | sucking a semiconductor wafer to the semiconductor wafer conveyance apparatus of FIG. 図5の半導体ウエハ搬送装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor wafer conveyance apparatus of FIG. 本発明の実施形態に係るカセットの構成を示す断面図である。It is sectional drawing which shows the structure of the cassette which concerns on embodiment of this invention.
 実施形態を具体的に説明する前に、概要を述べる。本実施形態は、太陽電池を製造する途中において、エッチングを実行した半導体ウエハを真空成膜装置まで移動させる工程に関する。移動には、複数の半導体ウエハを収納可能なカセットが使用される。カセット内部の両側面には、半導体ウエハの両端縁部のそれぞれを支持するための支持棚が設けられる。この支持棚は、複数の半導体ウエハを支持するために、側面の縦方向に複数段設けられる。前述のごとく、エッチングを実行した半導体ウエハは非常に薄いので、支持棚で支持されると、中央部分が下向きに撓む。上方の支持棚から順に半導体ウエハを挿入していくと、新たな挿入すべき半導体ウエハが、既に挿入した半導体ウエハの中央部分に接触してしまうおそれがある。これに対応するために、本実施形態では、半導体ウエハをカセットに挿入する際に、半導体ウエハ搬送装置における1対のアームの吸着面に半導体ウエハを吸着させる。さらに、半導体ウエハ搬送装置に吸着させた半導体ウエハの撓み方が、カセットに既に収納された半導体ウエハの撓み方に近くなるように、吸着面に傾斜が設けられる。 Before describing the embodiment specifically, an outline will be described. The present embodiment relates to a process of moving an etched semiconductor wafer to a vacuum film forming apparatus in the course of manufacturing a solar cell. A cassette that can store a plurality of semiconductor wafers is used for the movement. On both side surfaces inside the cassette, support shelves are provided for supporting the respective edge portions of the semiconductor wafer. The support shelves are provided in a plurality of stages in the vertical direction of the side surface in order to support a plurality of semiconductor wafers. As described above, since the etched semiconductor wafer is very thin, the center portion bends downward when supported by the support shelf. When semiconductor wafers are inserted in order from the upper support shelf, there is a possibility that a new semiconductor wafer to be inserted comes into contact with the central portion of the already inserted semiconductor wafer. In order to cope with this, in this embodiment, when the semiconductor wafer is inserted into the cassette, the semiconductor wafer is attracted to the attracting surfaces of the pair of arms in the semiconductor wafer transfer apparatus. Further, the suction surface is inclined so that the method of bending the semiconductor wafer sucked by the semiconductor wafer transfer device is close to the method of bending the semiconductor wafer already stored in the cassette.
 図1は、実施形態に係る太陽電池の製造手順を示すフローチャートである。図2(a)-(e)は、図1に示す太陽電池の製造手順の各工程における、太陽電池の断面を示す図である。スライス工程では、インゴットをスライスすることによって半導体ウエハが生成される(S10)。太陽電池の場合、インゴットからスライスされたままの半導体ウエハを使用することが多い。一方、図2(a)に示すように、半導体ウエハ20には、スライス時に生じた傷による表面ダメージ、汚染が存在する。 FIG. 1 is a flowchart showing a manufacturing procedure of the solar cell according to the embodiment. 2A to 2E are views showing cross sections of the solar cell in each step of the manufacturing procedure of the solar cell shown in FIG. In the slicing step, a semiconductor wafer is generated by slicing the ingot (S10). In the case of a solar cell, a semiconductor wafer that has been sliced from an ingot is often used. On the other hand, as shown in FIG. 2A, the semiconductor wafer 20 has surface damage and contamination due to scratches generated during slicing.
 除去工程では、半導体ウエハの表面ダメージ、汚染が除去される(S12)。除去工程において、半導体ウエハの表面の10~20μm程度がエッチングされる。図2(b)に示すように、半導体ウエハ20の表面の傷が除去される。除去工程によるエッチングが不十分であると、開放電圧(Voc)が低下する。開放電圧は、太陽電池の正極と負極との間に何も接続しない状態での電圧である。 In the removing process, the surface damage and contamination of the semiconductor wafer are removed (S12). In the removing step, about 10 to 20 μm of the surface of the semiconductor wafer is etched. As shown in FIG. 2B, scratches on the surface of the semiconductor wafer 20 are removed. If the etching by the removal process is insufficient, the open circuit voltage (Voc) is lowered. The open circuit voltage is a voltage in a state where nothing is connected between the positive electrode and the negative electrode of the solar cell.
