WO2015145238A1 - Procédé de séparation et de transfert de couches - Google Patents

Procédé de séparation et de transfert de couches Download PDF

Info

Publication number
WO2015145238A1
WO2015145238A1 PCT/IB2015/000382 IB2015000382W WO2015145238A1 WO 2015145238 A1 WO2015145238 A1 WO 2015145238A1 IB 2015000382 W IB2015000382 W IB 2015000382W WO 2015145238 A1 WO2015145238 A1 WO 2015145238A1
Authority
WO
WIPO (PCT)
Prior art keywords
active layer
substrate
bonding
temporary substrate
interface
Prior art date
Application number
PCT/IB2015/000382
Other languages
English (en)
Inventor
Luciana Capello
Marcel Broekaart
Original Assignee
Soitec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soitec filed Critical Soitec
Publication of WO2015145238A1 publication Critical patent/WO2015145238A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6835Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during build up manufacturing of active devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68363Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer

Definitions

  • the invention relates, in general, to a step of manufacturing substrates for electronics, optoelectronics or optics, and more particularly, a method of transferring layers.
  • a so-called active layer for example incorporating electrical components onto a substrate, or a semiconductor layer present on the surface of the substrate.
  • a first substrate to a second substrate.
  • the active layer within the meaning of the present invention can not, because of its dimensions, in particular its thickness, and its fragility, be considered as self-supporting.
  • a transfer substrate called handle or temporary substrate.
  • Such a substrate then makes it possible to manipulate a layer that needs to be moved and / or transferred.
  • the initial substrate comprises a gallium nitride GaN layer, and has within it a weakened interface, defining a preferred rupture plane.
  • the transfer is effected by contacting the exposed face of the active layer, carried by the initial substrate, with a face of a temporary substrate, ensuring sufficient adhesion between the two faces in contact, and then detaching. of the layer at the weakened interface.
  • the rupture zone, at the weakened interface is then cleaned, for example by TMAH, so that the semiconductor layer can then be transferred to the final substrate via the temporary substrate.
  • the temporary substrate is detached from the transferred layer.
  • various methods of detaching a layer of a substrate are already known.
  • a first technique consists in destroying the temporary substrate by mechanical abrasion or chemical attack. It can also be eliminated by combining these two means, as described for example in the document FR-A-2 715 503.
  • the mechanical abrasion of the substrate requires a lot of time, and such treatment is likely to damage the layer and / or circuits made there, and does not allow the reuse of the temporary substrate.
  • the mechanical and / or chemical forces to be applied to achieve the detachment or destruction of the temporary substrate can be important, with a risk of deterioration or breakage of the temporary substrate and / or the layer to be transferred. This risk is even greater in the case where these efforts or part of these efforts are applied manually, for example using a tool.
  • the present invention aims to overcome these limitations of the state of the art by proposing a method of transferring an active layer to a final substrate using a temporary substrate, the method comprising the following steps:
  • a first step of assembling a first face of the active layer on the temporary substrate according to a first bonding interface (II) having a first bonding energy and a bonding force (Fal) between the temporary substrate and the active layer;
  • a third step of generating a shear stress the shear stress exerted at the first bonding interface (II) according to a first shear force (Fcl) applied by the temporary substrate, and at the second bonding interface (12) according to a second shearing force (Fc2) applied by the final substrate.
  • a separation wave is then initiated between the active layer and the temporary substrate when the second bonding energy is greater than the first bonding energy, and the first shearing force (Fcl) is greater than the bonding force (Fal) .
  • FIG. 1 is a schematic representation of the transfer method according to a first embodiment of the invention
  • FIG. 2 is a schematic representation of the transfer method according to a second embodiment of the invention
  • FIG. 3 is a partial schematic representation of the forces exerted on the stacked structure during step 3 of the invention.
  • FIG. 4a is a graphical representation of the evolution of the bonding energies of interfaces II and 12 as a function of temperature
  • FIG. 4b is a graphical representation of the evolution of the forces Fal and Fc1 exerted on the stacked structure as a function of temperature
  • FIG. 5 is a schematic representation of a first optional embodiment of the transfer method according to the invention.
  • FIG. 6 is a schematic representation of a second optional embodiment of the transfer method according to the invention.
  • the gripping of an active layer by means of a so-called temporary substrate is possible by assembling a face of the temporary substrate and a face of the active layer, for example , using a molecular bonding bond. Once the temporary substrate is no longer useful and needs to be removed.
  • the solutions of the prior art, for separating the face of the active layer from that of the temporary substrate generate contaminations, deformations or damage to the active layer and / or the temporary substrate.
  • the temporary substrate can not be reused.
  • the first step E1 of the method consists in assembling a face of a temporary substrate 1 and a first face 2a of an active layer 2, according to a first bonding interface II.
  • the assembly can be achieved by molecular bonding.
  • the first bonding interface II has a bonding energy dependent on a set of conditions at the moment when the temporary substrate 1 and the active layer 2 have been assembled (materials, bonding temperature, pressures, surface treatment, surface roughness, etc.), and treatments that the bonding interface II could undergo before and / or after assembly. According to the needs of the invention, the bonding energy of this interface II can be adjusted.
  • the bonding energy of the first interface II makes it possible to deduce an adhesion force Fal between the temporary substrate 1 and the active layer 2.
  • This first adhesion force Fal opposes the opening of the first bonding interface II, and determines from which force level the temporary substrate 1 and the active layer 2 could be separated.
  • the active layer 2 Prior to this first step E1, and since the active layer 2 is not self-supporting, the active layer 2 has been formed or assembled on a manipulable support 5, so that the active layer 2 can be transported and disposed on the temporary substrate 1 in step El.
  • the manipulable support 5 is then separated from the active layer 2 by any techniques known from the prior art. According to the manipulable support used, a face 2b of the active layer 2 can then undergo a surface treatment, for example, of the chemical-mechanical type before proceeding to a second step E2 of the invention.
  • a face 2b of the active layer 2 is joined to one face of a final substrate 3 according to a second bonding interface 12.
  • the assembly can be achieved by molecular bonding.
  • the second bonding interface 12 also has a bonding energy depending on a set of conditions at the moment when the final substrate 3 and the active layer 2 have been assembled (materials, bonding temperature, pressures, surface treatment , ...), and treatments that the bonding interface 12 could undergo before and / or after assembly. According to the needs of the invention, the bonding energy of this interface 12 can be adjusted.
  • the bonding energy of the second interface 12 makes it possible to deduce a second adhesion force Fa2 between the final substrate 3 and the active layer 2. This adhesion force Fa2 opposes the opening of the second bonding interface 12.
  • a shear stress is generated, during a third step E3, between the temporary substrate 1 and the final substrate 3.
  • This shear stress is exerted, on the one hand, at the first bonding interface (II) according to a first shearing force (Fcl) applied by the temporary substrate 1, and secondly, at the second bonding interface (12) according to a second shearing force (Fc2) applied by the final substrate 3, the first and second forces being directionally opposite, as shown in FIG.
  • the invention proposes to separate the temporary substrate 1 without damage, the objective being to obtain a spontaneous delamination at the borders of the first bonding interface II, or at least considerably weaken the first bonding interface II, thereby initiating a separation wave at the first bonding interface II, and thus facilitate the separation of the temporary substrate 1 during a separation step.
  • two conditions must be respected: - condition 1: the bonding energy of the second bonding interface 12 is greater than the bonding energy of the first interface gluing II;
