WO2007015457A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2007015457A1
WO2007015457A1 PCT/JP2006/315141 JP2006315141W WO2007015457A1 WO 2007015457 A1 WO2007015457 A1 WO 2007015457A1 JP 2006315141 W JP2006315141 W JP 2006315141W WO 2007015457 A1 WO2007015457 A1 WO 2007015457A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
display device
alignment
crystal display
Prior art date
Application number
PCT/JP2006/315141
Other languages
English (en)
French (fr)
Inventor
Masumi Kubo
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US11/996,990 priority Critical patent/US20100149474A1/en
Priority to JP2007529256A priority patent/JPWO2007015457A1/ja
Publication of WO2007015457A1 publication Critical patent/WO2007015457A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having a wide viewing angle characteristic and performing high-quality display.
  • liquid crystal display device having a wide viewing angle characteristic has been developed and widely used as a monitor for a personal computer, a display device for a portable information terminal device, or a television receiver.
  • VA mode vertically aligned liquid crystal layer
  • the present applicant discloses a VA mode liquid crystal display device in which viewing angle characteristics are improved by forming a radial tilt alignment domain when a voltage is applied.
  • this liquid crystal display device when a voltage is applied, a plurality of radially inclined alignment domains are formed in each pixel, and the alignment of liquid crystal molecules in adjacent radial inclined alignment domains is continuous.
  • the applicant refers to the liquid crystal display mode using the characteristic alignment state disclosed in Patent Documents 1 and 2 as the Continuous Pinwheel Alignment (CPA) mode! .
  • CPA Continuous Pinwheel Alignment
  • Patent Document 1 a non-solid portion (a portion without a conductive layer, an opening) is provided in a pixel electrode, and an oblique electric field generated at an edge portion of the non-solid portion of the pixel electrode when a voltage is applied.
  • a configuration is disclosed in which a radially inclined orientation is formed using
  • an alignment regulating structure is provided on the liquid crystal layer side of the substrate facing the pixel electrode through the liquid crystal layer (for example, FIG. 27).
  • An example of such an alignment regulating structure is a protrusion protruding toward the liquid crystal layer (see, for example, FIG. 24 (b) of Patent Document 1).
  • the liquid crystal display device disclosed in Patent Document 2 includes a pixel electrode configured by using an upper conductive layer and a lower conductive layer disposed so as to face each other with a dielectric layer interposed therebetween. .
  • the upper conductive layer arranged on the liquid crystal layer side is opened like the pixel electrode in Patent Document 1.
  • a radially inclined alignment domain is formed by using an oblique electric field generated at the edge of the opening when a voltage is applied.
  • the lower conductive layer is provided at least in a region facing the opening of the upper conductive layer, and prevents the voltage applied to the liquid crystal layer in the region corresponding to the opening of the upper conductive layer from excessively decreasing. (For example, see FIG. 11 of Patent Document 2).
  • Patent Document 2 also discloses a configuration in which radial tilt alignment is stabilized by providing an alignment regulating structure on the liquid crystal layer side of the substrate facing the picture element electrode (upper conductive layer) via the liquid crystal layer. (For example, see FIG. 30 of Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-202511
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-55343
  • Non-Patent Document 1 Kubo et al., Sharp Technical Report, No. 80, pp. 11-14 (March 2001) Disclosure of Invention
  • the liquid crystal display device described in Patent Document 1 or 2 described above has a non-solid portion (for example, a non-solid portion for generating an oblique electric field in order to stabilize the alignment of liquid crystal molecules. Since it is necessary to form an orientation regulating structure (for example, a convex portion) on the substrate facing the electrode provided with the opening), there is a problem that the manufacturing cost increases. For example, it is necessary to provide an orientation-regulating structure on the counter substrate (typically a color filter substrate) arranged so as to face the TFT substrate on which the pixel electrode having the opening is provided, increasing the manufacturing process of the counter substrate. There is a problem that the manufacturing cost increases.
  • the counter substrate typically a color filter substrate
  • the present invention has been made to solve the above-mentioned problems, and its main purpose is to provide a radially inclined alignment by providing an alignment regulating structure on a substrate on which an electrode having a non-solid portion is formed. It is to stabilize.
  • the liquid crystal display device of the present invention includes a first substrate, a second substrate, the first substrate, and the second substrate.
  • a liquid crystal layer of a vertical alignment type provided between the first electrode provided on the liquid crystal layer side of the first substrate and the liquid crystal provided on the second electrode on the first electrode.
  • the solid portion includes a plurality of unit solid portions each substantially surrounded by the non-solid portion, and each of the plurality of unit solid portions includes: A concave portion that is recessed in the thickness direction of the liquid crystal layer is formed in a substantially central portion, and the liquid crystal layer has the above-described structure when a voltage is applied between the first electrode and the second electrode.
  • a concave portion that is recessed in the thickness direction of the liquid crystal layer is formed in a substantially central portion, and the liquid crystal layer has the above-described structure when a voltage is applied between the first electrode and the second electrode.
  • each of the plurality of unit solid portions has a radially inclined orientation. To form a liquid crystal domain, and forming a center of the radially-inclined orientation in the recess.
  • the dielectric layer is provided on the substrate side of the first electrode, the dielectric layer has a recess or a hole, and the plurality of unit solid portions are the dielectric layer.
  • the recess is formed corresponding to the recess or the hole.
  • the pixel region further includes a third electrode facing the non-solid portion of the first electrode via the dielectric layer.
  • the dielectric layer has at least one hole exposing the third electrode, and at least one of the plurality of unit solid portions is in the at least one hole. Connected with 3 electrodes.
  • the alignment of the liquid crystal domain and the alignment of the region of the liquid crystal layer corresponding to the non-solid portion are continuous with each other.
  • the non-solid portion has an opening substantially surrounded by the plurality of unit solid portions, and the liquid crystal layer includes the first electrode and the second electrode. When a voltage is applied between them, a liquid crystal domain having a radially inclined orientation is also formed in the region of the liquid crystal layer corresponding to the opening.
  • the second electrode in the picture element region, has a continuous surface parallel to the surface of the second substrate. [0016] When no voltage is applied between the first electrode and the second electrode, the liquid crystal molecules on the second electrode side of the liquid crystal layer are substantially relative to the surface of the second substrate. It is oriented vertically.
  • the electrode having the non-solid portion has a concave portion that is recessed in the thickness direction of the liquid crystal layer at a substantially central portion of the solid portion, and the radial shape is formed in the concave portion. Since the center of the tilt alignment is formed, the radial tilt alignment can be stabilized without providing an alignment regulating structure on the substrate facing the electrode. Accordingly, there is provided a liquid crystal display device in which the radial tilt alignment is sufficiently stabilized without increasing the manufacturing process of the counter substrate and increasing the manufacturing cost.
  • FIG. L (a) and (b) are diagrams schematically showing a configuration of a liquid crystal display device 100 of an embodiment according to the present invention, and (a) is a diagram of a pixel region of the liquid crystal display device 100. It is a plan view, and (b) is a cross-sectional view taken along line IB-1B ′ in (a).
  • FIG. 2 (a) to (c) are diagrams for explaining the mechanism by which the radial tilt alignment domains are stably formed in the liquid crystal display device 100.
  • (a) is a diagram when no voltage is applied. ) Shows the initial state of ON, and (c) shows the alignment state of the liquid crystal molecules in the steady state.
  • FIG. 3 (a) and (b) are diagrams schematically showing a configuration of a liquid crystal display device 200 of another embodiment according to the present invention, and (a) is a picture element region of the liquid crystal display device 200. It is a top view, (b) is sectional drawing along the 3B-3B 'line in (a).
  • FIG. 4 (a) to (c) are diagrams for explaining the mechanism in which the radial tilt alignment domains are stably formed in the liquid crystal display device 200.
  • (a) is a diagram when (b) is applied when no voltage is applied. ) Shows the initial state of ON, and (c) shows the alignment state of the liquid crystal molecules in the steady state.
  • FIG. 5 (a) and (b) are diagrams showing another example of the pixel electrode included in the liquid crystal display device according to the embodiment of the present invention.
  • FIG. 6 (a) and (b) are views showing still other examples of pixel electrodes included in the liquid crystal display device of the embodiment of the present invention.
  • FIG. 7 (a) and (b) are diagrams of pixel electrodes of the liquid crystal display device according to the embodiment of the present invention. It is a figure which shows typically the corner
  • FIG. 8 is a diagram showing still another example of the pixel electrode included in the liquid crystal display device according to the embodiment of the present invention.
  • Dielectric layer (interlayer insulation layer)
  • FIGS. 1A and 1B schematically show a configuration of a liquid crystal display device 100 according to an embodiment of the present invention.
  • 1A and 1B schematically show the electrode structure of one picture element region of the liquid crystal display device 100 for the sake of simplicity, and the detailed structure is omitted.
  • Figure 1 (a) shows a liquid crystal display.
  • FIG. 1B is a plan view of a picture element region of the device 100
  • FIG. 1B is a cross-sectional view taken along the line IB-IB ′ in FIG.
  • the “picture element area” refers to the area of the liquid crystal display device corresponding to the “picture element (dot)” in the display.
  • regions for red (R), green (G), and blue (B) “picture elements” are “picture element regions”.
  • a picture element region is defined by a picture element electrode and a counter electrode facing the picture element electrode.
  • the liquid crystal display device 100 includes an active matrix substrate (hereinafter referred to as “TFT substrate”) 100a, a counter substrate (also referred to as “color filter substrate”) 100b, and a TFT substrate 100a and a counter substrate 100b. And a liquid crystal layer 30 provided on the substrate.
  • the liquid crystal molecules of the liquid crystal layer 30 have negative dielectric anisotropy, and the vertical alignment film (not shown) provided on the surface of the TFT substrate 100a and the counter substrate 100b on the liquid crystal layer 30 side causes the liquid crystal layer 30 to When no voltage is applied, it is aligned perpendicular to the surface of the vertical alignment film. At this time, the liquid crystal layer 30 is said to be in a vertically aligned state.
  • the liquid crystal molecules of the liquid crystal layer 30 in the vertical alignment state may be slightly inclined from the normal line of the surface of the vertical alignment film (substrate surface) depending on the type of the vertical alignment film and the type of liquid crystal material.
  • a state in which the liquid crystal molecular axes (also referred to as “axis orientation”) are aligned at an angle of about 85 ° or more with respect to the surface of the vertical alignment film is called a vertical alignment state.
  • the TFT substrate 100a of the liquid crystal display device 100 includes a transparent substrate (for example, a glass substrate) 11 and a pixel electrode 14 formed on the surface thereof.
  • the counter substrate 100b has a transparent substrate (for example, a glass substrate) 21 and a counter electrode 22 formed on the surface thereof.
  • the alignment state of the liquid crystal layer 30 for each pixel region changes according to the voltage applied to the pixel electrode 14 and the counter electrode 22 arranged so as to face each other via the liquid crystal layer 30.
  • the display is performed using a phenomenon in which the polarization state and amount of light transmitted through the liquid crystal layer 30 change in accordance with the change in the alignment state of the liquid crystal layer 30.
  • the pixel electrode 14 of the liquid crystal display device 100 has an opening 14a, a notch 14a ', and a solid part 14b.
  • the opening 14a and the notch 14a ′ indicate a portion of the pixel electrode 14 formed from the conductive film (for example, ITO film) where the conductive film has been removed, and the solid part 14b has the conductive film present. This refers to the part to be used (the part other than the opening 14a).
  • the opening 14a and the notch 14a ′ may be collectively referred to as a non-solid portion.
  • one opening for the pixel electrode 14 As illustrated later, a plurality of openings 14a may be formed for each pixel electrode, or one picture may be formed without providing the openings 14a.
  • a plurality of radially inclined alignment regions can be formed in the elementary region.
  • the solid portion 14b is basically formed from a single continuous conductive film.
  • the counter electrode 22 has a continuous surface parallel to the surface of the substrate 21, and is typically formed of a single conductive layer over the entire surface of the display region.
