WO2015133594A1 - 高分子電解質膜、およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池 - Google Patents

高分子電解質膜、およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池 Download PDF

Info

Publication number
WO2015133594A1
WO2015133594A1 PCT/JP2015/056586 JP2015056586W WO2015133594A1 WO 2015133594 A1 WO2015133594 A1 WO 2015133594A1 JP 2015056586 W JP2015056586 W JP 2015056586W WO 2015133594 A1 WO2015133594 A1 WO 2015133594A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
electrolyte membrane
polyazole
ionic group
polymer
Prior art date
Application number
PCT/JP2015/056586
Other languages
English (en)
French (fr)
Inventor
國田友之
出原大輔
梅田浩明
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP15758229.7A priority Critical patent/EP3116055A4/en
Priority to CA2941371A priority patent/CA2941371C/en
Priority to KR1020167027167A priority patent/KR102294769B1/ko
Priority to US15/124,044 priority patent/US10243229B2/en
Priority to CN201580012176.1A priority patent/CN106104888B/zh
Priority to PCT/JP2015/056586 priority patent/WO2015133594A1/ja
Priority to JP2015516333A priority patent/JP6361652B2/ja
Publication of WO2015133594A1 publication Critical patent/WO2015133594A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4043(I) or (II) containing oxygen other than as phenol or carbonyl group
    • C08G65/405(I) or (II) containing oxygen other than as phenol or carbonyl group in ring structure, e.g. phenolphtalein
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2268Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds, and by reactions not involving this type of bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polymer electrolyte membrane, and in particular, has excellent chemical stability that can withstand a strong oxidizing atmosphere during operation of a fuel cell, and also has excellent proton conductivity under low humidification conditions and excellent mechanical properties.
  • the present invention relates to a polymer electrolyte membrane excellent in practical use capable of achieving strength and physical durability, and an electrolyte membrane with a catalyst layer, a membrane electrode assembly and a solid polymer fuel cell using the membrane.
  • a fuel cell is a kind of power generation device that extracts electric energy by electrochemically oxidizing a fuel such as hydrogen or methanol, and has recently attracted attention as a clean energy supply source.
  • the polymer electrolyte fuel cell has a standard operating temperature as low as around 100 ° C. and a high energy density, so that it is a relatively small-scale distributed power generation facility, a mobile power generator such as an automobile or a ship.
  • a mobile power generator such as an automobile or a ship.
  • secondary batteries such as nickel metal hydride batteries and lithium ion batteries.
  • an anode electrode and a cathode electrode in which a reaction responsible for power generation occurs, and a polymer electrolyte membrane serving as a proton conductor between the anode and the cathode are sometimes referred to as a membrane electrode assembly (hereinafter, abbreviated as MEA).
  • MEA membrane electrode assembly
  • a cell in which this MEA is sandwiched between separators is configured as a unit.
  • the main component of the polymer electrolyte membrane is an ionic group-containing polymer (polymer electrolyte material), but it is also possible to use a polymer electrolyte composition containing an additive or the like in order to enhance durability.
  • the polymer electrolyte composition is also suitable as a binder for an electrode catalyst layer used in a particularly severe oxidizing atmosphere.
  • the required characteristics of the polymer electrolyte membrane and the polymer electrolyte composition include firstly high proton conductivity, and it is particularly necessary to have high proton conductivity even under high temperature and low humidification conditions.
  • the polymer electrolyte membrane and the polymer electrolyte composition serve as a barrier that prevents direct reaction between the fuel and oxygen, low fuel permeability is required.
  • Nafion registered trademark
  • DuPont which is a perfluorosulfonic acid polymer
  • any of these polymer electrolyte membranes has a problem of insufficient chemical stability when used in a polymer electrolyte fuel cell.
  • the mechanism of chemical degradation has not been fully elucidated, but hydrogen peroxide generated mainly at electrodes during power generation, and hydroxy radicals generated by the reaction of the hydrogen peroxide with iron ions and copper ions in the film
  • the polymer chain and the side chain may be cleaved, and the polymer electrolyte membrane may be thin or fragile.
  • the polymer electrolyte membrane that has become fragile is damaged while it repeatedly swells and contracts in accordance with changes in humidity.
