WO2015139260A1 - 基于压缩感知的信号处理方法及装置 - Google Patents

基于压缩感知的信号处理方法及装置 Download PDF

Info

Publication number
WO2015139260A1
WO2015139260A1 PCT/CN2014/073757 CN2014073757W WO2015139260A1 WO 2015139260 A1 WO2015139260 A1 WO 2015139260A1 CN 2014073757 W CN2014073757 W CN 2014073757W WO 2015139260 A1 WO2015139260 A1 WO 2015139260A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
input signal
sampling
spectrum
Prior art date
Application number
PCT/CN2014/073757
Other languages
English (en)
French (fr)
Inventor
孔翔鸣
朱胡飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to RU2016141063A priority Critical patent/RU2655659C2/ru
Priority to PCT/CN2014/073757 priority patent/WO2015139260A1/zh
Priority to CA2942585A priority patent/CA2942585C/en
Priority to JP2016558085A priority patent/JP6397505B2/ja
Priority to CN201480075761.1A priority patent/CN106031046B/zh
Priority to EP14886420.0A priority patent/EP3110015B1/en
Publication of WO2015139260A1 publication Critical patent/WO2015139260A1/zh
Priority to US15/270,911 priority patent/US9882581B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3059Digital compression and data reduction techniques where the original information is represented by a subset or similar information, e.g. lossy compression
    • H03M7/3062Compressive sampling or sensing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/66Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • H03M1/1255Synchronisation of the sampling frequency or phase to the input frequency or phase

