WO2015139424A1 - 一种电感式触摸屏、显示面板及显示装置 - Google Patents

一种电感式触摸屏、显示面板及显示装置 Download PDF

Info

Publication number
WO2015139424A1
WO2015139424A1 PCT/CN2014/085586 CN2014085586W WO2015139424A1 WO 2015139424 A1 WO2015139424 A1 WO 2015139424A1 CN 2014085586 W CN2014085586 W CN 2014085586W WO 2015139424 A1 WO2015139424 A1 WO 2015139424A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
touch screen
wires
sensing
current
Prior art date
Application number
PCT/CN2014/085586
Other languages
English (en)
French (fr)
Inventor
张金中
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/436,801 priority Critical patent/US9696844B2/en
Publication of WO2015139424A1 publication Critical patent/WO2015139424A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04108Touchless 2D- digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface without distance measurement in the Z direction

Definitions

  • the present invention relates to the field of touch technologies, and in particular, to an inductive touch screen, a display panel, and a display device.
  • Touch technology has gradually replaced the traditional keyboard and mouse input methods, becoming more user-friendly and more convenient and easy to use.
  • the touch screen quickly captures the market with its good user experience, especially in smart mobile terminals, where the touch screen has occupied the mainstream.
  • the main methods of implementing touch are resistive touch and capacitive touch.
  • the touch panel is coated with a thin metal conducting layer and a resistive layer. When the panel is touched, the thin metal conducting layer contacts the resistive layer and the position of the touch event is recorded by closing a switch, and the information is sent to the controller for further processing.
  • the touch panel In capacitive touch technology, the touch panel is coated with a material that is capable of storing charge. When the panel is touched, a small amount of charge is drawn to the contact point, and the circuitry at each corner of the panel measures the charge and sends the information to the controller for processing.
  • the resistive touch screen can realize two-point touch by contacting two upper and lower sensing electrodes, but it is difficult to realize multi-touch.
  • the capacitive touch screen can realize the multi-touch by using the mutual capacitance between the transmitting electrode and the sensing electrode, and the capacitive touch screen can realize the touch function without being pressed hard, and the reaction is more sensitive, so the capacitive touch screen gradually becomes the mainstream of commercial applications. .
  • the present invention provides an inductive touch screen, a display panel, and a display device, which can realize non-contact touch sensing.
  • an inductive touch screen including:
  • the first electromagnetic induction layer includes a plurality of first wires disposed along the first direction;
  • the second electromagnetic induction layer includes a plurality of second wires disposed along the second direction, and the second wires are insulated from the first wires;
  • a driving circuit connected to the first wire and the second wire for alternately supplying driving current to the first wire and the second wire to generate a magnetic field of the first wire or the second wire;
  • a sensing circuit coupled to the first wire and the second wire for sensing a change in current in the first wire or the second wire to determine a touch position of the touch conductor.
  • the sensing circuit includes a plurality of sensing sub-circuits corresponding to the first wire and the second wire,
  • the sensing subcircuit includes:
  • a current-sensing amplifying circuit one end of which is connected to one end of the corresponding first wire or the second wire, and the other end is connected to the sensing capacitor for sensing a current change in the corresponding first wire or the second wire, the first wire Or a second wire is coupled to the input of the drive circuit;
  • the sensing capacitor has one end connected to the current sense amplifying circuit and the other end connected to an output end of the driving circuit.
  • the inductive touch screen further includes:
  • a processing unit coupled to the sensing circuit, configured to receive a current change in the wire sensed by the sensing circuit, and determine a touch position of the touch conductor according to the current change.
  • the processing unit further sets a preset threshold, and determines whether the touch is valid by comparing the current change with the preset threshold. When the current change is less than the preset threshold, it is determined that the touch is invalid, and when the current change is not less than the preset threshold, it is determined that the touch is valid.
  • the spacing between two adjacent first wires is equal.
  • the spacing between two adjacent first wires is 100-800 micrometers.
  • the spacing between two adjacent second wires is 100-800 micrometers.
  • the invention also provides a display panel comprising the above inductive touch screen.
  • the display panel further includes an array substrate having a gate line and a data line, the first wire is disposed to overlap the gate line, and the second wire is disposed to overlap the data line.
  • the inductive touch screen further includes two ends disposed on the first wire and the second wire. Connecting leads, the first wire and the second wire being connected to the driving circuit and the sensing circuit through the connecting lead, the connecting lead being located in a non-display area of the display panel.
  • the invention also provides a display device comprising the above display panel.
  • a non-contact touch can be realized, that is, the touch sensing can be realized without touching the touch screen, and the touch sensitivity is higher, and the touch experience is higher.
  • FIG. 1 is a top plan view of an inductive touch screen in accordance with an embodiment of the present invention.
  • FIG. 2 is a magnetic field distribution diagram of the first wire disposed in the first direction of FIG. 1 with a drive current.
  • FIG. 3 is a magnetic field distribution diagram of the second wire disposed in the second direction of FIG. 1 with a drive current.
  • FIG. 4 is a schematic view of a finger cutting magnetic field according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an equivalent circuit of a sensing sub-circuit before being touched by an inductive touch screen according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an equivalent circuit of an inductive sub-circuit when an inductive touch screen is touched according to an embodiment of the invention.
  • An embodiment of the invention provides an inductive touch screen, and the inductive touch screen includes:
  • the first electromagnetic induction layer includes a plurality of first wires disposed along the first direction;
  • the second electromagnetic induction layer includes a plurality of second wires disposed along the second direction, and the second wires are insulated from the first wires;
  • a driving circuit connected to the first wire and the second wire for alternately supplying a driving current to the first wire and the second wire to generate a magnetic field of the first wire or the second wire;
  • a sensing circuit coupled to the first wire and the second wire for sensing a change in current in the first wire or the second wire to determine a touch position of the touch conductor.