  • a square (set of four square lattices) shown by a broken line in Fig. 1 (a) shows a region (outer shape) corresponding to a conventional pixel electrode formed from a single conductive layer. This corresponds to the outline of this pixel area.
  • the part of the solid part that is substantially surrounded by the non-solid part located at the center of the four square lattices formed in the picture element region is sometimes called the “unit solid part”.
  • the alignment of the liquid crystal molecules in the radial tilt alignment domain corresponding to the unit solid portion 14b ' is compared with an umbrella that is expanded upward, the alignment of the liquid crystal molecules in the radial tilt alignment domain formed corresponding to the opening 14a is Compared to an umbrella that spreads downward. Therefore, since the tilt direction of the liquid crystal molecules is aligned at the boundary between the radial tilt alignment domain formed in the unit solid portion 14b ′ and the radial tilt alignment domain formed corresponding to the opening 14a, the liquid crystal The molecular orientation is stable over the entire pixel region. That is, the orientation of the liquid crystal domain formed corresponding to the unit solid part 14b 'and the orientation of the liquid crystal layer region corresponding to the non-solid part are continuous with each other. Stable throughout the area.
  • the alignment of the liquid crystal molecules in the region corresponding to the notch 14a ' is the same as the alignment of the liquid crystal molecules in the region corresponding to the opening 14a, and is formed in the unit solid portion 14b' adjacent to the notch. Inclined to align with the tilt direction of the liquid crystal molecules in the radial tilt alignment domain. Since the cutout portion 14a 'is not surrounded by the solid portion 14b like the opening portion 14a, the outer shape of the liquid crystal domain formed corresponding to the cutout portion 14a' cannot be compared to an umbrella.
  • the openings are aligned in order to align with the alignment of the liquid crystal molecules in the radially inclined alignment domain formed corresponding to the unit solid part 14b ', and act to stabilize the alignment of the liquid crystal molecules.
  • the approximately solid unit solid part 14b 'in one square lattice shown in Fig. 1 (a) is defined by the side of the opening 14a, and the other part is approximately 4%. Three minutes is defined by the side of the notch 14a '.
  • the outer shape of the unit solid part 14b ′ is defined by the opening 14a, or is notched. Since it is the same even if it is defined by 14a ', there is no need to distinguish between the opening 14a' and the notch 14a, and it may be called a non-solid part.
  • a plurality of liquid crystal domains can be formed in one picture element region only by forming the notch 14a '.
  • this pixel electrode is Although it is composed of a real part 14b ′ and does not have an opening 14a, it forms two liquid crystal domains having a radial tilt alignment when a voltage is applied.
  • the pixel electrode has at least a unit solid portion 14b that forms a plurality of liquid crystal domains having a radially inclined orientation when a voltage is applied (in other words, If it has such an external shape, the continuity of the alignment of the liquid crystal molecules in the pixel region can be obtained, so that the radial tilt alignment of the liquid crystal domain formed corresponding to the unit solid portion 14b 'is stable. To do.
  • a square picture element area is illustrated as an example! /, But the shape of the picture element area is not limited to this. Since the general shape of the pixel region is approximated by a rectangle (including a square and a rectangle), by arranging a plurality of unit solid portions 14b 'that are congruent to each other regularly, the unit solid in the pixel region is A plurality of radially inclined alignment domains corresponding to the portion 14b 'can be formed, and the liquid crystal molecules in the pixel region can be stably aligned.
  • the unit solid part 14b ′ having a different size and shape may be formed according to the shape of the pixel region, but from the viewpoint of viewing angle characteristics, the outer shape of the unit solid part is more than fourfold rotational symmetry. It is preferable to have the symmetry. With four-fold rotational symmetry, in the normally black mode transmissive liquid crystal display device, four orientation angle ranges defined by the transmission axes of a pair of polarizing plates arranged in a cross-coll (depending on the cross). Equivalent display characteristics (viewing angle characteristics) Sex).
  • the pixel electrode 14 included in the liquid crystal display device 100 of the present embodiment has a substantially central portion of each unit solid portion 14b ′, as schematically shown in FIGS. 1 (a) and 1 (b).
  • a recessed portion 15 a that is recessed in the thickness direction of the liquid crystal layer 30 is formed.
  • the recess 15a acts to form the center of the radial gradient orientation formed corresponding to the unit solid portion 14b ′ when a voltage is applied in the recess 15a. Therefore, the radial tilt orientation is stabilized by the shape effect of the recess 15a (the effect of the cross-sectional shape) in addition to the influence of the oblique electric field generated at the edge of the unit solid portion 14b ′.
  • the oblique electric field acts to regulate the alignment of the liquid crystal molecules existing in the peripheral part of the radial tilt alignment, whereas the recess 15a controls the alignment of the liquid crystal molecules existing in the central part of the radial tilt alignment domain.
  • the alignment of the liquid crystal molecules in the radially inclined alignment domain is further stabilized. Therefore, even if stress is applied to the liquid crystal panel and the alignment of the liquid crystal is disturbed, the original alignment state is restored in a short time. Furthermore, since the center of the radially inclined orientation is reliably formed and fixed in the recess 15a, the restored orientation state is always almost equal.
  • the recess 15a of the picture element electrode 14 is a dielectric layer (interlayer insulating film) formed on the lower side of the picture element electrode 14 (transparent substrate 11 side). It is formed by forming the pixel electrode 14 so as to cover the 13 holes 13a.
  • a force recess showing an example in which the dielectric layer 13 has holes 13a may be used.
  • the hole 13a illustrated here is provided so as to expose the connection wiring (drain electrode extending portion) 12a provided in the lower layer of the dielectric layer 13, and the connection wiring 12a and the pixel electrode 14 are exposed. It also functions as a contact hole for forming contact portions that are electrically connected to each other. In FIG. 1, it is omitted for the sake of simplicity.
  • a gate bus line connected to the TFT and the gate electrode of the TFT, a source nos line connected to the source electrode of the TFT, and further if necessary.
  • a dielectric layer 13 is provided to cover the auxiliary capacitance (CS) and auxiliary capacitance wiring (CS bus line). It has been. Of course, other switching elements such as MIM may be provided instead of TFT.
  • the pixel electrode 14 can be provided so that the pixel electrode 14 overlaps a part of the bus line in the periphery. As a result, the area ratio (pixel aperture ratio) contributing to display can be increased.
  • Fig. 2 (a) schematically shows a state in which no voltage is applied to the liquid crystal layer 30, and Fig. 2 (b) shows the state of the liquid crystal molecules 30a depending on the voltage applied to the liquid crystal layer 30.
  • the state in which the orientation starts to change ON initial state
  • Fig. 2 (c) shows the state in which the orientation of the liquid crystal molecules 30a changed according to the applied voltage has reached a steady state. This is shown schematically.
  • the curve EQ in Fig. 2 (b) and Fig. 2 (c) shows the equipotential line EQ.
  • the liquid crystal molecules 30a are vertically aligned films (not shown) provided on the surfaces of the TFT substrate 100a and the counter substrate 100b in contact with the liquid crystal layer 30. ) Is oriented substantially perpendicularly to the surface. Since the liquid crystal molecules 30a in the vicinity of the recess 15a tend to be oriented substantially perpendicular to the slope of the recess 15a (strictly speaking, the surface of the vertical alignment film on the slope), the liquid crystal molecules 30a are tilted by the force toward the center of the recess 15a. This alignment regulating force by the recess 15a is due to the physical shape of the recess 15a, and acts on the liquid crystal molecules 30a in the vicinity of the recess 15a regardless of whether no voltage is applied.
  • an equipotential line (perpendicular to the electric force lines) EQ shown in FIG. 2B is formed.
  • This equipotential line EQ is parallel to the surface of the solid part 14b and the counter electrode 22 in the liquid crystal layer 30 located between the solid part 14b of the pixel electrode 14 and the counter electrode 22,
  • the liquid crystal layer 30 falls in the region corresponding to the opening 14a of the element electrode 14 and is inclined in the liquid crystal layer 30 on the edge of the opening 14a (the inner periphery of the opening 14a including the boundary (extension) of the opening 14a).
  • An oblique electric field represented by the equipotential line EQ is formed.
  • the equipotential line EQ falls as in the region corresponding to the opening 14a.
  • the liquid crystal molecules 30a having negative dielectric anisotropy include an equipotential line E as the axial orientation of the liquid crystal molecules 30a.
  • a torque that is, an orientation regulating force
  • Q perpendicular to the electric field lines
  • the liquid crystal molecules 30a in the vicinity of the periphery of the unit solid part 14b ' are aligned so as to be inclined toward the center of the unit solid part 14b'.
  • This alignment direction (inclination direction) coincides with the alignment direction (inclination direction) of the liquid crystal molecules 30a, whose alignment is regulated by the recess 15a formed in the central portion of the unit solid portion 14b '.
  • a radially inclined alignment domain is formed in a region corresponding to the unit solid portion 14b ′, and the opening portion Radially inclined alignment domains are also formed in the region corresponding to 14a.
  • the alignment of the liquid crystal molecules in the radial tilt alignment domain corresponding to the unit solid portion 14b ' is like an umbrella that is widened upward, and the radial tilt alignment domain of the radial tilt alignment domain formed corresponding to the opening 14a.
  • the orientation of the liquid crystal molecules looks like an umbrella that extends downward.
  • the alignment of the liquid crystal domain corresponding to the unit solid portion 14b ′ and the alignment of the liquid crystal domain corresponding to the opening 14a are continuous (matched) with each other. The orientation of liquid crystal molecules 30a is stabilized
  • the center of the radial inclined alignment domain corresponding to the unit solid portion 14b ' is formed in the recess 15a, the radial inclined alignment formed corresponding to each of the plurality of unit solid portions. Domains are equivalent. That is, when the radial tilt alignment domain is formed only by the alignment regulating force by the oblique electric field formed at the edge portion of the opening 14a, the position of the center of the radial tilt alignment domain is not necessarily constant and may be different between the domains. . In particular, when the applied voltage is low, this phenomenon becomes remarkable because sufficient alignment control force cannot be obtained.
  • a typical pixel structure (unit solid portion size: 15 ⁇ m to 60 ⁇ m, especially 15 ⁇ m to 45 ⁇ m, liquid crystal layer thickness: transmission of a transmission type or a transmission / reflection type) 2 / ⁇ ⁇ to 4.5 m, especially 2.!
  • reflective or transflective reflector is 1. ⁇ ⁇ m to 2.3 111, special 2 / ⁇ ⁇ ⁇ 1.8 / zm) [Hint! ⁇ 15a size (typical maximum width) is preferably in the range of 9 m to 20 m at the bottom.
  • the depth of the recess 15a is preferably 1. or more, particularly 2.5 m or more.
  • the inclination angle of the side surface of the recess 15a is preferably 30 degrees or more and less than 90 degrees with respect to the substrate surface.
  • the recess 15a is formed in the center of the unit solid part 14b ' It is preferable to have a shape similar to the outer shape of the portion 14b '.
  • the unit solid part 14b ′ has a rotational symmetry greater than or equal to the four-fold rotational symmetry, so that the outer shape of the recess 15a may also have a rotational symmetry greater than or equal to the four-fold rotational symmetry. It is preferable that the rotation axes coincide with each other (see FIGS. 5 and 6).
  • the liquid crystal display device 100 shows an example in which substantially circular unit solid portions 14b ′ are connected to each other by thin connection portions, but the same voltage (drain voltage) is applied to each unit solid portion 14b ′. It only needs to be electrically connected so that it can be supplied. Therefore, when adopting a configuration in which each of the unit solid parts 14b ′ is electrically connected in the connection wiring 12a and the hole 13a, it is not necessary to connect the unit solid parts 14b ′ to each other at the connection part.
  • the unit solid part may be formed independently. Or, conversely, as shown in the drawing, When forming the unit solid part 14b ', it is not necessary to connect each of the unit solid parts 14b' to the connection wiring 12a.
  • connection wiring 12a may be connected only at the recess 15a of 14b '.
  • a recess may be formed in the dielectric layer 13 in place of the hole 13a provided in the dielectric layer 13 in order to form the recess 15a of the unit solid portion 14b ′ without being connected to the connection wiring 12a.
  • a hole exposing the surface of the substrate 11 may be formed. From the viewpoint of repairing defects such as a short circuit or disconnection of the unit solid part 14b ′, the authors et al. Electrically connected each unit solid part 14b ′ to the drain electrode of the TFT through a plurality of electrical paths. It is preferable to employ a connected configuration.
  • FIGS. 3A and 3B schematically show the configuration of a liquid crystal display device 200 according to another embodiment of the present invention.
  • FIG. 3 (a) is a plan view of a picture element region of the liquid crystal display device 200
  • FIG. 3 (b) is a cross-sectional view taken along line 3B-3B ′ in FIG. 3 (a).
