WO2015141172A1 - 運動解析方法、運動解析装置、運動解析システム及びプログラム - Google Patents

運動解析方法、運動解析装置、運動解析システム及びプログラム Download PDF

Info

Publication number
WO2015141172A1
WO2015141172A1 PCT/JP2015/001248 JP2015001248W WO2015141172A1 WO 2015141172 A1 WO2015141172 A1 WO 2015141172A1 JP 2015001248 W JP2015001248 W JP 2015001248W WO 2015141172 A1 WO2015141172 A1 WO 2015141172A1
Authority
WO
WIPO (PCT)
Prior art keywords
hitting
subject
position information
information
unit
Prior art date
Application number
PCT/JP2015/001248
Other languages
English (en)
French (fr)
Inventor
俊彦 加納
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to US15/114,257 priority Critical patent/US20170004729A1/en
Publication of WO2015141172A1 publication Critical patent/WO2015141172A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass
    • G09B19/003Repetitive work cycles; Sequence of movements
    • G09B19/0038Sports
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/36Training appliances or apparatus for special sports for golf
    • A63B69/3623Training appliances or apparatus for special sports for golf for driving
    • A63B69/3632Clubs or attachments on clubs, e.g. for measuring, aligning
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B5/00Electrically-operated educational appliances
    • G09B5/08Electrically-operated educational appliances providing for individual presentation of information to a plurality of student stations
    • G09B5/12Electrically-operated educational appliances providing for individual presentation of information to a plurality of student stations different stations being capable of presenting different information simultaneously
    • G09B5/125Electrically-operated educational appliances providing for individual presentation of information to a plurality of student stations different stations being capable of presenting different information simultaneously the stations being mobile