  • FIG. 1 is a top view of an inductive touch screen according to an embodiment of the present invention. among them, The first electromagnetic induction layer includes four first wires 11 disposed in a first direction (lateral direction), and the second electromagnetic induction layer includes four second wires 12 disposed in a second direction (longitudinal direction).
  • the first electromagnetic induction layer and the second electromagnetic induction layer in FIG. 1 are only exemplarily listed as four wires, and the number of wires actually used is more than four, in addition, the first electromagnetic induction layer and the second electromagnetic induction layer The number of wires on the wire may be the same or different.
  • the first conductive line 11 on the first electromagnetic induction layer in FIG. 1 is disposed laterally, and the second conductive line 12 on the second electromagnetic induction layer is longitudinally disposed, and the first conductive line 11 and the second conductive line 12 vertically intersect.
  • Positioning grids formed by wires that are horizontally and vertically intersecting are more likely to position touch conductors (such as fingers).
  • the first wire and the second wire may also be other arrangements, for example, the first wire and the second wire are diagonally disposed as long as the first wire and the second wire can be cross-limited.
  • a positioning grid can be used.
  • the first electromagnetic induction layer and the second electromagnetic induction layer may be disposed on the same substrate, and an insulation layer is disposed between the two layers.
  • the inductive touch screen of the embodiment of the present invention may further include: connecting leads disposed at two ends of the first wire and the second wire, the first wire and the second wire passing through the connecting wire and the driving A circuit is coupled to the sensing circuit.
  • the laterally disposed first wire 11 and the bent wire at both ends of the longitudinally disposed second wire 12 in FIG. 1 are the connecting leads 13 in the embodiment of the present invention.
  • the spacing between two adjacent first wires is equal.
  • the spacing between two adjacent second wires is equal.
  • the spacing between two adjacent wires on the same electromagnetic induction layer cannot be set too small.
  • the spacing between two adjacent first wires can be Set to 100 to 800 microns.
  • the spacing between two adjacent second wires may be set to be 100 to 800 microns.
  • the first wire and the second wire occupy a small occupied area in the embodiment of the present invention, and the light transmittance is improved compared with the resistive touch screen disposed in the entire layer in the prior art. Small power consumption.
  • the driving circuit simultaneously supplies driving currents to all the wires located on the same electromagnetic induction layer, and alternately supplies driving currents to the wires on the different electromagnetic induction layers.
  • all of the wires on the same electromagnetic induction layer are connected in parallel.
  • FIG. 2 is a magnetic field distribution diagram of the first wire 11 disposed in the first direction of FIG. 1 with a driving current
  • FIG. 3 is a second electrode of FIG. 1 disposed along the second direction.
  • the wire 12 is connected to a magnetic field distribution diagram when a driving current is passed.
  • the driving circuit simultaneously supplies driving currents to all the wires on the same electromagnetic induction layer, at the same time, the current directions of all the wires on the same electromagnetic induction layer are the same, and the directions of the corresponding magnetic fields are also the same.
  • FIG. 4 is a schematic diagram of a finger cutting magnetic field according to an embodiment of the present invention. After a finger or other touch conductor cuts the magnetic field generated by the wire, an induced current can be generated in the wire, and the direction of the induced current is opposite to the direction of the drive current transmitted in the wire. Due to the presence of the induced current, the overall current value in the wire will become smaller, so that the current change in the wire can be sensed by the sensing circuit.
  • the sensing circuit can sense the change of the current in the first wire. Since each of the first wires is independent of each other, the coordinates of the touch position of the touch conductor in the first direction can be accurately located.
  • the second wire in the second direction When the second wire in the second direction is supplied with a drive current, there is no drive current in the first wire in the first direction. At this time, a ring-shaped magnetic field is formed around the second wire in the second direction, and when the finger approaches, an induced current is generated in the second wire in the second direction, and the induced current reduces the magnitude of the overall current in the second wire.
  • the sensing circuit can sense the change of the current in the second wire. Since each of the second wires is independent of each other, the coordinates of the touch position of the touch conductor in the second direction can be accurately located.
  • the driving circuit alternately supplies the driving current to the first wire and the second wire, and the first direction and the second direction are relative to the moving speed of the touch conductor due to the extremely short alternating time
  • the coordinates are obtained almost simultaneously, so that the exact position of the touch conductor touch can be obtained.
  • each wire on the same layer is independent of each other, when the second finger and more fingers are touched, each wire independently recognizes the current coordinates of each finger, thereby still accurately positioning each finger.
  • the location that implements multi-touch is independent of each other, when the second finger and more fingers are touched, each wire independently recognizes the current coordinates of each finger, thereby still accurately positioning each finger. The location that implements multi-touch.
  • the change in current in the wire in embodiments of the invention can direct the change in current amplitude in the wire.
  • a non-contact touch can be realized, that is, the touch conductor can realize touch sensing without contacting the inductive touch screen, and has higher sensitivity and better touch experience.
  • the wire disposed in the lateral direction is the first wire and the wire disposed in the longitudinal direction is the second wire
  • the first wire and the second wire in the present invention are not limited thereto. It is also possible to use a wire arranged longitudinally as the first wire and a wire arranged in the lateral direction as the second wire.
  • the sensing circuit of the embodiment of the present invention will be described below by way of example.
  • the sensing circuit of the embodiment of the invention may include a plurality of sensing sub-circuits corresponding to the first wire and the second wire, the sensing sub-circuit comprising:
  • a current-sensing amplifying circuit one end of which is connected to one end of the corresponding first wire or the second wire, and the other end is connected to the sensing capacitor for sensing a current change in the corresponding first wire or the second wire, the first wire Or a second wire is coupled to the input of the drive circuit;
  • the sensing capacitor has one end connected to the current sense amplifying circuit and the other end connected to an output end of the driving circuit.