 エッチング工程では、半導体ウエハに対して、エッチングを行うことによって、受光面に凹凸形状が形成される(S14)。図2(c)に示すように、凹凸形状が半導体ウエハ20の表面に形成されることによって、平坦な受光面であれば1回の反射で外部へと逃げてしまう光であっても、傾斜面を何回か反射させて、半導体ウエハ20の内部への導入が可能になる。その結果、より多くの光を太陽電池内部に吸収させることができ、太陽電池の特性が向上する。なお、エッチングを行うことによって、半導体ウエハの厚さがさらに薄くなる。 In the etching process, the semiconductor wafer is etched to form an uneven shape on the light receiving surface (S14). As shown in FIG. 2 (c), even if light that escapes to the outside by a single reflection is formed on the surface of the semiconductor wafer 20 by forming an uneven shape on the surface of the semiconductor wafer 20, it is inclined. The surface can be reflected several times and introduced into the semiconductor wafer 20. As a result, more light can be absorbed inside the solar cell, and the characteristics of the solar cell are improved. Note that the thickness of the semiconductor wafer is further reduced by performing the etching.
 収納工程では、図示しない半導体ウエハ搬送装置を使用することによって、エッチングを行った半導体ウエハがカセットに収納される(S16)。一般的に、太陽電池の製造工場では、太陽電池の製造が自動化され、後述の真空成膜装置への半導体ウエハのロード、アンロードがロボット等を用いて自動化されている。このような半導体ウエハのロード、アンロード時には半導体ウエハ搬送装置が使用される。半導体ウエハ搬送装置には、1対のアームが含まれており、1対のアームのそれぞれの上面側に配置された吸着面に、エッチングを行った半導体ウエハが吸着される。ここで、1対のアームの吸着面における互いに対向した内側が外側よりも下がるように傾斜しているので、1対のアームに吸着された半導体ウエハは、1対のアームの中央部分付近にて、下方向に撓む。 In the storing step, the etched semiconductor wafer is stored in the cassette by using a semiconductor wafer transfer device (not shown) (S16). In general, in a solar cell manufacturing factory, manufacturing of a solar cell is automated, and loading and unloading of a semiconductor wafer to a vacuum film forming apparatus described later is automated using a robot or the like. A semiconductor wafer transfer device is used during such loading and unloading of a semiconductor wafer. The semiconductor wafer transfer apparatus includes a pair of arms, and the etched semiconductor wafer is adsorbed to the adsorption surfaces arranged on the upper surfaces of the pair of arms. Here, since the inner surfaces facing each other on the adsorption surfaces of the pair of arms are inclined so as to be lower than the outside, the semiconductor wafer adsorbed by the pair of arms is near the central portion of the pair of arms. Sag downward.
 カセットは、半導体ウエハの両端縁部を支持することによって、複数の半導体ウエハを並置可能である。両端縁部の支持によって、カセットに収納された半導体ウエハは、1対のアームに載置された半導体ウエハと同様に、中央部分付近にて下方向に撓む。両者が同様の形状になっているので、半導体ウエハ搬送装置に吸着された半導体ウエハをカセットに挿入する際に、当該半導体ウエハと、既に収納されている半導体ウエハとの接触が防止される。移動工程では、エッチングを行った半導体ウエハが収納されたカセットが真空成膜装置に移動される(S18)。 The cassette can juxtapose a plurality of semiconductor wafers by supporting both edge portions of the semiconductor wafer. By supporting both edge portions, the semiconductor wafer housed in the cassette bends downward near the central portion, similar to the semiconductor wafer placed on the pair of arms. Since both have the same shape, when the semiconductor wafer adsorbed by the semiconductor wafer transfer device is inserted into the cassette, the contact between the semiconductor wafer and the already accommodated semiconductor wafer is prevented. In the moving process, the cassette in which the etched semiconductor wafer is stored is moved to the vacuum film forming apparatus (S18).