  • Patent Document 1 discloses that a perfluorosulfonic acid polymer is a polyphenylene sulfide (hereinafter sometimes abbreviated as PPS) which is a sulfur-containing polymer and a polybenzimidazole (hereinafter abbreviated as PBI) which is a nitrogen-containing polymer.
  • PPS polyphenylene sulfide
  • PBI polybenzimidazole
  • Patent Document 2 proposes a polymer electrolyte membrane in which a polyamic acid or a polyimide is blended with a perfluorosulfonic acid polymer or a sulfonic acid group-containing polyetherketone polymer (hereinafter sometimes abbreviated as sPEK). .
  • sPEK perfluorosulfonic acid polymer or a sulfonic acid group-containing polyetherketone polymer
  • Patent Document 3 proposes a polymer electrolyte membrane in which perfluorosulfonic acid polymer or sPEK is mixed with insoluble PBI particles.
  • Patent Document 4 proposes a polymer electrolyte prepared by synthesizing insoluble PBI in the presence of sulfonated PPS and molding the precipitated mixed powder by hot pressing.
  • Patent Document 5 proposes a polymer electrolyte membrane in which a polymer electrolyte and PBI are mixed to contain insoluble PBI particles.
  • Patent Document 1 the durability is not sufficient.
  • Patent Document 2 intends to improve the durability, but it is not sufficient and the power generation performance is insufficient.
  • Patent Document 3 although the durability of the polymer electrolyte membrane can be improved to some extent, further improvement in long-term durability is desired.
  • the polymer electrolyte membrane according to the prior art is insufficient as a means for improving economy, workability, proton conductivity, mechanical strength, chemical stability and physical durability, and is industrially useful. It could not be a polymer electrolyte membrane.
  • the present invention has excellent chemical stability that can withstand a strong oxidizing atmosphere during fuel cell operation, and also has excellent proton conductivity and excellent mechanical strength under low humidification conditions.
  • the present invention is to provide a polymer electrolyte membrane, an electrolyte membrane with a catalyst layer, a membrane electrode assembly, and a solid polymer fuel cell that can achieve physical durability and are excellent in practical use.
  • the present inventors have blended polyazole with an ionic group-containing polymer electrolyte, and obtained a uniform polymer electrolyte membrane.
  • proton conductivity and power generation characteristics including low humidification conditions, processability such as film-forming properties, chemical stability such as oxidation resistance, radical resistance, hydrolysis resistance.
  • the present invention was completed by investigating that excellent performance in physical durability such as mechanical strength and hot water resistance of the membrane can be expressed, and that such problems can be solved at once, and further various studies were made.
  • the present invention employs the following means in order to solve such problems. That is, the polymer electrolyte membrane of the present invention is a polymer electrolyte membrane containing at least an ionic group-containing polymer electrolyte and a polyazole, and has a phase of 2 nm or more mainly composed of polyazole in transmission electron microscope observation. It is a polymer electrolyte membrane in which no separation is observed.
  • the present invention has excellent chemical stability that can withstand a strong oxidizing atmosphere during fuel cell operation, and also has excellent proton conductivity under low humidification conditions, excellent mechanical strength and physical durability. It is possible to provide a polymer electrolyte membrane, an electrolyte membrane with a catalyst layer, a membrane electrode assembly, and a solid polymer fuel cell that can be achieved and have excellent practicality.
  • (M1) to (M4) are explanatory views schematically showing aspects of a phase separation structure in a polymer electrolyte membrane, wherein (M1) is co-continuous, (M2) is lamellar, and (M3) is a cylinder structure. , (M4) illustrates a sea-island structure.
  • the polymer electrolyte membrane of the present invention is a polymer electrolyte membrane containing an ionic group-containing polymer electrolyte and polyazole, and phase separation of 2 nm or more mainly comprising polyazole is observed in a transmission electron microscope. It is a polymer electrolyte membrane that is not.
  • a preferred method for producing the polymer electrolyte membrane of the present invention includes a method of forming a solution of a polymer electrolyte composition containing an ionic group-containing polymer electrolyte and a polyazole, but is not limited thereto. Absent.
  • polyazole which is one of the components constituting the polymer electrolyte composition is a compound having a plurality of azole rings in the molecule.
  • a polymer containing an azole ring in the skeleton is preferably used in the present invention because of its excellent chemical stability, heat resistance, and elution resistance.
