WO2015141795A1 - 電動機制御装置、電動パワーステアリング装置および車両 - Google Patents

電動機制御装置、電動パワーステアリング装置および車両 Download PDF

Info

Publication number
WO2015141795A1
WO2015141795A1 PCT/JP2015/058329 JP2015058329W WO2015141795A1 WO 2015141795 A1 WO2015141795 A1 WO 2015141795A1 JP 2015058329 W JP2015058329 W JP 2015058329W WO 2015141795 A1 WO2015141795 A1 WO 2015141795A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
coil
motor
electric motor
current
Prior art date
Application number
PCT/JP2015/058329
Other languages
English (en)
French (fr)
Inventor
菊地 祐介
木村 玄
志鵬 塗
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US15/118,579 priority Critical patent/US9694845B2/en
Priority to JP2015532214A priority patent/JP5930131B2/ja
Priority to EP15764643.1A priority patent/EP3121954B1/en
Priority to CN201580008667.9A priority patent/CN105981292B/zh
Publication of WO2015141795A1 publication Critical patent/WO2015141795A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/17Circuit arrangements for detecting position and for generating speed information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/06Machines characterised by the presence of fail safe, back up, redundant or other similar emergency arrangements

Definitions

  • the present invention relates to an electric motor control device, an electric power steering device, and a vehicle.
  • Patent Document 1 describes a motor for a steering device in which a plurality of magnetic pole bodies constituting a stator are divided into two groups, a system A group and a system B group.
  • a system A includes a system A-1 including a plurality of magnetic pole bodies arranged continuously, and a system including a plurality of magnetic pole bodies arranged in a diametrically opposed manner to the magnetic pole bodies belonging to the system A-1.
  • A-2 The same applies to the system B.
  • the present invention has been made in view of the above, and provides an electric motor control device, an electric power steering device, and a vehicle that can suppress torque ripple when at least two coil groups excited independently of each other are excited simultaneously.
  • the purpose is to provide.
  • an electric motor control device includes a motor rotor, a motor stator including a stator core that rotates the motor rotor, and at least two first coil groups and second coils for each of three phases.
  • An electric motor including a plurality of coil groups that are divided into groups and that excites the stator core with three-phase alternating current; a control device that outputs a current value that rotationally drives the motor rotor as a command value; and based on the command value
  • a first motor driving circuit for supplying a first three-phase AC first motor driving current to the first coil group, and a three-phase AC second motor driving current having a phase difference with respect to the phase of the first motor driving current.
  • a motor drive circuit including a second motor drive circuit for supplying the second coil group to the second coil group.
  • the motor control device can suppress torque ripple when simultaneously energizing at least two coil groups that are excited independently of each other.
  • the control device includes a control unit that calculates a pulse width modulation signal having a predetermined duty ratio as the command value, and a first pulse width modulation is performed on the pulse width modulation signal having the predetermined duty ratio. It is preferable that a phase difference adjustment unit that calculates a second pulse modulation signal having the same duty ratio and the phase difference as to the first pulse width modulation signal as a signal is provided.
  • the adjustment unit of the control device adjusts the phase difference in a range where the reduction rate of the torque ripple is larger than the reduction rate of the average torque, and the motor is given rotation with reduced torque ripple to the motor rotor. Can be controlled.
  • the phase adjustment unit can perform control to bring the phase difference closer to 0 when the average torque increases, and to increase the phase difference when reducing the torque ripple.
  • the first motor drive circuit supplies a first motor drive current to the first coil group by PWM control of the first pulse width modulation signal
  • the second motor drive circuit Preferably, the second motor drive current is supplied to the second coil group by PWM control of the second pulse width modulation signal.
  • the phase difference does not exceed 45 ° in electrical angle. Thereby, the fall of average torque can be suppressed.
  • an electric power steering device that obtains auxiliary steering torque by the electric motor of the control device described above is preferable.
  • this structure when at least two coil groups excited independently of each other are excited simultaneously, torque ripple can be suppressed. For this reason, the electric power steering apparatus suppresses the possibility of causing the operator to feel vibration due to torque ripple and causing discomfort. For this reason, the electric power steering device can operate the vehicle in a state in which the driver's discomfort is suppressed. As a result, the electric power steering apparatus can give a comfortable steering feeling to the operator.
  • the vehicle is equipped with the above-described electric power steering device.
  • an electric motor control device an electric power steering device, and a vehicle that can suppress torque ripple when at least two coil groups excited independently of each other are excited simultaneously.
  • FIG. 1 is a configuration diagram of an electric power steering apparatus including the electric motor according to the first embodiment.
  • FIG. 2 is a front view for explaining an example of a speed reducer included in the electric power steering apparatus according to the first embodiment.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the electric motor of the first embodiment on a virtual plane including the central axis.
  • FIG. 4 is a cross-sectional view schematically illustrating the configuration of the electric motor according to the first embodiment by cutting along a virtual plane orthogonal to the central axis.
  • FIG. 5 is a schematic diagram for explaining the driving of the electric motor by the ECU.
  • FIG. 6 is a schematic diagram showing the wiring of the first coil and the wiring of the second coil.
  • FIG. 7 is a schematic diagram illustrating the wiring of the first coil and the wiring of the second coil according to the first modification.
  • FIG. 8 is a cross-sectional view schematically illustrating the configuration of the electric motor according to Modification 2 cut along a virtual plane orthogonal to the central axis.
  • FIG. 9 is a cross-sectional view schematically showing the configuration of the electric motor according to Modification 3 cut along a virtual plane orthogonal to the central axis.
  • FIG. 10 is an explanatory diagram illustrating current waveforms of the first U phase and the second U phase supplied to the electric motor according to the second embodiment.
  • FIG. 11 is an explanatory diagram for explaining the amount of change in the average torque and the magnitude of the torque ripple with respect to the phase difference between the phase of the first motor drive current and the second motor drive current.
  • FIG. 12 is a diagram showing a vector relationship between the armature magnetic flux of the first coil group and the armature magnetic flux of the second coil group on the dq axis.
  • FIG. 13 is a schematic diagram of a vehicle equipped with an electric power steering apparatus including the electric motor according to the first embodiment or the second embodiment.
  • FIG. 1 is a configuration diagram of an electric power steering apparatus including the electric motor according to the first embodiment.
  • Embodiment 1 demonstrates the outline
  • the electric power steering apparatus 80 includes a steering wheel 81, a steering shaft 82, a steering force assist mechanism 83, a universal joint 84, a lower shaft 85, a universal joint 86, A pinion shaft 87, a steering gear 88, and a tie rod 89 are provided.
  • the electric power steering apparatus 80 includes an ECU (Electronic Control Unit) 90, a torque sensor 91a, and a vehicle speed sensor 91b.
  • ECU Electronic Control Unit
  • the steering shaft 82 includes an input shaft 82a and an output shaft 82b.
  • the input shaft 82a has one end connected to the steering wheel 81 and the other end connected to the steering force assist mechanism 83 via the torque sensor 91a.
  • the output shaft 82 b has one end connected to the steering force assist mechanism 83 and the other end connected to the universal joint 84.
  • the input shaft 82a and the output shaft 82b are made of a magnetic material such as iron.
  • the lower shaft 85 has one end connected to the universal joint 84 and the other end connected to the universal joint 86.
  • the pinion shaft 87 has one end connected to the universal joint 86 and the other end connected to the steering gear 88.
  • the steering gear 88 includes a pinion 88a and a rack 88b.
  • the pinion 88a is connected to the pinion shaft 87.
  • the rack 88b meshes with the pinion 88a.
  • the steering gear 88 is configured as a rack and pinion type.
  • the steering gear 88 converts the rotational motion transmitted to the pinion 88a into a linear motion by the rack 88b.
  • the tie rod 89 is connected to the rack 88b.
  • the steering force assist mechanism 83 includes a speed reducer 92 and the electric motor 10.
  • the reduction gear 92 is connected to the output shaft 82b.
  • the electric motor 10 is an electric motor that is connected to the reduction gear 92 and generates auxiliary steering torque.
  • a steering column is constituted by the steering shaft 82, the torque sensor 91a, and the speed reducer 92.
  • the electric motor 10 gives auxiliary steering torque to the output shaft 82b of the steering column. That is, the electric power steering apparatus 80 of the first embodiment is a column assist system.
  • the column assist type electric power steering device 80 has a relatively short distance between the operator and the electric motor 10, and the torque change or frictional force of the electric motor 10 may affect the steering person. For this reason, the electric power steering apparatus 80 is required to reduce the frictional force of the electric motor 10.
  • FIG. 2 is a front view for explaining an example of a reduction gear provided in the electric power steering apparatus of the first embodiment.
  • FIG. 2 shows a part in cross section.
  • the speed reducer 92 is a worm speed reducer.
  • the reduction gear 92 includes a reduction gear housing 93, a worm 94, a ball bearing 95 a, a ball bearing 95 b, a worm wheel 96, and a holder 97.
  • the worm 94 is coupled to the shaft 21 of the electric motor 10 by a spline or an elastic coupling.
  • the worm 94 is held in the speed reducer housing 93 so as to be rotatable by a ball bearing 95 a and a ball bearing 95 b held by the holder 97.
  • the worm wheel 96 is rotatably held by the speed reducer housing 93.
  • the worm teeth 94 a formed on a part of the worm 94 mesh with the worm wheel teeth 96 a formed on the worm wheel 96.
  • Rotational force of the electric motor 10 is transmitted to the worm wheel 96 through the worm 94 to rotate the worm wheel 96.
  • the reduction gear 92 increases the torque of the electric motor 10 by the worm 94 and the worm wheel 96. Then, the reduction gear 92 gives an auxiliary steering torque to the output shaft 82b of the steering column shown in FIG.
  • the torque sensor 91a shown in FIG. 1 detects the driver's steering force transmitted to the input shaft 82a through the steering wheel 81 as a steering torque.
  • the vehicle speed sensor 91b detects the traveling speed of the vehicle on which the electric power steering device 80 is mounted. In the ECU 90, the electric motor 10, the torque sensor 91a, and the vehicle speed sensor 91b are electrically connected.
  • the ECU 90 controls the operation of the electric motor 10. Moreover, ECU90 acquires a signal from each of the torque sensor 91a and the vehicle speed sensor 91b. That is, the ECU 90 acquires the steering torque T from the torque sensor 91a, and acquires the traveling speed V of the vehicle from the vehicle speed sensor 91b.
  • the ECU 90 is supplied with electric power from a power supply device (for example, a vehicle-mounted battery) 99 with the ignition switch 98 turned on.
  • the ECU 90 calculates an assist steering command value of the assist command based on the steering torque T and the traveling speed V. Then, the ECU 90 adjusts the electric power value X supplied to the electric motor 10 based on the calculated auxiliary steering command value.
  • the ECU 90 acquires the information on the induced voltage from the electric motor 10 or the information on the rotation of the rotor from the resolver described later as the operation information Y.
  • the steering force of the driver (driver) input to the steering wheel 81 is transmitted to the speed reduction device 92 of the steering force assist mechanism 83 via the input shaft 82a.
  • the ECU 90 acquires the steering torque T input to the input shaft 82a from the torque sensor 91a, and acquires the traveling speed V from the vehicle speed sensor 91b.
  • the ECU 90 controls the operation of the electric motor 10.
  • the auxiliary steering torque created by the electric motor 10 is transmitted to the speed reducer 92.
  • the steering torque T (including auxiliary steering torque) output via the output shaft 82 b is transmitted to the lower shaft 85 via the universal joint 84 and further transmitted to the pinion shaft 87 via the universal joint 86.
  • the steering force transmitted to the pinion shaft 87 is transmitted to the tie rod 89 via the steering gear 88 to steer the steered wheels.
  • the electric motor 10 will be described.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the electric motor of the first embodiment on a virtual plane including the central axis.
  • FIG. 4 is a cross-sectional view schematically illustrating the configuration of the electric motor according to the first embodiment by cutting along a virtual plane orthogonal to the central axis.
  • the electric motor 10 includes a housing 11, a bearing 12, a bearing 13, a resolver 14, a motor rotor 20, and a motor stator 30 for a brushless motor.
  • the housing 11 includes a cylindrical housing 11a and a front bracket 11b.
  • the front bracket 11b is formed in a substantially disc shape and is attached to the cylindrical housing 11a so as to close one open end of the cylindrical housing 11a.
  • the cylindrical housing 11a is formed with a bottom 11c at the end opposite to the front bracket 11b so as to close the end.
  • the bottom part 11c is formed integrally with the cylindrical housing 11a, for example.
  • a material for forming the cylindrical housing 11a for example, a general steel material such as SPCC (Steel Plate Cold Commercial), electromagnetic soft iron, aluminum, or the like can be applied.
  • the front bracket 11b plays a role of a flange when the electric motor 10 is attached to a desired device.
  • the bearing 12 is provided on the inner side of the cylindrical housing 11a and substantially at the center of the front bracket 11b.
  • the bearing 13 is provided inside the cylindrical housing 11a and at a substantially central portion of the bottom portion 11c.
  • the bearing 12 rotatably supports one end of a shaft 21 that is a part of the motor rotor 20 disposed inside the cylindrical housing 11a.
  • the bearing 13 rotatably supports the other end of the shaft 21. Thereby, the shaft 21 rotates around the axis of the rotation center Zr.
  • the resolver 14 is supported by a terminal block 15 provided on the front bracket 11b side of the shaft 21.
  • the resolver 14 detects the rotational position of the motor rotor 20 (shaft 21).
  • the resolver 14 includes a resolver rotor 14a and a resolver stator 14b.
  • the resolver rotor 14a is attached to the circumferential surface of the shaft 21 by press fitting or the like.
  • the resolver stator 14b is disposed to face the resolver rotor 14a with a predetermined gap.
  • the motor rotor 20 is provided inside the cylindrical housing 11a so that it can rotate around the rotation center Zr with respect to the cylindrical housing 11a.
  • the motor rotor 20 includes a shaft 21, a rotor yoke 22, and a magnet 23.
  • the shaft 21 is formed in a cylindrical shape.
  • the rotor yoke 22 is formed in a cylindrical shape.
  • the rotor yoke 22 has an arcuate outer periphery. With this configuration, the rotor yoke 22 can reduce the number of stamping processes compared to a case where the outer periphery has a complicated shape.
  • the rotor yoke 22 is manufactured by laminating thin plates such as electromagnetic steel plates and cold rolled steel plates by means of adhesion, boss, caulking or the like.
  • the rotor yoke 22 is sequentially stacked in the mold and discharged from the mold.
  • the rotor yoke 22 is fixed to the shaft 21 by press-fitting the shaft 21 into, for example, a hollow portion thereof.
  • the shaft 21 and the rotor yoke 22 may be integrally formed.
  • the magnet 23 is fixed to the surface along the circumferential direction of the rotor yoke 22, and a plurality of magnets 23 are provided.
  • the magnet 23 is a permanent magnet, and the S pole and the N pole are alternately arranged at equal intervals in the circumferential direction of the rotor yoke 22. Accordingly, the number of poles of the motor rotor 20 shown in FIG. 4 is eight poles in which the N poles and the S poles are alternately arranged in the circumferential direction of the rotor yoke 22.
  • the motor stator 30 is provided in a cylindrical shape so as to surround the motor rotor 20 inside the cylindrical housing 11a.
  • the motor stator 30 is attached by being fitted, for example, to the inner peripheral surface 11d of the cylindrical housing 11a.
  • the central axis of the motor stator 30 coincides with the rotation center Zr of the motor rotor 20.
  • the motor stator 30 includes a cylindrical stator core 31, a plurality of first coils 37, and a plurality of second coils 38.
  • the stator core 31 includes an annular back yoke 33 and a plurality of teeth 34 arranged in the circumferential direction around the rotation center Zr on the inner peripheral surface of the back yoke 33.
  • the circumferential direction around the rotation center Zr (the circumferential direction of the stator core 31) is simply referred to as the circumferential direction.
  • the stator core 31 is made of a magnetic material such as an electromagnetic steel plate.
  • the stator core 31 is formed by stacking and bundling a plurality of core pieces formed in substantially the same shape in the axial direction parallel to the axis of the rotation center Zr.
  • the back yoke 33 is a cylindrical member, for example.
  • the teeth 34 protrude from the inner peripheral surface of the back yoke 33.
  • 12 teeth 34 are arranged in the circumferential direction.
  • the tooth 34 includes a tooth tip 32 at the end opposite to the back yoke 33.