  • FIG. 5 is a schematic diagram of an equivalent circuit of the inductive sub-circuit before being touched by the inductive touch screen according to an embodiment of the present invention.
  • the equivalent circuit includes:
  • a first resistance R x1 and a second resistance R x2 of the wire (the first wire or the second wire); dividing the wire by the touch position S of the touch conductor, and the resistance of the wire located to the left of the touch position S is the first resistance R X1 , the resistance of the wire located to the left of the touch position S is the second resistance R x2 .
  • One end of the wire is connected to the input terminal Vcc of the driving circuit;
  • a current-sensing amplifying circuit having one end connected to the other end of the wire and the other end connected to the sensing capacitor Cx for sensing current changes in the wire;
  • the sensing capacitor C x has one end connected to the current sense amplifying circuit and the other end connected to the ground (ie, the output end of the driving circuit).
  • the driving circuit needs to provide an alternating driving current for the wire so that the current can pass through the sensing capacitor C x .
  • an alternating drive current is passed through the wire, a toroidal magnetic field is formed around the wire. Since the direction of the current alternates, the direction of the magnetic field generated by the current also alternates, but the direction of the magnetic field is always distributed around the wire.
  • the capacitance C x is equivalent to the path.
  • the current-sensing amplifying circuit senses the amplitude of the normal driving current I 0 .
  • FIG. 6 is a schematic diagram of an equivalent circuit of an inductive sub-circuit when the inductive touch screen is touched according to an embodiment of the present invention.
  • the touch conductor When the touch conductor is close to the inductive touch screen, the touch conductor is electrically connected to the wire corresponding to the position.
  • the capacitance C fx refers to the capacitance between the touch conductor and the wire
  • R f refers to the self-resistance of the touch conductor
  • C f is Refers to the self-capacitance of the touch conductor.
  • the capacitors C x , C fx , and C f are equivalent to the path.
  • the current in the wire becomes small due to the presence of the induced current I 1 , which is sensed by the current sense amplifier circuit.
  • the amplitude of the current in the wire changes.
  • the inductive touch screen of the embodiment of the invention may further include:
  • a processing unit coupled to the sensing circuit, configured to receive a current change in the wire sensed by the sensing circuit, and determine a touch position of the touch conductor according to the current change.
  • the processing unit in the embodiment of the present invention may further set a preset threshold, and further determine whether the touch is valid by comparing the current change with the preset threshold. For example, when the current change is less than the preset threshold, it is determined that the touch is invalid, and when the current change is not less than the preset threshold, it is determined that the touch is valid.
  • the preset threshold value when the current change in the first wire or the second wire is too small, it is determined that the touch is invalid, and the inductive touch screen does not react, thereby shielding the noise signal and ensuring the touch within a certain distance.
  • the action is the recognized effective action to avoid identifying misoperations.
  • the embodiment of the invention further provides a display panel comprising the inductive touch screen in the above embodiment.
  • the first wire and the second wire in the embodiment of the present invention may be made of a transparent conductive material, such as indium tin oxide (ITO) or indium zinc oxide. (IZO) and so on.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the display panel further includes an array substrate having a gate line and a data line, the first wire is disposed to overlap the gate line, and the second wire is disposed to overlap the data line.
  • the first wire and the second wire of the embodiment of the present invention do not affect the display of the display panel, and thus the present invention is implemented.
  • the first wire and/or the second wire of the example may also be made of a non-transparent conductive material.
  • the inductive touch screen of the embodiment of the present invention may further include: connecting leads disposed at two ends of the first wire and the second wire, the first wire and the second wire passing through the connecting wire and the driving The circuit is coupled to the sensing circuit, and the connection lead is located in a non-display area of the display panel in order not to affect the touch sensing effect of the inductive touch panel.
  • the embodiment of the invention further provides a display device comprising the above display panel.
  • the embodiment of the invention further provides a method for preparing an inductive touch screen, comprising:
  • a step of forming a first electromagnetic induction layer the first electromagnetic induction layer comprising a plurality of first wires disposed along a first direction;
  • the second electromagnetic induction layer includes a plurality of second wires disposed along the second direction, and the second wires are insulated from the first wires;
  • a step of forming a driving circuit the driving circuit being connected to the first wire and the second wire for alternately supplying a driving current to the first wire and the second wire, and passing the first of the driving current
  • the wire or the second wire generates a magnetic field
  • sensing circuit Forming a sensing circuit, the sensing circuit being coupled to the first wire and the second wire for sensing a change in current in the first wire or the second wire, the current change being used to determine a touch of a touch conductor position.
  • Step S11 providing a substrate
  • Step S12 forming a first ITO layer on the substrate, having a thickness of 600 A (Angstrom), and forming a first electromagnetic induction layer by a patterning process (exposure, development, and etching processes), the first electromagnetic induction layer including a plurality of a first ITO wire disposed in the first direction (ie, the first wire in the above embodiment), wherein the first ITO wire has a width of 50 um (micrometer) and a pitch of 500 um;
  • Step S13 forming a SiN X insulating layer on the first electromagnetic induction layer, the insulating layer has a thickness of 4000 A, and etching a via hole around the insulating layer for connecting the driving circuit and the subsequently formed second electromagnetic sensing layer.
  • the second ITO wire (ie the second wire in the above embodiment).
  • Step S14 forming a second ITO layer on the substrate, having a thickness of 600 A, and forming a second electromagnetic induction layer through a patterning process (exposure, development, and etching processes), and the second electromagnetic induction layer includes a plurality of strips along the second A second ITO wire disposed in a direction, wherein the second ITO wire has a width of 50 um and a pitch of 500 um.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种电感式触摸屏、显示面板及显示装置,该电感式触摸屏包括:第一电磁感应层,包括多条沿第一方向设置的第一导线(11);第二电磁感应层,包括多条沿第二方向设置的第二导线(12),所述第二导线(12)与所述第一导线(11)交叉绝缘设置;驱动电路,与所述第一导线(11)和所述第二导线(12)连接,用于交替向所述第一导线(11)和所述第二导线(12)提供驱动电流(I 0),通有所述驱动电流(I 0)的第一导线(11)或第二导线(12)产生磁场;感应电路,与所述第一导线(11)和所述第二导线(12)连接,用于感应所述第一导线(11)或第二导线(12)中的电流变化,所述电流变化用于确定触摸导体的触摸位置(S)。该触摸屏可以实现非接触式的触摸感应。