  • the liquid crystal display device 200 includes a TFT substrate 200a, a counter substrate 200b, and a liquid crystal layer 30 provided between the TFT substrate 200a and the counter substrate 200b.
  • the liquid crystal molecules of the liquid crystal layer 30 have negative dielectric anisotropy, and are formed on the liquid crystal layer 30 by a vertical alignment film (not shown) provided on the surface of the TFT substrate 200a and the counter substrate 200b on the liquid crystal layer 30 side. When no voltage is applied, it is aligned perpendicular to the surface of the vertical alignment film.
  • the liquid crystal display device 200 has a lower layer electrode 12 that faces the opening 14a and the notch 14a ′ (that is, the non-solid portion) of the pixel electrode 14 with the dielectric layer 13 therebetween. However, this is different from the previous liquid crystal display device 100.
  • the lower layer electrode 12 is connected to the drain electrode of the TFT similarly to the connection wiring 12a in the liquid crystal display device 100, and is electrically connected to the pixel electrode 14 in the hole 13a of the dielectric layer 13. .
  • the picture element electrode 14 is formed so as to cover the hole 13a of the dielectric layer 13, and a recess 15a is formed at a position corresponding to the hole 13a.
  • the pixel electrode 14 is sometimes referred to as the upper layer electrode 14 in particular.
  • the upper electrode 14 and the lower electrode 12 may be collectively referred to as a two-layer pixel electrode.
  • the lower layer electrode 12 provided so as to face the opening 14a with the dielectric layer 13 interposed therebetween is a picture formed only in a region overlapping the opening 14a.
  • the example in which the element electrode 14 is formed so as to exist also has been shown, but the arrangement of the lower layer electrode 12 is not limited to this, and it is not necessarily required to be provided so as to face the entire opening 14a. .
  • the lower layer electrode 12 formed at a position facing the region where the conductive layer of the pixel electrode 14 exists via the dielectric layer 13 does not substantially affect the electric field applied to the liquid crystal layer 30, so that There is no need to pattern, but it is possible to pattern.
  • the pixel electrode 14 included in the liquid crystal display device 200 of the present embodiment has a substantially central portion of each unit solid portion 14b ′ as schematically shown in FIGS. 3 (a) and 3 (b). Since the recess 15a that is recessed in the thickness direction of the liquid crystal layer 30 is formed, the radial tilt alignment can be stably formed as in the liquid crystal display device 100 described above.
  • FIG. 4 (a) schematically shows a state in which no voltage is applied to the liquid crystal layer 30, and FIG. 4 (b) shows the orientation of the liquid crystal molecules 30a depending on the voltage applied to the liquid crystal layer 30.
  • Fig. 4 (c) schematically shows the state in which the orientation of the liquid crystal molecules 30a changed according to the applied voltage has reached a steady state. It is shown.
  • the curve EQ in FIG. 4 (b) and FIG. 4 (c) shows the equipotential line EQ.
  • FIGS. 4 (a) to (c) correspond to FIGS. 2 (a) to (c).
  • the mechanism by which the radially inclined alignment domains are formed is the liquid crystal display. Same as device 100.
  • the configuration and operation of the pixel electrode 14 and the recess 15a of the liquid crystal display device 200 are substantially the same as those of the liquid crystal display device 100.
  • the lower layer electrode 12 is formed in a region facing the opening 14a through the dielectric layer 13
  • the pixel electrode 14 and the opposite electrode are also formed in the liquid crystal layer 30 located near the center of each opening 14a.
  • a potential gradient represented by an equipotential line EQ parallel to the surface of the electrode 22 is formed (the “bottom of the valley” of the equipotential line EQ).
  • An oblique electric field represented by an inclined equipotential line EQ is formed in the liquid crystal layer 30 on the edge portion of the opening portion 14a (the inner periphery of the opening portion including the boundary (outward extension) of the opening portion).
  • a radial tilt alignment domain is formed in a region corresponding to the unit solid portion 14b ', and the opening portion Radially inclined alignment domains are also formed in the region corresponding to 14a.
  • the alignment of the liquid crystal molecules in the radial tilt alignment domain corresponding to the unit solid portion 14b ' is like an umbrella that is widened upward, and the radial tilt alignment domain of the radial tilt alignment domain formed corresponding to the opening 14a.
  • the orientation of the liquid crystal molecules looks like an umbrella that extends downward.
  • the alignment of the liquid crystal domain corresponding to the unit solid portion 14b ′ and the alignment of the liquid crystal domain corresponding to the opening 14a are continuous (matched) with each other. The orientation of liquid crystal molecules 30a is stabilized
  • FIG. 4 (c) As is apparent from a comparison between Figs. 4 (b) and (c) and Figs. 2 (b) and (c), the region corresponding to the opening 14a in Figs. 2 (b) and (c). In Fig. 4 (b) and (c), the equipotential line EQ drops and no bottom is formed in the valley. The bottom of the valley of the equipotential line EQ is formed in the exposed area. Therefore, when the inclination angle of the liquid crystal molecules 30a in the region corresponding to the opening 14a is compared between FIG. 4 (c) and FIG. 2 (c), FIG. 4 (c) is smaller.
  • a vertical alignment mode liquid crystal display device using a nematic liquid crystal material having a negative dielectric anisotropy displays in a normally black mode, so the liquid crystal display device 200 (FIG. 4) is more liquid crystal display device. Brighter than 100 (Fig. 2)!
  • a single pixel region may be duplicated.
  • the plurality of openings 14a are provided at a relatively high density, an advantage of suppressing a decrease in display luminance can be obtained by adopting the above-described configuration including the two-layer structure pixel electrode.
  • the structure of the pixel electrode 14 described below can be applied as the pixel electrode 14 of the liquid crystal display device 100 and the pixel electrode (upper conductive layer) 14 of the liquid crystal display device 200 described above. 5 and FIG. 6, the arrangement relationship and the connection relationship with the power pixel electrode 14 omitting the connection wiring 12a of the liquid crystal display device 100 and the lower layer electrode 12 of the liquid crystal display device 200 will be described with reference to FIG. That's right.
  • the pixel electrodes 14A and 14B as shown in FIGS. 5 (a) and 5 (b), respectively, can be used.
  • the substantially cross-shaped openings 14a are arranged in a square lattice so that the unit solid portions 14b 'are substantially square. Further, the notch portion 14a ′ is arranged so that the shape of each unit solid portion 14b ′ is the same. Of course, these may be distorted to form a rectangular unit cell. Thus, even when the unit solid portions 14b 'of a substantially rectangular shape (including a square and a rectangle) are regularly arranged, a liquid crystal display device with high display quality and excellent viewing angle characteristics can be obtained. it can.
  • the shape of the openings 14a and Z or the unit solid portion 14b ' is preferably a circle or an ellipse rather than a rectangle because the radial inclined orientation can be stabilized. This is presumably because the orientation direction of the liquid crystal molecules 30a also changes continuously (smoothly) because the sides of the opening 14a change continuously (smoothly).
  • pixel electrodes 14C and 14D as shown in FIGS. 6 (a) and 6 (b) may be used.
  • the pixel electrode 14C shown in FIG. 6 (a) is a modification of the pixel electrode 14A having the substantially square unit solid portion 14b ′ shown in FIG.
  • the shape of the unit solid part 14b ' is a distorted square shape with sharpened corners.
  • the shape of the unit solid portion 14b ′ of the pixel electrode 14D shown in FIG. 6 (b) is a substantially star shape having eight sides (edges) and a four-fold rotation axis in the center. Yes, each of the four corners is sharpened.
  • the sharpening of the corner means that the corner is constituted by an angle or a curve of less than 90 °.
  • the liquid crystal display device in which the orientation of the liquid crystal molecules 30a is controlled by an oblique electric field generated at the edge portion of the opening 14a, when a voltage is applied to the liquid crystal layer 30, first, the liquid crystal molecules on the edge portion are The liquid crystal molecules 30a in the peripheral region are tilted from the tilted position 30a, and then tilted radially. For this reason, the response speed may be slower than a liquid crystal display device in a display mode in which the liquid crystal molecules 30a on the pixel electrodes are simultaneously tilted when a voltage is applied to the liquid crystal layer.
  • the shape of the unit solid portion 14b' is a distorted square shape shown in Fig. 6 (a).
  • Fig. 7 (a) when the angle 0a formed by the sides constituting the corner is less than 90 ° (for example, about 80 °), the shape of the unit solid portion 14b 'is shown in Fig. 5 (b In the case of a substantially square shape as shown in Fig. 7) and further rounded corners, the liquid crystal is more than in the case where the angle ⁇ a formed by the sides forming the corner is 90 ° as shown in Fig. 7 (b).
  • the response speed when a voltage is applied to the layer 30 can be shortened by about 60%. Of course, the response speed can be shortened similarly if the unit solid portion 14b ′ has a substantially star shape as shown in FIG. 6 (b).
  • the specific direction of the unit solid portion 14b' is larger than when the shape of the unit solid portion 14b 'is substantially circular or rectangular.
  • the existence probability of the liquid crystal molecules 30a aligned along the angular direction can be increased (or decreased). That is, a high directivity can be provided by the existence probability of the liquid crystal molecules 30a aligned along all the azimuth directions.
  • the stability of the radial gradient orientation may be deteriorated only by the oblique electric field generated by the pixel electrode 14.
  • the side of the opening 14a has the shape of the unit solid part 14b ′ substantially circular. Since it does not change as smoothly as in some cases, the continuity of the change in the alignment direction of the liquid crystal molecules 30a is poor. For this reason, the stability of the radial tilt alignment may be deteriorated only by the alignment regulating force by the oblique electric field.
  • the pixel electrode of the liquid crystal display device of the present embodiment has the recess 15a, the alignment stability due to the recess 15a can provide practically sufficient alignment stability.
  • a single picture is obtained simply by providing one opening 14a in a force pixel electrode, which illustrates a configuration having a plurality of openings 14a in one pixel area.
  • a plurality of liquid crystal domains can be formed in the element region, and a plurality of liquid crystal domains can be formed in one pixel region without forming the opening 14a.
  • the liquid crystal domain formed corresponding to the opening 14a does not take the radial tilt alignment, and the pixel element Since the continuity of the orientation of the liquid crystal molecules in the region can be obtained, the radial tilt orientation of the liquid crystal domain formed corresponding to the unit solid portion 14b ′ is stable.
  • FIGS. 5 (a) and 5 (b) when the area of the opening 14a is small, the contribution to the display is small, so the region corresponding to the opening has a radially inclined orientation. Even if the liquid crystal domain is not formed, the deterioration of display quality is not a problem.
  • the pixel electrode 14E shown in FIG. 8 does not have an opening as in the previous example.
  • the pixel electrodes 14E arranged in a matrix having rows and columns have three unit solid portions 14b ′ arranged in a line in the column direction D1.
  • Each unit solid part 14b ' has a barrel shape with a substantially square shape with rounded corners, and the outer shape of the unit solid part 14b' is defined by the notch part 14a '.
  • a radial inclined alignment domain is generated for each unit solid part 14b 'by the alignment regulating force caused by the oblique electric field generated around each unit solid part 14b' and the alignment regulating force caused by the recess 15a.
  • the center of the radially inclined orientation is in the recess 15a. This is formed in the same manner as the liquid crystal display device of the previous embodiment.
  • the one-side space s needs to be a predetermined length or more.
  • the one-side space s is defined along the row direction D2 and also along the column direction D1, but as described in JP-A-2002-202511, the row direction D2
  • the row direction D2 By driving the pixels adjacent to each other along the reverse direction, sufficient alignment control can be achieved even if the one-side space s in the row direction D2 is shortened compared to when the pixels adjacent to the row direction D2 are not driven reversely. Power is obtained. This is because when the picture elements adjacent in the row direction D2 are driven in the reverse direction, they are not driven in the reverse direction, and a stronger and oblique electric field can be generated.
  • the alignment regulating force of the recess 15a acts to stabilize the radial inclined alignment, and therefore, between the pixel electrodes 14 adjacent in the row direction D2, as compared with the case described in the above publication.
  • the distance can be further shortened.
  • the present invention is applied to a liquid crystal display device that performs display in at least a transmissive mode, for example, a transflective (semi-transmissive) liquid crystal display device that includes only a typical transmissive liquid crystal display device.
  • a transmissive mode for example, a transflective (semi-transmissive) liquid crystal display device that includes only a typical transmissive liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明の液晶表示装置は、第1基板の液晶層30側に設けられた第1電極14と、第2基板21に設けられ第1電極に液晶層を介して対向する第2電極22とによって規定される絵素領域を有する。絵素領域において、第1電極14は、導電膜から形成された中実部14bと、導電膜が形成されていない非中実部14a、14a’を有し、中実部は、それぞれが非中実部によって実質的に包囲された複数の単位中実部14b’を含み、複数の単位中実部14b’のそれぞれは、略中央部に液晶層の厚さ方向に対して窪んだ凹部15aを形成している。液晶層は、第1電極と第2電極との間に電圧が印加されたときに、非中実部のエッジ部に生成される斜め電界によって複数の単位中実部14b’のそれぞれに放射状傾斜配向をとる液晶ドメインを形成するとともに、放射状傾斜配向の中心を凹部15a内に形成する。

