WO2015141152A1 - タイヤ状態検出装置 - Google Patents

タイヤ状態検出装置 Download PDF

Info

Publication number
WO2015141152A1
WO2015141152A1 PCT/JP2015/001004 JP2015001004W WO2015141152A1 WO 2015141152 A1 WO2015141152 A1 WO 2015141152A1 JP 2015001004 W JP2015001004 W JP 2015001004W WO 2015141152 A1 WO2015141152 A1 WO 2015141152A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
air pressure
unit
contact length
vehicle
Prior art date
Application number
PCT/JP2015/001004
Other languages
English (en)
French (fr)
Inventor
洋一朗 鈴木
高岡 彰
齋藤 隆
渡部 宣哉
雅士 森
高俊 関澤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/122,820 priority Critical patent/US9713944B2/en
Publication of WO2015141152A1 publication Critical patent/WO2015141152A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • B60C23/064Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle comprising tyre mounted deformation sensors, e.g. to determine road contact area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C25/00Apparatus or tools adapted for mounting, removing or inspecting tyres
    • B60C25/002Inspecting tyres
    • B60C25/007Inspecting tyres outside surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C25/00Apparatus or tools adapted for mounting, removing or inspecting tyres
    • B60C25/01Apparatus or tools adapted for mounting, removing or inspecting tyres for removing tyres from or mounting tyres on wheels
    • B60C25/05Machines
    • B60C25/0548Machines equipped with sensing means, e.g. for positioning, measuring or controlling
    • B60C25/0551Machines equipped with sensing means, e.g. for positioning, measuring or controlling mechanical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L17/00Devices or apparatus for measuring tyre pressure or the pressure in other inflated bodies