Description

一种电感式触摸屏、显示面板及显示装置
相关申请的交叉引用
本申请主张在2014年3月20日在中国提交的中国专利申请号No.201410104325.4的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及触摸技术领域,尤其涉及一种电感式触摸屏、显示面板及显示装置。
背景技术
触摸技术已逐渐取代传统键盘和鼠标的输入方式,变得更加人性化,也更加方便易用。触摸屏以其良好的用户体验迅速占领市场,尤其在智能移动终端中,触摸屏已经占据主流。
目前实现触摸的方式主要有电阻式触摸和电容式触摸。在电阻式触摸技术中,触摸面板被涂覆了薄金属电导层和电阻层。当面板被触摸时,薄金属电导层和电阻层发生接触,并通过闭合一个开关来记录触摸事件的位置,信息被送往控制器用于进一步处理。在电容式触摸技术中,触摸面板被涂覆了一种能够存储电荷的材料。当面板被触摸时,少量电荷被吸引到接触点,位于面板各个角上的电路测量该电荷,并把信息送往控制器用于处理。
电阻式触摸屏通过上下两层感应电极接触,可实现2点触摸,但实现多点触摸较为困难。电容式触摸屏可以利用发射电极与感应电极之间的互电容,实现多点触摸,并且电容式触摸屏不用用力按压,即可实现触摸功能,反应更加灵敏,因而电容式触摸屏,逐步成为商业应用的主流。
然而无论是电阻式触摸屏,还是电容式触摸屏,其触摸都需要手指触摸屏幕来完成,无法实现非接触式的触摸。
发明内容
有鉴于此,本发明提供一种电感式触摸屏、显示面板及显示装置,可以实现非接触式的触摸感应。
为解决上述技术问题,本发明的实施例提供一种电感式触摸屏,包括:
第一电磁感应层,包括多条沿第一方向设置的第一导线;
第二电磁感应层,包括多条沿第二方向设置的第二导线,所述第二导线与所述第一导线交叉绝缘设置;
驱动电路,与所述第一导线和所述第二导线连接,用于交替向所述第一导线和所述第二导线提供驱动电流,使第一导线或第二导线产生磁场;以及
感应电路,与所述第一导线和所述第二导线连接,用于感应所述第一导线或第二导线中的电流变化,以确定触摸导体的触摸位置。
其中,所述感应电路包括与所述第一导线和第二导线一一对应的多个感应子电路,
所述感应子电路包括:
电流感应放大电路,一端与其对应的第一导线或第二导线的一端连接,另一端与感应电容连接,用于感应与其对应的第一导线或第二导线中的电流变化,所述第一导线或第二导线与所述驱动电路的输入端连接;以及
所述感应电容,一端与所述电流感应放大电路连接,另一端与所述驱动电路的输出端连接。
其中,所述电感式触摸屏还包括:
处理单元,与所述感应电路连接,用于接收所述感应电路感应到的所述导线中的电流变化,并根据所述电流变化,确定所述触摸导体的触摸位置。
其中,所述处理单元进一步设置一预设阈值,并通过比较所述电流变化与所述预设阈值,判断触摸是否有效。当所述电流变化小于所述预设阈值时,判定触摸无效,当所述电流变化不小于所述预设阈值时,判定触摸有效。
其中,相邻的两条所述第一导线之间的间距相等。
其中,相邻的两条所述第一导线之间的间距为100~800微米。
其中,相邻的两条所述第二导线之间的间距相等。
其中,相邻的两条所述第二导线之间的间距为100~800微米。
本发明还提供一种显示面板,包括上述电感式触摸屏。
其中,所述显示面板还包括具有栅线和数据线的阵列基板,所述第一导线与所述栅线重叠设置,所述第二导线与所述数据线重叠设置。
其中,所述电感式触摸屏还包括设置于所述第一导线和第二导线两端的 连接引线,所述第一导线和第二导线通过所述连接引线与所述驱动电路和所述感应电路连接,所述连接引线位于所述显示面板的非显示区域内。
本发明还提供一种显示装置,包括上述显示面板。
本发明的上述技术方案的有益效果如下:
可实现非接触式的触摸,即手指不接触触摸屏即可实现触摸感应,具有更高的灵敏度和更好的触摸体验。
附图说明
图1为本发明一实施例的电感式触摸屏的俯视图。
图2是图1中的沿第一方向设置的第一导线通有驱动电流时的磁场分布图。
图3是图1中的沿第二方向设置的第二导线通有驱动电流时的磁场分布图。
图4为本发明实施例的手指切割磁场的示意图。
图5为本发明实施例的电感式触摸屏被触摸前感应子电路的等效电路示意图。
图6为本发明实施例的电感式触摸屏被触摸时感应子电路的等效电路示意图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明实施例提供一种电感式触摸屏,所述电感式触摸屏包括:
第一电磁感应层,包括多条沿第一方向设置的第一导线;
第二电磁感应层,包括多条沿第二方向设置的第二导线,所述第二导线与所述第一导线交叉绝缘设置;
驱动电路,与所述第一导线和第二导线连接,用于交替向所述第一导线和所述第二导线提供驱动电流,使第一导线或第二导线产生磁场;以及
感应电路,与所述第一导线和第二导线连接,用于感应所述第一导线或第二导线中的电流变化,以确定触摸导体的触摸位置。