Description

明 細 書
液晶表示装置
技術分野
[0001] 本発明は、液晶表示装置に関し、特に、広視野角特性を有し、高品位の表示を行 う液晶表示装置に関する。
背景技術
[0002] 近年、広視野角特性を有する液晶表示装置が開発され、パーソナルコンピュータ のモニタ、携帯情報端末機器の表示装置、あるいは、テレビジョン受像機として広く 利用されている。
[0003] 広視角特性を有する液晶表示装置の 1つとして、垂直配向型液晶層を用いたもの( 「VAモード」といわれる。)がある。本出願人は、特許文献 1および特許文献 2に、電 圧印加時に放射状傾斜配向ドメインを形成することによって視野角特性を改善した V Aモードの液晶表示装置を開示している。この液晶表示装置においては、電圧印加 時に、各絵素内に複数の放射状傾斜配向ドメインが形成され、隣接する放射状傾斜 配向ドメイン内の液晶分子の配向は互いに連続する。本出願人は、特許文献 1およ び 2に開示されて ヽる特徴的な配向状態を用いる液晶表示モードを Continuous P inwheel Alignment (CPA)モードと呼んで!/、る(非特許文献 1)。
[0004] 特許文献 1には、絵素電極に非中実部 (導電層が無い部分、開口部)を設け、電圧 印加時に絵素電極の非中実部のエッジ部に生成される斜め電界を用いて、放射状 傾斜配向を形成する構成が開示されている。更に、放射状傾斜配向を安定にするた めに、液晶層を介して絵素電極に対向する基板の液晶層側に、配向規制構造を設 けた構成が開示されている (例えば特許文献 1の図 27参照)。このような配向規制構 造として、液晶層側に突き出た凸部が例示されている(例えば特許文献 1の図 24 (b) 参照)。
[0005] 特許文献 2に開示されている液晶表示装置は、誘電体層を介して互いに対向する ように配置された上層導電層および下層導電層を用いて構成された絵素電極を備え ている。液晶層側に配置された上層導電層は、特許文献 1の絵素電極と同様に開口 部(非中実部)を有し、電圧印加時に開口部のエッジ部に生成される斜め電界を用 いて放射状傾斜配向ドメインを形成する。下層導電層は、少なくとも上層導電層の開 口部に対向する領域に設けられており、上層導電層の開口部に対応する領域の液 晶層に印加される電圧が低下し過ぎることを防止する(例えば、特許文献 2の図 11参 照)。特許文献 2にも、液晶層を介して絵素電極 (上層導電層)に対向する基板の液 晶層側に、配向規制構造を設けることによって放射状傾斜配向を安定にした構成が 開示されて 、る(例えば特許文献 2の図 30参照)。
[0006] これらの特許文献に開示されている液晶表示装置は、絵素電極に対向する基板の 液晶層側に配向規制構造を設けることによって、放射状傾斜配向が安定化されるの で、広い階調に亘つて高品位の表示を実現するとともに、液晶表示パネルに応力が 力かっても残像が発生し難 、と 、う効果を奏する。
特許文献 1:特開 2002— 202511号公報
特許文献 2:特開 2002— 55343号公報
非特許文献 1 :久保他、シャープ技報、第 80号、第 11〜14頁(2001年 8月) 発明の開示
発明が解決しょうとする課題
[0007] し力しながら、上記の特許文献 1または 2に記載されている液晶表示装置は、液晶 分子の配向を安定ィ匕するために、斜め電界を生成するための非中実部(例えば開口 部)を設けた電極に対向する基板に配向規制構造 (例えば凸部)を形成する必要が あるので、製造コストが上昇するという問題がある。例えば、開口部を有する絵素電極 が設けられる TFT基板に対向するように配置される対向基板 (典型的にはカラーフィ ルタ基板)に配向規制構造を設ける必要があり、対向基板の製造工程が増加する、 および製造コストが上昇するという問題がある。
[0008] 本発明は上記問題を解決するためになされたものであり、その主な目的は、非中実 部を有する電極が形成された基板に配向規制構造を設けることにより、放射状傾斜 配向を安定ィ匕することにある。
課題を解決するための手段
[0009] 本発明の液晶表示装置は、第 1基板と、第 2基板と、前記第 1基板と前記第 2基板と の間に設けられた垂直配向型の液晶層とを有し、前記第 1基板の前記液晶層側に設 けられた第 1電極と、前記第 2基板に設けられ前記第 1電極に前記液晶層を介して対 向する第 2電極とによって規定される絵素領域を有し、前記絵素領域において、前記 第 1電極は、導電膜から形成された中実部と、導電膜が形成されていない非中実部 を有し、前記中実部は、それぞれが前記非中実部によって実質的に包囲された複数 の単位中実部を含み、前記複数の単位中実部のそれぞれは、略中央部に前記液晶 層の厚さ方向に対して窪んだ凹部を形成しており、前記液晶層は、前記第 1電極と 前記第 2電極との間に電圧が印加されたときに、前記非中実部のエッジ部に生成さ れる斜め電界によって、前記複数の単位中実部のそれぞれに放射状傾斜配向をとる 液晶ドメインを形成するとともに、前記放射状傾斜配向の中心を前記凹部内に形成 することを特徴とする。
[0010] ある実施形態にお!ヽて、前記絵素領域にお!ヽて、前記第 1電極の前記基板側に設 けられた誘電体層を有し、前記誘電体層は凹部または孔を有しており、前記複数の 単位中実部は、前記誘電体層の前記凹部または前記孔に対応して前記凹部を形成 している。
[0011] ある実施形態において、前記絵素領域において、前記誘電体層を介して前記第 1 電極の前記非中実部に対向する第 3電極を更に有する。
[0012] ある実施形態において、前記誘電体層は前記第 3電極を露出する少なくとも 1つの 孔を有し、前記複数の単位中実部の少なくとも 1つは、前記少なくとも 1つの孔におい て前記第 3電極と接続されて 、る。
[0013] ある実施形態において、前記液晶ドメインの配向と前記非中実部に対応する前記 液晶層の領域の配向とは互 、に連続して 、る。
[0014] ある実施形態において、前記非中実部は、前記複数の単位中実部によって実質的 に包囲された開口部を有し、前記液晶層は、前記第 1電極と前記第 2電極との間に 電圧が印加されたときに、前記開口部に対応する前記液晶層の領域にも放射状傾 斜配向をとる液晶ドメインを形成する。
[0015] ある実施形態において、前記絵素領域において、前記第 2電極は、前記第 2基板 の表面に平行な連続な表面を有して 、る。 [0016] 前記第 1電極と前記第 2電極との間に電圧が印加されていないとき、前記液晶層の 前記第 2電極側の液晶分子は、前記第 2基板の表面に対して実質的に垂直に配向 している。
発明の効果
[0017] 本発明の液晶表示装置において、非中実部を有する電極は、中実部の略中央部 に液晶層の厚さ方向に対して窪んだ凹部を形成しており、凹部内に放射状傾斜配向 の中心が形成されるので、当該電極に対向する基板に配向規制構造を設けなくとも 、放射状傾斜配向を安定ィ匕することができる。従って、対向基板の製造工程の増加 や、製造コストの上昇を伴うことなぐ放射状傾斜配向が十分に安定化された液晶表 示装置が提供される。
図面の簡単な説明
[0018] [図 l] (a)および (b)は、本発明による実施形態の液晶表示装置 100の構成を模式的 に示す図であり、(a)は液晶表示装置 100の絵素領域の平面図であり、(b)は (a)中 の IB— 1B'線に沿った断面図である。
[図 2] (a)〜(c)は、液晶表示装置 100において放射状傾斜配向ドメインが安定に形 成されるメカニズムを説明するための図であり、(a)は電圧無印加時、(b)は ON初期 状態、(c)は定常状態における液晶分子の配向状態を示している。
[図 3] (a)および (b)は、本発明による他の実施形態の液晶表示装置 200の構成を模 式的に示す図であり、(a)は液晶表示装置 200の絵素領域の平面図であり、(b)は( a)中の 3B— 3B'線に沿った断面図である。
[図 4] (a)〜(c)は、液晶表示装置 200において放射状傾斜配向ドメインが安定に形 成されるメカニズムを説明するための図であり、(a)は電圧無印加時、(b)は ON初期 状態、(c)は定常状態における液晶分子の配向状態を示している。
[図 5] (a)および (b)は、本発明の実施形態の液晶表示装置が有する絵素電極の他 の例を示す図である。
[図 6] (a)および (b)は、本発明の実施形態の液晶表示装置が有する絵素電極のさら に他の例を示す図である。
[図 7] (a)および (b)は、本発明の実施形態の液晶表示装置が有する絵素電極の単 位中実部の角部を模式的に示す図である。
[図 8]本発明の実施形態の液晶表示装置が有する絵素電極のさらに他の例を示す 図である。
符号の説明
[0019] 11、 21 透明基板 (ガラス基板)
12 下層電極
12a 接続配線
13 誘電体層 (層間絶縁層)
13a 孔(凹部)
14 絵素電極 (上層電極)
14a 開口部
14a'切欠き部
14b 中実部
14b, 単位中実部
15a 凹部
22 対向電極
30 液晶層
30a 液晶分子
100、 200 液晶表示装置
100a, 200a TFT基板
100b, 200b 対向基板
発明を実施するための最良の形態
[0020] 以下、図面を参照しながら本発明による実施形態の液晶表示装置の構造およびそ の動作を説明する。なお、本発明は以下に例示する実施形態に限定されるものでは ない。
[0021] 図 1 (a)および (b)に本発明による実施形態の液晶表示装置 100の構成を模式的 に示す。図 1 (a)および (b)は、簡単のために、液晶表示装置 100の 1つの絵素領域 の電極構造を模式的に示しており、詳細な構造は省略している。図 1 (a)は液晶表示 装置 100の絵素領域の平面図であり、図 1 (b)は図 1 (a)中の IB— IB'線に沿った 断面図である。ここで、「絵素領域」とは、表示における「絵素(ドット)」に対応する液 晶表示装置の領域を指す。カラー液晶表示装置においては、例えば赤 (R)、緑 (G) および青 (B)の各「絵素」に対する領域が「絵素領域」となる。アクティブマトリクス型 液晶表示装置においては、絵素電極と、絵素電極と対向する対向電極とが絵素領域 を規定する。
[0022] 液晶表示装置 100は、アクティブマトリクス基板 (以下「TFT基板」と呼ぶ。) 100aと 、対向基板(「カラーフィルタ基板」とも呼ぶ) 100bと、 TFT基板 100aと対向基板 100 bとの間に設けられた液晶層 30とを有している。液晶層 30の液晶分子は、負の誘電 異方性を有し、 TFT基板 100aおよび対向基板 100bの液晶層 30側の表面に設けら れた垂直配向膜 (不図示)によって、液晶層 30に電圧が印加されていないとき、垂直 配向膜の表面に対して垂直に配向する。このとき、液晶層 30は垂直配向状態にある という。但し、垂直配向状態にある液晶層 30の液晶分子は、垂直配向膜の種類や液 晶材料の種類によって、垂直配向膜の表面 (基板の表面)の法線から若干傾斜する ことがある。一般に、垂直配向膜の表面に対して、液晶分子軸(「軸方位」ともいう。 ) が約 85° 以上の角度で配向した状態が垂直配向状態と呼ばれる。