  • the azole ring is a hetero five-membered ring containing one or more nitrogen atoms in the ring.
  • the hetero five-membered ring may contain oxygen, sulfur, etc. in addition to nitrogen as a different atom other than carbon.
  • azole ring for example, in addition to a pyrrole ring containing only one nitrogen atom as a hetero atom other than a carbon atom, those having two hetero atoms other than a carbon atom include imidazole (1,3-diazole). ) Ring, oxazole ring, thiazole ring, selenazole ring, pyrazole (1,2-diazole) ring, isoxazole ring, isothiazole ring, etc.
  • imidazole ring imidazole ring, oxazole ring, thiazole ring, selenazole ring, 1H-1,2,3-triazole (1,2,3-triazole) ring, 1H-1, A 2,4-triazole (1,2,4-triazole) ring is preferable, and an imidazole ring is more preferable because it is easy to synthesize and can be used at low cost.
  • the azole ring as described above may be condensed with an aromatic ring such as a benzene ring, for example, p-phenylene group, m-phenylene group, naphthalene group, diphenylene ether group, diphenylene sulfone group, From the viewpoint of obtaining heat resistance, it is preferable to use a compound in which a divalent aromatic group such as a biphenylene group, a terphenyl group, or a 2,2-bis (4-carboxyphenylene) hexafluoropropane group is bonded to a hetero five-membered ring. .
  • polyazole used in the present invention examples include a polyimidazole compound, a polybenzimidazole compound, a polybenzobisimidazole compound, a polybenzoxazole compound, a polyoxazole compound, a polythiazole compound, and a polybenzothiazole compound. However, it is not particularly limited.
  • polybenzimidazole compounds polybenzbisimidazole compounds, polybenzoxazole compounds, and polybenzthiazole compounds are preferable from the viewpoint of heat resistance and processability, and can be easily synthesized and used at low cost. Therefore, a polybenzimidazole compound is more preferable.
  • the trivalent nitrogen atom contained in the polyazole is oxidized to a pentavalent N-oxide to function as a peroxide decomposing agent.
  • the nitrogen atom contained in the polyazole and the ionic group contained in the ionic group-containing polymer electrolyte form a three-dimensional bridge by intermolecular interaction such as an ion complex or hydrogen bond, Physical deterioration is suppressed by improving the mechanical strength of the polymer electrolyte membrane and suppressing swelling / shrinkage during fuel cell operation.
  • the nitrogen atom portion functions as a ligand for metal ions (Fe 2+ , Cu 2+, etc.) and functions as a metal deactivator that is deactivated by forming a strong complex.
  • the polymer electrolyte membrane of the present invention contains an ionic group-containing polymer electrolyte and polyazole, and contains polyazole as a main component in transmission electron microscope observation (hereinafter sometimes abbreviated as “TEM observation”). Phase separation of 2 nm or more is not observed. Here, the phase separation of 2 nm or more mainly composed of polyazole is not observed in the TEM observation.
  • the state in which the ionic group-containing polymer electrolyte and polyazole are uniformly mixed in the polymer electrolyte membrane is quantitatively determined. It is an expression.
  • phase separation of 2 nm or more which is mainly composed of polyazole
  • durability is reduced because the polymer electrolyte membrane swells and shrinks during fuel cell operation and breaks at the interface portion of the phase separation.
  • the polyazole and the ionic group-containing polymer electrolyte are in contact with each other only at the interface portion of the phase separation, the effect of decomposing the peroxide in the polymer electrolyte by the polyazole is sufficiently obtained.
  • it is difficult to form an intermolecular interaction with an ionic group by polyazole it is presumed that the effect of the present invention cannot be sufficiently obtained.
  • the presence / absence of phase separation between the ionic group-containing polymer electrolyte and the polyazole in the polymer electrolyte membrane can be confirmed by the following method when no phase separation of 2 nm or more containing polyazole as a main component is observed. it can.
  • an arbitrary 15 ⁇ m ⁇ 15 ⁇ m region is observed with a TEM to confirm the presence and size of phase separation.
  • black island-like particles is displayed on the TEM image when TEM observation is performed without performing staining treatment.
  • a state in which particles) are dispersed in a gray or white sea phase is observed.