Definitions

  • the present invention relates to a motion analysis method, a motion analysis device, a motion analysis system, and a program for analyzing a subject's motion.
  • Patent Document 1 proposes a device for mounting a three-axis acceleration sensor and a three-axis gyro sensor on a golf club and analyzing the swing using the outputs of these sensors. If used, a camera is unnecessary and convenience is improved. In addition, since the golf swing analysis apparatus using the sensor can present information at the time of impact, the subject can know whether or not the ideal swing that can hit the ball in the aimed direction is obtained.
  • the present invention has been made in view of the above problems, and according to some aspects of the present invention, a motion analysis that allows a subject to present useful information to improve swing A method, a motion analysis device, a motion analysis system, and a program can be provided.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • the motion analysis method includes a first position information generation step of generating first position information regarding an ideal hitting ball position in a swing motion performed by a subject using an exercise device, using an output of an inertial sensor; A second position information generating step for generating second position information related to a position of the hitting portion of the exercise instrument at the time of hitting the subject using the output of the inertial sensor; the first position information; and the second position A position difference information generating step for generating position difference information related to a difference between the ideal hit ball position and the position of the hitting portion at the time of hitting using the information.
  • the exercise equipment is equipment used for hitting a golf club, tennis racket, baseball bat, hockey stick or the like.
  • the inertial sensor may be any sensor that can measure an inertia amount such as acceleration and angular velocity, and may be, for example, an inertial measurement unit (IMU) that can measure acceleration and angular velocity.
  • IMU inertial measurement unit
  • the inertial sensor may be detachable, or may be fixed and cannot be removed, for example, built in an exercise equipment.
  • the first position information may include, for example, at least one of the coordinates of the ideal hitting ball position and the time at which the exercise device becomes the ideal hitting ball position in the swing operation.
  • the second position information may include, for example, at least one of the coordinates of the hitting unit at the time of hitting and the time when the subject hits the ball.
  • posture difference information can be generated using the output of the inertial sensor attached to the exercise equipment, so it is necessary to prepare a large measuring tool such as a camera. There are no major restrictions on the measurement location.
  • the ideal hitting position may be a position where the altitude of the hitting unit is the lowest in the swing operation.
  • the information on the difference between the position where the incident angle in the vertical direction with respect to the hitting position of the hitting part is approximately 0 ° and the actual hitting position is provided, and the subject is given the swing trajectory.
  • the swing can be improved so that is level when the ball is hit.
  • the output of the inertial sensor is used to generate trajectory information of the exercise equipment in the swing motion, and the trajectory information is used to generate the first position information.
  • One position information may be generated.
  • the ideal hitting ball position can be identified relatively easily using the trajectory information of the exercise equipment.
  • a composite value of the output of the inertial sensor may be calculated, and the hitting time may be specified based on the composite value.
  • the timing at which the subject hits the ball can be identified relatively easily based on the composite value of the output of the inertial sensor.
  • the position difference information is used to generate advice information regarding the address position of the subject so that the position of the hitting portion at the time of hitting becomes the ideal hitting position.
  • An information generation step may be included.
  • the subject can specifically know the ideal address position based on the advice information.
  • the inertial sensor may be attached to the exercise equipment.
  • the exercise apparatus may be a golf club.
  • the motion analysis method according to this application example can prompt the subject to improve the golf swing.
  • the motion analysis apparatus includes a first position information generation unit configured to generate first position information regarding an ideal hitting ball position in a swing motion performed by a subject using an exercise device, using an output of an inertial sensor; A second position information generating unit that generates second position information related to a position of the hitting portion of the exercise instrument when the subject hits the ball using the output of the inertial sensor; the first position information; and the second position A position difference information generation unit that generates position difference information related to a difference between the ideal hitting ball position and the position of the hitting unit at the time of hitting using the information.
  • information on the difference between the ideal hit ball position and the actual hit ball position can be presented, and the subject can be encouraged to improve the swing.
  • posture difference information can be generated using the output of the inertial sensor attached to the exercise equipment, so it is necessary to prepare a large measuring tool such as a camera. There are no major restrictions on the measurement location.
  • a motion analysis system includes the motion analysis device described above and the inertial sensor.
  • information on the difference between the ideal hit ball position and the actual hit ball position can be presented, and the subject can be encouraged to improve the swing.
  • the program according to this application example uses the output of the inertial sensor to generate a first position information generation step that generates first position information related to an ideal hitting ball position in a swing motion performed by a subject using an exercise device, Using the output of the inertial sensor, a second position information generating step for generating second position information relating to the position of the striking part of the exercise device at the time of hitting the subject, the first position information and the second position information; Is used to cause the computer to execute a position difference information generation step of generating position difference information relating to the difference between the ideal hit ball position and the position of the hitting portion at the time of hitting.
  • the program according to this application example can present information on the difference between the ideal hitting position and the actual hitting position, and prompt the subject to improve the swing.
  • FIG. 10A is a graph showing the triaxial angular velocity during swing
  • FIG. 10B is a graph showing the calculated norm of the triaxial angular velocity
  • FIG. 10C is a graph showing the norm of the triaxial angular velocity.
  • the flowchart figure which shows an example of the procedure of the process which calculates the attitude
  • motion analysis system motion analysis device
  • FIG. 1 is a diagram for explaining the outline of the motion analysis system of the present embodiment.
  • the motion analysis system 1 according to the present embodiment includes a sensor unit 10 (an example of an inertial sensor) and a motion analysis device 20.
  • the sensor unit 10 can measure the acceleration generated in each of the three axes and the angular velocity generated around each of the three axes, and is attached to the shaft of the golf club 3 (an example of an exercise device).
  • the shaft is a portion of the handle excluding the head of the golf club 3 and includes a grip portion.
  • the sensor unit 10 is configured so that one of the three detection axes (x axis, y axis, z axis), for example, the y axis is aligned with the long axis direction of the shaft. Installed.
  • FIG. 3 is a diagram illustrating a procedure of operations performed by the subject 2.
  • the subject 2 first holds the golf club 3 and takes the posture of the address, and rests for a predetermined time or longer (for example, 1 second or longer) (S1).
  • the subject 2 performs a swing motion and hits the golf ball 4 (S2).
  • the sensor unit 10 measures the triaxial acceleration and the triaxial angular velocity at a predetermined cycle (for example, 1 ms), and sequentially moves the measured data. It transmits to the analysis device 20.
  • the sensor unit 10 may transmit the measured data immediately, or store the measured data in an internal memory and transmit the measured data at a desired timing such as after the swing motion of the subject 2 is completed. It may be.
  • the sensor unit 10 may store the measured data in a removable recording medium such as a memory card, and the motion analysis apparatus 20 may read the measurement data from the recording medium.
  • the motion analysis apparatus 20 uses the data measured by the sensor unit 10 to provide information (first position information) about an ideal hitting position (ideal hitting point) in a swing motion performed by the subject 2 using the golf club 3. ) And information (second position information) relating to the position (actual hitting point) of the head of the golf club 3 when the subject 2 hits the ball.
  • the first position information may include, for example, an ideal hitting point position coordinate (such as a three-dimensional coordinate in an XYZ coordinate system, which will be described later), or may include a time at which an ideal hitting point is obtained in a swing operation.
  • the second position information may include, for example, the position coordinates of the actual hitting point, or may include the actual hitting point time (impact time).
  • the motion analysis apparatus 20 uses the first position information and the second position information, and the ideal hitting position (ideal hitting point) and the position of the head of the golf club 3 at the time of hitting (the actual hitting point) ) To generate information (positional difference information) on the difference from ().
  • the position difference information may be, for example, the difference between the position coordinates of the ideal hitting point and the position coordinates of the actual hitting point. The closer the difference between the position coordinates is to 0, the more ideal the swing.
  • the motion analysis apparatus 20 uses the position difference information to generate advice information related to the address position of the subject 2 so that the position of the head of the golf club 3 when the subject 2 hits the ball becomes an ideal hitting position.
  • the advice information is presented to the subject 2 by image, sound, vibration, or the like.
  • the communication between the sensor unit 10 and the motion analysis device 20 may be wireless communication or wired communication.
  • an ideal hitting point is a position where the attack angle is approximately 0 °.
  • FIG. 4 is a diagram for explaining the definition of the attack angle.
  • an XYZ coordinate system is defined in which the target line indicating the hitting direction is the X axis, the horizontal axis perpendicular to the X axis is the Y axis, and the vertical direction (the direction opposite to the direction of gravitational acceleration) is the Z axis.
  • FIG. 4 shows the X axis, the Y axis, and the Z axis.
  • the target line refers to, for example, a direction in which the ball is blown straight.
  • point R is a hitting point where the head of the golf club 3 hits the golf ball
  • a curve L1 is a part of the trajectory when the golf club 3 head swings in the XZ plane
  • a straight line L2 is the XZ plane. This is a tangent to the curve L1 at the hitting point R at.
  • the attack angle is defined as an angle ⁇ of the straight line L2 with respect to the XY plane S XY .
  • the attack angle ⁇ is a negative value
  • the attack angle ⁇ is a positive value.
  • the attack angle ⁇ ⁇ 0 ° when the head blows obliquely downward with respect to the hitting point R, and the attack angle ⁇ when the head blows horizontally with respect to the hitting point R. 0 °, and the attack angle ⁇ > 0 ° when the head blows obliquely upward with respect to the hitting point R.
  • the attack angle ⁇ is almost 0 °. That is, in this embodiment, the lowest point on the locus of the head of the golf club 3 is an ideal hitting point.
  • FIG. 5 is a diagram illustrating a configuration example of the sensor unit 10 and the motion analysis apparatus 20.
  • the sensor unit 10 includes an acceleration sensor 100, an angular velocity sensor 110, a signal processing unit 120, and a communication unit 130.
  • the acceleration sensor 100 measures each acceleration in three axis directions that intersect (ideally orthogonal) with each other, and outputs a digital signal (acceleration data) corresponding to the magnitude and direction of the measured three axis acceleration.
  • the angular velocity sensor 110 measures the angular velocities in the three axial directions that intersect (ideally orthogonal) with each other, and outputs a digital signal (angular velocity data) corresponding to the magnitude and direction of the measured three axial angular velocities.
  • the signal processing unit 120 receives acceleration data and angular velocity data from the acceleration sensor 100 and the angular velocity sensor 110, respectively, attaches time information to the storage unit (not shown), and stores the measured data (acceleration data and angular velocity data). Is attached with time information to generate packet data in accordance with the communication format, and outputs the packet data to the communication unit 130.
  • the acceleration sensor 100 and the angular velocity sensor 110 are each attached to the sensor unit 10 so that the three axes coincide with the three axes (x axis, y axis, z axis) of the orthogonal coordinate system defined for the sensor unit 10. This is ideal, but in reality there is an error in the mounting angle. Therefore, the signal processing unit 120 performs a process of converting the acceleration data and the angular velocity data into data in the xyz coordinate system using a correction parameter calculated in advance according to the attachment angle error.
  • the signal processing unit 120 performs temperature correction processing for the acceleration sensor 100 and the angular velocity sensor 110. It should be noted that the acceleration sensor 100 and the angular velocity sensor 110 may incorporate a temperature correction function.
  • the acceleration sensor 100 and the angular velocity sensor 110 may output analog signals.