  • the first condition makes it possible to choose, or to determine, the bonding interface having the lowest bonding energy, and therefore that will be subject to the delamination effect at its borders.
  • the bonding energies of the bonding interfaces II and 12 may be adjusted by any means known from the prior art for the purpose of obtaining a bonding energy of the interface 12 greater than the bonding energy of the interface II during the separation of the temporary substrate 1.
  • the heat treatments, the plasma activations, the preliminary surface cleaning, the conditions for producing a bonding by molecular adhesion, the roughness of a surface, the use of thin layers of self-adhesive materials, etc. are all modifiable parameters making it possible to adjust, in a controlled manner, the bonding energy of an interface in particular.
  • the bonding energy of the first interface II must be reinforced, for example by means of a so-called reinforcement heat treatment, and this, for the purpose of performing a polishing, for example chemical-mechanical, on the second face 2b of the active layer 2.
  • a polishing for example chemical-mechanical
  • an increase in temperature causes a faster increase of the bonding energy of the interface 12 than that of the bonding energy of the interface II, so much so that at a given temperature level, the bonding energy of the interface 12 is greater than the bonding energy of the interface II, here from about 60 ° C. (point A of Figure 4a).
  • the bonding energy of the interface 12 may be degraded, before step 3, for example, by the bombardment of electromagnetic radiation 7 over the entire surface of the interface II, as represented in FIG. 6
  • a solution can be envisaged by choosing a laser typology with a wavelength adapted to the absorption and refraction coefficient associated with the substrates and layers treated.
  • the first condition for carrying out the transfer method according to the invention is therefore fulfilled.
  • the second condition necessary for carrying out the method according to the invention makes it possible to create, in the stacked structure, a state of tension such that the effect of delamination is generated.
  • the physical and theoretical characteristics of this state of tension are described in the article "The Bending of Bonded Layers Due to Thermal Stress", written by Ahmad T. Abawi and published on October 23, 2004.
  • This second condition can be obtained by different solutions.
  • a first solution consists, once the second step E2 is complete, in applying a force on one of the free faces of the temporary substrate 1 or of the final substrate 3, that is to say one of opposite faces to that assembled to the active layer 2, ideally in the middle by means of a pressure means 6, so as to generate a curvature of the stacked structure.
  • the imposed curvature generates the shear stress Fcl, Fc2, previously explained and illustrated in FIG. 3.
  • the force applied will be adapted to the conditions encountered to generate the shear stress sufficient for the first shearing force Fcl to be greater than the first adhesion force Fal between the temporary substrate 1 and the active layer 2, and thus create the delamination effect.
  • the shear stress generated is greater at the edges of the bonding interfaces.
  • the bonding interface having the lowest bonding energy, here the interface II is subject to a spontaneous delamination effect at its borders.
  • a second solution consists in subjecting the stacked structure to a heat treatment, referred to as separation, at a predetermined target temperature, the final substrate 3 and the temporary substrate 1 having different thermal expansion characteristics, so that the structure deforms under the same conditions. effect of thermal expansion difference, thus generating shear stress at interfaces II and 12.
  • FIG. 2 represents the transfer method according to the invention in which the temporary substrate 1 is in sapphire, and the final substrate 3 is in silicon.
  • the temporary substrate 1, the active layer 2 and the final substrate 3 are assembled at ambient temperature Ta. At this temperature, the thermal expansion differential of the temporary substrate 1 and final 3 is zero, and therefore the bonding interfaces II and 12 do not undergo shear stress.
  • the rise in temperature of the separation heat treatment causes a difference in speed of expansion of the temporary substrate 1 and the final substrate 3. The greater the difference in thermal expansion of the materials, the higher the shear stress. will increase rapidly during the temperature rise of the separation heat treatment.
  • this shear stress is exerted at the first bonding interface II according to the first shearing force Fcl applied by the temporary substrate 1, and at the second bonding interface 12 according to the second shearing force.
  • Fc2 applied by the final substrate 3 the first Fcl and the second Fc2 forces being substantially equivalent ( Figure 3).
  • the thermal expansion of a body is mainly determined by its coefficient of thermal expansion, its volume and the temperature to which it is subjected.
  • the desired shear stress corresponds to the temperature level where the bonding resistance of the first interface II gives way to the shear stress generated by the thermal expansion differential of the temporary substrate 1 and final 3, and more specifically at the of temperatures where the first shear force Fcl is greater than the first adhesion force Fal.
  • Other parameters known from the prior art, are to be considered in order to determine this temperature level, such as the dimensions of the temporary and final substrates 3, their respective thermal expansion coefficient, as well as the temperature profile. each of these parameters modifying the level of expansion of a body.
  • the bonding energy of the bonding interface II can be adjusted, so as to reduce the force Fal adhesion, and thus lower the level of shear stress sought to obtain the delamination effect, thus reducing the level of the target temperature of the separation heat treatment.
  • the interface II may comprise a localized weakened zone, which may consist of deposited particles, point defects, local thin films or treatment that locally inhibit the bonding energy, geometric shapes with a topology Specifically fabricated on the temporary substrate 1 or the active layer 2, a local roughening of one of the two surfaces of the interface II.
  • FIG. 4b illustrates the evolution of the forces Fal and FC1 exerted on the stacked structure as a function of the temperature.
  • the temporary substrate 1 is in sapphire, whose coefficient of thermal expansion is 7.7 * 10 ⁇ 6 / ° C
  • the final substrate 3 is silicon, whose thermal expansion coefficient is 2.6 * 10- 6 / ° C
  • the temporary substrate 1 and final 3 have a thickness of 725 pm and a diameter of 200 mm
  • the level of the thermal expansion differential of the temporary substrate 1 and final 3 from which the desired shear stress is reached (the point B in FIG. 4b) will depend on the bonding energy of the interfaces II and 12, the thermal expansion of the materials and the target temperature of the separation heat treatment.
  • the large number of possibilities for modifying these parameters suggest that the level of the targeted thermal expansion differential, making it possible to determine the target temperature of the separation heat treatment, be redefined according to the conditions of realization. of the transfer process according to the invention.
  • T ° C> 60 ° C. shaded area of FIG.
  • the temperature The predetermined separation heat treatment will then be the intersection of these two temperature ranges, ie T ° C> 70 ° C.
  • the active layer 2 may comprise microcomponents not to be subjected to temperatures exceeding 250 ° C.
  • the target temperature of the separation heat treatment for the present embodiment, is in the target temperature range 70 ° C ⁇ T ° C ⁇ 250 ° C.
  • This target temperature is given as an example and may be adjusted according to the parameters and characteristics of the invention to be applied.
  • the target temperature range of the separation heat treatment according to the invention may vary from 50 ° C to 450 ° C.
  • the spontaneous delamination effect makes it possible to initiate the separation wave propagating over the entire surface of the interface II. If, however, the shear stress is not sufficient to cause the delamination effect, and in the presence of weakened zones or not, the step of separating the temporary substrate 1 will be initiated by the insertion of an element. 4, for example, a blade 4, at the level of the bonding interface II, as illustrated in Figure 5. Without limitation, the same effect can be obtained using a jet of water or pressure area.
  • the separation wave initiated by the separating element 4 becomes will propagate naturally over the entire surface of the bonding interface II, rather than on the bonding interface 12, during the step of separating the temporary substrate 1.
  • the transfer method according to the invention allows a controlled and facilitated separation of the active layer 2 and the temporary substrate 1, and to avoid the constraints of known solutions of the state of the art. Furthermore, the temporary substrate 1 is not torn off or damaged, it can be recycled without difficulty in a new method of transferring a layer.