  • the teeth tip 32 protrudes from the teeth 34 in the circumferential direction.
  • the teeth 34 face the outer peripheral surface of the rotor yoke 22.
  • the stator core 31 is annularly arranged at a predetermined interval on the radially outer side of the rotor yoke 22.
  • stator core 31 When the stator core 31 is press-fitted into the cylindrical housing 11a, the motor stator 30 is provided inside the cylindrical housing 11a in an annular state.
  • the stator core 31 and the cylindrical housing 11a may be fixed by adhesion, shrink fitting, welding or the like in addition to press-fitting.
  • the first coil 37 is concentratedly wound around each of the plurality of teeth 34.
  • the first coil 37 is concentratedly wound around the outer periphery of the tooth 34 via an insulator 37a (see FIG. 3).
  • the insulator 37a is a member for insulating the first coil 37 and the stator core 31, and is formed of a heat resistant member. All the first coils 37 are included in a first coil system that is a system excited by the same inverter (a first inverter 52 described later).
  • the first coil system includes, for example, six first coils 37.
  • the six first coils 37 are arranged such that the two first coils 37 are adjacent to each other in the circumferential direction.
  • first coil groups G1 having the adjacent first coils 37 as one group are arranged at equal intervals in the circumferential direction. That is, the first coil system includes three first coil groups G1 arranged at equal intervals in the circumferential direction. Note that the number of the first coil groups G1 is not necessarily three, and it is sufficient if 3n are arranged at equal intervals in the circumferential direction when n is a natural number. Further, n is desirably an odd number.
  • the second coil 38 is concentratedly wound around each of the plurality of teeth 34.
  • the second coil 38 is concentrated and wound around the outer periphery of the tooth 34 via an insulator.
  • the teeth 34 around which the second coil 38 is concentrated are different from the teeth 34 around which the first coil 37 is concentrated.
  • All the second coils 38 are included in a second coil system that is a system excited by the same inverter (a second inverter 54 described later).
  • the second coil system includes, for example, six second coils 38.
  • the six second coils 38 are arranged such that the two second coils 38 are adjacent to each other in the circumferential direction.
  • Three second coil groups G2 having the adjacent second coils 38 as one group are arranged at equal intervals in the circumferential direction.
  • the second coil system includes three second coil groups G2 arranged at equal intervals in the circumferential direction.
  • the number of the second coil groups G2 is not necessarily three, and it is sufficient if 3n are arranged at equal intervals in the circumferential direction when n is a natural number. Further, n is desirably an odd number.
  • FIG. 5 is a schematic diagram for explaining the driving of the electric motor by the ECU.
  • the electric motor control device 100 includes an ECU 90 and an electric motor 10.
  • the motor control device 100 can input an input signal to the ECU 90 from a sensor such as a torque sensor 91a, for example.
  • the ECU 90 controls the operation of the electric motor 10 by three-phase alternating current.
  • the ECU 90 includes a control device 40 that controls the electric motor 10 and a motor drive circuit 50.
  • the control device 40 outputs a current value for rotationally driving the motor rotor 20 as a command value.
  • the motor drive circuit 50 generates a pulse width modulation signal having a predetermined duty ratio called PWM (Pulse Width Modulation) based on the command value of the control device 40, and outputs a three-phase AC signal for controlling the current value of the motor 10.
  • PWM Pulse Width Modulation
  • the motor drive circuit 50 only needs to be electrically connected to the control device 40. In order to suppress the influence of heat generation of the motor drive circuit 50, the motor drive circuit 50 is installed at a location different from the location where the control device 40 is installed. Yes.
  • the control device 40 includes a main control unit 41, a first coil system control unit 42, and a second coil system control unit 44 as functional blocks, a control unit 40A, a first phase adjustment unit 43, and a second phase.
  • An adjustment unit 45 and a phase difference adjustment unit 40B including the adjustment unit 45 are provided.
  • the motor drive circuit 50 includes a first motor drive circuit 50A for supplying a first motor drive current of three-phase AC to the first coil group G1 based on the command value, and a second motor drive current of three-phase AC for the second coil. And a second motor drive circuit 50B that supplies the group G2.
  • First motor drive circuit 50 ⁇ / b> A includes a first gate drive circuit 51 and a first inverter 52.
  • the second motor drive circuit 50B includes a second gate drive circuit 53 and a second inverter 54.
  • the main control unit 41 acquires the steering torque T input to the input shaft 82a from the torque sensor 91a.
  • the main control unit 41 calculates a current value for rotationally driving the motor rotor 20 as a command value according to the information acquired from the torque sensor 91a.
  • the first coil system control unit 42 calculates a first pulse width modulation signal having a predetermined duty ratio based on the command value of the main control unit 41.
  • the first coil system control unit 42 sends information on the first pulse width adjustment signal to the first phase adjustment unit 43.
  • the second coil system control unit 44 calculates a second pulse width modulation signal having a predetermined duty ratio based on the command value of the main control unit 41.
  • the second coil system control unit 44 sends information on the second pulse width adjustment signal to the second phase adjustment unit 45.
  • the first phase adjustment unit 43 and the second phase adjustment unit 45 are configured such that the phase of the current supplied to the first coil group G1 is the same as the phase of the current supplied to the second coil group G2. Adjust. At the time when the first coil system control unit 42 and the second coil system control unit 44 output, there is no phase difference between the information of the first pulse width modulation signal and the information of the second pulse width modulation signal, and the information is synchronized. In this case, the phase difference adjustment unit 40B may not be provided.
  • the first phase adjustment unit 43 sends the information of the adjusted first pulse width adjustment signal to the first gate drive circuit 51.
  • the second phase adjustment unit 45 sends the information of the adjusted second pulse width adjustment signal to the second gate drive circuit 53.
  • the first gate drive circuit 51 controls the first inverter 52 based on the information of the first pulse width adjustment signal acquired from the first phase adjustment unit 43.
  • the first inverter 52 switches the field effect transistor so as to obtain a three-phase current value according to the duty ratio of the first pulse width modulation signal in the first gate drive circuit 51, thereby providing a first U phase and a first V phase. And a three-phase alternating current including the first W phase.
  • the three-phase alternating current generated by the first inverter 52 is sent to the electric motor 10 through three wirings Lu1, Lv1, and Lw1, and excites the plurality of first coils 37.
  • the wiring Lu ⁇ b> 1 sends a first U-phase current to the electric motor 10.
  • the wiring Lv1 sends a first V-phase current to the electric motor 10.
  • the wiring Lw1 sends a first W-phase current to the electric motor 10.
  • the second gate drive circuit 53 controls the second inverter 54 based on the information of the second pulse width adjustment signal acquired from the second phase adjustment unit 45.
  • the second inverter 54 switches the field effect transistor so as to obtain a three-phase current value according to the duty ratio of the second pulse width modulation signal in the second gate drive circuit 53, so that the second U phase and the second V phase are switched. And a three-phase alternating current including the second W phase.
  • the three-phase alternating current generated by the second inverter 54 is sent to the electric motor 10 by the three wires Lu2, Lv2, and Lw2, and excites the plurality of second coils 38.
  • the wiring Lu ⁇ b> 2 sends the second U-phase current to the electric motor 10.
  • the wiring Lv2 sends a second V-phase current to the electric motor 10.
  • the wiring Lw2 sends a second W-phase current to the electric motor 10.
  • control device 40 controls the first pulse width adjustment of the predetermined duty ratio to be the current value for driving the motor rotor 20 to the desired rotational drive with respect to the first gate drive circuit 51 and the second gate drive circuit 53.
  • the change signal and the second pulse width adjustment signal can be supplied to control the first motor drive circuit 50A and the second motor drive circuit 50B.
  • FIG. 6 is a schematic diagram showing the wiring of the first coil and the wiring of the second coil.
  • the six first coils 37 include two first U-phase coils 37Ua and 37Ub excited by a first U-phase current, and two first V-phase coils excited by a first V-phase current. 37Va, 37Vb, and two first W-phase coils 37Wa, 37Wb excited by a first W-phase current.
  • First U-phase coil 37Ub is connected in series to first U-phase coil 37Ua.
  • First V-phase coil 37Vb is connected in series to first V-phase coil 37Va.
  • First W-phase coil 37Wb is connected in series to first W-phase coil 37Wa.
  • the winding direction of the first coil 37 around the teeth 34 is the same direction. Further, the wirings Lu1, Lv1, and Lw1 are joined by Y connection.
  • the six second coils 38 include two second U-phase coils 38Ua and 38Ub excited by a second U-phase current, and two second V-phase coils excited by a second V-phase current. 38Va, 38Vb and two second W-phase coils 38Wa, 38Wb excited by a second W-phase current.
  • Second U-phase coil 38Ub is connected in series to second U-phase coil 38Ua.
  • Second V-phase coil 38Vb is connected in series to second V-phase coil 38Va.
  • Second W-phase coil 38Wb is connected in series to second W-phase coil 38Wa.
  • the winding direction of the second coil 38 around the teeth 34 is all the same direction, and is the same as the winding direction of the first coil 37. Further, the wirings Lu2, Lv2, and Lw2 are joined by Y connection.
  • the electric motor according to the first embodiment exemplifies six first coils 37 and second coils 38 that are Y-connected, but includes six first coils 37 and second coils 38 that are ⁇ -connected. There may be.
  • the three first coil groups G1 include a first UV coil group G1UV, a first VW coil group G1VW, and a first UW coil group G1UW.
  • the first UV coil group G1UV includes a first U-phase coil 37Ub and a first V-phase coil 37Va that are adjacent to each other in the circumferential direction.
  • First VW coil group G1VW includes a first V-phase coil 37Vb and a first W-phase coil 37Wa that are adjacent to each other in the circumferential direction.
  • the first UW coil group G1UW includes a first U-phase coil 37Ua and a first W-phase coil 37Wb that are adjacent to each other in the circumferential direction.
  • the three second coil groups G2 include a second UV coil group G2UV, a second VW coil group G2VW, and a second UW coil group G2UW.
  • the second UV coil group G2UV includes a second U-phase coil 38Ub and a second V-phase coil 38Va that are adjacent to each other in the circumferential direction.
  • Second VW coil group G2VW includes second V-phase coil 38Vb and second W-phase coil 38Wa that are adjacent to each other in the circumferential direction.
  • Second UW coil group G2UW includes a second U-phase coil 38Ua and a second W-phase coil 38Wb that are adjacent to each other in the circumferential direction.
  • the first coil 37 excited by the first U-phase current is opposed to the second coil 38 excited by the second U-phase current in the radial direction of the stator core 31.
  • the radial direction of the stator core 31 is simply referred to as the radial direction.
  • the first U-phase coil 37Ua faces the second U-phase coil 38Ua
  • the first U-phase coil 37Ub faces the second U-phase coil 38Ub.
  • the first coil 37 excited by the first V-phase current is opposed to the second coil 38 excited by the second V-phase current in the radial direction.
  • the first V-phase coil 37Va faces the second V-phase coil 38Va
  • the first V-phase coil 37Vb faces the second V-phase coil 38Vb.
  • the first coil 37 excited by the first W-phase current is opposed to the second coil 38 excited by the second W-phase current in the radial direction.
  • the first W-phase coil 37Wa faces the second W-phase coil 38Wa
  • the first W-phase coil 37Wb faces the second W-phase coil 38Wb.
  • the plurality of first coils 37 are excited by the first inverter 52, and the plurality of second coils 38 are excited by the second inverter 54.
  • the first inverter 52 and the second inverter 54 independently supply the three-phase alternating current to the electric motor 10, even if no current is supplied to the second coil 38, the first coil 37. Can drive the electric motor 10. Even if the current is no longer supplied to the first coil 37, the second coil 38 can drive the electric motor 10.
  • the case where the current is no longer supplied to the second coil 38 will be described as an example, and the case where the current is no longer supplied to the first coil 37 will be the same and will be omitted.
  • first coil groups G1 including a plurality of first coils 37 are arranged at equal intervals in the circumferential direction.
  • the distance in the circumferential direction between the first coil groups G1 is reduced. For this reason, even when the current is no longer supplied to the second coil 38, the variation in the circumferential direction at the position where the first coil 37 generates torque is reduced. Therefore, the electric motor 10 can suppress an increase in torque ripple even when driven by only one of the two coil systems excited independently of each other.
  • the three first coil groups G1 are composed of a first UV coil group G1UV, a first VW coil group G1VW, and a first UW coil group G1UW.
  • the second coil group G2 includes a second UV coil group G2UV, a second VW coil group G2VW, and a second UW coil group G2UW.
  • the two first coils 37 excited by the current of the same phase are either the two first U-phase coils 37Ua and 37Ub, the two first V-phase coils 37Va and 37Vb, or the two first W-phase coils 37Wa and 37Wb. Means. For this reason, the generation position of torque is easily dispersed in the circumferential direction. Therefore, the electric motor 10 can suppress torque ripple more.
  • the first U-phase coils 37Ua and 37Ub, the first V-phase coils 37Va and 37Vb, or the first W-phase coil are disposed at the circumferential ends of the first coil group G1.
  • 37Wa and 37Wa are arranged.
  • Second U-phase coils 38Ua and 38Ub, second V-phase coils 38Va and 38Vb, or second W-phase coils 38Wa and 38Wb are arranged at the end in the circumferential direction of the second coil group G2.
  • the electric power steering apparatus 80 according to the first embodiment has been described by taking the column assist method as an example, but can also be applied to a pinion assist method and a rack assist method.
  • the electric motor 10 includes the annular stator core 31 including the annular back yoke 33 and the plurality of teeth 34 arranged in the circumferential direction on the inner peripheral surface of the back yoke 33.
  • the electric motor 10 is a three-phase circuit including a first U phase, a first V phase, and a first W phase that are concentratedly wound around each of a plurality of (two in the first embodiment) adjacent teeth 34 when n is a natural number.
  • a group consisting of a plurality (two in the first embodiment) of the first coils 37 excited by the first inverter 52 that generates alternating current, and 3n (in the first embodiment) at equal intervals in the circumferential direction of the stator core 31. are provided with a first coil group G1.
  • the electric motor 10 is concentratedly wound around each of a plurality of (two in the first embodiment) teeth 34 arranged adjacent to each other at positions different from the teeth 34 around which the first coil 37 is concentratedly wound.
  • the second coil group G2 is provided with 3n (three in the first embodiment) arranged at intervals.
  • the electric motor 10 can suppress an increase in torque ripple even when driven by only one of the two coil systems excited independently of each other.
  • the plurality (six in the first embodiment) of the first coils 37 are a plurality of (two in the first embodiment) first U-phase coils 37Ua and 37Ub that are excited by the first U-phase current, and the first V A plurality of (two in the first embodiment) first V-phase coils 37Va and 37Vb excited by a phase current and a plurality (two in the first embodiment) first W-phase excited by a first W-phase current Coils 37Wa and 37Wb.
  • a plurality (six in the first embodiment) of the second coils 38 are excited by a second U-phase current (two in the first embodiment), the second U-phase coils 38Ua and 38Ub, and a second V-phase coil.
  • first coil groups G1 include a first UV coil group G1UV including a first U-phase coil 37Ub and a first V-phase coil 37Va, a first V-phase coil 37Vb, and a first W-phase coil 37Wa.
  • second coil groups G2 include a second UV coil group G2UV including a second U-phase coil 38Ub and a second V-phase coil 38Va, a second V-phase coil 38Vb, and a second W-phase coil 38Wa. And a second UW coil group G2UW including a second U-phase coil 38Ua and a second W-phase coil 38Wb.
  • the two first coils 37 excited by the in-phase current do not belong to one first coil group G1, and the two second coils 38 excited by the in-phase current become one second coil group. No longer belongs to G2. For this reason, the generation position of torque is easily dispersed in the circumferential direction. Therefore, the electric motor 10 can suppress torque ripple more.
  • FIG. 7 is a schematic diagram illustrating the wiring of the first coil and the wiring of the second coil according to the first modification.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the winding direction of the second coil 38 around the teeth 34 is opposite to the winding direction of the first coil 37 around the teeth 34.
  • the first phase adjustment unit 43 and the second phase adjustment unit 45 include the phase of the current supplied to the first coil group G1 and the phase of the current supplied to the second coil group G2. Are adjusted 180 degrees different from each other. Thereby, the direction of the magnetic field generated by each first coil 37 and each second coil 38 is the same as in the first embodiment.