  • the signal processing unit 120 converts the output signal of the acceleration sensor 100 and the output signal of the angular velocity sensor 110 to A / Measurement data (acceleration data and angular velocity data) is generated by D conversion, and packet data for communication may be generated using these.
  • the communication unit 130 performs processing for transmitting the packet data received from the signal processing unit 120 to the motion analysis device 20, processing for receiving a control command from the motion analysis device 20, and sending the control command to the signal processing unit 120, and the like.
  • the signal processing unit 120 performs various processes according to the control command.
  • the motion analysis apparatus 20 includes a processing unit 200, a communication unit 210, an operation unit 220, a ROM 230, a RAM 240, a recording medium 250, a display unit 260, and a sound output unit 270.
  • a personal computer PC
  • It may be a mobile device such as a smartphone.
  • the communication unit 210 performs processing to receive packet data transmitted from the sensor unit 10 and send the packet data to the processing unit 200, processing to transmit a control command from the processing unit 200 to the sensor unit 10, and the like.
  • the operation unit 220 performs a process of acquiring operation data from the user and sending it to the processing unit 200.
  • the operation unit 220 may be, for example, a touch panel display, a button, a key, a microphone, or the like.
  • the ROM 230 stores programs for the processing unit 200 to perform various calculation processes and control processes, various programs and data for realizing application functions, and the like.
  • the RAM 240 is used as a work area of the processing unit 200, and temporarily stores programs and data read from the ROM 230, data input from the operation unit 220, calculation results executed by the processing unit 200 according to various programs, and the like. It is a storage unit.
  • the recording medium 250 is a non-volatile storage unit that stores data that needs to be stored for a long time among the data generated by the processing of the processing unit 200. Further, the recording medium 250 may store a program for the processing unit 200 to perform various types of calculation processing and control processing, and various programs and data for realizing application functions.
  • the ROM 230, the RAM 240, or the recording medium 250 includes the specification information of the golf club 3 (information such as the length of the shaft, the position of the center of gravity, the lie angle, the face angle, and the loft angle), the sensor unit 10.
  • the information on the mounting position (distance from the head or grip end of the golf club 3) and the information such as the arm length and the position of the center of gravity of the subject 2 are stored, and these information are used by the processing unit 200.
  • the display unit 260 displays the processing results of the processing unit 200 as characters, graphs, tables, animations, and other images.
  • the display unit 260 may be, for example, a CRT, LCD, touch panel display, HMD (head mounted display), or the like. Note that the functions of the operation unit 220 and the display unit 260 may be realized by a single touch panel display.
  • the sound output unit 270 displays the processing result of the processing unit 200 as sound such as sound or buzzer sound.
  • the sound output unit 270 may be, for example, a speaker or a buzzer.
  • the processing unit 200 transmits a control command to the sensor unit 10 according to a program stored in the ROM 230 or the recording medium 250 or a program received from the server via the network and stored in the RAM 240 or the recording medium 250, Various calculation processes on the data received from the sensor unit 10 via the communication unit 210 and other various control processes are performed.
  • the processing unit 200 executes the program to thereby obtain a data acquisition unit 201, a first position information generation unit 202, a second position information generation unit 203, a position difference information generation unit 204, advice information. It functions as a generation unit 205, a storage processing unit 206, a display processing unit 207, and a sound output processing unit 208.
  • the data acquisition unit 201 receives the packet data received from the sensor unit 10 by the communication unit 210, acquires time information and measurement data from the received packet data, and performs processing to send to the storage processing unit 206.
  • the storage processing unit 206 receives time information and measurement data from the data acquisition unit 201 and associates them with each other and stores them in the RAM 240.
  • the 1st position information generation part 202 uses the measurement data (acceleration data and angular velocity data) which sensor unit 10 outputs, and the processing which generates the 1st position information about an ideal hitting ball position (ideal hitting point). Do. In the present embodiment, it is assumed that the ideal hitting point is the lowest point of the head of the golf club 3 during the swing operation.
  • the first position information generation unit 202 first uses the time information and measurement data stored in the RAM 240 to perform a stationary motion (step S1 in FIG. 3) performed before the subject 2 starts a swing motion. Is detected in association with time. Then, the first position information generation unit 202 calculates the offset amount using the measurement data at rest, performs bias correction by subtracting the offset amount from the measurement data, and uses the measurement data corrected for bias to the subject 2. The position and orientation (initial position and initial orientation) of the sensor unit 10 at the time of the address (during stationary operation) are calculated.
  • the first position information generation unit 202 uses the initial position of the sensor unit 10 as the origin (0, 0, 0) of the XYZ coordinate system, and the acceleration data at the time of addressing the subject 2 (during stationary motion) and the direction of gravity acceleration From this, the initial posture of the sensor unit 10 can be calculated.
  • the posture of the sensor unit 10 can be expressed by, for example, rotation angles (roll angle, pitch angle, yaw angle) around the X axis, Y axis, and Z axis, quarter-on (quaternion), and the like.
  • the first position information generation unit 202 uses the time information and measurement data stored in the RAM 240 to determine the position and posture of the sensor unit 10 during the swing motion of the subject 2 (during the operation of Step S2 in FIG. 3). calculate.
  • the first position information generation unit 202 integrates acceleration data to calculate a change in position from the initial position of the sensor unit 10 in time series, performs a rotation calculation using the angular velocity data, and starts from the initial posture of the sensor unit 10.
  • the change of the posture of can be calculated in time series.
  • the first position information generation unit 202 is configured such that the shaft length and the position of the center of gravity of the golf club 3, the mounting position of the sensor unit 10, the characteristics of the golf club 3 (such as a rigid body), and the characteristics of the human body (the direction of bending of the joint)
  • a motion analysis model that takes into account the position and orientation of the sensor unit 10, the length of the shaft and the center of gravity of the golf club 3, the mounting position of the sensor unit 10, and the characteristics of the subject 2 ( The trajectory of this motion analysis model is calculated using information such as the length of the arm and the position of the center of gravity.
  • the first position information generation unit 202 calculates position coordinates when the head of the golf club 3 comes to the lowest point from the locus of the motion analysis model, and generates first position information.
  • the signal processing unit 120 of the sensor unit 10 may calculate the offset amount of the measurement data and perform bias correction of the measurement data.
  • the bias correction function is incorporated in the acceleration sensor 100 and the angular velocity sensor 110. It may be. In these cases, the bias correction of the measurement data by the first position information generation unit 202 becomes unnecessary.
  • the second position information generation unit 203 uses the measurement data (at least one of acceleration data and angular velocity data) output from the sensor unit 10 to position the head of the golf club 3 when the subject 2 hits the ball (actual hitting point). The process which produces
  • the position difference information generation unit 204 uses the first position information generated by the first position information generation unit 202 and the second position information generated by the second position information generation unit 203 to determine an ideal hitting point and an actual hit point. Processing for generating positional difference information related to the difference from the hitting point is performed. Specifically, the position difference information generation unit 204 includes the coordinates (for example, the X coordinate and the Z coordinate) of the lowest point (ideal hitting point) of the head of the golf club 3 and the coordinates (for example, the X coordinate) of the actual hitting point. And the Z coordinate), and position difference information including information on the difference between the coordinates is generated.
  • the coordinates for example, the X coordinate and the Z coordinate
  • the first position information generation unit 202 calculates the time when the head of the golf club 3 comes to the lowest point from the trajectory of the motion analysis model, generates the first position information including the time, and generates the second position information.
  • the unit 203 calculates the time difference from the lowest point to the actual hit point (or from the actual hit point to the lowest point) and the velocity vector of the head of the golf club 3 from the trajectory of the motion analysis model.
  • the 2nd position information containing may be generated.
  • the position difference information generation unit 204 multiplies the time difference from the lowest point to the actual hit point (or from the actual hit point to the lowest point) and the velocity vector, and the coordinates of the lowest point and the actual point.
  • a difference from the coordinates of the hitting point may be calculated, and position difference information including information on the difference between the coordinates may be generated.
  • the advice information generation unit 205 uses the position difference information generated by the position difference information generation unit 204, and the address of the subject 2 for the position of the head of the golf club 3 to be an ideal hitting point when the subject 2 hits the ball Processing to generate advice information related to the position is performed. Specifically, a predetermined calculation is performed using the difference in coordinates between the lowest point (ideal hitting point) of the head of the golf club 3 and the actual hitting point, and the head of the golf club 3 at the time of hitting In order to make the position coincide with the ideal hitting point, advice information indicating which position the subject 2 should address is generated.
  • the advice information generation unit 205 may generate advice information such as “Please move backward (advance 3 cm) and address” and “Address right 3 cm (left)”.
  • advice information such as “Please move backward (advance 3 cm) and address” and “Address right 3 cm (left)”.
  • a buzzer or LED is provided in the sensor unit 10 or the motion analysis device 20, and the advice information generation unit 205 "retreats (forwards) until the buzzer occurs (until the LED lights up).”
  • Advice information such as “Please shift to the right (left) until the buzzer sounds (until the LED lights up)” may be generated.
  • the advice information generation unit 205 determines the characteristics of the golf club 3 and the locus of the motion analysis model. Advice information may be generated by performing a predetermined calculation in consideration of information and the like.
  • the storage processing unit 206 performs read / write processing of various programs and various data with respect to the ROM 230, the RAM 240, and the recording medium 250.
  • the storage processing unit 206 stores the time information received from the data acquisition unit 201 in association with the measurement data in the RAM 240 and stores the first position information, the second position information, the position difference information, advice information, and the like in the RAM 240. If it is desired to store or keep it as a record, a process of storing in the recording medium 250 is also performed.
  • the display processing unit 207 performs processing for displaying various images (including characters and symbols) on the display unit 260. For example, the display processing unit 207 reads the advice information stored in the RAM 240 or the recording medium 250 automatically or after a predetermined input operation is performed after the subject 2 swings. Processing for displaying an image for advice on the display unit 260 is performed.
  • the display processing unit 207 may read out the first position information, the second position information, the position difference information, and the like stored in the RAM 240 or the recording medium 250 and display various images on the display unit 260.
  • a display unit is provided in the sensor unit 10, and the display processing unit 207 transmits an advice image or the like to the sensor unit 10 via the communication unit 210, and the advice image is displayed on the display unit of the sensor unit 10. Etc. may be displayed.
  • the sound output processing unit 208 performs processing for causing the sound output unit 270 to output various sounds (including sound and buzzer sound). For example, the sound output processing unit 208 reads advice information stored in the RAM 240 or the recording medium 250 automatically or after a predetermined input operation is performed after the subject 2 swings. The sound output unit 270 may output a sound for advice. The sound output processing unit 208 may read the first position information, the second position information, the position difference information, and the like stored in the RAM 240 or the recording medium 250 and cause the sound output unit 270 to output various sounds. .
  • the sensor unit 10 is provided with a sound output unit, and the sound output processing unit 208 transmits an advice sound or the like to the sensor unit 10 via the communication unit 210 and advises the sound output unit of the sensor unit 10. For example, sound for use may be output.
  • a vibration mechanism of the motion analysis device 20 or the sensor unit 10 may be provided, and advice information or the like may be converted into vibration information by the vibration mechanism and presented to the subject 2.