[0023] 液晶表示装置 100の TFT基板 100aは、透明基板 (例えばガラス基板) 11とその表 面に形成された絵素電極 14とを有している。対向基板 100bは、透明基板 (例えばガ ラス基板) 21とその表面に形成された対向電極 22とを有している。液晶層 30を介し て互いに対向するように配置された絵素電極 14と対向電極 22とに印加される電圧に 応じて、絵素領域ごとの液晶層 30の配向状態が変化する。液晶層 30の配向状態の 変化に伴い、液晶層 30を透過する光の偏光状態や量が変化する現象を利用して表 示が行われる。
[0024] 液晶表示装置 100が有する絵素電極 14は、開口部 14aおよび切欠き部 14a'と中 実部 14bとを有している。開口部 14aおよび切欠き部 14a'は、導電膜 (例えば ITO 膜)カゝら形成される絵素電極 14の内の導電膜が除去された部分を指し、中実部 14b は導電膜が存在する部分(開口部 14a以外の部分)を指す。開口部 14aおよび切欠 き部 14a'をあわせて非中実部と呼ぶこともある。ここでは、絵素電極 14に 1つの開口 部 14aが形成されている例を示している力 後に例示するように、絵素電極ごとに複 数の開口部 14aを形成しても良いし、開口部 14aを設けなくても、 1つの絵素領域内 に複数の放射状傾斜配向領域を形成することが出来る。なお、中実部 14bは、基本 的には連続した単一の導電膜から形成されている。一方、対向電極 22は基板 21の 表面に平行な連続な表面を有しており、典型的には、表示領域に全面に亘る一枚の 導電層で形成されている。
[0025] 図 1 (a)に破線で示した正方形 (4つの正方格子の集合)は、単一の導電層から形 成された従来の絵素電極に対応する領域 (外形)を示しており、この絵素領域の外形 に対応する。絵素領域に形成されている 4つの正方格子の中心に位置する、非中実 部によって実質的に包囲されている中実部の部分を「単位中実部」と呼ぶこともある。
[0026] 絵素電極 14と対向電極 22とによって液晶層 30に電圧を印加すると、中実部 14の エッジ (非中実部によって規定されている)に生成される斜め電界によって、単位中 実部 14b'ごとに放射状傾斜配向ドメインが形成される。また、単位中実部 14b 'に囲 まれている開口部 14aに対応する領域には、液晶分子の傾斜方向が単位中実部 14 b 'に形成される放射状傾斜配向ドメインとは逆向きの放射状傾斜配向ドメインが形成 される。単位中実部 14b 'に対応する放射状傾斜配向ドメインの液晶分子の配向を 上に向けて広げた傘に例えると、開口部 14aに対応して形成される放射状傾斜配向 ドメインの液晶分子の配向は下に向けて広げた傘に例えられる。従って、単位中実 部 14b'に形成される放射状傾斜配向ドメインと開口部 14aに対応して形成される放 射状傾斜配向ドメインとは、その境界において液晶分子の傾斜方向が整合するので 、液晶分子の配向が絵素領域全体で安定する。すなわち、単位中実部 14b'に対応 して形成される液晶ドメインの配向と非中実部に対応する液晶層の領域の配向とは 互いに連続して 、るので、液晶分子の配向が絵素領域全体で安定する。
[0027] 切欠き部 14a'に対応する領域の液晶分子の配向も、開口部 14aに対応する領域 の液晶分子の配向と同じであり、切欠き部に隣接する単位中実部 14b'に形成される 放射状傾斜配向ドメインの液晶分子の傾斜方向と整合するように傾斜する。切欠き 部 14a'は、開口部 14aのように周辺を中実部 14bによって包囲されていないので、 切欠き部 14a'に対応して形成される液晶ドメインの外形を傘に例えることは出来な いが、単位中実部 14b 'に対応して形成される放射状傾斜配向ドメインの液晶分子の 配向と整合するように配向し、液晶分子の配向を安定ィ匕させるように作用する点では 、開口部 14aと同じである。図 1 (a)に示した 1つの正方格子内の略円形の単位中実 部 14b'は、その円周の約 4分の 1は開口部 14aの辺によって規定されており、他の 約 4分の 3は切欠き部 14a'の辺によって規定されている。単位中実部 14b 'に対応し て形成される放射状傾斜配向ドメインの液晶分子の配向にとっては、単位中実部 14 b 'の外形が開口部 14aによって規定されて 、ても、あるいは切欠き部 14a'によって 規定されて 、ても同じなので、開口部 14a 'と切欠き部 14aとを区別する必要が無 、 場合は、非中実部と呼ぶ場合がある。
[0028] 開口部 14aを形成しなくても、切欠き部 14a'を形成するだけで 1つの絵素領域に 複数の液晶ドメインを形成することもできる。例えば、図 1 (a)に示した縦方向に互い に隣接する 2つの単位中実部 14b 'に注目し、これを 1つの絵素電極と考えると、この 絵素電極は、 2つの単位中実部 14b'で構成され、開口部 14aを有しないが、電圧印 加時には、放射状傾斜配向をとる 2つの液晶ドメインを形成する。このように、絵素電 極が、少なくとも、電圧印加時に放射状傾斜配向をとる複数の液晶ドメインを形成す るような単位中実部 14b,を有して 、れば (言 、換えると、そのような外形を有して ヽ れば)、絵素領域内の液晶分子の配向の連続性は得られるので、単位中実部 14b' に対応して形成される液晶ドメインの放射状傾斜配向は安定する。
[0029] また、ここでは、正方形の絵素領域を例示して!/、るが、絵素領域の形状はこれに限 られない。絵素領域の一般的な形状は、矩形 (正方形と長方形を含む)に近似される ので、互いに合同な複数の単位中実部 14b 'を規則正しく配列することによって、絵 素領域内に単位中実部 14b 'に対応する複数の放射状傾斜配向ドメインを形成し、 絵素領域内の液晶分子を安定に配向させることが出来る。もちろん、絵素領域の形 状に応じて、大きさや形の異なる単位中実部 14b'を形成してもよいが、視角特性の 観点から、単位中実部の外形は 4回回転対称性以上の対称性を有することが好まし い。 4回回転対称性を有すると、ノーマリブラックモードの透過型液晶表示装置にお いてクロス-コルに配置された一対の偏光板の透過軸によって規定される 4つの方 位角範囲 (十字によつて分離される 4つの領域)に対して、同等の表示特性 (視角特 性)を得ることができる。
[0030] 本実施形態の液晶表示装置 100が有する絵素電極 14は、図 1 (a)および (b)に模 式的に示したように、各単位中実部 14b 'の略中央部に液晶層 30の厚さ方向に対し て窪んだ凹部 15aを形成している。この凹部 15aは、電圧印加時に単位中実部 14b ' に対応して形成される放射状傾斜配向の中心をこの凹部 15a内に形成させるように 作用する。従って、単位中実部 14b 'のエッジに生成される斜め電界の影響だけでな ぐ凹部 15aの形状効果 (断面形状の効果)によって、放射状傾斜配向が安定化する 。斜め電界が放射状傾斜配向の周辺部に存在する液晶分子の配向を規制するよう に作用するのに対し、凹部 15aは放射状傾斜配向ドメインの中心部に存在する液晶 分子の配向を規制する。その結果、放射状傾斜配向ドメインの液晶分子の配向がさ らに安定ィ匕する。従って、液晶パネルに応力が加わって液晶の配向が乱れても、短 時間に元の配向状態に復帰する。さらに、放射状傾斜配向の中心は、確実に凹部 1 5a内に形成され固定されるので、復元される配向状態は常にほぼ等しくなる。また、 放射状傾斜配向の中心が各凹部 15a内に必ず形成されるので、視角特性の絵素間 のばらつきが抑制されるという効果も得られる。また、上述した特許文献 1および特許 文献 2に開示されている液晶表示装置の様に絵素電極に対向する基板の液晶層側 に配向規制構造を設けるのでは無いので、対向基板の製造工程の増加や、コストが 上昇するという問題がない。
[0031] 絵素電極 14の凹部 15aは、例えば、図 1 (b)に示した様に、絵素電極 14の下側 (透 明基板 11側)に形成された誘電体層 (層間絶縁膜) 13の孔 13aを覆うように、絵素電 極 14を形成することによって形成される。ここでは、誘電体層 13が孔 13aを有する例 を示している力 凹部でもよい。なお、ここで例示している孔 13aは、誘電体層 13の 下層に設けられた接続配線 (ドレイン電極延設部) 12aを露出するように設けられて おり、接続配線 12aと絵素電極 14とを互いに電気的に接続するコンタクト部を形成す るためのコンタクトホールとしても機能して 、る。図 1では簡単のために省略して 、る 力 透明基板 11上には、 TFTおよび TFTのゲート電極に接続されたゲートバスライ ン、 TFTのソース電極に接続されたソースノ スライン、更に必要に応じて設けられる 補助容量 (CS)および補助容量配線 (CSバスライン)を覆うように誘電体層 13が設け られている。もちろん、 TFTに代えて MIMなどの他のスイッチング素子が設けられる 場合もある。このように、誘電体層 13を TFTや各バスラインなどを覆うように設けると、 絵素電極 14がその周辺においてバスラインの一部と重なるように絵素電極 14を設け ることが出来るので、表示に寄与する面積比率 (絵素開口率)を増大できる利点が得 られる。
[0032] 図 2 (a)〜(c)を参照して、液晶表示装置 100において、放射状傾斜配向ドメインが 安定に形成されるメカニズムを説明する。図 2 (a)は液晶層 30に電圧を印加していな い状態を模式的に示しており、図 2 (b)は、液晶層 30に印加された電圧に応じて、液 晶分子 30aの配向が変化し始めた状態 (ON初期状態)を模式的に示しており、図 2 ( c)は、印加された電圧に応じて変化した液晶分子 30aの配向が定常状態に達した状 態を模式的に示している。図 2 (b)および図 2 (c)中の曲線 EQは等電位線 EQを示し ている。
[0033] 図 2 (a)に示すように、電圧無印加状態においては、液晶分子 30aは TFT基板 100 aおよび対向基板 100bの液晶層 30に接する表面に設けられている垂直配向膜 (不 図示)の表面に対して略垂直に配向している。凹部 15a付近の液晶分子 30aは、凹 部 15aの斜面 (厳密には斜面上の垂直配向膜の表面)に対して略垂直に配向しょう とするので、凹部 15aの中心に向力つて傾斜する。凹部 15aによるこの配向規制力は 、凹部 15aの物理的な形状に起因するものであり、電圧の印カロ'無印加に拘わらず 凹部 15aの近傍の液晶分子 30aに作用する。
[0034] この液晶層 30に電圧を印加すると、図 2 (b)に示す等電位線 (電気力線と直交する ) EQで表される電位勾配が形成される。この等電位線 EQは、絵素電極 14の中実部 14bと対向電極 22との間に位置する液晶層 30内では、中実部 14bおよび対向電極 22の表面に対して平行であり、絵素電極 14の開口部 14aに対応する領域で落ち込 み、開口部 14aのエッジ部(開口部 14aの境界(外延)を含む開口部 14aの内側周辺 )上の液晶層 30内には、傾斜した等電位線 EQで表される斜め電界が形成される。も ちろん、切欠き部 14a'に対応する領域においても、開口部 14aに対応する領域と同 様に、等電位線 EQは落ち込む。
