WO2015137169A1 - 地形判断装置、脚式移動ロボット、ロボットシステム、脚式移動ロボットの制御方法、及び、ロボットシステムの制御方法 - Google Patents

地形判断装置、脚式移動ロボット、ロボットシステム、脚式移動ロボットの制御方法、及び、ロボットシステムの制御方法 Download PDF

Info

Publication number
WO2015137169A1
WO2015137169A1 PCT/JP2015/055961 JP2015055961W WO2015137169A1 WO 2015137169 A1 WO2015137169 A1 WO 2015137169A1 JP 2015055961 W JP2015055961 W JP 2015055961W WO 2015137169 A1 WO2015137169 A1 WO 2015137169A1
Authority
WO
WIPO (PCT)
Prior art keywords
terrain
ground
point
designated position
reference point
Prior art date
Application number
PCT/JP2015/055961
Other languages
English (en)
French (fr)
Inventor
夏樹 松波
智宏 田見
裕貴 谷
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US15/117,331 priority Critical patent/US20160347386A1/en
Publication of WO2015137169A1 publication Critical patent/WO2015137169A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/02Tracing profiles of land surfaces
    • G01C7/04Tracing profiles of land surfaces involving a vehicle which moves along the profile to be traced
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser

Definitions

  • the present invention relates to a technique for determining terrain, and control of a legged mobile robot using the terrain determination.
  • Legged mobile robots that use multiple legs such as biped robots
  • Patent Documents 1 and 2 are examples of techniques related to walking control of legged mobile robots.
  • Patent Document 1 discloses a technique for creating gait data of a legged mobile robot.
  • Patent Document 2 discloses a technique for creating a moving route plan for a legged mobile robot.
  • legged mobile robots are expected to enter and work in places where the ground is in a complicated situation, such as places where it is difficult for robots that run on wheels to enter.
  • a legged mobile robot is expected to perform work even in an environment where the ground condition is not well understood. Therefore, a technique that enables the legged mobile robot to be appropriately controlled according to the terrain is desired.
  • the terrain determination device includes a sensor that acquires terrain data indicating a shape of the ground, a specified position generation unit that generates a specified position specified with respect to the ground, a reference point, and at least one test.
  • a virtual surface with a point is set so that the reference point is at a specified position and parallel to the ground, the relative angle formed by the virtual surface and the ground at at least one inspection point is the terrain data.
  • a terrain determination unit that calculates a terrain determination value indicating the flatness of the terrain based on the relative angle.
  • the legged mobile robot includes a terrain determination device and a controller that controls the sole at the reference point to be parallel to the ground when the sole is placed at a specified position.
  • the robot system includes a legged mobile robot and a remote control terminal.
  • the remote operation terminal includes a specified position generation unit that generates a specified position based on an operation on the input device, and an output unit that outputs a terrain determination value.
  • the remote operation terminal transmits the command value to the legged mobile robot.
  • the legged mobile robot controls the leg according to the command value.
  • the terrain determination method includes the steps of obtaining terrain data indicating a shape of the ground, generating a designated position designated with respect to the ground, a reference point, and at least one inspection point.
  • the set virtual surface is arranged so that the reference point is the designated position and parallel to the ground, the relative angle formed by the virtual surface and the ground at at least one inspection point is based on the terrain data.
  • control method of the legged mobile robot includes a step of calculating a terrain determination value by a terrain determination method, and the sole at the reference point is parallel to the ground when the sole is placed at a specified position. And a step of controlling to become.
  • the robot system control method is a robot system control method including a legged mobile robot and a remote operation terminal.
  • the robot system control method includes a legged mobile robot control method.
  • the designated position is generated based on an operation on the input device of the remote operation terminal.
  • the robot system control method further includes a step of outputting a terrain determination value to the remote operation terminal and an input operation in which the remote operation terminal sets a designated position as a command value. The step of transmitting, and the step of the legged mobile robot controlling the leg according to the command value.
  • Some embodiments cause a computer to execute a terrain determination method.
  • Some embodiments provide a technique that enables appropriate control of a legged mobile robot in accordance with the terrain.
  • FIG. 1 is a bird's-eye view of a robot system.
  • FIG. 2 shows the walking device and the ground.
  • FIG. 3 is a block diagram showing the configuration of the robot system.
  • FIG. 4 is a flowchart of the undulation avoidance control.
  • FIG. 5 shows the foot and the ground of the walking device.
  • FIG. 6 shows the foot and the ground of the walking device.
  • FIG. 1 is a bird's-eye view showing a robot system according to the present embodiment.
  • the robot system includes a walking device 1 and an operation unit 2.
  • the walking device 1 is, for example, a biped humanoid robot.
  • the walking device 1 can perform wireless communication with the operation unit 2.
  • the operator can remotely operate the walking device 1 by performing an input operation on the operation unit 2 (operation unit).
  • FIG. 2 shows the walking device 1 and the ground 4.
  • the walking device 1 includes a left foot 12 and a right foot 13.
  • the walking device 1 walks on the ground 4 by stepping on the left foot 12 and the right foot 13 alternately.
  • the walking device 1 includes a three-dimensional measurement sensor 11 on its head, for example.
  • the three-dimensional measurement sensor 11 can be realized using a laser range finder, a stereo camera, or the like.
  • the three-dimensional measurement sensor 11 measures the distance from the three-dimensional measurement sensor 11 to each point on the ground 4 using, for example, a laser range finder, and outputs the measured value. Based on the measured value, the position of the walking device 1 and the position / posture of each joint, the three-dimensional coordinates of each position of the ground 4 within the predetermined range 111 are calculated, and point cloud data indicating the shape of the ground 4 (Point cloud) is obtained.
  • the walking device 1 can perform walking that matches the state of the ground 4 using the point cloud data.
  • the walking device 1 further transmits this point cloud data to the operation unit 2.
  • the operation unit 2 can display the shape of the ground 4 on the display device based on the received point cloud data.
  • the operator can transmit an appropriate walking instruction to the walking device 1 by looking at the display screen of the display device (output device).
  • FIG. 3 is a block diagram showing the configuration of the robot system.
  • the walking device 1 includes a three-dimensional measurement sensor 141, a point group coordinate calculation unit 142, a terrain recognition unit 143, a communication unit 144, a controller 145, and an actuator 146.
  • the three-dimensional measurement sensor 141 corresponds to the three-dimensional measurement sensor 11 shown in FIG.
  • the point cloud coordinate calculation unit 142 and the terrain recognition unit 143 are obtained by an arithmetic device (for example, a computer) provided in the walking device 1 with a program stored in a tangible, non-transitory storage medium. It is a functional block realized by reading and executing.
  • the arithmetic device functions as the point cloud coordinate calculation unit 142 or the terrain recognition unit 143.
  • the point cloud coordinate calculation unit 142 and the terrain recognition unit 143 are realized by a calculation device.
  • the communication unit 144 is a communication interface for performing wireless communication with the operation unit 2.
  • the actuator 146 is a drive device that performs control of the angle of the joint (limb joint) of the walking device 1.
  • the controller 145 is a computer that controls the operation of the walking device 1, and the walking device 1 performs an operation such as walking by driving the actuator 146 based on a command value output from the controller 145.
  • the walking device 1 includes a plurality of actuators 146 respectively corresponding to a plurality of joints. Each actuator changes the angle of the corresponding joint or maintains the angle of the corresponding joint.
  • the operation unit 2 includes a communication unit 21, a landform determination unit 22, a three-dimensional display unit 23 (output device), and a control input unit 24 (input device).
  • the communication unit 21 is a communication interface for communicating with the walking device 1.
  • the landform determination unit 22 is a functional block that is realized by a program stored in a tangible non-transitional storage medium being read and executed by an arithmetic device (for example, a computer) included in the operation unit 2.
  • an arithmetic device for example, a computer
  • the arithmetic device functions as the terrain determination unit 22 that performs the terrain determination processing.
  • the terrain determination unit 22 is realized by an arithmetic device.
  • the three-dimensional display unit 23 is a display device that can display a bird's-eye view of terrain.
  • the control input unit 24 is an input device such as a keyboard, a pointing device, or a touch panel that receives an input operation by the operator 3.
  • FIG. 4 is a flowchart of the undulation avoidance control.
  • Step S1 Assume that the walking device 1 stops walking in the initial state.
  • the operator 3 performs an input operation for requesting transmission of terrain data to the control input unit 24 of the operation unit 2.
  • a terrain data transmission request (request signal) is transmitted to the walking device 1 by wireless communication.
  • Step S2 When the walking device 1 receives the terrain data transmission request, for example, by adjusting the angle of the head, the range 111 of the ground 4 measured by the three-dimensional measurement sensor 141 is located near the front of the foot of the walking device 1. Adjust. In this state, the three-dimensional measurement sensor 141 scans the ground 4 within the range 111. For example, the laser range finder generates data indicating the distance of each of a number of points on the ground 4 within the range 111 with respect to the three-dimensional measurement sensor 141.