  • the shape of the island phase (island particles) is not particularly limited, such as a circle, an ellipse, a polygon, and an indefinite shape.
  • the contrast of the black island particles is mainly attributed to polyazole, and the white sea (continuous phase) part is mainly attributed to the ionic group-containing polymer electrolyte.
  • the sea phase a white and gray co-continuous or lamellar phase separation structure may be formed depending on the structure of the polymer and the contrast of TEM observation, but is not particularly limited.
  • the island phase is mainly composed of polyazole is that when the phase separation structure is observed by TEM, the nitrogen content is mapped using energy dispersive X-ray analysis (EDX) or electron beam microanalyzer (EPMA). Determine by doing.
  • EDX energy dispersive X-ray analysis
  • EPMA electron beam microanalyzer
  • elemental analysis is performed at 50 points of the island phase in the sea / island structure to determine the average nitrogen amount in the island phase, and the polyazole concentration in the island phase is calculated according to the following formula. At this time, if the polyazole concentration is 50% by weight or more, it can be determined that the island phase is mainly composed of polyazole.
  • Polyazole concentration (wt%) 100 ⁇ [Average amount of nitrogen in island phase (% by weight) ⁇ Amount of polymer nitrogen (% by weight)] / [Azole nitrogen content (wt%)-Polymer nitrogen content (wt%)]
  • the amount of polymer nitrogen and the amount of azole nitrogen are the amounts of nitrogen contained in the polymer electrolyte and polyazole, respectively.
  • the weight average molecular weight of the polyazole of the present invention is preferably 500 or more and 300,000 or less, more preferably 500 or more and 250,000 or less, and further preferably 1000 or more and 250,000 or less.
  • the weight average molecular weight is less than 500, the polyazole may bleed out on the surface of the polymer electrolyte membrane, thereby reducing the power generation performance.
  • the weight average molecular weight is larger than 300,000, the dispersibility of polyazole in the membrane is deteriorated, so that it is difficult to produce a polymer electrolyte membrane in which the polymer electrolyte and polyazole do not form a phase separation structure of 2 nm or more. There is a case.
  • the polyazole used in the polymer electrolyte membrane of the present invention those that do not dissolve in an aqueous solution containing a strongly acidic substance having a sulfonic acid group or the like are preferable.
  • the polyazole is preferable if the solubility in water and sulfuric acid at 60 ° C. is 100 mg / L or less, more preferably 20 mg / L or less, and particularly preferably 4 mg / L or less. Within this range, the polyazole can maintain its effect without eluting out of the membrane, and more excellent chemical stability and durability can be obtained.
  • the content of polyazole in the polymer electrolyte membrane of the present invention can be appropriately selected in consideration of the balance between power generation characteristics and durability, and is not limited, but is a non-volatile component in the polymer electrolyte membrane It is preferable that it is 0.002 to 15 weight% of the whole. More preferably, they are 0.01 weight% or more and 5 weight% or less, More preferably, they are 0.02 weight% or more and 3 weight% or less. If it is less than 0.002% by weight, the durability may be insufficient. On the other hand, if it exceeds 15% by weight, proton conductivity may be insufficient.
  • the polyazole used in the present invention preferably does not contain an ionic group.
  • the ionic group refers to a carboxyl group, a sulfonic acid group, a phosphonic acid group, a hydroxyl group, and the like.
  • the solubility in water and acid is increased, so that the polyazole is eluted out of the membrane and the chemical stability and durability may be lowered.
  • the ionic group contained in polyazole and the nitrogen atom form a salt, it becomes difficult to form an intermolecular interaction with the ionic group of the ionic group-containing polymer electrolyte. In some cases, effects such as decomposition, suppression of swelling / shrinkage, and improvement of mechanical strength cannot be sufficiently obtained.
  • the ionic group-containing polymer electrolyte used in the present invention is not limited in structure as long as it contains an ionic group as described later and can achieve both power generation characteristics and chemical stability. Typical examples include polymers and hydrocarbon polymers.
  • the perfluoro polymer is a polymer in which most or all of the hydrogens of the alkyl group and / or alkylene group in the polymer are substituted with fluorine atoms.
  • a perfluoro polymer having an ionic group Commercial products such as Nafion (registered trademark) (manufactured by DuPont), Flemion (registered trademark) (manufactured by Asahi Glass) and Aciplex (registered trademark) (manufactured by Asahi Kasei) can be mentioned.