[0035] 負の誘電異方性を有する液晶分子 30aには、液晶分子 30aの軸方位を等電位線 E Qに対して平行 (電気力線に対して垂直)に配向させようとするトルク (すなわち配向 規制力)が作用する。従って、開口部 14aのエッジ部上の液晶分子 30aは、図 2 (b) に示したように、図中の右側エッジ部では時計回り方向に、図中の左側エッジ部上で は反時計回り方向に、それぞれ傾斜(回転)し、等電位線 EQに平行に配向する。す なわち、単位中実部 14b'の周辺の近傍の液晶分子 30aは、単位中実部 14b 'の中 心に向力つて傾斜するように配向する。この配向方向(傾斜方向)は、単位中実部 14 b 'の中央部に形成されている凹部 15aによって配向規制されている液晶分子 30aの 配向方向(傾斜方向)と一致している。
[0036] 液晶層 30に印加する電圧が飽和電圧に近づくと、図 2 (c)に示すように、単位中実 部 14b'に対応する領域に放射状傾斜配向ドメインが形成されるとともに、開口部 14 aに対応する領域にも放射状傾斜配向ドメインが形成される。単位中実部 14b 'に対 応する放射状傾斜配向ドメインの液晶分子の配向は、先を上に向けて広げた傘のよ うになり、開口部 14aに対応して形成される放射状傾斜配向ドメインの液晶分子の配 向は先を下に向けて広げた傘のようになる。図示したように、単位中実部 14b 'に対 応する液晶ドメインの配向と開口部 14aに対応する液晶ドメインの配向とが互いに連 続している(整合している)ので、液晶層 30内の液晶分子 30aの配向が安定ィ匕される
[0037] さらに、単位中実部 14b 'に対応する放射状傾斜配向ドメインの中心は、凹部 15a 内に形成されるので、複数の単位中実部のそれぞれに対応して形成される放射状傾 斜配向ドメインは等価になる。すなわち、開口部 14aのエッジ部に形成される斜め電 界による配向規制力だけで放射状傾斜配向ドメインを形成すると、放射状傾斜配向 ドメインの中心の位置は必ずしも一定せず、ドメイン間で異なることがある。特に、印 加する電圧が低い場合には十分な配向規制力が得られないために、この現象は顕 著となる。放射状傾斜配向ドメインの中心位置がずれると、液晶分子 30aの配向方向 の分布に偏りが生じるので、視野角特性が低下したり、表示にざらつきが見られるよう になる。絵素電極 14が有する凹部 15aは、印加電圧に無関係に一定の配向規制力 を発現するので、放射状傾斜配向を安定化させる効果が高ぐ上述の不具合の発生 を抑制することができる。 [0038] 定常状態にある液晶表示装置 100に応力が印加されると、液晶層 30の放射状傾 斜配向は一旦崩れるが、応力が取り除かれると、配向規制力が液晶分子 30aに作用 しているので、放射状傾斜配向状態に復帰する。従って、応力による残像の発生が 抑制される。凹部 15aによる配向規制力が強すぎると、電圧無印加時にも放射状傾 斜配向によるリタデーシヨンが発生し、表示のコントラスト比を低下するおそれがある 力 凹部 15aによる配向規制力は、斜め電界によって形成される放射状傾斜配向の 安定ィ匕および中心軸位置を固定する効果を発現すればよいので、強い配向規制力 は必要なぐ表示品位を低下させるほどのリタデーシヨンを発生させない程度の配向 規制力で十分である。
[0039] 例えば、典型的な画素構造(単位中実部のサイズ: 15 μ m〜60 μ m、特に 15 μ m ~45 μ m,液晶層の厚さ:透過型または透過反射両用型の透過部は 2 /ζ πι〜4. 5 m、特に 2. !〜 3. 5 /ζ πι、反射型または透過反射両用型の反射部は 1. Ο μ m〜2. 3 111、特【こ1. 2 /ζ πι〜1. 8 /z m)【こつ!ヽて、 咅 15aの大きさ(典型的【こ【ま 最大幅)は、底部において 9 m〜20 mの範囲にあることが好ましぐ凹部 15aの 深さは 1. 以上、特に 2. 5 m以上であることが好ましい。また、凹部 15aの側 面の傾斜角度は、基板面に対して 30度以上 90度未満であることが好ましい。もちろ ん、斜め電界による配向規制力と共同して液晶分子 30aの配向を効果的に安定化さ せるためには、凹部 15aは、単位中実部 14b 'の中央に形成し、単位中実部 14b 'の 外形と相似な形状を有することが好ましい。単位中実部 14b 'は上述したように 4回回 転対称性以上の回転対称性を有することが好ま 、ので、凹部 15aの外形も同様に 4回回転対称性以上の回転対称性を有することが好ましぐその回転軸は、互いに一 致することが好ましい(図 5および図 6参照)。
[0040] 液晶表示装置 100は、略円形の単位中実部 14b 'が互いに細い接続部で連結され た例を示しているが、それぞれの単位中実部 14b 'に同じ電圧(ドレイン電圧)が供給 されるように電気的に接続されていれば良い。従って、単位中実部 14b 'のそれぞれ が接続配線 12aと孔 13aにおいて電気的に接続される構成を採用する場合、単位中 実部 14b '同士を接続部で互いに連結する必要が無いので、それぞれの単位中実 部を独立に形成してもよい。あるいは、逆に、図示したように接続部で連結された単 位中実部 14b'を形成する場合には、単位中実部 14b'のそれぞれを接続配線 12a と接続する必要は無ぐ例えば TFTのドレイン電極 (不図示)に最も近い位置の単位 中実部 14b'の凹部 15aにおいてのみ接続配線 12aと接続してもよい。このとき、接 続配線 12aと接続しな 、単位中実部 14b 'の凹部 15aを形成するために誘電体層 13 に設ける孔 13aに代えて誘電体層 13に凹部を形成しても良 、し、あるいは基板 11の 表面を露出する孔を形成してもよい。なお、単位中実部 14b'の短絡や断線などの不 良を修復する観点カゝらは、それぞれの単位中実部 14b'が複数の電気経路を介して 、TFTのドレイン電極に電気的に接続される構成を採用することが好ましい。
[0041] 次に、図 3および図 4を参照して、本発明による他の実施形態の液晶表示装置 200 の構造およびその動作を説明する。なお、以下の図において、図 1および図 2に示し た液晶表示装置 100と同じ構成要素は共通の参照符号で示し、その説明をここでは 省略する。
[0042] 図 3 (a)および (b)に本発明による他の実施形態の液晶表示装置 200の構成を模 式的に示す。図 3 (a)は液晶表示装置 200の絵素領域の平面図であり、図 3 (b)は図 3 (a)中の 3B— 3B'線に沿った断面図である。
[0043] 液晶表示装置 200は、 TFT基板 200aと、対向基板 200bと、 TFT基板 200aと対 向基板 200bとの間に設けられた液晶層 30とを有している。液晶層 30の液晶分子は 、負の誘電異方性を有し、 TFT基板 200aおよび対向基板 200bの液晶層 30側の表 面に設けられた垂直配向膜 (不図示)によって、液晶層 30に電圧が印加されていな いとき、垂直配向膜の表面に対して垂直に配向する。
[0044] 液晶表示装置 200は、絵素電極 14の開口部 14aおよび切欠き部 14a' (すなわち 非中実部)に、誘電体層 13を介して対向する下層電極 12を有している点において、 先の液晶表示装置 100と異なる。下層電極 12は、液晶表示装置 100における接続 配線 12aと同様に、 TFTのドレイン電極に接続されており、誘電体層 13の孔 13aに おいて、絵素電極 14と電気的に接続されている。絵素電極 14は、誘電体層 13の孔 13aを覆うように形成されており、孔 13aに対応する位置に凹部 15aを形成して 、る。 絵素電極 14を特に上層電極 14と言うこともある。このとき、上層電極 14と下層電極 1 2とを合わせて 2層構造絵素電極と言うこともある。 [0045] なお、図 3 (a)および (b)では、開口部 14aに誘電体層 13を介して対向するように設 けられた下層電極 12は、開口部 14aと重なる領域だけでなぐ絵素電極 14が存在す る領域にも存在するように形成された例を示したが、下層電極 12の配置はこれに限 られず、開口部 14aの全体に対向するように設ける必要も必ずしも無い。また、誘電 体層 13を介して絵素電極 14の導電層が存在する領域と対向する位置に形成された 下層電極 12は、液晶層 30に印加される電界に実質的に影響しないので、特にパタ 一-ングする必要はな 、が、パター-ングしてもよ 、。
[0046] 本実施形態の液晶表示装置 200が有する絵素電極 14は、図 3 (a)および (b)に模 式的に示したように、各単位中実部 14b 'の略中央部に液晶層 30の厚さ方向に対し て窪んだ凹部 15aを形成しているので、先の液晶表示装置 100と同様に、放射状傾 斜配向を安定に形成することが出来る。
[0047] 次に、図 4 (a)〜(c)を参照して、液晶表示装置 200が下層電極 12を有することに よる利点を説明する。図 4 (a)は液晶層 30に電圧を印加していない状態を模式的に 示しており、図 4 (b)は、液晶層 30に印加された電圧に応じて、液晶分子 30aの配向 が変化し始めた状態 (ON初期状態)を模式的に示しており、図 4 (c)は、印加された 電圧に応じて変化した液晶分子 30aの配向が定常状態に達した状態を模式的に示 している。図 4 (b)および図 4 (c)中の曲線 EQは等電位線 EQを示している。
[0048] 図 4 (a)〜(c)は、図 2 (a)〜(c)に対応し、液晶表示装置 200にお 、て、放射状傾 斜配向ドメインが形成されるメカニズムは、液晶表示装置 100と同じである。液晶表 示装置 200の絵素電極 14および凹部 15aの構成および作用は、液晶表示装置 100 と実質的に同じである。
[0049] 図 4 (a)に示すように、絵素電極 14と対向電極 22が同電位のとき(液晶層 30に電 圧が印加されていない状態)には、絵素領域内の液晶分子 30aは、両基板 11および 21の表面に対して垂直に配向している。
[0050] 液晶層 30に電圧を印加すると、図 4 (b)に示した等電位線 EQで表される電位勾配 が形成される。絵素電極 14と対向電極 22との間に位置する液晶層 30内には、絵素 電極 14および対向電極 22の表面に対して平行な等電位線 EQで表される、均一な 電位勾配が形成される。絵素電極 14の開口部 14aの上に位置する液晶層 30には、 下層電極 12と対向電極 22との電位差に応じた電位勾配が形成される。このとき、液 晶層 30内に形成される電位勾配が、誘電体層 13による電圧降下の影響を受けるの で、液晶層 30内に形成される等電位線 EQは、開口部 14aに対応する領域で落ち込 む (等電位線 EQに複数の「谷」が形成される)。誘電体層 13を介して開口部 14aに 対向する領域に下層電極 12が形成されているので、開口部 14aのそれぞれの中央 付近上に位置する液晶層 30内にも、絵素電極 14および対向電極 22の面に対して 平行な等電位線 EQで表される電位勾配が形成される(等電位線 EQの「谷の底」 )。 開口部 14aのエッジ部(開口部の境界 (外延)を含む開口部の内側周辺)上の液晶 層 30内には、傾斜した等電位線 EQで表される斜め電界が形成される。