 形成工程では、移動されたカセットに収納された半導体ウエハに対して、真空成膜装置にてアモルファスシリコン層が形成される(S20)。図2(d)に示すように、n型の結晶性シリコン基板の半導体ウエハ20上に、n型アモルファスシリコン層30を形成し、半導体ウエハ20のn型アモルファスシリコン層30を形成した面と反対の面に、p型アモルファスシリコン層32を形成する。半導体ウエハ20とn型アモルファスシリコン層30との間、および半導体ウエハ20とp型アモルファスシリコン層32との間に、パッシベーション層を設けてもよい。パッシベーション層は、例えば、実質的に真性なi型アモルファスシリコン、窒化シリコン、酸化シリコンが用いられる。n型アモルファスシリコン層30およびp型アモルファスシリコン層は、例えばCVD法などの真空成膜法が用いて形成される。n型アモルファスシリコン層30、p型アモルファスシリコン層32の上には、透明導電層34、36が設けられる。透明導電層34、36は、例えば、酸化インジウム、酸化錫、酸化亜鉛を含む。透明導電層34、36は、例えばスパッタリング法などの真空成膜法を用いて形成される。印刷工程では、受光面と裏面に銀ペースト電極が印刷される(S22)。図2(e)に示すように、透明導電層34、36の上に、スクリーン印刷法を用いて、銀ペースト電極38を形成する。銀ペースト電極38は、焼成または乾燥させて硬化させてもよい。 In the forming step, an amorphous silicon layer is formed on the semiconductor wafer stored in the moved cassette by a vacuum film forming apparatus (S20). As shown in FIG. 2D, an n-type amorphous silicon layer 30 is formed on a semiconductor wafer 20 of an n-type crystalline silicon substrate, and is opposite to the surface of the semiconductor wafer 20 on which the n-type amorphous silicon layer 30 is formed. A p-type amorphous silicon layer 32 is formed on the surface. A passivation layer may be provided between the semiconductor wafer 20 and the n-type amorphous silicon layer 30 and between the semiconductor wafer 20 and the p-type amorphous silicon layer 32. For example, substantially intrinsic i-type amorphous silicon, silicon nitride, or silicon oxide is used for the passivation layer. The n-type amorphous silicon layer 30 and the p-type amorphous silicon layer are formed using a vacuum film formation method such as a CVD method, for example. Transparent conductive layers 34 and 36 are provided on the n-type amorphous silicon layer 30 and the p-type amorphous silicon layer 32. The transparent conductive layers 34 and 36 include, for example, indium oxide, tin oxide, and zinc oxide. The transparent conductive layers 34 and 36 are formed by using a vacuum film forming method such as a sputtering method, for example. In the printing process, silver paste electrodes are printed on the light receiving surface and the back surface (S22). As shown in FIG. 2E, a silver paste electrode 38 is formed on the transparent conductive layers 34 and 36 by screen printing. The silver paste electrode 38 may be cured by baking or drying.
 図3は、本発明の実施形態に係る半導体ウエハ搬送装置100の構成を示す上面図である。半導体ウエハ搬送装置100は、アーム10と総称される第1アーム10a、第2アーム10b、連結部材12、吸着面14と総称される第1吸着面14a、第2吸着面14bを含む。 FIG. 3 is a top view showing the configuration of the semiconductor wafer transfer apparatus 100 according to the embodiment of the present invention. The semiconductor wafer transfer apparatus 100 includes a first arm 10a, a second arm 10b, collectively referred to as an arm 10, a connecting member 12, a first suction surface 14a, generally referred to as a suction surface 14, and a second suction surface 14b.
 第1アーム10aと第2アーム10bは、略平行に配置されており、1対のアーム10を形成する。連結部材12は、1対のアーム10のそれぞれの片側端を連結する。このような連結部材12は、第1アーム10aと第2アーム10bとのそれぞれの1端を支持するともいえる。そのため、アーム10は、半導体ウエハの搬送方向に連結部材12から突出せしめられている。 The first arm 10a and the second arm 10b are arranged substantially in parallel to form a pair of arms 10. The connecting member 12 connects one end of each of the pair of arms 10. It can be said that such a connecting member 12 supports one end of each of the first arm 10a and the second arm 10b. Therefore, the arm 10 is protruded from the connecting member 12 in the semiconductor wafer transport direction.
 第1アーム10aの上面側には、第1吸着面14aが配置され、第2アーム10bの上面側には、第2吸着面14bが配置される。吸着面14は図示しない孔を備え、孔から空気を吸引することによって、吸着面14に半導体ウエハが吸着される。このような吸着によって、1対のアーム10には、半導体ウエハが載置される。吸着面14を詳しく説明するために、図4を使用する。図4は、半導体ウエハ搬送装置100の構成を示すA-A’断面図である。第1吸着面14aと第2吸着面14bは、平らな面であり、互いに対向した内側が、内側とは反対の外側よりも下がるように傾斜している。そのため、各アーム10を水平に配置した場合の第1吸着面14aと第2吸着面14bの高さは、外側よりも内側において低くなる。アーム10の第1吸着面14a、第2吸着面14bと反対の面の構成は特に限定されないが、第1吸着面14a、第2吸着面14bと同様に傾斜させることが好適である。 The first suction surface 14a is disposed on the upper surface side of the first arm 10a, and the second suction surface 14b is disposed on the upper surface side of the second arm 10b. The suction surface 14 includes holes (not shown), and the semiconductor wafer is sucked onto the suction surface 14 by sucking air from the holes. By such adsorption, a semiconductor wafer is placed on the pair of arms 10. In order to describe the suction surface 14 in detail, FIG. 4 is used. FIG. 4 is a cross-sectional view taken along the line A-A ′ showing the configuration of the semiconductor wafer transfer apparatus 100. The first suction surface 14a and the second suction surface 14b are flat surfaces and are inclined so that the inner sides facing each other are lower than the outer side opposite to the inner side. Therefore, the height of the 1st adsorption | suction surface 14a and the 2nd adsorption | suction surface 14b at the time of arrange | positioning each arm 10 horizontally becomes lower inside than the outer side. Although the structure of the surface opposite to the first suction surface 14a and the second suction surface 14b of the arm 10 is not particularly limited, it is preferable to incline similarly to the first suction surface 14a and the second suction surface 14b.