  • the point cloud coordinate calculation unit 142 uses the data obtained by the three-dimensional measurement sensor 141 and the information such as the position / orientation of the walking device 1 obtained from the detection value of the encoder provided in the actuator 146, etc.
  • Point cloud data consisting of a large number of points indicating the three-dimensional coordinate values of the ground surface in a coordinate system such as a world coordinate system is calculated.
  • the terrain recognition unit 143 generates terrain data indicating the shape of the ground 4 based on the coordinate values of the point cloud data.
  • the walking device 1 transmits the generated terrain data (a signal corresponding to the terrain data) to the operation unit 2.
  • the three-dimensional display unit 23 displays the three-dimensional shape of the ground 4 indicated by the terrain data on the display screen.
  • the operator 3 refers to the display screen and considers where the foot (the left foot 12 or the right foot 13) that the walking device 1 steps next is grounded. For example, the operator 3 operates a pointer on the screen with the pointing device via the control input unit 24 to tentatively determine a position candidate (grounding candidate position) where the foot is grounded. That is, the control input unit 24 (input device) functions as a designated position generation unit that designates a ground contact candidate position (designated position) on the ground 4.
  • control input unit 24 functions as a designated position generation unit that generates a designated position (grounding candidate position) designated with respect to the ground 4.
  • a designated position grounding candidate position
  • the posture of the foot (the direction of the foot in the longitudinal direction in the horizontal plane, that is, the direction in which the toe faces) may be specified together.
  • the terrain determination unit 22 executes terrain determination processing. More specifically, the terrain determination unit 22 (calculation device) uses the terrain data of the ground contact candidate position (which may include terrain data around the ground contact candidate position), and makes it easy to place the foot at that position.
  • the score which is the terrain determination value indicating the stability of the point where the foot is to be grounded or the flatness of the terrain, is calculated and displayed by the three-dimensional display unit 23. The score indicates, for example, that the smaller the value is, the more stable the foot can be placed, and the higher the value, the more unstable the foot is. A method for calculating the score will be described later.
  • the operator 3 can objectively know the stability of the input ground contact candidate position by referring to the score displayed on the three-dimensional display unit 23 (output device). For example, when the score is large to some extent, the operator 3 corrects the ground contact candidate position and inputs it again to the control input unit 24. Then, the landform determination unit 22 calculates the score of the corrected ground contact candidate position and displays it on the three-dimensional display unit 23. In this way, the operator 3 refers to the scores of one or more grounding candidate positions, and determines the position of the foot (foot sole) to be commanded to the walking device 1 (the grounding command position, that is, the movement target position). can do.
  • Step S7 The operator 3 inputs a grounding command position (movement target position) by an input operation on the control input unit 24 (input device).
  • the operation unit 2 transmits data indicating a grounding command position (a command value corresponding to the grounding command position) to the walking device 1 as a footprint plan (Foot Plan).
  • Step S8 When the controller 145 of the walking device 1 receives the footprint plan, the controller 145 controls the actuator 146 such as the rotation angle of each joint (including the angle of the ankle joint) so that the next foot to be stepped on touches the ground 4 at the grounding command position. Generate a command value.
  • Step S9 The controller 145 drives the actuator 146 based on the generated control command value.
  • the foot (right foot or left foot) of the walking device 1 touches the ground 4 at the ground command position input by the operator 3, and the walking pattern commanded by the operator 3 is realized.
  • FIG. 5 is a side view showing the vicinity of the ankle of the foot included in the walking device 1 and the ground 4. In this figure, the foot just before grounding is drawn. The score will be described with reference to FIG. Note that the process of calculating the terrain determination value corresponds to the terrain determination process.
  • the link member on the tip side from the knee joint of the leg of the walking device 1 is referred to as a shin 131.
  • the lower end of the shin 131 is connected to the foot 50 via the ankle joint 132.
  • the foot 50 is rotatably connected to the shin 131 by an ankle joint 132.
  • the actuator 146 changes the rotation angle of the ankle joint 132 or maintains the rotation angle of the ankle joint 132.
  • the ankle joint 132 is, for example, an ankle pitch axis joint that swings the foot 50 in the longitudinal direction (typically, the front-rear direction of the walking apparatus 1 or the direction that substantially matches the traveling direction).
  • the ankle pitch axis joint is centered on a rotation axis perpendicular to both the longitudinal direction of the foot 50 (for example, the direction from the heel to the toe) and the longitudinal direction of the shin 131 (for example, the direction from the knee to the ankle). It is a rotating joint that rotates.
  • Another example of the ankle joint 132 is a roll shaft joint that swings the foot in the left-right direction.
  • the roll shaft joint is a joint that rotates around a rotation axis parallel to the longitudinal direction of the foot (for example, the direction from the heel to the toe).
  • the ankle joint 132 may include an ankle pitch axis joint and an ankle roll axis joint.
  • the foot 50 has a sole 51 (also referred to as a foot) as its lower surface.
  • An ankle reference point 423, a toe reference point 433, and a heel reference point 443 are set on the sole 51.
  • the ankle reference point 423 is set at a position relatively close to the ankle joint 132.
  • ZMP zero moment point
  • an ankle reference point for example, a point located directly below the ankle joint 132 in the state where the walking device 1 is stably standing on the horizontal ground 4 is set.
  • a sole virtual surface having a shape along the sole 51 is set.
  • the sole virtual surface is, for example, a plane having a shape substantially along the sole 51.
  • a vector perpendicular to the sole virtual plane with respect to the ankle reference point 423 is shown as an ankle reference normal vector 424 in FIG.
  • At least one inspection point is set at the position of the sole 51 farther from the ankle joint 132 than the ankle reference point 423.
  • an ankle reference point 423 that is close to the ankle joint 132 is set as an important point for supporting the weight of the walking device 1 and the terrain undulation at the inspection point of the sole 51 away from the ankle joint 132 is inspected. Describe.
  • Each of the ankle reference point 423 and the inspection point is a point on the sole virtual surface.
  • the first inspection point is set on the sole 51 on the front side with respect to the ankle reference point 423.
  • a toe reference point 433 is set near the toe 133 of the foot 50 as the first inspection point.
  • a second inspection point is set on the sole 51 on the rear side with respect to the ankle reference point 423.
  • a heel reference point 443 is set near the heel 134 of the foot 50 as the second inspection point.
  • the width direction of the foot 50 is not shown because it is the depth direction of the paper surface.
  • two points are provided near the left and right end portions near the toe, and the second inspection is performed.
  • Two points may be provided in the vicinity of the left and right ends near the heel as points. That is, for example, it is desirable to set inspection points at the four corners of the sole 51. With this setting, both the front-back direction inclination (pitch axis direction) and the left-right direction (roll axis direction) of the ground 4 with respect to the sole 51 can be reflected in the score.
  • the positions of the ankle reference point 423 and the inspection point can be arbitrarily set by input to the control input unit 24 of the operation unit 2.
  • step S ⁇ b> 2 of FIG. 4 the ground 4 is measured by the three-dimensional measurement sensor 141, and point cloud data (point cloud) of the ground 4 is generated by the point cloud coordinate calculation unit 142.
  • a large number of points distributed near the ground surface 4 in FIG. 5 indicate elements of the point cloud data 55.
  • the point cloud data 55 is scattered three-dimensionally.
  • the plurality of point group data 55 appear to be distributed on a plane, but actually the positions of the plurality of point group data 55 in the foot width direction (the depth direction on the paper surface) are different from each other. ing.
  • reference numeral 4 indicates the ground 4 in a certain cross section perpendicular to the horizontal plane.
  • Point cloud data 55 Based on the point cloud data 55, information on the undulation of the ground 4 can be obtained. Such undulation information extraction processing will be described by taking the point 41 shown in FIG. 5 as an example. Any point in the point cloud data 55 can be set as the point 41. Point group data 55 distributed around the point 41 is set as a peripheral point group 410. The peripheral point group 410 is, for example, point group data 55 distributed three-dimensionally within a predetermined distance with the point 41 as the center.
  • a regression plane is obtained by the least square method or the like. This regression plane approximately indicates the inclination of the ground 4 at the point 41.
  • a point normal vector 411 is determined as a normal vector for the regression plane.
  • the landform determination unit 22 has a function of calculating a point normal vector 411 that is undulation information at an arbitrary point 41 based on the point cloud data 55.
  • the controller 145 performs terrain tracking control so that the sole 51 of the walking device 1 is in contact with the ground 4 substantially in parallel.
  • the terrain recognition unit 143 performs a step terrain detection process as follows. A point closest to the ankle reference point 423 in the point cloud data 55 is set as the ankle point 42. By the undulation information extraction process, the point normal vector 411 at the ankle point 42 is calculated as the ankle point normal vector 421.