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a signal processing method and apparatus based on compressed sensing. Background technique
  • the minimum sampling rate determined by compression sensing technology is generally lower than the Nyqui s t rate, which greatly reduces the complexity, cost, and power consumption of the sampling circuit.
  • the traditional sampling circuit has become an important bottleneck in the development of communication technology, and it is especially important to apply the compression sensing technology to the communication field.
  • ADC analog-to-digital converter
  • MWC modulated wideband converter
  • the existing RD system is only applicable to the frequency domain sparse signal of discrete frequency points. For most communication signals with continuous spectrum, the sampling recovery of the RD system will result in relatively high recovery error, and the computational complexity is 4 ⁇ . High, the signal cannot be recovered in real time.
  • the random sequence used by the MWC system is a periodic sequence
  • the signals of each sub-band can be recovered separately, and then the signal is completely restored according to other related information.
  • the final sampling rate of the ADC is determined by the number of sub-bands occupied by the signal, rather than the actual total bandwidth of the signal. Even if a signal bandwidth is much smaller than a subband width, it will cause a large increase in the sampling rate of the ADC because it occupies a subband.
  • the band boundary of the signal usually does not correspond to the subband boundary, so that a signal with a bandwidth less than one subband width tends to span two sub-bands. Band, causing an unnecessary increase in the ADC sampling rate.
  • the invention provides a signal processing method and device based on compressed sensing, which can process more narrowband signals at a lower sampling rate, and can flexibly process various frequency domain sparse signals.
  • a first aspect of the present invention provides a signal processing method based on compressed sensing, the method comprising:
  • a signal aliasing mode in the frequency segment determining a lowest sampling frequency of the input signal, specifically comprising: determining a frequency segment having the largest number of aliased signals from each of the frequency segments, and the number of the aliased signals The lowest sampling frequency required for the most frequency segments is the lowest sampling frequency of the input signal.
  • the input signal is sampled at a sampling frequency greater than the lowest sampling frequency
  • the sampled signal is obtained, which is specifically as follows:
  • the maximum value is the subband bandwidth and m is the number of channels in the system.
  • the method further includes:
  • the baseband spectrum of each of the recovered frequency segments is spliced to obtain an entire baseband spectrum of the input signal, and the input signal is recovered according to the baseband spectrum obtained by the splicing.
  • the method further includes: The input signal is detected, the spectral distribution of the input signal is obtained, and the system is configured according to the spectral distribution of the input signal;
  • the system configuration is performed according to the spectral distribution of the input signal, and specifically includes a combination of one or more of the following:
  • the present invention also provides a signal processing apparatus based on compressed sensing, the apparatus comprising:
  • a pre-processing unit configured to determine, according to a spectral distribution of the input signal, a distribution of each signal component in a baseband spectrum that is mixed after the input signal; and a signal aliasing mode formed according to a distribution of the signal components Differentiating, the baseband spectrum is segmented, and a plurality of frequency segments are formed on the baseband spectrum, each of the frequency segments corresponding to a signal aliasing mode; and, according to a signal aliasing mode in the frequency segment Determining a minimum sampling frequency of the input signal;
  • a sampling unit configured to sample the input signal by using a sampling frequency greater than the lowest sampling frequency determined by the pre-processing unit to obtain a sampling signal
  • a reconstruction unit configured to recover corresponding signal components in respective frequency segments of the plurality of frequency segments formed by the preprocessing unit according to the sampling signals obtained by the sampling unit, and to be at the respective frequencies
  • the signal components of the segment recovery are spliced to complete the recovery of the input signal.
  • the pre-processing unit is specifically configured to determine, from each of the frequency segments, a frequency segment with the largest number of aliased signals, and The lowest sampling frequency required for the frequency segment with the largest number of aliased signals as the input signal The lowest sampling frequency.
  • the maximum and maximum value of the number of signal signal numbers in the frequency-frequency band segment in the frequency-frequency rate segment is 55, and the width of the sub-band band is wide, and mm is the system system.
  • the number of channels in the channel is .
  • the pre-preprocessing unit After the element is formed into a plurality of frequency frequency rate segments on the band spectrum spectrum of the baseband, the element is further used for the plurality of frequency frequency segments according to the description
  • the signal signal number of each of the individual frequency frequency segments is mixed and stacked mode, and it is determined that the observation and measurement matrix of the constant pressure compression and perceptual sensing sample is in the described
  • the matrix of the set moment matrix of the sub-moment matrix array of the first frequency frequency rate segment is a frequency spectrum spectrum of the baseband band recovered for the iith frequency frequency rate segment, , in order to recover the signal signal to be recovered, ⁇ is the total number of the total number of frequency frequency segments formed on the band spectrum spectrum of the baseband;
  • the recombination unit cell of 1155 is further embodied by the baseband band frequency spectrum of each frequency frequency segment of the recovery and recovery. Obtaining an entire entire baseband band frequency spectrum spectrum of the input and input signal signal number, and the root is obtained according to the baseband band frequency spectrum spectrum pair obtained according to the spelling and splicing The input and output signal signal is input and the recovery is resumed. .
  • the first one to the third one may be capable of
  • the pre-pre-processing unit unit is also used for receiving the pre-previous period.
  • the received input signal 2200 enters the signal signal number to perform the line inspection and detection, and obtains the frequency spectrum spectrum distribution of the input and input signal signal, and then according to the description
  • the frequency spectrum spectrum of the input signal signal is distributed and distributed to perform the system configuration;
  • the pre-preprocessing unit unit has a specific combination for grouping or arranging one or more of the following listed columns: Adjust the sub-band of the whole system to have a wide bandwidth; or or,
  • Dynamic and dynamic state adjustment adjusts the sub-band band width of the whole system system;; or or, Adjust the passband bandwidth of the filter; or
  • the information processing apparatus based on the compressed sensing is a base station or a terminal.
  • the present invention further provides a signal processing apparatus based on compressed sensing, the apparatus comprising: a processor, a transceiver, and a memory;
  • the transceiver is configured to interact with other devices to receive an input signal
  • the memory is configured to store a program
  • the processor, the program stored in the memory is used to execute:
  • the processor is configured to determine a minimum sampling frequency of the input signal according to a signal aliasing mode in the frequency segment, and specifically includes:
  • the processor is used to:
  • a frequency segment having the largest number of aliased signals is determined from each of the frequency segments, and a lowest sampling frequency required for the frequency segment having the largest number of aliased signals is used as a lowest sampling frequency of the input signal.
  • the processor is configured to perform the input on a sampling frequency greater than the lowest sampling frequency The signal is sampled to obtain a sampled signal, which specifically includes:
  • the processor is used to:
  • the maximum value is the subband bandwidth and m is the number of channels in the system.
  • the processor is further configured to:
  • the processor is configured to recover corresponding signal components in respective frequency segments of the plurality of frequency segments according to the sampling signal, and splicing signal components recovered in the respective frequency segments to complete the entire input signal
  • the recovery includes:
  • the processor is used to:
  • the baseband spectrum recovered in the first frequency segment is a discrete Fourier transform of the sampled signal, and K is the total number of frequency segments formed on the baseband spectrum;
  • the baseband spectrum of each of the recovered frequency segments is spliced to obtain an entire baseband spectrum of the input signal, and the input signal is recovered according to the baseband spectrum obtained by the splicing.
  • the processor is configured to perform the spectrum distribution according to the input signal Determining a distribution of each signal component in a baseband spectrum that is mixed with the input signal Before, also used to:
  • the system configuration is performed according to the spectral distribution of the input signal, and specifically includes a combination of one or more of the following:
  • the information processing apparatus based on the compressed sensing is a base station or a terminal.
  • the method and device for processing signal based on compressed sensing provided by the present invention analyzes the baseband spectrum after signal mixing, and divides the baseband spectrum into multiple frequency segments according to different aliasing signal modes, and respectively uses different sub-matrices for signals. After recovery and splicing, it can process various frequency domain sparse signals, sample the signal at a lower sampling frequency, save the number of hardware channels, and achieve signal recovery at a lower sampling rate. A lower sampling rate handles more narrowband signals.
  • FIG. 1 is a schematic structural diagram of a modulation broadband converter system according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a signal processing method based on compressed sensing according to Embodiment 1 of the present invention
  • Figure 3a shows the spectrum when three communication signals are input;
  • Figure 3b is the baseband spectrum after the input signal of Figure 3a is mixed
  • FIG. 4 is a schematic diagram of a signal processing apparatus based on compressed sensing according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic structural diagram of a signal processing apparatus based on compressed sensing according to Embodiment 3 of the present invention. detailed description
  • FIG. It is a partial embodiment of the invention, not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the compressed sensing-based signal processing method and apparatus may be applied to a communication system based on compressed sensing, especially for a receiver based on compressed sensing, for processing various frequency domain sparse signals, for example,
  • LTE Long Term Evolution
  • multiple frequency bands can be used to transmit data information of the same user, a communication signal of a wider frequency band formed, communication signals of different frequency bands transmitted by multiple operators, and the like.
  • the present invention is particularly suitable for scenarios where the number of hardware channels is less than the number of subbands occupied by the signal. Generally, the fewer the number of hardware channels, the greater the benefits that the present invention can bring.
  • the system is generally disposed in a receiver, and specifically includes a compression acquisition device of m (1.m) channels, each channel including a hybrid.
  • the frequency converter 1, the low-pass filter 2 and the ADC sampler 3, the input signal X(t) is mixed by the mixer 1 using a random periodic sequence (including pt), ⁇ , p m ( t ) ) , respectively passed through the low-pass filter 2 ( ( t ) , ⁇ ⁇ , h m ( t ) ), and then sampled by the ADC sampler 3 to obtain the aliased sampling signal yn] , y m [n] , then recover the signal by the signal reconstruction algorithm, and restore the aliased sampling signal to the signal sampled by the traditional ADC sampling device to realize the input Complete recovery of the incoming signal.
  • the method for processing a compressed sensing based signal according to Embodiment 1 of the present invention includes: an S10K receiver determines, according to a spectrum distribution of an input signal, each signal component in a baseband spectrum that is mixed with the input signal. Distribution.
  • the input signal is a radio frequency signal. Since the transmission frequency bands corresponding to different operators are usually known signals, the embodiment of the present invention processes the known radio frequency signals as input signals, that is, the frequency band occupied by the input signals is usually It is known that, according to the spectral distribution of the known signal, the distribution of the plurality of signal components formed in the baseband spectrum after the signal is mixed can be estimated in advance.
  • the input signal may include a plurality of discontinuous narrowband signals, as shown in FIG. 3a, including three communication signals symmetric with respect to the origin, and the center frequencies of the signals 1, 2, and 3 are respectively ⁇ 88 Hz, ⁇ 1832.5 MHz. And ⁇ 2.65GHz, the bandwidth is 10MHz, 15MHz and 60MHz.
  • the three communication signals in the figure occupy a total of 8 sub-bands, including the sub-band of signal 1 (about 830 MHz ⁇ 890 MHz, about - 890 MHz ⁇ - 830 MHz), and the sub-band of signal 2 (about 1.81 GHz ⁇ 1.87 GHz) , -1.87GHz - -1.81GHz), subband of signal 3 ( 2.61GHz ⁇ 2.67GHz, 2.67GHz ⁇ 2.73GHz, -2.767GHz ⁇ -2.61GHz, -2.73GHz ⁇ -2.67GHz) 0 where the center frequency is
  • the signal of ⁇ 2.65 GHz has two sides symmetrically spanning two sub-bands, and the sub-band boundary is about ⁇ 2.67 GHz.
  • Mixing is based on the characteristics of the periodic sequence.
  • the mixing signal is composed of multiple tones of subband bandwidth fp multiples.
  • each narrowband signal will be used by it.
  • the harmonics of the subbands are moved to the baseband (if the signals spanning multiple subbands, the portion of each subband is treated as a different signal), and the shifted signals are aliased at the baseband. According to the spectrum of each narrowband signal and the frequency of the center frequency of the subband in which it is located, the frequency distribution of the signal at the baseband can be calculated.