  • FIG. 6 is a flowchart illustrating an example of a procedure of advice information generation processing by the processing unit 200 according to the present embodiment.
  • the processing unit 200 acquires measurement data of the sensor unit 10 (S10).
  • the processing unit 200 may perform the processing from step S20 onward in real time. After acquiring a part or all of a series of measurement data in the exercise, the processes after step S20 may be performed.
  • the processing unit 200 detects the stationary motion (address motion) of the subject 2 (the motion of step S1 in FIG. 4) using the measurement data acquired from the sensor unit 10 (S20).
  • the processing unit 200 outputs, for example, a predetermined image or sound when detecting a stationary operation (address operation), or the LED is provided in the sensor unit 10 and the LED
  • the subject 2 may be notified that the stationary state has been detected, for example, and the subject 2 may start swinging after confirming this notification.
  • the processing unit 200 uses the measurement data acquired from the sensor unit 10 to calculate the initial position and initial posture of the sensor unit 10 when the subject 2 is addressed (S30). For example, the processing unit 200 uses the initial position of the sensor unit 10 as the origin of the XYZ coordinate system, specifies the direction of gravitational acceleration from the acceleration data measured by the sensor unit 10, and calculates the initial posture in the XYZ coordinate system.
  • the processing unit 200 detects the timing at which the subject 2 hits the ball using the measurement data (acceleration data or angular velocity data) acquired from the sensor unit 10 (S40). Since very large acceleration and angular velocity are applied to the sensor unit 10 at the time of hitting (impact), the processing unit 200 can detect the timing at which the subject 2 hits using the measurement data of the sensor unit 10.
  • the measurement data acceleration data or angular velocity data
  • the processing unit 200 calculates the position and orientation of the sensor unit 10 during the swing motion of the subject 2 (S50), and changes in the position and orientation of the sensor unit 10.
  • a process of calculating the trajectory of the motion analysis model (S60) is performed.
  • the processing unit 200 integrates acceleration data measured by the sensor unit 10 to calculate a position, calculates rotation by using angular velocity data measured by the sensor unit 10, and calculates a posture.
  • the trajectory of the motion analysis model is calculated using the posture, the specification information of the golf club 3, the mounting position of the sensor unit 10, the feature information of the subject 2, and the like.
  • the processing unit 200 obtains the head trajectory of the golf club 3 from the trajectory of the motion analysis model during the swing, calculates the position coordinates of the lowest point of the head, and generates first position information (S70).
  • the processing unit 200 calculates the position coordinates of the actual hitting point from the trajectory of the motion analysis model and the hitting time (impact time), and generates second position information (S80).
  • the processing unit 200 uses the first position information and the second position information to calculate a difference between the position coordinate of the lowest point of the head of the golf club 3 and the position coordinate of the hitting point, and obtains the position difference information.
  • Generate (S90) uses the first position information and the second position information to calculate a difference between the position coordinate of the lowest point of the head of the golf club 3 and the position coordinate of the hitting point, and obtains the position difference information.
  • the processing unit 200 uses the position difference information to generate advice information regarding the address position of the subject 2 for the actual hitting point to be the lowest point (S100).
  • FIGS. 7A and 7B show an example of the relationship between the head trajectory of the golf club 3 from the down swing to the follow swing when the right-handed subject 2 swings and the actual hitting point.
  • FIG. FIG. 7A is a diagram in which the trajectory of the golf club 3 is projected on the XZ plane
  • FIG. 7B is a diagram in which the trajectory of the golf club 3 is projected on the XY plane.
  • the curve L with an arrow is the locus of the head of the golf club 3
  • the start point P 0 of the curve L is the start point of the downswing
  • the end point P 1 of the curve L is the follow This is the end of the swing.
  • the point R 0 is the lowest point of the curve L (the position where the Z coordinate is minimum), and the point R 1 is the actual hitting point. If the XYZ coordinates of the lowest point R 0 are (a 0 , b 0 , c 0 ) and the XYZ coordinates of the actual hitting point R 1 are (a 1 , b 1 , c 1 ), the position of the lowest point R 0 The difference between the coordinates and the actual position coordinates of the hit ball point R 1 is (a 0 ⁇ a 1 , b 0 ⁇ b 1 , c 0 ⁇ c 1 ). In the example shown in FIG. 7 (A) and FIG.
  • the processing unit 200 generates advice information for advising the subject 2 to move to the left by a 0 -a 1 and address at a position advanced by b 0 -b 1. Also good.
  • 8 (A) and 8 (B) show other relations between the trajectory of the golf club 3 head from the downswing to the follow swing when the right-handed subject 2 swings and the actual hitting point. It is a figure which shows an example.
  • 8A is a diagram in which the trajectory of the golf club 3 is projected on the XZ plane
  • FIG. 8B is a diagram in which the trajectory of the golf club 3 is projected on the XY plane.
  • a curve L with an arrow is a locus of the head of the golf club 3
  • a start point P 0 of the curve L is a start point of a downswing
  • an end point P 1 of the curve L is a follow. This is the end of the swing.
  • the point R 0 is the lowest point of the curve L (the position where the Z coordinate is minimum), and the point R 2 is an actual hitting point. If the XYZ coordinates of the lowest point R 0 are (a 0 , b 0 , c 0 ), and the XYZ coordinates of the actual hitting point R 2 are (a 2 , b 2 , c 2 ), the coordinates of the lowest point R 0 And the actual coordinates of the hit ball point R 2 are (a 0 ⁇ a 2 , b 0 ⁇ b 2 , c 0 ⁇ c 2 ). In the examples of FIGS.
  • the processing unit 200 generates advice information for advising the subject 2 to move to the right by a 2 -a 0 and address at a position advanced by b 0 -b 1. Also good.
  • FIG. 9 is a flowchart showing an example of a procedure of a process for detecting the timing at which the subject 2 hits the ball (the process in step S40 in FIG. 6).
  • the processing unit 200 uses the acquired angular velocity data (angular velocity data at each time t) to determine the value of the norm n 0 (t) of the angular velocity at each time t (the output of the inertial sensor).
  • An example of the composite value is calculated (S200). For example, if the angular velocity data at time t is x (t), y (t), z (t), the norm n 0 (t) of the angular velocity is calculated by the following equation (1).
  • FIG. 10A An example of the triaxial angular velocity data x (t), y (t), z (t) when the subject 2 swings and hits the golf ball 4 is shown in FIG.
  • the horizontal axis represents time (msec) and the vertical axis represents angular velocity (dps).
  • the processing unit 200 converts the norm n 0 (t) of the angular velocity at each time t into a norm n (t) normalized (scaled) to a predetermined range (S210). For example, assuming that the maximum value of the norm of the angular velocity during the measurement data acquisition period is max (n 0 ), the norm obtained by normalizing the norm n 0 (t) of the angular velocity to a range of 0 to 100 according to the following equation (2). converted to n (t).
  • FIG. 10B calculates the norm n 0 (t) of the triaxial angular velocity from the triaxial angular velocity data x (t), y (t), z (t) of FIG. 10A according to the equation (1).
  • FIG. 6 is a graph showing a norm n (t) that is later normalized to 0 to 100 according to the equation (2).
  • the horizontal axis represents time (msec)
  • the vertical axis represents the norm of angular velocity.
  • the processing unit 200 calculates a differential dn (t) of the norm n (t) after normalization at each time t (S220). For example, assuming that the measurement period of the triaxial angular velocity data is ⁇ t, the differential (difference) dn (t) of the norm of the angular velocity at time t is calculated by the following equation (3).
  • FIG. 10C is a graph showing the differential dn (t) calculated from the norm n (t) of the triaxial angular velocity in FIG.
  • the horizontal axis represents time (msec)
  • the vertical axis represents the differential value of the norm of the triaxial angular velocity.
  • the horizontal axis is displayed in 0 to 5 seconds.
  • the horizontal axis is shown so that the change in the differential value before and after the hit ball can be seen. Is displayed in 2 to 2.8 seconds.
  • the processing unit 200 detects the previous time as the timing of the hit ball among the time when the value of the norm differential dn (t) is the maximum and the minimum (S230).
  • the processing unit 200 detects the previous time as the timing of the hit ball among the time when the value of the norm differential dn (t) is the maximum and the minimum (S230).
  • the timing at which the differential value of the norm of angular velocity becomes maximum or minimum in a series of swing operations that is, the differential value of the norm of angular velocity is positive).
  • the timing at which the maximum value or the minimum negative value is reached can be regarded as the timing of the hitting ball (impact).
  • T1 is detected as the hitting timing among T1 and T2.
  • the processing unit 200 detects a timing candidate hit by the subject 2 according to the flowchart of FIG. 9, determines whether or not the measurement data before and after the detected timing matches this rhythm, and matches. May determine the detected timing as the timing at which the subject 2 hits the ball, and if it does not match, the next candidate may be detected.
  • the processing unit 200 detects the hitting ball timing using the triaxial angular velocity data, but can similarly detect the hitting ball timing using the triaxial acceleration data.
  • FIG. 11 is a flowchart illustrating an example of a procedure of a process (partial processes of step S30 and step S50 in FIG. 6) for calculating the posture (initial posture and posture at time N) of the sensor unit 10.
  • the processing unit 200 updates the time t to t + 1 (S320).
  • the processing unit 200 calculates the quaternion ⁇ q (t) representing the rotation per unit time at the time t from the triaxial angular velocity data at the time t (S330).
  • ⁇ q (1) is calculated according to 8).
  • the processing unit 200 calculates a quaternion q (t) representing rotation from time 0 to t (S340).
  • the quaternion q (t) is calculated by the following equation (9).
  • the processing unit 200 calculates q (1) according to Expression (10) from q (0) in Expression (6) and ⁇ q (1) calculated in Step S330.
  • the processing unit 200 is the closest to the quaternion p (0) representing the initial posture calculated in step S310.
  • the processing unit 200 calculates the posture of the sensor unit 10 at the time of hitting, with the time when the subject 2 hits as time N according to the procedure of the flowchart of FIG.
  • the subject 2 is informed of the difference between the ideal hitting point of the head of the golf club 3 and the actual hitting point in the swing motion. Since the advice information regarding the ideal address position based on the information is presented, the subject 2 can specifically know the ideal address position based on the advice information. Thereby, the subject 2 can be urged to improve the golf swing.
  • the subject 2 presents advice information with the lowest point of the head of the golf club 3 during the swing motion as an ideal hitting point. It is possible to know an ideal address position for making the attack angle almost zero. Thereby, the subject 2 can be urged to improve the swing so that the swing trajectory is horizontal when the ball is hit.
  • advice information can be generated using the measurement data of the sensor unit 10 attached to the golf club 3, so that a large-sized camera or the like can be used. There is no need to prepare a measuring tool, and the place to measure is not greatly limited.
  • the lowest point (the position where the Z coordinate is the smallest) is the ideal hitting point in the locus of the head of the golf club 3.
  • a position farthest from the subject 2 in the horizontal direction may be set as an ideal hitting point.
  • any position (for example, the position of the midpoint) between the position where the Z coordinate is the smallest and the position where the Y coordinate is the largest in the locus of the head of the golf club 3 may be set as the ideal hitting point.
  • a position at which the tangent to the locus of the head of the golf club 3 is 0 on the XZ plane may be an ideal hitting point.
  • the motion analysis apparatus 20 has an attack angle of exactly 0 °. The address position can be advised.
  • a motion analysis system that generates advice information related to a golf swing
  • the present invention is applicable to various motion swings such as tennis and baseball when the subject is stationary. It can be applied to a motion analysis system (motion analysis device) that generates advice information regarding the motion.
  • the motion analysis apparatus 20 calculates the trajectory of the motion analysis model using the measurement data of one sensor unit 10, but each of the plurality of sensor units 10 is connected to the golf club 3 or The motion analysis apparatus 20 may be mounted on the subject 2 and calculate the trajectory of the motion analysis model using the measurement data of the plurality of sensor units 10.
  • the sensor unit 10 and the motion analysis device 20 are separate bodies, but a motion analysis device that can be attached to an exercise device or a subject by integrating them may be used.
  • the present invention includes substantially the same configuration (for example, a configuration having the same function, method and result, or a configuration having the same purpose and effect) as the configuration described in the embodiment.
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
  • 1 motion analysis system 2 subjects, 3 golf clubs, 4 golf balls, 10 sensor units, 20 motion analysis devices, 100 acceleration sensors, 110 angular velocity sensors, 120 signal processing units, 130 communication units, 200 processing units, 201 data acquisition units 202 First position information generation unit 203 Second position information generation unit 204 Position difference information generation unit 205 Advice information generation unit 206 Storage processing unit 207 Display processing unit 208 Sound output processing unit 210 Communication unit 220 operation unit, 230 ROM, 240 RAM, 250 recording medium, 260 display unit, 270 sound output unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Golf Clubs (AREA)