请参考图1,图1为本发明一实施例的电感式触摸屏的俯视图。其中, 第一电磁感应层包括四条沿第一方向(横向)设置的第一导线11,第二电磁感应层包括四条沿第二方向(纵向)设置的第二导线12。
图1中的第一电磁感应层和第二电磁感应层仅是示例性地列出四条导线,实际使用的导线的个数要多于四条,另外,第一电磁感应层和第二电磁感应层上的导线的条数可以相同,也可以不同。
图1中的第一电磁感应层上的第一导11线横向设置,第二电磁感应层上的第二导线12纵向设置,第一导线11和第二导线12垂直交叉。横向、纵向垂直交叉设置的导线形成的定位网格更容易对触摸导体(如手指等)进行定位。当然,在本发明的其他实施例中,第一导线和第二导线也可以是其他设置方式,例如,第一导线和第二导线均斜向设置,只要第一导线和第二导线能够交叉限定出一定位网格即可。
所述第一电磁感应层和第二电磁感应层可以设置于同一基板上,两层之间设有绝缘层。
为了方便连接,本发明实施例的电感式触摸屏还可以包括:设置于所述第一导线和第二导线两端的连接引线,所述第一导线和第二导线通过所述连接引线与所述驱动电路和所述感应电路连接。请参考图1,图1中的横向设置的第一导线11和纵向设置的第二导线12两端的弯折线即本发明实施例中的连接引线13。
为了能够方便定位,本发明实施例中,优选地,相邻的两条所述第一导线之间的间距相等。相邻的两条所述第二导线之间的间距相等。
为了提高光的透过率,位于同一电磁感应层上的相邻的两条所述导线之间的间距不能设置的过小,优选地,相邻两条所述第一导线之间的间距可以设置为100~800微米。相邻两条所述第二导线之间的间距可以设置为100~800微米。
基于以上描述可以看出,本发明实施例中的第一导线和第二导线占用面积较小,与现有技术中的整层设置的电阻式触摸屏相比,提高了光的透过率,减小了功耗。
本发明实施例中,优选地,所述驱动电路同时向位于同一电磁感应层上的所有导线提供驱动电流,并交替向不同电磁感应层上的导线提供驱动电流。
为了方便同时向位于同一电磁感应层上的所有导线提供驱动电流,优选地,位于同一电磁感应层上的所有导线并联。
请参考图2和图3,图2是图1中的沿第一方向设置的第一导线11通有驱动电流时的磁场分布图,图3是图1中的沿第二方向设置的第二导线12通有驱动电流时的磁场分布图。
从图2和图3中可以看出,当第一导线11或第二导线12中电流通过时,由于电磁感应作用,在第一导线11或第二导线12的周围会出现环形磁场,磁场的方向与电流方向符合右手法则。
此外,由于驱动电路同时向位于同一电磁感应层上的所有导线提供驱动电流,因而,在同一时刻,位于同一电磁感应层上的所有导线中的电流方向相同,其对应的磁场的方向也相同。
请参考图4,图4为本发明实施例的手指切割磁场的示意图。手指或其他触摸导体切割导线产生的磁场后,导线中可以产生感应电流,感应电流的方向与导线中传输的驱动电流的方向相反。由于感应电流的存在,导线中的整体电流值将会变小,从而通过感应电路可以感应到导线中电流变化。
当第一方向上的第一导线通有驱动电流时,第二方向上的第二导线中无驱动电流。此时,第一方向上的第一导线的周围形成环形磁场,当手指靠近时,在第一方向的第一导线中产生感应电流,感应电流会降低第一导线中的整体电流的大小,通过感应电路可以感应到第一导线中的电流变化,由于每条第一导线相互独立,因而可以准确定位出触摸导体的触摸位置在第一方向上的坐标。
当第二方向上的第二导线通有驱动电流时,第一方向上的第一导线中无驱动电流。此时,第二方向上的第二导线的周围形成环形磁场,当手指靠近时,在第二方向的第二导线中产生感应电流,感应电流会降低第二导线中的整体电流的大小,通过感应电路可以感应到第二导线中的电流变化,由于每条第二导线相互独立,因而可以准确定位出触摸导体的触摸位置在第二方向上的坐标。
通过时序控制,驱动电路交替向第一导线和第二导线提供驱动电流,由于交替时间极短,相对于触摸导体的移动速度而言,第一方向和第二方向的 坐标几乎是同时获得的,从而可以获得触摸导体触摸的准确位置。
由于位于同一层上的每条导线都相互独立,因而当第二个手指和更多个手指触摸时,各条导线独立的识别出每个手指的当前坐标,从而仍然能够准确定位到每个手指的位置,实现了多点触摸。
本发明实施例中的导线中的电流变化可以指导线中的电流波幅的变化。
通过上述实施例提供的电感式触摸屏,可以实现非接触式触摸,即触摸导体不接触电感式触摸屏即可实现触摸感应,具有更高的灵敏度和更好的触摸体验。
在此,虽然以横向设置的导线为第一导线且以纵向设置的导线为第二导线,但是本发明中的第一导线与第二导线并不限于此。也能够以纵向设置的导线为第一导线且以横向设置的导线为第二导线。
下面举例对本发明实施例的感应电路进行说明。
本发明实施例的感应电路可以包括与所述第一导线和第二导线一一对应的多个感应子电路,所述感应子电路包括:
电流感应放大电路,一端与其对应的第一导线或第二导线的一端连接,另一端与感应电容连接,用于感应与其对应的第一导线或第二导线中的电流变化,所述第一导线或第二导线与所述驱动电路的输入端连接;以及
所述感应电容,一端与所述电流感应放大电路连接,另一端与所述驱动电路的输出端连接。