  • the first coil 37 and the second coil 38 have different winding start positions with respect to the tooth 34. For example, when the first coil 37 starts to be wound from the radially outer end portion of the tooth 34, the second coil 38 starts to be wound from the radially inner end portion of the tooth 34. Therefore, as shown in FIG.
  • the end of the wirings Lu1, Lv1, and Lw1 on the side connected to the first inverter 52 is located on the outer side in the radial direction of the electric motor 10, and the wirings Lu2, Lv2, and Lw2
  • the end on the side connected to the second inverter 54 is located closer to the radially inner side of the electric motor 10. Therefore, the position of the wiring connected to the electric motor 10 is likely to vary. Therefore, the electric motor 10 according to Modification 1 can reduce the possibility that a plurality of wires interfere with each other.
  • phase of the current supplied to the first coil group G1 and the phase of the current supplied to the second coil group G2 are different from each other by 180 °, so that the wirings Lu1, Lv1, The radiation noise from Lw1 and the radiation noise from the wirings Lu2, Lv2, and Lw2 from the second inverter 54 to the electric motor 10 cancel each other. For this reason, the radiation noise in the wiring from ECU90 to the electric motor 10 is reduced.
  • FIG. 8 is a cross-sectional view schematically illustrating the configuration of the electric motor according to Modification 2 cut along a virtual plane orthogonal to the central axis.
  • the number of poles of the motor rotor 20 in Modification 2 is 20 poles in which N poles and S poles are alternately arranged in the circumferential direction of the rotor yoke 22.
  • the teeth 34 are arranged 24 in the circumferential direction.
  • first coils 37 are arranged.
  • the twelve first coils 37 are arranged so that the four first coils 37 are adjacently arranged in the circumferential direction.
  • Three first coil groups G1 having four first coils 37 arranged adjacent to each other as one group are arranged at equal intervals in the circumferential direction.
  • the three first coil groups G1 include a first UV coil group G1UV, a first VW coil group G1VW, and a first UW coil group G1UW.
  • the winding direction with respect to the teeth 34 is opposite to each other and the pair of two first U-phase coils 37Ub adjacent to each other in the circumferential direction and the winding direction with respect to the teeth 34 are opposite to each other in the circumferential direction. And two sets of two first V-phase coils 37Va adjacent to each other.
  • the winding direction with respect to the teeth 34 is opposite to each other and the pair of two first V-phase coils 37Vb adjacent to each other in the circumferential direction and the winding direction with respect to the teeth 34 are opposite to each other in the circumferential direction.
  • the first UW coil group G1UW includes a pair of two first U-phase coils 37Ua that are adjacent to each other in the circumferential direction and the winding direction with respect to the tooth 34 is opposite to each other in the circumferential direction, and the winding direction with respect to the tooth 34 is opposite to each other in the circumferential direction. And two sets of two first W-phase coils 37Wb adjacent to each other.
  • the phase coils 37Wb are each connected in series. Further, one set of first U-phase coil 37Ub is connected in series to one set of first U-phase coil 37Ua. One set of first V-phase coil 37Vb is connected in series to one set of first V-phase coil 37Va. One set of first W-phase coil 37Wb is connected in series to one set of first W-phase coil 37Wa.
  • 12 second coils 38 are arranged.
  • the twelve second coils 38 are arranged so that the four second coils 38 are arranged adjacent to each other in the circumferential direction.
  • Three second coil groups G2 having four second coils 38 arranged adjacent to each other as one group are arranged at equal intervals in the circumferential direction.
  • the three second coil groups G2 include a second UV coil group G2UV, a second VW coil group G2VW, and a second UW coil group G2UW.
  • the winding direction with respect to the teeth 34 is opposite to each other and the pair of two second U-phase coils 38Ub adjacent to each other in the circumferential direction and the winding direction with respect to the teeth 34 are opposite to each other in the circumferential direction. And two sets of two second V-phase coils 38Va adjacent to each other.
  • the winding direction with respect to the teeth 34 is opposite to each other and the pair of two second V-phase coils 38Vb adjacent to each other in the circumferential direction and the winding direction with respect to the teeth 34 are opposite to each other in the circumferential direction.
  • the second UW coil group G2UW includes a pair of two second U-phase coils 38Ua adjacent to each other in the circumferential direction and the winding direction with respect to the teeth 34, and the winding directions with respect to the teeth 34 are opposite to each other in the circumferential direction. And two sets of two second W-phase coils 38Wb adjacent to each other.
  • the phase coils 38Wb are each connected in series. Further, one set of second U-phase coil 38Ub is connected in series to one set of second U-phase coil 38Ua. One set of second V-phase coil 38Vb is connected in series to one set of second V-phase coil 38Va. One set of second W-phase coil 38Wb is connected in series to one set of second W-phase coil 38Wa.
  • the pair of first coils 37 are excited so as to form magnetic fields in opposite directions.
  • the pair of second coils 38 are excited so as to form magnetic fields in opposite directions.
  • the first coil 37 and the second coil 38 excited in opposite directions are alternately arranged in the circumferential direction.
  • the electric motor 10 according to the modified example 2 has a larger number of magnetic poles than the first embodiment described above. For this reason, the electric motor 10 which concerns on the modification 2 becomes easy to disperse
  • FIG. 9 is a cross-sectional view schematically showing the configuration of the electric motor according to Modification 3 cut along a virtual plane orthogonal to the central axis.
  • the magnet 23 is embedded in a plurality of slots provided in the rotor yoke 22.
  • the magnet 23 is disposed radially inward from the outer peripheral surface of the rotor yoke 22.
  • FIG. 10 is an explanatory diagram illustrating current waveforms of the first U phase and the second U phase supplied to the electric motor according to the second embodiment.
  • FIG. 11 is an explanatory diagram for explaining the amount of change in the average torque and the magnitude of the torque ripple with respect to the phase difference between the phase of the first motor drive current and the second motor drive current.
  • the electric motor 10 and the electric motor control device 100 according to the second embodiment are the same as the electric motor 10 and the electric motor control device 100 according to the first embodiment shown in FIGS. 1 to 6, but the operation of the phase difference adjustment unit 40 ⁇ / b> B of the control device 40. Is different.
  • description will be made with reference to FIGS. 1 to 6, 10, and 11 as appropriate.
  • symbol is attached
  • the main control unit 41 acquires the steering torque T input to the input shaft 82a from the torque sensor 91a.
  • the main control unit 41 calculates a current value for rotationally driving the motor rotor 20 as a command value according to the information acquired from the torque sensor 91a.
  • the first coil system control unit 42 calculates a first pulse width modulation signal having a predetermined duty ratio based on the command value of the main control unit 41.
  • the first coil system control unit 42 sends information on the first pulse width adjustment signal to the first phase adjustment unit 43.
  • the second coil system control unit 44 calculates a second pulse width modulation signal having a predetermined duty ratio based on the command value of the main control unit 41.
  • the second coil system control unit 44 sends information on the second pulse width adjustment signal to the second phase adjustment unit 45.
  • the first phase adjustment unit 43 and the second phase adjustment unit 45 adjust the phase of the current supplied to the second coil group G2 to advance with respect to the phase of the current supplied to the first coil group G1.
  • the first phase adjustment unit 43 sends the information of the adjusted first pulse width adjustment signal to the first gate drive circuit 51.
  • the second phase adjustment unit 45 sends the information of the adjusted second pulse width adjustment signal to the second gate drive circuit 53.
  • the first gate drive circuit 51 controls the first inverter 52 based on the information of the first pulse width adjustment signal acquired from the first phase adjustment unit 43.
  • the first inverter 52 switches the field effect transistor so as to obtain a three-phase current value according to the duty ratio of the first pulse width modulation signal in the first gate drive circuit 51, thereby providing a first U phase and a first V phase. And a three-phase alternating current including the first W phase.
  • the three-phase alternating current generated by the first inverter 52 is sent to the electric motor 10 through three wirings Lu1, Lv1, and Lw1, and excites the plurality of first coils 37.
  • the wiring Lu ⁇ b> 1 sends a first U-phase current to the electric motor 10.
  • the wiring Lv1 sends a first V-phase current to the electric motor 10.
  • the wiring Lw1 sends a first W-phase current to the electric motor 10.
  • the second gate drive circuit 53 controls the second inverter 54 based on the information of the second pulse width adjustment signal acquired from the second phase adjustment unit 45.
  • the second inverter 54 switches the field effect transistor so as to obtain a three-phase current value according to the duty ratio of the second pulse width modulation signal in the second gate drive circuit 53, so that the second U phase and the second V phase are switched. And a three-phase alternating current including the second W phase.
  • the three-phase alternating current generated by the second inverter 54 is sent to the electric motor 10 by the three wires Lu2, Lv2, and Lw2, and excites the plurality of second coils 38.
  • the wiring Lu ⁇ b> 2 sends the second U-phase current to the electric motor 10.
  • the wiring Lv2 sends a second V-phase current to the electric motor 10.
  • the wiring Lw2 sends a second W-phase current to the electric motor 10.
  • the first motor driving current is a symmetric three-phase alternating current of the first U phase, the first V phase, and the first W phase, which is a sine wave shifted by 120 ° in electrical angle.
  • the second motor drive current is a symmetric three-phase alternating current of the second U phase, the second V phase, and the second W phase, which is a sine wave shifted by 120 ° in electrical angle.
  • the phase difference between the first motor driving current and the second motor driving current is such that the phase difference between the first U phase and the second U phase is the phase difference between the first V phase and the second V phase, and the first W phase and the second W phase. Therefore, the phase difference between the first U phase and the second U phase shown in FIG. 10 will be described.
  • the first U-phase current Au1 of the first motor drive current is compared to the reference phase in which the phase difference between the first U-phase counter electromotive force and the phase current corresponding to the counter electromotive force is 0 °.
  • the phase difference ⁇ 1 is zero.
  • three first coil groups G1 are arranged at equal intervals in the circumferential direction of the stator core 31, and therefore only the first coil group G1 is considered regardless of the rotation angle of the motor rotor 20.
  • a rotational torque proportional to the current supplied to G1 is generated, and the average torque is considered to be constant.
  • the second U-phase current Au2 of the second motor drive current is advanced by a phase difference ⁇ 2 with respect to the reference phase in which the phase difference between the second U-phase back electromotive force and the phase current corresponding to the back electromotive force is zero. It is out. Therefore, due to the interaction between the first coil group G1 and the second coil group G2, as shown in FIG. 11, the average torque Ta decreases as the phase difference ⁇ 2 advances relative to the reference phase.
  • the present inventors have reduced the torque ripple Tr as the phase difference ⁇ 2 shown in FIG. 11 advances with respect to the reference phase due to the interaction between the first coil group G1 and the second coil group G2, and the predetermined poles. It was found that the torque ripple Tr started to increase in value. On the other hand, it is assumed that the torque ripple Tr increases as the phase difference ⁇ 2 shown in FIG. 11 is delayed with respect to the reference phase due to the interaction between the first coil group G1 and the second coil group G2.
  • phase difference ⁇ 1 when the phase difference ⁇ 1 is 0, the phase difference ⁇ 2 is most preferably 10 ° in electrical angle.
  • the electric motor control device 100 includes the electric motor 10, the control device 40, and the motor drive circuit 50.
  • the electric motor 10 is divided into a motor rotor 20, a motor stator 30, and at least two systems of a first coil group G1 and a second coil group G2 for every three phases, and a plurality of coils that excite the stator core 31 with a three-phase alternating current. And groups.
  • the control device 40 outputs a current value for rotationally driving the motor rotor 20 as a command value.
  • the motor drive circuit 50 includes a first motor drive circuit 50A and a second motor drive circuit 50B, and the first motor drive circuit 50A converts a first motor drive current of a three-phase alternating current into a first coil based on the command value described above.
  • the second motor drive circuit 50B supplies the second coil drive group 50 with a three-phase AC second motor drive current having a phase difference that advances with respect to the phase of the first motor drive current.
  • the control device 40 includes a control unit 40A that calculates a pulse width modulation signal having a predetermined duty ratio as a command value as described above, and a phase difference adjustment unit 40B.
  • the phase difference adjustment unit 40B uses the pulse width modulation signal having a predetermined duty ratio as the first pulse width modulation signal, and gives the same duty ratio and phase difference ( ⁇ 2- ⁇ 1) to the first pulse width modulation signal. A two-pulse width modulation signal is calculated.
  • the phase difference adjustment unit 40B of the control device 40 adjusts the phase difference ⁇ 2 in a range where the torque ripple reduction rate is larger than the average torque reduction rate, and the electric motor 10 has reduced torque ripple with respect to the motor rotor 20. Control is performed so that rotation is applied.
  • the phase difference adjustment unit 40B controls the phase difference ( ⁇ 2- ⁇ 1) to be close to 0 when the average torque Ta is increased, and increases the phase difference ( ⁇ 2- ⁇ 1) when the torque ripple Tr is reduced. It can be performed.
  • the first motor drive circuit 50A supplies the first motor drive current to the first coil group G1 by PWM control of the first pulse width modulation signal
  • the second motor drive circuit 50B performs PWM control of the second pulse width modulation signal.
  • the second motor drive current is supplied to the second coil group G2.
  • phase difference ( ⁇ 2 ⁇ 1) described above does not exceed 45 ° in electrical angle. Since the phase difference ( ⁇ 2 ⁇ 1) does not exceed 45 ° in electrical angle, a decrease in the average torque Ta can be suppressed.
  • the output torque Ts is obtained by the following equation (1).
  • Tm is a torque generated by the magnetic flux ⁇ m of the magnet 23
  • Tr is a reluctance torque.
  • the reluctance torque Tr is obtained by the following formula (2).
  • Lq is a q-axis inductance.
  • Ld is a d-axis inductance.
  • Iq is the q-axis component of the armature current.
  • Id is the d-axis component of the armature current.
  • ⁇ m is the total amount of magnetic flux for each pole pair.
  • the electric motor according to the second embodiment includes the first coil group G1 and the second coil group G2.
  • the output torque Ts of the electric motor according to the second embodiment can be divided into a torque Tg1 by the first coil group G1 and a torque Tg2 by the second coil group G2. That is, the output torque Ts is obtained by the following equation (4).
  • Torque Tg1 is obtained by the following equation (5) when equation (1) is applied.
  • Tm1 is a magnet torque by the magnetic flux ⁇ m of the magnet 23 with respect to the first coil group G1.
  • Tr1 is a reluctance torque for the first coil group G1.
  • torque Tg2 is calculated
  • Tm2 is a magnet torque generated by the magnetic flux ⁇ m of the magnet 23 with respect to the second coil group G2.
  • Tr2 is a reluctance torque for the second coil group G2.
  • FIG. 12 is a diagram showing a vector relationship between the armature magnetic flux of the first coil group and the armature magnetic flux of the second coil group on the dq axis.
  • a case where a phase difference 2 ⁇ is provided between the armature magnetic flux mf1 of the first coil group G1 and the armature magnetic flux mf2 of the second coil group G2 with respect to the q axis of the rotor magnetic pole is as follows. To consider.
  • the average of the advance values of the first coil group G1 and the second coil group G2 with respect to the q axis of the rotor magnetic pole is ⁇ .
  • Tr1 is calculated
  • Tm2 is obtained by the following equation (9).
  • Tr2 is calculated
  • Tr1 + Tr2 0 (11)
  • the torque between the two groups by the first coil group G1 and the second coil group G2 is obtained by intentionally shifting the phases of the torque waveforms of the first coil group G1 and the second coil group G2. Ripple components cancel each other. As a result, torque ripple components can be suppressed without adding skew or the like to the stator winding.
  • FIG. 13 is a schematic diagram of a vehicle equipped with an electric power steering apparatus including the electric motor according to the first embodiment or the second embodiment.
  • the vehicle 101 is equipped with an electric power steering device 80 including the electric motor 10 according to the first embodiment or the second embodiment described above.
  • the vehicle 101 may be mounted with the electric motor 10 according to the first embodiment or the second embodiment described above for applications other than the electric power steering device 80.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