[0051] 液晶層 30に印加する電圧が飽和電圧に近づくと、図 4 (c)に示すように、単位中実 部 14b'に対応する領域に放射状傾斜配向ドメインが形成されるとともに、開口部 14 aに対応する領域にも放射状傾斜配向ドメインが形成される。単位中実部 14b 'に対 応する放射状傾斜配向ドメインの液晶分子の配向は、先を上に向けて広げた傘のよ うになり、開口部 14aに対応して形成される放射状傾斜配向ドメインの液晶分子の配 向は先を下に向けて広げた傘のようになる。図示したように、単位中実部 14b 'に対 応する液晶ドメインの配向と開口部 14aに対応する液晶ドメインの配向とが互いに連 続している(整合している)ので、液晶層 30内の液晶分子 30aの配向が安定ィ匕される
[0052] 図 4 (b)および (c)と図 2 (b)および (c)とを比較すると明らかなように、図 2 (b)およ び (c)において開口部 14aに対応する領域では等電位線 EQが落ち込み、谷に底が 形成されないのに対し、図 4 (b)および (c)では、開口部 14aに対応する領域 (すなわ ち液晶層 30側力も見て下層電極 12が露出している領域)に等電位線 EQの谷に底 ができる。従って、開口部 14aに対応する領域の液晶分子 30aの傾斜角を、図 4 (c) と図 2 (c)とで比較すると、図 4 (c)の方が小さい。一般に、誘電異方性が負のネマチ ック液晶材料を用いた垂直配向モードの液晶表示装置はノーマリブラックモードで表 示を行うので、液晶表示装置 200 (図 4)の方が液晶表示装置 100 (図 2)よりも明る!/、 ということになる。
[0053] 従って、例えば、応答速度を改善するためなどの目的で、 1つの絵素領域内に複 数の開口部 14aを比較的高い密度で設ける場合、上述した 2層構造絵素電極を備え る構成を採用することによって、表示輝度の低下を抑制できる利点が得られる。
[0054] 次に、図 5〜図 8を参照しながら、本発明の実施形態の液晶表示装置が有する絵 素電極 14の構造のバリエーションを説明する。以下に説明する絵素電極 14の構造 は、上述した液晶表示装置 100の絵素電極 14としても液晶表示装置 200の絵素電 極 (上層導電層) 14としても適用できる。また、図 5および図 6においては、液晶表示 装置 100の接続配線 12aおよび液晶表示装置 200の下層電極 12を省略する力 絵 素電極 14との配置関係および接続関係は図 1を参照して説明した通りである。
[0055] 本発明による実施形態の液晶表示装置の絵素電極として、図 5 (a)および (b)にそ れぞれ示すような絵素電極 14Aおよび 14Bを用いることもできる。
[0056] 絵素電極 14Aおよび 14Bは、各単位中実部 14b 'が略正方形となるように、略十字 の開口部 14aが正方格子状に配置されている。また、各単位中実部 14b 'の形状が 同じになるように、切欠き部 14a'が配置されている。勿論、これらを歪ませて、長方形 の単位格子を形成するように配置してもよい。このように、略矩形 (矩形は正方形と長 方形を含むとする。)の単位中実部 14b 'を規則正しく配列しても、表示品位が高い、 視角特性に優れた液晶表示装置を得ることができる。
[0057] 但し、開口部 14aおよび Zまたは単位中実部 14b'の形状は、矩形よりも円形また は楕円形の方が放射状傾斜配向を安定ィ匕できるので好ましい。これは、開口部 14a の辺が連続的に(滑らかに)変化するので、液晶分子 30aの配向方向も連続的に(滑 らかに)変化するためと考えられる。
[0058] また、応答速度の観点から、図 6 (a)および (b)にそれぞれ示すような絵素電極 14 Cおよび 14Dを用いてもよい。図 6 (a)に示した絵素電極 14Cは、図 5 (a)に示した略 正方形状の単位中実部 14b 'を有する絵素電極 14Aの変形例であり、絵素電極 14 Cの単位中実部 14b 'の形状は、角部が鋭角化された歪んだ正方形状である。また、 図 6 (b)に示した絵素電極 14Dの単位中実部 14b 'の形状は、 8つの辺(エッジ)を有 し、且つ、その中心に 4回回転軸を有する略星形であり、 4つの角部のそれぞれが鋭 角化されている。なお、角部を鋭角化するとは、 90° 未満の角または曲線で角部を 構成することをいう。 [0059] 開口部 14aのエッジ部に生成される斜め電界によって液晶分子 30aの配向が制御 される液晶表示装置においては、液晶層 30に電圧が印加されると、まず、エッジ部 上の液晶分子 30aから傾斜し、その後、周辺の領域の液晶分子 30aが傾斜し、放射 状傾斜配向となる。そのため、液晶層に電圧が印加されたときに絵素電極上の液晶 分子 30aが一斉に傾斜するような表示モードの液晶表示装置と比べると、応答速度 が遅いことがある。
[0060] 図 6 (a)および (b)に示したように、単位中実部 14b'力 角部が鋭角化された形状 を有していると、斜め電界を生成するエッジ部がより多く形成されるので、より多くの液 晶分子 30aに斜め電界を作用させることができる。従って、電界に応答して最初に傾 斜し始める液晶分子 30aの数がより多くなり、絵素領域全域にわたって放射状傾斜 配向が形成されるのに要する時間が短くなるので、液晶層 30に電圧を印加した際の 応答速度が向上する。
[0061] 例えば、単位中実部 14b 'の一辺の長さが約 40 mである液晶表示装置において は、単位中実部 14b 'の形状が図 6 (a)に示した歪んだ正方形状で、図 7 (a)に示す ように角部を構成する辺のなす角 0 aが 90° 未満である場合 (例えば約 80° )には、 単位中実部 14b'の形状が図 5 (b)に示したように略正方形状で、さらに角を丸くした 場合において、図 7 (b)に示すように角部を構成する辺のなす角 Θ aが 90° である場 合よりも、液晶層 30に電圧を印加した際の応答速度を約 60%短くすることができる。 勿論、単位中実部 14b'の形状を図 6 (b)に示したような略星形としても同様に応答 速度を短くすることができる。
[0062] また、単位中実部 14b 'の形状を角部が鋭角化された形状とすると、単位中実部 14 b 'の形状が略円形や略矩形である場合に比べて、特定の方位角方向に沿って配向 する液晶分子 30aの存在確率を高く(あるいは低く)することができる。すなわち、全 ての方位角方向のそれぞれに沿って配向する液晶分子 30aの存在確率により高い 指向性をもたせることができる。そのため、偏光板を備え、直線偏光を液晶層 30に入 射させるモードの液晶表示装置において、単位中実部 14b 'の角部を鋭角化すると、 偏光板の偏光軸に対して垂直方向または平行方向に配向している液晶分子 30a、 すなわち、入射光に対して位相差を与えない液晶分子 30aの存在確率をより低くす ることができる。従って、光の透過率を向上させ、より明るい表示を実現することがで きる。
[0063] なお、上述したように単位中実部 14b 'の角部を鋭角化すると、絵素電極 14による 斜め電界だけでは放射状傾斜配向の安定が悪くなることがある。例えば単位中実部 14b'の形状が略円形である場合と比較すると、角部が鋭角化されている場合には、 開口部 14aの辺は、単位中実部 14b 'の形状が略円形である場合ほど滑らかには変 化しないので、液晶分子 30aの配向方向の変化の連続性が悪い。そのため、斜め電 界による配向規制力だけでは、放射状傾斜配向の安定性が悪くなることがある。しか し、本実施形態の液晶表示装置の絵素電極は凹部 15aを有するので、凹部 15aによ る配向規制力により、実用上十分な配向安定性を得ることができる。
[0064] 上述の実施形態の液晶表示装置は、 1つの絵素領域に複数の開口部 14aを有す る構成を例示した力 絵素電極に 1つの開口部 14aを設けるだけで、 1つの絵素領域 に複数の液晶ドメインを形成することもできるし、さらに、開口部 14aを形成しなくても 、 1つの絵素領域に複数の液晶ドメインを形成することもできる。また、単位中実部 14 b 'に対応して放射状傾斜配向をとる液晶ドメインが形成されれば、開口部 14aに対 応して形成される液晶ドメインが放射状傾斜配向をとらなくとも、絵素領域内の液晶 分子の配向の連続性は得られるので、単位中実部 14b 'に対応して形成される液晶 ドメインの放射状傾斜配向は安定する。特に、図 5 (a)および図 5 (b)に示したように、 開口部 14aの面積が小さい場合には、表示に対する寄与も少ないので、開口部に対 応する領域に放射状傾斜配向をとる液晶ドメインが形成されなくても、表示品位の低 下は問題にならない。
[0065] 図 8に示す絵素電極 14Eは、先の例のように、開口部を有しな 、。行および列を有 するマトリクス状に配列される絵素電極 14Eは、列方向 D1に一列に並んだ 3つの単 位中実部 14b'を有している。各単位中実部 14b'は略正方形でその角が丸くなつた 樽形を有しており、切欠き部 14a'によって単位中実部 14b 'の外形が規定されてい る。液晶層に電圧を印加すると、各単位中実部 14b'の周辺に生成される斜め電界 による配向規制力と、凹部 15aによる配向規制力とによって、単位中実部 14b '毎に 放射状傾斜配向ドメインが形成されるとともに、放射状傾斜配向の中心が凹部 15a内 に形成されるのは、先の実施形態の液晶表示装置と同じである。
[0066] 図 8に示す切欠き部(非中実部) 14a'によって形成される正方単位格子と単位中 実部 14b'との間隙の長さ (片側のスペース)を sとすると、安定な放射状傾斜配向を 得るのに必要な斜め電界を生成するためには、片側スペース sが所定の長さ以上で ある必要がある。
[0067] 片側スペース sは、行方向 D2に沿っても規定されるし、列方向 D1に沿っても規定さ れるが、特開 2002— 202511号公報に記載されているように、行方向 D2に沿って 隣接した絵素を反転駆動することによって、行方向 D2に沿って隣接した絵素が反転 駆動されない場合に比べて、行方向 D2の片側スペース sを短くしても十分な配向規 制力が得られる。これは、行方向 D2に沿って隣接した絵素が反転駆動されると、反 転駆動されな 、場合に比べて強 、斜め電界を発生させることができるからである。本 実施形態によると、凹部 15aの配向規制力が放射状傾斜配向を安定化させるように 作用するので、上記公報に記載されている場合よりも、行方向 D2に沿って隣接する 絵素電極 14間距離を更に短くすることが出来る。
産業上の利用可能性
[0068] 本発明は、少なくとも透過モードで表示を行う液晶表示装置、例えば典型的な透過 型液晶表示装置だけでなぐ透過反射両用型 (半透過型)液晶表示装置に適用され る。
[0069] 特に、液晶の配向状態の安定性が高いので、液晶パネルに応力が印加されやす V、用途の液晶表示装置に好適に用いられる。