 図5は、半導体ウエハ搬送装置100に半導体ウエハ20を吸着させた場合の構成を示す上面図である。これは、図1のステップ16に対応し、図3に示した半導体ウエハ搬送装置100に半導体ウエハ20が載置されている。半導体ウエハ20は、中央部22、端側縁部24と総称される第1端側縁部24a、第2端側縁部24bを含む。ここでの半導体ウエハ20には、前述のごとく、エッチングがなされている。 FIG. 5 is a top view showing a configuration when the semiconductor wafer 20 is attracted to the semiconductor wafer transfer apparatus 100. This corresponds to step 16 in FIG. 1, and the semiconductor wafer 20 is placed on the semiconductor wafer transfer apparatus 100 shown in FIG. The semiconductor wafer 20 includes a central portion 22, a first end side edge portion 24 a and a second end side edge portion 24 b collectively referred to as an end side edge portion 24. The semiconductor wafer 20 here is etched as described above.
 1対のアーム10における吸着面14は、搬送すべき半導体ウエハ20のうち、互いに対向する第1端側縁部24a、第2端側縁部24bの内側部分にそれぞれ当接される。また、1対のアーム10の対称軸に対して線対称となるように、半導体ウエハ20が1対のアーム10に載置されることが望ましい。そのため、1対のアーム10と半導体ウエハ20との相対位置関係として、第1端側縁部24aと第1アーム10aとの距離と、第2端側縁部24bと第2アーム10bとの距離が略同一になるように、1対のアーム10が半導体ウエハ20に当接配置される。 The suction surfaces 14 of the pair of arms 10 are in contact with inner portions of the first end side edge portion 24a and the second end side edge portion 24b facing each other in the semiconductor wafer 20 to be transported. Further, it is desirable that the semiconductor wafer 20 be placed on the pair of arms 10 so as to be line symmetric with respect to the symmetry axis of the pair of arms 10. Therefore, as a relative positional relationship between the pair of arms 10 and the semiconductor wafer 20, the distance between the first end side edge 24a and the first arm 10a, and the distance between the second end side edge 24b and the second arm 10b. Are arranged in contact with the semiconductor wafer 20 so that they are substantially the same.
 このような配置によって、半導体ウエハ20の中央部22は、対称軸を通過する。中央部22は、半導体ウエハ20の中心部であり、重心を含む。なお、中央部22は、一点である必要はなく、所定の広さを有した領域であってもよい。図5においては、1対のアーム10の長さが、半導体ウエハ20の上下方向の長さよりも短い。なお、搬送すべき半導体ウエハ20によっては、1対のアーム10の長さが、半導体ウエハ20の上下方向の長さより長くなってもよい。 With this arrangement, the central portion 22 of the semiconductor wafer 20 passes through the axis of symmetry. The central portion 22 is a central portion of the semiconductor wafer 20 and includes a center of gravity. The central portion 22 does not have to be a single point, and may be a region having a predetermined area. In FIG. 5, the length of the pair of arms 10 is shorter than the vertical length of the semiconductor wafer 20. Depending on the semiconductor wafer 20 to be transferred, the length of the pair of arms 10 may be longer than the vertical length of the semiconductor wafer 20.
 図6は、半導体ウエハ搬送装置100構成を示すB-B’断面図である。半導体ウエハ20は、第1吸着面14aにおいて第1アーム10aに吸着されるとともに、第2吸着面14bにおいて第2アーム10bに吸着される。第1吸着面14aと第2吸着面14bとの間において、半導体ウエハ20は、中央部22を中心にして、凹状態に反りを生じている。そのため、図6の上下方向において、中央部22は、第1吸着面14aおよび第2吸着面14bの最下部よりも下方に配置される。一方、中央部22を中心とした凹状態の反りの結果、第1端側縁部24aおよび第2端側縁部24bは、第1吸着面14aおよび第2吸着面14bの最上部よりも上方に配置される。 FIG. 6 is a B-B ′ sectional view showing the configuration of the semiconductor wafer transfer apparatus 100. The semiconductor wafer 20 is adsorbed by the first arm 10a on the first adsorbing surface 14a and adsorbed by the second arm 10b on the second adsorbing surface 14b. Between the first suction surface 14a and the second suction surface 14b, the semiconductor wafer 20 warps in a concave state with the central portion 22 as the center. Therefore, the center part 22 is arrange | positioned below the lowest part of the 1st adsorption | suction surface 14a and the 2nd adsorption | suction surface 14b in the up-down direction of FIG. On the other hand, as a result of the concave warp centered on the central portion 22, the first end side edge portion 24a and the second end side edge portion 24b are higher than the uppermost portions of the first suction surface 14a and the second suction surface 14b. Placed in.