  • Fig. 3b it is the baseband spectrum of the three signals of Fig. 3a after mixing and shifting.
  • the signal 1 is the signal of the solid line and the gray solid line marked with (1) in the baseband spectrum.
  • the solid line is the signal after the positive signal mixing, and the gray solid line is the signal mixed by the negative signal.
  • the signal 2 is the signal of the solid line with ⁇ and the gray solid line with ⁇ (2) in the baseband spectrum.
  • the solid line ⁇ is the signal after the positive signal mixing
  • the gray solid line is ⁇ It is the signal after the negative signal is mixed.
  • Signal 3 spans 2 sub-bands.
  • the baseband spectrum is marked with (3) dashed line, gray dotted line, zigzag line and gray sawtooth line.
  • the dotted line and the sawtooth line are the signals after the positive signal mixing, gray
  • the dashed and gray sawtooth lines are the signals after the negative signal is mixed.
  • the embodiment of the present invention may further determine a spectrum distribution of the input signal according to the input signal received in the previous stage, and further And determining, according to the determined spectral distribution of the input signal, a distribution of each signal component in the baseband spectrum after the input signal is mixed and shifted.
  • the method includes: detecting an input signal received in the previous stage, and obtaining a spectrum distribution of the input signal.
  • the system may also be configured according to the spectral distribution of the input signal, for example, configuring or dynamically adjusting the subband bandwidth of the system according to the spectral distribution of the input signal, and the sampler Sampling frequency and/or passband bandwidth of the filter.
  • the receiver segments the baseband spectrum according to different signal aliasing patterns formed by the distribution of the signal components, and forms a plurality of frequency segments, and each frequency segment corresponds to a signal aliasing mode.
  • the baseband spectrum can be divided into multiple frequency segments according to different signal aliasing modes, and each line in the figure includes 8 kinds. Different signal aliasing modes can be divided into 8 frequency segments.
  • the receiver determines a lowest sampling frequency of the input signal according to a signal aliasing mode in the frequency segment, and samples the input signal by using a sampling frequency greater than the lowest sampling frequency to obtain a sampling signal.
  • a frequency segment in which the number of aliased signals is the largest is determined from each of the frequency segments, and a minimum sampling frequency required for the frequency segment in which the number of the mixed signals is the largest is used as the lowest sampling frequency of the input signal.
  • the sampling frequency of the ADC must satisfy / s ⁇ .
  • the sampling frequency of the ADC is N.
  • ⁇ ⁇ N it can be seen that the sampling frequency of the ADC in the present invention is lower than the sampling frequency of the MWC system in the prior art.
  • is the maximum value of the number of signals aliased in the frequency band of the baseband spectrum
  • f s is the sampling frequency, which is the subband bandwidth.
  • Fig. 3b it can be seen that there are up to three subbands in one frequency band, that is, the second, fourth, fifth, and seventh frequency segments.
  • the input signal is sampled at a sampling frequency greater than the lowest sampling frequency to obtain a sampling signal, specifically:
  • the maximum value is the subband bandwidth, which is the number of channels in the system.
  • the receiver recovers corresponding signal components in each frequency segment of the plurality of frequency segments according to the sampling signal, and splices signal components recovered in the respective frequency segments to complete the input signal. restore.
  • S1042 splicing the recovered baseband spectrum of each frequency segment to obtain an entire baseband spectrum of the input signal, and recovering the input signal according to the spliced baseband spectrum.
  • the baseband frequency of the K frequency segments calculated by S1041 is spliced into the entire baseband spectrum by means of summation, and the input signal is recovered according to the baseband spectrum obtained by the splicing, thereby obtaining a correct recovery signal.
  • Orthogonal Frequency Division Multiplexing OFDM
  • OFDM Orthogonal Frequency Division Multiplexing
  • the data information can be directly recovered from the baseband spectrum without the need to recover the time domain signal.
  • the baseband frequency domain signal can be converted into a time domain sampled signal by a Discrete Fourier Transform (DFT).
  • DFT Discrete Fourier Transform
  • the signal processing method based on the compressed sensing analyzes the baseband spectrum after the signal mixing, and divides the baseband spectrum into multiple frequency segments according to different aliasing signal modes, and adopts different sub-matrices respectively.
  • various different frequency domain sparse signals can be processed, and the signal is sampled at a lower sampling frequency, which can save the number of hardware channels required, and achieve signal recovery at a lower sampling rate. More narrowband signals can be processed at a lower sampling rate.
  • FIG. 4 is a schematic diagram of a signal processing apparatus based on compressed sensing provided by an embodiment of the present invention.
  • the signal processing apparatus based on compressed sensing includes a preprocessing unit 401, a sampling unit 402, and a reconstruction unit 403.
  • the pre-processing unit 401 is configured to determine, according to a spectrum distribution of the input signal, a distribution of each signal component in a baseband spectrum that is mixed after the input signal; and a signal aliasing mode formed according to a distribution of the signal components Differentiating, the baseband spectrum is segmented, and a plurality of frequency segments are formed on the baseband spectrum, and each of the frequency segments corresponds to a signal aliasing mode; and, according to The signal aliasing mode in the frequency segment determines the lowest sampling frequency of the input signal.
  • the input signal is a radio frequency signal.
  • the embodiment of the present invention processes the known radio frequency signals as input signals, that is, the frequency band occupied by the input signals is usually Therefore, the pre-processing unit 401 can pre-estimate the distribution of the plurality of signal components formed in the baseband spectrum after the signal is mixed according to the spectral distribution of the known signal.
  • the input signal may include a plurality of discontinuous narrowband signals, as shown in Fig. 3a, including three communication signals symmetrically with respect to the origin. Since the spectrum of the input signal is known, the pre-processing unit 401 can first calculate the distribution of each signal component in the baseband spectrum after mixing the input signal, as shown in FIG. 3b, as shown in the spectrum of the baseband. Different frequency segments have different signal aliasing. According to different signal aliasing modes, the baseband spectrum can be divided into multiple frequency segments. Each line in the figure includes 8 different signal aliasing modes, which can be divided into 8 frequencies. segment.
  • the pre-processing unit 401 determines a frequency segment with the largest number of aliased signals from each of the frequency segments, and uses the lowest sampling frequency required for the frequency segment with the largest number of aliased signals as the lowest sampling of the input signal frequency.
  • the sampling frequency of the ADC must satisfy f s ⁇ Qf p .
  • the sampling frequency of the ADC is N f p .
  • ⁇ ⁇ N it can be seen that the sampling frequency of the ADC in the present invention is lower than the sampling frequency of the MWC system in the prior art.
  • is the maximum value of the number of signals aliased in the frequency band of the baseband spectrum
  • f s is the sampling frequency, which is the subband bandwidth. As shown in FIG.
  • the pre-processing unit 401 may further determine a spectrum distribution of the input signal according to the input signal received earlier, and further According to the determined spectral distribution of the input signal, A distribution of each signal component in the baseband spectrum after the input signal is mixed and shifted is determined.
  • the pre-processing unit 401 detects the input signal received in the previous stage, obtains a spectrum distribution of the input signal, and performs system configuration according to the spectrum distribution of the input signal, specifically configured to configure one of the following or Multiple combinations: Configure the subband bandwidth of the adjustment system; or, dynamically adjust the subband bandwidth of the system; or, adjust the sampling frequency / s of the sampler; or, adjust the passband bandwidth of the filter; or, configure the number of channels 111 .
  • the sampling unit 402 is configured to sample the input signal with a sampling frequency greater than the lowest sampling frequency determined by the pre-processing unit 401 to obtain a sampling signal.
  • the maximum number of signals is the subband bandwidth, and m is the number of channels in the system.
  • the reconstruction unit 403 is configured to recover corresponding signal components in the respective frequency segments of the plurality of frequency segments formed by the pre-processing unit 401 according to the sampling signals obtained by the sampling unit 402, and recover the respective frequency segments in the frequency segments.
  • the signal components are spliced to complete the recovery of the input signal.
  • the transposed matrix of the sub-matrix A Si is the baseband spectrum recovered for the i-th frequency segment, /) is the signal to be recovered, and ⁇ is the total number of frequency segments formed on the baseband spectrum.
  • the reconstruction unit 403 is also specifically used to recover The baseband spectrum of each frequency segment is spliced to obtain the entire baseband spectrum of the input signal, and the input signal is recovered according to the baseband spectrum obtained by the splicing.
  • the reconstructing unit 403 splices the calculated baseband spectrum of the K frequency segments into the entire baseband spectrum by using a summation manner, and recovers the input signal according to the spliced baseband spectrum, thereby obtaining a correct recovery signal.
  • Orthogonal Frequency Division Multiplexing Orthogonal Frequency Division Multiplexing
  • the baseband frequency domain signal can be converted to a time domain sampled signal by Discrete Fourier Transformation (DFT).
  • DFT Discrete Fourier Transformation
  • FIG. 5 is a schematic diagram showing the structure of a compression sensing-based signal processing apparatus according to the embodiment.
  • the compression sensing-based signal processing apparatus of the present invention includes: a processor 501, a transceiver 502, and a memory 503.
  • the processor 501 may be a single core or multi-core central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more integrated systems configured to implement the embodiments of the present invention. Circuit.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the transceiver 502 is for interacting with other devices to receive input signals.
  • the memory 503 is used to store programs.
  • the processor 501 calls the program stored in the memory 503 for execution:
  • the processor 501 is configured to determine a lowest sampling frequency of the input signal according to a signal aliasing mode in the frequency segment, and specifically includes:
  • the processor 501 is used to:
  • a frequency segment in which the number of aliased signals is the largest is determined from each of the frequency segments, and a minimum sampling frequency required for the frequency segment in which the number of the mixed signals is the largest is used as the lowest sampling frequency of the input signal.
  • the processor 501 is configured to sample the input signal to obtain a sampling signal at a sampling frequency greater than the lowest sampling frequency, and specifically includes:
  • the processor 501 is used to:
  • the maximum value is the subband bandwidth and m is the number of channels in the system.
  • the processor 501 is further configured to:
  • the processor 501 is configured to recover corresponding signal components in respective frequency segments of the plurality of frequency segments according to the sampling signal, and splicing signal components recovered in the respective frequency segments to complete the entire input signal.
  • the recovery includes:
  • the processor 501 is used to:
  • the baseband spectrum recovered for the first frequency segment is a discrete Fourier transform of the sampled signal, and K is the total number of frequency segments formed on the baseband spectrum;
  • the baseband spectrum of each of the recovered frequency segments is spliced to obtain an entire baseband spectrum of the input signal, and the input signal is recovered according to the baseband spectrum obtained by the splicing.
  • the processor 501 is further configured to: before determining the distribution of each signal component in the baseband spectrum after mixing the input signal according to the spectral distribution of the input signal;
  • the input signal received in the previous stage is detected, the spectral distribution of the input signal is obtained, and the system configuration is performed according to the spectral distribution of the input signal.
  • the signal processing apparatus based on the compressed sensing performs the signal processing method in the first embodiment according to the instruction, and details are not described herein.
  • the signal processing apparatus based on the compressed sensing provided by the embodiment of the present invention may be disposed in various communication devices, such as a base station or a terminal, and is not limited in the present invention.
  • the method and device for processing signal based on compressed sensing provided by the present invention analyzes the baseband spectrum after signal mixing, and divides the baseband spectrum into multiple frequency segments according to different aliasing signal modes, and respectively uses different sub-matrices for signals. After recovery and splicing, it can process various frequency domain sparse signals, sample the signal at a lower sampling frequency, save the number of hardware channels, and achieve signal recovery at a lower sampling rate. A lower sampling rate handles more narrowband signals.
  • RAM random access memory
  • ROM read only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or any other form of storage known in the art. In the medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
  • Circuits Of Receivers In General (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明涉及一种基于压缩感知的信号处理方法及装置,所述方法包括:根据输入信号的频谱分布,确定对所述输入信号进行混频后的基带频谱中各信号成分的分布;根据所述各信号成分的分布形成的信号混叠模式的不同,将所述基带频谱进行分段,形成多个频率段;根据所述频率段内的信号混叠模式,确定所述输入信号的最低采样频率,并以大于所述最低采样频率的采样频率对所述输入信号进行采样得到采样信号;根据所述采样信号分别在所述多个频率段的各个频率段中恢复对应的信号成分,并将在所述各个频率段恢复的信号成分进行拼接,完成对所述输入信号的恢复。本发明能以更低的采样速率处理更多的窄带信号,可以灵活地处理各种不同的频域稀疏信号。