 電動機制御装置100は、電動機10と、制御装置40と、モータ駆動回路50を備える。電動機10は、モータロータ20と、モータステータ30と、三相毎に少なくとも2系統の第1コイルグループG1及び第2コイルグループG2とに分けられ、かつステータコア31を3相交流で励磁する複数のコイルグループと、を含む。モータ駆動回路50は、第1モータ駆動回路50Aが指令値に基づいて3相交流の第1モータ駆動電流を第1コイルグループG1に供給し、第2モータ駆動回路50Aが第1モータ駆動電流の位相に対して位相差を有する3相交流の第2モータ駆動電流を第2コイルグループG2に供給する。

Description

電動機制御装置、電動パワーステアリング装置および車両
 本発明は、電動機制御装置、電動パワーステアリング装置および車両に関する。
 ステータのコイルが2系統に分けられ、1系統が失陥しても残りの1系統でロータを回転させることができるステアリング装置用モータが知られている。例えば、特許文献1には、ステータを構成する複数の磁極体が、系統Aのグループおよび系統Bのグループの2つのグループに分けられたステアリング装置用モータが記載されている。特許文献1において、系統Aは、互いに連続して並ぶ複数の磁極体を含む系統A-1と、系統A-1に属する磁極体と直径方向において対向する状態で並ぶ複数の磁極体を含む系統A-2とを備えている。系統Bについても同様である。
特開2007-331639号公報
 特許文献1に記載されたステアリング装置用モータの場合、仮に2つのグループのうち系統Bのグループが失陥すると、系統Aのグループのみによってモータが駆動されることになる。しかし、系統A-1と系統A-2とが直径方向に対向して配置されているため、トルクを発生させる位置の周方向でのバラつきが大きくなる。
 本発明は、上記に鑑みてなされたものであって、互いに独立して励磁される少なくとも2系統のコイルグループを同時に励磁した場合、トルクリップルを抑制できる電動機制御装置、電動パワーステアリング装置および車両を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、電動機制御装置は、モータロータと、前記モータロータを回転させるステータコアを備えるモータステータと、三相毎に少なくとも2系統の第1コイルグループ及び第2コイルグループとに分けられ、かつ前記ステータコアを3相交流で励磁する複数のコイルグループと、を含む電動機と、前記モータロータを回転駆動させる電流値を指令値として出力する制御装置と、前記指令値に基づいて3相交流の第1モータ駆動電流を前記第1コイルグループに供給する第1モータ駆動回路と、前記第1モータ駆動電流の位相に対して位相差を有する3相交流の第2モータ駆動電流を前記第2コイルグループに供給する第2モータ駆動回路と、を含むモータ駆動回路と、を備える。
 上記構成により、電動機制御装置は、互いに独立して励磁される少なくとも2系統のコイルグループを同時に励磁した場合、トルクリップルを抑制することができる。
 本発明の望ましい態様として、前記制御装置は、前記指令値として所定のデューティ比のパルス幅調変信号を演算する制御部と、前記所定のデューティ比のパルス幅調変信号を第1パルス幅変調信号として、前記第1パルス幅変調信号に対して同じデューティ比かつ前記位相差を与えた第2パルス変調信号を演算する位相差調整部とを備えることが好ましい。
 上記構成により、制御装置の調整部は、平均トルクの減少率よりも、トルクリップルの減少率の大きい範囲で位相差を調整し、電動機は、モータロータに対してトルクリップルの低減された回転が付与されるよう制御できる。また、位相調整部は、平均トルクの増加する場合は、位相差を0に近づけ、トルクリップルを低減する場合は、位相差を大きくする制御を行うことができる。
 本発明の望ましい態様として、前記第1モータ駆動回路は、前記第1パルス幅変調信号のPWM制御により第1モータ駆動電流を前記第1コイルグループに供給し、前記第2モータ駆動回路は、前記第2パルス幅変調信号のPWM制御により第2モータ駆動電流を前記第2コイルグループに供給することが好ましい。
 上記構成により、独立した第1モータ駆動回路及び第2モータ駆動回路を備えることにより、冗長性を高め、モータ駆動回路のフェールセーフ性を高めることができる。
 本発明の望ましい態様として、前記位相差は、電気角で45°を超えないことが好ましい。これにより、平均トルクの低下を抑制できる。
 本発明の望ましい態様として、上述した制御装置の前記電動機により補助操舵トルクを得る電動パワーステアリング装置とすることが好ましい。この構造により、互いに独立して励磁される少なくとも2系統のコイルグループを同時に励磁した場合、トルクリップルを抑制することができる。このため、電動パワーステアリング装置は、操作者にトルクリップルによる振動を感じさせ、不快感を与えてしまう可能性を抑制する。このため、電動パワーステアリング装置は、操舵者の違和感を抑制した状態で、車両を操作させることができる。その結果、電動パワーステアリング装置は、操作者に対して快適な操舵感を与えることができる。
 本発明の望ましい態様として、上述した電動パワーステアリング装置が搭載された車両とすることが好ましい。
 本発明によれば、互いに独立して励磁される少なくとも2系統のコイルグループを同時に励磁した場合、トルクリップルを抑制できる電動機制御装置、電動パワーステアリング装置および車両を提供することができる。
図1は、実施形態1に係る電動機を備える電動パワーステアリング装置の構成図である。 図2は、実施形態1の電動パワーステアリング装置が備える減速装置の一例を説明する正面図である。 図3は、中心軸を含む仮想平面で実施形態1の電動機の構成を切って模式的に示す断面図である。 図4は、実施形態1の電動機の構成を中心軸に直交する仮想平面で切って模式的に示す断面図である。 図5は、ECUによる電動機の駆動を説明するための模式図である。 図6は、第1コイルの配線および第2コイルの配線を示す模式図である。 図7は、変形例1に係る第1コイルの配線および第2コイルの配線を示す模式図である。 図8は、変形例2に係る電動機の構成を中心軸に直交する仮想平面で切って模式的に示す断面図である。 図9は、変形例3に係る電動機の構成を中心軸に直交する仮想平面で切って模式的に示す断面図である。 図10は、実施形態2に係る電動機に供給される第1U相および第2U相の電流波形を示す説明図である。 図11は、第1モータ駆動電流の位相と第2モータ駆動電流との位相差に対する、平均トルクおよびトルクリップルの大きさ変化量を説明するための説明図である。 図12は、dq軸において、第1コイルグループの電機子磁束と、第2コイルグループの電機子磁束とのベクトル関係を示した図である。 図13は、実施形態1または実施形態2に係る電動機を備える電動パワーステアリング装置を搭載した車両の模式図である。
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。
(実施形態1)
(電動パワーステアリング装置)
 図1は、実施形態1に係る電動機を備える電動パワーステアリング装置の構成図である。実施形態1は、図1を用いて、電動機10を備える電動パワーステアリング装置80の概要を説明する。
 電動パワーステアリング装置80は、操舵者から与えられる力が伝達する順に、ステアリングホイール81と、ステアリングシャフト82と、操舵力アシスト機構83と、ユニバーサルジョイント84と、ロアシャフト85と、ユニバーサルジョイント86と、ピニオンシャフト87と、ステアリングギヤ88と、タイロッド89とを備える。また、電動パワーステアリング装置80は、ECU(Electronic Control Unit)90と、トルクセンサ91aと、車速センサ91bとを備える。
 ステアリングシャフト82は、入力軸82aと、出力軸82bとを含む。入力軸82aは、一方の端部がステアリングホイール81に連結され、他方の端部がトルクセンサ91aを介して操舵力アシスト機構83に連結される。出力軸82bは、一方の端部が操舵力アシスト機構83に連結され、他方の端部がユニバーサルジョイント84に連結される。実施形態1では、入力軸82aおよび出力軸82bは、鉄等の磁性材料から形成される。
 ロアシャフト85は、一方の端部がユニバーサルジョイント84に連結され、他方の端部がユニバーサルジョイント86に連結される。ピニオンシャフト87は、一方の端部がユニバーサルジョイント86に連結され、他方の端部がステアリングギヤ88に連結される。
 ステアリングギヤ88は、ピニオン88aと、ラック88bとを含む。ピニオン88aは、ピニオンシャフト87に連結される。ラック88bは、ピニオン88aに噛み合う。ステアリングギヤ88は、ラックアンドピニオン形式として構成される。ステアリングギヤ88は、ピニオン88aに伝達された回転運動をラック88bで直進運動に変換する。タイロッド89は、ラック88bに連結される。
 操舵力アシスト機構83は、減速装置92と、電動機10とを含む。減速装置92は、出力軸82bに連結される。電動機10は、減速装置92に連結され、かつ、補助操舵トルクを発生させる電動機である。なお、電動パワーステアリング装置80は、ステアリングシャフト82と、トルクセンサ91aと、減速装置92とによりステアリングコラムが構成されている。電動機10は、ステアリングコラムの出力軸82bに補助操舵トルクを与える。すなわち、実施形態1の電動パワーステアリング装置80は、コラムアシスト方式である。
 コラムアシスト方式の電動パワーステアリング装置80は、操作者と電動機10との距離が比較的近く、電動機10のトルク変化又は摩擦力が操舵者に影響を与えるおそれがある。このため、電動パワーステアリング装置80では、電動機10の摩擦力の低減が求められる。
 図2は、実施形態1の電動パワーステアリング装置が備える減速装置の一例を説明する正面図である。図2は、一部を断面として示してある。減速装置92はウォーム減速装置である。減速装置92は、減速装置ハウジング93と、ウォーム94と、玉軸受95aと、玉軸受95bと、ウォームホイール96と、ホルダ97とを備える。
 ウォーム94は、電動機10のシャフト21にスプライン、または弾性カップリングで結合する。ウォーム94は、玉軸受95aと、ホルダ97に保持された玉軸受95bとで回転自在に減速装置ハウジング93に保持されている。ウォームホイール96は、減速装置ハウジング93に回転自在に保持される。ウォーム94の一部に形成されたウォーム歯94aは、ウォームホイール96に形成されているウォームホイール歯96aに噛み合う。
 電動機10の回転力は、ウォーム94を介してウォームホイール96に伝達されて、ウォームホイール96を回転させる。減速装置92は、ウォーム94およびウォームホイール96によって、電動機10のトルクを増加する。そして、減速装置92は、図1に示すステアリングコラムの出力軸82bに補助操舵トルクを与える。
 図1に示すトルクセンサ91aは、ステアリングホイール81を介して入力軸82aに伝達された運転者の操舵力を操舵トルクとして検出する。車速センサ91bは、電動パワーステアリング装置80が搭載される車両の走行速度を検出する。ECU90は、電動機10と、トルクセンサ91aと、車速センサ91bとが電気的に接続される。
 ECU90は、電動機10の動作を制御する。また、ECU90は、トルクセンサ91aおよび車速センサ91bのそれぞれから信号を取得する。すなわち、ECU90は、トルクセンサ91aから操舵トルクTを取得し、かつ、車速センサ91bから車両の走行速度Vを取得する。ECU90は、イグニッションスイッチ98がオンの状態で、電源装置(例えば車載のバッテリ)99から電力が供給される。ECU90は、操舵トルクTと走行速度Vとに基づいてアシスト指令の補助操舵指令値を算出する。そして、ECU90は、その算出された補助操舵指令値に基づいて電動機10へ供給する電力値Xを調節する。ECU90は、電動機10から誘起電圧の情報又は後述するレゾルバからロータの回転の情報を動作情報Yとして取得する。
 ステアリングホイール81に入力された操舵者(運転者)の操舵力は、入力軸82aを介して操舵力アシスト機構83の減速装置92に伝わる。この時に、ECU90は、入力軸82aに入力された操舵トルクTをトルクセンサ91aから取得し、かつ、走行速度Vを車速センサ91bから取得する。そして、ECU90は、電動機10の動作を制御する。電動機10が作り出した補助操舵トルクは、減速装置92に伝えられる。
 出力軸82bを介して出力された操舵トルクT(補助操舵トルクを含む)は、ユニバーサルジョイント84を介してロアシャフト85に伝達され、さらにユニバーサルジョイント86を介してピニオンシャフト87に伝達される。ピニオンシャフト87に伝達された操舵力は、ステアリングギヤ88を介してタイロッド89に伝達され、操舵輪を転舵させる。次に、電動機10について説明する。
(電動機)
 図3は、中心軸を含む仮想平面で実施形態1の電動機の構成を切って模式的に示す断面図である。図4は、実施形態1の電動機の構成を中心軸に直交する仮想平面で切って模式的に示す断面図である。図3に示すように、電動機10は、ハウジング11と、軸受12と、軸受13と、レゾルバ14と、モータロータ20と、ブラシレスモータ用としてのモータステータ30とを備える。
 ハウジング11は、筒状ハウジング11aと、フロントブラケット11bとを含む。フロントブラケット11bは、略円板状に形成されて筒状ハウジング11aの一方の開口端部を閉塞するように筒状ハウジング11aに取り付けられる。筒状ハウジング11aは、フロントブラケット11bとは反対側の端部に、この端部を閉塞するように底部11cが形成される。底部11cは、例えば、筒状ハウジング11aと一体に形成される。筒状ハウジング11aを形成する材料としては、例えばSPCC(Steel Plate Cold Commercial)等の一般的な鋼材や、電磁軟鉄、アルミニウム等が適用できる。また、フロントブラケット11bは、電動機10を所望の機器に取り付ける際のフランジの役割を果たしている。