  • These perfluoro polymers can be preferably used because the swelling and shrinkage accompanying the change in humidity are small, and the electrolyte membrane is not easily damaged by the change in humidity.
  • hydrocarbon polymer As the ionic group-containing polymer electrolyte.
  • the hydrocarbon polymer can be preferably used from the viewpoint of mechanical strength, chemical stability, and the like, and is more preferably a hydrocarbon polymer having an aromatic ring in the main chain.
  • hydrocarbon polymers having sufficient mechanical strength and physical durability that are used as engineering plastics are preferable.
  • the aromatic ring may include not only an aromatic ring consisting only of hydrocarbons but also a hetero ring. Further, a part of the aliphatic unit and a bonding group other than hydrocarbon may constitute the polymer together with the aromatic ring unit.
  • Preferred examples of the hydrocarbon polymer having an aromatic ring in the main chain include polysulfone, polyethersulfone, polyphenylene oxide, polyarylene ether polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyparaphenylene, polyarylene polymer, polyarylene.
  • Examples include ketones, polyether ketones, polyarylene phosphine oxides, polyether phosphine oxides, polybenzoxazoles, polybenzthiazoles, polybenzimidazoles, aromatic polyamides, polyimides, polyether imides, polyimide sulfones, and the like. It is not limited to these.
  • aromatic polyether polymers are more preferable. In addition, it exhibits crystallinity due to good packing of the main chain skeleton structure and extremely strong intermolecular cohesion, and has the property that it does not dissolve in general solvents, as well as excellent tensile strength and elongation, tear strength, and fatigue resistance. Aromatic polyether ketone polymers are particularly preferred.
  • the aromatic polyether ketone polymer is a general term for polymers having at least an aromatic ring, an ether bond and a ketone bond in the main chain, and includes an aromatic polyether ketone, an aromatic polyether ketone ketone, an aromatic Aromatic polyether ether ketone, aromatic polyether ether ketone ketone, aromatic polyether ketone ether ketone ketone, aromatic polyether ketone sulfone, aromatic polyether ketone phosphine oxide, aromatic polyether ketone nitrile and the like.
  • the ionic group of the ionic group-containing polymer electrolyte is preferably a negatively charged atomic group, and preferably has proton exchange ability.
  • a sulfonic acid group, a sulfonimide group, a sulfuric acid group, a phosphonic acid group, a phosphoric acid group, and a carboxylic acid group are preferably used.
  • the ionic group includes a case where it is a salt.
  • the counter cation in the case where the ionic group forms a salt include an arbitrary metal cation, NR 4 + (R is an arbitrary organic group), and the like.
  • R is an arbitrary organic group
  • the valence and the like are not particularly limited and can be used.
  • preferable metal cations include cations such as Li, Na, K, Rh, Mg, Ca, Sr, Ti, Al, Fe, Pt, Rh, Ru, Ir, and Pd. Among them, Na, K, and Li cations that are inexpensive and can be easily proton-substituted are preferably used.
  • the structure of the ionic group-containing polymer electrolyte used in the present invention will be described in detail later.
  • the method of introducing an ionic group into the structure is a method of polymerizing using a monomer having an ionic group, and a polymer.
  • transducing an ionic group by reaction is mentioned.
  • a monomer having an ionic group in a repeating unit may be used as a method for polymerizing using a monomer having an ionic group. Such a method is described, for example, in Journal of Membrane Science, 197, 2002, p. 231-242. This method is preferable because the ion exchange capacity of the polymer can be easily controlled.
  • a method for introducing an ionic group by a polymer reaction for example, Polymer Preprints (Japan), 51, 2002, p. It is possible by the method described in 750 etc.
  • Introduction of a phosphate group into an aromatic polymer can be achieved by, for example, phosphoric esterification of an aromatic polymer having a hydroxyl group.
  • Carboxylic acid groups can be introduced into the aromatic polymer by, for example, oxidizing an aromatic polymer having an alkyl group or a hydroxyalkyl group.
  • the introduction of a sulfate group into an aromatic polymer can be achieved by, for example, sulfate esterification of an aromatic polymer having a hydroxyl group.
  • the method described in JP-A-2-16126 or JP-A-2-208322 can be used.