Abstract

 被験者がスイングを改善するために有益な情報を提示することが可能な運動解析方法、運動解析装置、運動解析システム及びプログラムを提供すること。 運動解析方法は、慣性センサーの出力を用いて、被験者が運動器具を用いて行ったスイング動作における理想的な打球位置に関する第1位置情報を生成する第1位置情報生成工程と、慣性センサーの出力を用いて、被験者の打球時における打撃部の位置に関する第2位置情報を生成する第2位置情報生成工程と、第1位置情報と第2位置情報とを用いて、理想的な打球位置と打球時における打撃部の位置との差に関する位置差情報を生成する位置差情報生成工程と、を含む。

Description

運動解析方法、運動解析装置、運動解析システム及びプログラム
 本発明は、被験者の運動を解析する、運動解析方法、運動解析装置、運動解析システム及びプログラムに関する。
 従来、ゴルフのスイングをカメラで撮影し、撮影画像をもとにスイングを解析するカメラシステムが知られているが、このようなカメラシステムでは、大掛かりな装置が必要な上に設置場所を選ぶため、簡易に計測することができず利便性が悪い。これに対して、特許文献1では、ゴルフクラブに3軸の加速度センサーと3軸のジャイロセンサーを装着し、これらのセンサーの出力を用いてスイングを解析する装置が提案されており、この装置を用いればカメラが不要となり利便性が向上する。また、センサーを用いたゴルフスイング解析装置では、インパクト時の情報を提示することができるため、被験者は狙った方向に打球できる理想的なスイングになっているか否かを知ることができる。
特開2008-73210号公報
 しかしながら、スイングの癖は個人差が大きいため理想的なスイングも個々に異なり、被験者はインパクト時の情報から理想的なスイングになっていないことがわかっても自分に合った理想的なスイングを試行錯誤しながら見つけなければならないという問題があった。
 本発明は、以上のような問題点に鑑みてなされたものであり、本発明のいくつかの態様によれば、被験者がスイングを改善するために有益な情報を提示することが可能な運動解析方法、運動解析装置、運動解析システム及びプログラムを提供することができる。
 本発明は前述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することが可能である。
 [適用例1]
 本適用例に係る運動解析方法は、慣性センサーの出力を用いて、被験者が運動器具を用いて行ったスイング動作における理想的な打球位置に関する第1位置情報を生成する第1位置情報生成工程と、前記慣性センサーの出力を用いて、前記被験者の打球時における前記運動器具の打撃部の位置に関する第2位置情報を生成する第2位置情報生成工程と、前記第1位置情報と前記第2位置情報とを用いて、前記理想的な打球位置と前記打球時における前記打撃部の位置との差に関する位置差情報を生成する位置差情報生成工程と、を含む。
 運動器具は、例えば、ゴルフクラブ、テニスラケット、野球のバット、ホッケーのスティック等の打球に用いられる器具である。
 慣性センサーは、加速度や角速度等の慣性量を計測可能なセンサーであればよく、例えば、加速度や角速度を計測可能な慣性計測ユニット(IMU:Inertial Measurement Unit)でもよい。また、慣性センサーは、脱着可能であってもよいし、例えば、運動器具に内蔵されるなど、固定されていて取り外すことができないものでもよい。
 第1位置情報は、例えば、スイング動作における、理想的な打球位置の座標及び運動器具が理想的な打球位置となる時刻の少なくとも一方を含んでもよい。また、第2位置情報は、例えば、打球時における打撃部の座標及び被験者が打球した時刻の少なくとも一方を含んでもよい。
 本適用例に係る運動解析方法によれば、被験者がスイングを改善するために有益な情報である、理想的な打球位置と実際の打球位置との差の情報を提示し、被験者にスイングの改善を促すことができる。
 また、本適用例に係る運動解析方法によれば、運動器具に装着された慣性センサーの出力を用いて姿勢差情報を生成することができるので、カメラ等の大型の測定具を用意する必要がなく、計測する場所が大きく制限されない。
 [適用例2]
 上記適用例に係る運動解析方法において、前記理想的な打球位置は、前記スイング動作において前記打撃部の高度が最も低い位置であってもよい。
 本適用例に係る運動解析方法によれば、打撃部の打球位置に対する鉛直方向の入射角がほぼ0°になる位置と実際の打球位置との差の情報を提供し、被験者に、スイングの軌道が打球時に水平となるようにスイングの改善を促すことができる。
 [適用例3]
 上記適用例に係る運動解析方法は、前記第1位置情報生成工程において、前記慣性センサーの出力を用いて、前記スイング動作における前記運動器具の軌跡情報を生成し、前記軌跡情報を用いて前記第1位置情報を生成してもよい。
 本適用例に係る運動解析方法によれば、運動器具の軌跡情報を用いて、理想的な打球位置を比較的容易に特定することができる。
 [適用例4]
 上記適用例に係る運動解析方法は、前記第2位置情報生成工程において、前記慣性センサーの出力の合成値を計算し、当該合成値に基づいて前記打球時を特定してもよい。
 本適用例に係る運動解析方法によれば、慣性センサーの出力の合成値に基づき、被験者が打球したタイミングを比較的容易に特定することができる。
 [適用例5]
 上記適用例に係る運動解析方法は、前記位置差情報を用いて、前記打球時における前記打撃部の位置が前記理想的な打球位置となるための前記被験者のアドレス位置に関するアドバイス情報を生成するアドバイス情報生成工程を含んでもよい。
 本適用例に係る運動解析方法によれば、被験者は、アドバイス情報に基づいて、理想的なアドレス位置を具体的に知ることができる。
 [適用例6]
 上記適用例に係る運動解析方法において、前記慣性センサーは、前記運動器具に装着されてもよい。
 [適用例7]
 上記適用例に係る運動解析方法において、前記運動器具は、ゴルフクラブであってもよい。
 本適用例に係る運動解析方法によれば、被験者にゴルフスイングの改善を促すことができる。
 [適用例8]
 本適用例に係る運動解析装置は、慣性センサーの出力を用いて、被験者が運動器具を用いて行ったスイング動作における理想的な打球位置に関する第1位置情報を生成する第1位置情報生成部と、前記慣性センサーの出力を用いて、前記被験者の打球時における前記運動器具の打撃部の位置に関する第2位置情報を生成する第2位置情報生成部と、前記第1位置情報と前記第2位置情報とを用いて、前記理想的な打球位置と前記打球時における前記打撃部の位置との差に関する位置差情報を生成する位置差情報生成部と、を含む。
 本適用例に係る運動解析装置によれば、理想的な打球位置と実際の打球位置との差の情報を提示し、被験者にスイングの改善を促すことができる。
 また、本適用例に係る運動解析装置によれば、運動器具に装着された慣性センサーの出力を用いて姿勢差情報を生成することができるので、カメラ等の大型の測定具を用意する必要がなく、計測する場所が大きく制限されない。
 [適用例9]
 本適用例に係る運動解析システムは、上記の運動解析装置と、前記慣性センサーと、を含む。
 本適用例に係る運動解析システムによれば、理想的な打球位置と実際の打球位置との差の情報を提示し、被験者にスイングの改善を促すことができる。
 [適用例10]
 本適用例に係るプログラムは、慣性センサーの出力を用いて、被験者が運動器具を用いて行ったスイング動作における理想的な打球位置に関する第1位置情報を生成する第1位置情報生成工程と、前記慣性センサーの出力を用いて、前記被験者の打球時における前記運動器具の打撃部の位置に関する第2位置情報を生成する第2位置情報生成工程と、前記第1位置情報と前記第2位置情報とを用いて、前記理想的な打球位置と前記打球時における前記打撃部の位置との差に関する位置差情報を生成する位置差情報生成工程と、をコンピューターに実行させる。
 本適用例に係るプログラムによれば、理想的な打球位置と実際の打球位置との差の情報を提示し、被験者にスイングの改善を促すことができる。
 また、本適用例に係るプログラムによれば、運動器具に装着された慣性センサーの出力を用いて姿勢差情報を生成することができるので、カメラ等の大型の測定具を用意する必要がなく、計測する場所が大きく制限されない。
本実施形態の運動解析システムの概要の説明図。 センサーユニットの装着位置及び向きの一例を示す図。 本実施形態において被験者が行う動作の手順を示す図。 アタック角について説明するための図。 本実施形態の運動解析システムの構成例を示す図。 本実施形態におけるアドバイス情報生成処理の手順の一例を示すフローチャート図。 ゴルフクラブ3のヘッドの軌跡と実際の打球点との関係の一例を示す図。 ゴルフクラブ3のヘッドの軌跡と実際の打球点との関係の他の一例を示す図。 被験者が打球したタイミングを検出する処理の手順の一例を示すフローチャート図。 図10(A)はスイング時の3軸角速度をグラフ表示した図、図10(B)は3軸角速度のノルムの計算値をグラフ表示した図、図10(C)は3軸角速度のノルムの微分の計算値をグラフ表示した図。 センサーユニットの姿勢を計算する処理の手順の一例を示すフローチャート図。
 以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
 以下では、ゴルフスイングの解析を行う運動解析システム(運動解析装置)を例に挙げて説明する。
 1.運動解析システム
 [運動解析システムの概要]
 図1は、本実施形態の運動解析システムの概要について説明するための図である。本実施形態の運動解析システム1は、センサーユニット10(慣性センサーの一例)及び運動解析装置20を含んで構成されている。
 センサーユニット10は、3軸の各軸方向に生じる加速度と3軸の各軸回りに生じる角速度を計測可能であり、ゴルフクラブ3(運動器具の一例)のシャフトに装着される。シャフトは、ゴルフクラブ3のヘッドを除いた柄の部分であり、グリップ部も含まれる。
 本実施形態では、図2に示すように、センサーユニット10は、3つの検出軸(x軸,y軸,z軸)のうちの1軸、例えばy軸をシャフトの長軸方向に合わせるように装着される。
 被験者2は、あらかじめ決められた手順に従って、ゴルフボール4を打球するスイング動作を行う。図3は、被験者2が行う動作の手順を示す図である。図3に示すように、被験者2は、まず、ゴルフクラブ3を握って、アドレスの姿勢をとり、所定時間以上(例えば、1秒以上)静止する(S1)。次に、被験者2は、スイング動作を行い、ゴルフボール4を打球する(S2)。
 被験者2が図3に示す手順に従ってゴルフボール4を打球する動作を行う間、センサーユニット10は、所定周期(例えば1ms)で3軸加速度と3軸角速度を計測し、計測したデータを順次、運動解析装置20に送信する。センサーユニット10は、計測したデータをすぐに送信してもよいし、計測したデータを内部メモリーに記憶しておき、被験者2のスイング動作の終了後などの所望のタイミングで計測データを送信するようにしてもよい。あるいは、センサーユニット10は、計測したデータをメモリーカード等の着脱可能な記録媒体に記憶しておき、運動解析装置20は、当該記録媒体から計測データを読み出すようにしてもよい。
 運動解析装置20は、センサーユニット10が計測したデータを用いて、被験者2がゴルフクラブ3を用いて行ったスイング動作における理想的な打球位置(理想的な打球点)に関する情報(第1位置情報)及び被験者2の打球時におけるゴルフクラブ3のヘッドの位置(実際の打球点)に関する情報(第2位置情報)を生成する。第1位置情報は、例えば、理想的な打球点の位置座標(後述するXYZ座標系での3次元座標等)を含んでもよいし、スイング動作において理想的な打球点となる時刻を含んでもよい。第2位置情報は、例えば、実際の打球点の位置座標を含んでもよいし、実際の打球点の時刻(インパクトの時刻)を含んでもよい。
 また、運動解析装置20は、第1位置情報と第2位置情報とを用いて、理想的な打球位置(理想的な打球点)と打球時におけるゴルフクラブ3のヘッドの位置(実際の打球点)との差に関する情報(位置差情報)を生成する。位置差情報は、例えば、理想的な打球点の位置座標と実際の打球点の位置座標との差であってもよく、当該位置座標の差が0に近いほど理想的なスイングと言える。
 さらに、運動解析装置20は、位置差情報を用いて、被験者2の打球時におけるゴルフクラブ3のヘッドの位置が理想的な打球位置となるために、被験者2のアドレス位置に関するアドバイス情報を生成し、当該アドバイス情報を画像、音声、振動等により被験者2に提示する。
 なお、センサーユニット10と運動解析装置20との間の通信は、無線通信でもよいし、有線通信でもよい。
 本実施形態では、アタック角がほぼ0°となる位置を理想的な打球点とする。図4は、アタック角の定義について説明するための図である。本実施形態では、打球方向を示すターゲットラインをX軸、X軸に垂直な水平面上の軸をY軸、鉛直上方向(重力加速度の方向と逆方向)をZ軸とするXYZ座標系を定義し、図4にはX軸、Y軸、Z軸が表記されている。ターゲットラインとは、例えば、ボールをまっすぐ飛ばす方向を指す。図4において、点Rはゴルフクラブ3のヘッドがゴルフボールに当たった打球点であり、曲線L1はXZ平面におけるゴルフクラブ3のヘッドのスイング時の軌道の一部であり、直線L2はXZ平面における打球点Rでの曲線L1の接線である。図4に示すように、アタック角は、XY平面SXYに対する直線L2の角度αとして定義される。本実施形態では、直線L2の傾きが負の値の場合(図4に示す場合)はアタック角αが負の値、直線L2の傾きが正の値の場合はアタック角αが正の値とする。すなわち、ヘッドが打球点Rに対して斜め下方向に入射するダウンブローの時はアタック角α<0°であり、ヘッドが打球点Rに対して水平に入射するレベルブローの時はアタック角α=0°であり、ヘッドが打球点Rに対して斜め上方向に入射するアッパーブローの時はアタック角α>0°である。
 打球点Rが、スイング動作におけるゴルフクラブ3のヘッドの軌跡上の最も低い(Z座標が最も小さい)位置(最下点)と一致する時に、アタック角αがほぼ0°となる。すなわち、本実施形態では、ゴルフクラブ3のヘッドの軌跡上の最下点を理想的な打球点とする。
 [運動解析システムの構成]
 図5は、センサーユニット10及び運動解析装置20の構成例を示す図である。図5に示すように、本実施形態では、センサーユニット10は、加速度センサー100、角速度センサー110、信号処理部120及び通信部130を含んで構成されている。
 加速度センサー100は、互いに交差する(理想的には直交する)3軸方向の各々の加速度を計測し、計測した3軸加速度の大きさ及び向きに応じたデジタル信号(加速度データ)を出力する。
 角速度センサー110は、互いに交差する(理想的には直交する)3軸方向の各々の角速度を計測し、計測した3軸角速度の大きさ及び向きに応じたデジタル信号(角速度データ)を出力する。
 信号処理部120は、加速度センサー100と角速度センサー110から、それぞれ加速度データと角速度データを受け取って時刻情報を付して不図示の記憶部に記憶し、記憶した計測データ(加速度データと角速度データ)に時刻情報を付して通信用のフォーマットに合わせたパケットデータを生成し、通信部130に出力する。