  • the controller 145 controls the actuator 146 (for example, the pitch of the ankle) so that the ankle reference normal vector 424 indicating the angle of the foot is parallel to the ankle point normal vector 421 indicating the angle of the ground 4. (Axis joint and roll axis joint) are controlled. In other words, the controller 145 controls the angle of the ankle joint so that the part of the sole 51 corresponding to the ankle reference point 423 is parallel to the ground 4 at the designated position (the movement target position of the sole). To do. With such control, even when the ground 4 has a slight inclination, it is possible to place a foot parallel to the ground 4 at a position just below the ankle that is important for supporting the weight of the walking device 1. As a result, walking is stabilized.
  • the actuator 146 for example, the pitch of the ankle
  • score calculation processing (that is, terrain determination processing) will be described.
  • the operation unit 2 has a function of performing a relative angle calculation process for calculating a relative angle between a predetermined position of the sole 51 and the ground 4 based on the undulation information.
  • the relative angle calculation process will be described.
  • the operation unit 2 calculates the coordinate value of the toe reference point 433 in the world coordinate system based on the position information of the inspection point set in advance and the information such as the current position and the current posture of the walking device 1 received from the walking device 1. I can know. Therefore, it is possible to align the toe reference point 433 with the point cloud data 55 (terrain point cloud). That is, the coordinate value of the toe reference point 433 and the coordinate value of each point group data 55 can be associated with each other.
  • the terrain determination unit 22 designates the sole virtual surface, which is a surface including the ankle reference point 423 and the inspection point, so that the ankle reference point 423 overlaps the designated position described above. So as to be parallel to the ground 4 at the position (the portion of the ground corresponding to the designated position) (in other words, the ankle reference normal vector 424 is parallel to the ankle point normal vector 421 indicating the angle of the ground 4).
  • the coordinate value of the toe reference point 433 (inspection point), the coordinate value of the heel reference point 443 (inspection point), the coordinate value of the ankle reference point 423 (reference point), and the like are obtained. It should be noted that the coordinate value of the ankle reference point 423 (reference point), etc., may be calculated in the arithmetic processing in the above-described terrain tracking control.
  • the point normal vector 411 is calculated at the toe point 43, and the calculation result is obtained as the toe point normal vector 431.
  • the toe point normal vector 431 indicates the inclination of the ground 4 in the vicinity of the toe.
  • the topography determination unit 22 further calculates a toe reference normal vector 434 that points in a direction perpendicular to the sole 51 at the toe reference point 433. Further, the terrain determination unit 22 further determines the toe point angle 432 (in other words, the toe reference point 433 (inspection point) at the toe reference normal vector 434 and the toe point normal vector 431) at the toe reference point 433 (inspection point). 4) is calculated.
  • the relative angle calculation process is a relative angle calculation process.
  • the relative angle calculation process is a process executed by the landform determination unit 22 (calculation device).
  • the sole virtual surface which is a surface including the ankle reference point 423 and the inspection point is set so that the ankle reference point 423 overlaps the above-mentioned designated position, and the sole virtual surface is placed on the ground 4 at the designated position.
  • the relative angle formed between the virtual sole of the foot and the ground 4 at the toe reference point 433 (inspection point) is terrain data (for example, , Topographic data, data indicating the position and orientation of the sole virtual surface, data indicating the position of the reference point, data indicating the position of the inspection point, etc.).
  • the terrain determination unit 22 performs the relative angle calculation process for the ridges in the same manner.
  • the point closest to the heel reference point 443 set on the sole 51 behind the ankle reference point 423 is set as the heel point 44.
  • a dredging point normal vector 441 is calculated by performing undulation information extraction processing at the dredging point 44.
  • a heel reference normal vector 444 perpendicular to the sole 51 at the heel reference point 443 is calculated.
  • the terrain determination unit 22 further determines the heel point angle 442 (in other words, the heel reference point 443 (inspection point)) between the heel reference normal vector 444 and the heel point normal vector 441 (in other words, at the heel reference point 443 (inspection point)). 4) is calculated.
  • the toe reference normal vector 434 and the heel reference normal vector 444 are parallel to the ankle reference normal vector 424. Therefore, it is not necessary to calculate the toe reference normal vector 434 and the heel reference normal vector 444 for the calculation of the toe point angle 432 and the heel point angle 442, and the ankle reference normal vector 424 may be used instead.
  • the terrain determination unit 22 executes a terrain determination value calculation process.
  • the terrain determination unit 22 (calculation device) calculates a terrain determination value that is a score related to the undulation of the ground 4 based on the toe point angle 432 and the saddle point angle 442.
  • the terrain determination value is a value indicating the flatness (or the degree of undulation) of the terrain. For example, a value obtained by adding the toe point angle 432 and the heel point angle 442 is calculated as the score. If two reference points are set on the left and right sides as the toe reference point 433 and two left and right reference points are set on the heel reference point 443, the sum of the angles at these four points is calculated as a score.
  • This score has the following meaning.
  • the walking device 1 is grounded substantially parallel to the ground 4 at the ankle reference point 423.
  • the toe point angle 432 or the heel point angle 442 is large, the sole 51 cannot be grounded in parallel to the ground 4 at the toe or heel, which means that the stability is low. Therefore, by referring to the score calculated based on these angles, the stability of the ground 4 at the position where the foot is to be placed can be known.
  • the toe reference point 433 and the heel reference point 443 are used for calculating the score, but other examples of the score calculation method are also conceivable.
  • the score can be calculated if at least one inspection point is set. It is also possible to calculate a score by setting a large number of inspection points.
  • the normal vector of the ground 4 of each point is calculated for all points existing at positions overlapping the sole 51 in the horizontal plane viewed from the vertical direction, and used for calculating the score. Also good. In that case, for example, the average value of the angle of the normal vector of the ground 4 with respect to the normal vector of the sole 51 in each point cloud data 55 can be used as the score.
  • the larger the score the lower the flatness of the ground 4 (not flat).
  • the greater the score the higher the flatness of the ground 4 may be indicated.
  • a score can be realized by calculating a score by adding the reciprocal of the relative angle of each point.
  • the operator 3 creates a foot plan by selecting a place having a high score as a place having high stability.
  • the operator 3 can determine a suitable place for the walking device 1 to place his / her foot by referring to the score. For example, in FIG. 6, it is assumed that the operator 3 first inputs a position indicated by a broken line on the left side as a ground contact candidate position. The landform determination unit 22 calculates and displays the score at that position. When the operator 3 determines that the score is large, for example, as shown by the solid line on the right side of FIG. 6, the operator 3 corrects the ground contact candidate position to a position slightly behind. The landform determination unit 22 calculates and displays the score at the corrected ground contact candidate position. When the operator determines that the score at the corrected position is sufficiently small, the operator inputs the position as a grounding command position.
  • Such control is highly effective especially when it is necessary for a human to walk the walking apparatus 1 carefully, such as a place where it is unknown how the state of the ground 4 is.
  • this embodiment can be applied regardless of the number of legs of the legged mobile robot, it is particularly effective in the control of a biped robot that requires high stability for each leg.
  • the operator 3 can use the operation unit 2 to set a foot plan including a series of planned ground contact positions for walking in a predetermined area. Such usage is described below.
  • the walking device 1 autonomously walks on the ground 4.
  • the controller 145 functions as a designated position generation unit that generates a designated position designated with respect to the ground 4 based on a foot plan stored in advance or generated according to the environment.
  • the terrain following control described above is performed. That is, the controller 145 controls the sole 51 at the ankle reference point 423 to be parallel to the ground 4 when the sole 51 is placed at a designated position on the ground 4.
  • the walking device 1 transmits the terrain data measured by the three-dimensional measurement sensor 141 to the operation unit 2 while walking with the foot placed at a specified position.
  • the operator 3 refers to the terrain data displayed on the three-dimensional display unit 23, and instructs the stop of the walking device 1 when the walking device 1 reaches a place with many undulations on the ground 4.
  • the walking device 1 enters a command waiting state.
  • the operator 3 selects a place with a low score by the operations shown in steps S4 to S6, and inputs it as a grounding command position for the first step of the foot plan.
  • the operation unit 2 stores the position as foot plan information.
  • the operator 3 inputs the grounding command position of the second step by the operation shown in steps S4 to S6 for the place where the walking device 1 can reach from the first step.
  • the foot plans from the first step to the n-th step are input in the same manner.
  • the foot plan information is transmitted to the walking device 1.
  • the walking device 1 can walk along a route with less terrain by walking according to the foot plan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Manipulator (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