  • sulfonation by reacting an aromatic polymer with a sulfonating agent such as chlorosulfonic acid in a solvent such as chloroform or by reacting in concentrated sulfuric acid or fuming sulfuric acid.
  • a sulfonating agent such as chlorosulfonic acid in a solvent such as chloroform
  • the sulfonating agent is not particularly limited as long as it sulfonates an aromatic polymer, and sulfur trioxide or the like can be used in addition to the above.
  • the degree of sulfonation can be controlled by the amount of sulfonating agent used, the reaction temperature and the reaction time.
  • Introduction of a sulfonimide group into an aromatic polymer can be achieved, for example, by a method of reacting a sulfonic acid group and a sulfonamide group.
  • the molecular weight of the ionic group-containing polymer electrolyte thus obtained is preferably from 10,000 to 5,000,000, and more preferably from 10,000 to 500,000 in terms of polystyrene-converted weight average molecular weight. If it is less than 10,000, any of the mechanical strength, physical durability, and solvent resistance may be insufficient, such as cracking in the molded film. On the other hand, if it exceeds 5,000,000, the solubility may be insufficient, the solution viscosity may be high, and the processability may be poor.
  • the ionic group-containing polymer electrolyte used in the present invention includes a segment containing an ionic group (A1) and a segment containing no ionic group (A2) from the viewpoint of proton conductivity and power generation characteristics under low humidification conditions. And a block copolymer containing at least one of each. Further, a block copolymer having a linker site for connecting the segments is more preferable. Due to the presence of the linker, different segments can be linked while effectively suppressing side reactions.
  • the number average molecular weight of the segment (A1) containing an ionic group and the segment (A2) containing no ionic group should be 50,000 or more from the balance between proton conductivity and physical durability under low humidification.
  • 10,000 or more is more preferable, and 15,000 or more is more preferable.
  • 50,000 or less are preferable, 40,000 or less are more preferable, 30,000 or less are still more preferable.
  • Block copolymer weight when a block copolymer containing at least one segment (A1) containing an ionic group and at least one segment (A2) containing no ionic group is used as the ionic group-containing polymer electrolyte
  • a segment (A1) containing an ionic group is preferably represented by the following general formula (S1)
  • a segment (A2) not containing an ionic group is represented by the following general formula (S2).
  • Ar 1 to Ar 4 represent any divalent arylene group, and at least one of Ar 1 and Ar 2 has an ionic group as a substituent.
  • Ar 3 and Ar 4 may or may not have an ionic group as a substituent,
  • Ar 1 to Ar 4 may be optionally substituted with a group other than the ionic group, and
  • Ar 1 to Ar 4 are constituent units. Each may be the same or different. * Represents a binding site with the general formula (S1) or other structural unit.)
  • Ar 5 to Ar 8 represent any divalent arylene group, which may be substituted, but does not have an ionic group. Ar 5 to Ar 8 are the same for each structural unit. However, it may be different. * Represents a binding site with the general formula (S2) or other structural unit.)
  • the block copolymer containing the structural units represented by the general formulas (S1) and (S2) all the arylene groups are chemically stabilized with an electron-withdrawing ketone group, and in a plane. Since the structure is close, the packing of molecules is improved, so that the mechanical strength can be improved by imparting crystallinity. Further, it is preferable because the glass transition temperature is lowered, so that it can be softened and the physical durability can be increased.
  • Examples of the unsubstituted skeleton of the divalent arylene groups Ar 1 to Ar 8 in the general formulas (S1) and (S2) include hydrocarbon-based arylene groups such as a phenylene group, a naphthylene group, a biphenylene group, and a fluorenediyl group, Heteroarylene groups such as pyridinediyl, quinoxalinediyl, thiophenediyl and the like can be mentioned, preferably a phenylene group, more preferably a p-phenylene group.
  • the segment (A1) containing an ionic group is more preferably a structural unit that is chemically stable, has increased acidity due to an electron withdrawing effect, and is introduced with high density of ionic groups.
  • a structural unit exhibiting crystallinity is more preferable because it is chemically stable and can have a strong intermolecular cohesive force.
  • a content rate of the structural unit represented by General formula (S1) contained in the segment (A1) containing the said ionic group it is 20 mol% or more in the segment (A1) containing an ionic group. It is preferably 50 mol% or more, more preferably 80 mol% or more.