 加速度センサー100及び角速度センサー110は、それぞれ3軸が、センサーユニット10に対して定義される直交座標系の3軸(x軸、y軸、z軸)と一致するようにセンサーユニット10に取り付けられるのが理想的だが、実際には取り付け角の誤差が生じる。そこで、信号処理部120は、取り付け角誤差に応じてあらかじめ算出された補正パラメーターを用いて、加速度データ及び角速度データをxyz座標系のデータに変換する処理を行う。
 さらに、信号処理部120は、加速度センサー100及び角速度センサー110の温度補正処理を行う。なお、加速度センサー100及び角速度センサー110に温度補正の機能が組み込まれていてもよい。
 なお、加速度センサー100と角速度センサー110は、アナログ信号を出力するものであってもよく、この場合は、信号処理部120が、加速度センサー100の出力信号と角速度センサー110の出力信号をそれぞれA/D変換して計測データ(加速度データと角速度データ)を生成し、これらを用いて通信用のパケットデータを生成すればよい。
 通信部130は、信号処理部120から受け取ったパケットデータを運動解析装置20に送信する処理や、運動解析装置20から制御コマンドを受信して信号処理部120に送る処理等を行う。信号処理部120は、制御コマンドに応じた各種処理を行う。
 運動解析装置20は、処理部200、通信部210、操作部220、ROM230、RAM240、記録媒体250、表示部260、音出力部270を含んで構成されており、例えば、パーソナルコンピューター(PC)やスマートフォンなどの携帯機器であってもよい。
 通信部210は、センサーユニット10から送信されたパケットデータを受信し、処理部200に送る処理や、処理部200からの制御コマンドをセンサーユニット10に送信する処理等を行う。
 操作部220は、ユーザーからの操作データを取得し、処理部200に送る処理を行う。操作部220は、例えば、タッチパネル型ディスプレイ、ボタン、キー、マイクなどであってもよい。
 ROM230は、処理部200が各種の計算処理や制御処理を行うためのプログラムや、アプリケーション機能を実現するための各種プログラムやデータ等を記憶している。
 RAM240は、処理部200の作業領域として用いられ、ROM230から読み出されたプログラムやデータ、操作部220から入力されたデータ、処理部200が各種プログラムに従って実行した演算結果等を一時的に記憶する記憶部である。
 記録媒体250は、処理部200の処理により生成されたデータのうち、長期的な保存が必要なデータを記憶する不揮発性の記憶部である。また、記録媒体250は、処理部200が各種の計算処理や制御処理を行うためのプログラムや、アプリケーション機能を実現するための各種プログラムやデータ等を記憶していてもよい。
 また、本実施形態では、ROM230、RAM240、あるいは記録媒体250には、ゴルフクラブ3の仕様情報(シャフトの長さ、重心の位置、ライ角、フェース角、ロフト角等の情報)、センサーユニット10の装着位置(ゴルフクラブ3のヘッドあるいはグリップエンドからの距離)の情報、被験者2の腕の長さや重心の位置等の情報が記憶されており、これらの情報は処理部200によって使用される。
 表示部260は、処理部200の処理結果を文字、グラフ、表、アニメーション、その他の画像として表示するものである。表示部260は、例えば、CRT、LCD、タッチパネル型ディスプレイ、HMD(ヘッドマウントディスプレイ)などであってもよい。なお、1つのタッチパネル型ディスプレイで操作部220と表示部260の機能を実現するようにしてもよい。
 音出力部270は、処理部200の処理結果を音声やブザー音等の音として表示するものである。音出力部270は、例えば、スピーカーやブザーなどであってもよい。
 処理部200は、ROM230あるいは記録媒体250に記憶されているプログラム、あるいはネットワークを介してサーバーから受信してRAM240や記録媒体250に記憶したプログラムに従って、センサーユニット10に制御コマンドを送信する処理や、センサーユニット10から通信部210を介して受信したデータに対する各種の計算処理や、その他の各種の制御処理を行う。特に、本実施形態では、処理部200は、当該プログラムを実行することにより、データ取得部201、第1位置情報生成部202、第2位置情報生成部203、位置差情報生成部204、アドバイス情報生成部205、記憶処理部206、表示処理部207及び音出力処理部208として機能する。
 データ取得部201は、通信部210がセンサーユニット10から受信したパケットデータを受け取り、受け取ったパケットデータから時刻情報及び計測データを取得し、記憶処理部206に送る処理を行う。
 記憶処理部206は、データ取得部201から時刻情報と計測データを受け取り、これらを対応づけてRAM240に記憶させる処理を行う。
 第1位置情報生成部202は、センサーユニット10が出力する計測データ(加速度データ及び角速度データ)を用いて、理想的な打球位置(理想的な打球点)に関する第1位置情報を生成する処理を行う。本実施形態では、理想的な打球点はスイング動作中のゴルフクラブ3のヘッドの最下点であるものとする。
 具体的には、第1位置情報生成部202は、まず、RAM240に記憶された時刻情報と計測データを用いて、被験者2がスイング動作を開始する前に行った静止動作(図3のステップS1の動作)を時刻と対応づけて検出する。そして、第1位置情報生成部202は、静止時の計測データを用いてオフセット量を計算し、計測データからオフセット量を減算してバイアス補正し、バイアス補正された計測データを用いて、被験者2のアドレス時(静止動作時)のセンサーユニット10の位置及び姿勢(初期位置及び初期姿勢)を計算する。第1位置情報生成部202は、例えば、センサーユニット10の初期位置をXYZ座標系の原点(0,0,0)とし、被験者2のアドレス時(静止動作時)の加速度データと重力加速度の方向からセンサーユニット10の初期姿勢を計算することができる。センサーユニット10の姿勢は、例えば、X軸、Y軸、Z軸回りの回転角(ロール角、ピッチ角、ヨー角)、クオータ二オン(四元数)などで表現することができる。
 さらに、第1位置情報生成部202は、RAM240に記憶された時刻情報と計測データを用いて、被験者2のスイング動作中(図3のステップS2の動作中)のセンサーユニット10の位置及び姿勢を計算する。第1位置情報生成部202は、加速度データを積分してセンサーユニット10の初期位置からの位置の変化を時系列に計算し、角速度データを用いた回転演算を行ってセンサーユニット10の初期姿勢からの姿勢の変化を時系列に計算することができる。そして、第1位置情報生成部202は、ゴルフクラブ3のシャフトの長さや重心の位置、センサーユニット10の装着位置、ゴルフクラブ3の特徴(剛体である等)や人体の特徴(関節の曲がる方向が決まっている等)を考慮した運動解析モデルを定義し、センサーユニット10の位置及び姿勢の情報、ゴルフクラブ3のシャフトの長さや重心の位置、センサーユニット10の装着位置、被験者2の特徴(腕の長さや重心の位置等)の情報を用いて、この運動解析モデルの軌跡を計算する。そして、第1位置情報生成部202は、運動解析モデルの軌跡から、ゴルフクラブ3のヘッドが最下点にくる時の位置座標を計算し、第1位置情報を生成する。
 なお、センサーユニット10の信号処理部120が、計測データのオフセット量を計算し、計測データのバイアス補正を行うようにしてもよいし、加速度センサー100及び角速度センサー110にバイアス補正の機能が組み込まれていてもよい。これらの場合は、第1位置情報生成部202による計測データのバイアス補正が不要となる。
 第2位置情報生成部203は、センサーユニット10が出力する計測データ(加速度データ及び角速度データの少なくとも一方)を用いて、被験者2の打球時におけるゴルフクラブ3のヘッドの位置(実際の打球点)に関する第2位置情報を生成する処理を行う。具体的には、第2位置情報生成部203は、RAM240に記憶された時刻情報と計測データを用いて、被験者2のスイング動作の期間において打球したタイミング(時刻)を検出し、運動解析モデルの軌跡から実際の打球点の位置座標を計算する。
 位置差情報生成部204は、第1位置情報生成部202が生成した第1位置情報と第2位置情報生成部203が生成した第2位置情報とを用いて、理想的な打球点と実際の打球点との差に関する位置差情報を生成する処理を行う。具体的には、位置差情報生成部204は、ゴルフクラブ3のヘッドの最下点(理想的な打球点)の座標(例えばX座標及びZ座標)と実際の打球点の座標(例えばX座標及びZ座標)との差を計算し、当該座標の差の情報を含む位置差情報を生成する。
 なお、第1位置情報生成部202は、運動解析モデルの軌跡からゴルフクラブ3のヘッドが最下点にくる時刻を計算して当該時刻を含む第1位置情報を生成し、第2位置情報生成部203は、運動解析モデルの軌跡から、最下点から実際の打球点までの(あるいは実際の打球点から最下点までの)時間差及びゴルフクラブ3のヘッドの速度ベクトルを計算し、これらを含む第2位置情報を生成してもよい。この場合、位置差情報生成部204は、最下点から実際の打球点までの(あるいは実際の打球点から最下点までの)時間差と速度ベクトルを掛け算して最下点の座標と実際の打球点の座標との差を計算し、当該座標の差の情報を含む位置差情報を生成してもよい。
 アドバイス情報生成部205は、位置差情報生成部204が生成した位置差情報を用いて、被験者2の打球時におけるゴルフクラブ3のヘッドの位置が理想的な打球点となるための被験者2のアドレス位置に関するアドバイス情報を生成する処理を行う。具体的には、ゴルフクラブ3のヘッドの最下点(理想的な打球点)と実際の打球点との座標の差を用いて、所定の演算を行い、打球時のゴルフクラブ3のヘッドの位置を理想的な打球点と一致させるために、被験者2がどの位置にアドレスすべきかを示すアドバイス情報を生成する。
 アドバイス情報生成部205は、例えば、「3cm後退(前進)してアドレスしてください。」、「3cm右(左)にずれてアドレスしてください。」等のアドバイス情報を生成してもよい。また、例えば、センサーユニット10あるいは運動解析装置20にブザーやLEDを設けておいて、アドバイス情報生成部205は、「ブザーがなるまで(LEDが点灯するまで)後退(前進)してください。」、「ブザーがなるまで(LEDが点灯するまで)右(左)にずれてください」等のアドバイス情報を生成してもよい。
 なお、被験者2の最適なアドレス位置はゴルフクラブ3の種類、被験者2の身体的特徴やスイングの癖等により異なるため、アドバイス情報生成部205は、ゴルフクラブ3の特徴や運動解析モデルの軌跡の情報等も考慮した所定の演算を行い、アドバイス情報を生成してもよい。
 記憶処理部206は、ROM230、RAM240及び記録媒体250に対する各種プログラムや各種データのリード/ライト処理を行う。記憶処理部206は、データ取得部201から受け取った時刻情報と計測データを対応づけてRAM240に記憶させる処理の他、第1位置情報、第2位置情報、位置差情報、アドバイス情報等をRAM240に記憶させ、あるいは、記録として残したい場合は記録媒体250に記憶させる処理も行う。
 表示処理部207は、表示部260に対して各種の画像(文字や記号等も含む)を表示させる処理を行う。例えば、表示処理部207は、被験者2のスイング運動が終了した後、自動的に、あるいは、所定の入力操作が行われたときに、RAM240あるいは記録媒体250に記憶されているアドバイス情報を読み出して表示部260にアドバイス用の画像を表示させる処理を行う。また、表示処理部207は、RAM240あるいは記録媒体250に記憶されている第1位置情報、第2位置情報、位置差情報等を読み出して表示部260に各種の画像を表示させてもよい。あるいは、センサーユニット10に表示部を設けておいて、表示処理部207は、通信部210を介してセンサーユニット10にアドバイス用の画像等を送信し、センサーユニット10の表示部にアドバイス用の画像等を表示させてもよい。
 音出力処理部208は、音出力部270に対して各種の音(音声やブザー音等も含む)を出力させる処理を行う。例えば、音出力処理部208は、被験者2のスイング運動が終了した後、自動的に、あるいは、所定の入力操作が行われたときに、RAM240あるいは記録媒体250に記憶されているアドバイス情報を読み出して音出力部270にアドバイス用の音を出力させてもよい。また、音出力処理部208は、RAM240あるいは記録媒体250に記憶されている第1位置情報、第2位置情報、位置差情報等を読み出して音出力部270に各種の音を出力させてもよい。あるいは、センサーユニット10に音出力部を設けておいて、音出力処理部208は、通信部210を介してセンサーユニット10にアドバイス用の音等を送信し、センサーユニット10の音出力部にアドバイス用の音等を出力させてもよい。
 なお、運動解析装置20あるいはセンサーユニット10の振動機構を設けておいて、当該振動機構によりアドバイス情報等を振動情報に変換して被験者2に提示してもよい。
 [アドバイス情報生成処理]
 図6は、本実施形態における処理部200によるアドバイス情報生成処理の手順の一例を示すフローチャート図である。
 図6に示すように、まず、処理部200は、センサーユニット10の計測データを取得する(S10)。処理部200は、工程S10において、被験者2のスイング運動(静止動作も含む)における最初の計測データを取得するとリアルタイムに工程S20以降の処理を行ってもよいし、センサーユニット10から被験者2のスイング運動における一連の計測データの一部又は全部を取得した後に、工程S20以降の処理を行ってもよい。
 次に、処理部200は、センサーユニット10から取得した計測データを用いて被験者2の静止動作(アドレス動作)(図4のステップS1の動作)を検出する(S20)。処理部200は、リアルタイムに処理を行う場合は、静止動作(アドレス動作)を検出した場合に、例えば、所定の画像や音を出力し、あるいは、センサーユニット10にLEDを設けておいて当該LEDを点灯させる等して、被験者2に静止状態を検出したことを通知し、被験者2は、この通知を確認した後にスイングを開始してもよい。
 次に、処理部200は、センサーユニット10から取得した計測データを用いて、被験者2のアドレス時のセンサーユニット10の初期位置と初期姿勢を計算する(S30)。処理部200は、例えば、センサーユニット10の初期位置をXYZ座標系の原点とし、センサーユニット10が計測する加速度データから重力加速度の方向を特定し、XYZ座標系での初期姿勢を計算する。
 次に、処理部200は、センサーユニット10から取得した計測データ(加速度データ又は角速度データ)を用いて、被験者2が打球したタイミングを検出する(S40)。打球時(インパクト時)には、センサーユニット10に非常に大きな加速度や角速度が加わるため、処理部200は、センサーユニット10の計測データを用いて被験者2が打球したタイミングを検出することができる。
 また、処理部200は、工程S40の処理と並行して、被験者2のスイング動作中のセンサーユニット10の位置と姿勢を計算する処理(S50)、及び、センサーユニット10の位置と姿勢の変化から運動解析モデルの軌跡を計算する処理(S60)を行う。処理部200は、センサーユニット10が計測する加速度データを積分して位置を計算するとともに、センサーユニット10が計測する角速度データを用いて回転計算を行って姿勢を計算し、センサーユニット10の位置及び姿勢、ゴルフクラブ3の仕様情報、センサーユニット10の装着位置、被験者2の特徴情報等を用いて運動解析モデルの軌跡を計算する。