Definitions

  • the present disclosure relates to a tire state detection device that detects a decrease in tire air pressure based on a detection signal from a vibration detection unit provided in a tire.
  • Patent Document 1 a technique has been proposed in which an acceleration sensor is embedded in the back surface of a tire tread and tire pressure is estimated based on a detection signal of the acceleration sensor. Specifically, when an acceleration sensor using the piezoresistive effect is embedded in the back surface of the tire tread, the timing corresponding to the location where the acceleration sensor is arranged in the tire tread and the timing at which it does not come into contact with the tire rotation. A vibration peak is placed on the detection signal (hereinafter, the timing of grounding is referred to as the start of grounding, and the timing at which the grounding stops is referred to as the end of grounding).
  • the contact length corresponding to the length in the tire traveling direction of the tire contact surface is calculated from the distance between two vibration peaks generated at the start of contact and the end of contact and the vehicle speed, and the length of the contact length is calculated.
  • the tire pressure is estimated based on the above.
  • an object of the present disclosure is to provide a tire state detection device that can accurately detect a decrease in tire air pressure regardless of a tire type.
  • the tire condition detection device is configured to include a tire-side device and a vehicle-side device,
  • the tire-side device is attached to the rear surface of the tread in the tire, and outputs a detection signal corresponding to the magnitude of the tire vibration, and the tread during one rotation of the tire based on the detection signal of the vibration detection unit.
  • the vehicle-side device includes a receiver that receives data representing the contact time transmitted from the transmitter, a calculation unit that calculates the tire contact length based on the data representing the contact time and the vehicle speed, and the tire air pressure is A change recognition unit for recognizing that a changeable situation has occurred, and a tire that is calculated from data representing the contact time at the start of vehicle travel after the occurrence of a situation in which the tire air pressure can change is recognized And a determination unit that determines a decrease in tire air pressure based on a relative change from the reference contact length of the tire contact length calculated during traveling of the vehicle.
  • the data representing the tire contact time is transmitted from the tire side device, received by the vehicle side device, the tire contact time is calculated, and the tire contact length at that time is calculated. Yes.
  • the tire pressure can change, such as when changing tires
  • the contact length at that time is taken as the reference contact length, and the tire contact length calculated while the vehicle is running is relative to the reference contact length.
  • a decrease in tire air pressure is determined based on the change.
  • it is possible to set a relative determination reference value corresponding to the tire type and it is possible to reduce variation in the decrease rate of the tire air pressure when it is determined that the tire air pressure has decreased. Therefore, it is possible to accurately detect a decrease in tire air pressure regardless of the tire type.
  • the tire condition detection device detects a decrease in tire air pressure based on the contact length of the contact surface of the tire provided on each wheel of the vehicle, that is, the length of the contact surface in the tire traveling direction. Used.
  • the tire condition detection device 100 has a tire-side device 1 provided on the tire side and a vehicle-side device 2 provided on the vehicle body side. Then, the tire state detection device 100 transmits the contact time data as data related to the tire air pressure from the tire side device 1.
  • the tire condition detection device 100 receives data transmitted from the tire-side device 1 by the vehicle-side device 2, and detects a decrease in tire air pressure based on the data.
  • the tire side device 1 and the vehicle side device 2 are configured as follows.
  • the tire side device 1 is configured to include a vibration power generation element 11, a power supply circuit 12, a signal processing unit 13, and a transmitter 14, and as illustrated in FIG. 2, Provided on the back side of the tread 31.
  • the vibration power generation element 11 outputs a detection signal corresponding to the vibration in the direction in contact with the circular orbit drawn by the tire side device 1 when the tire 3 rotates, that is, in the tire tangential direction (direction of arrow X in FIG. 2).
  • the vibration energy is converted into electric energy, and the power source of the tire side device 1 is generated based on the vibration energy. ing.
  • the vibration power generation element 11 is disposed so as to generate power with respect to vibration in the tire tangential direction.
  • an electrostatic induction type power generation element for example, an electrostatic induction type power generation element (electret), a piezoelectric element, a friction type, a magnetostriction type, or an electromagnetic induction type element can be applied.
  • other devices such as an acceleration sensor may be used as long as the detection signal corresponding to the vibration in the tire tangential direction not taking into account the power generation application is output.
  • an electrostatic induction type power generation element when used as the vibration power generation element 11, if the upper electrode charged positively by electrostatic induction is vibrated in the horizontal direction with respect to the lower electrode having a negative charge, Electricity is generated by changing the electric charge due to electrical induction and generating electromotive force. Based on such power generation by the vibration power generation element 11, the power source of the tire side device 1 is generated, and a detection signal corresponding to the magnitude of vibration in the tire tangential direction is generated.
  • the vibration power generation element 11 when the vehicle equipped with the tire condition detection device 100 travels, vibrations occur in the tread 31 of the tire 3 due to various factors such as the rotational movement of the tire 3 and the unevenness of the road surface.
  • this vibration is transmitted to the vibration power generation element 11, power generation by the vibration power generation element 11 is performed.
  • the power source of the tire side device 1 By transmitting the generated power to the power supply circuit 12, the power source of the tire side device 1 is generated.
  • the output voltage at the time of the electric power generation of the vibration power generation element 11 changes according to the magnitude
  • the output voltage of the vibration power generation element 11 is an alternating voltage because the upper electrode reciprocates due to vibration.
  • the power supply circuit 12 is a circuit for storing power based on the output voltage of the vibration power generation element 11 to generate a power source and supplying power to the signal processing unit 13 and the transmitter 14, and includes a rectifier circuit 12a and a power storage circuit 12b. It is set as the structure provided with.
  • the rectifier circuit 12a is a known circuit that converts an alternating voltage output from the vibration power generation element 11 into a direct current.
  • the AC voltage output from the vibration power generation element 11 is DC converted by the rectifier circuit 12a and output to the power storage circuit 12b.
  • the rectifier circuit 12a may be a full-wave rectifier circuit or a half-wave rectifier circuit.
  • the storage circuit 12b is a circuit for storing the DC voltage applied from the rectifier circuit 12a, and is constituted by a capacitor or the like.
  • the output voltage of the vibration power generation element 11 is stored in the storage circuit 12b via the rectifier circuit 12a.
  • Power is supplied to the signal processing unit 13 and the transmitter 14 included in the tire-side device 1 using the voltage stored in the power storage circuit 12b as a power source.
  • the power supply circuit 12 includes the power storage circuit 12b, when the vibration power generation element 11 is generating excessive power, the surplus is stored, and when the power generation amount is insufficient, the shortage is stored. It comes to be able to compensate.
  • the signal processing unit 13 corresponds to the signal processing unit, and uses the output voltage of the vibration power generation element 11 as a detection signal representing vibration data in the tire tangential direction.
  • the signal processing unit 13 processes the detection signal to obtain data relating to tire air pressure and transmits it to the transmitter 14. That is, the signal processing unit 13 measures the ground contact time of the vibration power generation element 11 when the tire 3 rotates based on the time change of the output voltage of the vibration power generation element 11. That is, the signal processing unit 13 measures the contact time of the portion of the tread 31 of the tire 3 corresponding to the location where the vibration power generation element 11 is disposed. Since the ground contact time of the vibration power generation element 11 is data relating to the ground contact length on the ground contact surface of the tire 3 and data representing tire air pressure, the data representing the ground contact time is transmitted to the transmitter 14.
  • the signal processing unit 13 is configured by a known microcomputer including a CPU, a ROM, a RAM, an I / O, and the like, and performs the above processing according to a program stored in the ROM. And the signal processing part 13 is provided with the peak detection part 13a and the contact time measurement part 13b as a function part which performs those processes.
  • the peak detector 13a detects the peak value of the detection signal represented by the output voltage of the vibration power generation element 11.
  • the output voltage waveform of the vibration power generation element 11 during tire rotation is, for example, the waveform shown in FIG.
  • the output voltage of the vibration power generation element 11 reaches the maximum value at the start of grounding when the portion corresponding to the arrangement position of the vibration power generation element 11 of the tread 31 starts to ground as the tire 3 rotates.
  • the peak detector 13a detects the start of grounding at which the output voltage of the vibration power generation element 11 takes a maximum value as the timing of the first peak value. Further, as shown in FIG.
  • the portion of the tread 31 corresponding to the position where the vibration power generation element 11 is disposed is grounded from the state where the vibration power generation element 11 is not grounded.
  • Output voltage takes the minimum value.
  • the peak detector 13a detects the end of grounding when the output voltage of the vibration power generation element 11 takes a minimum value as the timing of the second peak value.
  • the reason why the vibration power generation element 11 takes the peak value at the above timing is as follows. That is, when the portion of the tread 31 corresponding to the placement location of the vibration power generation element 11 comes into contact with the rotation of the tire 3, the portion of the tire 3 that has been substantially cylindrical in the vicinity of the vibration power generation element 11 is It is pressed and deformed into a flat shape. By receiving the impact at this time, the output voltage of the vibration power generation element 11 takes the first peak value. In addition, when the portion of the tread 31 corresponding to the location where the vibration power generation element 11 is disposed with the rotation of the tire 3 is separated from the ground contact surface, the tire 3 is released from the press in the vicinity of the vibration power generation element 11 and is planar. To return to a substantially cylindrical shape.
  • the output voltage of the vibration power generation element 11 takes the second peak value.
  • the vibration power generation element 11 takes the first and second peak values when the grounding starts and when the grounding ends, respectively.
  • the sign of the output voltage is also opposite.
  • the peak detection unit 13a extracts detection signal data including the timings of the first and second peak values and transmits them to the ground contact time measurement unit 13b.
  • the detection signal data including the timing of the first and second peak values indicates the detection signal itself during a predetermined period including the period from the first peak value to the second peak value.
  • the time setting for a predetermined period including the period from the first peak value to the second peak value can be set to, for example, one rotation of the tire.
  • the vehicle speed at which the tire pressure reduction is to be detected for example, when the vehicle speed range is 40 to 120 km / h or less, and the time required for at least one rotation of the tire in the speed range is entered. Yes.
  • a time for example, 250 ms in which the tire makes one revolution or more at a minimum speed of 40 km / h is set. Further, it may be from the timing when the first peak value is reached to the timing when the first peak value is next set.
  • the detection signal data including the timings of the first and second peak values are extracted and transmitted to the contact time measuring unit 13b by the peak detection unit 13a, but the first and second peak values are obtained. Only the data relating to the timing may be transmitted to the contact time measuring unit 13b.
  • the grounding time measurement unit 13b measures the grounding time of the vibration power generation element 11 based on the data transmitted from the peak detection unit 13a. Specifically, the contact time measurement unit 13b measures the time interval between the timing of the first peak value and the timing of the second peak value from the data transmitted from the peak detection unit 13a. Thereby, the grounding time of the vibration power generation element 11 is measured. At this time, when a plurality of first peak values and second peak values are included in the transmitted data, for example, the timing of the maximum value of the first peak values and the second peak value immediately thereafter The time interval between the timings is measured. Conversely, when the transmitted data includes a plurality of first peak values and second peak values, the timing of the smallest one of the second peak values and the timing of the first peak value immediately before the second peak value are included. You may measure the time interval between.