Claims

請求の範囲
[1] 第 1基板と、第 2基板と、前記第 1基板と前記第 2基板との間に設けられた垂直配向 型の液晶層とを有し、
前記第 1基板の前記液晶層側に設けられた第 1電極と、前記第 2基板に設けられ 前記第 1電極に前記液晶層を介して対向する第 2電極とによって規定される絵素領 域を有し、
前記絵素領域において、前記第 1電極は、導電膜から形成された中実部と、導電 膜が形成されていない非中実部を有し、前記中実部は、それぞれが前記非中実部 によって実質的に包囲された複数の単位中実部を含み、前記複数の単位中実部の それぞれは、略中央部に前記液晶層の厚さ方向に対して窪んだ凹部を形成しており 前記液晶層は、前記第 1電極と前記第 2電極との間に電圧が印加されたときに、前 記非中実部のエッジ部に生成される斜め電界によって、前記複数の単位中実部のそ れぞれに放射状傾斜配向をとる液晶ドメインを形成するとともに、前記放射状傾斜配 向の中心を前記凹部内に形成する、液晶表示装置。
[2] 前記絵素領域において、前記第 1電極の前記基板側に設けられた誘電体層を有し 、前記誘電体層は凹部または孔を有しており、前記複数の単位中実部は、前記誘電 体層の前記凹部または前記孔に対応して前記凹部を形成して 、る、請求項 1に記載 の液晶表示装置。
[3] 前記絵素領域において、前記誘電体層を介して前記第 1電極の前記非中実部に 対向する第 3電極を更に有する、請求項 2に記載の液晶表示装置。
[4] 前記誘電体層は前記第 3電極を露出する少なくとも 1つの孔を有し、前記複数の単 位中実部の少なくとも 1つは、前記少なくとも 1つの孔において前記第 3電極と接続さ れている、請求項 3に記載の液晶表示装置。
[5] 前記液晶ドメインの配向と前記非中実部に対応する前記液晶層の領域の配向とは 互いに連続して 、る、請求項 1から 4の 、ずれかに記載の液晶表示装置。
[6] 前記非中実部は、前記複数の単位中実部によって実質的に包囲された開口部を 有し、 前記液晶層は、前記第 1電極と前記第 2電極との間に電圧が印加されたときに、前 記開口部に対応する前記液晶層の領域にも放射状傾斜配向をとる液晶ドメインを形 成する、請求項 5に記載の液晶表示装置。
[7] 前記絵素領域にお!、て、前記第 2電極は、前記第 2基板の表面に平行な連続な表 面を有している、請求項 1から 6のいずれかに記載の液晶表示装置。
[8] 前記第 1電極と前記第 2電極との間に電圧が印加されていないとき、前記液晶層の 前記第 2電極側の液晶分子は、前記第 2基板の表面に対して実質的に垂直に配向 して 、る、請求項 1から 7の 、ずれかに記載の液晶表示装置。
PCT/JP2006/315141 2005-08-01 2006-07-31 液晶表示装置 WO2007015457A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/996,990 US20100149474A1 (en) 2005-08-01 2006-07-31 Liquid crystal display device
JP2007529256A JPWO2007015457A1 (ja) 2005-08-01 2006-07-31 液晶表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-222643 2005-08-01
JP2005222643 2005-08-01

Publications (1)

Publication Number Publication Date
WO2007015457A1 true WO2007015457A1 (ja) 2007-02-08

Family

ID=37708737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315141 WO2007015457A1 (ja) 2005-08-01 2006-07-31 液晶表示装置

Country Status (4)

Country Link
US (1) US20100149474A1 (ja)
JP (1) JPWO2007015457A1 (ja)
CN (1) CN101233447A (ja)
WO (1) WO2007015457A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170057A (ja) * 2009-01-26 2010-08-05 Nec Lcd Technologies Ltd 薄膜トランジスタアレイ基板及びその製造方法並びに液晶表示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101545642B1 (ko) * 2009-02-09 2015-08-20 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN106200882B (zh) * 2015-04-30 2019-05-10 原相科技股份有限公司 感测元件及光学测距系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047217A (ja) * 1998-07-24 2000-02-18 Sharp Corp 液晶表示装置
JP2001264784A (ja) * 1999-06-18 2001-09-26 Nec Corp 液晶表示装置及びその製造方法並びにその駆動方法
JP2002055343A (ja) * 2000-02-25 2002-02-20 Sharp Corp 液晶表示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717474A (en) * 1994-09-30 1998-02-10 Honeywell Inc. Wide-viewing angle multi-domain halftone active matrix liquid crystal display having compensating retardation
EP1930768A1 (en) * 1997-06-12 2008-06-11 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
US6384889B1 (en) * 1998-07-24 2002-05-07 Sharp Kabushiki Kaisha Liquid crystal display with sub pixel regions defined by sub electrode regions
US6654090B1 (en) * 1998-09-18 2003-11-25 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of manufacturing thereof
US6504592B1 (en) * 1999-06-16 2003-01-07 Nec Corporation Liquid crystal display and method of manufacturing the same and method of driving the same
TWI290252B (en) * 2000-02-25 2007-11-21 Sharp Kk Liquid crystal display device
JP3712637B2 (ja) * 2000-08-11 2005-11-02 シャープ株式会社 液晶表示装置およびその欠陥修正方法
JP3601788B2 (ja) * 2000-10-31 2004-12-15 シャープ株式会社 液晶表示装置
JP2004053654A (ja) * 2002-07-16 2004-02-19 Sharp Corp 液晶表示装置およびその製造方法
JP3642489B2 (ja) * 2003-06-11 2005-04-27 シャープ株式会社 液晶表示装置
TWI316142B (en) * 2005-01-27 2009-10-21 Hannstar Display Corp Liquid crystal display panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047217A (ja) * 1998-07-24 2000-02-18 Sharp Corp 液晶表示装置
JP2001264784A (ja) * 1999-06-18 2001-09-26 Nec Corp 液晶表示装置及びその製造方法並びにその駆動方法
JP2002055343A (ja) * 2000-02-25 2002-02-20 Sharp Corp 液晶表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010170057A (ja) * 2009-01-26 2010-08-05 Nec Lcd Technologies Ltd 薄膜トランジスタアレイ基板及びその製造方法並びに液晶表示装置
US8537297B2 (en) 2009-01-26 2013-09-17 Nlt Technologies, Ltd. Thin-film transistor array substrate, method of manufacturing same and liquid crystal display device
US9007542B2 (en) 2009-01-26 2015-04-14 Nlt Technologies, Ltd. Thin-film transistor array substrate, method of manufacturing same and liquid crystal display device

Also Published As

Publication number Publication date
US20100149474A1 (en) 2010-06-17
JPWO2007015457A1 (ja) 2009-02-19
CN101233447A (zh) 2008-07-30

Similar Documents

Publication Publication Date Title
US6788375B2 (en) Liquid crystal display device
JP3712637B2 (ja) 液晶表示装置およびその欠陥修正方法
US7471363B2 (en) Vertical alignment model LCD with larger dielectric protrusions in transmissive region than in reflection region
JP4571166B2 (ja) 垂直配向型液晶表示装置
US7046322B2 (en) Transflective LCD with tilting direction of the LC molecules being opposite to each other in the two transmissive display areas
WO2012147722A1 (ja) 液晶表示装置
JP4193792B2 (ja) 液晶表示パネル
JP2006227109A (ja) 液晶表示装置
JP4721879B2 (ja) 液晶表示装置
WO2006101083A1 (ja) 液晶表示装置
JP4390595B2 (ja) 液晶表示装置
JP4720139B2 (ja) 液晶表示パネル
WO2007015457A1 (ja) 液晶表示装置
JP4030362B2 (ja) 液晶表示装置
JP2005275213A (ja) 液晶表示装置
JP4586481B2 (ja) 半透過型液晶表示パネル
JP2006154362A (ja) 液晶表示パネル
JP2006106101A (ja) 液晶表示パネル
JP4830468B2 (ja) 液晶表示パネル
JP5334294B2 (ja) 液晶ディスプレイ装置
JP4407234B2 (ja) 液晶表示装置および電子機器
JP4349961B2 (ja) 液晶表示装置
JP2010039303A (ja) 液晶表示装置
JP2009150952A (ja) 液晶表示装置
JP4761737B2 (ja) 液晶表示装置およびその欠陥修正方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680028387.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007529256

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11996990

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782019

Country of ref document: EP

Kind code of ref document: A1