 ここで、第1吸着面14aおよび第2吸着面14bにおける傾斜であって、かつ外側から内側へ下がるような傾斜の角度は、半導体ウエハ20の自重による凹状態の反りの連続性を維持するような角度とされる。また、前述のごとく、第1吸着面14aおよび第2吸着面14bは平面であるので、半導体ウエハ20との接触面積が広くなり、半導体ウエハ20の吸着力が大きくなる。 Here, the inclination angle of the first suction surface 14a and the second suction surface 14b and falling from the outer side to the inner side maintains the continuity of the warpage of the concave state due to the weight of the semiconductor wafer 20. It is considered to be an angle. Further, as described above, since the first suction surface 14a and the second suction surface 14b are flat, the contact area with the semiconductor wafer 20 is widened, and the suction force of the semiconductor wafer 20 is increased.
 図7は、実施形態に係るカセット50の構成を示す断面図である。これは、図1のステップ16に対応する。カセット50は、支持棚52と総称される第1支持棚52a、第2支持棚52bを含む。なお、図面を明りょうにするために、1つの半導体ウエハ20に関連した構成要素だけに符号を付与し、残りでは符号を省略する。また、図7は、図6と同一の方向で示されているので、図の奥方向が、図5の上方向に相当する。カセット50内の両側の壁部には、第1支持棚52aおよび第2支持棚52bが、図7の上下方向に間隔をあけて複数段突設されており、カセット50は、複数の半導体ウエハ20を上下方向に並置可能である。 FIG. 7 is a cross-sectional view showing a configuration of the cassette 50 according to the embodiment. This corresponds to step 16 in FIG. The cassette 50 includes a first support shelf 52a and a second support shelf 52b collectively referred to as a support shelf 52. In order to clarify the drawing, reference numerals are given only to the components related to one semiconductor wafer 20, and the reference numerals are omitted for the rest. Moreover, since FIG. 7 is shown in the same direction as FIG. 6, the back direction of the figure corresponds to the upward direction of FIG. A first support shelf 52a and a second support shelf 52b are protruded in a plurality of stages at intervals in the vertical direction of FIG. 7 on both side walls in the cassette 50. The cassette 50 includes a plurality of semiconductor wafers. 20 can be juxtaposed in the vertical direction.
 図5、6に示した半導体ウエハ搬送装置100は、図示しない搬送ロボットに取り付けられ、カセット50内の第1支持棚52aおよび第2支持棚52bの間に挿入される。具体的に説明すると、図7の手前から奥方向へ所定位置まで1対のアーム10が送り込まれることによって、半導体ウエハ20が所定位置まで挿入される。その後、1対のアーム10をわずかに下降させて、第1支持棚52aが第1端側縁部24aを支持し、第2支持棚52bが第2端側縁部24bを支持することによって、半導体ウエハ20がカセット50に収納される。 The semiconductor wafer transfer apparatus 100 shown in FIGS. 5 and 6 is attached to a transfer robot (not shown) and inserted between the first support shelf 52a and the second support shelf 52b in the cassette 50. More specifically, the semiconductor wafer 20 is inserted to a predetermined position by feeding the pair of arms 10 from the near side of FIG. Thereafter, the pair of arms 10 is slightly lowered, the first support shelf 52a supports the first end side edge 24a, and the second support shelf 52b supports the second end side edge 24b. The semiconductor wafer 20 is stored in the cassette 50.