Description

基于压缩感知的信号处理方法及装置
技术领域
本发明涉及通信技术领域, 尤其涉及一种基于压缩感知的信号处理方法 及装置。 背景技术
当信号存在稀疏性时, 采样信号往往包含大量的冗余信息, 在信号存储 和传输之前还要将采样信号进行压缩。 因此, 在 2QQ6年, Terence Tao等人 和 Donoho同时提出压缩感知概念, 即将采样过程和信号压缩过程合并, 直接 在采样时就根据源信号的稀疏程度确定最低采样率进行采样。 压缩感知 ( compres s ive sens ing )是利用稀疏的或可压缩的信号进行信号重建的理论。 压缩感知实现的关键是采集的样本点能够包含源信号尽可能多的信息, 即采 样算子所构成的域与信号的稀疏域存在很强的非相干性。 根据压缩感知技术 确定的最低采样率一般低于奈奎斯特(Nyqui s t )速率, 从而大大降低了采样 电路的复杂度、 成本和功耗。 特别是随着通信信号频率和带宽的不断增加, 传统的采样电路已经成为通信技术发展的重要瓶颈, 而将压缩感知技术应用 于通信领域也就尤其重要。
对于具有稀疏特性的宽带模拟通信信号,直接通过低速模数转换器( ADC ) 采样将导致信号产生不可逆的频谱混叠, 从而使信号采样后其中的信息丟失。 现有的压缩感知的通信系统采用随机解调器 D ) 系统或者调制宽带转换器 ( MWC ) 系统的结构, 先采用随机序列混频后进行采样, 再通过恢复算法恢复 信号。
现有 RD系统只适用于离散频点的频域稀疏信号,对于大多具有连续频谱 的通信信号, RD 系统采样恢复会导致比较高的恢复误差, 而且计算复杂度 4艮 高, 不能对信号进行实时恢复。 MWC 系统采用的随机序列是周期序列, 通过
MWC系统信号恢复算法, 各个子带的信号可以分别恢复出来, 然后再根据其它 相关信息实现信号的完全复原。 现有的 MWC 系统中由于系统不区分每个信号 所占据的子带宽带, ADC最终的采样率是由信号所占据的子带个数决定的, 而 不是以信号实际的总带宽决定的。 即使某信号带宽远小于一个子带宽度, 由 于它占据了一个子带, 就会导致 ADC 的采样率大幅提升。 特别是由于子带的 划分是系统的固定参数, 不是随着信号改变的, 因而信号的频带边界通常与 子带边界不对应, 从而导致一个频带宽度小于一个子带宽度的信号往往会跨 越两个子带, 造成 ADC采样率不必要的增加。 发明内容
本发明提供一种基于压缩感知的信号处理方法及装置, 能以更低的采样 速率处理更多的窄带信号, 可以灵活地处理各种不同的频域稀疏信号。
本发明第一方面提供了一种基于压缩感知的信号处理方法, 所述方法包 括:
根据输入信号的频谱分布, 确定对所述输入信号进行混频后的基带频谱 中的各信号成分的分布;
根据所述各信号成分的分布形成的信号混叠模式的不同, 将所述基带频 谱进行分段, 形成多个频率段, 每一个所述频率段对应一种信号混叠模式; 根据所述频率段内的信号混叠模式,确定所述输入信号的最低采样频率, 并以大于所述最低采样频率的采样频率对所述输入信号进行采样得到采样信 号;
根据所述采样信号分别在所述多个频率段的各个频率段中恢复对应的信 号成分, 并将在所述各个频率段恢复的信号成分进行拼接, 完成对所述输入 信号的恢复。
结合第一方面, 在第一方面的第一种可能的实施方式中, 所述根据所述 频率段内的信号混叠模式, 确定所述输入信号的最低采样频率, 具体包括: 从各个所述频率段中确定出混叠的信号数量最多的频率段, 并将所述混 叠的信号数量最多的频率段所需要的最低采样频率作为所述输入信号的最低 采样频率。
结合第一方面或第一方面的第一种可能的实施方式, 在第一方面的第二 种可能的实施方式中, 所述以大于所述最低采样频率的采样频率对所述输入 信号进行采样得到采样信号, 具体为:
以采样频率 /s对所述输入信号进行采样得到采样信号, 其中, fs≥fs mm = ^^ , /s mm为最低采样频率, β为所述频率段中混叠的信号数量的
― m ―
最大值, 为子带带宽, m为系统的通道数量。
结合第一方面, 在第一方面的第三种可能的实施方式中, 在所述形成多 个频率段之后, 所述方法还包括:
根据所述多个频率段的各个频率段的信号混叠模式, 确定压缩感知采样 的观测矩阵 A在所述多个频率段的各个频率段对应的子矩阵 ASi,其中, =1 , -.. , K;
根据所述采样信号分别在所述多个频率段的各个频率段中恢复对应的信 号成分, 并将在所述各个频率段恢复的信号成分进行拼接, 完成整个所述输 入信号的恢复, 具体包括:
根据信号恢复算法公式 (/)= (/) , 分别恢复第 ( =1 , ··· , κ )个频 率段的基带频谱, 其中, 为第 个频率段的子矩阵 ASi的摩尔潘若思逆矩阵, 为第 个频率段恢复的基带频谱, 为采样信号的离散傅里叶变换, K 为所述基带频谱上形成的频率段的总数量;
将恢复的各个频率段的基带频谱进行拼接得到所述输入信号的整个基带 频谱, 根据所述拼接得到的基带频谱对所述输入信号进行恢复。
结合第一方面或第一方面的第一种至第三种任一可能的实施方式, 在第 一方面的第四种可能的实施方式中, 在所述根据输入信号的频谱分布, 确定 对所述输入信号进行混频后的基带频谱中的各信号成分的分布之前, 还包括: 对前期接收的输入信号进行检测, 得到所述输入信号的频谱分布, 并根 据所述输入信号的频谱分布进行系统配置;
所述根据所述输入信号的频谱分布进行系统配置, 具体包括以下所列中 的一种或多种的组合:
配置调整系统的子带带宽 ; 或,
动态调整系统的子带带宽 ; 或,
调整采样器的采样频率 /s ; 或,
调整滤波器的通带带宽; 或
配置通道数量 m。
第二方面, 本发明还提供了一种基于压缩感知的信号处理装置, 所述装 置包括:
预处理单元, 用于根据输入信号的频谱分布, 确定对所述输入信号进行 混频后的基带频谱中的各信号成分的分布; 并根据所述各信号成分的分布形 成的信号混叠模式的不同, 将所述基带频谱进行分段, 在所述基带频谱上形 成多个频率段, 每一个所述频率段对应一种信号混叠模式; 以及, 根据所述 频率段内的信号混叠模式, 确定所述输入信号的最低采样频率;
采样单元, 用于以大于所述预处理单元确定的所述最低采样频率的采样 频率对所述输入信号进行采样得到采样信号;
重构单元, 用于根据所述采样单元得到的所述采样信号分别在所述预处 理单元形成的所述多个频率段的各个频率段中恢复对应的信号成分, 并将在 所述各个频率段恢复的信号成分进行拼接, 完成对所述输入信号的恢复。
结合第二方面, 在第二方面的第一种可能的实施方式中, 所述预处理单 元具体用于从各个所述频率段中确定出混叠的信号数量最多的频率段, 并将 所述混叠的信号数量最多的频率段所需要的最低采样频率作为所述输入信号 的最低采样频率。
结合第二方面或第二方面的第一种可能的实施方式, 在第二方面的第二 种可能的实施方式中, 所述采样单元具体用于以采样频率 /s对所述输入信号 进行采样得到采样信号, 其中, fs≥fs, = ^ , /s mm为最低采样频率, β为
55 所所述述频频率率段段中中混混叠叠的的信信号号数数量量的的最最大大值值,, 为为子子带带带带宽宽,, mm 为为系系统统的的通通道道数数 量量。。
结结合合第第二二方方面面,, 在在第第二二方方面面的的第第三三种种可可能能的的实实施施方方式式中中,, 所所述述预预处处理理单单 元元在在所所述述基基带带频频谱谱上上形形成成多多个个频频率率段段之之后后,, 还还用用于于根根据据所所述述多多个个频频率率段段的的各各 个个频频率率段段的的信信号号混混叠叠模模式式,,确确定定压压缩缩感感知知采采样样的的观观测测矩矩阵阵 AA在在所所述述各各个个频频率率段段 1100 对对应应的的子子矩矩阵阵 ,, 其其中中,, ==11 ,, KK;;
所所述述重重构构单单元元具具体体用用于于根根据据信信号号恢恢复复算算法法公公式式 ZZSSii((//))== ((//)) ,,分分别别恢恢复复第第 aa ii==ii ,, ...... ,, κκ ))个个频频率率段段的的基基带带频频谱谱,, 其其中中,, 为为第第 个个频频率率段段的的子子矩矩阵阵 ^^的的 转转置置矩矩阵阵,, 为为第第 ii 个个频频率率段段恢恢复复的的基基带带频频谱谱,, 为为待待恢恢复复的的信信号号,, κκ 为为所所述述基基带带频频谱谱上上形形成成的的频频率率段段的的总总数数量量;;
1155 所所述述重重构构单单元元还还具具体体用用于于将将恢恢复复的的各各个个频频率率段段的的基基带带频频谱谱进进行行拼拼接接得得到到 所所述述输输入入信信号号的的整整个个基基带带频频谱谱,, 根根据据所所述述拼拼接接得得到到的的基基带带频频谱谱对对所所述述输输入入信信 号号进进行行恢恢复复。。
结结合合第第二二方方面面或或第第二二方方面面的的第第一一种种至至第第三三种种任任一一可可能能的的实实施施方方式式,, 在在第第 二二方方面面的的第第四四种种可可能能的的实实施施方方式式中中,, 所所述述预预处处理理单单元元还还用用于于对对前前期期接接收收的的输输 2200 入入信信号号进进行行检检测测,, 得得到到所所述述输输入入信信号号的的频频谱谱分分布布,, 并并根根据据所所述述输输入入信信号号的的频频 谱谱分分布布进进行行系系统统配配置置;;
所所述述预预处处理理单单元元具具体体用用于于配配置置以以下下所所列列中中的的一一种种或或多多种种的的组组合合:: 配配置置调调整整系系统统的的子子带带带带宽宽 ;; 或或,,
动动态态调调整整系系统统的的子子带带带带宽宽 ;; 或或,, 调整滤波器的通带带宽; 或
配置通道数量 m。
结合第二方面, 在第二方面的第五种可能的实施方式中, 所述基于压缩 感知的信号处理装置为基站或终端。
第三方面, 本发明还提供了一种基于压缩感知的信号处理装置, 所述装 置包括: 处理器、 收发器和存储器;
所述收发器, 用于与其他装置进行交互, 接收输入信号;
所述存储器, 用于存储程序;
所述处理器, 调用所述存储器存储的所述程序, 用于执行:
根据输入信号的频谱分布, 确定对所述输入信号进行混频后的基带频谱 中的各信号成分的分布;
根据所述各信号成分的分布形成的信号混叠模式的不同, 将所述基带频 谱进行分段, 形成多个频率段, 每一个所述频率段对应一种信号混叠模式; 根据所述频率段内的信号混叠模式,确定所述输入信号的最低采样频率, 并以大于所述最低采样频率的采样频率对所述输入信号进行采样得到采样信 号;
根据所述采样信号分别在所述多个频率段的各个频率段中恢复对应的信 号成分, 并将在所述各个频率段恢复的信号成分进行拼接, 完成对所述输入 信号的恢复。
结合第三方面, 在第三方面的第一种可能的实施方式中, 所述处理器用 于根据所述频率段内的信号混叠模式, 确定所述输入信号的最低采样频率, 具体包括:
所述处理器用于:
从各个所述频率段中确定出混叠的信号数量最多的频率段, 并将所述混 叠的信号数量最多的频率段所需要的最低采样频率作为所述输入信号的最低 采样频率。 结合第三方面或第三方面的第一种可能的实施方式, 在第三方面的第二 种可能的实施方式中, 所述处理器用于以大于所述最低采样频率的采样频率 对所述输入信号进行采样得到采样信号, 具体包括:
所述处理器用于:
以采样频率/ s对所述输入信号进行采样得到采样信号, 其中, fs≥fs mm=^^ , /s mm为最低采样频率, β为所述频率段中混叠的信号数量的
― m ―
最大值, 为子带带宽, m为系统的通道数量。
结合第三方面, 在第三方面的第三种可能的实施方式中, 所述处理器在 形成多个频率段之后, 还用于:
根据所述多个频率段的各个频率段的信号混叠模式, 确定压缩感知采样 的观测矩阵 A在所述多个频率段的各个频率段对应的子矩阵 ASi,其中, =1 , -.. , K;
所述处理器用于根据所述采样信号分别在所述多个频率段的各个频率段 中恢复对应的信号成分, 并将在所述各个频率段恢复的信号成分进行拼接, 完成整个所述输入信号的恢复, 具体包括:
所述处理器用于:
根据信号恢复算法公式 (/)= (/) , 分别恢复第 ( =1 , ··· , κ )个频 率段的基带频谱, 其中, 为第 个频率段的子矩阵 的摩尔潘若思逆矩阵, 为第 个频率段恢复的基带频谱, 为采样信号的离散傅里叶变换, K 为所述基带频谱上形成的频率段的总数量;