请参考图5,图5为本发明实施例的电感式触摸屏被触摸前感应子电路的等效电路示意图。
该等效电路包括:
导线(第一导线或第二导线)的第一电阻Rx1和第二电阻Rx2;以触摸导体的触摸位置S对导线进行划分,位于触摸位置S左侧的导线的电阻为第一电阻Rx1,位于触摸位置S左侧的导线的电阻为第二电阻Rx2。导线的一端与驱动电路的输入端Vcc连接;
电流感应放大电路,一端与导线的另一端连接,另一端与感应电容Cx连接,用于感应与导线中的电流变化;
感应电容Cx,一端与电流感应放大电路连接,另一端与地(即驱动电路 的输出端)连接。
本发明实施例中,由于存在感应电容Cx,驱动电路需要为导线提供交变驱动电流,以使得电流可以通过感应电容Cx。当导线中通有交变驱动电流时,导线周围形成环形磁场,由于电流方向交替变化,电流产生的磁场方向也在交替变化,但是磁场方向总是围绕着导线呈环形分布。
在交变电流的驱动下,电容Cx相当于通路,电感式触摸屏被触摸前,电流感应放大电路感应到的是正常的驱动电流I0的波幅。
请参考图6,图6为本发明实施例的电感式触摸屏被触摸时感应子电路的等效电路示意图。
当触摸导体靠近电感式触摸屏时触摸导体与靠近位置对应的导线电性连接,图6中,电容Cfx是指触摸导体与导线间的电容,Rf是指触摸导体的自电阻,Cf是指触摸导体的自电容。
在交变电流的驱动下,电容Cx、Cfx、Cf相当于通路,电感式触摸屏被触摸时,由于感应电流I1的存在,导线中的电流变小,电流感应放大电路感应到的导线中的电流的波幅发生变化。
为了确定触摸导体的触摸位置,本发明实施例的电感式触摸屏还可以包括:
处理单元,与所述感应电路连接,用于接收所述感应电路感应到的所述导线中的电流变化,并根据所述电流变化,确定所述触摸导体的触摸位置。
为了屏蔽噪声信号以及避免识别误操作,本发明实施例中的处理单元还可以进一步设置一预设阈值,并通过比较所述电流变化与预设阈值,进一步判断触摸是否有效。例如,当所述电流变化小于所述预设阈值时,判定触摸无效,当所述电流变化不小于所述预设阈值时,判定触摸有效。通过设置上述的预设阈值,当所述第一导线或第二导线中的电流变化过小时,判定触摸无效,电感式触摸屏不做反应,从而可以屏蔽噪声信号,同时保证在一定距离以内的触摸动作才是被识别的有效动作,避免识别误操作。
本发明实施例还提供一种显示面板,包括上述实施例中的电感式触摸屏。
为了尽量减少对显示面板的显示效果的影响,本发明实施例中的第一导线第二导线可以采用透明导电材料制成,例如氧化铟锡(ITO)或氧化铟锌 (IZO)等。
所述显示面板还包括具有栅线和数据线的阵列基板,所述第一导线与所述栅线重叠设置,所述第二导线与所述数据线重叠设置。
当第一导线与所述栅线重叠设置,第二导线与所述数据线重叠设置时,本发明实施例的第一导线和第二导线并不会影响显示面板的显示,因而,本发明实施例的第一导线和/或第二导线也可以采用非透明导电材料制成。
为了方便连接,本发明实施例的电感式触摸屏还可以包括:设置于所述第一导线和第二导线两端的连接引线,所述第一导线和第二导线通过所述连接引线与所述驱动电路和所述感应电路连接,为了不影响电感式触屏的触摸感应效果,所述连接引线位于所述显示面板的非显示区域内。
本发明实施例还提供一种显示装置,包括上述显示面板。
本发明实施例还提供一种电感式触摸屏的制备方法,包括:
形成第一电磁感应层的步骤,所述第一电磁感应层包括多条沿第一方向设置的第一导线;
形成第二电磁感应层的步骤,所述第二电磁感应层包括多条沿第二方向设置的第二导线,所述第二导线与所述第一导线交叉绝缘设置;
形成驱动电路的步骤,所述驱动电路与所述第一导线和第二导线连接,用于交替向所述第一导线和所述第二导线提供驱动电流,通有所述驱动电流的第一导线或第二导线产生磁场;
形成感应电路的步骤,所述感应电路与所述第一导线和第二导线连接,用于感应所述第一导线或第二导线中的电流变化,所述电流变化用于确定触摸导体的触摸位置。
下面举例对本发明实施例的形成第一电磁感应层和第二电磁感应层的步骤进行说明。
步骤S11:提供一个基板;
步骤S12:在所述基板上形成第一ITO层,厚度为600A(埃),并经过构图工艺(曝光、显影和刻蚀工艺),形成第一电磁感应层,第一电磁感应层包括多条沿第一方向设置的第一ITO导线(即上述实施例中的第一导线),其中第一ITO导线的宽度为50um(微米),间距为500um;
步骤S13:在第一电磁感应层上形成SiNX绝缘层,绝缘层的厚度为4000A,并在绝缘层的周边刻蚀过孔,以用于连接驱动电路与后续形成的第二电磁感应层上的第二ITO导线(即上述实施例中的第二导线)。
步骤S14:在所述基板上形成第二ITO层,厚度为600A,并经过构图工艺(曝光、显影和刻蚀工艺),形成第二电磁感应层,第二电磁感应层包括多条沿第二方向设置的第二ITO导线,其中第二ITO导线的宽度为50um,间距为500um。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (12)