 次に、処理部200は、スイング中の運動解析モデルの軌跡からゴルフクラブ3のヘッドの軌跡を求めてヘッドの最下点の位置座標を計算し、第1位置情報を生成する(S70)。
 次に、処理部200は、運動解析モデルの軌跡と打球した時刻(インパクトの時刻)から実際の打球点の位置座標を計算し、第2位置情報を生成する(S80)。
 次に、処理部200は、第1位置情報と第2位置情報を用いて、ゴルフクラブ3のヘッドの最下点の位置座標と打球点の位置座標との差を計算し、位置差情報を生成する(S90)。
 最後に、処理部200は、位置差情報を用いて、実際の打球点が最下点となるための被験者2のアドレス位置に関するアドバイス情報を生成する(S100)。
 なお、図6のフローチャートにおいて、可能な範囲で各工程の順番を適宜変えてもよい。
 図7(A)及び図7(B)は、右打ちの被験者2がスイングを行った時のダウンスイングからフォロースイングまでのゴルフクラブ3のヘッドの軌跡と実際の打球点との関係の一例を示す図である。図7(A)はゴルフクラブ3の軌跡をXZ平面に投影した図であり、図7(B)はゴルフクラブ3の軌跡をXY平面に投影した図である。図7(A)及び図7(B)において、矢印付きの曲線Lはゴルフクラブ3のヘッドの軌跡であり、曲線Lの始点P0はダウンスイングの開始点、曲線Lの終点P1はフォロースイングの終了点である。また、点R0は曲線Lの最下点(Z座標が最小の位置)であり、点R1は実際の打球点である。最下点R0のXYZ座標を(a0,b0,c0)、実際の打球点R1のXYZ座標を(a1,b1,c1)とすると、最下点R0の位置座標と実際の打球点R1の位置座標との差は(a0-a1,b0-b1,c0-c1)である。図7(A)及び図7(B)の例では、ダウンスイングの開始後、実際の打球点R1に到達する時刻が、ゴルフクラブ3のヘッドが最下点R0に到達する時刻よりも前であり、a0-a1>0かつc0-c1<0の関係になっている。なお、図7(B)では、Z座標が最小の最下点R0でY座標が最大となっているが、この関係が常に成り立つとは限らない。図7(A)及び図7(B)の場合、被験者2が、X軸の正方向にa0-a1だけ移動し、かつ、Y軸の正方向にb0-b1だけ移動した位置で全く同じスイングをすれば、実際の打球点と最下点(理想的な打球点)が一致する。従って、処理部200は、被験者2に、a0-a1だけ左に移動し、かつ、b0-b1だけ前に進んだ位置でアドレスすることをアドバイスするためのアドバイス情報を生成してもよい。
 図8(A)及び図8(B)は、右打ちの被験者2がスイングを行った時のダウンスイングからフォロースイングまでのゴルフクラブ3のヘッドの軌跡と実際の打球点との関係の他の一例を示す図である。図8(A)はゴルフクラブ3の軌跡をXZ平面に投影した図であり、図8(B)はゴルフクラブ3の軌跡をXY平面に投影した図である。図8(A)及び図8(B)において、矢印付きの曲線Lはゴルフクラブ3のヘッドの軌跡であり、曲線Lの始点P0はダウンスイングの開始点、曲線Lの終点P1はフォロースイングの終了点である。また、点R0は曲線Lの最下点(Z座標が最小の位置)であり、点R2は実際の打球点である。最下点R0のXYZ座標を(a0,b0,c0)、実際の打球点R2のXYZ座標を(a2,b2,c2)とすると、最下点R0の座標と実際の打球点R2の座標との差は(a0-a2,b0-b2,c0-c2)である。図8(A)及び図8(B)の例では、ダウンスイングの開始後、実際の打球点R2に到達する時刻が、ゴルフクラブ3のヘッドが最下点R0に到達する時刻よりも後であり、a0-a2<0かつc0-c1<0の関係になっている。なお、図8(B)では、Z座標が最小の最下点R0でY座標が最大となっているが、この関係が常に成り立つとは限らない。図8(A)及び図8(B)の場合、被験者2が、X軸の負方向にa2-a0だけ移動し、かつ、Y軸の正方向にb0-b2だけ移動した位置で全く同じスイングをすれば、実際の打球点と最下点(理想的な打球点)が一致する。従って、処理部200は、被験者2に、a2-a0だけ右に移動し、かつ、b0-b1だけ前に進んだ位置でアドレスすることをアドバイスするためのアドバイス情報を生成してもよい。
 [インパクト検出処理]
 図9は、被験者2が打球したタイミングを検出する処理(図6の工程S40の処理)の手順の一例を示すフローチャート図である。
 図9に示すように、まず、処理部200は、取得した角速度データ(時刻t毎の角速度データ)を用いて各時刻tでの角速度のノルムn0(t)の値(慣性センサーの出力の合成値の一例)を計算する(S200)。例えば、時刻tでの角速度データをx(t)、y(t)、z(t)とすると、角速度のノルムn0(t)は、次の式(1)で計算される。
Figure JPOXMLDOC01-appb-M000001
 被験者2がスイングを行ってゴルフボール4を打ったときの3軸角速度データx(t)、y(t)、z(t)の一例を、図10(A)に示す。図10(A)において、横軸は時間(msec)、縦軸は角速度(dps)である。
 次に、処理部200は、各時刻tでの角速度のノルムn0(t)を所定範囲に正規化(スケール変換)したノルムn(t)に変換する(S210)。例えば、計測データの取得期間における角速度のノルムの最大値をmax(n0)とすると、次の式(2)により、角速度のノルムn0(t)が0~100の範囲に正規化したノルムn(t)に変換される。
Figure JPOXMLDOC01-appb-M000002
 図10(B)は、図10(A)の3軸角速度データx(t),y(t),z(t)から3軸角速度のノルムn0(t)を式(1)に従って計算した後に式(2)に従って0~100に正規化したノルムn(t)をグラフ表示した図である。図10(B)において、横軸は時間(msec)、縦軸は角速度のノルムである。
 次に、処理部200は、各時刻tでの正規化後のノルムn(t)の微分dn(t)を計算する(S220)。例えば、3軸角速度データの計測周期をΔtとすると、時刻tでの角速度のノルムの微分(差分)dn(t)は次の式(3)で計算される。
Figure JPOXMLDOC01-appb-M000003
 図10(C)は、図10(B)の3軸角速度のノルムn(t)からその微分dn(t)を式(3)に従って計算し、グラフ表示した図である。図10(C)において、横軸は時間(msec)、縦軸は3軸角速度のノルムの微分値である。なお、図10(A)及び図10(B)では横軸を0~5秒で表示しているが、図10(C)では、打球の前後の微分値の変化がわかるように、横軸を2秒~2.8秒で表示している。
 最後に、処理部200は、ノルムの微分dn(t)の値が最大となる時刻と最小となる時刻のうち、先の時刻を打球のタイミングとして検出する(S230)。通常のゴルフスイングでは、打球の瞬間にスイング速度が最大になると考えられる。そして、スイング速度に応じて角速度のノルムの値も変化すると考えられるので、一連のスイング動作の中で角速度のノルムの微分値が最大又は最小となるタイミング(すなわち、角速度のノルムの微分値が正の最大値又は負の最小値になるタイミング)を打球(インパクト)のタイミングとして捉えることができる。なお、打球によりゴルフクラブ3が振動するため、角速度のノルムの微分値が最大となるタイミングと最小となるタイミングが対になって生じると考えられるが、そのうちの先のタイミングが打球の瞬間と考えられる。従って、例えば、図10(C)のグラフでは、T1とT2のうち、T1が打球のタイミングとして検出される。
 なお、被験者2がスイング動作を行う場合、トップ位置でゴルフクラブを静止し、ダウンスイングを行い、打球し、フォロースルーを行うといった一連のリズムが想定される。従って、処理部200は、図9のフローチャートに従って、被験者2が打球したタイミングの候補を検出し、検出したタイミングの前後の計測データがこのリズムとマッチするか否かを判定し、マッチする場合には、検出したタイミングを被験者2が打球したタイミングとして確定し、マッチしない場合には、次の候補を検出するようにしてもよい。
 また、図9のフローチャートでは、処理部200は、3軸角速度データを用いて打球のタイミングを検出しているが、3軸加速度データを用いて、同様に打球のタイミングを検出することもできる。
 [センサーユニットの姿勢計算処理]
 図11は、センサーユニット10の姿勢(初期姿勢及び時刻Nでの姿勢)を計算する処理(図6の工程S30及び工程S50の一部の処理)の手順の一例を示すフローチャート図である。
 図11に示すように、まず、処理部200は、時刻t=0として(S300)、静止時の3軸加速度データから重力加速度の向きを特定し、センサーユニット10の初期姿勢(時刻t=0の姿勢)を表すクォータニオンp(0)を計算する(S310)。
 また、回転を表すクォータニオンqは次の式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 式(4)において、対象とする回転の回転角をθ、回転軸の単位ベクトルを(rx,ry,rz)とすると、w,x,y,zは、次の式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 時刻t=0ではセンサーユニット10は静止しているのでθ=0として、時刻t=0での回転を表すクォータニオンq(0)は、式(5)にθ=0を代入した式(4)より、次の式(6)のようになる。
Figure JPOXMLDOC01-appb-M000006
 次に、処理部200は、時刻tをt+1に更新する(S320)。ここでは、時刻t=0なので時刻t=1に更新する。
 次に、処理部200は、時刻tの3軸角速度データから、時刻tの単位時間あたりの回転を表すクォータニオンΔq(t)を計算する(S330)。
 例えば、時刻tの3軸角速度データをω(t)=(ωx(t),ωy(t),ωz(t))とすると、時刻tで計測された1サンプルあたりの角速度の大きさ|ω(t)|は、次の式(7)で計算される。
Figure JPOXMLDOC01-appb-M000007
 この角速度の大きさ|ω(t)|は、単位時間当たりの回転角度となっているため、時刻tの単位時間あたりの回転を表すクォータニオンΔq(t+1)は、次の式(8)で計算される。
Figure JPOXMLDOC01-appb-M000008
 ここでは、t=1なので、処理部200は、時刻t=1の3軸角速度データω(1)=(ωx(1),ωy(1),ωz(1))から、式(8)により、Δq(1)を計算する。
 次に、処理部200は、時刻0からtまでの回転を表すクォータニオンq(t)を計算する(S340)。クォータニオンq(t)は、次の式(9)で計算される。
Figure JPOXMLDOC01-appb-M000009
 ここでは、t=1なので、処理部200は、式(6)のq(0)と工程S330で計算したΔq(1)から、式(10)により、q(1)を計算する。
 次に、処理部200は、t=Nになるまで工程S320~S340の処理を繰り返し、t=Nになると(S350のY)、工程S310で計算した初期姿勢を表すクォータニオンp(0)と直近の工程S340で計算した時刻t=0からNまでの回転を表すクォータニオンq(N)とから、時刻Nでの姿勢を表すクォータニオンp(N)を計算し(S360)、処理を終了する。
 処理部200は、図11のフローチャートの手順により、被験者2が打球した時刻を時刻Nとして、打球時のセンサーユニット10の姿勢を計算する。
 以上に説明したように、本実施形態の運動解析システム1あるいは運動解析装置20によれば、被験者2に、スイング動作におけるゴルフクラブ3のヘッドの理想的な打球点と実際の打球点との差の情報に基づく理想的なアドレス位置に関するアドバイス情報を提示するので、被験者2は、アドバイス情報に基づいて、理想的なアドレス位置を具体的に知ることができる。これにより、被験者2にゴルフスイングの改善を促すことができる。
 特に、本実施形態の運動解析システム1あるいは運動解析装置20によれば、スイング動作中のゴルフクラブ3のヘッドの最下点を理想的な打球点としてアドバイス情報を提示するので、被験者2は、アタック角をほぼ0にするための理想的なアドレス位置を知ることができる。これにより、被験者2に、スイングの軌道が打球時に水平となるようにスイングの改善を促すことができる。
 また、本実施形態の運動解析システム1あるいは運動解析装置20によれば、ゴルフクラブ3に装着されたセンサーユニット10の計測データを用いてアドバイス情報を生成することができるので、カメラ等の大型の測定具を用意する必要がなく、計測する場所が大きく制限されない。
 2.変形例
 本発明は本実施形態に限定されず、本発明の要旨の範囲内で種々の変形実施が可能である。
 例えば、上述した実施形態では、被験者2のスイング動作において、ゴルフクラブ3のヘッドの軌跡において、最下点(Z座標が最も小さい位置)を理想的な打球点としたが、これに限らず、例えば、被験者2から水平方向に最も遠い位置(Y座標が最も大きい位置)を理想的な打球点としてもよい。あるいは、ゴルフクラブ3のヘッドの軌跡において、Z座標が最も小さい位置とY座標が最も大きい位置との間のいずれかの位置(例えば中点の位置)を理想的な打球点としてもよい。あるいは、XZ平面において、ゴルフクラブ3のヘッドの軌跡の接線が0となる位置を理想的な打球点としてもよく、このようにすれば、運動解析装置20は、アタック角が正確に0°となるようなアドレス位置をアドバイスすることができる。
 また、上述した実施形態では、ゴルフスイングに関するアドバイス情報を生成する運動解析システム(運動解析装置)を例に挙げたが、本発明は、被験者の静止時のテニスや野球などの様々な運動のスイングに関するアドバイス情報を生成する運動解析システム(運動解析装置)に適用することができる。
 また、上述した実施形態では、運動解析装置20は、1つのセンサーユニット10の計測データを用いて運動解析モデルの軌跡の計算を行っているが、複数のセンサーユニット10の各々をゴルフクラブ3又は被験者2に装着し、運動解析装置20は、当該複数のセンサーユニット10の計測データを用いて運動解析モデルの軌跡の計算を行ってもよい。
 また、上述した実施形態では、センサーユニット10と運動解析装置20が別体であるが、これらを一体化して運動器具又は被験者に装着可能な運動解析装置であってもよい。
 上述した各実施形態および各変形例は一例であって、これらに限定されるわけではない。例えば、各実施形態および各変形例を適宜組み合わせることも可能である。
 本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
 1 運動解析システム、2 被験者、3 ゴルフクラブ、4 ゴルフボール、10 センサーユニット、20 運動解析装置、100 加速度センサー、110 角速度センサー、120 信号処理部、130 通信部、200 処理部、201 データ取得部、202 第1位置情報生成部、203 第2位置情報生成部、204 位置差情報生成部、205 アドバイス情報生成部、206 記憶処理部、207 表示処理部、208 音出力処理部、210 通信部、220 操作部、230 ROM、240 RAM、250 記録媒体、260 表示部、270 音出力部。