将恢复的各个频率段的基带频谱进行拼接得到所述输入信号的整个基带 频谱, 根据所述拼接得到的基带频谱对所述输入信号进行恢复。
结合第三方面或第三方面的第一种至第三种任一可能的实施方式, 在第 三方面的第四种可能的实施方式中, 所述处理器在所述根据输入信号的频谱 分布, 确定对所述输入信号进行混频后的基带频谱中的各信号成分的分布之 前, 还用于:
对前期接收的输入信号进行检测, 得到所述输入信号的频谱分布, 并根 据所述输入信号的频谱分布进行系统配置;
所述根据所述输入信号的频谱分布进行系统配置, 具体包括以下所列中 的一种或多种的组合:
配置调整系统的子带带宽 ; 或,
动态调整系统的子带带宽 ; 或,
调整采样器的采样频率 /s ; 或,
调整滤波器的通带带宽; 或
配置通道数量 m。
结合第三方面, 在第三方面的第五种可能的实施方式中, 所述基于压缩 感知的信号处理装置为基站或终端。
本发明提供的基于压缩感知的信号处理方法及装置, 通过对信号混频后 的基带频谱进行分析, 根据混叠信号模式的不同将基带频谱分成多个频率段, 分别采用不同的子矩阵进行信号恢复后再拼接, 可以处理各种不同的频域稀 疏信号, 以更低的采样频率对信号进行采样, 能节省硬件通道的需求数量, 在较低采样率的情况下实现信号的恢复, 能以更低的采样速率处理更多的窄 带信号。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述 中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性 劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1 为本发明实施例基于的一种调制宽带转换器系统的结构示意图; 图 2为本发明实施例一提供的基于压缩感知的信号处理方法流程图; 图 3a为输入三个通信信号时的频谱;
图 3b为图 3a的输入信号混频后的基带频谱;
图 4为本发明实施例二提供的基于压缩感知的信号处理装置示意图; 图 5 为本发明实施例三提供的基于压缩感知的信号处理装置的组成结构 示意图。 具体实施方式
为使得本发明的发明目的、 特征、 优点能够更加的明显和易懂, 下面 将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而非全部实施例。 基 于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下 所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供的基于压缩感知的信号处理方法及装置, 可以应用于 基于压缩感知的通信系统中, 尤其针对基于压缩感知的接收机, 用于处理各 种不同的频域稀疏信号, 例如, 在长期演进( Long Term Evolution , LTE ) 系统中可以采用多个频段传输同一用户的数据信息, 形成的较宽频带的通信 信号; 多个运营商传输的不同频段的通信信号, 等等。 本发明特别适合对于 硬件通道数小于信号所占子带个数的场景, 通常硬件通道数越少, 本发明能 够带来的益处越大。
图 1是本发明实施例基于的一种调制宽带转换器系统的结构示意图, 该 系统通常设置于接收机中, 具体包括 m ( 1…… m ) 个通道的压缩采集装置, 每一个通道包括混频器 1、 低通滤波器 2和 ADC采样器 3 , 输入的信号 X ( t ) 经过混频器 1采用随机周期序列混频后(其中, 包括 p t ) , ··· ··· , pm ( t ) ) , 分别经过低通滤波器 2 ( ( t ) , ··· ··· , hm ( t ) ) , 再由 ADC采样器 3进行 采样, 得到混叠的采样信号 y n] , ym [n] , 然后通过信号重构算法进行 信号恢复, 将混叠的采样信号恢复成传统 ADC采样装置采样的信号, 实现输 入信号的完全复原。
在本发明实施例中以单通道( = l ) 的基于压缩感知的通信系统为例进 行说明, 对于多通道的情形可依此进行类似的扩展, 本发明中不进行——列 举。
实施例一
如图 2所示,本发明实施例一提供的基于压缩感知的信号处理方法包括: S10K 接收机根据输入信号的频谱分布, 确定对所述输入信号进行混频 后的基带频谱中的各信号成分的分布。
输入信号为射频信号, 由于不同运营商对应的发射频带通常为已知信号, 本发明实施例是将这些已知的射频信号作为输入信号进行处理, 也就是说, 输入信号所占频带通常是已知的, 因而, 可以根据已知信号的频谱分布, 预 先估算出该信号如果经过混频后在基带频谱中所形成的多个信号成分的分布 情况。 输入信号中可以包括多个不连续的窄带信号, 如图 3a所示, 包括以原 点对称的 3个通信信号,信号 1、信号 2、信号 3的中心频率分别为 ± 88幌 Hz, ± 1832.5 MHz和 ± 2.65GHz, 带宽分别为 10MHz, 15MHz和 60MHz。 由于系统 可支持高达 2.98G的信号 (以原点为中心对称的信号) , 整个 5.95G带宽可 分为 97个子带, 因而, 每个子带宽带(即 )为 61.35MHz=5. G/97。 图 中的 3个通信信号共占据了 8个子带,包括信号 1的子带(约 830 MHz ~ 890 MHz, 约- 890 MHz ~- 830 MHz ) , 信号 2的子带(约 1.81GHz ~ 1.87GHz, -1.87GHz - -1.81GHz ),信号 3的子带( 2.61GHz ~ 2.67GHz,2.67GHz ~ 2.73GHz,-2.67GHz ~ -2.61GHz, -2.73GHz ~-2.67GHz ) 0 其中, 中心频率为 ± 2.65GHz的信号 3两 边对称分别跨越了 2个子带, 子带边界约在 ± 2.67GHz处。
由于输入信号的频谱已知, 可以先计算得到对该输入信号进行混频后的 基带频谱中的各信号成分的分布。
混频是根据周期序列的特性, 在每个子带中心都会有一个谐波, 即混频 信号由子带带宽 fp倍数的多个单音构成。 混频后, 每个窄带信号都会被它所 在的子带的谐波搬移到基带 (如果是跨越多个子带的信号, 把每个子带的部 分看成一个不同的信号) , 搬移后的信号在基带将混叠起来。 根据各个窄带 信号的频谱以及其所在的子带的中心频点的频率, 可以计算得到该信号在基 带的频率分布。
如图 3b所示, 是图 3a的 3个信号经过混频搬移后的基带频谱。 信号 1 经过混频后在基带频谱上是图中标示(1 ) 的实线和灰实线的信号, 其中, 实 线是正信号混频后的信号, 灰实线是负信号混频后的信号。 信号 2 经过混频 后在基带频谱上是图中标示(2 ) 的实线带圏和灰实线带圏的信号, 其中, 实 线带圏是正信号混频后的信号, 灰实线带圏是负信号混频后的信号。 信号 3 跨越了 2个子带, 经过混频后在基带频谱上是图中标示 (3 )虚线、 灰虚线、 锯齿线和灰锯齿线, 其中, 虚线和锯齿线是正信号混频后的信号, 灰虚线和 灰锯齿线是负信号混频后的信号。
可选的, 如果对于输入信号的频谱分布不明确、 不清楚, 或者对于输入 信号是动态分布的情形, 本发明实施例还可以根据前期接收的输入信号来确 定所述输入信号的频谱分布, 进而再根据确定的所述输入信号的频谱分布, 确定所述输入信号进行混频搬移后的基带频谱中的各信号成分的分布。 具体 地, 包括: 对前期接收的输入信号进行检测, 得到所述输入信号的频谱分布。 在确定所述输入信号的频谱分布后, 还可以根据所述输入信号的频谱分布对 系统进行配置, , 例如, 根据所述输入信号的频谱分布配置或动态调整系统 的子带带宽 、 采样器的采样频率和 /或滤波器的通带带宽。
S102、 接收机根据所述各信号成分的分布形成的信号混叠模式的不同, 将所述基带频谱进行分段, 形成多个频率段, 每一个频率段对应一种信号混 叠模式。
参见图 3b ,可以看出,在该基带频谱的不同的频率段有不同的信号混叠, 按照不同的信号混叠模式可以将该基带频谱分成多个频率段, 图中每一个线 包括 8种不同的信号混叠模式, 可分为 8个频率段。 第 1个频率段中有 2个 信号混叠 (虚线和灰虚线) , 第 2个频率段中有 3个信号混叠 (虚线、 灰虚 线和灰实线) , 第 3个频率段中有 2个信号混叠 (灰虚线和灰实线) , 第 4 个频率段中有 3个信号混叠 (灰虚线、 实线带圏和锯齿线) , 第 5个频率段 中有 3个信号混叠 (灰虚线、 灰实线带圏和锯齿线) , 第 6个频率段中有 2 个信号混叠 (实线和锯齿线) , 第 7个频率段中有 3个信号混叠 (实线、 锯 齿线和灰锯齿线) , 第 8个频率段中有 2个信号混叠(锯齿线和灰锯齿线) 。 可以看出, 在一个频率段中最多只有 3个信号混叠。
S103、 接收机根据所述频率段内的信号混叠模式, 确定所述输入信号的 最低采样频率, 并以大于所述最低采样频率的采样频率对所述输入信号进行 采样得到采样信号。
所述根据所述频率段内的信号混叠模式, 确定所述输入信号的最低采样 频率, 具体包括:
从各个所述频率段中确定出混叠的信号数量最多的频率段, 并将所述混 叠的信号数量最多的频率段所需要的最低采样频率作为所述输入信号的最低 采样频率。
如果基带频谱的每个频率段最多有 2≤N个信号混叠,则 ADC的采样频率 需满足/ s≥ 。 而采用现有的 MWC系统, ADC的采样频率则为 N 。 通常情况 下 β < N , 由此可以看出, 本发明中 ADC的采样频率是低于现有技术中 MWC系 统的采样频率的。上述 β为基带频谱的频率段中混叠的信号数量的最大值, fs 为采样频率, 为子带带宽。 如图 3b中所示, 可以看出, 一个频率段内最多 有 3个子带的信号混叠, 即第 2、 4、 5、 7频率段, 因而, 确定的最低采样频 率为 3 = 184.05MHZ , 即在本发明中 ADC 的采样频率只需要 3 = 184.05MHz即 可。按照现有的 MWC系统, ADC的采样频率应至少为 8 = 490.8MHZ。 而如果按 照传统的 Nyqui s t (即非基于压缩感知的采样方法 ) , 要对 3个信号采用单通 道的 ADC 采样, 最低采样频率为 2* ( 2. 680GHz- 875MHz ) =2*1. 805 GHz =3.61GHz, 。 即使将 3个信号通过 3个通道(3套混频器)分别解调到基频后 通过 3个 ADC分别采样, 3个 ADC的总采样频率也需达到( 1幌 Hz+15MHz+6幌 Hz ) *2=85M*2=170MHzo 因此, 本发明可以采用单通道的硬件设备( m=l 的压缩采 样装置 ) 以接近最低采样率对输入的信号进行采样。
对于 个通道的系统而言, 所述以大于所述最低采样频率的采样频率对 所述输入信号进行采样得到采样信号, 具体为:
以采样频率 /s对所述输入信号进行采样得到采样信号, 其中, fs≥fs mm=^^, /s n为最低采样频率, β为所述频率段中混叠的信号数量的
― m ―
最大值, 为子带带宽, 为系统的通道数量。
S104、 接收机根据所述采样信号分别在所述多个频率段的各个频率段中 恢复对应的信号成分, 并将在所述各个频率段恢复的信号成分进行拼接, 完 成对所述输入信号的恢复。
在所述基带频谱上形成多个频率段之后, 还包括: 根据所述多个频率段 的各个频率段的信号混叠模式,确定压缩感知采样的观测矩阵 A在所述多个频 率段的各个频率段对应的子矩阵 ASi, 其中, =1, K。 如果所述基带频谱上形成了 Κ个频率段, 对于在第 i ( =1, ··., K)个频 率段的信号/ e[/a,/i2)所在的子带集合为 第 ( =1, K)个频率段对应 的观测矩阵的子矩阵为 , 相应信号在第 i 个频率段的基带频谱可以恢复为
ZSi(f)≥A+ Siy(f).
所述根据所述采样信号分别在所述多个频率段的各个所述频率段中恢复 对应的信号成分, 并将在所述各个频率段恢复的信号成分进行拼接, 完成整 个所述输入信号的恢复, 具体包括:
S104 根据信号恢复算法公式 ZSi(/)= (/), 分别恢复第 ( =1, ···, K) 个频率段的基带频谱。