  1. 一种电感式触摸屏,包括:
    第一电磁感应层,包括多条沿第一方向设置的第一导线;
    第二电磁感应层,包括多条沿第二方向设置的第二导线,所述第二导线与所述第一导线交叉绝缘设置;
    驱动电路,与所述第一导线和所述第二导线连接,用于交替向所述第一导线和所述第二导线提供驱动电流,使第一导线或第二导线产生磁场;以及
    感应电路,与所述第一导线和所述第二导线连接,用于感应所述第一导线或第二导线中的电流变化,以确定触摸导体的触摸位置。
  2. 根据权利要求1所述的电感式触摸屏,其中,
    所述感应电路包括与所述第一导线和第二导线一一对应的多个感应子电路,
    所述感应子电路包括:
    电流感应放大电路,一端与其对应的第一导线或第二导线连接,另一端与感应电容连接,用于感应与其对应的第一导线或第二导线中的电流变化,所述第一导线或第二导线与所述驱动电路的输入端连接;以及
    所述感应电容,一端与所述电流感应放大电路连接,另一端与所述驱动电路的输出端连接。
  3. 根据权利要求1所述的电感式触摸屏,其中,还包括:
    处理单元,与所述感应电路连接,用于接收所述感应电路感应到的所述导线中的电流变化,并根据所述电流变化,确定所述触摸导体的触摸位置。
  4. 根据权利要求3所述的电感式触摸屏,其中,
    所述处理单元还设置有预设阈值,并通过比较所述电流变化与所述预设阈值,判定触摸是否有效。
  5. 根据权利要求1所述的电感式触摸屏,其中,
    相邻的两条所述第一导线之间的间距相等。
  6. 根据权利要求5所述的电感式触摸屏,其中,
    相邻的两条所述第一导线之间的间距为100~800微米。
  7. 根据权利要求5所述的电感式触摸屏,其中,
    相邻的两条所述第二导线之间的间距相等。
  8. 根据权利要求7所述的电感式触摸屏,其中,
    相邻的两条所述第二导线之间的间距为100~800微米。
  9. 一种显示面板,
    包括如权利要求1-8任一项所述的电感式触摸屏。
  10. 根据权利要求9所述的显示面板,其中,
    包括具有栅线和数据线的阵列基板,
    所述第一导线与所述栅线重叠设置,所述第二导线与所述数据线重叠设置。
  11. 根据权利要求10所述的显示面板,其中,
    所述电感式触摸屏还包括设置于所述第一导线和第二导线两端的连接引线,所述第一导线和第二导线通过所述连接引线与所述驱动电路和所述感应电路连接,所述连接引线位于所述显示面板的非显示区域内。
  12. 一种显示装置,
    包括如权利要求9-11任一项所述的显示面板。
PCT/CN2014/085586 2014-03-20 2014-08-29 一种电感式触摸屏、显示面板及显示装置 WO2015139424A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/436,801 US9696844B2 (en) 2014-03-20 2014-08-29 Inductive touch screen, display panel and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410104325.4 2014-03-20
CN201410104325.4A CN103902132A (zh) 2014-03-20 2014-03-20 一种电感式触摸屏、显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2015139424A1 true WO2015139424A1 (zh) 2015-09-24