 次に、下側に収納した半導体ウエハ20に接触しないように注意しながら、1対のアーム10をカセット50から引き出すように半導体ウエハ搬送装置100が動かされる。このようにして第1支持棚52aおよび第2支持棚52bに収納された半導体ウエハ20は、第1端側縁部24aおよび第2端側縁部24bが支持されることによって、中央部22が下方へ垂れ下がるように撓む。このときの半導体ウエハ20の反りは、1対のアーム10に半導体ウエハ20を載置した際に生じる反りと同様の凹状の向きであり、かつ同程度の自重による反りである。そのため、1対のアーム10上の半導体ウエハ20の上面は、上段に収納された半導体ウエハに接触しない。また、1対のアーム10上の半導体ウエハ20の下面は、下段に収納された半導体ウエハに接触しない。 Next, the semiconductor wafer transfer device 100 is moved so as to pull out the pair of arms 10 from the cassette 50, taking care not to contact the semiconductor wafer 20 stored on the lower side. The semiconductor wafer 20 thus housed in the first support shelf 52a and the second support shelf 52b is supported by the first end side edge portion 24a and the second end side edge portion 24b, so that the central portion 22 is formed. Bends to hang down. The warp of the semiconductor wafer 20 at this time is a concave direction similar to the warp generated when the semiconductor wafer 20 is placed on the pair of arms 10 and is warped by the same weight. Therefore, the upper surface of the semiconductor wafer 20 on the pair of arms 10 does not contact the semiconductor wafer accommodated in the upper stage. Further, the lower surface of the semiconductor wafer 20 on the pair of arms 10 does not contact the semiconductor wafer housed in the lower stage.
 本実施形態によれば、平らな吸着面において内側が外側よりも下がるように傾斜しているので、半導体ウエハを載置するための十分な吸着力を得ることができる。また、内側が外側よりも下がるように傾斜しているので、半導体ウエハを載置した場合に、1対のアーム間の中央部分において半導体ウエハを下向きに撓ませることができる。また、1対のアーム間の中央部分において半導体ウエハが下向きに撓んでいるので、カセットに既に収納された他の半導体ウエハと同様の形状を実現できる。また、これから挿入すべき半導体ウエハが、カセットに既に収納された他の半導体ウエハと同様の形状を実現しているので、太陽電池を製造する際に、半導体ウエハをカセットに収納する際の半導体ウエハ間の接触を抑制できる。また、アームの吸着面と反対の面も吸着面と同様に傾斜させているため、アーム半導体ウエハとの接触をさらに抑制できる。 According to the present embodiment, the flat suction surface is inclined so that the inner side is lower than the outer side, so that a sufficient suction force for placing the semiconductor wafer can be obtained. Further, since the inner side is inclined so as to be lower than the outer side, when the semiconductor wafer is placed, the semiconductor wafer can be bent downward at the central portion between the pair of arms. Further, since the semiconductor wafer is bent downward in the central portion between the pair of arms, the same shape as that of other semiconductor wafers already stored in the cassette can be realized. Also, since the semiconductor wafer to be inserted from now on has the same shape as other semiconductor wafers already stored in the cassette, the semiconductor wafer when storing the semiconductor wafer in the cassette when manufacturing a solar cell. The contact between them can be suppressed. Moreover, since the surface opposite to the suction surface of the arm is also inclined similarly to the suction surface, contact with the arm semiconductor wafer can be further suppressed.
 また、本実施形態によれば、半導体ウエハがもっとも薄くなるエッチング工程S14のから形成工程S20までの期間に、内側が外側よりも下がるように傾斜した吸着面を備えるアームを用いて半導体ウエハを搬送する。これによって、太陽電池を製造する際に、半導体ウエハをカセットに収納する際の半導体ウエハ間の接触を一層抑制できる。 Further, according to the present embodiment, the semiconductor wafer is transferred using the arm having the suction surface inclined so that the inner side is lower than the outer side during the period from the etching step S14 to the forming step S20 where the semiconductor wafer is thinnest. To do. Thereby, when manufacturing a solar cell, the contact between the semiconductor wafers when the semiconductor wafers are stored in the cassette can be further suppressed.
 本発明の一態様の概要は、次の通りである。本発明のある態様の半導体ウエハ搬送装置100は、半導体ウエハ20を吸着させるための平らな吸着面14が上面側にそれぞれ配置された1対のアーム10と、1対のアーム10のそれぞれの片側端を連結する連結部材12とを備える。1対のアーム10のそれぞれの吸着面14において、互いに対向した内側が、内側とは反対の外側よりも下がるように傾斜する。 The outline of one embodiment of the present invention is as follows. The semiconductor wafer transfer apparatus 100 according to an aspect of the present invention includes a pair of arms 10 each having a flat suction surface 14 for sucking the semiconductor wafer 20 disposed on the upper surface side, and one side of each of the pair of arms 10. And a connecting member 12 for connecting the ends. In each suction surface 14 of the pair of arms 10, the inner sides facing each other are inclined so as to be lower than the outer side opposite to the inner side.