 軸受12は、筒状ハウジング11aの内側であって、フロントブラケット11bの略中央部分に設けられる。軸受13は、筒状ハウジング11aの内側であって、底部11cの略中央部分に設けられる。軸受12は、筒状ハウジング11aの内側に配置されたモータロータ20の一部であるシャフト21の一端を回転可能に支持する。軸受13は、シャフト21の他端を回転可能に支持する。これにより、シャフト21は、回転中心Zrの軸を中心に回転する。
 レゾルバ14は、シャフト21のフロントブラケット11b側に設けられる端子台15によって支持される。レゾルバ14は、モータロータ20(シャフト21)の回転位置を検出する。レゾルバ14は、レゾルバロータ14aと、レゾルバステータ14bとを備える。レゾルバロータ14aは、シャフト21の円周面に圧入等で取り付けられる。レゾルバステータ14bは、レゾルバロータ14aに所定間隔の空隙を介して対向して配置される。
 モータロータ20は、筒状ハウジング11aに対して回転中心Zrを中心に回転できるように、筒状ハウジング11aの内部に設けられる。モータロータ20は、シャフト21と、ロータヨーク22と、マグネット23とを含む。シャフト21は、筒状に形成される。ロータヨーク22は、筒状に形成される。なお、ロータヨーク22は、外周が円弧状である。この構成により、ロータヨーク22は、外周が複雑形状である場合に比較して、打ち抜き加工の加工工数を低減できる。
 ロータヨーク22は、電磁鋼板、冷間圧延鋼板などの薄板が、接着、ボス、カシメなどの手段により積層されて製造される。ロータヨーク22は、順次金型の型内で積層され、金型から排出される。ロータヨーク22は、例えばその中空部分にシャフト21が圧入されてシャフト21に固定される。なお、シャフト21とロータヨーク22とは、一体で成型されてもよい。
 マグネット23は、ロータヨーク22の周方向に沿って表面に固定され、複数設けられている。マグネット23は、永久磁石であり、S極およびN極がロータヨーク22の周方向に交互に等間隔で配置される。これにより、図4に示すモータロータ20の極数は、ロータヨーク22の外周側にN極と、S極とがロータヨーク22の周方向に交互に配置された8極である。
 モータステータ30は、筒状ハウジング11aの内部にモータロータ20を包囲するように筒状に設けられる。モータステータ30は、筒状ハウジング11aの内周面11dに例えば嵌合されて取り付けられる。モータステータ30の中心軸は、モータロータ20の回転中心Zrと一致する。モータステータ30は、筒状のステータコア31と、複数の第1コイル37と、複数の第2コイル38を含む。
 図4に示すように、ステータコア31は、環状のバックヨーク33と、バックヨーク33の内周面で回転中心Zrを中心とした周方向に並んで配置される複数のティース34と、を備える。以下の説明において、回転中心Zrを中心とした周方向(ステータコア31の周方向)は、単に周方向と記載される。ステータコア31は、電磁鋼板などの磁性材料で形成される。ステータコア31は、略同形状に形成された複数のコア片が回転中心Zrの軸と平行な軸方向に積層されて束ねられることで形成される。バックヨーク33は、例えば円筒形状の部材である。ティース34は、バックヨーク33の内周面から突出している。実施形態1において、ティース34は、周方向に12配置されている。ティース34は、バックヨーク33とは反対側の端部に、ティース先端32を備える。ティース先端32は、ティース34から周方向に突出している。ティース34は、ロータヨーク22の外周面と対向する。ステータコア31は、ロータヨーク22の径方向外側に所定の間隔を有して環状に配置される。
 ステータコア31が筒状ハウジング11a内に圧入されることで、モータステータ30は、環状の状態で筒状ハウジング11aの内部に設けられる。なお、ステータコア31と筒状ハウジング11aとは、圧入の他に接着、焼き嵌め又は溶接等によって固定されてもよい。
 図4に示すように、第1コイル37は、複数のティース34のそれぞれに集中巻きされている。第1コイル37は、ティース34の外周にインシュレータ37a(図3参照)を介して集中巻きされる。インシュレータ37aは、第1コイル37とステータコア31とを絶縁するための部材であり、耐熱部材で形成される。全ての第1コイル37は、同一のインバータ(後述する第1インバータ52)によって励磁される系統である第1コイル系統に含まれる。実施形態1において、第1コイル系統は、例えば第1コイル37を6つ含む。6つの第1コイル37は、2つの第1コイル37が周方向で互いに隣接するように配置されている。隣接する第1コイル37を1つのグループとした第1コイルグループG1が、周方向に等間隔に3つ配置されている。すなわち、第1コイル系統は、周方向に等間隔に並べられた3つの第1コイルグループG1を備えている。なお、第1コイルグループG1は、必ずしも3つでなくてもよく、nを自然数としたときに周方向に等間隔に3n個配置されていればよい。また、nは奇数である方が望ましい。
 図4に示すように、第2コイル38は、複数のティース34のそれぞれに集中巻きされている。第2コイル38は、ティース34の外周にインシュレータを介して集中巻きされる。第2コイル38が集中巻きされるティース34は、第1コイル37が集中巻きされるティース34とは異なるティース34である。全ての第2コイル38は、同一のインバータ(後述する第2インバータ54)によって励磁される系統である第2コイル系統に含まれる。実施形態1において、第2コイル系統は、例えば第2コイル38を6つ含む。6つの第2コイル38は、2つの第2コイル38が周方向で互いに隣接するように配置されている。隣接する第2コイル38を1つのグループとした第2コイルグループG2が、周方向に等間隔に3つ配置されている。すなわち、第2コイル系統は、周方向に等間隔に並べられた3つの第2コイルグループG2を備えている。なお、第2コイルグループG2は、必ずしも3つでなくてもよく、nを自然数としたときに周方向に等間隔に3n個配置されていればよい。また、nは奇数である方が望ましい。
 図5は、ECUによる電動機の駆動を説明するための模式図である。電動機制御装置100は、ECU90及び電動機10を備える。電動機制御装置100は、例えば、トルクセンサ91aなどのセンサからECU90へ入力信号を入力可能である。ECU90は、三相交流により電動機10の動作を制御する。ECU90は、電動機10を制御する制御装置40と、モータ駆動回路50とを含む。制御装置40は、モータロータ20を回転駆動させる電流値を指令値として出力する。モータ駆動回路50は、制御装置40の指令値に基づきPWM(Pulse Width Modulation)と呼ばれる所定のデューティ比のパルス幅調変信号を生成し、電動機10の電流値を制御する3相交流信号を出力する電力供給回路である。モータ駆動回路50は、制御装置40と電気的に接続されていればよく、モータ駆動回路50の発熱の影響を抑制するため、制御装置40が設置されている場所とは異なる場所に設置されている。
 制御装置40は、機能ブロックとして主制御部41と、第1コイル系統制御部42と、第2コイル系統制御部44と、を含む制御部40Aと、第1位相調整部43と、第2位相調整部45と、含む位相差調整部40Bとを備える。
 モータ駆動回路50は、指令値に基づいて3相交流の第1モータ駆動電流を第1コイルグループG1に供給する第1モータ駆動回路50Aと、3相交流の第2モータ駆動電流を第2コイルグループG2に供給する第2モータ駆動回路50Bと、を含む。第1モータ駆動回路50Aは、第1ゲート駆動回路51と、第1インバータ52と、を含む。第2モータ駆動回路50Bは、第2ゲート駆動回路53と、第2インバータ54と、を含む。
 主制御部41は、入力軸82aに入力された操舵トルクTをトルクセンサ91aから取得する。主制御部41は、トルクセンサ91aから取得した情報に応じて、モータロータ20を回転駆動させる電流値を指令値として演算する。第1コイル系統制御部42は、主制御部41の指令値に基づき、所定のデューティ比の第1パルス幅調変信号を演算する。第1コイル系統制御部42は、第1位相調整部43へ第1パルス幅調変信号の情報を送る。第2コイル系統制御部44は、主制御部41の指令値に基づき、所定のデューティ比の第2パルス幅調変信号をそれぞれ演算する。第2コイル系統制御部44は、第2位相調整部45へ第2パルス幅調変信号の情報を送る。実施形態1において、第1位相調整部43および第2位相調整部45は、第1コイルグループG1に供給する電流の位相と第2コイルグループG2に供給する電流の位相とが同一になるように調節する。なお、第1コイル系統制御部42および第2コイル系統制御部44が出力する時点で、第1パルス幅調変信号の情報と第2パルス幅調変信号の情報との位相差がなく同期している場合、位相差調整部40Bがなくてもよい。第1位相調整部43は、調整後の第1パルス幅調変信号の情報を第1ゲート駆動回路51に送る。第2位相調整部45は、調整後の第2パルス幅調変信号の情報を第2ゲート駆動回路53に送る。
 第1ゲート駆動回路51は、第1位相調整部43から取得した第1パルス幅調変信号の情報に基づいて、第1インバータ52を制御する。第1インバータ52は、第1ゲート駆動回路51における第1パルス幅調変信号のデューティ比に応じて、3相の電流値となるように電界効果トランジスタをスイッチングして第1U相、第1V相および第1W相を含む三相交流を生成する。第1インバータ52が生成した三相交流は、3つの配線Lu1、Lv1、Lw1によって電動機10に送られ、複数の第1コイル37を励磁する。配線Lu1は、第1U相の電流を電動機10に送る。配線Lv1は、第1V相の電流を電動機10に送る。配線Lw1は、第1W相の電流を電動機10に送る。
 第2ゲート駆動回路53は、第2位相調整部45から取得した第2パルス幅調変信号の情報に基づいて、第2インバータ54を制御する。第2インバータ54は、第2ゲート駆動回路53における第2パルス幅調変信号のデューティ比に応じて、3相の電流値となるように電界効果トランジスタをスイッチングして第2U相、第2V相および第2W相を含む三相交流を生成する。第2インバータ54が生成した三相交流は、3つの配線Lu2、Lv2、Lw2によって電動機10に送られ、複数の第2コイル38を励磁する。配線Lu2は、第2U相の電流を電動機10に送る。配線Lv2は、第2V相の電流を電動機10に送る。配線Lw2は、第2W相の電流を電動機10に送る。
 以上説明したように、制御装置40は、第1ゲート駆動回路51および第2ゲート駆動回路53に対して、モータロータ20を所望の回転駆動させる電流値となる所定のデューティ比の第1パルス幅調変信号および第2パルス幅調変信号を供給し、第1モータ駆動回路50Aおよび第2モータ駆動回路50Bを制御することができる。
 図6は、第1コイルの配線および第2コイルの配線を示す模式図である。図6に示すように、6つの第1コイル37は、第1U相の電流により励磁される2つの第1U相コイル37Ua、37Ubと、第1V相の電流により励磁される2つの第1V相コイル37Va、37Vbと、第1W相の電流により励磁される2つの第1W相コイル37Wa、37Wbと、を含む。第1U相コイル37Ubは、第1U相コイル37Uaに対して直列に接続されている。第1V相コイル37Vbは、第1V相コイル37Vaに対して直列に接続されている。第1W相コイル37Wbは、第1W相コイル37Waに対して直列に接続されている。第1コイル37のティース34に対する巻き方向は、全て同じ方向である。また、配線Lu1、Lv1、Lw1は、Y結線で接合されている。
 図6に示すように、6つの第2コイル38は、第2U相の電流により励磁される2つの第2U相コイル38Ua、38Ubと、第2V相の電流により励磁される2つの第2V相コイル38Va、38Vbと、第2W相の電流により励磁される2つの第2W相コイル38Wa、38Wbと、を含む。第2U相コイル38Ubは、第2U相コイル38Uaに対して直列に接続されている。第2V相コイル38Vbは、第2V相コイル38Vaに対して直列に接続されている。第2W相コイル38Wbは、第2W相コイル38Waに対して直列に接続されている。第2コイル38のティース34に対する巻き方向は、全て同じ方向であり、第1コイル37の巻き方向と同じである。また、配線Lu2、Lv2、Lw2は、Y結線で接合されている。
 実施形態1の電動機は、図6に示すように、Y結線された6つの第1コイル37、第2コイル38を例示するが、Δ結線された6つの第1コイル37、第2コイル38であってもよい。
 図4に示すように、3つの第1コイルグループG1は、第1UVコイルグループG1UVと、第1VWコイルグループG1VWと、第1UWコイルグループG1UWと、からなる。第1UVコイルグループG1UVは、周方向で互いに隣接する第1U相コイル37Ubおよび第1V相コイル37Vaを含む。第1VWコイルグループG1VWは、周方向で互いに隣接する第1V相コイル37Vbおよび第1W相コイル37Waを含む。第1UWコイルグループG1UWは、周方向で互いに隣接する第1U相コイル37Uaおよび第1W相コイル37Wbを含む。
 図4に示すように、3つの第2コイルグループG2は、第2UVコイルグループG2UVと、第2VWコイルグループG2VWと、第2UWコイルグループG2UWと、からなる。第2UVコイルグループG2UVは、周方向で互いに隣接する第2U相コイル38Ubおよび第2V相コイル38Vaを含む。第2VWコイルグループG2VWは、周方向で互いに隣接する第2V相コイル38Vbおよび第2W相コイル38Waを含む。第2UWコイルグループG2UWは、周方向で互いに隣接する第2U相コイル38Uaおよび第2W相コイル38Wbを含む。
 第1U相の電流により励磁される第1コイル37は、第2U相の電流により励磁される第2コイル38に、ステータコア31の径方向で対向している。以下の説明において、ステータコア31の径方向は、単に径方向と記載される。例えば、図4に示すように、径方向で第1U相コイル37Uaが第2U相コイル38Uaに対向し、第1U相コイル37Ubが第2U相コイル38Ubに対向している。
 第1V相の電流により励磁される第1コイル37は、第2V相の電流により励磁される第2コイル38に、径方向で対向している。例えば、図4に示すように、径方向で第1V相コイル37Vaが第2V相コイル38Vaに対向し、第1V相コイル37Vbが第2V相コイル38Vbに対向している。