  • the maximum value is detected as the first peak value.
  • a minimum value is detected from a certain time after the timing of the maximum value, for example, a time shorter than one rotation of the tire of 120 km / h and longer than a contact time assumed at 40 km / h (for example, 30 ms). It detects as a 2nd peak value.
  • the time difference between the timing at which the first peak value is reached and the timing at which the second peak value is reached can be set as the ground contact time.
  • the grounding time of the vibration power generation element 11 is measured by the peak detection unit 13a and the grounding time measurement unit 13b. Then, the signal processing unit 13 outputs the contact time data, which is data related to the contact time, to the transmitter 14 as data related to the contact length, that is, data representing the tire pressure.
  • the transmitter 14 transmits data representing the contact time transmitted from the signal processing unit 13 to the vehicle side device 2.
  • Communication between the transmitter 14 and the receiver 21 included in the vehicle-side device 2 can be performed by a known short-range wireless communication technology such as Bluetooth (registered trademark).
  • the timing for transmitting the data representing the contact time is arbitrary, but may be, for example, when the contact time per rotation of the tire 3 can be acquired. Moreover, it is good also as a structure which transmits, after accumulating the data for multiple rotations of the tire 3. FIG. In that case, since the operating rate of the transmitter 14 can be suppressed, the power consumed by the transmitter 14 can be reduced.
  • the data representing the contact time is sent together with the unique recognition information (ID information) of the wheels provided in advance for each tire 3 provided in the vehicle.
  • ID information unique recognition information
  • the position of each wheel can be specified by a well-known wheel position detection device that detects where the wheel is attached to the vehicle, so by transmitting data representing the ground contact time together with the ID information to the vehicle side device 2, It is possible to determine which wheel data.
  • the vehicle-side device 2 includes a receiver 21, an arithmetic processing unit 22, an input unit 23, and an output unit 24.
  • the vehicle-side device 2 receives data representing the contact time transmitted from the tire-side device 1 and performs various processes based on this data to detect a decrease in tire air pressure of each wheel.
  • the receiver 21 is a device for receiving data representing the contact time transmitted by the tire side device 1. Data representing the grounding time received by the receiver 21 is sequentially output to the arithmetic processing unit 22 each time it is received.
  • the arithmetic processing unit 22 is configured by a known microcomputer including a CPU, ROM, RAM, I / O, and the like, and performs the above-described various processes according to programs stored in the ROM. And the arithmetic processing part 22 is set as the structure which has the vehicle speed acquisition part 22a, the change recognition part 22b, the calculating part 22c, the reference value setting part 22d, and the determination part 22e as a function part which performs those processes.
  • the vehicle speed acquisition unit 22a acquires vehicle speed data calculated by an in-vehicle ECU (electronic control unit) based on detection signals from, for example, a vehicle speed sensor and a wheel speed sensor through CAN (registered trademark, Controller Area Network) communication that is an in-vehicle network. Thus, the vehicle speed is acquired.
  • an in-vehicle ECU electronic control unit
  • CAN registered trademark, Controller Area Network
  • the change recognition unit 22b recognizes that a situation in which the tire pressure changes has occurred based on the operation of the input unit 23 by the user. For example, the tire pressure can change when the tire is changed or the tire pressure is adjusted. For this reason, the input unit 23 for inputting that the tire pressure can be changed is provided, and when the user operates the input unit, the change recognition unit 22b has a situation in which the tire pressure can be changed. A signal indicating this is input. Based on this, the change recognition unit 22b outputs a command signal to the reference value setting unit 22d to set the reference value.
  • the change recognition unit 22b recognizes when the user operates the input unit 23.
  • the operation is not limited to the operation of the input unit 23. For example, since the tire pressure can change during parking, the change recognition unit 22b automatically recognizes the situation when the engine is started and sets a reference value. You may make it recognize.
  • the calculation unit 22c is a part that estimates the tire pressure, and estimates and calculates the tire pressure from data representing the contact time sent from the tire side device 1 and the vehicle speed data acquired by the vehicle speed acquisition unit 22a.
  • the contact length of the tire 3 is calculated from the vehicle speed and the contact time. For example, when the vehicle speed is 60 km / h and the contact time is 6 msec, the contact length can be determined to be 10 cm by multiplying them.
  • the reference value setting unit 22d sets a determination reference value serving as a threshold for determining a decrease in tire air pressure when a command signal from the change recognition unit 22b is input. Specifically, the determination reference value is set based on the contact length after tire replacement or after tire pressure adjustment. Here, the relationship between the contact length after adjustment of the tire pressure and the determination reference value will be described with reference to FIGS. 4 and 5.
  • FIG. 4 shows output voltage waveforms of the vibration power generation element 11 when the tire pressure is the recommended pressure and when the tire pressure is reduced by 25% from the recommended pressure in the standard tire.
  • the output voltage waveform of the vibration power generation element 11 differs between the case where the tire air pressure is the recommended pressure and the case where the tire air pressure decreases.
  • the amount of dent of the tire 3 is reduced, so that the contact length is shortened.
  • the time interval between the first peak value and the second peak value is shorter than when the tire pressure is reduced to the recommended pressure.
  • the case where the tire side device 1 is attached to a standard tire is taken as an example.
  • the output voltage characteristics of the vibration power generation element 11 are also different for each tire type. It will be different.
  • the contact length is shortened because the contact area is reduced so that the frictional force can be reduced as compared with the standard tire.
  • the contact length becomes longer.
  • Fig. 5 shows the result of examining the change in the contact length when the tire type is changed and the tire pressure is reduced to the recommended pressure and 25%. Specifically, the contact length obtained by running the vehicle at a vehicle speed of 40 to 80 km / h and for 30 rotations of the tire 3 (approximately 3 seconds) is plotted.
  • the contact length when the tire pressure is the recommended pressure varies depending on the tire type. As described above, the contact length is longer in the order of studless tire, standard tire, and eco tire. It became the result. On the other hand, the contact length when the tire pressure decreases by 25% from the recommended pressure also varies depending on the tire type. In this case, the contact length was long in the order of studless tire, standard tire, and eco-tire. . In other words, even if the tires are of different types, the result is that the contact length change method when the tire pressure decreases, that is, the relative change amount of the contact length is substantially constant.
  • a determination reference value serving as a threshold for the tire air pressure decreasing is set based on the reference contact length.
  • a relative criterion value corresponding to the tire type can be set.
  • the command signal from the change recognition part 22b is input, and the determination reference value is set based on the contact length of the tire 3 calculated when the vehicle starts to travel.
  • the contact length becomes longer than the reference contact length. For example, a value obtained by adding a predetermined value (for example, 22 mm) to the calculated reference contact length is set as the determination reference value. Yes.
  • the determination reference value is set in this way, even if the type of the tire 3 changes, it is possible to reduce the variation in the decrease rate of the tire air pressure at which it is determined that the tire air pressure has decreased.
  • the decrease rate of the tire pressure determined that the tire pressure has decreased is 25% with respect to the recommended pressure.
  • the variation in the relative change amount of the contact length when the tire air pressure corresponding to the type of the tire 3 is reduced by 25% from the recommended pressure is 3 mm (25 mm-22 mm) at the maximum.
  • the judgment reference value is set to the reference ground contact length + 22 mm, even if the eco tire has a change in the contact length of 25 mm when the tire air pressure is reduced by 25% from the recommended pressure, the tire air pressure is reduced by only 3 mm. There is no deviation in the value that is determined to be. Therefore, even if the judgment reference value of the eco tire is set to the reference contact length +22 mm, it is judged that the tire air pressure is lowered when the recommended pressure is reduced by 22%, and there is only 3% deviation from the reduced pressure by 25%. In other words, for any tire type, a decrease in tire air pressure can be detected when the tire air pressure is reduced by 22% to 25% from the recommended pressure.
  • an eco tire having the shortest contact length when the tire air pressure decreases is set as a uniform determination reference value. That is, the determination reference value is set as an absolute value, and the determination reference value is set to 134 mm, for example, so that it can be determined that the tire air pressure has decreased when the tire air pressure is reduced by 25% from the recommended pressure in the eco-tire.
  • the contact length is 142 mm when the pressure is reduced by 25% from the recommended pressure as in a studless tire, and there is a deviation of 8 mm from 134 mm. When the pressure is reduced by 17% from the recommended pressure, a decrease in tire air pressure is detected. It will be.
  • the determination unit 22e includes the determination reference value set by the reference value setting unit 22d and the contact length of the tire 3 calculated by the calculation unit 22c using the data representing the contact time transmitted from the tire side device 1 during traveling. From this, it is determined whether or not the tire air pressure has decreased. Specifically, the determination unit 22e compares the calculated contact length of the tire 3 with a determination reference value, and detects a decrease in tire air pressure when the contact length exceeds the determination reference value. When a decrease in tire air pressure is detected, the determination unit 22e transmits a detection signal to the output unit 24. The output unit 24 is electrically connected to the in-vehicle ECU.
  • the output unit 24 When receiving the detection signal from the determination unit 22e, the output unit 24 outputs a command signal to warn the driver of a decrease in tire air pressure to the in-vehicle ECU.
  • the in-vehicle ECU that has received the command signal from the output unit 24 issues an alarm through, for example, an alarm device (not shown), or displays that the tire air pressure has decreased through a display provided on the instrument panel. As a result, the driver can be made aware of the decrease in tire air pressure.
  • the input unit 23 is configured by a switch or the like, for example, and is operated when a situation in which the tire air pressure can change occurs, such as when the user changes the tire or adjusts the tire air pressure. Tell it. With such a configuration, the tire state detection device 100 is configured.
  • the tire condition detection device 100 As described above, in the tire condition detection device 100 according to the present embodiment, data representing the contact time of the tire 3 is transmitted from the tire side device 1 and received by the vehicle side device 2 to receive the contact time of the tire 3. And the contact length of the tire 3 at that time is calculated.
  • the tire air pressure can change, such as tire replacement
  • the contact length at that time is set as the reference contact length
  • the determination reference value is set based on the reference contact length.
  • it is possible to set a relative determination reference value corresponding to the tire type and it is possible to reduce variation in the decrease rate of the tire air pressure when it is determined that the tire air pressure has decreased. Therefore, it is possible to accurately detect a decrease in tire air pressure regardless of the tire type.
  • the determination reference value is set by adding a predetermined value to the reference ground contact length.
  • a value larger than the reference ground contact length is obtained by multiplying the reference ground contact length by a predetermined coefficient of 1 or more.
  • a judgment reference value can also be set. That is, as long as the decrease in tire air pressure is detected based on the relative change of the calculated contact length with respect to the reference contact length, the decrease in tire air pressure may be detected in another form.
  • the contact length of the tire 3 at the start of traveling at this time is not limited to the contact length obtained from data representing the contact time sent from the tire-side device 1 during the first rotation of the tire 3 after the start of traveling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