Abstract

L'invention concerne un procédé de transfert d'une couche active (2) sur un substrat final (3) à l'aide d'un substrat temporaire (1), le procédé comprenant les étapes suivantes : - une première étape (E1) d'assemblage d'une première face (2a) de la couche active (2) sur le substrat temporaire (1), selon une première interface de collage (II) possédant une première énergie de collage et une force d'adhésion (Fa1) entre le substrat temporaire (1) et la couche active (2); - une deuxième étape (E2) d'assemblage d'une deuxième face (2b) de la couche active (2) sur le substrat final (3), selon une deuxième interface de collage (12) possédant une deuxième énergie de collage; - une troisième étape (E3) consistant à générer une contrainte en cisaillement, la contrainte en cisaillement s'exerçant, d'une part, au niveau de la première interface de collage (I1) selon une première force de cisaillement (Fc1) appliquée par le substrat temporaire (1), et d'autre part, au niveau de la deuxième interface de collage (I2) selon une deuxième force de cisaillement (Fc2) appliquée par le substrat final (3); caractérisé en ce qu'une onde de séparation est initiée entre la couche active (2) et le substrat temporaire (1) lorsque la deuxième énergie de collage est supérieure à la première énergie de collage, et la première force de cisaillement (Fc1) est supérieure à la force d'adhésion (Fa1).