 第1W相の電流により励磁される第1コイル37は、第2W相の電流により励磁される第2コイル38に、径方向で対向している。例えば、図4に示すように、径方向で第1W相コイル37Waが第2W相コイル38Waに対向し、第1W相コイル37Wbが第2W相コイル38Wbに対向している。
 上述したように、第1インバータ52により複数の第1コイル37が励磁され、第2インバータ54により複数の第2コイル38が励磁される。これにより、第1インバータ52と第2インバータ54とが互いに独立して三相交流を電動機10に供給しているので、仮に第2コイル38に電流が供給されなくなった場合でも、第1コイル37が電動機10を駆動できる。また、仮に第1コイル37に電流が供給されなくなった場合でも、第2コイル38が電動機10を駆動できる。以下の説明においても、第2コイル38に電流が供給されなくなった場合を例に挙げて説明し、第1コイル37に電流が供給されなくなった場合は同様の説明となるため省略する。
 また、複数の第1コイル37からなる第1コイルグループG1が周方向に等間隔に3つ配置されている。これにより、第1コイルグループG1が周方向に等間隔に2つ配置されている場合に比較して、第1コイルグループG1間の周方向の距離が小さくなる。このため、仮に第2コイル38に電流が供給されなくなった場合でも、第1コイル37がトルクを発生させる位置の周方向でのバラつきが小さくなる。よって、電動機10は、互いに独立して励磁される2つのコイルの系統のうち1つの系統のみによる駆動でも、トルクリップルの増大を抑制できる。
 また、3つの第1コイルグループG1は、第1UVコイルグループG1UVと、第1VWコイルグループG1VWと、第1UWコイルグループG1UWと、からなる。第2コイルグループG2は、第2UVコイルグループG2UVと、第2VWコイルグループG2VWと、第2UWコイルグループG2UWと、からなる。これにより、同相の電流で励磁される2つの第1コイル37が1つの第1コイルグループG1に属することがなくなり、同相の電流で励磁される2つの第2コイル38が1つの第2コイルグループG2に属することがなくなる。同相の電流で励磁される2つの第1コイル37とは、2つの第1U相コイル37Ua、37Ub、2つの第1V相コイル37Va、37Vb、または2つの第1W相コイル37Wa、37Wbのうちいずれかを意味する。このため、トルクの発生位置が周方向に分散しやすくなる。よって、電動機10は、トルクリップルをより抑制できる。
 上述した特許文献1に記載の技術を用いた場合、一方の系統でモータを駆動するとき、当該系統のうち周方向の端部に配置されるのは特定の二相(U相およびV相の組み合わせ、V相およびW相の組み合わせ、またはU相およびW相の組み合わせのいずれか)で励磁されるコイルとなっている。これにより、三相交流の各相の位相の変化に応じてトルクの発生量が変動しやすくなり、トルクリップルが増大する可能性があった。これに対して、実施形態1に係る電動機10においては、第1コイルグループG1のうち周方向の端部には、第1U相コイル37Ua、37Ub、第1V相コイル37Va、37Vbまたは第1W相コイル37Wa、37Waが配置されている。第2コイルグループG2のうち周方向の端部には、第2U相コイル38Ua、38Ub、第2V相コイル38Va、38Vbまたは第2W相コイル38Wa、38Wbが配置されている。これにより、電動機10は、三相交流の各相の位相の変化に応じてトルクの発生量が変動しにくくなるので、トルクリップルの増大をより抑制できる。
 なお、実施形態1の電動パワーステアリング装置80は、コラムアシスト方式を例にして説明しているが、ピニオンアシスト方式およびラックアシスト方式についても適用することができる。
 以上述べたように、電動機10は、環状のバックヨーク33と、バックヨーク33の内周面で周方向に並んで配置される複数のティース34と、を備える環状のステータコア31を備える。電動機10は、nを自然数としたとき、隣接して並ぶ複数(実施形態1においては2つ)のティース34のそれぞれに集中巻きされて第1U相、第1V相および第1W相を含む三相交流を生成する第1インバータ52により励磁される複数(実施形態1においては2つ)の第1コイル37からなるグループであって、ステータコア31の周方向に等間隔に3n個(実施形態1においては3つ)配置される第1コイルグループG1を備える。電動機10は、第1コイル37が集中巻きされるティース34とは異なる位置で隣接して並ぶ複数(実施形態1においては2つ)のティース34のそれぞれに集中巻きされて第2U相、第2V相および第2W相を含む三相交流を生成する第2インバータ54により励磁される複数(実施形態1においては2つ)の第2コイル38からなるグループであって、ステータコア31の周方向に等間隔に3n個(実施形態1においては3つ)配置される第2コイルグループG2を備える。
 これにより、第1コイルグループG1が周方向に等間隔に2つ配置されている場合に比較して、第1コイルグループG1間の周方向の距離が小さくなる。このため、仮に第2コイル38に電流が供給されなくなった場合でも、第1コイル37がトルクを発生させる位置の周方向でのバラつきが小さくなる。よって、電動機10は、互いに独立して励磁される2つのコイルの系統のうち1つの系統のみによる駆動でも、トルクリップルの増大を抑制できる。
 また、複数(実施形態1においては6つ)の第1コイル37は、第1U相の電流により励磁される複数(実施形態1においては2つ)の第1U相コイル37Ua、37Ubと、第1V相の電流により励磁される複数(実施形態1においては2つ)の第1V相コイル37Va、37Vbと、第1W相の電流により励磁される複数(実施形態1においては2つ)の第1W相コイル37Wa、37Wbと、を含む。複数(実施形態1においては6つ)の第2コイル38は、第2U相の電流により励磁される複数(実施形態1においては2つ)の第2U相コイル38Ua、38Ubと、第2V相の電流により励磁される複数(実施形態1においては2つ)の第2V相コイル38Va、38Vbと、第2W相の電流により励磁される複数(実施形態1においては2つ)の第2W相コイル38Wa、38Wbと、を含む。3n個(実施形態1においては3つ)の第1コイルグループG1は、第1U相コイル37Ubおよび第1V相コイル37Vaを含む第1UVコイルグループG1UVと、第1V相コイル37Vbおよび第1W相コイル37Waを含む第1VWコイルグループG1VWと、第1U相コイル37Uaおよび第1W相コイル37Wbを含む第1UWコイルグループG1UWと、からなる。3n個(実施形態1においては3つ)の第2コイルグループG2は、第2U相コイル38Ubおよび第2V相コイル38Vaを含む第2UVコイルグループG2UVと、第2V相コイル38Vbおよび第2W相コイル38Waを含む第2VWコイルグループG2VWと、第2U相コイル38Uaおよび第2W相コイル38Wbを含む第2UWコイルグループG2UWと、からなる。
 これにより、同相の電流で励磁される2つの第1コイル37が1つの第1コイルグループG1に属することがなくなり、同相の電流で励磁される2つの第2コイル38が1つの第2コイルグループG2に属することがなくなる。このため、トルクの発生位置が周方向に分散しやすくなる。よって、電動機10は、トルクリップルをより抑制できる。
(変形例1)
 図7は、変形例1に係る第1コイルの配線および第2コイルの配線を示す模式図である。上述した実施形態1で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
 変形例1に係る電動機10においては、第2コイル38のティース34に対する巻き方向は、第1コイル37のティース34に対する巻き方向と逆方向である。また、変形例1に係る電動機10において、第1位相調整部43および第2位相調整部45は、第1コイルグループG1に供給する電流の位相と第2コイルグループG2に供給する電流の位相とが互いに180°異なるように調節する。これにより、各第1コイル37および各第2コイル38によって発生する磁界の向きは、上述した実施形態1と同じとなる。
 第2コイル38のティース34に対する巻き方向が第1コイル37のティース34に対する巻き方向と逆方向であるため、第1コイル37と第2コイル38とでティース34に対する巻き始めの位置が相違する。例えば、第1コイル37がティース34の径方向外側端部から巻き始められる場合、第2コイル38はティース34の径方向内側端部から巻き始められる。このため、図7に示すように、配線Lu1、Lv1、Lw1のうち第1インバータ52に接続される側の端部が電動機10の径方向外側寄りに位置し、配線Lu2、Lv2、Lw2のうち第2インバータ54に接続される側の端部が電動機10の径方向内側寄りに位置する。よって、電動機10に接続される配線の位置がバラつきやすくなる。したがって、変形例1に係る電動機10は、複数の配線が互いに干渉する可能性を低減することができる。
 また、第1コイルグループG1に供給する電流の位相と第2コイルグループG2に供給する電流の位相とが互いに180°異なることによって、第1インバータ52から電動機10までの間の配線Lu1、Lv1、Lw1からの放射ノイズと、第2インバータ54から電動機10までの間の配線Lu2、Lv2、Lw2からの放射ノイズとが相殺する。このため、ECU90から電動機10までの間の配線での放射ノイズが低減される。
(変形例2)
 図8は、変形例2に係る電動機の構成を中心軸に直交する仮想平面で切って模式的に示す断面図である。図8に示すように、変形例2におけるモータロータ20の極数は、ロータヨーク22の外周側にN極と、S極とがロータヨーク22の周方向に交互に配置された20極である。また、ティース34は、周方向に24配置されている。
 図8に示すように、変形例2において、第1コイル37は12配置されている。12の第1コイル37は、4つの第1コイル37が周方向で隣接して並ぶように配置されている。隣接して並ぶ4つの第1コイル37を1つのグループとした第1コイルグループG1が、周方向に等間隔に3つ配置されている。3つの第1コイルグループG1は、第1UVコイルグループG1UV、第1VWコイルグループG1VWおよび第1UWコイルグループG1UWからなる。
 第1UVコイルグループG1UVは、ティース34に対する巻き方向が互いに逆方向であって周方向で互いに隣接する2つの第1U相コイル37Ubの組と、ティース34に対する巻き方向が互いに逆方向であって周方向で互いに隣接する2つの第1V相コイル37Vaの組との2組からなる。第1VWコイルグループG1VWは、ティース34に対する巻き方向が互いに逆方向であって周方向で互いに隣接する2つの第1V相コイル37Vbの組と、ティース34に対する巻き方向が互いに逆方向であって周方向で互いに隣接する2つの第1W相コイル37Waの組との2組からなる。第1UWコイルグループG1UWは、ティース34に対する巻き方向が互いに逆方向であって周方向で互いに隣接する2つの第1U相コイル37Uaの組と、ティース34に対する巻き方向が互いに逆方向であって周方向で互いに隣接する2つの第1W相コイル37Wbの組との2組からなる。
 1組の第1U相コイル37Ua、1組の第1V相コイル37Va、1組の第1W相コイル37Wa、1組の第1U相コイル37Ub、1組の第1V相コイル37Vbおよび1組の第1W相コイル37Wbは、それぞれ直列に接続されている。また、1組の第1U相コイル37Ubは、1組の第1U相コイル37Uaに対して直列に接続されている。1組の第1V相コイル37Vbは、1組の第1V相コイル37Vaに対して直列に接続されている。1組の第1W相コイル37Wbは、1組の第1W相コイル37Waに対して直列に接続されている。
 図8に示すように、変形例2において、第2コイル38は12配置されている。12の第2コイル38は、4つの第2コイル38が周方向で隣接して並ぶように配置されている。隣接して並ぶ4つの第2コイル38を1つのグループとした第2コイルグループG2が、周方向に等間隔に3つ配置されている。3つの第2コイルグループG2は、第2UVコイルグループG2UV、第2VWコイルグループG2VWおよび第2UWコイルグループG2UWからなる。
 第2UVコイルグループG2UVは、ティース34に対する巻き方向が互いに逆方向であって周方向で互いに隣接する2つの第2U相コイル38Ubの組と、ティース34に対する巻き方向が互いに逆方向であって周方向で互いに隣接する2つの第2V相コイル38Vaの組との2組からなる。第2VWコイルグループG2VWは、ティース34に対する巻き方向が互いに逆方向であって周方向で互いに隣接する2つの第2V相コイル38Vbの組と、ティース34に対する巻き方向が互いに逆方向であって周方向で互いに隣接する2つの第2W相コイル38Waの組との2組からなる。第2UWコイルグループG2UWは、ティース34に対する巻き方向が互いに逆方向であって周方向で互いに隣接する2つの第2U相コイル38Uaの組と、ティース34に対する巻き方向が互いに逆方向であって周方向で互いに隣接する2つの第2W相コイル38Wbの組との2組からなる。
 1組の第2U相コイル38Ua、1組の第2V相コイル38Va、1組の第2W相コイル38Wa、1組の第2U相コイル38Ub、1組の第2V相コイル38Vbおよび1組の第2W相コイル38Wbは、それぞれ直列に接続されている。また、1組の第2U相コイル38Ubは、1組の第2U相コイル38Uaに対して直列に接続されている。1組の第2V相コイル38Vbは、1組の第2V相コイル38Vaに対して直列に接続されている。1組の第2W相コイル38Wbは、1組の第2W相コイル38Waに対して直列に接続されている。
 変形例2において、1組の第1コイル37は、互いに逆方向の磁界を形成するように励磁される。1組の第2コイル38は、互いに逆方向の磁界を形成するように励磁される。これにより、互いに逆向きに励磁された第1コイル37および第2コイル38が、周方向に交互に配置されることになる。
 したがって、変形例2に係る電動機10は、上述した実施形態1に比較して、磁極の数が多くなる。このため、変形例2に係る電動機10は、トルクの発生位置を周方向でより分散しやすくなる。このため、変形例2に係る電動機10は、トルクリップルをより抑制できる。