  • content rate of the structural unit represented by general formula (S2) contained in the segment (A2) which does not contain an ionic group it is 20 mol% or more in the segment (A2) which does not contain an ionic group
  • Preferred examples of the structural unit represented by the general formula (S1) include structural units represented by the following general formula (P2) in terms of raw material availability.
  • a structural unit represented by the following formula (P3) is more preferable, and a structural unit represented by the following formula (P4) is more preferable.
  • M 1 to M 4 represent a hydrogen cation, a metal cation, and an ammonium cation NR 4 + (R is an arbitrary organic group), and M 1 to M 4 are the same as each other)
  • R1 to r4 each independently represents an integer of 0 to 4, r1 + r2 is an integer of 1 to 8, and r1 to r4 may be different for each structural unit.
  • * Represents a binding site with the formula (P2) (P3) (P4) or other structural unit.
  • a block copolymer containing at least one segment (A1) containing an ionic group and one or more segments (A2) containing no ionic group is used as the ionic group-containing polymer electrolyte.
  • the molar composition ratio (A1 / A2) of the segment (A1) containing an ionic group and the segment (A2) containing no ionic group is preferably 0.2 or more, 0.33 or more is more preferable, and 0.5 or more is more preferable. Moreover, 5 or less is preferable, 3 or less is more preferable, and 2 or less is further more preferable.
  • the molar composition ratio A1 / A2 is less than 0.2 or exceeds 5, proton conductivity under low humidification conditions may be insufficient, or hot water resistance and physical durability may be insufficient.
  • the ion exchange capacity of the segment (A1) containing the ionic group is preferably 2.5 meq / g or more, more preferably 3 meq / g or more from the viewpoint of proton conductivity under low humidification conditions. 5 meq / g or more is more preferable. Moreover, 6.5 meq / g or less is preferable, 5 meq / g or less is more preferable, and 4.5 meq / g or less is further more preferable.
  • the ion exchange capacity of the segment (A1) containing an ionic group is less than 2.5 meq / g, proton conductivity under low humidification conditions may be insufficient, and when it exceeds 6.5 meq / g, Hot water resistance and physical durability may be insufficient.
  • the ion exchange capacity of the segment (A2) not containing the ionic group is preferably low from the viewpoint of hot water resistance, mechanical strength, dimensional stability, and physical durability, preferably 1 meq / g or less. 5 meq / g or less is more preferable, and 0.1 meq / g or less is more preferable.
  • the ion exchange capacity of the segment (A2) not containing an ionic group exceeds 1 meq / g, the hot water resistance, mechanical strength, dimensional stability, and physical durability may be insufficient.
  • An ionic group-containing polymer electrolyte is a block copolymer containing at least one segment (A1) containing an ionic group and at least one segment (A2) containing no ionic group, and the ion of the block copolymer
  • the segment (A1) containing a functional group has a sulfonic acid group
  • the ion exchange capacity is preferably 0.1 meq / g or more and 5 meq / g or less from the viewpoint of the balance between proton conductivity and water resistance. 1.5 meq / g or more is more preferable, and 2 meq / g or more is more preferable.
  • 3.5 meq / g or less is more preferable, and 3 meq / g or less is further more preferable.
  • the ion exchange capacity is less than 0.1 meq / g, proton conductivity may be insufficient, and when it is greater than 5 meq / g, water resistance may be insufficient.
  • the ion exchange capacity is a value determined by a neutralization titration method.
  • the neutralization titration method is performed as follows. In addition, a measurement shall be performed 3 times or more and the average value shall be taken.
  • (2) Add 50 mL of 5% by weight aqueous sodium sulfate solution to the electrolyte, and leave it for 12 hours for ion exchange.
  • the generated sulfuric acid is titrated using 0.01 mol / L sodium hydroxide aqueous solution.
  • a commercially available phenolphthalein solution for titration (0.1 w / v%) is added as an indicator, and the point at which light reddish purple is obtained is taken as the end point.