Claims (10)

  1.  慣性センサーの出力を用いて、被験者が運動器具を用いて行ったスイング動作における理想的な打球位置に関する第1位置情報を生成する第1位置情報生成工程と、
     前記慣性センサーの出力を用いて、前記被験者の打球時における前記運動器具の打撃部の位置に関する第2位置情報を生成する第2位置情報生成工程と、
     前記第1位置情報と前記第2位置情報とを用いて、前記理想的な打球位置と前記打球時における前記打撃部の位置との差に関する位置差情報を生成する位置差情報生成工程と、を含む、運動解析方法。
  2.  前記理想的な打球位置は、
     前記スイング動作において前記打撃部の高度が最も低い位置である、請求項1に記載の運動解析方法。
  3.  前記第1位置情報生成工程において、
     前記慣性センサーの出力を用いて、前記スイング動作における前記運動器具の軌跡情報を生成し、前記軌跡情報を用いて前記第1位置情報を生成する、請求項1又は2に記載の運動解析方法。
  4.  前記第2位置情報生成工程において、
     前記慣性センサーの出力の合成値を計算し、当該合成値に基づいて前記打球時を特定する、請求項1乃至3のいずれか一項に記載の運動解析方法。
  5.  前記位置差情報を用いて、前記打球時における前記打撃部の位置が前記理想的な打球位置となるための前記被験者のアドレス位置に関するアドバイス情報を生成するアドバイス情報生成工程を含む、請求項1乃至4のいずれか一項に記載の運動解析方法。
  6.  前記慣性センサーは、前記運動器具に装着される、請求項1乃至5のいずれか一項に記載の運動解析方法。
  7.  前記運動器具は、ゴルフクラブである、請求項1乃至6のいずれか一項に記載の運動解析方法。
  8.  慣性センサーの出力を用いて、被験者が運動器具を用いて行ったスイング動作における理想的な打球位置に関する第1位置情報を生成する第1位置情報生成部と、
     前記慣性センサーの出力を用いて、前記被験者の打球時における前記運動器具の打撃部の位置に関する第2位置情報を生成する第2位置情報生成部と、
     前記第1位置情報と前記第2位置情報とを用いて、前記理想的な打球位置と前記打球時における前記打撃部の位置との差に関する位置差情報を生成する位置差情報生成部と、を含む、運動解析装置。
  9.  請求項8に記載の運動解析装置と、前記慣性センサーと、を含む、運動解析システム。
  10.  慣性センサーの出力を用いて、被験者が運動器具を用いて行ったスイング動作における理想的な打球位置に関する第1位置情報を生成する第1位置情報生成工程と、
     前記慣性センサーの出力を用いて、前記被験者の打球時における前記運動器具の打撃部の位置に関する第2位置情報を生成する第2位置情報生成工程と、
     前記第1位置情報と前記第2位置情報とを用いて、前記理想的な打球位置と前記打球時における前記打撃部の位置との差に関する位置差情報を生成する位置差情報生成工程と、をコンピューターに実行させる、プログラム。
PCT/JP2015/001248 2014-03-17 2015-03-09 運動解析方法、運動解析装置、運動解析システム及びプログラム WO2015141172A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/114,257 US20170004729A1 (en) 2014-03-17 2015-03-09 Motion analysis method, motion analysis apparatus, motion analysis system, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014053333A JP6315181B2 (ja) 2014-03-17 2014-03-17 運動解析方法、運動解析装置、運動解析システム及びプログラム
JP2014-053333 2014-03-17

Publications (1)

Publication Number Publication Date
WO2015141172A1 true WO2015141172A1 (ja) 2015-09-24

Family

ID=54144159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001248 WO2015141172A1 (ja) 2014-03-17 2015-03-09 運動解析方法、運動解析装置、運動解析システム及びプログラム

Country Status (3)

Country Link
US (1) US20170004729A1 (ja)
JP (1) JP6315181B2 (ja)
WO (1) WO2015141172A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7789742B1 (en) * 1999-05-12 2010-09-07 Wilbert Q. Murdock Smart golf club multiplayer system for the internet
US11117033B2 (en) * 2010-04-26 2021-09-14 Wilbert Quinc Murdock Smart system for display of dynamic movement parameters in sports and training
US11504605B2 (en) * 2020-01-17 2022-11-22 Claw Revolution LLC Sensor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073210A (ja) * 2006-09-21 2008-04-03 Seiko Epson Corp ゴルフクラブ、そのスイング評価支援装置
JP2012254206A (ja) * 2011-06-09 2012-12-27 Seiko Epson Corp スイング分析装置、スイング分析プログラム、および記録媒体
US20130029791A1 (en) * 2011-07-27 2013-01-31 Leland Stanford Jr. University Methods for analyzing and providing feedback for improved power generation in a golf swing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1846115A4 (en) * 2005-01-26 2012-04-25 Bentley Kinetics Inc METHOD AND SYSTEM FOR ANALYZING AND TEACHING ATHLETIC MOVEMENT
US8398502B2 (en) * 2007-11-27 2013-03-19 Mugen Inc. Hitting position detecting device, hitting position detecting method, and method of manufacturing hitting position detecting device
JP2009240677A (ja) * 2008-03-31 2009-10-22 Mizuno Corp スイング分析装置
JP2013532006A (ja) * 2010-05-25 2013-08-15 ホール,ブライアー,クリスティアン スイングフィードバック装置
DE102012224321B4 (de) * 2012-12-21 2022-12-15 Applejack 199 L.P. Messvorrichtung zum Erfassen einer Schlagbewegung eines Schlägers, Trainingsvorrichtung und Verfahren zum Training einer Schlagbewegung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073210A (ja) * 2006-09-21 2008-04-03 Seiko Epson Corp ゴルフクラブ、そのスイング評価支援装置
JP2012254206A (ja) * 2011-06-09 2012-12-27 Seiko Epson Corp スイング分析装置、スイング分析プログラム、および記録媒体
US20130029791A1 (en) * 2011-07-27 2013-01-31 Leland Stanford Jr. University Methods for analyzing and providing feedback for improved power generation in a golf swing

Also Published As

Publication number Publication date
US20170004729A1 (en) 2017-01-05
JP2015173865A (ja) 2015-10-05
JP6315181B2 (ja) 2018-04-25

Similar Documents

Publication Publication Date Title
WO2015141173A1 (ja) 運動解析方法、運動解析装置、運動解析システム及びプログラム
JP6696109B2 (ja) 運動解析装置、運動解析システム、運動解析方法及びプログラム
US9962591B2 (en) Motion analysis method, program, and motion analysis device
JP6547300B2 (ja) 運動解析装置、運動解析方法、プログラム、及び運動解析システム
JP6613684B2 (ja) スイング診断方法、スイング診断プログラム、記録媒体、スイング診断装置及びスイング診断システム
TW201501752A (zh) 運動解析方法及運動解析裝置
JP2015156882A (ja) 運動解析装置及び運動解析システム
US20160089568A1 (en) Exercise analysis device, exercise analysis system, exercise analysis method, and program
JP6380733B2 (ja) 運動解析装置、運動解析システム、運動解析方法、運動解析情報の表示方法及びプログラム
JP2017023639A (ja) スイング診断装置、スイング診断システム、スイング診断方法、スイング診断プログラム及び記録媒体
JP2017029516A (ja) ゴルフスイング解析装置
JP2017023638A (ja) スイング診断装置、スイング診断システム、スイング診断方法、スイング診断プログラム及び記録媒体
WO2015146062A1 (ja) 運動解析方法、運動解析装置、運動解析システム及びプログラム
JP2016067408A (ja) センサー、演算装置、運動計測方法、運動計測システム及びプログラム
US10384099B2 (en) Motion analysis method and display method
JP2017124078A (ja) 表示方法、表示装置、運動解析システム、運動解析プログラム、および記録媒体
JP6315181B2 (ja) 運動解析方法、運動解析装置、運動解析システム及びプログラム
JP2016116720A (ja) 運動解析装置、運動解析システム、運動解析方法及びプログラム
JP2016116613A (ja) 運動解析装置、運動解析システム、運動解析方法、及びプログラム
JP2016055028A (ja) 運動解析方法、運動解析装置、運動解析システム及びプログラム
JP2015156893A (ja) 傾斜角計測方法、傾斜角計測装置、傾斜角計測システム及びプログラム
JP2016030123A (ja) 運動解析方法、運動解析装置及びプログラム
KR20160076486A (ko) 운동 해석 장치, 운동 해석 시스템, 운동 해석 방법, 표시 장치 및 기록 매체
JP2016116745A (ja) 傾き判定装置、傾き判定システム、傾き判定方法及びプログラム
JP2018143404A (ja) 運動解析装置、運動解析方法、運動解析システムおよび表示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764142

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15114257

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764142

Country of ref document: EP

Kind code of ref document: A1