 タイヤ側装置(1)からタイヤ(3)の接地時間を表すデータを送信し、それを車両側装置(2)で受信してタイヤ(3)の接地時間を演算することで、そのときのタイヤ(3)の接地長を演算する。そして、タイヤ交換などのようにタイヤ空気圧が変化し得る状況となったときには、そのときの接地長を基準接地長とし、その基準接地長に基づいて判定基準値を設定する。これにより、タイヤ種類に対応する相対的な判定基準値を設定でき、タイヤ空気圧が低下したと判定されるときのタイヤ空気圧の減少率のバラツキを小さくすることが可能となる。これにより、タイヤ種類にかかわらず精度良くタイヤ空気圧の低下を検出することができる。

Description

タイヤ状態検出装置 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年3月18日に出願された日本特許出願2014-54928号を基にしている。
 本開示は、タイヤに備えた振動検出部からの検出信号に基づいてタイヤ空気圧の低下を検出するタイヤ状態検出装置に関するものである。
 従来、特許文献1において、タイヤトレッドの裏面に加速度センサを埋設し、加速度センサの検出信号に基づいてタイヤ空気圧を推定する技術が提案されている。具体的には、ピエゾ抵抗効果を用いた加速度センサをタイヤトレッドの裏面に埋設すると、タイヤ回転に伴ってタイヤトレッドのうち加速度センサの配置箇所と対応する部分が接地するタイミングおよび接地しなくなるタイミングで検出信号に振動ピークが乗る(以下、接地するタイミングを接地開始時、接地しなくなるタイミングを接地終了時という)。このため、従来では、接地開始時と接地終了時に生じる2つの振動ピークの間隔と車速とからタイヤの接地面のうちのタイヤ進行方向の長さに相当する接地長を算出し、接地長の長さに基づいてタイヤ空気圧を推定している。
米国特許明細書20110113876号明細書
 しかしながら、本開示の発明者による検討によれば、タイヤ種類毎にタイヤ空気圧に対する接地長にバラツキがあるため、精度良くタイヤ空気圧を推定することができないと恐れがある。
 本開示は上記点に鑑みて、タイヤ種類にかかわらず精度良くタイヤ空気圧の低下を検出することができるタイヤ状態検出装置を提供することを目的とする。
 本開示の一態様に係るタイヤ状態検出装置は、タイヤ側装置と車両側装置とを有した構成とされており、
 タイヤ側装置は、タイヤにおけるトレッドの裏面に取り付けられ、タイヤの振動の大きさに応じた検出信号を出力する振動検出部と、振動検出部の検出信号に基づき、タイヤの1回転中におけるトレッドのうちの振動検出部の配置箇所と対応する部分の接地時間を表すデータを出力する信号処理部と、接地時間を表すデータを送信する送信機と、を有し、
 車両側装置は、送信機から送信された接地時間を表すデータを受信する受信機と、接地時間を表すデータと車速とに基づいて、タイヤの接地長を演算する演算部と、タイヤの空気圧が変化し得る状況が発生したことを認識する変化認識部と、タイヤの空気圧が変化し得る状況の発生が認識されたとき、その後の車両の走行開始時における接地時間を表すデータから演算されるタイヤの接地長を基準接地長として、車両の走行中に演算されたタイヤの接地長の基準接地長からの相対変化に基づいてタイヤ空気圧の低下を判定する判定部と、を有している。
 このように、タイヤ側装置からタイヤの接地時間を表すデータを送信し、それを車両側装置で受信してタイヤの接地時間を演算して、そのときのタイヤの接地長を演算するようにしている。そして、タイヤ交換などのようにタイヤ空気圧が変化し得る状況となったときには、そのときの接地長を基準接地長とし、車両の走行中に演算されたタイヤの接地長の基準接地長からの相対変化に基づいてタイヤ空気圧の低下を判定している。これにより、タイヤ種類に対応する相対的な判定基準値を設定でき、タイヤ空気圧が低下したと判定されるときのタイヤ空気圧の減少率のバラツキを小さくすることが可能となる。よって、タイヤ種類にかかわらず精度良くタイヤ空気圧の低下を検出することが可能となる。
本開示の第1実施形態にかかるタイヤ状態検出装置の全体のブロック構成を示した図である。 タイヤ側装置が取り付けられたタイヤの断面模式図である。 タイヤ回転時における振動発電素子の出力電圧波形図である。 スタンダードタイヤにおいて、タイヤ空気圧が推奨圧であったときと、推奨圧からタイヤ空気圧が25%減少したときの振動発電素子の出力電圧波形図である。 タイヤ種類を変更してタイヤ空気圧が推奨圧のときと25%減少したときの接地長の変化を調べた結果を示した図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 図1~図5を参照して、本実施形態にかかるタイヤ状態検出装置について説明する。本実施形態にかかるタイヤ状態検出装置は、車両の各車輪に備えられるタイヤの接地面における接地長、つまり接地面のうちのタイヤ進行方向の長さに基づいてタイヤ空気圧の低下を検出するものとして用いられる。
 図1に示すようにタイヤ状態検出装置100は、タイヤ側に設けられたタイヤ側装置1と、車体側に備えられた車両側装置2とを有する構成とされている。そして、タイヤ状態検出装置100は、タイヤ側装置1よりタイヤ空気圧に関するデータとして接地時間データを送信する。また、タイヤ状態検出装置100は、車両側装置2がタイヤ側装置1から送信されたデータを受信し、そのデータに基づいてタイヤ空気圧の低下を検出する。具体的には、タイヤ側装置1および車両側装置2は、以下のように構成されている。
 タイヤ側装置1は、図1に示すように、振動発電素子11、電力供給回路12、信号処理部13、および送信機14を備えた構成とされ、図2に示されるように、タイヤ3のトレッド31の裏面側に設けられる。
 振動発電素子11は、タイヤ3が回転する際にタイヤ側装置1が描く円軌道に対して接する方向、つまりタイヤ接線方向(図2中の矢印Xの方向)の振動に応じた検出信号を出力する振動検出部を構成するものである。本実施形態の場合、振動発電素子11でタイヤ接線方向の振動に応じた検出信号を出力させるのに加えて、振動エネルギーを電気エネルギーに変換し、それに基づいてタイヤ側装置1の電源を生成している。このため、振動発電素子11は、タイヤ接線方向の振動に対して発電するように配設されている。このような振動発電素子11としては、例えば静電誘導型の発電素子(エレクトレット)、圧電素子、摩擦式、磁歪式、電磁誘導型の素子を適用できる。また、発電用途を加味しないタイヤ接線方向の振動に応じた検出信号を出力するだけであれば他のもの、例えば加速度センサなどを用いることもできる。
 例えば振動発電素子11として静電誘導型の発電素子を用いる場合には、マイナスの電荷を帯びる下部電極に対して静電誘導によってプラスに帯電させられる上部電極が水平方向に振動させられると、静電誘導による電荷が変動し、起電力を生じることで発電する。このような振動発電素子11の発電に基づいて、タイヤ側装置1の電源を生成すると共に、タイヤ接線方向の振動の大きさに応じた検出信号を生成する。
 すなわち、タイヤ状態検出装置100が備えられた車両が走行する際には、タイヤ3の回転運動や路面の凹凸などの種々の要因によって、タイヤ3のトレッド31に振動が生じる。この振動が振動発電素子11に伝わることで、振動発電素子11による発電が行われる。発電された電力が電力供給回路12に伝えられることで、タイヤ側装置1の電源が生成される。また、振動発電素子11の発電の際の出力電圧は、振動の大きさに応じて変化する。このため、振動発電素子11の出力電圧をタイヤ接線方向の振動の大きさを表す検出信号として信号処理部13に伝えるようにしている。なお、振動発電素子11の出力電圧は、上部電極が振動によって往復動することから、交流電圧となる。
 電力供給回路12は、振動発電素子11の出力電圧に基づいて蓄電して電源を生成し、電力を信号処理部13および送信機14に供給するための回路であり、整流回路12aおよび蓄電回路12bを備えた構成とされている。
 整流回路12aは、振動発電素子11より出力される交流電圧を直流変換する公知の回路である。振動発電素子11で出力される交流電圧は、この整流回路12aで直流変換され、蓄電回路12bに出力される。整流回路12aは、全波整流回路であっても半波整流回路であってもよい。
 蓄電回路12bは、整流回路12aより印加される直流電圧を蓄電するための回路であり、コンデンサなどによって構成される。振動発電素子11の出力電圧は、整流回路12aを介して蓄電回路12bで蓄電される。蓄電回路12bで蓄電された電圧を電源として、タイヤ側装置1が備える信号処理部13や送信機14などへの電力供給を行っている。また、電力供給回路12が蓄電回路12bを備えることによって、振動発電素子11が余剰に発電している時にはその余剰分を蓄電しておき、発電量が不足している場合に、その不足分を補えるようになっている。