 本発明の別の態様は、太陽電池の製造方法である。この方法は、半導体ウエハ20に対して、エッチングを行うステップと、半導体ウエハ20の両端縁部を支持することによって、複数の半導体ウエハ20を並置可能なカセット50に、エッチングを行った半導体ウエハ20を収納するステップと、エッチングを行った半導体ウエハ20が収納されたカセット50を移動させるステップと、移動させたカセット50に収納された半導体ウエハ20に対して、アモルファスシリコン層を形成するステップとを備える。収納するステップでは、半導体ウエハ搬送装置100に含まれた1対のアーム10のそれぞれの上面側に配置された吸着面14であって、かつ互いに対向した内側が、内側とは反対の外側よりも下がるように傾斜した吸着面14に半導体ウエハ20を吸着させる。 Another aspect of the present invention is a method for manufacturing a solar cell. In this method, the semiconductor wafer 20 is etched in a cassette 50 in which a plurality of semiconductor wafers 20 can be juxtaposed by supporting a step of etching the semiconductor wafer 20 and both edge portions of the semiconductor wafer 20. A step of moving the cassette 50 storing the etched semiconductor wafer 20 and a step of forming an amorphous silicon layer on the semiconductor wafer 20 stored in the moved cassette 50. Prepare. In the storing step, the suction surfaces 14 arranged on the upper surface side of each of the pair of arms 10 included in the semiconductor wafer transfer apparatus 100, and the inner side facing each other is more than the outer side opposite to the inner side. The semiconductor wafer 20 is sucked onto the suction surface 14 inclined so as to be lowered.
 以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to each component or combination of each processing process, and such modifications are within the scope of the present invention. .
 実施形態において、太陽電池としてアモルファスシリコン太陽電池が製造されている。しかしながらこれに限らず例えば、太陽電池として結晶シリコン太陽電池が製造されてもよい。その際、真空成膜装置におけるアモルファスシリコン層の形成の代わりに、リンやボロンを熱的に拡散することによって、p-n接合が形成される。本変形例によれば、本実施形態をさまざまなタイプの太陽電池の製造に使用できる。 In the embodiment, an amorphous silicon solar cell is manufactured as the solar cell. However, the present invention is not limited to this. For example, a crystalline silicon solar cell may be manufactured as a solar cell. At that time, a pn junction is formed by thermally diffusing phosphorus or boron instead of forming the amorphous silicon layer in the vacuum film forming apparatus. According to this modification, the present embodiment can be used for manufacturing various types of solar cells.
 10 アーム、 12 連結部材、 14 吸着面、 20 半導体ウエハ、 22 中央部、 24 端側縁部、 50 カセット、 52 支持棚、 100 半導体ウエハ搬送装置。 10 arms, 12 connecting members, 14 suction surfaces, 20 semiconductor wafers, 22 central part, 24 end side edges, 50 cassettes, 52 support shelves, 100 semiconductor wafer transfer device.
 本発明によれば、太陽電池を製造する際に、半導体ウエハをカセットに収納する際の半導体ウエハ間の接触を抑制できる。 According to the present invention, when a solar cell is manufactured, contact between semiconductor wafers when the semiconductor wafer is stored in a cassette can be suppressed.

Claims (2)

  1.  半導体ウエハを吸着させるための平らな吸着面が上面側にそれぞれ配置された1対のアームと、
     前記1対のアームのそれぞれの片側端を連結する連結部材とを備え、
     前記1対のアームのそれぞれの吸着面において、互いに対向した内側が、前記内側とは反対の外側よりも下がるように傾斜することを特徴とする半導体ウエハ搬送装置。
    A pair of arms each having a flat suction surface for adsorbing a semiconductor wafer disposed on the upper surface side;
    A connecting member that connects one end of each of the pair of arms;
    2. A semiconductor wafer transfer apparatus according to claim 1, wherein each of the suction surfaces of the pair of arms is inclined such that inner sides facing each other are lower than an outer side opposite to the inner side.
  2.  半導体ウエハに対して、エッチングを行うステップと、
     半導体ウエハの両端縁部を支持することによって、複数の半導体ウエハを並置可能なカセットに、エッチングを行った半導体ウエハを収納するステップと、
     エッチングを行った半導体ウエハが収納されたカセットを移動させるステップと、
     移動させたカセットに収納された半導体ウエハに対して、アモルファスシリコン層を形成するステップとを備え、
     前記収納するステップでは、半導体ウエハ搬送装置に含まれた1対のアームのそれぞれの上面側に配置された吸着面であって、かつ互いに対向した内側が、前記内側とは反対の外側よりも下がるように傾斜した吸着面に半導体ウエハを吸着させることを特徴とする太陽電池の製造方法。
    Etching a semiconductor wafer; and
    Storing the etched semiconductor wafer in a cassette in which a plurality of semiconductor wafers can be juxtaposed by supporting both edge portions of the semiconductor wafer;
    Moving the cassette containing the etched semiconductor wafer;
    A step of forming an amorphous silicon layer on the semiconductor wafer housed in the moved cassette,
    In the storing step, the suction surfaces arranged on the upper surface side of each of the pair of arms included in the semiconductor wafer transfer apparatus and the inner sides facing each other are lowered from the outer side opposite to the inner side. A method for manufacturing a solar cell, comprising adsorbing a semiconductor wafer on an inclined suction surface.