其中, 为第 个频率段的子矩阵 ASi的摩尔潘若思逆矩阵, ZSi(/)为第 个频率段恢复的基带频谱, 为采样信号的离散傅里叶变换, K为所述基带 频谱上形成的频率段的总数量。
S1042、将恢复的各个频率段的基带频谱进行拼接得到所述输入信号的整 个基带频谱, 根据所述拼接得到的基带频谱对所述输入信号进行恢复。
采用求和的方式将 S1041计算得到的 K个频率段的基带频语拼接成整个 基带频谱, 根据所述拼接得到的基带频谱对所述输入信号进行恢复, 从而得 到正确的恢复信号。
对于正交频分复用 ( Or thogona l Frequency Divi s ion Mul t iplexing , OFDM )等通过频率点携带数据信息的调制方式, 数据信息可以直接从基带频 谱中恢复出来而不需要再恢复时域信号。 对于其它调制方式, 可以通过离散 傅里叶变换 ( Di screte Four ier Transformat ion, DFT )把基带频域信号转 换为时域采样信号。
这样, 本发明实施例提供的基于压缩感知的信号处理方法, 通过对信号 混频后的基带频谱进行分析, 根据混叠信号模式的不同将基带频谱分成多个 频率段, 分别采用不同的子矩阵进行信号恢复后再拼接, 可以处理各种不同 的频域稀疏信号, 以更低的采样频率对信号进行采样, 能节省硬件通道的需 求数量, 在较低采样率的情况下实现信号的恢复, 能以更低的采样速率处理 更多的窄带信号。
实施例二
图 4是本发明实施例提供的基于压缩感知的信号处理装置示意图,如图 4 所示, 本发明的基于压缩感知的信号处理装置包括: 预处理单元 401、 采样单 元 402和重构单元 403。
预处理单元 401用于根据输入信号的频谱分布, 确定对所述输入信号进 行混频后的基带频谱中的各信号成分的分布; 并根据所述各信号成分的分布 形成的信号混叠模式的不同, 将所述基带频谱进行分段, 在所述基带频谱上 形成多个频率段, 每一个所述频率段对应一种信号混叠模式; 以及, 根据所 述频率段内的信号混叠模式, 确定所述输入信号的最低采样频率。 输入信号为射频信号, 由于不同运营商对应的发射频带通常为已知信号, 本发明实施例是将这些已知的射频信号作为输入信号进行处理, 也就是说, 输入信号所占频带通常是已知的, 因而, 预处理单元 401 可以根据已知信号 的频谱分布, 预先估算出该信号如果经过混频后在基带频谱中所形成的多个 信号成分的分布情况。 输入信号中可以包括多个不连续的窄带信号, 如图 3a 所示, 包括以原点对称的 3 个通信信号。 由于输入信号的频谱已知, 预处理 单元 401 可以先计算得到对该输入信号进行混频后的基带频谱中的各信号成 分的分布, 如图 3b所示, 可以看出, 在该基带频谱的不同的频率段有不同的 信号混叠, 按照不同的信号混叠模式可以将该基带频谱分成多个频率段, 图 中每一个线包括 8种不同的信号混叠模式, 可分为 8个频率段。
预处理单元 401从各个所述频率段中确定出混叠的信号数量最多的频率 段, 并将所述混叠的信号数量最多的频率段所需要的最低采样频率作为所述 输入信号的最低采样频率。
如果基带频谱的每个频率段最多有 e≤N个信号混叠,则 ADC的采样频率 需满足 fs≥Qfp。 而采用现有的 MWC系统, ADC的采样频率则为 N fp。 通常情况 下 β < N , 由此可以看出, 本发明中 ADC的采样频率是低于现有技术中 MWC系 统的采样频率的。上述 β为基带频谱的频率段中混叠的信号数量的最大值, fs 为采样频率, 为子带带宽。 如图 3b中所示, 可以看出, 一个频率段内最多 有 3个子带的信号混叠, 即第 2、 4、 5、 7频率段, 因而, 预处理单元 401确 定的最低采样频率为 3 = 184.05MHZ , 即在本发明中 ADC 的采样频率只需要 3fp = 184.05 Hz即可。
可选的, 如果对于输入信号的频谱分布不明确、 不清楚, 或者对于输入 信号是动态分布的情形, 预处理单元 401 还可以根据前期接收的输入信号来 确定所述输入信号的频谱分布, 进而再根据确定的所述输入信号的频谱分布, 确定所述输入信号进行混频搬移后的基带频谱中的各信号成分的分布。
具体地, 预处理单元 401对前期接收的输入信号进行检测, 得到所述输 入信号的频谱分布, 并根据所述输入信号的频谱分布进行系统配置, 具体用 于配置以下所列中的一种或多种的组合: 配置调整系统的子带带宽 ; 或, 动态调整系统的子带带宽 ; 或, 调整采样器的采样频率 /s; 或, 调整滤波 器的通带带宽; 或, 配置通道数量111。
采样单元 402用于以大于预处理单元 401确定的所述最低采样频率的采 样频率对所述输入信号进行采样得到采样信号。
采样单元 402具体用于以采样频率 对所述输入信号进行采样得到采样 信号, 其中, fs≥fs mm=^ , /s mm为最低采样频率, β为所述频率段中混叠
― m ―
的信号数量的最大值, 为子带带宽, m为系统的通道数量。
重构单元 403用于根据采样单元 402得到的所述采样信号分别在预处理 单元 401 形成的所述多个频率段的各个频率段中恢复对应的信号成分, 并将 在所述各个频率段恢复的信号成分进行拼接, 完成对所述输入信号的恢复。
可选的, 预处理单元 401在所述基带频谱上形成多个频率段之后, 还用 于根据所述多个频率段的各个频率段的信号混叠模式, 确定压缩感知采样的 观测矩阵 A在所述各个频率段对应的子矩阵 ASi, 其中, =1, ··., κ。
如果所述基带频谱上形成了 Κ个频率段, 对于在第 i ( =1, ··., K)个频 率段的信号 /Ε[Λ,/)所在的子带集合为 第 ( =1, …, κ)个频率段对应 的观测矩阵的子矩阵为 , 相应信号在第 i 个频率段的基带频谱可以恢复为
Figure imgf000018_0001
重构单元 403具体用于根据信号恢复算法公式 zSI(/)= (/) ,分别恢复第 a i=i, ..., κ)个频率段的基带频谱, 其中, 为第 个频率段的子矩阵 ASi的 转置矩阵, 为第 i 个频率段恢复的基带频谱, /)为待恢复的信号, κ 为所述基带频谱上形成的频率段的总数量。 重构单元 403还具体用于将恢复 的各个频率段的基带频谱进行拼接得到所述输入信号的整个基带频谱, 根据 所述拼接得到的基带频谱对所述输入信号进行恢复。 重构单元 403 采用求和 的方式将计算得到的 K 个频率段的基带频谱拼接成整个基带频谱, 根据所述 拼接得到的基带频谱对所述输入信号进行恢复, 从而得到正确的恢复信号。
对于正交频分复用 ( Orthogonal Frequency Division Multiplexing,
OFDM)等通过频率点携带数据信息的调制方式, 数据信息可以直接从基带频 谱中恢复出来而不需要再恢复时域信号。 对于其它调制方式, 可以通过离散 傅里叶变换 ( Discrete Fourier Transformation, DFT )把基带频域信号转 换为时域采样信号。
实施例三
图 5是本实施例提供的基于压缩感知的信号处理装置的组成结构示意图, 如图 5所示, 本发明的基于压缩感知的信号处理装置包括: 处理器 501、 收发 器 502和存储器 503。
处理器 501可能为单核或多核中央处理单元(Central Processing Unit, CPU ) , 或者为特定集成电路( Application Specific Integrated Circuit, ASIC) , 或者为被配置成实施本发明实施例的一个或多个集成电路。
收发器 502用于与其他装置进行交互, 接收输入信号。
存储器 503用于存储程序。
处理器 501调用存储器 503存储的所述程序, 用于执行:
根据输入信号的频谱分布, 确定对所述输入信号进行混频后的基带频谱 中的各信号成分的分布;
根据所述各信号成分的分布形成的信号混叠模式的不同, 将所述基带频 谱进行分段, 形成多个频率段, 每一个所述频率段对应一种信号混叠模式; 根据所述频率段内的信号混叠模式,确定所述输入信号的最低采样频率, 并以大于所述最低采样频率的采样频率对所述输入信号进行采样得到采样信 号; 根据所述采样信号分别在所述多个频率段的各个频率段中恢复对应的信 号成分, 并将在所述各个频率段恢复的信号成分进行拼接, 完成对所述输入 信号的恢复。
进一步的, 处理器 501用于根据所述频率段内的信号混叠模式, 确定所 述输入信号的最低采样频率, 具体包括:
处理器 501用于:
从各个所述频率段中确定出混叠的信号数量最多的频率段, 并将所述混 叠的信号数量最多的频率段所需要的最低采样频率作为所述输入信号的最低 采样频率。
进一步的, 处理器 501用于以大于所述最低采样频率的采样频率对所述 输入信号进行采样得到采样信号, 具体包括:
处理器 501用于:
以采样频率 fs对所述输入信号进行采样得到采样信号, 其中, fs≥fs mm=^^ , /s mm为最低采样频率, β为所述频率段中混叠的信号数量的
― m ―
最大值, 为子带带宽, m为系统的通道数量。
进一步的, 处理器 501在形成多个频率段之后, 还用于:
根据所述多个频率段的各个频率段的信号混叠模式, 确定压缩感知采样 的观测矩阵 A在所述多个频率段的各个频率段对应的子矩阵 ASi,其中, =1 , -.. , K;
处理器 501用于根据所述采样信号分别在所述多个频率段的各个频率段 中恢复对应的信号成分, 并将在所述各个频率段恢复的信号成分进行拼接, 完成整个所述输入信号的恢复, 具体包括:
处理器 501用于:
根据信号恢复算法公式 (/)= (/) , 分别恢复第 ( =1 , ··· , K ) 个频 率段的基带频谱, 其中, 为第 个频率段的子矩阵 ASi的摩尔潘若思逆矩阵, 为第 个频率段恢复的基带频谱, 为采样信号的离散傅里叶变换, K 为所述基带频谱上形成的频率段的总数量;
将恢复的各个频率段的基带频谱进行拼接得到所述输入信号的整个基带 频谱, 根据所述拼接得到的基带频谱对所述输入信号进行恢复。
进一步的, 处理器 501在所述根据输入信号的频谱分布, 确定对所述输 入信号进行混频后的基带频谱中的各信号成分的分布之前, 还用于:
对前期接收的输入信号进行检测, 得到所述输入信号的频谱分布, 并根 据所述输入信号的频谱分布进行系统配置。
具体地,基于压缩感知的信号处理装置还根据所述指令执行实施例一中 的信号处理方法, 具体在此不再赘述。
本发明实施例提供的基于压缩感知的信号处理装置可以设置于各种通 信设备中, 例如基站或终端, 在本发明中不加以限制。
本发明提供的基于压缩感知的信号处理方法及装置, 通过对信号混频后 的基带频谱进行分析, 根据混叠信号模式的不同将基带频谱分成多个频率段, 分别采用不同的子矩阵进行信号恢复后再拼接, 可以处理各种不同的频域稀 疏信号, 以更低的采样频率对信号进行采样, 能节省硬件通道的需求数量, 在较低采样率的情况下实现信号的恢复, 能以更低的采样速率处理更多的窄 带信号。
专业人员应该还可以进一步意识到, 结合本文中所公开的实施例描述的 各示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来 实现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能 一般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来 执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每 个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为 超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、 处理 器执行的软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器
( RAM ) 、 内存、 只读存储器(ROM ) 、 电可编程 R0M、 电可擦除可编程 R0M、 寄存器、 硬盘、 可移动磁盘、 CD-R0M、 或技术领域内所公知的任意其它形式 的存储介质中。