Description

PROCEDE DE SEPARATION ET DE TRANSFERT DE COUCHES
DOMAINE DE L'INVENTION L'invention concerne, d'une façon générale, une étape de la fabrication de substrats pour l'électronique, l'optoélectronique ou l'optique, et plus particulièrement, un procédé de transfert de couches.
ARRIERE-PLAN DE L'INVENTION
La fabrication de tels substrats met en jeu de plus en plus fréquemment des techniques de reports de couches plus ou moins épaisses d'un support à l'autre.
Ainsi, dans de nombreuses applications du domaine de la micro- électronique, on peut souhaiter réaliser le transfert d'une couche dite active, intégrant par exemple des composants électriques sur un substrat, ou d'une couche semi-conductrice présente à la surface d'un premier substrat vers un second substrat.
La couche active, au sens de la présente invention ne peut pas, en raison de ses dimensions, notamment son épaisseur, et de sa fragilité, être considérée comme autoportée.
Aussi, pour transporter la couche, et en particulier la transférer d'un substrat initial vers un substrat final, il faut la rendre solidaire d'un substrat de transfert appelée poignée ou substrat temporaire. Un tel substrat permet alors de manipuler une couche ayant besoin d'être déplacée et/ou transférée.
Par exemple, le substrat initial comprend une couche en nitrure de gallium GaN, et possède en son sein une interface fragilisée, définissant un plan de rupture privilégié. Le transfert s'effectue en mettant en contact la face exposée de la couche active, portée par le substrat initial, avec une face d'un substrat temporaire, en assurant une adhésion suffisante entre les deux faces mises en contact, pour ensuite effectuer le détachement de la couche au niveau de l'interface fragilisée. La zone de rupture, au niveau de l'interface fragilisée, est alors nettoyée, par exemple par TMAH, pour qu'ensuite la couche semi- conductrice puisse être transférée sur le substrat final, via le substrat temporaire. Une fois le transfert réalisé, le substrat temporaire est détaché de la couche transférée. Sur un plan général, on connaît déjà différentes façons de réaliser le détachement d'une couche d'un substrat.
Une première technique consiste à détruire le substrat temporaire par abrasion mécanique ou par attaque chimique. Il peut également être éliminé par combinaison de ces deux moyens, comme décrit par exemple dans le document FR-A-2 715 503. Cependant, l'abrasion mécanique du substrat nécessite beaucoup de temps, et un tel traitement est susceptible d'endommager la couche et/ou les circuits qui y sont réalisés, et ne permet pas la réutilisation du substrat temporaire.
II existe également une technique consistant à créer une zone de clivage sur le substrat temporaire, par exemple par implantation d'ions et idéalement du coté de l'interface de collage entre la couche et le substrat temporaire, et de procéder au retrait du substrat temporaire, par exemple par arrachement au niveau de la zone de clivage, comme décrit dans le document FR- A-2 744 285.
Une autre technique permet de réaliser une couche d'oxyde enterrée dans le substrat temporaire, et à attaquer cette couche par gravure lors du retrait du substrat temporaire, comme décrit dans le document US-A- 6 027 958.
D'autres solutions connues consistent à obtenir une interface fragile par création d'une couche poreuse, comme décrit par exemple dans le document EP-A-0 849 788, et à éventuellement implanter des espèces gazeuses dans cette couche pour fragiliser jusqu'au degré souhaité. La rupture de ces interfaces fragiles est réalisée par application de contrainte et/ou de cisaillement et/ou en flexion. Une étape de planarisation chimique ou mécanique est ensuite requise au niveau de l'interface de rupture.
Toutefois, ces différents procédés connus présentent tous des inconvénients. En premier lieu, il est difficile, voire impossible, de maîtriser les forces de liaison effectives entre une couche à transférer et le substrat temporaire, et/ou au niveau d'une interface préalablement fragilisée.
En corollaire, les efforts mécaniques et/ou chimiques à appliquer pour réaliser le détachement ou la destruction du substrat temporaire peuvent être importants, avec un risque de détérioration ou de bris du substrat temporaire et/ou de la couche à transférer. Ce risque est encore plus élevé dans le cas où ces efforts ou une partie de ces efforts sont appliqués manuellement, par exemple à l'aide d'un outil. OBJET DE L'INVENTION ET BREVE DESCRIPTION DE ..INVENTION
La présente invention vise à pallier ces limitations de l'état de la technique en proposant un procédé de transfert d'une couche active sur un substrat final à l'aide d'un substrat temporaire, le procédé comprenant les étapes suivantes :
une première étape d'assemblage d'une première face de la couche active sur le substrat temporaire, selon une première interface de collage (II) possédant une première énergie de collage et une force d'adhésion (Fal) entre le substrat temporaire et la couche active ;
- une deuxième étape d'assemblage d'une deuxième face de la couche active sur le substrat final, selon une deuxième interface de collage (12) possédant une deuxième énergie de collage ;
une troisième étape consistant à générer une contrainte en cisaillement, la contrainte en cisaillement s'exerçant au niveau de la première interface de collage (II) selon une première force de cisaillement (Fcl) appliquée par le substrat temporaire, et au niveau de la deuxième interface de collage (12) selon une deuxième force de cisaillement (Fc2) appliquée par le substrat final.
Une onde de séparation est alors initiée entre la couche active et le substrat temporaire lorsque la deuxième énergie de collage est supérieure à la première énergie de collage, et la première force de cisaillement (Fcl) est supérieure à la force d'adhésion (Fal).
L'application de ces deux conditions (énergie 12 > énergie II, Fcl > Fal), permet une délamination spontanée au niveau des bordures de la première interface de collage II, ou au moins de considérablement fragiliser la première interface de collage II. Une séparation contrôlée et facilitée de la couche active et du substrat temporaire est ainsi obtenue, tout en évitant les contraintes des solutions connues de l'état de la technique. Le substrat temporaire peut, par ailleurs, être recyclé sans difficulté et sans être endommagé. BREVE DESCRIPTION DES DESSINS
L'invention sera mieux comprise à la lumière de la description qui suit des modes de réalisation, particuliers et non limitatifs, de l'invention en référence aux figures ci-jointes parmi lesquelles :
- la figure 1 est une représentation schématique du procédé de transfert selon un premier mode de réalisation de l'invention ; - la figure 2 est une représentation schématique du procédé de transfert selon un deuxième mode de réalisation de l'invention ;
- la figure 3 est une représentation schématique partielle des forces s'exerçant sur la structure empilée lors de l'étape 3 de l'invention ;
- la figure 4a est une représentation graphique de l'évolution des énergies de collage des interfaces II et 12 en fonction de la température ;
- la figure 4b est une représentation graphique de l'évolution des forces Fal et Fcl s'exerçant sur la structure empilée en fonction de la température ;
- la figure 5 est une représentation schématique d'un premier mode optionnel de réalisation du procédé de transfert selon l'invention ;
- la figure 6 est une représentation schématique d'un deuxième mode optionnel de réalisation du procédé de transfert selon l'invention.
DESCRIPTION DETAILLEE D'UN MODE DE REALISATION
D'une manière générale, la préhension d'une couche active à l'aide d'un substrat, dit temporaire, est possible par l'assemblage d'une face du substrat temporaire et d'une face de la couche active, par exemple, à l'aide d'un collage par adhésion moléculaire. Une fois que le substrat temporaire n'est plus utile et doit être retiré. Les solutions de l'art antérieur, permettant de séparer la face de la couche active de celle du substrat temporaire, génèrent des contaminations, déformations ou l'endommagement de la couche active et/ou du substrat temporaire. Par ailleurs, selon les modes de réalisation de l'art antérieur, le substrat temporaire ne peut pas être réutilisé.