 地面(4)の形状を示す地形データを取得する。地面における指定位置を指定する。基準点(423)と少なくとも1つの検査点(433;443)とが設定された仮想面(51)を、基準点(423)が指定位置と重なるように、且つ、仮想面(51)を前記指定位置における地面に平行になるように仮想的に配置したとき、少なくとも1つの検査点(433;443)において仮想面(51)と地面(4)とが成す相対角度(432;442)を地形データに基づいて算出する工程と、相対角度(432;442)に基づいて地形の平坦度を示す地形判定値を算出する工程とを備える。

Description

地形判断装置、脚式移動ロボット、ロボットシステム、脚式移動ロボットの制御方法、及び、ロボットシステムの制御方法
 本発明は、地形を判断する技術、及び、その地形の判断を用いた脚式移動ロボットの制御に関する。
 二足歩行ロボットなどの複数の脚を用いて移動する脚式移動ロボットが知られている。このようなロボットの制御においては、足を接地する地面(床面)の状態を認識することが重要である。地面が平坦な場合は制御が容易だが、地面に起伏が有る場合、バランスを崩さずに歩行を行うことが難しくなる。そのため、ロボットの頭部などに地面の状態を検出するカメラ等のセンサを取り付け、地面の状態を検出して歩行制御に用いる技術が開発されている。
 特許文献1、2は、脚式移動ロボットの歩行制御に関する技術の例である。特許文献1には、脚式移動ロボットの歩容データ(gait data)を作成する技術が開示されている。特許文献2は、脚式移動ロボットの脚跡計画(moving route plan)を作成する技術が開示されている。
特許第4696727号公報 特開2009-258779号公報
 例えば、脚式移動ロボットは、車輪で走行するロボットが入りにくい場所など、地面が複雑な状況となっている場所にも入り込んで作業することが期待される。或いは、例えば、脚式移動ロボットは、地面の状況がよく分からない環境においても作業を行うことが期待される。そのため、地形に応じて脚式移動ロボットを適切に制御することを可能とする技術が望まれる。
 いくつかの実施形態において、地形判断装置は、地面の形状を示す地形データを取得するセンサと、地面に対して指定される指定位置を生成する指定位置生成部と、基準点と少なくとも1つの検査点とが設定された仮想面を、基準点が指定位置となるように、且つ地面に平行になるように配置したとき、少なくとも1つの検査点において仮想面と地面とが成す相対角度を地形データに基づいて算出し、相対角度に基づいて地形の平坦度を示す地形判定値を算出する地形判断部とを備える。
 いくつかの実施形態において、脚式移動ロボットは、地形判断装置と、足裏を指定位置に置くときに、基準点における足裏が地面に対して平行になるように制御するコントローラとを備える。
 いくつかの実施形態において、ロボットシステムは、脚式移動ロボットと、遠隔操作端末とを備える。遠隔操作端末は、入力装置に対する操作に基づいて指定位置を生成する指定位置生成部と、地形判定値を出力する出力部とを備える。遠隔操作端末は、指定位置を指令値として設定する入力操作が行われた場合、指令値を脚式移動ロボットに送信する。脚式移動ロボットは、指令値に従って脚を制御する。
 いくつかの実施形態において、地形判断方法は、地面の形状を示す地形データを取得する工程と、地面に対して指定される指定位置を生成する工程と、基準点と少なくとも1つの検査点とが設定された仮想面を、基準点が指定位置となるように、且つ地面に平行になるように配置したとき、少なくとも1つの検査点において仮想面と地面とが成す相対角度を地形データに基づいて算出する工程と、相対角度に基づいて地形の平坦度を示す地形判定値を算出する工程とを備える。
 いくつかの実施形態において、脚式移動ロボットの制御方法は、地形判断方法によって地形判定値を算出する工程と、足裏を指定位置に置くときに、基準点における足裏が地面に対して平行になるように制御する工程とを備える。
 いくつかの実施形態において、ロボットシステムの制御方法は、脚式移動ロボットと、遠隔操作端末とを備えるロボットシステムの制御方法である。ロボットシステムの制御方法は、脚式移動ロボットの制御方法を備える。指定位置を生成する工程において、指定位置は、遠隔操作端末の入力装置に対する操作に基づいて生成される。ロボットシステムの制御方法は更に、遠隔操作端末に地形判定値を出力する工程と、遠隔操作端末が、指定位置を指令値として設定する入力操作が行われた場合、指令値を脚式移動ロボットに送信する工程と、脚式移動ロボットが、指令値に従って脚を制御する工程とを備える。
 いくつかの実施形態は、地形判断方法をコンピュータに実行させる。
 いくつかの実施形態により、地形に応じて脚式移動ロボットを適切に制御することを可能とする技術が提供される。
 添付の図面は、実施形態の説明を助けるために本明細書に組み込まれる。なお、図面は、本発明を、図示された例および説明された例に限定するものとして解釈されるべきではない。
図1は、ロボットシステムの鳥瞰図である。 図2は、歩行装置と地面を示す。 図3は、ロボットシステムの構成を示すブロック図である。 図4は、起伏回避制御のフローチャートである。 図5は、歩行装置の足と地面を示す。 図6は、歩行装置の足と地面を示す。
 以下の詳細な説明においては、実施形態の包括的な理解を提供するために、説明の目的で多くの詳細な特定事項が開示される。しかし、一又は複数の実施形態は、これらの詳細な特定事項なしで実行可能であることが明らかである。以下、添付図面を参照して、実施形態を説明する。図1は、本実施形態におけるロボットシステムを示す鳥瞰図である。ロボットシステムは、歩行装置1と操作部2とを備える。歩行装置1は、例えば、二足歩行のヒューマノイドロボットである。歩行装置1は、操作部2との間で無線通信を行うことが可能である。オペレータは、操作部2(操作ユニット)に対して入力操作を行うことによって、歩行装置1を遠隔的に操作することができる。
 図2は、歩行装置1と地面4を示す。歩行装置1は、左足12と右足13を備える。歩行装置1は、左足12と右足13を交互に踏み出すことによって地面4の上を歩行する。歩行装置1は、例えばその頭部に、3次元計測センサ11を備える。3次元計測センサ11は、レーザーレンジファインダやステレオカメラ等を用いて実現することができる。
 3次元計測センサ11は、例えばレーザーレンジファインダによって、3次元計測センサ11から地面4の各点までの距離を計測し、その計測値を出力する。その計測値と、歩行装置1の位置及びその各関節の位置・姿勢に基づいて、所定の範囲111内の地面4の各位置の3次元座標が計算され、地面4の形状を示す点群データ(ポイントクラウド)が得られる。歩行装置1は、この点群データを用いて、地面4の状態に適合した歩行を行うことができる。歩行装置1は更に、この点群データを操作部2に送信する。操作部2は、受信した点群データに基づいて、地面4の形状を表示装置に表示することができる。オペレータは、表示装置(出力装置)の表示画面を見て、適切な歩行指示を歩行装置1に送信することができる。
 図3は、ロボットシステムの構成を示すブロック図である。歩行装置1は、3次元計測センサ141、点群座標算出部142、地形認識部143、通信部144、コントローラ145、及びアクチュエータ146を備える。3次元計測センサ141は、図2に示された3次元計測センサ11に相当する。
 点群座標算出部142と地形認識部143は、有体の非遷移的な(tangible,non-transitory)な記憶媒体に格納されたプログラムを、歩行装置1が備える演算装置(例えば、コンピュータ)が読み出して実行することによって実現される機能ブロックである。演算装置に内蔵されたハードウェアプロセッサが、前記プログラムを実行することにより、演算装置は、点群座標算出部142、または、地形認識部143として機能する。換言すれば、点群座標算出部142および地形認識部143は、演算装置によって実現される。通信部144は、操作部2と無線通信を行うための通信インターフェースである。
 アクチュエータ146は、歩行装置1の関節(手足の関節)の角度の制御などを行う駆動装置である。コントローラ145は、歩行装置1の動作を制御するコンピュータであり、コントローラ145が出力する指令値に基づいて、アクチュエータ146が駆動することにより、歩行装置1が歩行などの動作を行う。なお、歩行装置1は、複数の関節にそれぞれ対応する複数のアクチュエータ146を備える。各アクチュエータは、対応する関節の角度を変化させ、あるいは、対応する関節の角度を維持する。
 操作部2は、通信部21、地形判断部22、3次元表示部23(出力装置)、及び制御入力部24(入力装置)を備える。通信部21は、歩行装置1と通信を行うための通信インターフェースである。地形判断部22は、有体の非遷移的な記憶媒体に格納されたプログラムを、操作部2が備える演算装置(例えば、コンピュータ)が読み出して実行することによって実現される機能ブロックである。演算装置に内蔵されたハードウェアプロセッサが、前記プログラムを実行することにより、演算装置は、地形判断処理を行う地形判断部22として機能する。換言すれば、地形判断部22は、演算装置によって実現される。3次元表示部23は、地形の鳥瞰図などを表示することができる表示装置である。制御入力部24は、オペレータ3による入力操作を受け付けるキーボード、ポインティングデバイス、タッチパネル等の入力装置である。
 本実施形態においては、歩行装置1に対して、地面4の起伏が大きい場所を避けて歩行する起伏回避制御が適用される。図4は、起伏回避制御のフローチャートである。
[ステップS1]
 最初の状態で、歩行装置1は歩行を停止しているものとする。オペレータ3は、操作部2の制御入力部24に対して、地形データの送信を要求する入力操作を行う。その入力操作に応じて、地形データ送信リクエスト(リクエスト信号)が無線通信により歩行装置1に送信される。