 信号処理部13は、信号処理部に相当する部分であり、振動発電素子11の出力電圧をタイヤ接線方向の振動データを表す検出信号として用いる。信号処理部13は、この検出信号を処理することでタイヤ空気圧に関するデータを得て、それを送信機14に伝える。すなわち、信号処理部13は、振動発電素子11の出力電圧の時間変化に基づいて、タイヤ3の回転時における振動発電素子11の接地時間を計測している。すなわち、信号処理部13は、タイヤ3のトレッド31のうち振動発電素子11の配置箇所と対応する部分の接地時間を計測する。この振動発電素子11の接地時間がタイヤ3の接地面における接地長に関するデータとなり、タイヤ空気圧を表すデータとなることから、この接地時間を表すデータを送信機14に伝えている。
 具体的には、信号処理部13は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って上記処理を行っている。そして、信号処理部13は、それらの処理を行う機能部としてピーク検出部13aや接地時間計測部13bを備えている。
 ピーク検出部13aは、振動発電素子11の出力電圧で表される検出信号のピーク値を検出する。タイヤ回転時における振動発電素子11の出力電圧波形は例えば図3に示す波形となる。この図に示されるように、タイヤ3の回転に伴ってトレッド31のうち振動発電素子11の配置箇所と対応する部分が接地し始めた接地開始時に、振動発電素子11の出力電圧が極大値をとる。ピーク検出部13aでは、この振動発電素子11の出力電圧が極大値をとる接地開始時を第1ピーク値のタイミングとして検出している。さらに、図3に示されるように、タイヤ3の回転に伴ってトレッド31のうち振動発電素子11の配置箇所と対応する部分が接地していた状態から接地しなくなる接地終了時に、振動発電素子11の出力電圧が極小値をとる。ピーク検出部13aでは、この振動発電素子11の出力電圧が極小値をとる接地終了時を第2ピーク値のタイミングとして検出している。
 振動発電素子11が上記のようなタイミングでピーク値をとるのは、以下の理由による。すなわち、タイヤ3の回転に伴ってトレッド31のうち振動発電素子11の配置箇所と対応する部分が接地する際、振動発電素子11の近傍においてタイヤ3のうちそれまで略円筒面であった部分が押圧されて平面状に変形する。このときの衝撃を受けることで、振動発電素子11の出力電圧が第1ピーク値をとる。また、タイヤ3の回転に伴ってトレッド31のうち振動発電素子11の配置箇所と対応する部分が接地面から離れる際には、振動発電素子11の近傍においてタイヤ3は押圧から解放されて平面状から略円筒状に戻る。このタイヤ3の形状が元に戻るときの衝撃により、振動発電素子11の出力電圧が第2ピーク値をとる。このようにして、振動発電素子11が接地開始時と接地終了時でそれぞれ第1、第2ピーク値をとるのである。また、タイヤ3が押圧される際の衝撃の方向と、押圧から開放される際の衝撃の方向は逆方向であるため、出力電圧の符号も逆方向となる。
 そして、ピーク検出部13aは、第1、第2ピーク値のタイミングを含めた検出信号のデータを抽出して接地時間計測部13bに伝えている。ここでいう第1、第2ピーク値のタイミングを含めた検出信号のデータとは、第1ピーク値から第2ピーク値に至るまでの期間を含めた所定期間中の検出信号そのものを示している。このときの第1ピーク値から第2ピーク値に至るまでの期間を含めた所定期間の時間設定については、例えばタイヤ1回転分とすることができる。タイヤ1回転分の期間については、タイヤ空気圧の低下検出を行いたい車速、例えば車速範囲が40~120km/h以下のときを想定し、その速度範囲において少なくともタイヤ1回転以上のデータが入る時間としている。40~120km/hの速度範囲の場合、最低速度40km/hでタイヤ1回転以上となる時間(例えば250ms)に設定している。また、第1ピーク値となるタイミングから次に第1ピーク値となるタイミングまでとしても良い。なお、ここではピーク検出部13aにて第1、第2ピーク値のタイミングを含めた検出信号のデータを抽出して接地時間計測部13bに伝えているが、第1、第2ピーク値を得たタイミングに関するデータのみを接地時間計測部13bに伝えるようにしても良い。
 接地時間計測部13bは、ピーク検出部13aから伝えられたデータに基づいて振動発電素子11の接地時間を計測する。具体的には、接地時間計測部13bは、ピーク検出部13aから伝えられるデータから第1ピーク値のタイミングと第2ピーク値のタイミングとの間の時間間隔を計測する。これにより、振動発電素子11の接地時間を計測している。このとき、伝えられたデータ中に複数の第1ピーク値および第2ピーク値が含まれている場合には、例えば第1ピーク値の中でも最大値のもののタイミングと、その直後の第2ピーク値のタイミングとの間の時間間隔を計測している。逆に、伝えられたデータ中に複数の第1ピーク値および第2ピーク値が含まれている場合に、第2ピーク値の中でも最小値のもののタイミングと、その直前の第1ピーク値のタイミングとの間の時間間隔を計測しても良い。
 例えば、上記した速度範囲(40~120km/h)における最低速度でタイヤ1回転以上となる時間の検出信号が送られてきた場合、その中の最大値を第1ピーク値として検出する。また、その最大値のタイミング以降の一定時間、例えば120km/hのタイヤ1回転より短く、40km/hで想定される接地時間より長い時間(例えば30ms)の中から最小値を検出し、それを第2ピーク値として検出する。そして、これら第1ピーク値となるタイミングと第2ピーク値となるタイミングとの時間差を接地時間とすることができる。
 このように、信号処理部13では、ピーク検出部13aおよび接地時間計測部13bによって振動発電素子11の接地時間を計測している。そして、信号処理部13は、その接地時間に関するデータである接地時間データを接地長に関するデータ、つまりタイヤ空気圧を表すデータとして送信機14に出力している。
 送信機14は、信号処理部13から伝えられた接地時間を表すデータを車両側装置2に対して送信するものである。送信機14と車両側装置2が備える受信機21との間の通信は、例えば、Bluetooth(登録商標)などの公知の近距離無線通信技術によって実施可能である。接地時間を表すデータを送信するタイミングについては任意であるが、例えばタイヤ3の1回転当りにおける接地時間を取得できたときなどとすることができる。また、タイヤ3の複数回転分のデータを蓄積した後に送信する構成としてもよい。その場合、送信機14の稼働率を抑制することができるため、送信機14で消費される電力を低減することができる。
 なお、接地時間を表すデータについては、車両に備えられたタイヤ3毎に予め備えられている車輪の固有認識情報(ID情報)と共に送るようにしている。各車輪の位置については、車輪が車両のどの位置に取り付けられているかを検出する周知の車輪位置検出装置によって特定できることから、車両側装置2にID情報と共に接地時間を表すデータを伝えることで、どの車輪のデータであるかが判別可能になる。
 一方、車両側装置2は、受信機21と演算処理部22、入力部23および出力部24を備えている。車両側装置2は、タイヤ側装置1より送信された接地時間を表すデータを受信し、このデータに基づいて各種処理を行うことで、各車輪のタイヤ空気圧の低下を検出する。
 受信機21は、タイヤ側装置1が送信した接地時間を表すデータを受信するための装置である。受信機21で受信した接地時間を表すデータは、受信するたびに演算処理部22に逐次出力される。
 演算処理部22は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って上記各種処理を行っている。そして、演算処理部22は、それらの処理を行う機能部として車速取得部22a、変化認識部22b、演算部22c、基準値設定部22dおよび判定部22eを有した構成とされている。
 車速取得部22aは、例えば車速センサや車輪速度センサの検出信号に基づいて車載ECU(電子制御装置)で演算された車速データを車載ネットワークであるCAN(登録商標,Controller Area Network)通信を通じて取得することにより、車速を取得するものである。
 変化認識部22bは、ユーザによる入力部23の操作に基づいて、タイヤ空気圧が変化する状況が発生したことを認識するものである。例えば、タイヤ交換やタイヤ空気圧調整などを行ったときに、タイヤ空気圧が変化し得る。このため、タイヤ空気圧が変化し得る状況となったことを入力するための入力部23を備えてあり、ユーザが入力部を操作すると、変化認識部22bにタイヤ空気圧が変化し得る状況が発生したことを示す信号が入力される。これに基づき、変化認識部22bは、基準値設定部22dに対して指令信号を出力し、基準値の設定を行わせる。なお、ここではタイヤ空気圧が変化し得る状況が発生したことを認識する変化認識部22bとして、ユーザによる入力部23の操作があったときにそれを認識するものを例に挙げたが、ユーザによる入力部23の操作に限るものではない。例えば、駐車中にタイヤ空気圧が変化し得る状況となるため、変化認識部22bにてエンジン始動時にその状況を自動認識して基準値設定するなど、タイヤ空気圧が変化し得る状況を車両側で自動認識するようにしても良い。
 演算部22cは、タイヤ空気圧の推定を行う部分であり、タイヤ側装置1から送られてきた接地時間を表すデータと車速取得部22aで取得した車速データとから、タイヤ空気圧を推定演算する。例えば、車速と接地時間からタイヤ3の接地長を演算する。例えば、車速が60km/hで、接地時間が6msecの場合、これらの掛け算することによって接地長が10cmと求めることができる。