以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行 了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种基于压缩感知的信号处理方法, 其特征在于, 所述方法包括: 根据输入信号的频谱分布, 确定对所述输入信号进行混频后的基带频谱 中的各信号成分的分布;
根据所述各信号成分的分布形成的信号混叠模式的不同, 将所述基带频 谱进行分段, 形成多个频率段, 每一个所述频率段对应一种信号混叠模式; 根据所述频率段内的信号混叠模式, 确定所述输入信号的最低采样频率, 并以大于所述最低采样频率的采样频率对所述输入信号进行采样得到采样信 号;
根据所述采样信号分别在所述多个频率段的各个频率段中恢复对应的信 号成分, 并将在所述各个频率段恢复的信号成分进行拼接, 完成对所述输入 信号的恢复。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述频率段内的 信号混叠模式, 确定所述输入信号的最低采样频率, 具体包括:
从各个所述频率段中确定出混叠的信号数量最多的频率段, 并将所述混 叠的信号数量最多的频率段所需要的最低采样频率作为所述输入信号的最低 采样频率。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述以大于所述最低 采样频率的采样频率对所述输入信号进行采样得到采样信号, 具体为:
以采样频率 /s对所述输入信号进行采样得到采样信号, 其中, fs≥fs mm=^^ , /s mm为最低采样频率, β为所述频率段中混叠的信号数量的
― m ―
最大值, 为子带带宽, m为系统的通道数量。
4、 根据权利要求 1所述的方法, 其特征在于, 在所述形成多个频率段之 后, 所述方法还包括:
根据所述多个频率段的各个频率段的信号混叠模式, 确定压缩感知采样 的观测矩阵 A在所述多个频率段的各个频率段对应的子矩阵 ASi,其中, =1 , -.. ,
K;
根据所述采样信号分别在所述多个频率段的各个频率段中恢复对应的信 号成分, 并将在所述各个频率段恢复的信号成分进行拼接, 完成整个所述输 入信号的恢复, 具体包括:
根据信号恢复算法公式 (/)= (/) , 分别恢复第 ( =1 , ··· , K ) 个频 率段的基带频谱, 其中, 为第 个频率段的子矩阵 ASi的摩尔潘若思逆矩阵, 为第 个频率段恢复的基带频谱, 为采样信号的离散傅里叶变换, K 为所述基带频谱上形成的频率段的总数量;
将恢复的各个频率段的基带频谱进行拼接得到所述输入信号的整个基带 频谱, 根据所述拼接得到的基带频谱对所述输入信号进行恢复。
5、 根据权利要求 1-4任一项所述的信号处理方法, 其特征在于, 在所述 根据输入信号的频谱分布, 确定对所述输入信号进行混频后的基带频谱中的 各信号成分的分布之前, 还包括:
对前期接收的输入信号进行检测, 得到所述输入信号的频谱分布, 并根 据所述输入信号的频谱分布进行系统配置;
所述根据所述输入信号的频谱分布进行系统配置, 具体包括以下所列中 的一种或多种的组合:
配置调整系统的子带带宽 ; 或,
动态调整系统的子带带宽 ; 或,
调整采样器的采样频率 /s ; 或,
调整滤波器的通带带宽; 或
配置通道数量 m。
6、 一种基于压缩感知的信号处理装置, 其特征在于, 所述装置包括: 预处理单元, 用于根据输入信号的频谱分布, 确定对所述输入信号进行 混频后的基带频谱中的各信号成分的分布; 并根据所述各信号成分的分布形 成的信号混叠模式的不同, 将所述基带频谱进行分段, 在所述基带频谱上形 成多个频率段, 每一个所述频率段对应一种信号混叠模式; 以及, 根据所述 频率段内的信号混叠模式, 确定所述输入信号的最低采样频率;
采样单元, 用于以大于所述预处理单元确定的所述最低采样频率的采样 频率对所述输入信号进行采样得到采样信号;
重构单元, 用于根据所述采样单元得到的所述采样信号分别在所述预处 理单元形成的所述多个频率段的各个频率段中恢复对应的信号成分, 并将在 所述各个频率段恢复的信号成分进行拼接, 完成对所述输入信号的恢复。
7、 根据权利要求 6所述的装置, 其特征在于, 所述预处理单元具体用于 从各个所述频率段中确定出混叠的信号数量最多的频率段, 并将所述混叠的 信号数量最多的频率段所需要的最低采样频率作为所述输入信号的最低采样 频率。
8、 根据权利要求 6或 7所述的装置, 其特征在于, 所述采样单元具体用 于以采样频率 / s对所述输入信号进行采样得到采样信号, 其中, fs≥fs mm =^^ , /s mm为最低采样频率, β为所述频率段中混叠的信号数量的
― m ―
最大值, 为子带带宽, m为系统的通道数量。
9、 根据权利要求 6所述的装置, 其特征在于, 所述预处理单元在所述基 带频谱上形成多个频率段之后, 还用于根据所述多个频率段的各个频率段的 信号混叠模式,确定压缩感知采样的观测矩阵 A在所述各个频率段对应的子矩 阵 4; , 其中, =1 , K;
所述重构单元具体用于根据信号恢复算法公式 ZSi (/)= (/) ,分别恢复第 i ( i=l , ... , K )个频率段的基带频谱, 其中, 为第 个频率段的子矩阵 ASi的 转置矩阵, 为第 i 个频率段恢复的基带频谱, /)为待恢复的信号, K 为所述基带频谱上形成的频率段的总数量; 所述重构单元还具体用于将恢复的各个频率段的基带频谱进行拼接得到 所述输入信号的整个基带频谱, 根据所述拼接得到的基带频谱对所述输入信 号进行恢复。
10、 根据权利要求 6-9任一项所述的装置, 其特征在于, 所述预处理单 元还用于对前期接收的输入信号进行检测, 得到所述输入信号的频谱分布, 并根据所述输入信号的频谱分布进行系统配置;
所述预处理单元具体用于配置以下所列中的一种或多种的组合: 配置调整系统的子带带宽 ; 或,
动态调整系统的子带带宽 ; 或,
调整采样器的采样频率/ s ; 或,
调整滤波器的通带带宽; 或,
配置通道数量 m。
11、 根据权利要求 6 所述的装置, 其特征在于, 所述基于压缩感知的信 号处理装置为基站或终端。
12、 一种基于压缩感知的信号处理装置, 其特征在于, 所述装置包括: 处理器、 收发器和存储器;
所述收发器, 用于与其他装置进行交互, 接收输入信号;
所述存储器, 用于存储程序;
所述处理器, 调用所述存储器存储的所述程序, 用于执行:
根据输入信号的频谱分布, 确定对所述输入信号进行混频后的基带频谱 中的各信号成分的分布;
根据所述各信号成分的分布形成的信号混叠模式的不同, 将所述基带频 谱进行分段, 形成多个频率段, 每一个所述频率段对应一种信号混叠模式; 根据所述频率段内的信号混叠模式, 确定所述输入信号的最低采样频率, 并以大于所述最低采样频率的采样频率对所述输入信号进行采样得到采样信 号; 根据所述采样信号分别在所述多个频率段的各个频率段中恢复对应的信 号成分, 并将在所述各个频率段恢复的信号成分进行拼接, 完成对所述输入 信号的恢复。
1 3、 根据权利要求 12所述的装置, 其特征在于, 所述处理器用于根据所 述频率段内的信号混叠模式, 确定所述输入信号的最低采样频率, 具体包括: 所述处理器用于:
从各个所述频率段中确定出混叠的信号数量最多的频率段, 并将所述混 叠的信号数量最多的频率段所需要的最低采样频率作为所述输入信号的最低 采样频率。
14、 根据权利要求 12或 1 3所述的装置, 其特征在于, 所述处理器用于 以大于所述最低采样频率的采样频率对所述输入信号进行采样得到采样信 号, 具体包括:
所述处理器用于:
以采样频率 /s对所述输入信号进行采样得到采样信号, 其中, fs≥fs mm=^i , /s mm为最低采样频率, β为所述频率段中混叠的信号数量的
― m ―
最大值, 为子带带宽, m为系统的通道数量。
15、 根据权利要求 12所述的装置, 其特征在于, 所述处理器在形成多个 频率段之后, 还用于:
根据所述多个频率段的各个频率段的信号混叠模式, 确定压缩感知采样 的观测矩阵 A在所述多个频率段的各个频率段对应的子矩阵 ASi,其中, =1 , -.. , K;
所述处理器用于根据所述采样信号分别在所述多个频率段的各个频率段 中恢复对应的信号成分, 并将在所述各个频率段恢复的信号成分进行拼接, 完成整个所述输入信号的恢复, 具体包括:
所述处理器用于: 根据信号恢复算法公式 ZSi (/)= (/), 分别恢复第 ( =1 , ··· , K ) 个频 率段的基带频谱, 其中, 为第 个频率段的子矩阵 的摩尔潘若思逆矩阵, 为第 个频率段恢复的基带频谱, 为采样信号的离散傅里叶变换, K 为所述基带频谱上形成的频率段的总数量;
将恢复的各个频率段的基带频谱进行拼接得到所述输入信号的整个基带 频谱, 根据所述拼接得到的基带频谱对所述输入信号进行恢复。
16、 根据权利要求 12-15 任一项所述的装置, 其特征在于, 所述处理器 在所述根据输入信号的频谱分布, 确定对所述输入信号进行混频后的基带频 谱中的各信号成分的分布之前, 还用于:
对前期接收的输入信号进行检测, 得到所述输入信号的频谱分布, 并根 据所述输入信号的频谱分布进行系统配置;
所述根据所述输入信号的频谱分布进行系统配置, 具体包括以下所列中 的一种或多种的组合:
配置调整系统的子带带宽 ; 或,
动态调整系统的子带带宽 ; 或,
调整采样器的采样频率 /s ; 或,
调整滤波器的通带带宽; 或,
配置通道数量 m。
17、 根据权利要求 12所述的装置, 其特征在于, 所述基于压缩感知的信 号处理装置为基站或终端。
PCT/CN2014/073757 2014-03-20 2014-03-20 基于压缩感知的信号处理方法及装置 WO2015139260A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2016141063A RU2655659C2 (ru) 2014-03-20 2014-03-20 Способ и устройство обработки сигналов на основе сжимающего считывания
PCT/CN2014/073757 WO2015139260A1 (zh) 2014-03-20 2014-03-20 基于压缩感知的信号处理方法及装置
CA2942585A CA2942585C (en) 2014-03-20 2014-03-20 Compressive sensing-based signal processing method and apparatus
JP2016558085A JP6397505B2 (ja) 2014-03-20 2014-03-20 圧縮センシングに基づく信号処理方法及び装置
CN201480075761.1A CN106031046B (zh) 2014-03-20 2014-03-20 基于压缩感知的信号处理方法及装置
EP14886420.0A EP3110015B1 (en) 2014-03-20 2014-03-20 Compressive sensing-based signal processing method and device
US15/270,911 US9882581B2 (en) 2014-03-20 2016-09-20 Compressive sensing-based signal processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/073757 WO2015139260A1 (zh) 2014-03-20 2014-03-20 基于压缩感知的信号处理方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/270,911 Continuation US9882581B2 (en) 2014-03-20 2016-09-20 Compressive sensing-based signal processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2015139260A1 true WO2015139260A1 (zh) 2015-09-24