[ステップS2]
 歩行装置1は、地形データ送信リクエストを受信すると、例えば頭部の角度を調節することにより、3次元計測センサ141が計測する地面4の範囲111が歩行装置1の足元の前方付近となるように調節する。その状態で、3次元計測センサ141は、その範囲111内の地面4をスキャンする。例えば、レーザーレンジファインダにより、3次元計測センサ141に対する、範囲111内の地面4の多数の地点の各々の距離を示すデータを生成する。
 点群座標算出部142は、3次元計測センサ141によって得られたデータと、アクチュエータ146に設けられたエンコーダの検出値等から得られる歩行装置1の位置・姿勢などの情報を用いて、ワールド座標系(world coordinate system)等の座標系における地表の3次元的な座標値を示す多数の点からなる点群データを算出する。地形認識部143は、点群データの座標値に基づいて、地面4の形状を示す地形データを生成する。
[ステップS3]
 歩行装置1は、生成された地形データ(地形データに対応する信号)を操作部2に送信する。
[ステップS4]
 操作部2が地形データを受信すると、3次元表示部23は、その地形データに示される地面4の3次元的な形状を表示画面に表示する。オペレータ3は、その表示画面を参照し、歩行装置1が次に踏み出す足(左足12又は右足13)をどこに接地させるかを考える。オペレータ3は、例えば、ポインティングデバイスで画面上のポインタを、制御入力部24を介して操作することにより、足を接地させる位置の候補(接地候補位置)を仮決定する。すなわち、制御入力部24(入力装置)は、地面4における接地候補位置(指定位置)を指定する指定位置生成部として機能する。この場合、制御入力部24は、地面4に対して指定される指定位置(接地候補位置)を生成する指定位置生成部として機能する。この際、接地候補位置の入力と共に、足(foot)の姿勢(水平面内における足(foot)の長手方向の向き、すなわち爪先が向く方向)を共に指定するようにしてもよい。
[ステップS5]
 地形判断部22(演算装置)は、地形判断処理を実行する。より具体的には、地形判断部22(演算装置)は、接地候補位置の地形データ(接地候補位置の周辺の地形データを含んでいてもよい)を用いて、その位置における足の置きやすさ、足が接地されることとなる地点の安定性、又は地形の平坦性を示す地形判定値であるスコアを算出し、3次元表示部23により表示する。スコアは例えば、値が小さいほど足を安定して置くことが可能であり、値が大きいほど足が不安定となるため避けるべき場所であることを示す。スコアの算出方法については後述する。
[ステップS6]
 オペレータ3は、3次元表示部23(出力装置)に表示されたスコアを参照することにより、入力した接地候補位置の安定度を客観的に知ることができる。オペレータ3は例えば、スコアがある程度大きい場合には、接地候補位置を修正して制御入力部24に改めて入力する。すると地形判断部22は修正された接地候補位置のスコアを計算し、3次元表示部23に表示する。このようにして、オペレータ3は、1か所以上の接地候補位置のスコアを参照して、歩行装置1に指令する足(足裏)の位置(接地指令位置、すなわち、移動目標位置)を決定することができる。
[ステップS7]
 オペレータ3は、制御入力部24(入力装置)に対する入力操作により、接地指令位置(移動目標位置)を入力する。操作部2は、接地指令位置を示すデータ(接地指令位置に対応する指令値)を、足跡計画(Foot Plan)として歩行装置1に送信する。
[ステップS8]
 歩行装置1のコントローラ145は、足跡計画を受信すると、次に踏み出す足が接地指令位置において地面4に接地するように、各関節の回転角度(足首関節の角度を含む)などのアクチュエータ146に対する制御指令値を生成する。
[ステップS9]
 コントローラ145は、生成した制御指令値に基づいてアクチュエータ146を駆動する。その結果、歩行装置1の足(右足または左足)は、オペレータ3が入力した接地指令位置において地面4に接地し、オペレータ3が指令した歩行パターンが実現する。
[スコアの計算方法]
 次に、上記ステップS5において地形判断部22(演算装置)が生成する地形判定値であるスコアについて説明する。図5は、歩行装置1が備える足の足首付近と、地面4とを示す側面図である。この図においては、接地する直前の足が描かれている。図5を参照して、スコアについて説明する。なお、地形判定値を算出する処理が、地形判断処理に該当する。
 この説明においては、歩行装置1の脚の膝関節より先端側のリンク部材を脛131と称する。脛131の下端は、足首関節132を介して足50に接続される。足50は、足首関節132によって脛131に対して回転可能に接続される。アクチュエータ146は、足首関節132の回転角度を変化させ、あるいは、足首関節132の回転角度を維持する。足首関節132は例えば、足50を長手方向(典型的には、概ね歩行装置1の前後方向、又は、進行方向に一致する方向)に揺動させる足首ピッチ軸関節である。すなわち、足首ピッチ軸関節は、足50の長手方向(例えば、踵からつま先に向かう方向)と脛131の長手方向(例えば、膝から足首に向かう方向)の両方に対して垂直な回転軸を中心に回転する回転関節である。足首関節132の他の例としては、足を左右方向に揺動させるロール軸関節が挙げられる。ロール軸関節は、足(foot)の長手方向(例えば、踵からつま先に向かう方向)に平行な回転軸を中心に回転する関節である。足首関節132は、足首ピッチ軸関節と、足首ロール軸関節とを備えていてもよい。
 足50は、その下側面として足裏51(足平とも言う)を有する。足裏51に、足首基準点423、爪先基準点433、及び踵基準点443が設定される。足首基準点423は、足首関節132に比較的近い位置に設定される。足首基準点423として例えば、歩行装置1をZMP(ゼロモーメントポイント)制御する場合に、床反力の作用点として扱われる点を設定することが望ましい。そのような足首基準点として例えば、歩行装置1が水平な地面4に安定的に立った状態において足首関節132の鉛直方向真下に位置する点が設定される。
 足裏51に対して、足裏51に沿った形状を有する足裏仮想面が設定される。足裏仮想面は、例えば、概ね足裏51に沿った形状を有する平面である。足首基準点423に対して、足裏仮想面に垂直なベクトルが、図5に足首基準法線ベクトル424として示されている。
 足首基準点423よりも足首関節132から遠い足裏51の位置に、少なくとも1つの検査点が設定される。以下の説明では、歩行装置1の自重を支持する重要な点として足首関節132に近い足首基準点423を設定し、それに対して離れた足裏51の検査点における地形の起伏を検査する処理について記載する。足首基準点423および検査点は、それぞれ、足裏仮想面上の点である。
 検査点の具体例としては、足首基準点423に対して前方側の足裏51に、第1検査点が設定される。図5の例では、第1検査点として、足50の爪先133付近に爪先基準点433が設定される。一方、足首基準点423に対して後方側の足裏51に、第2検査点が設定される。図5の例では、第2検査点として、足50の踵134付近に踵基準点443が設定される。
 図5の側面図では足50の幅方向が紙面の奥行き方向となっているため図示されていないが、第1検査点として爪先付近の左右の端部付近に2つの点を設け、第2検査点として踵付近の左右の端部付近に2つの点を設けてもよい。すなわち、例えば、足裏51の四隅に検査点を設定することが望ましい。このように設定すると、足裏51に対する地面4の前後方向(ピッチ軸方向)の傾きと、左右方向(ロール軸方向)の傾きの両者をスコアに反映することができる。これらの足首基準点423及び検査点の位置は、操作部2の制御入力部24に対する入力によって任意に設定することができる。
 次に、地面4に関する情報について説明する。図4のステップS2において、3次元計測センサ141により地面4が計測され、点群座標算出部142によって地面4の点群データ(ポイントクラウド)が生成される。図5の地面4の付近に分布する多数の点は、点群データ55の要素を示す。点群データ55は、三次元的に散在する。図5において、複数の点群データ55は、平面上に分布しているように見えるが、実際には、複数の点群データ55の足幅方向(紙面の奥行方向)の位置は、互いに異なっている。他方、図5において、図番4は、水平面に垂直なある断面における地面4を示している。
 点群データ55に基づいて、地面4の起伏に関する情報を得ることができる。図5に示された地点41を例に、そのような起伏情報抽出処理について説明する。点群データ55のうちの任意の点を地点41として設定することができる。その地点41の周囲に分布する点群データ55が、周辺地点群410として設定される。周辺地点群410は例えば、地点41を中心として3次元的に所定距離内に分布する点群データ55である。
 周辺地点群410の点群データ55に対して、最小二乗法などによって回帰平面を求める。この回帰平面が、地点41における地面4の傾斜を近似的に示す。その回帰平面に対する法線ベクトルとして、地点法線ベクトル411が決定される。地形判断部22は、点群データ55に基づいて、任意の地点41における起伏情報である地点法線ベクトル411を算出する機能を有する。
 以上のように算出される起伏情報に基づいて、以下のような処理が行われる。
(1)歩行装置1の歩行において、地面4に平行になるように足を置く地形追従制御。
(2)足を置いた地点の安定性を示すスコアを算出する処理。
 以下、これらについて順に説明する。
[地形追従制御]
 まず、地形追従制御について説明する。コントローラ145は、歩行装置1の足裏51が概ね地面4に平行に接地するように地形追従制御を行う。まず、地形認識部143が以下のように足元地形検出処理を行う。点群データ55のうち、足首基準点423に最も近い点が、足首地点42として設定される。起伏情報抽出処理により、足首地点42における地点法線ベクトル411が足首地点法線ベクトル421として算出される。