PCT/JP2015/000706 2014-03-28 2015-02-17 Semiconductor wafer transfer apparatus and solar cell manufacturing method using same WO2015145948A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014069865A JP2017098275A (en) 2014-03-28 2014-03-28 Semiconductor wafer carrier device and manufacturing method of solar cell using the same
JP2014-069865 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015145948A1 true WO2015145948A1 (en) 2015-10-01

Family

ID=54194510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000706 WO2015145948A1 (en) 2014-03-28 2015-02-17 Semiconductor wafer transfer apparatus and solar cell manufacturing method using same

Country Status (2)

Country Link
JP (1) JP2017098275A (en)
WO (1) WO2015145948A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7250298B2 (en) * 2017-05-17 2023-04-03 株式会社三洋物産 game machine
JP2018191995A (en) * 2017-05-17 2018-12-06 株式会社三洋物産 Game machine
JP2018191992A (en) * 2017-05-17 2018-12-06 株式会社三洋物産 Game machine
JP2018191994A (en) * 2017-05-17 2018-12-06 株式会社三洋物産 Game machine
JP7250297B2 (en) * 2017-05-17 2023-04-03 株式会社三洋物産 game machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022364A (en) * 1996-07-05 1998-01-23 Metsukusu:Kk Vacuum chucking hand in transfer apparatus
JP2003068824A (en) * 2001-08-28 2003-03-07 Seiko Epson Corp Suctional holder, transporter, method of transporting substrate, and method of manufacturing electrooptic device
US6942265B1 (en) * 2002-10-23 2005-09-13 Kla-Tencor Technologies Corporation Apparatus comprising a flexible vacuum seal pad structure capable of retaining non-planar substrates thereto
JP2010135381A (en) * 2008-12-02 2010-06-17 Olympus Corp Substrate transport device, substrate inspection device, and substrate transport method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022364A (en) * 1996-07-05 1998-01-23 Metsukusu:Kk Vacuum chucking hand in transfer apparatus
JP2003068824A (en) * 2001-08-28 2003-03-07 Seiko Epson Corp Suctional holder, transporter, method of transporting substrate, and method of manufacturing electrooptic device
US6942265B1 (en) * 2002-10-23 2005-09-13 Kla-Tencor Technologies Corporation Apparatus comprising a flexible vacuum seal pad structure capable of retaining non-planar substrates thereto
JP2010135381A (en) * 2008-12-02 2010-06-17 Olympus Corp Substrate transport device, substrate inspection device, and substrate transport method

Also Published As

Publication number Publication date
JP2017098275A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
WO2015145948A1 (en) Semiconductor wafer transfer apparatus and solar cell manufacturing method using same
US10431489B2 (en) Substrate support apparatus having reduced substrate particle generation
TWI518839B (en) Dual-mask arrangement for solar cell fabrication
TWI696231B (en) System and method for bi-facial processing of substrates
TWI518832B (en) System architecture for vacuum processing
TWI611998B (en) Wafer plate and mask arrangement for substrate fabrication
JP4680657B2 (en) Substrate transfer system
JP4652177B2 (en) Manufacturing method of semiconductor device and manufacturing apparatus used for carrying out the manufacturing method
CN109727900B (en) Substrate transfer robot end effector
JP4570037B2 (en) Substrate transfer system
JP2013214739A (en) Method of peeling semiconductor chip from metal foil
TWI462212B (en) Processing system and processing methods
JP2018531510A6 (en) Wafer plate and mask apparatus for substrate manufacture
JP2018056339A (en) Substrate arrangement device and substrate transfer method
JPWO2016052632A1 (en) Sample transfer system and solar cell manufacturing method
JP2018056338A (en) Substrate aligning device, substrate processing device, substrate arranging device, substrate arranging method, substrate processing method, and substrate arranging method
JP2018056341A (en) Attitude changing device
TWI610397B (en) Mechanical arm and a method for gripping a substrate
KR20140008502A (en) End effector having multiple-position contact points
US20140151264A1 (en) Wafer carrier and applications thereof
JP5236067B2 (en) Substrate transfer method
KR101681192B1 (en) Transfer robot
KR101311616B1 (en) Processing system and processing method
CN112466798B (en) Semiconductor machine
JP2008021824A (en) Boat tray, and heat treating furnace for wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15768920

Country of ref document: EP

Kind code of ref document: A1