Plusieurs modes de réalisation possibles du procédé de transfert conforment à l'invention, et permettant de palier aux problématiques précédemment énoncées, vont maintenant être décrits en faisant référence aux figures 1 à 6. Les éléments communs aux différents modes de réalisations conservent les mêmes références.
En référence aux figures 1, 2, 5 et 6, la première étape El du procédé consiste à assembler une face d'un substrat temporaire 1 et une première face 2a d'une couche active 2, selon une première interface de collage II. De manière non limitative, l'assemblage peut être réalisé par un collage par adhésion moléculaire.
La première interface de collage II, ainsi obtenue, possède une énergie de collage dépendant d'un ensemble de conditions au moment où le substrat temporaire 1 et la couche active 2 ont été assemblés (matériaux, température de collage, pressions, traitement de surfaces, rugosité de surface, ...), et des traitements que l'interface de collage II pourrait subir avant et/ou après assemblage. Selon les besoins de l'invention, l'énergie de collage de cette interface II pourra être ajustée.
L'énergie de collage de la première interface II permet de déduire une force d'adhésion Fal entre le substrat temporaire 1 et la couche active 2. Cette première force d'adhésion Fal s'oppose à l'ouverture de la première interface de collage II, et détermine à partir de quel niveau de force le substrat temporaire 1 et la couche active 2 pourraient être séparaés.
Préalablement à cette première étape El, et comme la couche active 2 n'est pas autoportée, la couche active 2 aura été formée ou assemblée sur un support manipulable 5, de manière à ce que la couche active 2 puisse être transportée et disposée sur le substrat temporaire 1 lors de l'étape El. Le support manipulable 5 est ensuite séparé de la couche active 2, par toutes techniques connues de l'art antérieur. Selon le support manipulable utilisé, une face 2b de la couche active 2 peut alors subir un traitement de surface, par exemple, du type mécano-chimique avant de passer à une deuxième étape E2 de l'invention.
Lors de la deuxième étape E2 du procédé de transfert selon l'invention, une face 2b de la couche active 2 est assemblée à une face d'un substrat final 3 selon une deuxième interface de collage 12. De manière non limitative, l'assemblage peut être réalisé par un collage par adhésion moléculaire.
La deuxième interface de collage 12, ainsi obtenue, possède également une énergie de collage dépendant d'un ensemble de conditions au moment où le substrat final 3 et la couche active 2 ont été assemblés (matériaux, température de collage, pressions, traitement de surfaces, ...), et des traitements que l'interface de collage 12 pourrait subir avant et/ou après assemblage. Selon les besoins dè l'invention, l'énergie de collage de cette interface 12 pourra être ajustée.
L'énergie de collage de la deuxième interface 12 permet de déduire une deuxième force d'adhésion Fa2 entre le substrat final 3 et la couche active 2. Cette force d'adhésion Fa2 s'oppose à l'ouverture de la deuxième interface de collage 12.
Une fois le substrat temporaire 1, la couche active 2 et le substrat final 3 assemblés, formant une structure empilée, une contrainte en cisaillement est générée, lors d'une troisième étape E3, entre le substrat temporaire 1 et le substrat final 3. Cette contrainte en cisaillement s'exerce, d'une part, au niveau de la première interface de collage (II) selon une première force de cisaillement (Fcl) appliquée par le substrat temporaire 1, et d'autre part, au niveau de la deuxième interface de collage (12) selon une deuxième force de cisaillement (Fc2) appliquée par le substrat final 3, les première et deuxième forces étant directionnellement opposées, telles que représentées en figure 3.
Pour résoudre les problèmes de l'art antérieur précités, l'invention propose de séparer le substrat temporaire 1 sans dommage, l'objectif étant d'obtenir une délamination spontanée au niveau des bordures de la première interface de collage II, ou au moins de considérablement fragiliser la première interface de collage II, permettant ainsi d'initier une onde de séparation au niveau de la première interface de collage II, et donc faciliter la séparation du substrat temporaire 1 lors d'une étape de séparation. Pour ce faire, et au terme des trois étapes du procédé selon l'invention, deux conditions doivent être respectées : - condition 1 : l'énergie de collage de la deuxième interface de collage 12 est supérieure à l'énergie de collage de première interface de collage II ;
- condition 2 : la première force de cisaillement Fcl est supérieure à la première force d'adhésion Fal.
La première condition permet de choisir, ou de déterminer, l'interface de collage ayant la plus faible énergie de collage, et donc qui sera sujette à l'effet de délamination au niveau de ses bordures. Pour satisfaire la première condition, les énergies de collage des interfaces de collage II et 12 peuvent être ajustées par n'importe quel moyen connu de l'art antérieur dans l'objectif d'obtenir une énergie de collage de l'interface 12 supérieure à l'énergie de collage de l'interface II lors de la séparation du substrat temporaire 1. De manière non limitative, les traitements thermiques, les activations plasma, le nettoyage préalable de surface, les conditions de réalisation d'un collage par adhésion moléculaire, la rugosité d'une surface, l'utilisation de couches fines de matériaux autocollants, ... sont autant de paramètres modifiables permettant d'ajuster, de manière contrôlée, l'énergie de collage d'une interface en particulier.
A titre d'exemple, après la première étape El du procédé de transfert selon l'invention, l'énergie de collage de la première interface II doit être renforcée, par exemple à l'aide d'un traitement thermique dit de renforcement, et ce, dans l'objectif de réaliser un polissage, par exemple mécano-chimique, sur la deuxième face 2b de la couche active 2. Un tel polissage, non représenté, permet, lors de l'étape E2, d'obtenir une surface plane et exempte de particule. Ainsi, l'interface de collage 12 possède une énergie de collage améliorée. Comme cela est illustrée en figure 4a et grâce au polissage de la surface 2b de la couche active 2, une montée en température provoque une augmentation plus rapide de l'énergie de collage de l'interface 12 que celle de l'énergie de collage de l'interface II, à tel point qu'à un niveau de température donnée, l'énergie de collage de l'interface 12 est supérieure à l'énergie de collage de l'interface II, ici à partir d'environ 60°C (point A de la figure 4a).
De manière alternative et dans le cas où l'énergie de collage de l'interface 12 serait toujours inférieure à l'énergie de collage de l'interface II au moment de l'initiation de l'onde de séparation entre le substrat temporaire 1 et la couche active 2, l'énergie de collage de l'interface II peut être dégradée, avant l'étape 3, par exemple, par le bombardement de radiations électromagnétiques 7 sur toute la surface de l'interface II, comme représenté en figure 6. Une telle solution sera envisageable en choisissant une typologie de laser avec une longueur d'onde adaptée au coefficient d'absorption et réfraction associés aux substrats et couches traités.
La première condition pour réaliser le procédé de transfert selon l'invention est donc remplie.
La deuxième condition nécessaire à la réalisation du procédé selon l'invention (la première force de cisaillement Fcl est supérieure à la première force d'adhésion Fal) permet de créer, dans la structure empilée, un état de tension telle que l'effet de délamination est généré. Les caractéristiques physiques et théoriques de cet état de tension sont décrits dans l'article « The Bending of Bonded Layers Due to Thermal Stress », écrit par Ahmad T. Abawi et publié le 23 octobre 2004.
Cette deuxième condition peut être obtenue par différentes solutions.