 コントローラ145は、足が接地する際に、足の角度を示す足首基準法線ベクトル424が、地面4の角度を示す足首地点法線ベクトル421と平行になるように、アクチュエータ146(例えば足首のピッチ軸関節とロール軸関節)を制御する。換言すれば、コントローラ145は、足首基準点423に対応する足裏51の部分が、指定位置(足裏の移動目標位置)における地面4に対して平行になるように、足首関節の角度を制御する。このような制御により、地面4が多少の傾斜を有する場合でも、歩行装置1の自重を支える上で重要な足首直下の位置において、地面4に平行に足を置くことができる。その結果、歩行が安定する。
[スコア算出処理]
 次に、スコア算出処理(すなわち、地形判断処理)について説明する。操作部2は、起伏情報に基づいて、足裏51の所定の位置と地面4との相対的な角度を計算する相対角度計算処理を行う機能を有する。次に、その相対角度計算処理について説明する。操作部2は、予め設定された検査点の位置情報と、歩行装置1から受信した歩行装置1の現在位置及び現在姿勢などの情報に基づいて、爪先基準点433のワールド座標系における座標値を知ることができる。従って、爪先基準点433を点群データ55(地形のポイントクラウド)に位置合わせすることが可能である。すなわち、爪先基準点433の座標値と、各点群データ55の座標値とを対応付けることが可能である。
 地形判断部22(演算装置)は、足首基準点423および検査点を含む面である足裏仮想面を、足首基準点423が前述の指定位置と重なるように、かつ、足裏仮想面を指定位置における地面4(指定位置に対応する地面の部分)と平行になるように(換言すれば、足首基準法線ベクトル424が、地面4の角度を示す足首地点法線ベクトル421と平行になるように)仮想的に配置したとき、爪先基準点433(検査点)の座標値、踵基準点443(検査点)の座標値、足首基準点423(基準点)の座標値等を求める。なお、足首基準点423(基準点)の座標値等は、前述の地形追従制御に際しての演算処理において算出されてもよい。
 爪先基準点433の座標値に基づいて、点群データ55のなかで爪先基準点433に最も近い点が、爪先地点43として抽出される。爪先地点43において地点法線ベクトル411の計算が行われ、計算結果が爪先地点法線ベクトル431として得られる。爪先地点法線ベクトル431は、爪先付近における地面4の傾斜を示す。
 地形判断部22は更に、爪先基準点433において足裏51に垂直な方向を向く爪先基準法線ベクトル434を計算する。地形判断部22は更に、爪先基準法線ベクトル434と爪先地点法線ベクトル431とのなす角度である爪先地点角度432(換言すれば、爪先基準点433(検査点)において足裏仮想面と地面4とがなす相対角度)を算出する。当該相対角度の算出処理が、相対角度計算処理である。相対角度計算処理は、地形判断部22(演算装置)によって実行される処理である。相対角度計算処理では、足首基準点423および検査点を含む面である足裏仮想面を、足首基準点423が前述の指定位置と重なるように、かつ、足裏仮想面を指定位置における地面4(指定位置に対応する地面の部分)と平行になるように仮想的に配置したとき、爪先基準点433(検査点)において足裏仮想面と地面4とがなす相対角度が地形データ等(例えば、地形データ、足裏仮想面の位置および向きを示すデータ、基準点の位置を示すデータ、検査点の位置を示すデータ等)に基づいて算出される。
 地形判断部22は、踵についても同様に相対角度計算処理を行う。まず、点群データ55のうち、足首基準点423よりも後側の足裏51に設定された踵基準点443に最も近い点が、踵地点44として設定される。踵地点44において、起伏情報抽出処理を行うことにより、踵地点法線ベクトル441が算出される。更に、踵基準点443において足裏51に垂直な踵基準法線ベクトル444が算出される。地形判断部22は更に、踵基準法線ベクトル444と踵地点法線ベクトル441とのなす角度である踵地点角度442(換言すれば、踵基準点443(検査点)において足裏仮想面と地面4とがなす相対角度)を算出する。
 但し、足裏51に設定された足裏仮想面が平坦な場合、爪先基準法線ベクトル434と踵基準法線ベクトル444は足首基準法線ベクトル424と平行である。そのため、爪先地点角度432と踵地点角度442の算出には、爪先基準法線ベクトル434と踵基準法線ベクトル444を算出する必要は無く、代わりに足首基準法線ベクトル424を用いればよい。
 地形判断部22は、地形判定値算出処理を実行する。地形判定値算出処理では、地形判断部22(演算装置)は、爪先地点角度432と踵地点角度442とに基づいて、地面4の起伏に関するスコアである地形判定値を算出する。地形判定値は、地形の平坦度(あるいは、起伏の程度)を示す値である。例えば、爪先地点角度432と踵地点角度442を足した値をスコアとして算出する。爪先基準点433として左右に2点、踵基準点443に左右に2点の基準点を設定した場合は、それら合計4点における角度の和がスコアとして算出される。
 このスコアは、次のような意味を持つ。地形追従制御により、歩行装置1は足首基準点423において概ね地面4に平行に接地する。このとき、爪先地点角度432や踵地点角度442が大きいと、爪先や踵においては足裏51が地面4に平行に接地できず、安定性が低いことを意味する。従って、これらの角度に基づいて算出されるスコアを参照することにより、足を置く予定の位置における地面4の安定度を知ることができる。
 以上の説明では爪先基準点433と踵基準点443をスコアの算出に用いたが、スコアの算出方法としては他の例も考えられる。スコアの算出は、少なくとも1つの検査点を設定すれば行うことができる。また多数の検査点を設定してスコアを算出することもできる。例えば、点群データ55のうち、鉛直方向から見た水平面内で足裏51と重なる位置に存在するすべての点について、各地点の地面4の法線ベクトルを算出し、スコアの算出に用いてもよい。その場合、例えば各点群データ55における足裏51の法線ベクトルに対する地面4の法線ベクトルの角度の平均値をスコアとして用いることができる。
 上記の例では、スコアが大きいほど地面4の平坦度が低い(平坦でない)ことを示す。しかしながら逆に、スコアが大きいほど地面4の平坦度が高いことを示すようにしてもよい。例えば、各地点の相対角度の逆数を足してスコアを算出することにより、そのようなスコアを実現することができる。こうしたスコアの場合、オペレータ3は、スコアが高い場所を安定性が高い場所として選んでフットプランを作成する。
 図4のステップS6で説明したように、オペレータ3はスコアを参照することにより、歩行装置1が足を置くのに適した場所を判断することができる。例えば、図6において、最初にオペレータ3が左側の破線で示される位置を接地候補位置として入力したとする。地形判断部22は、その位置におけるスコアを算出して表示する。オペレータ3は、そのスコアが大きいと判断すると、例えば図6の右側の実線で示したように、少し後ろの位置に接地候補位置を修正する。地形判断部22は、修正された接地候補位置におけるスコアを計算して表示する。オペレータは、修正された位置におけるスコアが十分に小さいと判断すると、その位置を接地指令位置として入力する。
 このような制御は、特に、地面4の状況がどのようになっているのか不明な場所など、人間が歩行装置1を慎重に歩行させる必要がある場合に有効性が高い。本実施形態は脚式移動ロボットの脚の数に関係なく適用することが可能だが、特に、個々の足に高い安定性が求められる二足歩行ロボットの制御において有効性が高い。
 上記の説明では、歩行装置1の次の一歩を設定する場合を例にして説明した。しかしながら、オペレータ3は操作部2を用いて、所定の領域を歩行するための一連の足の接地予定場所からなるフットプランを設定することができる。そのような使用法について以下に説明する。
 歩行装置1は、地面4の上を自律歩行する。この場合、コントローラ145は、予め記憶した又は環境に応じて生成したフットプランに基づいて、地面4に対して指定される指定位置を生成する指定位置生成部として機能する。この際、既述の地形追従制御が行われる。すなわち、コントローラ145は、足裏51を地面4の指定位置に置くときに、足首基準点423における足裏51が地面4に対して平行になるように制御する。
 歩行装置1は、指定位置に足を置くように歩行しながら、3次元計測センサ141で測定された地形データを操作部2に送信する。オペレータ3は、3次元表示部23に表示された地形データを参照して、歩行装置1が地面4の起伏の多い箇所に差し掛かったとき、歩行装置1の停止を指令する。歩行装置1は、指令待ち状態となる。
 オペレータ3は、ステップS4~S6で示した操作により、スコアの小さい場所を選んで、フットプランの第1歩の接地指令位置として入力する。操作部2は、その位置をフットプラン情報として記憶する。次にオペレータ3は、その第1歩から歩行装置1が到達可能な場所について、ステップS4~S6で示した操作により、第2歩の接地指令位置を入力する。以下、同様にして、第1歩から第n歩までのフットプランが入力される。オペレータ3が制御入力部24に対して所定の入力操作を行うと、そのフットプラン情報が歩行装置1に送信される。歩行装置1は、そのフットプランに従って歩行することにより、地形の起伏の少ない経路を歩くことができる。
 本発明は上記各実施の形態に限定されず、本発明の技術思想の範囲内において、各実施の形態は適宜変形又は変更され得ることは明らかである。また、実施の形態または変形例で用いられる種々の技術は、技術的矛盾が生じない限り、他の実施形態または変形例に適用可能である。
 本出願は、2014年3月13日に出願された日本国特許出願第2014-50816号を基礎とする優先権を主張し、当該基礎出願の開示の全てを引用により本出願に取り込む。