(変形例3)
 図9は、変形例3に係る電動機の構成を中心軸に直交する仮想平面で切って模式的に示す断面図である。変形例3において、マグネット23は、ロータヨーク22に設けられた複数のスロットに埋め込まれている。マグネット23は、ロータヨーク22の外周面よりも径方向内側に配置されている。これにより、変形例3に係る電動機10は、リラクタンストルクを付加したトルクを発生させることができる。
(実施形態2)
 図10は、実施形態2に係る電動機に供給される第1U相および第2U相の電流波形を示す説明図である。図11は、第1モータ駆動電流の位相と第2モータ駆動電流との位相差に対する、平均トルクおよびトルクリップルの大きさ変化量を説明するための説明図である。実施形態2に係る電動機10および電動機制御装置100は、図1から図6に示す実施形態1に係る電動機10及び電動機制御装置100と同じであるが、制御装置40の位相差調整部40Bの動作が異なる。以下、図1から図6、図10及び図11を適宜参照して説明する。なお、上述した実施形態1で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
 図5に示すように、主制御部41は、入力軸82aに入力された操舵トルクTをトルクセンサ91aから取得する。主制御部41は、トルクセンサ91aから取得した情報に応じて、モータロータ20を回転駆動させる電流値を指令値として演算する。第1コイル系統制御部42は、主制御部41の指令値に基づき、所定のデューティ比の第1パルス幅調変信号を演算する。第1コイル系統制御部42は、第1位相調整部43へ第1パルス幅調変信号の情報を送る。第2コイル系統制御部44は、主制御部41の指令値に基づき、所定のデューティ比の第2パルス幅調変信号をそれぞれ演算する。第2コイル系統制御部44は、第2位相調整部45へ第2パルス幅調変信号の情報を送る。
 実施形態2において、第1位相調整部43および第2位相調整部45は、第1コイルグループG1に供給する電流の位相に対して第2コイルグループG2に供給する電流の位相が進むように調節する。第1位相調整部43は、調整後の第1パルス幅調変信号の情報を第1ゲート駆動回路51に送る。第2位相調整部45は、調整後の第2パルス幅調変信号の情報を第2ゲート駆動回路53に送る。
 第1ゲート駆動回路51は、第1位相調整部43から取得した第1パルス幅調変信号の情報に基づいて、第1インバータ52を制御する。第1インバータ52は、第1ゲート駆動回路51における第1パルス幅調変信号のデューティ比に応じて、3相の電流値となるように電界効果トランジスタをスイッチングして第1U相、第1V相および第1W相を含む三相交流を生成する。第1インバータ52が生成した三相交流は、3つの配線Lu1、Lv1、Lw1によって電動機10に送られ、複数の第1コイル37を励磁する。配線Lu1は、第1U相の電流を電動機10に送る。配線Lv1は、第1V相の電流を電動機10に送る。配線Lw1は、第1W相の電流を電動機10に送る。
 第2ゲート駆動回路53は、第2位相調整部45から取得した第2パルス幅調変信号の情報に基づいて、第2インバータ54を制御する。第2インバータ54は、第2ゲート駆動回路53における第2パルス幅調変信号のデューティ比に応じて、3相の電流値となるように電界効果トランジスタをスイッチングして第2U相、第2V相および第2W相を含む三相交流を生成する。第2インバータ54が生成した三相交流は、3つの配線Lu2、Lv2、Lw2によって電動機10に送られ、複数の第2コイル38を励磁する。配線Lu2は、第2U相の電流を電動機10に送る。配線Lv2は、第2V相の電流を電動機10に送る。配線Lw2は、第2W相の電流を電動機10に送る。
 実施形態1と同様に、第1モータ駆動電流は、電気角で120°ずつずれた正弦波である第1U相、第1V相および第1W相の対称三相交流である。また、第2モータ駆動電流は、電気角で120°ずつずれた正弦波である第2U相、第2V相および第2W相の対称三相交流である。第1モータ駆動電流と第2モータ駆動電流との位相差は、第1U相と第2U相との位相差が、第1V相と第2V相との位相差および第1W相と第2W相との位相差と同じになることから、図10に示す第1U相と第2U相との位相差で説明する。
 図10に示すように、第1モータ駆動電流の第1U相の電流Au1は、第1U相の逆起電力と逆起電力に対応する相の電流の位相差が0°である基準相に対して位相差β1が0である。このため、第1コイルグループG1は、ステータコア31の周方向に等間隔に3つ配置されているので、モータロータ20の回転角に関係なく、第1コイルグループG1だけを考えれば、第1コイルグループG1に供給する電流に比例した回転トルクが発生し、平均トルクは一定になるように考えられる。しかしながら、第2モータ駆動電流の第2U相の電流Au2は、第2U相の逆起電力と逆起電力に対応する相の電流の位相差が0になる基準相に対して位相差β2分進んでいる。このため、第1コイルグループG1及び第2コイルグループG2の相互作用により、図11に示すように、位相差β2が基準相に対し進むにつれて、平均トルクTaが減少する。ところで、本発明者らは、第1コイルグループG1及び第2コイルグループG2の相互作用により、図11に示す位相差β2が基準相に対し進むにつれて、トルクリップルTrが減少して、所定の極値でトルクリップルTrが増加に転じることを見いだした。これに対して、第1コイルグループG1及び第2コイルグループG2の相互作用により、図11に示す位相差β2が基準相に対し遅れるにつれて、トルクリップルTrが増加してしまうと想定される。
 図11に示すように、位相差β1が0の場合、位相差β2は、電気角で10°が最も好ましい。
 以上説明したように、実施形態2に係る電動機制御装置100は、電動機10と、制御装置40と、モータ駆動回路50を備える。電動機10は、モータロータ20と、モータステータ30と、三相毎に少なくとも2系統の第1コイルグループG1及び第2コイルグループG2とに分けられ、かつステータコア31を3相交流で励磁する複数のコイルグループと、を含む。制御装置40は、モータロータ20を回転駆動させる電流値を指令値として出力する。モータ駆動回路50は、第1モータ駆動回路50Aと第2モータ駆動回路50Bとを備え、第1モータ駆動回路50Aが上述した指令値に基づいて3相交流の第1モータ駆動電流を第1コイルグループG1に供給し、第2モータ駆動回路50Bが第1モータ駆動電流の位相に対して進む位相差を有する3相交流の第2モータ駆動電流を第2コイルグループG2に供給する。
 これにより、互いに独立して励磁される2つの第1コイルグループG1及び第2コイルグループG2を同時に励磁した場合、トルクリップルを抑制することができる。
 制御装置40は、上述したように指令値として所定のデューティ比のパルス幅調変信号を演算する制御部40Aと、位相差調整部40Bとを備える。位相差調整部40Bは、所定のデューティ比のパルス幅調変信号を第1パルス幅変調信号として、第1パルス幅変調信号に対して同じデューティ比かつ位相差(β2-β1)を与えた第2パルス幅変調信号を演算する。制御装置40の位相差調整部40Bは、平均トルクの減少率よりも、トルクリップルの減少率の大きい範囲で位相差β2を調整し、電動機10は、モータロータ20に対してトルクリップルの低減された回転が付与されるよう制御される。また、位相差調整部40Bは、平均トルクTaを増加する場合は、位相差(β2-β1)を0に近づけ、トルクリップルTrを低減する場合は、位相差(β2-β1)を大きくする制御を行うことができる。
 第1モータ駆動回路50Aは、第1パルス幅変調信号のPWM制御により第1モータ駆動電流を第1コイルグループG1に供給し、第2モータ駆動回路50Bは、第2パルス幅変調信号のPWM制御により第2モータ駆動電流を第2コイルグループG2に供給する。これにより、独立した第1モータ駆動回路50A及び第2モータ駆動回路50Bを備えることにより、冗長性を高め、モータ駆動回路50のフェールセーフ性を高めることができる。
 上述した位相差(β2-β1)は、電気角で45°を超えない。位相差(β2-β1)は、電気角で45°を超えないので、平均トルクTaの減少を抑制できる。
 実施形態2に係る電動機において、出力トルクTsは、下記式(1)により求められる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Tmは、マグネット23の磁束φmによるトルク、Trはリラクタンストルクである。リラクタンストルクTrは、下記式(2)により求められる。
Figure JPOXMLDOC01-appb-M000002
 ここで、Pはマグネット23の極対数である。Lqはq軸インダクタンスである。Ldはd軸インダクタンスである。Iqは、電機子電流のq軸成分である。Idは電機子電流のd軸成分である。
 一般に、式(2)によれば、q軸インダクタンスLqが大きく、d軸インダクタンスLdが小さければ、リラクタンストルクTrを大きくできることが分かる。なお、マグネット23によるトルクTmは、下記式(3)で定まる。
Figure JPOXMLDOC01-appb-M000003
 ここで、Φmは、各極対ごとの磁石磁束総量である。
 上述したように、実施形態2に係る電動機は、第1コイルグループG1と第2コイルグループG2とを備えている。このため、実施形態2に係る電動機の出力トルクTsは、第1コイルグループG1によるトルクTg1と、第2コイルグループG2によるトルクTg2とに分けて考えることができる。つまり、出力トルクTsは、下記式(4)により求められる。
Figure JPOXMLDOC01-appb-M000004
 トルクTg1は、式(1)を適用すると、下記式(5)により求められる。
Figure JPOXMLDOC01-appb-M000005
 ここで、Tm1は、第1コイルグループG1に対するマグネット23の磁束φmによるマグネットトルクである。Tr1は、第1コイルグループG1に対するリラクタンストルクである。同様に、トルクTg2は、式(1)を適用すると、下記式(6)により求められる。
Figure JPOXMLDOC01-appb-M000006
 ここで、Tm2は、第2コイルグループG2に対するマグネット23の磁束φmによるマグネットトルクである。Tr2は、第2コイルグループG2に対するリラクタンストルクである。
 図12は、dq軸において、第1コイルグループの電機子磁束と、第2コイルグループの電機子磁束とのベクトル関係を示した図である。図12に示すように、ロータ磁極のq軸に対して、第1コイルグループG1の電機子磁束mf1と、第2コイルグループG2の電機子磁束mf2との間に位相差2δを設ける場合を以下に検討する。
 ロータ磁極のq軸に対して、第1コイルグループG1と第2コイルグループG2とのそれぞれの進角の加算値の平均をβとする。
 そうすると、ロータd軸を基準に、第1コイルグループG1の回転磁界の進角は、(β-δ)になる。入力電流の振幅値をIaとした場合、Tm1は、下記式(7)により求められる。
Figure JPOXMLDOC01-appb-M000007
 同様に、Tr1は、下記式(8)により求められる。
Figure JPOXMLDOC01-appb-M000008
 Tm2は、下記式(9)により求められる。
Figure JPOXMLDOC01-appb-M000009
 同様に、Tr2は、下記式(10)により求められる。
Figure JPOXMLDOC01-appb-M000010
 βは、-90°以上90°以下であるが、実施形態2では、理解しやすくするためβ=0°の場合を考える。この場合、第1コイルグループG1に対するリラクタンストルクと、第2コイルグループG2に対するリラクタンストルクとの成分の加算値は、0となる。
 つまり、式(8)及び式(10)に、β=0を代入すると、下記式(11)が成り立つ。
 Tr1+Tr2=0  …(11) 
 式(11)によれば、第1コイルグループG1と第2コイルグループG2とのトルク波形の位相を意図的にずらすことによって、第1コイルグループG1および第2コイルグループG2による2グループ間のトルクリップル成分同士が打ち消しあう。その結果、ステータ巻き線にスキューなどを加えなくてもトルクリップル成分を抑制することができる。
 図13は、実施形態1または実施形態2に係る電動機を備える電動パワーステアリング装置を搭載した車両の模式図である。図13に示すように、車両101は、上述した実施形態1または実施形態2に係る電動機10を備える電動パワーステアリング装置80を搭載している。車両101は、上述した実施形態1または実施形態2に係る電動機10を電動パワーステアリング装置80以外の用途で搭載してもよい。
 10 電動機
 11 ハウジング
 11a 筒状ハウジング
 11d 内周面
 14 レゾルバ
 20 モータロータ
 21 シャフト
 22 ロータヨーク
 23 マグネット
 30 モータステータ
 31 ステータコア
 32 ティース先端
 33 バックヨーク
 34 ティース
 37 第1コイル
 37a インシュレータ
 37Ua、37Ub 第1U相コイル
 37Va、37Vb 第1V相コイル
 37Wa、37Wb 第1W相コイル
 38 第2コイル
 38Ua、38Ub 第2U相コイル
 38Va、38Vb 第2V相コイル
 38Wa、38Wb 第2W相コイル
 40 制御装置
 41 主制御部
 42 第1コイル系統制御部
 43 第1位相調整部
 44 第2コイル系統制御部
 45 第2位相調整部
 51 第1ゲート駆動回路
 52 第1インバータ
 53 第2ゲート駆動回路
 54 第2インバータ
 80 電動パワーステアリング装置
 100 電動機制御装置
 101 車両
 G1 第1コイルグループ
 G1UV 第1UVコイルグループ
 G1VW 第1VWコイルグループ
 G1UW 第1UWコイルグループ
 G2 第2コイルグループ
 G2UV 第2UVコイルグループ
 G2VW 第2VWコイルグループ
 G2UW 第2UWコイルグループ
 Lu1、Lv1、Lw1、Lu2、Lv2、Lw2 配線
 Zr 回転中心