Comme référencé en figure 1, une première solution consiste, une fois la deuxième étape E2 terminée, à appliquer une force sur l'une des faces libres du substrat temporaire 1 ou du substrat final 3, c'est-à-dire l'une des faces opposées à celle assemblées à la couche active 2, idéalement en son milieu à l'aide d'un moyen de pression 6, de manière à générer une courbure de la structure empilée. La courbure imposée génère la contrainte en cisaillement Fcl, Fc2, précédemment expliquée et illustrée en figure 3. Bien entendu, la force appliquée sera adaptée aux conditions rencontrées pour générer la contrainte en cisaillement suffisante pour que la première force de cisaillement Fcl soit supérieure à la première force d'adhésion Fal entre le substrat temporaire 1 et la couche active 2, et donc créer l'effet de délamination.
Par ailleurs et de manière connue, la contrainte en cisaillement générée est plus importante au niveau des bordures des interfaces de collage. En conséquence, l'interface de collage ayant la plus faible énergie de collage, ici l'interface II, est sujette à un effet de délamination spontané au niveau de ses bordures.
Une deuxième solution consiste à soumettre la structure empilée à un traitement thermique, dit de séparation, à une température cible prédéterminée, le substrat final 3 et le substrat temporaire 1 possédant des caractéristiques de dilatation thermique différentes, de sorte que la structure se déforme sous l'effet de la différence des dilatations thermiques, générant ainsi la contrainte en cisaillement au niveau des interfaces II et 12.
A titre d'exemple, la figure 2 représente le procédé de transfert selon l'invention dans lequel le substrat temporaire 1 est en saphir, et le substrat final 3 est en silicium. Lors de l'étape E2, le substrat temporaire 1, la couche active 2 et le substrat final 3 sont assemblés à température ambiante Ta. A cette température, le différentiel de dilatation thermique du substrat temporaire 1 et final 3 est nul, et donc les interfaces de collage II et 12 ne subissent pas de contrainte en cisaillement. Lors de l'étape E3, la montée en température du traitement thermique de séparation provoque une différence de vitesse de dilatation du substrat temporaire 1 et du substrat final 3. Plus la différence de dilation thermique des matériaux est grande, et plus la contrainte en cisaillement augmentera rapidement lors de la montée en température du traitement thermique de séparation. Comme vu précédemment, cette contrainte en cisaillement s'exerce au niveau de la première interface de collage II selon la première force de cisaillement Fcl appliquée par le substrat temporaire 1, et au niveau de la deuxième interface de collage 12 selon la deuxième force de cisaillement Fc2 appliquée par le substrat final 3, la première Fcl et la deuxième Fc2 forces étant sensiblement équivalentes (figure 3). Par ailleurs, la dilatation thermique d'un corps est principalement déterminée par son coefficient de dilatation thermique, son volume et la température à laquelle il est soumis.
Ainsi, la contrainte en cisaillement recherchée correspond au niveau de températures où la résistance au collage de la première l'interface II cède devant la contrainte en cisaillement générée par le différentiel de dilatation thermique du substrat temporaire 1 et final 3, et plus précisément au niveau de températures où la première force de cisaillement Fcl est supérieure à la première force d'adhésion Fal. D'autres paramètres, connus de l'art antérieur, sont à prendre en considération pour déterminer ce niveau de températures, tels que les dimensions des substrats temporaire 1 et final 3, leur coefficient de dilatation thermique respectif, ainsi que le profil de températures, chacun de ces paramètres modifiant le niveau de dilatation d'un corps.
Dans une telle configuration et puisque l'énergie de collage de l'interface de collage II est proportionnelle à la force d'adhésion Fal, l'énergie de collage de l'interface de collage II peut être ajustée, de manière à diminuer la force d'adhésion Fal, et donc abaisser le niveau de la contrainte en cisaillement recherchée pour obtenir l'effet de délamination, permettant ainsi de réduire le niveau de la température cible du traitement thermique de séparation. Par exemple et de manière non exhaustive, l'interface II peut comporter une zone fragilisée localisée, pouvant être constituée de particules déposées, de défauts ponctuels, de couches minces ou traitement locaux inhibant localement l'énergie de collage, de formes géométriques avec une topologie spécifique fabriquées sur le substrat temporaire 1 ou la couche active 2, une rugosification locale de l'une des deux surfaces de l'interface II.
La figure 4b illustre l'évolution des forces Fal et FC1 s'exerçant sur la structure empilée en fonction de la température. Dans le cas où le substrat temporaire 1 est en saphire, dont le coefficient de dilation thermique est de 7.7*10~6/°C, et le substrat final 3 est en silicium, dont le coefficient de dilatation thermique est 2.6*10-6/°C, et où le substrat temporaire 1 et final 3 ont une épaisseur de 725 pm et un diamètre de 200 mm, la contrainte en cisaillement recherchée est obtenue lorsque la température cible du traitement thermique de séparation atteint 70°C, point B de la figure 4b.
Ainsi, le niveau du différentiel de dilatation thermique du substrat temporaire 1 et final 3 à partir du quel la contrainte en cisaillement recherchée est atteinte (le point B sur la figure 4b) dépendra de l'énergie de collage des interfaces II et 12, de la dilatation thermique des matériaux et de la température cible du traitement thermique de séparation. Le grand nombre de possibilités de modifications de ces paramètres, répondant à un mode de réalisation spécifique, suggèrent que le niveau du différentiel de dilatation thermique visé, permettant de déterminer la température cible du traitement thermique de séparation, soit redéfinit en fonction des conditions de réalisation du procédé de transfert selon l'invention. En conséquence et dans le mode de réalisation représenté en figure 2, pour que le niveau d'énergie de collage de l'interface 12 deviennent supérieur à celui de l'interface II, T°C > 60°C (zone hachurée de la figure 4a), et pour que la première force de cisaillement Fcl soit supérieure à la force d'adhésion Fal entre le substrat temporaire 1 et la couche active 2, T°C > 70°C (zone hachurée de la figure 4b), la température prédéterminée du traitement thermique de séparation sera alors l'intersection de ces deux intervalles de températures, c'est à dire T°C > 70°C. Selon les modes de réalisation, la couche active 2 peut comporter des microcomposants ne devant pas être soumis à des températures excédant 250°C. Ainsi, la température cible du traitement thermique de séparation, pour le présent mode de réalisation, se situe dans l'intervalle de températures cibles 70°C < T°C < 250°C.
Cette température cible est donnée à titre d'exemple est pourra être ajustée selon les paramètres et caractéristiques de l'invention à appliquer. Notamment et selon les cas rencontrés, l'intervalle de températures cible du traitement thermique de séparation selon l'invention pourra varier de 50°C à 450°C.
L'effet de délamination spontané permet d'initier l'onde de séparation se propageant sur toute la surface de l'interface II. Si toute fois, la contrainte en cisaillement ne serait pas suffisante pour causer l'effet de délamination, et ce, en présence de zones fragilisées ou pas, l'étape de séparation du substrat temporaire 1 sera initiée par l'insertion d'un élément de séparation 4, par exemple, d'une lame 4, au niveau de l'interface de collage II, comme illustré en figure 5. De manière non exhaustive, le même effet peut être obtenu à l'aide d'un jet d'eau ou d'aire sous pression. L'énergie de collage de l'interface 12 étant supérieure à l'énergie de collage de l'interface II, et la contrainte en cisaillement étant emmagasinée dans la structure empilée, l'onde de séparation initiée par l'élément de séparation 4 se propagera naturellement sur toute la surface de l'interface de collage II, plutôt que sur l'interface de collage 12, lors de l'étape de séparation du substrat temporaire 1.
Ainsi, le procédé de transfert selon l'invention permet une séparation contrôlée et facilitée de la couche active 2 et du substrat temporaire 1, et d'éviter les contraintes des solutions connues de l'Etat de la technique. Par ailleurs, le substrat temporaire 1 n'est ni arraché, ni endommagé, il peut être recyclé sans difficulté lors d'un nouveau procédé de transfert d'une couche.