Claims (11)

  1.  地面の形状を示す地形データを取得するセンサと、
     前記地面における指定位置を指定する指定位置生成部と、
     地形判断処理を実行する演算装置と
     を具備し、
     前記地形判断処理は、基準点と少なくとも1つの検査点とが設定された仮想面を、前記基準点が前記指定位置と重なるように、且つ、前記仮想面を前記指定位置における前記地面と平行になるように仮想的に配置したとき、前記少なくとも1つの検査点において前記仮想面と前記地面とが成す相対角度を前記地形データに基づいて算出する相対角度計算処理と、前記相対角度に基づいて地形の平坦度を示す地形判定値を算出する地形判定値算出処理とを含む
     地形判断装置。
  2.  請求項1に記載された地形判断装置であって、
     前記仮想面は、脚式移動ロボットの足裏の形状に基づいて設定され、
     前記少なくとも1つの検査点は、前記基準点よりも前記脚の足首関節から遠い位置に設定される
     地形判断装置。
  3.  請求項2に記載された地形判断装置であって、
     前記少なくとも1つの検査点は、前記基準点に対して爪先側に設定された第1検査点と、前記基準点に対して踵側に設定された第2検査点とを含み、
     前記地形判定値は、前記第1検査点における前記相対角度と、前記第2検査点における前記相対角度とに基づいて算出される
     地形判断装置。
  4.  請求項2又は3に記載された地形判断装置と、
     前記足裏を前記指定位置に置くときに、前記基準点に対応する前記足裏の部分が前記指定位置における前記地面に対して平行になるように、前記足首関節の角度を制御するコントローラと
     を具備する脚式移動ロボット。
  5.  請求項4に記載された脚式移動ロボットと、
     遠隔操作端末と
     を具備し、
     前記遠隔操作端末は、
     入力装置に対する操作に基づいて前記指定位置を指定する前記指定位置生成部と、
     前記地形判定値を出力する出力装置と
     を具備し、
     前記遠隔操作端末は、前記指定位置を前記足裏の移動目標位置として設定する入力操作が行われた場合、前記移動目標位置に対応する指令値を前記脚式移動ロボットに送信し、
     前記脚式移動ロボットは、前記指令値に基づいて前記足首関節の角度を制御する
     ロボットシステム。
  6.  地面の形状を示す地形データを取得する工程と、
     前記地面における指定位置を指定する工程と、
     演算装置が、基準点と少なくとも1つの検査点とが設定された仮想面を、前記基準点が前記指定位置と重なるように、且つ前記仮想面を前記指定位置における前記地面と平行になるように配置したとき、前記少なくとも1つの検査点において前記仮想面と前記地面とが成す相対角度を前記地形データに基づいて算出する相対角度計算工程と、
     演算装置が、前記相対角度に基づいて地形の平坦度を示す地形判定値を算出する地形判定値算出工程と
     を具備する
     地形判断方法。
  7.  請求項6に記載された地形判断方法であって、
     前記仮想面は、脚式移動ロボットの足裏の形状に基づいて設定され、
     前記少なくとも1つの検査点は、前記基準点よりも前記脚の足首関節から遠い位置に設定される
     地形判断方法。
  8.  請求項7に記載された地形判断方法であって、
     前記少なくとも1つの検査点は、前記基準点に対して爪先側に設定された第1検査点と、前記基準点に対して踵側に設定された第2検査点とを含み、
     前記地形判定値は、前記第1検査点における前記相対角度と、前記第2検査点における前記相対角度とに基づいて算出される
     地形判断方法。
  9.  請求項7又は8に記載された地形判断方法によって前記地形判定値を算出する工程と、
     前記脚式移動ロボットの前記足裏を前記指定位置に置くときに、前記基準点に対応する前記足裏の部分が前記指定位置における前記地面に対して平行になるように前記足首関節の角度を制御する工程と
     を具備する
     脚式移動ロボットの制御方法。
  10.  脚式移動ロボットと、
     遠隔操作端末と
     を具備するロボットシステムの制御方法であって、
     地面の形状を示す地形データを取得する工程と、
     前記地面における指定位置を指定する工程と、
     演算装置が、基準点と少なくとも1つの検査点とが設定された仮想面を、前記基準点が前記指定位置と重なるように、且つ前記指定位置における前記地面と平行になるように仮想的に配置したとき、前記少なくとも1つの検査点において前記仮想面と前記地面とが成す相対角度を前記地形データに基づいて算出する相対角度計算工程と、
     演算装置が、前記相対角度に基づいて地形の平坦度を示す地形判定値を算出する地形判定値算出工程と、
     前記演算装置が、前記遠隔操作端末に前記地形判定値を出力する工程と、
     前記指定位置が前記脚式移動ロボットの足裏の移動目標位置に決定された時、前記遠隔操作端末が、前記移動目標位置に対応する指令値を前記脚式移動ロボットに送信する工程と、
     前記脚式移動ロボットが、前記指令値に基づいて、前記脚式移動ロボットの足首関節の角度を制御する工程と
     を具備し、
     前記仮想面は、前記脚式移動ロボットの足裏の形状に基づいて設定され、
     前記少なくとも1つの検査点は、前記基準点よりも前記脚の足首関節から遠い位置に設定され、
     前記指定位置を指定する工程は、前記遠隔操作端末の入力装置を介して前記指定位置を指定することを含む
     ロボットシステムの制御方法。
  11.  請求項6から8のいずれかに記載された地形判断方法をコンピュータに実行させるプログラム。
PCT/JP2015/055961 2014-03-13 2015-02-27 地形判断装置、脚式移動ロボット、ロボットシステム、脚式移動ロボットの制御方法、及び、ロボットシステムの制御方法 WO2015137169A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/117,331 US20160347386A1 (en) 2014-03-13 2015-02-27 Robot system, leg type mobile robot system, control method of leg type mobile robot system, and control method of robot system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-050816 2014-03-13
JP2014050816A JP2015175664A (ja) 2014-03-13 2014-03-13 地形判断装置、及び脚式移動ロボット