Family

ID=54143680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073757 WO2015139260A1 (zh) 2014-03-20 2014-03-20 基于压缩感知的信号处理方法及装置

Country Status (7)

Country Link
US (1) US9882581B2 (zh)
EP (1) EP3110015B1 (zh)
JP (1) JP6397505B2 (zh)
CN (1) CN106031046B (zh)
CA (1) CA2942585C (zh)
RU (1) RU2655659C2 (zh)
WO (1) WO2015139260A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824452A (zh) * 2019-11-13 2020-02-21 中国科学院电子学研究所 一种激光雷达频域稀疏采样方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107292067B (zh) * 2017-08-17 2021-02-02 湖南纬拓信息科技有限公司 一种基于压缩感知与双谱分析的齿轮故障诊断方法
CN109586728B (zh) * 2018-12-11 2022-10-25 哈尔滨工业大学 基于稀疏贝叶斯的调制宽带转换器框架下信号盲重构方法
CN113746479B (zh) * 2021-07-29 2023-07-21 北京工业大学 一种基于特定测试信号的mwc系统频率响应补偿方法
CN115412110A (zh) * 2022-07-12 2022-11-29 北京中科睿谱科技有限公司 一种基于压缩感知的融合接收机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384773B1 (en) * 2000-12-15 2002-05-07 Harris Corporation Adaptive fragmentation and frequency translation of continuous spectrum waveform to make use of discontinuous unoccupied segments of communication bandwidth
CN101944961A (zh) * 2010-09-03 2011-01-12 电子科技大学 一种认知无线网络中的双门限合作感知方法
CN101951619A (zh) * 2010-09-03 2011-01-19 电子科技大学 一种认知网络中基于压缩感知的宽带信号分离方法
CN102082578A (zh) * 2011-03-07 2011-06-01 四川九洲电器集团有限责任公司 一种通用超宽带接收方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503403A (ja) * 1996-06-19 2002-01-29 ディジタル コンプレッション テクノロジー,エル.ピイ. デジタル伝送圧縮のための改良されたコード化システム
US8032085B2 (en) 2007-09-10 2011-10-04 Technion Research & Development Foundation Ltd. Spectrum-blind sampling and reconstruction of multi-band signals
JP5185299B2 (ja) * 2010-01-12 2013-04-17 日本電信電話株式会社 信号処理装置、及びそれを用いた受信システム、並びに信号処理方法
WO2013152022A1 (en) * 2012-04-03 2013-10-10 Interdigital Patent Holdings, Inc. Method and system for wideband spectrum scanning employing compressed sensing
US9450696B2 (en) * 2012-05-23 2016-09-20 Vadum, Inc. Photonic compressive sensing receiver
CN103346798B (zh) * 2013-06-05 2016-07-06 中国科学院微电子研究所 一种以低于奈奎斯特频率的采样频率进行信号采集方法
US8958750B1 (en) * 2013-09-12 2015-02-17 King Fahd University Of Petroleum And Minerals Peak detection method using blind source separation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384773B1 (en) * 2000-12-15 2002-05-07 Harris Corporation Adaptive fragmentation and frequency translation of continuous spectrum waveform to make use of discontinuous unoccupied segments of communication bandwidth
CN101944961A (zh) * 2010-09-03 2011-01-12 电子科技大学 一种认知无线网络中的双门限合作感知方法
CN101951619A (zh) * 2010-09-03 2011-01-19 电子科技大学 一种认知网络中基于压缩感知的宽带信号分离方法
CN102082578A (zh) * 2011-03-07 2011-06-01 四川九洲电器集团有限责任公司 一种通用超宽带接收方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824452A (zh) * 2019-11-13 2020-02-21 中国科学院电子学研究所 一种激光雷达频域稀疏采样方法

Also Published As

Publication number Publication date
JP6397505B2 (ja) 2018-09-26
RU2655659C2 (ru) 2018-05-29
EP3110015A1 (en) 2016-12-28
EP3110015A4 (en) 2017-03-15
RU2016141063A (ru) 2018-04-27
RU2016141063A3 (zh) 2018-04-27
CA2942585C (en) 2018-12-04
CA2942585A1 (en) 2015-09-24
JP2017513362A (ja) 2017-05-25
US9882581B2 (en) 2018-01-30
CN106031046B (zh) 2019-01-11
US20170012640A1 (en) 2017-01-12
EP3110015B1 (en) 2018-09-05
CN106031046A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
WO2015139260A1 (zh) 基于压缩感知的信号处理方法及装置
Sun et al. Wideband spectrum sensing for cognitive radio networks: a survey
JP4962422B2 (ja) 到来電波方位測定装置、到来電波方位測定方法及び到来電波方位測定プログラム
EP2608436B1 (en) Method and device for receiving multi-carrier optical signals
WO2009034568A1 (en) Spectrum-blind sampling and reconstruction of multi-band signals
KR101727088B1 (ko) 압축 센싱에 기초한 ofdm 변조-복조 방법, 장치 및 시스템
CN106301631B (zh) 一种基于子空间分解的互素欠采样频谱感知方法及其装置
EP2773045A1 (en) Process for mismatch correction of the output signal of a time-interleaved analog to digital converter
CN106027179A (zh) 一种基于综合互素分析的宽带频谱感知方法及其装置
CN106452626B (zh) 基于多组互质采样的宽带频谱压缩感知
CN108494508A (zh) 基于mwc相关支撑集恢复的高效频谱检测方法
US20110169965A1 (en) Systems, methods, and apparatuses for detecting digital television (dtv) communications signals
US10397031B2 (en) Method of processing compressive sensing signal and apparatus for same
Huang et al. Resolution doubled co-prime spectral analyzers for removing spurious peaks
CN104618073B (zh) 一种信号调制方式的识别方法
CN106506102A (zh) 一种互素欠采样下高精度、低时延的谱感知方法及其装置
CN101729466B (zh) 对有尖峰干扰的空白频谱进行检测和使用的装置及方法
CN108847909A (zh) 一种基于压缩感知的宽带块稀疏频谱恢复方法
CN116827368B (zh) 基于非均匀信道化进行信号完全重构的方法
CN115685056B (zh) 空间目标二维角度的测量方法、装置、电子设备及介质
CN107181548A (zh) 一种压缩频谱感知性能提升方法
CN114696931A (zh) 一种低复杂度的非稀疏宽带频谱感知方法
US8681801B2 (en) Method and apparatus for determining available bandwidth for wireless communication
Cohen et al. Cyclostationary detection from sub-Nyquist samples for Cognitive Radios: Model reconciliation
CN115913279A (zh) 一种复杂干扰环境的多载波扩频信号捕获方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2942585

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016558085

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014886420

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014886420

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016141063

Country of ref document: RU

Kind code of ref document: A