Claims

REVENDICATIONS
1. Procédé de transfert d'une couche active (2) sur un substrat final (3) à l'aide d'un substrat temporaire (1), le procédé comprenant les étapes suivantes :
- une première étape (El) d'assemblage d'une première face (2a) de la couche active (2) sur le substrat temporaire (1), selon une première interface de collage (II) possédant une première énergie de collage et une force d'adhésion (Fal) entre le substrat temporaire (1) et la couche active (2) ;
- une deuxième étape (E2) d'assemblage d'une deuxième face (2b) de la couche active (2) sur le substrat final (3), selon une deuxième interface de collage (12) possédant une deuxième énergie de collage ;
- une troisième étape (E3) consistant à générer une contrainte en cisaillement, la contrainte en cisaillement s'exerçant, d'une part, au niveau de la première interface de collage (II) selon une première force de cisaillement (Fcl) appliquée par le substrat temporaire (1), et d'autre part, au niveau de la deuxième interface de collage (12) selon une deuxième force de cisaillement (Fc2) appliquée par le substrat final (3) ;
caractérisé en ce qu'une onde de séparation est initiée entre la couche active (2) et le substrat temporaire (1) lorsque la deuxième énergie de collage est supérieure à la première énergie de collage, et la première force de cisaillement (Fcl) est supérieure à la force d'adhésion (Fal).
2. Procédé de transfert selon la revendication 1, dans lequel le substrat final (3) et le substrat temporaire (1) possèdent des caractéristiques de dilatation thermique différentes, et la contrainte en cisaillement (Fcl, Fc2) est générée par un traitement thermique, dit de séparation, du substrat temporaire (1), de la couche active (2) et du substrat final (3) ainsi assemblés à une température cible prédéterminée.
3. Procédé de transfert selon la revendication 2, dans lequel le substrat temporaire (1) est en saphire, et le substrat final (3) en silicium. Procédé de transfert selon la revendication 2, dans lequel la température cible du traitement thermique de séparation correspondant à l'intervalle de températures où la deuxième énergie de collage est supérieure à la première énergie de collage, et la première force de cisaillement (Fcl) est supérieure à la force d'adhésion (Fal) entre le substrat temporaire (1) et la couche active (2)
Procédé de transfert selon la revendication 2, dans lequel le traitement thermique de séparation est réalisé à une température comprise entre 50°C et 450°C.
Procédé de transfert selon la revendication 1, dans lequel la contrainte en cisaillement est générée par l'application, sur le substrat temporaire (1) ou final (3), d'un effort suffisant pour que la première force de cisaillement (Fcl) soit supérieure à la force d'adhésion (Fal) entre le substrat temporaire (1) et la couche active (2).
Procédé de transfert selon la revendication 2 ou 6, dans lequel, avant la troisième étape (E3), l'énergie de collage de la première interface de collage (II) et/ou l'énergie de collage de la deuxième interface de collage (12) sont ajustées l'une part rapport à l'autre, de sorte que lors de la troisième étape (E3), la deuxième énergie de collage est supérieure à la première énergie de collage, et la première force de cisaillement (Fcl) est supérieure à la force d'adhésion (Fal) entre le substrat temporaire (1) et la couche active (2).
Procédé de transfert selon la revendication 1, dans lequel, après la troisième étape E3, l'onde de séparation est déclenchée par l'introduction d'un élément séparateur (4) entre le substrat temporaire (1) et la couche active (2) au niveau de la bordure de la première interface (II).
PCT/IB2015/000382 2014-03-28 2015-03-19 Procédé de séparation et de transfert de couches WO2015145238A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1400801 2014-03-28
FR1400801A FR3019374A1 (fr) 2014-03-28 2014-03-28 Procede de separation et de transfert de couches

Publications (1)

Publication Number Publication Date
WO2015145238A1 true WO2015145238A1 (fr) 2015-10-01

Family

ID=51659667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/000382 WO2015145238A1 (fr) 2014-03-28 2015-03-19 Procédé de séparation et de transfert de couches

Country Status (2)