Publications (1)

Publication Number Publication Date
WO2015137169A1 true WO2015137169A1 (ja) 2015-09-17

Family

ID=54071617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055961 WO2015137169A1 (ja) 2014-03-13 2015-02-27 地形判断装置、脚式移動ロボット、ロボットシステム、脚式移動ロボットの制御方法、及び、ロボットシステムの制御方法

Country Status (3)

Country Link
US (1) US20160347386A1 (ja)
JP (1) JP2015175664A (ja)
WO (1) WO2015137169A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105806312A (zh) * 2016-03-11 2016-07-27 中国北方车辆研究所 基于三条及以上支撑腿的足式机器人地形参数测量方法
CN110940286A (zh) * 2019-12-06 2020-03-31 重庆交通大学 一种用于隧道围岩变形非接触监测的优化装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228097B2 (ja) * 2014-10-06 2017-11-08 本田技研工業株式会社 移動ロボット
JP6483056B2 (ja) * 2016-06-10 2019-03-13 任天堂株式会社 ゲーム装置、ゲーム制御方法およびゲームプログラム
JP7135418B2 (ja) * 2018-05-11 2022-09-13 スミダコーポレーション株式会社 平坦度検出方法、平坦度検出装置及び平坦度検出プログラム
CN110597267B (zh) * 2019-09-27 2023-01-10 长安大学 一种足式机器人的局部最优落足点选取方法
JP2022110260A (ja) * 2021-01-18 2022-07-29 ソニーグループ株式会社 移動装置、および移動装置制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188684A (ja) * 2007-02-01 2008-08-21 Toyota Motor Corp 2足ロボット
JP2008246609A (ja) * 2007-03-29 2008-10-16 Honda Motor Co Ltd 脚式移動ロボット
JP2011170843A (ja) * 2010-01-20 2011-09-01 Ihi Aerospace Co Ltd 経路生成装置と方法および経路生成装置を備える移動装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000153476A (ja) * 1998-09-14 2000-06-06 Honda Motor Co Ltd 脚式移動ロボット
JP3615702B2 (ja) * 1999-11-25 2005-02-02 ソニー株式会社 脚式移動ロボットの動作制御装置及び動作制御方法、並びに、脚式移動ロボット
US7653216B2 (en) * 2003-12-23 2010-01-26 Carnegie Mellon University Polyhedron recognition system
US9283674B2 (en) * 2014-01-07 2016-03-15 Irobot Corporation Remotely operating a mobile robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188684A (ja) * 2007-02-01 2008-08-21 Toyota Motor Corp 2足ロボット
JP2008246609A (ja) * 2007-03-29 2008-10-16 Honda Motor Co Ltd 脚式移動ロボット
JP2011170843A (ja) * 2010-01-20 2011-09-01 Ihi Aerospace Co Ltd 経路生成装置と方法および経路生成装置を備える移動装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105806312A (zh) * 2016-03-11 2016-07-27 中国北方车辆研究所 基于三条及以上支撑腿的足式机器人地形参数测量方法
CN110940286A (zh) * 2019-12-06 2020-03-31 重庆交通大学 一种用于隧道围岩变形非接触监测的优化装置

Also Published As

Publication number Publication date
JP2015175664A (ja) 2015-10-05
US20160347386A1 (en) 2016-12-01

Similar Documents

Publication Publication Date Title
WO2015137169A1 (ja) 地形判断装置、脚式移動ロボット、ロボットシステム、脚式移動ロボットの制御方法、及び、ロボットシステムの制御方法
US9073209B2 (en) Walking robot and control method thereof
US9969086B1 (en) Achieving a target gait in a legged robot based on steering commands
US9079624B2 (en) Walking robot and method of controlling balance thereof
JP5181957B2 (ja) ロボット制御装置、ロボット制御方法およびロボット制御プログラム
JP2009096335A (ja) 脚型ロボット
JP5104355B2 (ja) ロボット制御装置、ロボット制御方法およびロボット制御プログラム
JP2009174898A (ja) 移動体および環境情報作成方法
JP2018513496A (ja) 足接地位置追随装置、その動きを制御する方法、コンピュータ実行可能なプログラム、及びそれを格納したコンピュータ読取可能な非一時的な情報記録媒体
JP5949477B2 (ja) 移動体の遠隔操作方法および遠隔操作装置
JP2007190654A (ja) 脚車輪型ロボット
JP4905041B2 (ja) ロボット制御装置
JP2014087922A (ja) ロボット制御装置及び方法
JPWO2009040885A1 (ja) ロボット制御装置、ロボット制御方法およびロボット制御プログラム
US11926064B2 (en) Remote control manipulator system and remote control assistance system
JP5895682B2 (ja) 障害物検出装置及びそれを備えた移動体
JP6369392B2 (ja) 遠隔制御システム
JP2022110261A (ja) 移動装置、および移動装置制御方法
Lee et al. Dynamic humanoid locomotion over rough terrain with streamlined perception-control pipeline
KR101820775B1 (ko) 로봇 발 착지 제어시스템
JP4696728B2 (ja) 脚式ロボットとその制御方法
WO2022153842A1 (ja) 移動装置、および移動装置制御方法
US20240123613A1 (en) Robot control method, robot control system, and computer readable medium
US20220366521A1 (en) Control device, control method, and program storage medium
WO2023021734A1 (ja) 移動装置、および移動装置制御方法、並びにプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760711

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15117331

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15760711

Country of ref document: EP

Kind code of ref document: A1