 基準値設定部22dは、変化認識部22bからの指令信号が入力されるとタイヤ空気圧の低下を判定するための閾値となる判定基準値を設定する。具体的には、タイヤ交換後もしくはタイヤ空気圧調整後の接地長に基づいて判定基準値を設定している。ここで、タイヤ空気圧調整後の接地長と判定基準値との関係について、図4および図5を参照して説明する。
 図4は、スタンダードタイヤにおいて、タイヤ空気圧が推奨圧であったときと、推奨圧からタイヤ空気圧が25%減少したときの振動発電素子11の出力電圧波形を示している。この図に示されるように、タイヤ空気圧が推奨圧である場合と減少した場合とで、振動発電素子11の出力電圧波形が異なっている。推奨圧のときの方が減少した場合と比較してタイヤ3の凹み量が小さくなるため接地長が短くなる。図4に示されるように、タイヤ空気圧が推奨圧のときの方が減少した場合と比較して第1ピーク値と第2ピーク値との間の時間間隔が短くなっている。
 図4ではタイヤ側装置1をスタンダードタイヤに取り付けた場合を例に挙げているが、タイヤ種類毎にタイヤ空気圧に対する接地長にバラツキがあるため、振動発電素子11の出力電圧特性もタイヤ種類毎に異なったものとなる。例えば、エコタイヤの場合、スタンダードタイヤと比較して摩擦力を小さくできるように接地面積を小さくしてあるため接地長が短くなる。逆に、スタッドレスタイヤの場合、スタンダードタイヤと比較して摩擦力を大きくできるように接地面積を大きくしてあるため接地長が長くなる。
 しかしながら、実験結果により、種類の異なるタイヤであったとしてもタイヤ空気圧が減少したときの接地長の変化の仕方、つまり接地長の相対的な変化量については概ね一定になるということを見出した。
 図5は、タイヤ種類を変更してタイヤ空気圧が推奨圧のときと25%減少したときの接地長の変化を調べた結果を示している。具体的には、車両を40~80km/hの車速で走行させ、タイヤ3の30回転分(およそ3秒間分)で得られた接地長をプロットしてある。
 この図に示されるように、タイヤ空気圧が推奨圧とされているときの接地長にはタイヤ種類に応じたバラツキがあり、上記した通り、スタッドレスタイヤ、スタンダードタイヤ、エコタイヤの順番で接地長が長いという結果となった。一方、タイヤ空気圧が推奨圧から25%減少したときの接地長についてもタイヤ種類に応じたバラツキがあり、この場合も、スタッドレスタイヤ、スタンダードタイヤ、エコタイヤの順番で接地長が長いという結果となった。つまり、種類の異なるタイヤであったとしてもタイヤ空気圧が減少したときの接地長の変化の仕方、つまり接地長の相対的な変化量については概ね一定になるという結果になっていた。
 図5に示した例で言えば、スタンダードタイヤにおいて推奨圧からタイヤ空気圧が25%減少したときには接地長が114mmから137mmに変化しており、その差は23mmであった。エコタイヤにおいて推奨圧からタイヤ空気圧が25%減少したときには接地長が110mmから135mmに変化しており、その差は25mmであった。スタッドレスタイヤにおいて推奨圧からタイヤ空気圧が25%減少したときには接地長が120mmから142mmに変化しており、その差は22mmであった。
 したがって、タイヤ交換もしくはタイヤ空気圧調整を行ったときのタイヤ3の接地長を基準接地長として、その基準接地長に基づいてタイヤ空気圧が低下していることの閾値となる判定基準値を設定すれば、タイヤ種類に対応する相対的な判定基準値を設定できる。このため、本実施形態では、変化認識部22bからの指令信号が入力されて、車両が走行開始したときに演算されたタイヤ3の接地長に基づいて判定基準値を設定している。そして、タイヤ空気圧が低下した場合には基準接地長よりも接地長が長くなるため、例えば、演算された基準接地長に対して所定値(例えば22mm)加算した値を判定基準値として設定している。
 このようにして判定基準値を設定した場合、タイヤ3の種類が変化したとしても、タイヤ空気圧が低下したと判定されるタイヤ空気圧の減少率のバラツキを小さくできる。例えば、タイヤ空気圧が低下したと判定されるタイヤ空気圧の減少率が推奨圧に対して25%であったとする。図5に示した例の場合、タイヤ3の種類に応じたタイヤ空気圧が推奨圧から25%減少したときの接地長の相対的な変化量のバラツキが最大3mm(25mm-22mm)となる。
 このため、仮に判定基準値を基準接地長+22mmとした場合、タイヤ空気圧が推奨圧から25%減少したときの接地長の変化が25mmとなっていたエコタイヤであっても、3mmしかタイヤ空気圧が低下していると判定される値にズレがない。したがって、エコタイヤの判定基準値を基準接地長+22mmとしたとしても、推奨圧から22%減少したときにタイヤ空気圧の低下と判定されるのであり、25%減少したときと3%しかズレがない。つまり、どのタイヤ種類であったとしても、タイヤ空気圧が推奨圧から22%~25%減少したときにタイヤ空気圧の低下を検出できる。
 一方、従来では、タイヤ種類にかかわらず、例えばタイヤ空気圧が減少したときの接地長が最も短くなるエコタイヤを基準として一律の判定基準値に設定している。つまり、判定基準値を絶対値として設定しており、エコタイヤにおいてタイヤ空気圧が推奨圧から25%減少したときにタイヤ空気圧が低下したと判定できるように例えば134mmに判定基準値を設定している。しかしながら、スタッドレスタイヤのように推奨圧から25%減少したときの接地長は142mmであり、134mmとは8mmもズレがあり、推奨圧から17%減少したときにタイヤ空気圧の低下が検出されてしまうことになる。
 したがって、本実施形態のような方法によってタイヤ空気圧の低下の判定基準値を設定することで、タイヤ空気圧が低下したと判定されるときのタイヤ空気圧の減少率のバラツキを小さくすることが可能となる。
 判定部22eは、基準値設定部22dで設定された判定基準値と、走行中にタイヤ側装置1から送信された接地時間を表すデータを用いて演算部22cが演算したタイヤ3の接地長とから、タイヤ空気圧が低下しているか否かを判定する。具体的には、判定部22eは、演算したタイヤ3の接地長を判定基準値と比較し、接地長が判定基準値以上になるとタイヤ空気圧の低下を検出する。そして、タイヤ空気圧の低下が検出されると、判定部22eは、検出信号を出力部24に送信する。出力部24は、車載ECUに電気的に接続されている。出力部24は、判定部22eから検出信号を受けると、車載ECUにタイヤ空気圧の低下をドライバに警告するよう指令信号を出力する。そして、出力部24から指令信号を受けた車載ECUは、例えば図示しない警報機を通じて警報を行ったり、インストルメントパネルに備えられたディスプレイを通じてタイヤ空気圧が低下している旨の表示を行う。これにより、ドライバにタイヤ空気圧の低下を認識させることができる。
 入力部23は、例えばスイッチなどによって構成され、ユーザがタイヤ交換やタイヤ空気圧調整を行ったときのように、タイヤ空気圧が変化し得る状況が発生したときに操作することで、変化認識部22bにそれを伝える。このような構成により、タイヤ状態検出装置100が構成されている。
 以上説明したように、本実施形態にかかるタイヤ状態検出装置100では、タイヤ側装置1からタイヤ3の接地時間を表すデータを送信し、それを車両側装置2で受信してタイヤ3の接地時間を演算し、そのときのタイヤ3の接地長を演算するようにしている。そして、タイヤ交換などのようにタイヤ空気圧が変化し得る状況となったときには、そのときの接地長を基準接地長とし、その基準接地長に基づいて判定基準値を設定するようにしている。これにより、タイヤ種類に対応する相対的な判定基準値を設定でき、タイヤ空気圧が低下したと判定されるときのタイヤ空気圧の減少率のバラツキを小さくすることが可能となる。よって、タイヤ種類にかかわらず精度良くタイヤ空気圧の低下を検出することが可能となる。
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。
 例えば、上記実施形態では、基準接地長に対して所定値を加算することで判定基準値を設定したが、基準接地長に1以上の所定の係数を掛けることで基準接地長よりも大きな値として判定基準値を設定することもできる。すなわち、演算された接地長の基準接地長に対する相対変化に基づいて、タイヤ空気圧の低下を検出する形態であれば、他の形態によってタイヤ空気圧の低下を検出しても良い。
 また、判定基準値を設定する際には、変化認識部22bでタイヤ空気圧が変化し得る状況が発生したことが認識されたときに、その後の走行開始時におけるタイヤ3の接地長を演算し、それを基準接地長として判定基準値を設定した。しかしながら、このときの走行開始時におけるタイヤ3の接地長とは、走行開始後のタイヤ3の1回転目にタイヤ側装置1から送られる接地時間を表すデータから求められる接地長に限らない。例えば、所定回転分の接地時間を表すデータから求められる接地長の平均値としたり、走行開始から所定時間経過するまでの間の複数回転分の接地時間を表すデータから求められる接地長の平均値としても良い。

Claims (5)

  1.  タイヤ(3)におけるトレッド(31)の裏面に取り付けられ、前記タイヤの振動の大きさに応じた検出信号を出力する振動検出部(11)と、前記振動検出部の検出信号に基づき、前記タイヤの1回転中における前記トレッドのうちの前記振動検出部の配置箇所と対応する部分の接地時間を表すデータを出力する信号処理部(13)と、前記接地時間を表すデータを送信する送信機(14)と、を有するタイヤ側装置(1)と、
     前記送信機から送信された前記接地時間を表すデータを受信する受信機(21)と、前記接地時間を表すデータと車速とに基づいて、前記タイヤの接地長を演算する演算部(22c)と、前記タイヤの空気圧が変化し得る状況が発生したことを認識する変化認識部(22b)と、前記タイヤの空気圧が変化し得る状況が発生したことが認識されたとき、その後の車両の走行開始時における前記接地時間を表すデータから演算される前記タイヤの接地長を基準接地長として、前記車両の走行中に演算された前記タイヤの接地長の前記基準接地長からの相対変化に基づいてタイヤ空気圧の低下を判定する判定部(22e)と、を有する車両側装置(2)とを備えているタイヤ状態検出装置。
  2.  前記基準接地長に対して所定値加算した値を判定基準値として設定する基準値設定部(22d)を有し、
     前記判定部は、前記車両の走行中に演算された前記タイヤの接地長が前記判定基準よりも大きいとタイヤ空気圧の低下を判定する請求項1に記載のタイヤ状態検出装置。
  3.  前記基準接地長に対して係数を掛けて該基準接地長よりも大きくした値を判定基準値として設定する基準値設定部(22d)を有し、
     前記判定部は、前記車両の走行中に演算された前記タイヤの接地長が前記判定基準よりも大きいとタイヤ空気圧の低下を判定する請求項1に記載のタイヤ状態検出装置。
  4.  前記変化認識部(22b)は、前記タイヤの空気圧が変化し得る状況が発生したことを入力する入力部(23)が操作されたとき、もしくは、車両による自動認識時に、前記タイヤの空気圧が変化し得る状況の発生を認識する請求項1ないし3のいずれか1つに記載のタイヤ状態検出装置。
  5.  前記車両側装置(2)は、前記判定部(22e)がタイヤ空気圧の低下を判定した際に、当該タイヤ空気圧の低下をドライバに警告させる指令信号を車載ECUに出力する出力部(24)を備える請求項1ないし4のいずれか1つに記載のタイヤ状態検出装置。
PCT/JP2015/001004 2014-03-18 2015-02-26 タイヤ状態検出装置 WO2015141152A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/122,820 US9713944B2 (en) 2014-03-18 2015-02-26 Tire condition detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014054928A JP6318743B2 (ja) 2014-03-18 2014-03-18 タイヤ状態検出装置
JP2014-054928 2014-03-18

Publications (1)

Publication Number Publication Date
WO2015141152A1 true WO2015141152A1 (ja) 2015-09-24

Family

ID=54144143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001004 WO2015141152A1 (ja) 2014-03-18 2015-02-26 タイヤ状態検出装置

Country Status (3)

Country Link
US (1) US9713944B2 (ja)
JP (1) JP6318743B2 (ja)
WO (1) WO2015141152A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9827815B2 (en) 2013-03-15 2017-11-28 Denso Corporation Tire device
US9950578B2 (en) 2014-05-14 2018-04-24 Denso Corporation Tire air pressure detection device
US10029681B2 (en) 2014-03-18 2018-07-24 Denso Corporation Vehicle erroneous start control device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3028058B1 (fr) * 2014-10-30 2016-12-09 Continental Automotive France Procede de pilotage d'un processeur d'un boitier electronique monte sur une roue d'un vehicule automobile
JP6601261B2 (ja) * 2016-02-23 2019-11-06 株式会社Soken 路面状況推定装置
JP6544302B2 (ja) 2016-06-22 2019-07-17 株式会社Soken 路面状況推定装置
JP6627670B2 (ja) 2016-07-13 2020-01-08 株式会社デンソー タイヤマウントセンサおよびそれを含む路面状態推定装置
JP6620787B2 (ja) * 2016-08-11 2019-12-18 株式会社デンソー 路面状態推定装置
US20190118592A1 (en) * 2017-10-19 2019-04-25 Infineon Technologies Ag Method, Tire-Mounted TPMS Component, and Machine Readable Storage or Computer Program for Determining a Duration of at Least one Contact Patch Event of a Rolling Tire
US10549587B2 (en) 2017-10-19 2020-02-04 Infineon Technologies Ag Method, component, tire-mounted TPMS module, TPMS system, and machine readable storage or computer program for determining time information of at least one contact patch event of a rolling tire, method for locating a tire
JP6915507B2 (ja) 2017-11-23 2021-08-04 株式会社デンソー 路面状態判別装置
CN116046688A (zh) * 2019-11-22 2023-05-02 深圳市光鉴科技有限公司 4d摄像装置及电子设备
FR3131562B1 (fr) * 2022-01-06 2023-11-17 Continental Automotive Procédé et système de détection de fuite d’un pneumatique
CN116552174A (zh) * 2023-06-25 2023-08-08 中山市小维自动化设备厂 一种货车轮胎压力检测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065871A (ja) * 2001-08-29 2003-03-05 Nissan Motor Co Ltd 車輪タイヤの接地長検出装置
JP2005178634A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp 車輪状態判定装置
JP2008110653A (ja) * 2006-10-30 2008-05-15 Toyota Motor Corp 転覆判定装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1236588B1 (de) * 2001-02-28 2008-02-20 WABCO GmbH Verfahren und System zur Reifendrucküberwachung für mit Antiblockierschutz-Systemen (ABS-Systemen) ausgerüstete Fahrzeuge
US6980925B2 (en) * 2003-10-03 2005-12-27 Kelsey-Hayes Company Real-time signal processing for vehicle tire load monitoring
DE102008035486A1 (de) 2007-08-31 2009-03-05 Continental Teves Ag & Co. Ohg Reifenmodul sowie Verfahren zur Signalaufbereitung
JP5218445B2 (ja) * 2010-02-12 2013-06-26 トヨタ自動車株式会社 タイヤ状態判定装置
DE102011118436A1 (de) * 2011-11-12 2013-05-16 Wabco Gmbh Verfahren zur Überprüfung von Fahrzeug-Reifen und Steuereinrichtung zur Durchführung des Verfahrens
DE112014001372T5 (de) 2013-03-15 2015-12-03 Denso Corporation Reifenvorrichtung
FR3014366B1 (fr) * 2013-12-05 2016-01-08 Continental Automotive France Procede de determination de l'empreinte d'un pneumatique de roue sur le sol
JP6330398B2 (ja) 2014-03-18 2018-05-30 株式会社Soken 車両誤発進抑制装置
JP6281346B2 (ja) 2014-03-18 2018-02-21 株式会社Soken 路面状況推定装置
JP6273937B2 (ja) 2014-03-18 2018-02-07 株式会社Soken 路面状況推定装置
JP6318835B2 (ja) 2014-05-14 2018-05-09 株式会社デンソー タイヤ空気圧検出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065871A (ja) * 2001-08-29 2003-03-05 Nissan Motor Co Ltd 車輪タイヤの接地長検出装置
JP2005178634A (ja) * 2003-12-19 2005-07-07 Toyota Motor Corp 車輪状態判定装置
JP2008110653A (ja) * 2006-10-30 2008-05-15 Toyota Motor Corp 転覆判定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9827815B2 (en) 2013-03-15 2017-11-28 Denso Corporation Tire device
US10029681B2 (en) 2014-03-18 2018-07-24 Denso Corporation Vehicle erroneous start control device
US9950578B2 (en) 2014-05-14 2018-04-24 Denso Corporation Tire air pressure detection device

Also Published As

Publication number Publication date
JP2015174636A (ja) 2015-10-05
JP6318743B2 (ja) 2018-05-09
US20170057306A1 (en) 2017-03-02
US9713944B2 (en) 2017-07-25

Similar Documents

Publication Publication Date Title
WO2015141152A1 (ja) タイヤ状態検出装置
WO2016092824A1 (ja) 車両制御装置
US10086842B2 (en) Road surface condition estimation device
US10866161B2 (en) Road surface condition estimation apparatus
WO2015141199A1 (ja) 路面状況推定装置
JP6372214B2 (ja) タイヤ状態検出装置
JP6365503B2 (ja) 路面状況推定装置
US10605780B2 (en) Road surface condition estimation device
JP6627670B2 (ja) タイヤマウントセンサおよびそれを含む路面状態推定装置
WO2014141690A1 (ja) タイヤ装置
JP2018009974A (ja) タイヤマウントセンサおよびそれを含む路面状態推定装置
JP2018016300A (ja) 車輪位置検出装置
JP2019127253A (ja) タイヤシステム
JP2018017721A (ja) タイヤマウントセンサおよびそれを含む路面状態推定装置
WO2018003693A1 (ja) タイヤマウントセンサおよびそれを含む路面状態推定装置
JP6601261B2 (ja) 路面状況推定装置
JP6119330B6 (ja) タイヤ装置
WO2018012250A1 (ja) タイヤマウントセンサおよびそれを含む路面状態推定装置
JP2016088266A (ja) ヘッドライトの光軸調整装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764363

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15122820

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764363

Country of ref document: EP

Kind code of ref document: A1