Family

ID=50993487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085586 WO2015139424A1 (zh) 2014-03-20 2014-08-29 一种电感式触摸屏、显示面板及显示装置

Country Status (3)

Country Link
US (1) US9696844B2 (zh)
CN (1) CN103902132A (zh)
WO (1) WO2015139424A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103902132A (zh) * 2014-03-20 2014-07-02 京东方科技集团股份有限公司 一种电感式触摸屏、显示面板及显示装置
CN104199588B (zh) * 2014-09-24 2017-03-15 上海天马微电子有限公司 一种触摸屏及触控显示装置
CN107728861B (zh) * 2016-08-10 2021-09-14 深圳莱宝高科技股份有限公司 电容式触控面板
CN107526227B (zh) * 2017-09-11 2021-04-30 上海天马微电子有限公司 显示面板及显示装置
CN108052230B (zh) * 2018-01-02 2021-03-05 京东方科技集团股份有限公司 触控模组及其制备方法、触控屏和触控显示装置
CN108762598B (zh) 2018-07-02 2021-08-13 京东方科技集团股份有限公司 电磁触控检测方法及相关装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129304A (ja) * 1993-11-05 1995-05-19 Seiko Instr Inc 座標入力装置
TW200928932A (en) * 2007-12-31 2009-07-01 Egalax Empia Technology Inc Device and method for improving accrucy of touch position on touch panel
CN101727252A (zh) * 2008-10-13 2010-06-09 奇信电子股份有限公司 应用于触控面板的侦测装置及使用其的触控装置
CN103049130A (zh) * 2011-10-14 2013-04-17 刘鸿达 交错式驱动的触控感应方法、触控感应模块及显示器
CN103294295A (zh) * 2012-08-23 2013-09-11 上海天马微电子有限公司 一种互感式电容性触摸屏
US20140055404A1 (en) * 2012-08-21 2014-02-27 Samsung Electro-Mechanics Co., Ltd. Digitizer
CN103902132A (zh) * 2014-03-20 2014-07-02 京东方科技集团股份有限公司 一种电感式触摸屏、显示面板及显示装置
CN203733099U (zh) * 2014-03-20 2014-07-23 京东方科技集团股份有限公司 一种电感式触摸屏、显示面板及显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1746488A2 (en) * 2005-07-21 2007-01-24 TPO Displays Corp. Electromagnetic digitizer sensor array structure
JP5268262B2 (ja) * 2006-02-24 2013-08-21 キヤノン株式会社 エレクトロルミネッセンス表示装置
CN102253787B (zh) * 2010-05-21 2014-12-10 宸鸿科技(厦门)有限公司 电感式触控传感器及其触摸点侦测方法
CN201673493U (zh) * 2010-05-21 2010-12-15 宸鸿科技(厦门)有限公司 电感式触控传感器
TWI437474B (zh) * 2010-12-16 2014-05-11 Hongda Liu 雙模式觸控感應元件暨其觸控顯示器相關裝置及其觸控驅動方法
US8941607B2 (en) * 2010-12-16 2015-01-27 Hung-Ta LIU MEMS display with touch control function
US9069421B2 (en) * 2010-12-16 2015-06-30 Hung-Ta LIU Touch sensor and touch display apparatus and driving method thereof
TWI576746B (zh) * 2010-12-31 2017-04-01 劉鴻達 雙模式觸控感應的顯示器
CN102736771B (zh) * 2011-03-31 2016-06-22 比亚迪股份有限公司 多点旋转运动的识别方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129304A (ja) * 1993-11-05 1995-05-19 Seiko Instr Inc 座標入力装置
TW200928932A (en) * 2007-12-31 2009-07-01 Egalax Empia Technology Inc Device and method for improving accrucy of touch position on touch panel
CN101727252A (zh) * 2008-10-13 2010-06-09 奇信电子股份有限公司 应用于触控面板的侦测装置及使用其的触控装置
CN103049130A (zh) * 2011-10-14 2013-04-17 刘鸿达 交错式驱动的触控感应方法、触控感应模块及显示器
US20140055404A1 (en) * 2012-08-21 2014-02-27 Samsung Electro-Mechanics Co., Ltd. Digitizer
CN103294295A (zh) * 2012-08-23 2013-09-11 上海天马微电子有限公司 一种互感式电容性触摸屏
CN103902132A (zh) * 2014-03-20 2014-07-02 京东方科技集团股份有限公司 一种电感式触摸屏、显示面板及显示装置
CN203733099U (zh) * 2014-03-20 2014-07-23 京东方科技集团股份有限公司 一种电感式触摸屏、显示面板及显示装置

Also Published As

Publication number Publication date
US9696844B2 (en) 2017-07-04
US20160283010A1 (en) 2016-09-29
CN103902132A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
WO2015139424A1 (zh) 一种电感式触摸屏、显示面板及显示装置
EP2538313B1 (en) Touch sensor panel
CN202677328U (zh) 电极串和用于触摸屏的面板
US8988383B2 (en) Electrostatic capacitive type touch screen panel
TWI426427B (zh) 觸控面板
CN202694289U (zh) 触摸感测系统
JP3154177U (ja) 容量方式タッチパネルの回路構造
CN102446044B (zh) 静电电容型触摸屏面板
US9798419B2 (en) Electrostatic capacitive type touch screen panel
CN101526864B (zh) 触控面板
JP2015225649A (ja) 埋め込み式アクティブマトリクス有機発光ダイオードのタッチ制御パネル
KR20110041043A (ko) 터치패널
TW201248481A (en) Electrode structure of the touch panel, method thereof and touch panel
TW201601039A (zh) 觸控感應裝置
KR20110041109A (ko) 터치패널
CN103186297B (zh) 一种电容式触摸液晶显示面板和液晶显示装置
KR20150145769A (ko) 파워 코일 패턴이 형성된 터치 팬을 이용한 터치 패널
KR101318446B1 (ko) 표시장치용 정전용량식 터치 감지 패널
TW201635192A (zh) 滑擦式生物辨識裝置
TW201351246A (zh) 觸控面板與觸控顯示裝置
US9817528B2 (en) Touch sensitive device having different surrounding patterns and related touchscreen
US9612100B2 (en) Touch emulator
CN111625141B (zh) 触控面板及电子设备
US20160132180A1 (en) Capacitive Touch Circuit and Touch Sensor and Capacitive Touch System Using The Same
CN203733099U (zh) 一种电感式触摸屏、显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14436801

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/02/17)

122 Ep: pct application non-entry in european phase

Ref document number: 14886426

Country of ref document: EP

Kind code of ref document: A1