Claims (6)

  1.  モータロータと、前記モータロータを回転させるステータコアを備えるモータステータと、三相毎に少なくとも2系統の第1コイルグループ及び第2コイルグループとに分けられ、かつ前記ステータコアを3相交流で励磁する複数のコイルグループと、を含む電動機と、
     前記モータロータを回転駆動させる電流値を指令値として出力する制御装置と、前記指令値に基づいて3相交流の第1モータ駆動電流を前記第1コイルグループに供給する第1モータ駆動回路と、前記第1モータ駆動電流の位相に対して位相差を有する3相交流の第2モータ駆動電流を前記第2コイルグループに供給する第2モータ駆動回路と、を含むモータ駆動回路と、
     を備える電動機制御装置。
  2.  前記制御装置は、前記指令値として所定のデューティ比のパルス幅調変信号を演算する制御部と、前記所定のデューティ比のパルス幅調変信号を第1パルス幅変調信号として、前記第1パルス幅変調信号に対して同じデューティ比かつ前記位相差を与えた第2パルス変調信号を演算する位相差調整部とを備える、請求項1に記載の電動機制御装置。
  3.  前記第1モータ駆動回路は、前記第1パルス幅変調信号のPWM制御により第1モータ駆動電流を前記第1コイルグループに供給し、
     前記第2モータ駆動回路は、前記第2パルス幅変調信号のPWM制御により第2モータ駆動電流を前記第2コイルグループに供給する、請求項2に記載の電動機制御装置。
  4.  前記位相差は、電気角で45°を超えない、請求項1から3のいずれか1項に記載の電動機制御装置。
  5.  請求項1から4のいずれか1項に記載された電動機制御装置の前記電動機により補助操舵トルクを得る電動パワーステアリング装置。
  6.  請求項5の電動パワーステアリング装置が搭載された車両。
PCT/JP2015/058329 2014-03-20 2015-03-19 電動機制御装置、電動パワーステアリング装置および車両 WO2015141795A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/118,579 US9694845B2 (en) 2014-03-20 2015-03-19 Motor control device, electric power steering device, and vehicle
JP2015532214A JP5930131B2 (ja) 2014-03-20 2015-03-19 電動機制御装置、電動パワーステアリング装置および車両
EP15764643.1A EP3121954B1 (en) 2014-03-20 2015-03-19 Electric motor control device, electric power steering device, and vehicle
CN201580008667.9A CN105981292B (zh) 2014-03-20 2015-03-19 电动机控制装置、电动动力转向装置和车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-058947 2014-03-20
JP2014058947 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015141795A1 true WO2015141795A1 (ja) 2015-09-24

Family

ID=54144757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058329 WO2015141795A1 (ja) 2014-03-20 2015-03-19 電動機制御装置、電動パワーステアリング装置および車両

Country Status (5)

Country Link
US (1) US9694845B2 (ja)
EP (1) EP3121954B1 (ja)
JP (1) JP5930131B2 (ja)
CN (1) CN105981292B (ja)
WO (1) WO2015141795A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106549621A (zh) * 2017-01-13 2017-03-29 张静 一种电子变极的感应电机控制系统及其控制方法
WO2017141513A1 (ja) * 2016-02-17 2017-08-24 三菱電機株式会社 電力変換装置
CN113910882A (zh) * 2021-10-18 2022-01-11 上海蔚兰动力科技有限公司 用于汽车的电驱动桥总成及汽车
WO2023062907A1 (ja) * 2021-10-12 2023-04-20 日産自動車株式会社 操舵制御方法及び操舵装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712418B (zh) * 2017-01-18 2019-05-24 威灵(芜湖)电机制造有限公司 无机械差速共轴反转动力装置
JP6624097B2 (ja) * 2017-02-01 2019-12-25 トヨタ自動車株式会社 車両用ブレーキシステム
DE102017122069A1 (de) 2017-09-22 2019-03-28 Illinois Tool Works Inc. Orbitalschweißvorrichtung mit verbesserter Sicherheit und verringerter Ausfallwahrscheinlichkeit
DE102018200995A1 (de) * 2018-01-23 2019-07-25 Robert Bosch Gmbh Verfahren zum Betrieb eines Lenksystems mit einer Kompensationsvorrichtung zur Reduktion einer Drehmomentwelligkeit einer Drehstrommaschine
WO2020126015A1 (de) * 2018-12-20 2020-06-25 Efficient Energy Gmbh Elektromotor mit verschiedenen sternpunkten
JP7264717B2 (ja) * 2019-05-15 2023-04-25 ファナック株式会社 ステータコアの端面に固定されるハウジングを備える電動機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197593A (ja) * 1992-12-25 1994-07-15 Toyota Motor Corp Pwm制御モータ装置
US20100071970A1 (en) * 2008-09-23 2010-03-25 Gm Global Technology Operations, Inc. Electrical system using phase-shifted carrier signals and related operating methods
JP2012125006A (ja) * 2010-12-07 2012-06-28 Denso Corp 電動機装置
JP2013153619A (ja) * 2012-01-26 2013-08-08 Mitsubishi Electric Corp 交流回転機の制御装置、及びその制御装置を備えた電動パワーステアリング装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126309B1 (en) * 2004-05-18 2006-10-24 Seiko Epson Corporation Motor
JP2006191757A (ja) * 2005-01-07 2006-07-20 Hitachi Ltd 回転電機及びそれを用いた電動パワーステアリング装置
JP4251196B2 (ja) 2006-06-16 2009-04-08 トヨタ自動車株式会社 ステアリング装置用モータ
US8115433B2 (en) 2008-09-23 2012-02-14 GM Global Technology Operations LLC Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods
JP2010104112A (ja) * 2008-10-22 2010-05-06 Jtekt Corp モータおよび電気式動力舵取装置
JP5350034B2 (ja) * 2009-03-25 2013-11-27 日本ムーグ株式会社 電動機システム
US8405341B2 (en) * 2009-04-13 2013-03-26 Panasonic Corporation Synchronous electric motor system
JP5510703B2 (ja) * 2009-08-21 2014-06-04 株式会社デンソー 回転電機及びその制御システム
JP4998836B2 (ja) * 2009-09-30 2012-08-15 株式会社デンソー 多相回転機の制御装置、および、これを用いた電動パワーステアリング装置
JP4941686B2 (ja) * 2010-03-10 2012-05-30 株式会社デンソー 電力変換装置
JP5067679B2 (ja) * 2010-05-21 2012-11-07 株式会社デンソー 半導体モジュール、および、それを用いた駆動装置
JP5229645B2 (ja) * 2010-06-24 2013-07-03 株式会社デンソー 電動機駆動装置、および、これを用いた電動パワーステアリング装置
JP5797960B2 (ja) * 2010-08-24 2015-10-21 アスモ株式会社 ブラシレスモータの駆動方法及びブラシレスモータの駆動回路、並びに、ブラシレスモータの回転位置の検出方法及びブラシレスモータの回転位置の検出回路
JP5633260B2 (ja) * 2010-09-07 2014-12-03 株式会社ジェイテクト 電動パワーステアリング装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197593A (ja) * 1992-12-25 1994-07-15 Toyota Motor Corp Pwm制御モータ装置
US20100071970A1 (en) * 2008-09-23 2010-03-25 Gm Global Technology Operations, Inc. Electrical system using phase-shifted carrier signals and related operating methods
JP2012125006A (ja) * 2010-12-07 2012-06-28 Denso Corp 電動機装置
JP2013153619A (ja) * 2012-01-26 2013-08-08 Mitsubishi Electric Corp 交流回転機の制御装置、及びその制御装置を備えた電動パワーステアリング装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141513A1 (ja) * 2016-02-17 2017-08-24 三菱電機株式会社 電力変換装置
JPWO2017141513A1 (ja) * 2016-02-17 2018-05-10 三菱電機株式会社 電力変換装置
US10707799B2 (en) 2016-02-17 2020-07-07 Mitsubishi Electric Corporation Power converting device
CN106549621A (zh) * 2017-01-13 2017-03-29 张静 一种电子变极的感应电机控制系统及其控制方法
US20200067442A1 (en) * 2017-01-13 2020-02-27 Shenzhen Yunlin Electric Co., Ltd. Electronic pole changing-based induction motor control system and control method thereof
CN106549621B (zh) * 2017-01-13 2024-01-26 深圳市云林电气技术有限公司 一种电子变极的感应电机控制系统及其控制方法
WO2023062907A1 (ja) * 2021-10-12 2023-04-20 日産自動車株式会社 操舵制御方法及び操舵装置
CN113910882A (zh) * 2021-10-18 2022-01-11 上海蔚兰动力科技有限公司 用于汽车的电驱动桥总成及汽车

Also Published As

Publication number Publication date
US9694845B2 (en) 2017-07-04
EP3121954A1 (en) 2017-01-25
US20170050668A1 (en) 2017-02-23
CN105981292B (zh) 2018-09-11
JPWO2015141795A1 (ja) 2017-04-13
EP3121954A4 (en) 2018-04-11
CN105981292A (zh) 2016-09-28
JP5930131B2 (ja) 2016-06-08
EP3121954B1 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
JP5880793B1 (ja) 電動機、電動パワーステアリング装置および車両
JP5930131B2 (ja) 電動機制御装置、電動パワーステアリング装置および車両
JP6349933B2 (ja) 電動機、電動パワーステアリング装置および車両
EP2933917B1 (en) Method for controlling brushless motor, device for controlling brushless motor, and electric power steering device
JP2008086064A (ja) ブラシレスモータ
JP5168882B2 (ja) 電動パワーステアリング装置
EP3166207A1 (en) Electric power steering system
JP5897298B2 (ja) ブラシレスモータ制御方法及びブラシレスモータ制御装置並びにブラシレスモータ並びに電動パワーステアリング装置
WO2008066061A1 (fr) Moteur sans balai
US20100019708A1 (en) Brushless motor and control method of brushless motor
JP2008301652A (ja) 永久磁石式回転電機およびそれを用いた電動パワーステアリング装置
JP2006050709A (ja) 電動パワーステアリング装置
US8049449B2 (en) Brushless motor control method and brushless motor
US7902709B2 (en) Brush-less motor and electric power steering device having brush-less motor
JP4501683B2 (ja) 永久磁石回転電機及びそれを用いた車載電動アクチュエータ装置用電機システム並びに電動パワーステアリング装置用電機システム
JP6838840B2 (ja) ブラシレスモータ及び電動パワーステアリング装置用モータ
JP2014183613A (ja) ブラシレスモータの制御方法及び制御装置
JP5695366B2 (ja) パワーステアリング用トルクセンサ及びこれを備える電動式パワーステアリング装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015532214

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15118579

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015764643

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015764643

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE