WO2015139448A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2015139448A1
WO2015139448A1 PCT/CN2014/088565 CN2014088565W WO2015139448A1 WO 2015139448 A1 WO2015139448 A1 WO 2015139448A1 CN 2014088565 W CN2014088565 W CN 2014088565W WO 2015139448 A1 WO2015139448 A1 WO 2015139448A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
sub
orientation
degrees
liquid crystal
Prior art date
Application number
PCT/CN2014/088565
Other languages
English (en)
French (fr)
Inventor
铃木照晃
秦广奎
杨亚锋
谷新
鹿岛美纪
金起满
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/647,726 priority Critical patent/US9459496B2/en
Publication of WO2015139448A1 publication Critical patent/WO2015139448A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display panel and a display device.
  • liquid crystal displays on the market are gradually developing in the direction of large size.
  • the large-size display panel needs to overcome the limitation of the development angle in the development technology, and therefore, the wide viewing angle liquid crystal display technology is born.
  • the liquid crystal panel can be divided into: TN, Twisted Nematic type, IPS (In Plane Switching) type and Advanced Super Dimension Switch (ADSDS, ADS) type according to the display mode. Wait.
  • the liquid crystal panel of the ADS display mode forms a multi-dimensional electric field by an electric field generated by the edge of the electrode in the same plane and an electric field generated between the electrode layer and the plate electrode layer, so that all liquid crystal molecules between the electrodes and directly above the electrode are rotated.
  • the working efficiency of the liquid crystal can be improved and the light transmission efficiency is increased.
  • the ADS display mode LCD panel has the advantages of high picture quality, high resolution, high transmittance, low power consumption, wide viewing angle, high aperture ratio, low chromatic aberration, and vacuum Mura.
  • FIG. 1 is a schematic structural view of an electrode arrangement pattern on the same electrode layer in a display panel of the prior art ADS display mode.
  • two sub-zones 1 and 2 are set in one pixel region, and electrodes 70 and 61 are respectively provided in the sub-zones 1 and 2, which are arranged as parallel electrodes.
  • the electrodes 70 in the satellite regions 1 and 2 are inclined at an angle of 90 degrees to each other and extend in respective directions, and an electric field E1 perpendicular to the electrode 70 is generated by the voltage between the electrodes 70 to excite the liquid crystal molecules 21.
  • the initial orientation of the liquid crystal molecules 21 in the subsidiary regions 1 and 2 is usually 90 degrees out of phase, when a voltage is applied to the liquid crystal display device.
  • the liquid crystal molecules 21 rotate in the same direction, but after rotation The orientations are maintained at 90 intervals from each other as shown in FIG.
  • the liquid crystal molecules of the liquid crystal layer are affected by the alignment film attached to the display device before the application of the steering voltage, respectively, in the initial orientation, and the liquid crystals in the subsidiary regions 1 and 2.
  • the molecules are 90 degrees out of phase; however, at the boundary of the regions of the satellite regions 1 and 2, as shown in FIG. 2, since the liquid crystal molecules at the boundary of the region are affected by the different angle alignment films corresponding to the satellite regions 1 and 2, there is a region boundary.
  • the problem of uncertainty in the orientation of the liquid crystal molecules may be rotated in different directions when transitioning from the orientation in the satellite region 1 to the orientation in the satellite region 2 at the boundary of the region, thus generating a "deviation point" at the boundary of the region shown in FIG. (indicated by "x" in Fig. 3), causing uneven brightness of the display, causing mura phenomenon; especially when the "deviation point" is at a specific position or appears uneven, the brightness effect on the display is more obvious.
  • the present disclosure provides a display panel including a liquid crystal layer and a pixel unit; the pixel unit includes a first sub-cell region and a second sub-cell region, wherein the liquid crystal molecules of the liquid crystal layer corresponding to the first sub-cell region have a first initial orientation, wherein the liquid crystal molecules of the liquid crystal layer corresponding to the second sub-cell region have a second initial orientation, wherein the pixel unit further comprises: the first sub-cell region and the second sub- a third sub-cell region between the cell regions, wherein the liquid crystal molecules of the liquid crystal layer corresponding to the third sub-cell region have a third initial orientation, and the third initial orientation is from the first initial orientation along the first One of the orientations when the rotation direction is rotated toward the second initial orientation, and the angle difference between the first initial orientation and the second initial orientation is greater than 0 degrees and less than or equal to 90 degrees.
  • the display panel further includes a first substrate and a second substrate; the liquid crystal layer is disposed between the first substrate and the second substrate; and the pixel unit is formed on the first substrate or On the second substrate.
  • the third sub-unit area includes a first boundary for dividing the first sub-unit area and the third sub-unit area and is used for dividing the second sub-unit a second boundary of the region and the third subunit region, wherein
  • a liquid crystal molecule corresponding to a region different from the first boundary has a third initial orientation from the first An initial orientation changes in rotation along the first rotational direction toward the second initial orientation.
  • the third sub-unit area includes a first portion and a second portion; the first portion of the third sub-unit area is disposed adjacent to the first sub-unit area, The second portion of the third sub-cell region is disposed adjacent to the second sub-cell region; the display panel further includes: an alignment film disposed on two sides of the liquid crystal layer, the alignment film including the first And an orientation area corresponding to the first sub-unit area and a combination area of the first part of the third sub-unit area, the second orientation area corresponding to the first a combined region of the second sub-unit region and the second portion of the third sub-unit region; the first orientation region has a first rubbing direction, the second orientation region has a second rubbing direction, and the An angle between a rubbing direction and the second rubbing direction is greater than 0 degrees and less than 90 degrees.
  • an acute angle between the first rubbing direction and the second rubbing direction is greater than 88 degrees.
  • the first rubbing direction is 89.8 degrees with respect to a horizontal extending direction
  • the second rubbing direction is 0.2 degrees with respect to the horizontal extending direction
  • the display panel further includes: an alignment film disposed on both sides of the liquid crystal layer, the alignment film including a first orientation region, a second orientation region, and the first a third orientation region between the orientation region and the second orientation region, wherein the first orientation region has a first rubbing direction, the second orientation region has a second rubbing direction, and the third orientation region has a a third rubbing direction; the third rubbing direction is different from the first rubbing direction and the second rubbing direction; the first orientation region corresponds to the first subunit region, and the second orientation region is The second sub-unit area corresponds to the third sub-area area.
  • an angle between the first rubbing direction and the second rubbing direction is 90 degrees.
  • an angle between the third rubbing direction and the first rubbing direction or the second rubbing direction is 45 degrees.
  • the display panel further includes: an alignment film, first An electrode region, a second electrode region, and a third electrode region; wherein
  • the alignment film is disposed on both sides of the liquid crystal layer; the alignment film includes a first alignment region and a second alignment region; the first alignment region has a first rubbing direction, and the second orientation region has a second rubbing direction;
  • first electrodes arranged in parallel and having a first extending direction are disposed in the first electrode region;
  • a plurality of third electrodes arranged in parallel and having a third extending direction are disposed in the third electrode region, and the third electrode region is located between the first electrode region and the second electrode region;
  • the first orientation area corresponds to the first electrode area
  • the second orientation area corresponds to a combination area of the second electrode area and the third electrode area
  • the first electrode area includes a first part and a second portion, the second portion of the first electrode region is disposed adjacent to the third electrode region
  • the first sub-cell region corresponds to the first portion of the first electrode region
  • the unit region corresponds to a combined region of the second portion of the first electrode region and the third electrode region
  • the second sub-cell region corresponds to the second electrode region.
  • an angle between the first rubbing direction and the second rubbing direction is 90 degrees
  • an angle between the first extending direction and the second extending direction At 90 degrees
  • the first extending direction is the same as the third extending direction
  • an acute angle between the first rubbing direction and the first extending direction is 3 degrees to 25 degrees
  • the second An acute angle between the rubbing direction and the second extending direction is from 3 degrees to 25 degrees.
  • an angle between the first rubbing direction and the second rubbing direction is 90 degrees, and an angle between the first extending direction and the second extending direction Is 90 degrees, the third extending direction is different from the first extending direction, and an acute angle between the first rubbing direction and the first extending direction is 3 degrees to 25 degrees, the second An acute angle between the rubbing direction and the second extending direction is from 3 degrees to 25 degrees.
  • an acute angle between the third extending direction and the horizontal extending direction is smaller than an acute angle between the first extending direction and the horizontal extending direction.
  • the third extending direction and the first extending side The acute angle between the directions is greater than 0 degrees and less than or equal to 45 degrees.
  • the present disclosure also provides a display device comprising the display panel of any of the above.
  • the corresponding liquid crystal molecules corresponding to the third sub-cell region located between the first sub-cell region and the second sub-cell region have a third initial orientation, which is from the first initial orientation to the second initial direction along the first rotation direction One of the orientations when the orientation is rotated, the orientation direction is uniform, and the problem of the wrong point is not generated within the predetermined region;
  • the liquid crystal molecules at the boundary of the region of the first sub-unit region and the second sub-cell region are unified by the alignment film
  • a rotation mode is oriented to avoid the occurrence of "deviation points" in a predetermined area, and solves the problem that display brightness of the display device of the prior art is uneven due to "dislocation points".
  • FIG. 1 is a schematic structural view showing an arrangement of electrodes on the same electrode layer in a display panel of the prior art ADS display mode
  • FIG. 2 is a schematic structural view showing changes in state of liquid crystal molecules upon power-on in a conventional ADS liquid crystal display device
  • Figure 3 is a view showing a conventional liquid crystal display device forming a disclination point
  • FIG. 4 is a schematic view showing a state of liquid crystal molecules of a pixel structure formed in a display panel according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of the display panel according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing a planar structure of a pixel unit in the display panel according to an embodiment of the present disclosure
  • FIG. 7 is a schematic view showing an orientation structure of an alignment film in a display panel of a first embodiment of the present disclosure
  • FIG. 8 is a schematic structural view showing a relationship between a rubbing direction of the alignment film and three sub-unit regions in the display panel of the first embodiment of the present disclosure
  • FIG. 9 is a schematic diagram showing the principle of liquid crystal molecular orientation positioning between two sub-cell regions in the display panel of the first embodiment of the present disclosure.
  • FIG. 10 is a schematic view showing an orientation structure of an alignment film in a display panel of a second embodiment of the present disclosure
  • FIG. 11 is a schematic plan view showing a correspondence relationship between an alignment film and a pixel unit in a display panel according to a third embodiment of the present disclosure
  • FIG. 12 is a schematic plan view showing a state of liquid crystal molecular state, a corresponding relationship between an alignment film and a pixel unit when the display panel of the third embodiment of the present disclosure is not powered;
  • FIG. 13 is a schematic plan view showing a state of liquid crystal molecular state, a corresponding relationship between an alignment film and a pixel unit when the display panel of the third embodiment of the present disclosure is powered;
  • FIG. 14 is a schematic plan view showing a correspondence relationship between an alignment film and a pixel unit in a display panel of a fourth embodiment of the present disclosure
  • 15 is a schematic plan view showing a state of liquid crystal molecular state, a corresponding relationship between an alignment film and a pixel unit when the display panel of the fourth embodiment of the present disclosure is not powered;
  • 16 is a schematic plan view showing a state of liquid crystal molecular state, a corresponding relationship between an alignment film and a pixel unit when the display panel of the fourth embodiment of the present disclosure is powered;
  • Figure 17 is a view showing the structure of a display panel of a fifth embodiment of the present disclosure.
  • Figure 18 is a view showing a first initial state of liquid crystal molecules in a display device according to an embodiment of the present disclosure
  • FIG. 19 is a schematic view showing a second initial state of liquid crystal molecules in a display device according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic view showing a third initial state of liquid crystal molecules in a display device according to an embodiment of the present disclosure
  • Fig. 21 is a view showing a fourth initial state of liquid crystal molecules in a display device according to an embodiment of the present disclosure.
  • a display panel includes a first substrate, a second substrate, a liquid crystal layer disposed between the first substrate and the second substrate, wherein the first substrate or the second base a pixel unit is formed on the board, the pixel unit includes a first sub-cell region and a second sub-cell region, wherein liquid crystal molecules of the liquid crystal layer corresponding to the first sub-cell region have a first initial orientation, and the second sub-unit The liquid crystal molecules of the liquid crystal layer corresponding to the region have a second initial orientation, wherein the pixel unit further includes: a third sub-cell region between the first sub-cell region and the second sub-cell region, the The liquid crystal molecules of the liquid crystal layer corresponding to the three subunit regions have a third initial orientation, and the third initial orientation is one of the orientations when the first initial orientation is rotated in the first rotation direction toward the second initial orientation.
  • the angular difference between the first initial orientation and the second initial orientation is greater than 0 degrees and less than or equal to 90 degrees.
  • the liquid crystal molecules of the liquid crystal layer corresponding to the third sub-cell region 3 located between the first sub-cell region 1 and the second sub-cell region 2 have a third initial orientation.
  • the angular difference between the first initial orientation and the second initial orientation in the present disclosure is greater than 0 degrees and less than or equal to 90 degrees, and typically the first initial orientation and the second initial orientation are perpendicular to each other.
  • the first initial orientation is 90 degrees; at this time, the third initial orientation is rotated from 90 degrees in the clockwise direction to 0 degrees.
  • Any orientation at any time may be any one of the orientations rotated from 90 degrees in the counterclockwise direction to 0 degrees, and the rubbing direction is uniform, so that the problem of the disclination point is not caused within the predetermined range.
  • the "initial orientation" in the embodiments of the present disclosure is the rubbing direction of the liquid crystal molecules in an unpowered state. Further, the first direction of rotation is clockwise or counterclockwise, that is, only one of a clockwise direction and a counterclockwise direction can be taken.
  • the liquid crystal molecules in the third sub-cell region 3 may have a non-uniform rubbing direction as shown in FIG.
  • the third sub-unit area 3 includes a first boundary 31 for dividing the first sub-unit area 1 and the third sub-unit area 3 and a second for dividing the second sub-unit area 2 and the third sub-unit area 3 Border 32.
  • the third initial orientation of the liquid crystal molecules corresponding to the region different from the first boundary 31 is different; for example, from the first boundary 31 to The second boundary 32, the third initial orientation gradually changes from the first initial orientation to the second initial orientation in a first rotational direction.
  • first boundary 31 and second boundary 32 are used to distinguish the boundaries of the first sub-unit area 1 and the third sub-unit area 3, the second sub-unit area 2, and the third sub-unit area 3, respectively. That is, the liquid crystal molecules on both sides of the first boundary 31 and the second boundary 32 have different initial orientations.
  • the initial orientation of the liquid crystal molecules at the position of the first boundary 31 is changed as compared with the initial orientation of the liquid crystal molecules of the first sub-cell region 1.
  • the initial orientation of the liquid crystal molecules at the position of the second boundary 32 is changed as compared with the initial orientation of the liquid crystal molecules of the second sub-cell region 2.
  • the liquid crystal molecules have a third initial orientation, from the position of the first boundary 31 to the position of the second boundary 32, with the change of the distance from the first boundary 31, the third initial The orientation changes, for example, gradually changing from the first initial orientation to the second initial orientation in the first rotational direction; that is, the third initial orientation is closer to the first initial orientation at the first boundary 31 position, The third initial orientation is closer to the second initial orientation at the location of the second boundary 32.
  • the third initial orientation is closer to the second initial orientation at the location of the second boundary 32.
  • the third initial orientation of the liquid crystal molecules is from a state close to the first initial orientation to a state close to the second initial
  • the state of the orientation gradually changes, and the acute angle formed with the second initial orientation gradually becomes smaller.
  • the "orientation" of the liquid crystal molecules mentioned refers to the direction of the long axis of the liquid crystal molecules.
  • FIG. 5 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • the display panel includes a first substrate 100, a second substrate 200, a color film 300 arranged in sequence between the first substrate 100 and the second substrate 200, a first alignment film 400, a liquid crystal layer 500, and a second alignment film 600.
  • the first electrode layer 701 and the second electrode layer 702 are disposed on the second substrate 200, and an insulating layer is disposed between the first electrode layer 701 and the second electrode layer 702.
  • the first electrode layer 701 is composed of a plurality of strip electrodes.
  • the second substrate 200 is further provided with a plurality of gate lines disposed in parallel with each other and a plurality of data lines disposed in parallel with each other, and the gate lines and the data lines intersect to form a plurality of pixel units.
  • each pixel unit is composed of two gate lines 730 which are parallel to each other and two data lines 740 which are parallel to each other.
  • Each of the pixel units includes two sub-units, each of which corresponds to one electrode region such as the first electrode region 750 or the second electrode region 760; wherein the first electrode region 750 has a strip-shaped first electrode 711, the first electrode 711 are parallel to each other and have a first extending direction; the second electrode region 760 has a strip-shaped second electrode 712, and the second electrode 712 is parallel to each other There is a second extending direction, and the second extending direction is perpendicular to the first extending direction.
  • the surfaces of the first alignment film 400 and the second alignment film 600 of the liquid crystal layer 500 are processed for causing liquid crystal molecules in the liquid crystal layer 500 to be oriented when liquid crystal molecules on the liquid crystal layer 500 are not applied with an electric field.
  • the structures of the first alignment film 400 and the second alignment film 600 are both as shown in FIG. 7, and the first alignment film 400 and the second alignment film 600 respectively include a first alignment region 10 and a second alignment region 20.
  • the first orientation region 10 has a first rubbing direction and the second orientation region 20 has a second rubbing direction.
  • the third sub-unit area 3 includes a first portion 311 and a second portion 312; the first portion 311 is a portion adjacent to the first sub-unit area 1, and the second portion 312 is a portion adjacent to the second sub-unit area 2.
  • the first orientation region 10 further includes a portion corresponding to the first portion 311 of the third sub-unit region 3, in addition to a portion corresponding to the first sub-cell region 1, the second orientation region 20 being included In addition to the portion of the second sub-unit area 2, a portion corresponding to the second portion 312 of the third sub-unit area 3 is also included.
  • the first alignment region 10 has a first rubbing direction such that liquid crystal molecules corresponding to the first sub-cell region 1 have the first initial orientation when no electric field is applied
  • the second alignment region 20 has a second rubbing direction
  • the liquid crystal molecules corresponding to the second sub-cell region 2 have the second initial orientation when no electric field is applied.
  • the initial direction of the liquid crystal molecules in the liquid crystal layer is positioned according to the rubbing direction of the alignment film.
  • the initial direction corresponds to the rubbing direction of the alignment film, that is, when the rubbing direction of the alignment film is 90.
  • the initial orientation of the liquid crystal molecules to be positioned is 90 degrees; when the rubbing direction of the alignment film is 0 degrees, the initial orientation direction of the liquid crystal molecules to be positioned is 0 degrees. Therefore, the first initial orientation of the liquid crystal layer 500 in the first sub-cell region 1 is equal to the first rubbing direction that the first alignment region 10 has, and the second initial orientation of the liquid crystal layer 500 in the second sub-cell region 2 is equal to the second orientation.
  • the second rubbing direction that region 20 has.
  • the first initial orientation is the same as the first rubbing direction
  • the second initial orientation is the same as the second rubbing direction.
  • the first rubbing direction and the second rubbing direction The angle between the angles is greater than 0 degrees and less than 90 degrees.
  • the difference in angle between the first rubbing direction and the second rubbing direction is greater than 88 degrees.
  • the oriented liquid crystal layer 500 is oriented according to the above arrangement of the alignment film. Within the liquid crystal molecules corresponding to the two sub-cell regions of the pixel unit, the difference between the initial orientations is less than 90 degrees, and the effect of avoiding the occurrence of "dislocation points" between the two sub-cell regions within a predetermined region can be achieved.
  • the first initial orientation is adopted.
  • the angle between the second initial orientation and the second initial orientation is also greater than 0 degrees and less than 90 degrees.
  • the acute angle between the first rubbing direction and the second rubbing direction is greater than 88 degrees.
  • the first rubbing direction is 89.8 degrees with respect to the horizontal extending direction
  • the second rubbing direction is 0.2 degrees with respect to the horizontal extending direction
  • the angle ⁇ between the first initial orientation and the horizontal extending direction is 89.8 Degree
  • the angle ⁇ between the second initial orientation with respect to the horizontal extension direction is 0.2 degrees, based on the above orientation angle value, the liquid crystal molecules at the interface between the first subunit region 1 and the second subunit region 2, when Under the action of the alignment film, when rotated from the first initial orientation to the second initial orientation, due to the rotation in the first rotation direction, in the clockwise direction as shown in FIG.
  • the rotation angle of the first type of rotation is smaller than the rotation angle of the second type of rotation. The energy required for rotation is small, and the boundary formed is more stable. Therefore, the first occurrence occurs in this state.
  • the probability is far greater than the probability of occurrence of the second mode of rotation, so that the liquid crystal molecules at the boundary of the region of the first subunit region 1 and the second subunit region 2 are uniformly oriented in a revolving manner, avoiding the "predetermined region” The generation of the wrong point.
  • the initial orientation of the liquid crystal molecules in the first sub-unit region 1 and the second sub-cell region 2 when uncharged is formed into the form shown in FIG.
  • the angular difference between ⁇ is less than 90 degrees.
  • the first initial orientation is the same as the first rubbing direction of the first alignment region 10 of the alignment film
  • the second initial orientation is the same as the second rubbing direction of the second alignment region 20 of the alignment film, so the first The acute angle between the rubbing direction and the second rubbing direction is greater than 0 degrees and less than 90 degrees.
  • the acute angle between the first rubbing direction and the second rubbing direction is greater than 88 degrees.
  • the third initial orientation of the liquid crystal molecules in the third sub-cell region 3 is different from the first initial orientation and the second initial orientation, respectively, and the third initial orientation and the first initial orientation, the second The angular difference between the initial orientations is less than 90 degrees greater than 0 degrees.
  • the first portion 311 of the third sub-unit region 3 corresponds to the first alignment region 10 of the alignment film
  • the second portion 312 corresponds to the second alignment region 20 of the alignment film, in the first rubbing direction of the alignment film and the second
  • the liquid crystal molecules corresponding to the third sub-unit region 3 have a third initial orientation in cooperation with the rubbing direction, from the first boundary 31 with the first sub-unit region 1 to the second boundary 32 with the second sub-unit region 2,
  • the third initial orientation gradually changes from the first initial orientation to the second initial orientation in the first rotational direction.
  • the second initial orientation is made to be opposite to the second standard orientation (0 degrees). Deviating the extending direction of the second angle, wherein the first angle and the second angle are both less than 1 degree, and the first standard orientation and the second standard orientation are 90 degrees of each other. Therefore, with the above structure of the present disclosure, the liquid crystal molecules in one pixel structure of the liquid crystal layer are formed into the state shown in FIG. 4, and the liquid crystal molecules located at the boundary between the first sub-cell region 1 and the second sub-cell region 2 are oriented. Under the action of the membrane, the rotation orientation is performed in one direction to avoid the occurrence of "deviation points" in the predetermined area.
  • the difference in the angle of the rubbing direction between the first alignment region 10 and the second alignment region 20 in the first alignment film 400 and the second alignment film 600 is less than 90 degrees and equal to or greater than 88 degrees, and the liquid crystal layer
  • the third sub-unit region 3 of 500 is uniformly oriented in a swiveling manner under the action of the rubbing direction of the first orientation region 10 and the second orientation region 20, avoiding a predetermined region such as the third sub-cell region 3
  • the role of the alignment film is to cause the corresponding liquid crystal molecules to be initially oriented according to the rubbing direction of the alignment film, but in practice, due to various factors, the initial orientation of the liquid crystal molecules may be rubbed with friction. There is a certain deviation between the directions. Based on this, the initial orientation and the rubbing direction mentioned in the above and all of the following embodiments of the present disclosure are approximately the same, allowing a certain deviation.
  • the present disclosure also provides a display panel of the second embodiment in order to further ensure that a "deviation point" is not generated within a predetermined area between two sub-unit regions.
  • the structure of the display panel is as shown in FIG. 5, which is the same as the first embodiment.
  • the first substrate 100 and the second substrate 200 are disposed, and the color film 300, the first alignment film 400, the liquid crystal layer 500, and the second alignment film 600 are disposed between the first substrate 100 and the second substrate 200 in sequence.
  • first alignment film 400 and the second alignment film 600 respectively include a first alignment region 10 corresponding to the first sub-cell region 1 and a second alignment region 20 corresponding to the second sub-cell region 2.
  • the first alignment region 10 has a first rubbing direction such that the liquid crystal molecules corresponding to the first sub-cell region 1 are oriented in the first initial orientation when no electric field is applied.
  • the second orientation region 20 has a second rubbing direction such that the liquid crystal molecules corresponding to the second sub-cell region 2 are oriented in the second initial orientation when no electric field is applied.
  • the first alignment film 400 and the second alignment film 600 are used for initial orientation of the corresponding liquid crystal molecules in the rubbing direction of the alignment film, and the first initial orientation of the first sub-cell region 1 is equal to the first alignment region 10
  • the first rubbing direction is equal to the second rubbing direction of the second orientation region 20.
  • the angle between the first rubbing direction and the second rubbing direction is equal to 90 degrees.
  • the first alignment film 400 and the second alignment film 600 further include a third alignment region 30, respectively.
  • the third alignment region 30 is disposed between the first alignment region 10 and the second alignment region 20 and corresponds to the third sub-cell region 3.
  • the third region 30 has a third rubbing direction such that the liquid crystal molecules corresponding to the third sub-cell region 3 are directed in the third initial orientation when no electric field is applied.
  • the third rubbing direction is different from the first rubbing direction and the second rubbing direction, and the third initial orientation direction is rotated from the first initial orientation along the first rotation direction toward the second initial orientation One of the orientations of the time.
  • the improvement of the alignment direction of the alignment film in the rubbing direction causes the liquid crystal molecules of the third sub-cell region 3 to have an initial orientation as shown in FIG. 4, thereby solving the problem of the misalignment.
  • the third rubbing direction when the first rubbing direction is 90 degrees with respect to a horizontal extending direction and the second rubbing direction is 0 degrees with respect to the horizontal extending direction, the third rubbing direction may be at a distance of 0 degrees. Rotating clockwise or counterclockwise to a direction between 90 degrees, such as 45 degrees or -45 degrees with respect to the horizontal extension direction, that is, the third rubbing direction and the first rubbing direction or the second rubbing direction The angle between them is 45 degrees.
  • a second embodiment of the present disclosure by the first alignment film 400 and the second alignment film 600 corresponding to a region at the interface between the first sub-cell region 1 and the second sub-cell region 2, such as a third sub-cell region 3 performing orientation processing in a specific direction to uniformly align the liquid crystal molecules at the boundary region of the first sub-cell region 1 and the second sub-cell region 2 on the liquid crystal layer 500, such as the third sub-cell region 3, to further ensure that "dislocation" is avoided. Point" problem.
  • the rubbing directions of the first alignment film 400 and the second alignment film 600 in the first alignment region 10 and the second alignment region 20 may also be combined with the structure of the first embodiment, even if The difference between a rubbing direction and a second rubbing direction is less than 90 degrees and greater than 88 degrees, such as the first rubbing direction is 89.8 degrees with respect to a horizontal extending direction, and the second rubbing direction is 0.2 degrees with respect to the horizontal extending direction, It can effectively ensure that problems caused by "deviation points" within the predetermined area are avoided.
  • the present disclosure further improves the arrangement relationship between the alignment film and the electrode, further ensuring that the liquid crystal layer is not reversed due to liquid crystal molecules in a predetermined region range under power-on and no-charge conditions. The rotation produces a "point of error.”
  • the present disclosure also provides a display panel of the third embodiment.
  • the specific structure of the display panel is the same as that of the first embodiment and the second embodiment.
  • the first substrate 100 includes The second substrate 200 and the color film 300, the first alignment film 400, the liquid crystal layer 500, and the second alignment film 600 are arranged in this order between the first substrate 100 and the second substrate 200.
  • a pixel unit is formed on the second substrate 200, and the pixel unit includes three regions corresponding to the first sub-cell region 1 formed on the liquid crystal layer 500 to have a first initial orientation when liquid crystal molecules are not applied with an electric field.
  • a second sub-cell region 2 having a second initial orientation and a third sub-cell region 3 having a third initial orientation are specifically shown in connection with FIG.
  • the angle difference between the first initial orientation and the second initial orientation may be equal to 90 degrees, or may be less than 90 and greater than or equal to 88 degrees.
  • the arrangement form of the electrodes on the second substrate 200 and the rubbing direction of the alignment film are also improved.
  • the first electrode layer 701 includes a first electrode region 750, a second electrode region 760, and a third electrode region 770, wherein:
  • the first electrode region 750 is provided with a plurality of first electrodes 711 arranged in parallel and having a first extending direction;
  • the second electrode region 760 is provided with a plurality of second electrodes 712 arranged in parallel and having a second extending direction;
  • the third electrode region 770 is provided with a plurality of third electrodes 713 arranged in parallel and having a third extending direction; the third electrode region 770 is located between the first electrode region 750 and the second electrode region 760.
  • the first extending direction is different from the second extending direction, and an acute angle between the first extending direction and the second extending direction is greater than 0 degrees and less than or equal to 90 degrees.
  • the ground is equal to 90 degrees.
  • the third extending direction is the same as the first extending direction, and each of the third electrodes 713 is connected to one first electrode 711.
  • the first electrode 711, the second electrode 712, and the third electrode 713 may be connected to each other by electrical connection, or may be respectively connected to a wire and input a corresponding signal.
  • the display panel further includes:
  • the first alignment film 400 and the second alignment film 600 are disposed on both sides of the liquid crystal layer 500.
  • the first alignment film 400 and the second alignment film 600 respectively include:
  • the first alignment region 10 corresponds to the first electrode region 750
  • the second alignment region 20 corresponds to a combination of the second electrode region 760 and the third electrode region 770. region.
  • an angle difference between the first rubbing direction and the second rubbing direction is 90 degrees, and an acute angle between the first rubbing direction and the first extending direction is 3 degrees.
  • an acute angle between the second rubbing direction and the second extending direction is 3 degrees to 25 degrees, so that liquid crystal molecules can be deflected better under the electric field to improve the transmission of the display panel. rate.
  • the liquid crystal The liquid crystal molecules of the layer 500 are formed into a first sub-cell region 1, a second sub-cell region 2, and a third sub-cell region 3, wherein the liquid crystal molecules in the first sub-cell region 1 and the second sub-cell region 2 a first initial orientation and a second initial orientation, respectively, the third sub-unit region 3 having a third initial orientation, the third initial orientation being rotated from the first initial orientation in the first rotational direction toward the second initial orientation One of the orientations of the time. Therefore, in conjunction with FIG.
  • the first sub-cell area 1 corresponds to a first portion of the first electrode region 750
  • the third sub-cell region 3 corresponds to a second portion of the first electrode region 750
  • the combined region of the third electrode region 770, the second sub-cell region 2 corresponds to the second electrode region 760.
  • a first portion of the first electrode region 750 and a second portion of the first electrode region 750 are combined to form the first electrode region 750, a second portion of the first electrode region 750 and the third electrode Areas 770 are arranged adjacent to each other.
  • the first initial orientation is the same as the first rubbing direction
  • the second initial orientation is the same as the second rubbing direction.
  • the first rubbing direction and the second rubbing direction are mutually perpendicular, that is, the first initial orientation and the second initial orientation are also perpendicular to each other.
  • the liquid crystal molecules in the first sub-cell region 1 have the first direction
  • the liquid crystal molecules in the second sub-cell region 2 Having the second direction
  • the liquid crystal molecules in the third sub-unit region 3 have a third direction
  • the third direction is one of the directions when the first direction is rotated in the second direction from the first direction .
  • FIG. 11 FIG. 12 and FIG. 13
  • the electric field applied to the first sub-cell region 1 and the third sub-cell region 3 is the same, but due to the different initial orientation of the liquid crystal molecules, it is formed as shown in FIG. Show the status after power up.
  • the liquid crystal molecules of the alignment film boundary region such as the region corresponding to the third sub-cell region 3 are regularly arranged under the action of the electric field, thereby solving the problem of the disclination point occurring in the partial region after power-on.
  • the present disclosure also provides the display panel of the fourth embodiment, in the fourth embodiment,
  • the first electrode layer 701 includes a first electrode region 750, a second electrode region 760, and a third electrode region 770, wherein:
  • the first electrode region 750 is provided with a plurality of first electrodes 711 arranged in parallel and having a first extending direction;
  • the second electrode region 760 is provided with a plurality of second electrodes 712 arranged in parallel and having a second extending direction;
  • the third electrode region 770 is disposed with a plurality of third electrodes 713 arranged in parallel and having a third extending direction; the third electrode region 770 is located between the first electrode region 750 and the second electrode region 760;
  • the first extending direction is different from the second extending direction, and an angle difference between the first extending direction and the second extending direction is greater than 0 degrees and less than or equal to 90 degrees, optionally equal to 90 degrees.
  • the display panel further includes:
  • the first alignment film 400 and the second alignment film 600 are disposed on both sides of the liquid crystal layer 500.
  • the first alignment film 400 and the second alignment film 600 respectively include:
  • the third extending direction is different from the first extending direction.
  • each of the first electrodes 711 is connected to a third electrode 713; an acute angle between the third extending direction and the horizontal extending direction is smaller than an acute angle between the first extending direction and the horizontal extending direction,
  • the liquid crystal molecules of the third sub-cell region 3 can be more regularly oriented under the action of an electric field, and the problem of the turning point is better eliminated.
  • the first electrode 711, the second electrode 712, and the third electrode 713 may be connected to each other by three or three wires, and the corresponding signals may be input.
  • first alignment region 10 corresponds to the first electrode region 750
  • second alignment region 20 corresponds to a combined region of the second electrode region 750 and the third electrode region 760.
  • the acute angle between the first rubbing direction and the first extending direction of the first orientation region 10 is 3 degrees to 25 degrees
  • the second rubbing direction and the second rubbing direction of the second orientation region 20 are The acute angle between the second extending directions is from 3 degrees to 25 degrees.
  • the liquid crystal molecules of the liquid crystal layer 500 are formed into a first sub-cell region 1, a second sub-cell region 2, and a third sub-cell region 3.
  • the liquid crystal molecules in the first sub-cell region 1 and the second sub-cell region 2 are respectively a first initial orientation and a second initial orientation
  • the third sub-cell region 3 has a third initial orientation
  • the third initial orientation is One of the orientations of the first initial orientation as it rotates in the first rotational orientation toward the second initial orientation.
  • first initial orientation is opposite to the first friction direction
  • second initial orientation is the same as the second rubbing direction.
  • first rubbing direction and the second rubbing direction are mutually perpendicular, that is, the first initial orientation and the second initial orientation are also perpendicular to each other.
  • the first sub-cell area 1 corresponds to the first portion 751 of the first electrode region 750; the third sub-cell region 3 corresponds to the second portion 752 of the first electrode region 750 and a combined region of the third electrode region 770; the second sub-cell region 2 corresponds to the second electrode region 760.
  • the first portion 751 of the first electrode region 750 and the second portion 752 of the first electrode region 750 are combined to form the first electrode region 750, and the second portion 752 of the first electrode region 750 is
  • the third electrode regions 770 are disposed adjacent to each other.
  • the liquid crystal molecules in the first sub-unit region 1 When in the case of power-on, formed as shown in FIG. 16, the liquid crystal molecules in the first sub-unit region 1 have a first direction, and the liquid crystal molecules in the second sub-cell region 2 have a second direction, the third sub-unit The liquid crystal molecules in the region 3 have a third direction, and the third direction is one of the directions from the first direction in the first rotation direction toward the second direction.
  • liquid crystal molecules are deflected by applying a voltage to the electrodes in an initial state, when removed. After the voltage, the liquid crystal molecules of the liquid crystal layer corresponding to the first sub-cell region 1, the second sub-cell region 2, and the third sub-cell region 3 are respectively positioned according to the orientation of the alignment film, thereby making the third sub-cell region 3 correspond to The liquid crystal molecules of the liquid crystal layer form a third initial orientation of the regular arrangement.
  • the liquid crystal molecules of the liquid crystal layer corresponding to the third sub-unit region 3 are uniformly arranged by the electric field by the third electrode 713 disposed between the first electrode 711 and the second electrode 712. Therefore, in the case of the initial orientation and the application of the electric field, the problem of avoiding the "deviation point" in the partial region can be achieved.
  • the difference between the first rubbing direction and the second rubbing direction is less than 90 degrees.
  • the first rubbing direction is a direction in which the first standard orientation is deflected toward the first direction by a first angle
  • the second rubbing direction is a direction in which the second standard direction is deflected in a direction opposite to the first direction by a second angle
  • the difference between a standard orientation and a second standard orientation is 90 degrees.
  • the first angle is less than or equal to 1 degree
  • the first standard orientation is 90 degrees with respect to a horizontal extension direction
  • the second standard orientation is relative to the The horizontal extension direction is 0 degrees.
  • control of the application of the electric field after heating the liquid crystal molecules in the liquid crystal layer may be further adopted, so that the liquid crystal molecules are sequentially arranged after power-on, and the predetermined region range after power-on is improved.
  • the liquid crystal cell is heated to the isotropic liquid phase (I phase), and then, under the condition of applying an electric field, slowly cooling to the nematic phase (N phase) of the liquid crystal, Usually, the electric field control after heating causes the liquid crystal molecules in the boundary region between the two regions to be aligned according to a specific direction, thereby avoiding the occurrence of "deviation points" in the predetermined region.
  • I phase isotropic liquid phase
  • N phase nematic phase
  • the present disclosure also provides a display panel of the fifth embodiment of the structure shown in FIG. 17 for indicating the structural form of liquid crystal molecules in a corresponding region of one pixel unit.
  • a display panel of the fifth embodiment of the structure shown in FIG. 17 for indicating the structural form of liquid crystal molecules in a corresponding region of one pixel unit.
  • the liquid crystal molecules corresponding to the third sub-cell region of the pixel unit may have a uniform initial orientation, and are formed in the state shown in FIG.
  • Figure 18 is a view showing a first initial state of liquid crystal molecules of a display device, showing a first state diagram of liquid crystal molecules in a corresponding region of the entire display panel; wherein the region X is formed as a corresponding region of one pixel unit, and the first sub-cell region is The combination of the second sub-unit area 2 and the third sub-unit area 3 corresponds to one pixel unit, and the third sub-unit area 3 of the entire display device has a uniform third initial orientation, so that no disclination occurs in the entire display device.
  • the improvement of the rubbing direction of the alignment film or the combination of the rubbing direction of the alignment film and the arrangement of the electrodes it is possible to avoid the entire display device from being prevented. Produce a wrong point.
  • liquid crystal molecules corresponding to the third sub-cell region of the pixel unit may have different initial orientations, and liquid crystal molecules having an orientation direction It is alternately arranged with liquid crystal molecules having another orientation direction.
  • the liquid crystal molecules having the 45-degree orientation direction are alternately arranged with the liquid crystal molecules having the -45-degree orientation direction, but the arrangement of the liquid crystal molecules in the third sub-cell region is not limited thereto, as long as they are regularly arranged. Just fine.
  • the combination of the first sub-cell area 1, the second sub-unit area 2, and the third sub-unit area 3 corresponds to one pixel unit, wherein the area Y is formed as a corresponding area of one pixel unit, and is associated with the area Y.
  • the initial orientation of the liquid crystal molecules corresponding to the third sub-cell region 3 in the adjacent pixel unit region is different, and a "deviation point" is generated.
  • the position of the disclination point is controllable, so that the positionally controllable discriminant point can be targeted. Correction of the sex, thereby reducing the effect of the point of error on the display.
  • FIG. 20 is another form of the structure shown in FIG. 19. According to the structure shown in FIG. 20, in one region Y, the liquid crystal molecules corresponding to the third sub-cell region 3 are oriented, and the region Y is adjacent in the column direction. The orientation of the liquid crystal molecules at the interface between one region Y' is different.
  • Figure 21 is a view showing another state of the liquid crystal molecules when they are not powered, in which the first sub-unit 1, the second sub-unit area 2, and the third sub-unit area 3 correspond to each other in a region Y.
  • the liquid crystal molecules are respectively deflected; in one of the regions Y, the liquid crystal molecules of the third subunit region 3 are correspondingly horizontal, and the liquid crystal molecules of the third subunit region 3 are vertically adjacent to each other, and the liquid crystal molecules of the third subunit region 3 are vertical. Vertical to each other.
  • the "deviation point” may not occur in the entire display device, and the “deviation point” may not occur in the predetermined range, and the predetermined range may be one or more.
  • the pixel unit can also be the entire display device, so that the generation of the "deviation point” becomes controllable, and the influence on the uniformity of the display brightness is avoided.
  • a further embodiment of the present disclosure further provides a display device including the above display panel.
  • one pixel unit is used as a basic unit, and a structure in which no "dislocation point" is generated in one pixel unit region is described.
  • the basic unit that does not generate the "dislocation point" may be in the form of more than one pixel unit or less than one pixel unit, in addition to being one pixel unit, that is, When a basic unit is an area smaller than one pixel unit, with the above embodiments in the present disclosure, no corresponding direction is generated in a corresponding area of less than one pixel unit.
  • a corresponding unit of a pixel unit may include a plurality of basic units, and a plurality of basic units may also have a predetermined rule according to design. "The wrong point”.
  • the display device having the above structure of the present disclosure may be a mobile phone, a television, a display, or the like, but is not limited thereto.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示面板及显示装置,该显示面板上形成有像素单元,像素单元包括第一子单元区域(1)和第二子单元区域(2),第一子单元区域(1)所对应液晶层的液晶分子具有第一初始取向,第二子单元区域(2)所对应液晶层的液晶分子具有第二初始取向,像素单元还包括:位于第一子单元区域(1)和第二子单元区域(2)之间的第三子单元区域(3),第三子单元区域(3)所对应液晶层的液晶分子具有第三初始取向,第三初始取向为从第一初始取向沿第一旋转方向朝第二初始取向转动时的其中一取向,第一初始取向与第二初始取向之间的角度差值大于0度且小于等于90度。

Description

显示面板及显示装置
相关申请的交叉引用
本申请主张在2014年3月21日在中国提交的中国专利申请号No.201410108320.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及显示技术领域,尤其是指一种显示面板及显示装置。
背景技术
随着液晶显示技术的日趋成熟,当前市场上液晶显示器逐渐向大尺寸方向发展。然而,大尺寸显示面板在开发技术上需克服视角的限制,因此,广视角液晶显示器技术因应而生。
目前,液晶面板按照显示模式可以分为:扭曲向列(TN,Twisted Nematic)型、平面转换(IPS,In Plane Switching)型和高级超维场开关(Advanced Super Dimension Switch,ADSDS,简称ADS)型等。其中,ADS显示模式的液晶面板是通过同一平面内电极边缘所产生的电场以及电极层与板状电极层间产生的电场形成多维电场,使在电极之间和电极正上方的所有液晶分子发生旋转,相对于IPS显示模式的液晶面板,能够提高液晶的工作效率且增加了透光效率。ADS显示模式的液晶面板具有高画面品质、高分辨率、高透过率、低功耗、宽视角、高开口率、低色差、无水波纹(push Mura)等优点。
如图1为现有技术ADS显示模式的显示面板中,同一电极层上的电极排列形式结构示意图。其中,在一像素区内设定两个附属区1和2,附属区1和2中分别设有电极70,其设置为平行电极。在附属区1和2内的电极70相互成90度倾斜角度,且在各自方向上延伸,利用电极70之间的电压产生与电极70垂直的电场E1以激励液晶分子21。
为避免存在液晶层的折射率各向异性及液晶厚度随视角倾斜角度变化而变化的问题,通常使附属区1和2中的液晶分子21初始取向相差90度,当在液晶显示装置施加一电压时,液晶分子21以相同的方向旋转,但转动后的 取向保持相互90的间隔,如图2所示。
然而,上述图1结构的共面液晶显示装置中,在施加转向电压前,液晶层的液晶分子受显示装置上所贴附取向膜的影响,分别处于初始取向,附属区1和2内的液晶分子相差90度;然而,在附属区1和2的区域边界处,如图2所示,由于区域边界处的液晶分子受附属区1和2所对应不同角度取向膜的影响,存在区域边界处的液晶分子取向不确定的问题,在区域边界处从附属区1内的取向过渡到附属区2内的取向时,可能朝向不同方向转动,因此产生图3所示区域边界处的“向错点”(在图3中用“×”表示),引起显示器亮度不均匀,造成mura现象;尤其当“向错点”处于特定位置或者呈现不均匀时,对显示器的亮度影响更为明显。
发明内容
本公开文本技术方案的目的是提供一种显示面板及显示装置,使得显示装置在预定显示区域之内不会产生向错点。
本公开文本提供一种显示面板,包括液晶层和像素单元;所述像素单元包括第一子单元区域和第二子单元区域,所述第一子单元区域所对应所述液晶层的液晶分子具有第一初始取向,所述第二子单元区域所对应所述液晶层的液晶分子具有第二初始取向,其中,所述像素单元还包括:位于所述第一子单元区域和所述第二子单元区域之间的第三子单元区域,所述第三子单元区域所对应所述液晶层的液晶分子具有第三初始取向,所述第三初始取向为从所述第一初始取向沿第一旋转方向朝所述第二初始取向转动时的其中一取向,所述第一初始取向与所述第二初始取向之间的角度差值大于0度且小于等于90度。
进一步地,所述显示面板还包括第一基板和第二基板;所述液晶层设置于所述第一基板与所述第二基板之间;所述像素单元形成在所述第一基板或所述第二基板上。
进一步地,上述所述的显示面板,所述第三子单元区域包括用于划分所述第一子单元区域与所述第三子单元区域的第一边界和用于划分所述第二子单元区域与所述第三子单元区域的第二边界,其中,
在所述第三子单元区域内,从所述第一边界至所述第二边界,与所述第一边界的距离不同的区域所对应的液晶分子所具有的第三初始取向从所述第一初始取向沿所述第一旋转方向朝所述第二初始取向转动变化。
进一步地,上述所述的显示面板,所述第三子单元区域包括第一部分和第二部分;所述第三子单元区域的所述第一部分与所述第一子单元区域相邻设置,所述第三子单元区域的所述第二部分与所述第二子单元区域相邻设置;所述显示面板还包括:设置于所述液晶层两侧的取向膜,所述取向膜包括第一取向区域和第二取向区域,其中所述第一取向区域对应所述第一子单元区域和所述第三子单元区域的所述第一部分的组合区域,所述第二取向区域对应所述第二子单元区域和所述第三子单元区域的所述第二部分的组合区域;所述第一取向区域具有第一摩擦方向,所述第二取向区域具有第二摩擦方向,且所述第一摩擦方向与所述第二摩擦方向之间的夹角大于0度且小于90度。
进一步地,上述所述的显示面板,所述第一摩擦方向与所述第二摩擦方向之间所夹的锐角大于88度。
进一步地,上述所述的显示面板,所述第一摩擦方向相对于一水平延伸方向呈89.8度,所述第二摩擦方向相对于所述水平延伸方向呈0.2度。
进一步地,上述所述的显示面板,所述显示面板还包括:设置于所述液晶层两侧的取向膜,所述取向膜包括第一取向区域、第二取向区域和设置于所述第一取向区域和所述第二取向区域之间的第三取向区域,其中所述第一取向区域具有第一摩擦方向,所述第二取向区域具有第二摩擦方向,所述第三取向区域具有第三摩擦方向;所述第三摩擦方向与所述第一摩擦方向和所述第二摩擦方向都不同;所述第一取向区域与所述第一子单元区域对应、所述第二取向区域与所述第二子单元区域对应,所述第三取向区域与所述第三子单元区域对应。
进一步地,上述所述的显示面板,所述第一摩擦方向与所述第二摩擦方向之间的夹角为90度。
进一步地,上述所述的显示面板,所述第三摩擦方向与所述第一摩擦方向或所述第二摩擦方向之间的夹角为45度。
进一步地,上述所述的显示面板,所述显示面板还包括:取向膜、第一 电极区域、第二电极区域和第三电极区域;其中,
所述取向膜设置于所述液晶层两侧;所述取向膜包括第一取向区域和第二取向区域;所述第一取向区域具有第一摩擦方向,所述第二取向区域具有第二摩擦方向;
所述第一电极区域中设置有多个平行排列、具有第一延伸方向的第一电极;
所述第二电极区域中设置有多个平行排列、具有与所述第一延伸方向不同的第二延伸方向的第二电极;
所述第三电极区域中设置有多个平行排列、具有第三延伸方向的第三电极,所述第三电极区域位于所述第一电极区域与所述第二电极区域之间;
其中,所述第一取向区域对应所述第一电极区域,所述第二取向区域对应所述第二电极区域和所述第三电极区域的组合区域;所述第一电极区域包括第一部分和第二部分,所述第一电极区域的第二部分与所述第三电极区域相邻设置;所述第一子单元区域对应所述第一电极区域的所述第一部分;所述第三子单元区域对应所述第一电极区域的所述第二部分和所述第三电极区域的组合区域,所述第二子单元区域对应所述第二电极区域。
进一步地,上述所述的显示面板,所述第一摩擦方向与所述第二摩擦方向之间的夹角为90度,所述第一延伸方向与所述第二延伸方向之间的夹角为90度,所述第一延伸方向与所述第三延伸方向相同,且所述第一摩擦方向与所述第一延伸方向之间所夹的锐角为3度至25度,所述第二摩擦方向与所述第二延伸方向之间所夹的锐角为3度至25度。
进一步地,上述所述的显示面板,所述第一摩擦方向与所述第二摩擦方向之间的夹角为90度,所述第一延伸方向与所述第二延伸方向之间的夹角为90度,所述第三延伸方向与所述第一延伸方向不同,且所述第一摩擦方向与所述第一延伸方向之间所夹的锐角为3度至25度,所述第二摩擦方向与所述第二延伸方向之间所夹的锐角为3度至25度。
进一步地,上述所述的显示面板,所述第三延伸方向与水平延伸方向之间的锐角角度小于所述第一延伸方向与水平延伸方向之间的锐角角度。
进一步地,上述所述的显示面板,所述第三延伸方向与所述第一延伸方 向之间的锐角大于0度小于等于45度。
本公开文本还提供一种显示装置,包括如上任一项所述的显示面板。
本公开文本具体实施例上述技术方案中的至少一个具有以下有益效果:
位于第一子单元区域和第二子单元区域之间的第三子单元区域所对应的所对应的液晶分子具有第三初始取向,其为从第一初始取向沿第一旋转方向朝第二初始取向转动时的其中一取向,取向方向统一,保证预定区域范围内不会产生向错点问题;
此外,通过使第一初始取向与第二初始取向之间的差值小于90度,在取向膜作用下,使处于第一子单元区域和第二子单元区域的区域边界处的液晶分子统一以一种回转方式进行取向,避免预定区域范围内“向错点”的产生,解决现有技术显示装置由于“向错点”造成显示亮度不均的问题。
附图说明
图1表示现有技术ADS显示模式的显示面板中,同一电极层上的电极排列形式结构示意图;
图2表示常规ADS液晶显示装置中加电时液晶分子状态变化的结构示意图;
图3表示常规液晶显示装置形成向错点的示意图;
图4表示本公开文本一实施方式的显示面板中所形成的像素结构液晶分子状态的示意图;
图5表示本公开文本一实施方式的所述显示面板的结构示意图;
图6表示本公开文本一实施方式的所述显示面板中的一个像素单元的平面结构示意图;
图7表示本公开文本第一实施例的显示面板中的取向膜的取向结构示意图;
图8表示本公开文本第一实施例的所述显示面板中所述取向膜的摩擦方向与三个子单元区域之间关系的结构示意图;
图9表示本公开文本第一实施例的所述显示面板中的两个子单元区域之间的液晶分子取向定位时的原理示意图;
图10表示本公开文本第二实施例的显示面板中的取向膜的取向结构示意图;
图11表示本公开文本第三实施例的显示面板中的取向膜与像素单元之间对应关系的平面结构示意图;
图12表示本公开文本第三实施例的所述显示面板在未加电时液晶分子状态、取向膜与像素单元之间对应关系的平面结构示意图;
图13表示本公开文本第三实施例的所述显示面板在加电时液晶分子状态、取向膜与像素单元之间对应关系的平面结构示意图;
图14表示本公开文本第四实施例的显示面板中的取向膜与像素单元之间对应关系的平面结构示意图;
图15表示本公开文本第四实施例的所述显示面板在未加电时液晶分子状态、取向膜与像素单元之间对应关系的平面结构示意图;
图16表示本公开文本第四实施例的所述显示面板在加电时液晶分子状态、取向膜与像素单元之间对应关系的平面结构示意图;
图17表示本公开文本第五实施例的显示面板的结构示意图;
图18表示本公开文本一实施例的显示装置中的液晶分子的第一种初始状态示意图;
图19表示本公开文本一实施例的显示装置中的液晶分子的第二种初始状态示意图;
图20表示本公开文本一实施例的显示装置中的液晶分子的第三种初始状态示意图;
图21表示本公开文本一实施例的显示装置中的液晶分子的第四种初始状态示意图。
具体实施方式
为使本公开文本的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本公开文本进行详细描述。
本公开文本一实施方式的显示面板包括第一基板、第二基板、设置于所述第一基板与所述第二基板之间的液晶层,其中所述第一基板或所述第二基 板上形成有像素单元,所述像素单元包括第一子单元区域和第二子单元区域,所述第一子单元区域所对应液晶层的液晶分子具有第一初始取向,所述第二子单元区域所对应液晶层的液晶分子具有第二初始取向,其中所述像素单元还包括:位于所述第一子单元区域和所述第二子单元区域之间的第三子单元区域,所述第三子单元区域所对应液晶层的液晶分子具有第三初始取向,所述第三初始取向为从所述第一初始取向沿第一旋转方向朝所述第二初始取向转动时的其中一取向,所述第一初始取向与所述第二初始取向之间的角度差值大于0度且小于等于90度。
如图4所示,采用本公开文本所述显示面板,位于第一子单元区域1和第二子单元区域2之间的第三子单元区域3所对应液晶层的液晶分子具有第三初始取向,其为从第一初始取向沿第一旋转方向朝第二初始取向转动时的其中一取向。本公开文本中第一初始取向与第二初始取向之间的角度差值大于0度且小于等于90度,通常第一初始取向与所述第二初始取向互为垂直。例如,当设定第二初始取向的方向为水平方向,也即为0度时,第一初始取向则为90度;此时,第三初始取向为从90度沿顺时针方向转动至0度时的任一取向,也可以为从90度沿逆时针方向转动至0度时的任一取向,摩擦方向统一,保证预定范围内不会产生向错点问题。
本公开文本实施例中的“初始取向”为液晶分子在未加电状态时的摩擦方向。此外,第一旋转方向为顺时针方向或逆时针方向,也即只能取顺时针方向和逆时针方向的其中之一方向。
具体地,第三子单元区域3内的液晶分子可以具有不统一的摩擦方向,如图4所示。所述第三子单元区域3包括用于划分第一子单元区域1与第三子单元区域3的第一边界31和用于划分第二子单元区域2与第三子单元区域3的第二边界32。其中,在所述第三子单元区域3内,与所述第一边界31的距离不同的区域对应的液晶分子所具有的所述第三初始取向不同;例如,从所述第一边界31至所述第二边界32,所述第三初始取向从所述第一初始取向沿第一旋转方向朝所述第二初始取向转动逐渐变化。
上述的“第一边界31”和“第二边界32”是分别用于区分第一子单元区域1与第三子单元区域3、第二子单元区域2与第三子单元区域3的界限, 也即在第一边界31和第二边界32两侧的液晶分子,初始取向不同。在第三子单元区域3内,第一边界31位置处的液晶分子的初始取向相较于第一子单元区域1的液晶分子的初始取向发生变化。在第三子单元区域3内,第二边界32位置处的液晶分子的初始取向相较于第二子单元区域2的液晶分子的初始取向发生变化。其中,在第三子单元区域3内,液晶分子具有第三初始取向,从第一边界31位置处至第二边界32位置处,随着与第一边界31之间距离不同的变化第三初始取向发生变化,例如,从所述第一初始取向沿第一旋转方向朝所述第二初始取向转动逐渐变化;也即在第一边界31位置处第三初始取向较接近于第一初始取向,在第二边界32位置处第三初始取向较接近于第二初始取向。例如,结合图4来说,在第三子单元区域3内,从第一边界31至第二边界32,液晶分子的第三初始取向从接近于第一初始取向的状态向接近于第二初始取向的状态逐渐变化,与第二初始取向之间所成的锐角逐渐变小。
在本公开文本中,所提及的液晶分子的“取向”是指液晶分子长轴的方向。以下结合具体实施例对本公开文本所述显示面板的结构进行详细描述。
第一实施例:
图5为本公开文本一实施方式的显示面板的结构示意图。所述显示面板包括第一基板100、第二基板200、依次于第一基板100与第二基板200之间设置排列的彩膜300、第一取向膜400、液晶层500和第二取向膜600。其中,在第二基板200上设置有第一电极层701和第二电极层702,第一电极层701与第二电极层702之间为绝缘层。其中第一电极层701由多个条状的电极构成。
另外,第二基板200上还设置有包括多个相互平行设置的栅极线和多个相互平行设置的数据线,且栅极线与数据线相交叉,共同围绕形成多个像素单元。如图6所示,每一像素单元由相互平行的两条栅极线730和相互平行的两条数据线740构成。每一像素单元包括两个子单元,每一子单元对应一个电极区域如第一电极区域750或第二电极区域760;其中,第一电极区域750内具有条状的第一电极711,第一电极711相互平行并具有第一延伸方向;第二电极区域760内具有条状的第二电极712,第二电极712相互平行并具 有第二延伸方向,而且第二延伸方向与第一延伸方向相垂直。
所述液晶层500的第一取向膜400和第二取向膜600的表面被处理,以用于当液晶层500上的液晶分子未施加电场时,使液晶层500内的液晶分子被定向。所述第一取向膜400和第二取向膜600的结构均如图7所示,所述第一取向膜400和第二取向膜600分别包括第一取向区域10和第二取向区域20。所述第一取向区域10具有第一摩擦方向,所述第二取向区域20具有第二摩擦方向。
结合图8,所述第三子单元区域3包括第一部分311和第二部分312;第一部分311为邻近第一子单元区域1的部分,第二部分312为邻近第二子单元区域2的部分。所述第一取向区域10除包括对应所述第一子单元区域1的部分外,还包括与所述第三子单元区域3的第一部分311对应的部分,所述第二取向区域20除包括对应第二子单元区域2的部分外,还包括与第三子单元区域3的第二部分312对应的部分。
此外,所述第一取向区域10具有第一摩擦方向使第一子单元区域1对应的液晶分子在未施加电场时具有所述第一初始取向,所述第二取向区域20具有第二摩擦方向使所述第二子单元区域2对应的液晶分子在未施加电场时具有所述第二初始取向。本领域技术人员可以理解,液晶层内液晶分子的初始方向是依据取向膜的摩擦方向被定位,通常情况下,初始方向与取向膜的摩擦方向所对应,也即当取向膜的摩擦方向为90度时,被定位的液晶分子的初始取向则为90度;当取向膜的摩擦方向为0度时,被定位的液晶分子的初始取向方向则为0度。因此,液晶层500在第一子单元区域1的第一初始取向等于第一取向区域10所具有的第一摩擦方向,液晶层500在第二子单元区域2的第二初始取向等于第二取向区域20所具有的第二摩擦方向。
因此,所述第一初始取向与所述第一摩擦方向相同,所述第二初始取向与所述第二摩擦方向相同。
本公开文本所述显示面板的第一实施例,为避免第一子单元区域1和第二子单元区域2之间产生“向错点”,所述第一摩擦方向与所述第二摩擦方向之间的夹角大于0度且小于90度,可选地,第一摩擦方向与第二摩擦方向之间的角度差值大于88度。根据取向膜的上述设置方式,被定向的液晶层500 内,与像素单元的两个子单元区域对应的液晶分子,初始取向之间的差值小于90度,能够达到避免两个子单元区域之间在预定区域范围内产生“向错点”的效果。
结合图8所示液晶分子的状态示意图,采用本公开文本第一实施例的所述显示面板,由于第一摩擦方向与第二摩擦方向的夹角大于0度小于90度,因此第一初始取向与第二初始取向之间的夹角也大于0度小于90度,可选地,第一摩擦方向与所述第二摩擦方向之间所夹的锐角大于88度。具体的,第一摩擦方向相对于水平延伸方向呈89.8度,所述第二摩擦方向相对于水平延伸方向呈0.2度;对应的,第一初始取向相对于水平延伸方向之间的角度α为89.8度,第二初始取向相对于水平延伸方向之间的角度β为0.2度,基于以上取向角度数值,在第一子单元区域1与第二子单元区域2之间交界处的液晶分子,当在取向膜的作用下,由第一初始取向转动到第二初始取向时,由于朝第一旋转方向回转,如图9所示的顺时针方向时,所经历的角度变化为:89.8》80》70》...》10》0.2,需要回转89.6度,而朝第二方向回转,如图9所示的逆时针方向时,所经历的角度变化为:89.8》100》110》...》180.2(=0.2),需要回转90.4度,第一种回转方式的转动角度小于第二种回转方式的转动角度,转动所需能量较小,且所形成边界更稳定,因此在该种状态下发生第一种回转方式的概率远远大于发生第二种回转方式的概率,使处于第一子单元区域1和第二子单元区域2的区域边界处的液晶分子统一以一种回转方式进行取向,避免预定区域范围内“向错点”的产生。
根据以上,采用本公开文本第一实施例所述显示面板,第一子单元区域1和第二子单元区域2内液晶分子在未加电时的初始取向形成为图8所示形式,α与β之间的角度差值小于90度。由于所述第一初始取向与取向膜第一取向区域10所具备的第一摩擦方向相同,第二初始取向与取向膜第二取向区域20所具备的第二摩擦方向相同,因此所述第一摩擦方向与所述第二摩擦方向之间所夹的锐角大于0度且小于90度,最佳地,所述第一摩擦方向与所述第二摩擦方向之间所夹的锐角大于88度。
基于以上,第三子单元区域3内液晶分子所具有的第三初始取向与第一初始取向、第二初始取向分别不同,且第三初始取向与第一初始取向、第二 初始取向之间的角度差值小于90度大于0度。
此外,由于第三子单元区域3的第一部分311与取向膜的第一取向区域10对应,第二部分312与取向膜的第二取向区域20对应,在取向膜的第一摩擦方向和第二摩擦方向的共同作用下,第三子单元区域3所对应液晶分子具有第三初始取向,从与第一子单元区域1的第一边界31至与第二子单元区域2的第二边界32,第三初始取向从第一初始取向沿第一旋转方向朝第二初始取向转动逐渐变化。
也即,当第一初始取向具备相对于第一标准取向(90度)朝一方向偏转第一角度的延伸方向时,则使第二初始取向具备相对于第二标准取向(0度)朝相反方向偏转第二角度的延伸方向,其中第一角度与第二角度均小于1度,第一标准取向与第二标准取向互为90度。因此,采用本公开文本上述结构使液晶层一个像素结构内的液晶分子形成为图4所示状态,位于第一子单元区域1与第二子单元区域2之间交界处的液晶分子,在取向膜的作用下,会朝一个方向进行回转取向,避免预定区域范围内产生“向错点”。
采用该种设置方式,通过使第一取向膜400和第二取向膜600中第一取向区域10与第二取向区域20上摩擦方向的角度差值小于90度,并大于等于88度,液晶层500的第三子单元区域3在第一取向区域10和第二取向区域20的摩擦方向作用下,统一以一种回转方式进行取向,避免预定区域如第三子单元区域3范围内“向错点”的产生,解决现有技术显示装置由于“向错点”造成显示亮度不均的问题。
另外,需要进一步说明的是,通常情况下取向膜的作用是使对应的液晶分子按照取向膜的摩擦方向进行初始取向,但在实际中,受各种因素影响,液晶分子初始取向可能会与摩擦方向之间存在一定的偏差。基于此,本公开文本上述以及以下所有实施例中提到的初始取向和摩擦方向相同都是近似相同,允许有一定的偏差。
第二实施例:
本公开文本中,为进一步保证两个子单元区域之间的预定区域范围内不会产生“向错点”,本公开文本还提供第二实施例的显示面板。
在第二实施例中,显示面板的结构参阅图5所示,与第一实施例相同, 包括第一基板100、第二基板200、依次于第一基板100与第二基板200之间设置排列的彩膜300、第一取向膜400、液晶层500和第二取向膜600。
结合图10,其中第一取向膜400和第二取向膜600分别包括与第一子单元区域1对应的第一取向区域10和与第二子单元区域2对应的第二取向区域20。所述第一取向区域10具有第一摩擦方向使第一子单元区域1所对应的液晶分子在未施加电场时的指向在所述第一初始取向。所述第二取向区域20具有第二摩擦方向使所述第二子单元区域2所对应的液晶分子在未施加电场时的指向在所述第二初始取向。
具体地,第一取向膜400和第二取向膜600,用于使对应的液晶分子按取向膜的摩擦方向进行初始取向,第一子单元区域1的第一初始取向等于第一取向区域10所具有的第一摩擦方向,第二子单元区域2的第二初始取向等于第二取向区域20所具有的第二摩擦方向。可选地,第一摩擦方向与第二摩擦方向之间的夹角等于90度。
本公开文本第二实施例中,进一步地,第一取向膜400和第二取向膜600还分别包括第三取向区域30。第三取向区域30设置于第一取向区域10与第二取向区域20之间,并与第三子单元区域3对应。该第三区域30具有第三摩擦方向使第三子单元区域3所对应的液晶分子在未施加电场时的指向在第三初始取向。所述第三摩擦方向与所述第一摩擦方向、所述第二摩擦方向都不同,该第三初始取向方向为从所述第一初始取向沿第一旋转方向朝所述第二初始取向转动时的其中一取向。这样,通过取向膜的取向区域在摩擦方向上的改进,使第三子单元区域3的液晶分子具有如图4所示的初始取向,进而可解决向错点问题。
本公开文本第二实施例中,当第一摩擦方向相对于一水平延伸方向呈90度,第二摩擦方向相对于水平延伸方向呈0度时,该第三摩擦方向可以为处于从0度沿顺时针或逆时针转动至90度之间的方向,如相对于水平延伸方向呈45度或-45度,也即所述第三摩擦方向与所述第一摩擦方向或所述第二摩擦方向之间的夹角为45度。
本公开文本第二实施例,通过对第一取向膜400和第二取向膜600对应第一子单元区域1和第二子单元区域2之间交界处的区域如第三子单元区域 3进行特定方向的取向处理,使液晶层500上第一子单元区域1和第二子单元区域2的交界区域如第三子单元区域3处的液晶分子均匀排列,达到进一步保证避免“向错点”产生的问题。
当然,在第二实施例中,第一取向膜400和第二取向膜600在第一取向区域10和第二取向区域20的摩擦方向,也可以结合第一实施例的结构设置,也即使第一摩擦方向与第二摩擦方向之间的差值小于90度且大于88度,如第一摩擦方向相对于一水平延伸方向呈89.8度,第二摩擦方向相对于水平延伸方向呈0.2度,更能够有效保证避免预定区域范围内“向错点”产生的问题。
采用上述第一实施例和第二实施例的显示面板,通过改进取向膜的结构,能够保证液晶层在未加电场的情况下,两个区域之间的交界区域处在预定区域范围内不会产生“向错点”;此外,本公开文本还通过改进取向膜与电极之间的设置关系,进一步保证液晶层在加电和不加电情况下,预定区域范围内均不会由于液晶分子逆回转产生“向错点”。
第三实施例:
因此,本公开文本还提供第三实施例的显示面板,在第三实施例中,显示面板的具体结构与第一实施例和第二实施例相同,结合图5,包括第一基板100、第二基板200,以及依次于第一基板100与第二基板200之间设置排列的彩膜300、第一取向膜400、液晶层500和第二取向膜600。
其中,第二基板200上形成有像素单元,该像素单元包括三个区域,对应在所述液晶层500上形成为液晶分子在未加电场时具有第一初始取向的第一子单元区域1、具有第二初始取向的第二子单元区域2和具有第三初始取向的第三子单元区域3,具体结合图4所示。
其中,第一初始取向与第二初始取向之间的角度差值可以为等于90度,也可以为小于90,大于等于88度。
此外,在第三实施例中,还对第二基板200上电极的排列形式以及取向膜的摩擦方向进行了改进。结合图11与图5,在所述第二基板200中,所述第一电极层701包括第一电极区域750、第二电极区域760和第三电极区域770,其中:
第一电极区域750中设置有多个平行排列、具有第一延伸方向的第一电极711;
第二电极区域760中设置有多个平行排列、具有第二延伸方向的第二电极712;
第三电极区域770中设置有多个平行排列、具有第三延伸方向的第三电极713;所述第三电极区域770位于所述第一电极区域750与所述第二电极区域760之间。
在本公开文本第三实施例中,上述的第一延伸方向与第二延伸方向不同,且第一延伸方向与第二延伸方向之间所夹的锐角大于0度且小于等于90度,可选地为等于90度。此外,第三延伸方向与第一延伸方向相同,且每一第三电极713与一个第一电极711连接。此外,如图11所示,第一电极711、第二电极712与第三电极713的连接方式可以是三者相互电连接,或者分别连接导线,输入相应的信号。
进一步,所述显示面板还包括:
设置于液晶层500两侧的第一取向膜400和第二取向膜600。其中第一取向膜400和第二取向膜600分别包括:
具有第一摩擦方向的第一取向区域10和具有第二摩擦方向的第二取向区域20。
结合图11,在第三实施例中,所述第一取向区域10对应所述第一电极区域750,所述第二取向区域20对应所述第二电极区域760和第三电极区域770的组合区域。
可选地,所述第一摩擦方向与所述第二摩擦方向之间的角度差值为90度,且所述第一摩擦方向与所述第一延伸方向之间所夹的锐角为3度至25度,所述第二摩擦方向与所述第二延伸方向之间所夹的锐角为3度至25度,使得液晶分子在电场作用下能够更好的偏转,以提高显示面板的透过率。
利用图11所示取向膜与电极之间的设置关系,当对各电极区域的电极施加电场并撤销所施加电场后,在电场与取向膜的共同作用下,如图12并结合图5,液晶层500的液晶分子形成为第一子单元区域1、第二子单元区域2和第三子单元区域3,其中第一子单元区域1和第二子单元区域2内液晶分子 分别为第一初始取向和第二初始取向,第三子单元区域3具有第三初始取向,该第三初始取向为从所述第一初始取向沿第一旋转方向朝所述第二初始取向转动时的其中一取向。因此,结合图11、图12,所述第一子单元区域1对应所述第一电极区域750的第一部分,所述第三子单元区域3对应所述第一电极区域750的第二部分和所述第三电极区域770的组合区域,所述第二子单元区域2对应所述第二电极区域760。所述第一电极区域750的第一部分与所述第一电极区域750的第二部分组合形成为所述第一电极区域750,所述第一电极区域750的第二部分与所述第三电极区域770相邻设置。上述第一初始取向与第一摩擦方向是相同的,第二初始取向与第二摩擦方向是相同的。具体的,在图12中,第一摩擦方向和第二摩擦方向是相互垂直的关系,即第一初始取向和第二初始取向也是相互垂直的。
基于图12所形成的初始状态,当在加电情况下,形成为如图13所示结构,第一子单元区域1内的液晶分子具有第一方向,第二子单元区域2内的液晶分子具有第二方向,第三子单元区域3内的液晶分子具有第三方向,且第三方向为从所述第一方向沿所述第一旋转方向朝所述第二方向转动时的其中一方向。结合图11、图12与图13,在加电情况下,第一子单元区域1与第三子单元区域3上所施加电场相同,但由于液晶分子的初始取向不同,形成为如图13所示加电后的状态。
通过第三实施例的结构,取向膜交界区域如对应第三子单元区域3的区域的液晶分子在电场作用下有规则排列,进而可以解决加电后该部分区域出现的向错点问题。
第四实施例
此外,本公开文本还提供第四实施例的显示面板,在第四实施例中,
与第三实施例相同,所述阵列基板中,结合图5与图14,所述第一电极层701包括第一电极区域750、第二电极区域760和第三电极区域770,其中:
第一电极区域750中设置有多个平行排列、具有第一延伸方向的第一电极711;
第二电极区域760中设置有多个平行排列、具有第二延伸方向的第二电极712;
第三电极区域770中设置有多个平行排列、具有第三延伸方向的第三电极713;所述第三电极区域770位于所述第一电极区域750与所述第二电极区域760之间;上述的第一延伸方向与第二延伸方向不同,且第一延伸方向与第二延伸方向之间的角度差值大于0度且小于等于90度,可选地为等于90度。此外,结合图5,所述显示面板还包括:
设置于液晶层500两侧的第一取向膜400和第二取向膜600。其中第一取向膜400和第二取向膜600分别包括:
具有第一摩擦方向的第一取向区域10和具有第二摩擦方向的第二取向区域20;可选地,所述第一摩擦方向与所述第二摩擦方向之间的角度差值为90度。
与第三实施例不同,第四实施例中,所述第三延伸方向与所述第一延伸方向不同。可选地,每一第一电极711与一个第三电极713连接;所述第三延伸方向与水平延伸方向之间的锐角角度小于所述第一延伸方向与水平延伸方向之间的锐角角度,可选地在0度至45度范围之间,使第三子单元区域3的液晶分子在电场作用下能够更加规则的取向,更好地消除向错点问题。此外,如图14所示,第一电极711、第二电极712与第三电极713的连接方式可以是三者相互电连接,或者三者分别连接导线,输入相应的信号。
此外,第一取向区域10对应所述第一电极区域750,所述第二取向区域20对应所述第二电极区域750和所述第三电极区域760的组合区。所述第一取向区域10所具有的第一摩擦方向与所述第一延伸方向之间所夹的锐角为3度至25度,所述第二取向区域20所具有的第二摩擦方向与所述第二延伸方向之间所夹的锐角为3度至25度。
利用图14所示取向膜与电极之间的设置关系,当对各电极区域的电极施加电场并撤销所施加电场后,在电场与取向膜的共同作用下,如图14并结合图5所示,液晶层500的液晶分子形成为第一子单元区域1、第二子单元区域2和第三子单元区域3。其中,第一子单元区域1和第二子单元区域2内液晶分子分别为第一初始取向和第二初始取向,第三子单元区域3具有第三初始取向,该第三初始取向为从所述第一初始取向沿第一旋转方向朝所述第二初始取向转动时的其中一取向。其中,第一初始取向与第一摩擦方向是相 同的,第二初始取向与第二摩擦方向是相同的。具体的,在图14中,第一摩擦方向和第二摩擦方向是相互垂直的关系,即第一初始取向和第二初始取向也是相互垂直的。
结合图14与图15,所述第一子单元区域1对应所述第一电极区域750的第一部分751;所述第三子单元区域3对应所述第一电极区域750的第二部分752和所述第三电极区域770的组合区域;所述第二子单元区域2对应所述第二电极区域760。所述第一电极区域750的第一部分751与所述第一电极区域750的第二部分752组合形成为所述第一电极区域750,所述第一电极区域750的第二部分752与所述第三电极区域770相邻设置。
当在加电情况下,形成为如图16所示结构,第一子单元区域1内的液晶分子具有第一方向,第二子单元区域2内的液晶分子具有第二方向,第三子单元区域3内的液晶分子具有第三方向,且第三方向为从所述第一方向沿所述第一旋转方向朝所述第二方向转动时的其中一方向。
本公开文本第三实施例和第四实施例中,利用第一取向膜400和第二取向膜600与电极之间的配合结构,在初始状态通过对电极施加电压使液晶分子发生偏转,当去除电压后,第一子单元区域1、第二子单元区域2和第三子单元区域3所对应液晶层的液晶分子分别依据取向膜的取向而被定位,因此使得第三子单元区域3所对应液晶层的液晶分子形成规则排列的第三初始取向。同样,在施加电场后,利用设置于第一电极711和第二电极712之间的第三电极713,在电场的作用下,使第三子单元区域3所对应液晶层的液晶分子呈均匀排列,因此,在初始取向与施加电场的情况下,都能够达到避免该部分区域内“向错点”产生的问题。
当然,可选地,在第三实施例和第四实施例中,为避免第一子单元区域1和第二子单元区域2之间的第三子单元区域3在未加电时产生“向错点”,第一摩擦方向与第二摩擦方向之间的差值小于90度。且可选地,第一摩擦方向为第一标准取向朝第一方向偏转第一角度的方向,第二摩擦方向为第二标准方向朝第一方向的相反方向偏转第二角度的方向,其中第一标准取向与第二标准取向之间的差值为90度。最佳地,所述第一角度小于等于1度,所述第一标准取向相对于一水平延伸方向呈90度,所述第二标准取向相对于所述 水平延伸方向呈0度。
因此,采用本公开文本第三实施例和第四实施例的显示面板,通过进一步改进电极的排列形式,更进一步保证避免预定区域范围内“向错点”的产生,以保证显示面板的显示亮度均匀性。
在上述几种实施例的实施基础上,还可以进一步采用对液晶层内的液晶分子加热之后通过施加电场的控制,使得在加电后液晶分子依序排列,改善加电以后的预定区域范围的向错点问题,例如当液晶分子灌进入液晶盒后,加热液晶盒到各向同性液相(I相),然后,加电场的状况下,慢冷却到液晶的向列相(N相),通常加热之后的电场控制,使两区域之间交界区域的液晶分子依据特定方向排列,避免预定区域范围内产生“向错点”。
进一步地,本公开文本还提供如图17所示结构的第五实施例的显示面板,用于表示一个像素单元的对应区域内液晶分子的结构形式。通过在第三子单元区域3的对应区域设置黑色矩阵,覆盖所述第三子单元区域3,进一步达到解决第三子单元区域3上的漏光问题。
本公开文本以上的实施例,整个显示装置中,与像素单元第三子单元区域对应液晶分子可以具有统一的初始取向,形成为图18所示的状态。图18表示显示装置液晶分子的第一种初始状态示意图,表示整个显示面板对应区域内液晶分子的第一种状态图;其中区域X形成为一个像素单元的对应区域,第一子单元区域1、第二子单元区域2和第三子单元区域3的组合与一个像素单元对应,整个显示装置的第三子单元区域3具有统一的第三初始取向,使得整个显示装置内不会产生“向错点”,也即上述的第一至第四实施例中,通过取向膜的摩擦方向的改进或者取向膜的摩擦方向与电极的排列方式之间组合的改进,能够达到避免整个显示装置内不会产生向错点。
图19表示整个显示装置的显示面板上液晶分子的第二种初始状态示意图,整个显示装置中,与像素单元第三子单元区域对应液晶分子可以具有不同的初始取向,具有一取向方向的液晶分子与具有另一取向方向的液晶分子交替排列。在图19所示状态中,具有45度取向方向的液晶分子与具有-45度取向方向的液晶分子交替排列,但第三子单元区域内液晶分子的排列方式并不限于此,只要呈规则排列即可。
结合图19所示,第一子单元区域1、第二子单元区域2和第三子单元区域3的组合与一个像素单元对应,其中区域Y形成为一个像素单元的对应区域,与区域Y相邻的像素单元区域内的第三子单元区域3所对应液晶分子的初始取向不同,产生“向错点”。通过该种结构,利用上述的第一至第四实施例中的其中一种,通过取向膜的摩擦方向的改进或者取向膜的摩擦方向与电极的排列方式之间组合的改进,能够达到避免整个区域Y内不会产生向错点,虽然相邻区域Y之间会产生“向错点”,但该向错点的位置是可控的,这样对位置可控的向错点可以进行有针对性的校正,从而减小向错点对显示的影响。
图20为图19所示结构的另一种形式,根据图20所示结构,在一个区域Y内,第三子单元区域3对应的液晶分子取向,与区域Y在列方向上相邻的另一个区域Y’的之间交界处的液晶分子取向不同。
图21为液晶分子在未加电时的另一种状态示意图,在该种状态下,在一个区域Y内,第一子单元1、第二子单元区域2和第三子单元区域3所对应的液晶分子分别发生偏转;其中一个区域Y内,第三子单元区域3的液晶分子对应呈水平,相邻另一个区域Y内,第三子单元区域3的液晶分子对应呈竖直,两者相互垂直。
因此,根据本公开文本所述显示面板,可以使整个显示装置内不会出现“向错点”,也可以使预定范围内不会出现“向错点”,该预定范围可以为一个或多个像素单元,也可以为整个显示装置,从而使得“向错点”的产生成为可控,避免对显示亮度的均匀性产生影响。本公开文本具体实施例另一方面还提供一种显示装置,包括如上的显示面板。本领域技术人员应该能够了解具有上述显示面板的显示装置的具体结构,在此不再赘述。
另外需要说明的是,本公开文本以上的实施例中,均以一个像素单元作为基本单元,对一个像素单元区域内不产生“向错点”时的结构进行了描述。可以理解的是,采用本公开文本的技术思想,不产生“向错点”的基本单元除可以为一个像素单元之外,也可以为大于一个像素单元或者为小于一个像素单元的形式,也即当一个基本单元为小于一个像素单元的区域时,采用本公开文本中的上述各实施例,使小于一个像素单元的对应区域内不会产生“向 错点”,而通过上述“向错点”可控方式的原理说明,此时一个像素单元的对应区域内可以包括多个基本单元,而多个基本单元之间也可以依据设计形成具有预定规律的“向错点”。
具有本公开文本上述结构的显示装置,可以为手机、电视以及显示器等,但并不限于该几种。
以上所述仅是本公开文本的示例性实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开文本原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视本公开文本的保护范围。

Claims (16)

  1. 一种显示面板,包括液晶层和像素单元;所述像素单元包括第一子单元区域和第二子单元区域;所述第一子单元区域所对应所述液晶层的液晶分子具有第一初始取向;所述第二子单元区域所对应所述液晶层的液晶分子具有第二初始取向,其中,所述像素单元还包括:位于所述第一子单元区域和所述第二子单元区域之间的第三子单元区域;所述第三子单元区域所对应所述液晶层的液晶分子具有第三初始取向;所述第三初始取向为从所述第一初始取向沿第一旋转方向朝所述第二初始取向转动时的其中一取向;所述第一初始取向与所述第二初始取向之间的角度差值大于0度且小于等于90度。
  2. 如权利要求1所述的显示面板,其中,所述显示面板还包括第一基板和第二基板;所述液晶层设置于所述第一基板与所述第二基板之间;所述像素单元形成在所述第一基板或所述第二基板上。
  3. 如权利要求2所述的显示面板,其中,所述第三子单元区域包括用于划分所述第一子单元区域与所述第三子单元区域的第一边界和用于划分所述第二子单元区域与所述第三子单元区域的第二边界;其中,
    在所述第三子单元区域内,从所述第一边界至所述第二边界,与所述第一边界的距离不同的区域所对应的液晶分子所具有的第三初始取向从所述第一初始取向沿所述第一旋转方向朝所述第二初始取向转动变化。
  4. 如权利要求1-3任一项所述的显示面板,其中,所述第三子单元区域包括第一部分和第二部分;所述第三子单元区域的所述第一部分与所述第一子单元区域相邻设置,所述第三子单元区域的所述第二部分与所述第二子单元区域相邻设置;
    所述显示面板还包括:设置于所述液晶层两侧的取向膜;所述取向膜包括第一取向区域和第二取向区域;其中,所述第一取向区域对应所述第一子单元区域和所述第三子单元区域的所述第一部分的组合区域;所述第二取向区域对应所述第二子单元区域和所述第三子单元区域的所述第二部分的组合区域;所述第一取向区域具有第一摩擦方向;所述第二取向区域具有第二摩擦方向,且所述第一摩擦方向与所述第二摩擦方向之间的夹角大于0度且小 于90度。
  5. 如权利要求4所述的显示面板,其中,所述第一摩擦方向与所述第二摩擦方向之间所夹的锐角大于88度。
  6. 如权利要求5所述的显示面板,其中,所述第一摩擦方向相对于一水平延伸方向呈89.8度,所述第二摩擦方向相对于所述水平延伸方向呈0.2度。
  7. 如权利要求1-3任一项所述的显示面板,其中,所述显示面板还包括:设置于所述液晶层两侧的取向膜;所述取向膜包括第一取向区域、第二取向区域和设置于所述第一取向区域和所述第二取向区域之间的第三取向区域;所述第一取向区域具有第一摩擦方向,所述第二取向区域具有第二摩擦方向,所述第三取向区域具有第三摩擦方向;所述第三摩擦方向与所述第一摩擦方向和所述第二摩擦方向都不同;所述第一取向区域与所述第一子单元区域对应;所述第二取向区域与所述第二子单元区域对应;所述第三取向区域与所述第三子单元区域对应。
  8. 如权利要求7所述的显示面板,其中,所述第一摩擦方向与所述第二摩擦方向之间的夹角为90度。
  9. 如权利要求8所述的显示面板,其中,所述第三摩擦方向与所述第一摩擦方向或所述第二摩擦方向之间的夹角为45度。
  10. 如权利要求1-3任一项所述的显示面板,其中,所述显示面板还包括:取向膜、第一电极区域、第二电极区域和第三电极区域;其中,
    所述取向膜设置于所述液晶层两侧;所述取向膜包括第一取向区域和第二取向区域;所述第一取向区域具有第一摩擦方向,所述第二取向区域具有第二摩擦方向;
    所述第一电极区域中设置有多个平行排列、具有第一延伸方向的第一电极;
    所述第二电极区域中设置有多个平行排列、具有与所述第一延伸方向不同的第二延伸方向的第二电极;
    所述第三电极区域中设置有多个平行排列、具有第三延伸方向的第三电极,所述第三电极区域位于所述第一电极区域与所述第二电极区域之间;
    其中,所述第一取向区域对应所述第一电极区域,所述第二取向区域对 应所述第二电极区域和所述第三电极区域的组合区域;
    所述第一电极区域包括第一部分和第二部分,所述第一电极区域的第二部分与所述第三电极区域相邻设置;
    所述第一子单元区域对应所述第一电极区域的所述第一部分;所述第三子单元区域对应所述第一电极区域的所述第二部分和所述第三电极区域的组合区域;所述第二子单元区域对应所述第二电极区域。
  11. 如权利要求10所述的显示面板,其中,所述第一摩擦方向与所述第二摩擦方向之间的夹角为90度,所述第一延伸方向与所述第二延伸方向之间的夹角为90度;所述第一延伸方向与所述第三延伸方向相同,且所述第一摩擦方向与所述第一延伸方向之间所夹的锐角为3度至25度;所述第二摩擦方向与所述第二延伸方向之间所夹的锐角为3度至25度。
  12. 如权利要求10所述的显示面板,其中,所述第一摩擦方向与所述第二摩擦方向之间的夹角为90度,所述第一延伸方向与所述第二延伸方向之间的夹角为90度,所述第三延伸方向与所述第一延伸方向不同,且所述第一摩擦方向与所述第一延伸方向之间所夹的锐角为3度至25度,所述第二摩擦方向与所述第二延伸方向之间所夹的锐角为3度至25度。
  13. 如权利要求12所述的显示面板,其中,所述第三延伸方向与水平延伸方向之间的锐角角度小于所述第一延伸方向与水平延伸方向之间的锐角角度。
  14. 如权利要求13所述的显示面板,其中,所述第三延伸方向与所述第一延伸方向之间的锐角大于0度小于等于45度。
  15. 如权利要求1所述的显示面板,其中,所述显示面板还包括黑色矩阵,与所述第三子单元区域对应设置。
  16. 一种显示装置,其中,包括如权利要求1至15任一项所述的显示面板。
PCT/CN2014/088565 2014-03-21 2014-10-14 显示面板及显示装置 WO2015139448A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/647,726 US9459496B2 (en) 2014-03-21 2014-10-14 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410108320.9 2014-03-21
CN201410108320.9A CN104020607B (zh) 2014-03-21 2014-03-21 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2015139448A1 true WO2015139448A1 (zh) 2015-09-24

Family

ID=51437440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088565 WO2015139448A1 (zh) 2014-03-21 2014-10-14 显示面板及显示装置

Country Status (3)

Country Link
US (1) US9459496B2 (zh)
CN (1) CN104020607B (zh)
WO (1) WO2015139448A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020607B (zh) * 2014-03-21 2016-10-12 京东方科技集团股份有限公司 显示面板及显示装置
US20200073183A1 (en) * 2018-09-03 2020-03-05 Chongqing Hkc Optoelectronics Technology Co., Ltd. Display panel and display device
US11029908B2 (en) * 2019-08-28 2021-06-08 Himax Display, Inc. Head mounted display apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1181517A (zh) * 1996-11-06 1998-05-13 日本电气株式会社 共面切换液晶显示装置
US6128061A (en) * 1997-12-08 2000-10-03 Hyundai Electronics Industries Co., Ltd. Liquid crystal display device
KR20070070043A (ko) * 2005-12-28 2007-07-03 엘지.필립스 엘시디 주식회사 액정표시장치 및 그의 제조방법
US20100112738A1 (en) * 2005-12-28 2010-05-06 Lg Display Co., Ltd. Ffs mode liquid crystal display device and method of fabricating the same
CN202033556U (zh) * 2010-12-28 2011-11-09 北京京东方光电科技有限公司 液晶显示装置
CN203178637U (zh) * 2013-04-28 2013-09-04 京东方科技集团股份有限公司 一种液晶面板及显示装置
CN104020607A (zh) * 2014-03-21 2014-09-03 京东方科技集团股份有限公司 显示面板及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669377B1 (ko) * 2004-10-13 2007-01-15 삼성에스디아이 주식회사 액정 표시 장치 및 그 제조 방법
CN101059626A (zh) * 2006-04-19 2007-10-24 群康科技(深圳)有限公司 穿透式液晶显示装置
WO2012077376A1 (ja) * 2010-12-10 2012-06-14 凸版印刷株式会社 液晶表示基板及び液晶表示装置
CN102654686B (zh) * 2012-02-15 2015-04-08 京东方科技集团股份有限公司 一种液晶显示面板及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1181517A (zh) * 1996-11-06 1998-05-13 日本电气株式会社 共面切换液晶显示装置
US6128061A (en) * 1997-12-08 2000-10-03 Hyundai Electronics Industries Co., Ltd. Liquid crystal display device
KR20070070043A (ko) * 2005-12-28 2007-07-03 엘지.필립스 엘시디 주식회사 액정표시장치 및 그의 제조방법
US20100112738A1 (en) * 2005-12-28 2010-05-06 Lg Display Co., Ltd. Ffs mode liquid crystal display device and method of fabricating the same
CN202033556U (zh) * 2010-12-28 2011-11-09 北京京东方光电科技有限公司 液晶显示装置
CN203178637U (zh) * 2013-04-28 2013-09-04 京东方科技集团股份有限公司 一种液晶面板及显示装置
CN104020607A (zh) * 2014-03-21 2014-09-03 京东方科技集团股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN104020607B (zh) 2016-10-12
US20160041431A1 (en) 2016-02-11
CN104020607A (zh) 2014-09-03
US9459496B2 (en) 2016-10-04

Similar Documents

Publication Publication Date Title
CN106526990B (zh) 显示面板及其制备方法、显示装置
JP5767186B2 (ja) 表示装置及び電子機器
US8736796B2 (en) Liquid crystal panel and liquid crystal display device
US9201278B2 (en) Array substrate and display device comprising a first transparent conductive layer having a plurality of protrusions corresponding to a plurality of slit structures
JP5552518B2 (ja) 液晶表示装置
US20130010248A1 (en) Pixel electrode structure
US9442333B2 (en) Pixel electrode, array substrate and display device
WO2016106883A1 (zh) 一种可切换视角的液晶显示面板及其驱动方法
JP2005321810A (ja) コラムスペーサを有するインプレーンスイッチングモード液晶表示装置
WO2017070996A1 (zh) 一种视角可调控的液晶显示面板及其视角调控方法
US20100259712A1 (en) Display Device with Enhanced Display Quality
WO2021168921A1 (zh) 显示面板
WO2015139448A1 (zh) 显示面板及显示装置
JP2015503771A (ja) アレイ基板、液晶表示装置及び配向ラビング方法
US20150015817A1 (en) Liquid crystal display device
US9897859B2 (en) Liquid crystal display panel and fabrication method
JP4720139B2 (ja) 液晶表示パネル
EP2196846B1 (en) Liquid crystal display panel and liquid crystal display device
TWI401502B (zh) 液晶顯示面板
JP5009145B2 (ja) 液晶表示装置
JP5529709B2 (ja) 液晶表示装置
JP2007011037A (ja) 液晶表示装置
JP2009003194A (ja) 液晶表示パネルおよび液晶表示装置
WO2007015457A1 (ja) 液晶表示装置
JP2006106146A (ja) 半透過型液晶表示パネル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14647726

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.02.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14886373

Country of ref document: EP

Kind code of ref document: A1