Country Link
FR (1) FR3019374A1 (fr)
WO (1) WO2015145238A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005245A (ja) * 2015-06-05 2017-01-05 ソイテックSoitec 二重層転写のための機械的分離の方法
CN112967982A (zh) * 2020-09-10 2021-06-15 重庆康佳光电技术研究院有限公司 转移基板及制作方法、芯片转移方法及显示面板
CN114252329A (zh) * 2021-11-08 2022-03-29 长江存储科技有限责任公司 键合技术的键合能测试方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2715503A1 (fr) 1994-01-26 1995-07-28 Commissariat Energie Atomique Substrat pour composants intégrés comportant une couche mince et son procédé de réalisation.
FR2744285A1 (fr) 1996-01-25 1997-08-01 Commissariat Energie Atomique Procede de transfert d'une couche mince d'un substrat initial sur un substrat final
EP0849788A2 (fr) 1996-12-18 1998-06-24 Canon Kabushiki Kaisha Procédé de fabrication d'un article semiconducteur utilisant un substrat ayant une couche d'un semiconducteur poreux
US5863830A (en) * 1994-09-22 1999-01-26 Commissariat A L'energie Atomique Process for the production of a structure having a thin semiconductor film on a substrate
US6027958A (en) 1996-07-11 2000-02-22 Kopin Corporation Transferred flexible integrated circuit
US20050029224A1 (en) * 2001-04-13 2005-02-10 Bernard Aspar Detachable substrate or detachable structure and method for the production thereof
US20050112885A1 (en) * 2002-04-30 2005-05-26 Olivier Rayssac Process for manufacturing a substrate and associated substrate
US20120115262A1 (en) * 2010-03-29 2012-05-10 Semprius, Inc. Laser assisted transfer welding process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2715503A1 (fr) 1994-01-26 1995-07-28 Commissariat Energie Atomique Substrat pour composants intégrés comportant une couche mince et son procédé de réalisation.
US5863830A (en) * 1994-09-22 1999-01-26 Commissariat A L'energie Atomique Process for the production of a structure having a thin semiconductor film on a substrate
FR2744285A1 (fr) 1996-01-25 1997-08-01 Commissariat Energie Atomique Procede de transfert d'une couche mince d'un substrat initial sur un substrat final
US6027958A (en) 1996-07-11 2000-02-22 Kopin Corporation Transferred flexible integrated circuit
EP0849788A2 (fr) 1996-12-18 1998-06-24 Canon Kabushiki Kaisha Procédé de fabrication d'un article semiconducteur utilisant un substrat ayant une couche d'un semiconducteur poreux
US20050029224A1 (en) * 2001-04-13 2005-02-10 Bernard Aspar Detachable substrate or detachable structure and method for the production thereof
US20050112885A1 (en) * 2002-04-30 2005-05-26 Olivier Rayssac Process for manufacturing a substrate and associated substrate
US20120115262A1 (en) * 2010-03-29 2012-05-10 Semprius, Inc. Laser assisted transfer welding process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AHMAD T. ABAWI, THE BENDING OF BONDED LAYERS DUE TO THERMAL STRESS, 23 October 2004 (2004-10-23)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005245A (ja) * 2015-06-05 2017-01-05 ソイテックSoitec 二重層転写のための機械的分離の方法
AU2016203094B2 (en) * 2015-06-05 2018-03-08 Soitec Method of mechanical separation for a double layer transfer
US10910250B2 (en) 2015-06-05 2021-02-02 Soitec Method of mechanical separation for a double layer transfer
US11742233B2 (en) 2015-06-05 2023-08-29 Soitec Method of mechanical separation for a double layer transfer
CN112967982A (zh) * 2020-09-10 2021-06-15 重庆康佳光电技术研究院有限公司 转移基板及制作方法、芯片转移方法及显示面板
CN112967982B (zh) * 2020-09-10 2022-04-19 重庆康佳光电技术研究院有限公司 转移基板及制作方法、芯片转移方法及显示面板
CN114252329A (zh) * 2021-11-08 2022-03-29 长江存储科技有限责任公司 键合技术的键合能测试方法

Also Published As

Publication number Publication date
FR3019374A1 (fr) 2015-10-02

Similar Documents

Publication Publication Date Title
FR2957190A1 (fr) Procede de realisation d&#39;une structure multicouche avec detourage par effets thermomecaniques.
FR2957189A1 (fr) Procede de realisation d&#39;une structure multicouche avec detourage post meulage.
FR2935536A1 (fr) Procede de detourage progressif
FR2835097A1 (fr) Procede optimise de report d&#39;une couche mince de carbure de silicium sur un substrat d&#39;accueil
EP2339615A1 (fr) Procédé de réalisation d&#39;une hétérostructure avec minimisation de contrainte
FR2860842A1 (fr) Procede de preparation et d&#39;assemblage de substrats
WO2002005344A1 (fr) Procede de decoupage d&#39;un bloc de materiau et de formation d&#39;un film mince
EP2538438B1 (fr) Procédé de fabrication d&#39;une structure semi-conductrice mettant en oeuvre un collage temporaire
FR2797347A1 (fr) Procede de transfert d&#39;une couche mince comportant une etape de surfragililisation
FR2856192A1 (fr) Procede de realisation de structure heterogene et structure obtenue par un tel procede
FR3109016A1 (fr) Structure demontable et procede de transfert d’une couche mettant en œuvre ladite structure demontable
EP2302671A1 (fr) Procédé de collage et de transfert d&#39;une couche
FR2969378A1 (fr) Structure composite tridimensionnelle comportant plusieurs couches de microcomposants en alignement
WO2015145238A1 (fr) Procédé de séparation et de transfert de couches
EP2302666B1 (fr) Procédé de planarisation par ultrasons d&#39;un substrat dont une surface a été libérée par fracture d&#39;une couche enterrée fragilisée
FR2842651A1 (fr) Procede de lissage du contour d&#39;une couche utile de materiau reportee sur un substrat support
FR2914493A1 (fr) Substrat demontable.
FR2842647A1 (fr) Procede de transfert de couche
EP2023380A1 (fr) Procédé et installation pour la fracture d&#39;un substrat composite selon un plan de fragilisation
EP2676288B1 (fr) Procede de realisation d&#39;un support de substrat
FR2858461A1 (fr) Realisation d&#39;une structure comprenant une couche protegeant contre des traitements chimiques
EP4309216A1 (fr) Procédé de transfert d&#39;une couche d&#39;une hétérostructure
FR2996052A1 (fr) Procede de collage par adhesion moleculaire
WO2020188169A1 (fr) Procede de transfert d&#39;une couche utile sur une substrat support
FR2959596A1 (fr) Amincissement detourant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15720402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15720402

Country of ref document: EP

Kind code of ref document: A1