  • the ion exchange capacity is determined by
  • Ion exchange capacity (meq / g) [Concentration of sodium hydroxide aqueous solution (mmol / ml) ⁇ Drip amount (ml)] / Dry weight of sample (g)
  • the method for synthesizing the segment (A1) containing an ionic group and the segment (A2) not containing an ionic group is not particularly limited as long as a substantially sufficient molecular weight can be obtained. It can be synthesized using an aromatic nucleophilic substitution reaction of an aromatic group active dihalide compound and a divalent phenol compound, or an aromatic nucleophilic substitution reaction of a halogenated aromatic phenol compound.
  • the aromatic active dihalide compound used for the synthesis of the segment (A1) containing an ionic group the use of a compound in which an ionic group is introduced into the aromatic active dihalide compound as a monomer, chemical stability, production cost, ion
  • the amount of the sex group is preferable from the viewpoint that precise control is possible.
  • ionic groups preferably introduced into such monomers include sulfonic acid groups, phosphonic acid groups, and sulfonimide groups.
  • Preferred examples of the monomer having a sulfonic acid group as an ionic group include 3,3′-disulfonate-4,4′-dichlorodiphenylsulfone and 3,3′-disulfonate-4,4′-difluorodiphenylsulfone.
  • 3,3′-disulfonate-4,4′-dichlorodiphenyl ketone and 3,3′-disulfonate-4,4′-difluorodiphenyl ketone are more preferable from the viewpoint of chemical stability and physical durability. From the viewpoint of polymerization activity, 3,3′-disulfonate-4,4′-difluorodiphenyl ketone is more preferable.
  • Preferred examples of the monomer having a phosphonic acid group include 3,3′-diphosphonate-4,4′-dichlorodiphenylsulfone, 3,3′-diphosphonate-4,4′-difluorodiphenylsulfone, 3,3 '-Diphosphonate-4,4'-dichlorodiphenyl ketone, 3,3'-diphosphonate-4,4'-difluorodiphenyl ketone, 3,3'-diphosphonate-4,4'-dichlorodiphenylphenylphosphine oxide, 3,3′-diphosphonate-4,4′-difluorodiphenylphenylphosphine oxide, and the like.
  • the monomer having a sulfonimide group examples include 5,5′-carbonylbis (2-fluoro-N- (phenylsulfonyl) benzenesulfonamide), 5,5′-carbonylbis (2-chloro-N—).
  • Examples of the aromatic active dihalide compound having no ionic group used for the synthesis of the segment (A1) containing an ionic group and the segment (A2) containing no ionic group include 4,4′-dichlorodiphenylsulfone, 4,4′-difluorodiphenylsulfone, 4,4′-dichlorodiphenyl ketone, 4,4′-difluorodiphenyl ketone, 4,4′-dichlorodiphenylphenylphosphine oxide, 4,4′-difluorodiphenylphenylphosphine oxide, 2 , 6-dichlorobenzonitrile, 2,6-difluorobenzonitrile, and the like.
  • 4,4′-dichlorodiphenyl ketone and 4,4′-difluorodiphenyl ketone are more preferable in terms of imparting crystallinity, mechanical strength, physical durability, and hot water resistance, and 4,4′- in terms of polymerization activity.
  • Difluorodiphenyl ketone is most preferred.
  • aromatic active dihalide compounds can be used alone, but a plurality of aromatic active dihalide compounds can also be used in combination.
  • a halogenated aromatic hydroxy compound can be mentioned as a monomer having no ionic group used for the synthesis of the segment (A1) containing an ionic group and the segment (A2) containing no ionic group.
  • the said segment can synthesize
  • the halogenated aromatic hydroxy compound is not particularly limited, but 4-hydroxy-4′-chlorobenzophenone, 4-hydroxy-4′-fluorobenzophenone, 4-hydroxy-4′-chlorodiphenylsulfone, 4-hydroxy -4′-fluorodiphenylsulfone, 4- (4′-hydroxybiphenyl) (4-chlorophenyl) sulfone, 4- (4′-hydroxybiphenyl) (4-fluorophenyl) sulfone, 4- (4′-hydroxybiphenyl) Examples include (4-chlorophenyl) ketone, 4- (4′-hydroxybiphenyl) (4-fluorophenyl) ketone, and the like.
  • these halogenated aromatic hydroxy compounds may be reacted together to synthesize an aromatic polyether compound.
  • the method for synthesizing the block copolymer is not particularly limited as long as a substantially sufficient molecular weight can be obtained.
  • the segment containing the ionic group and the segment not containing the ionic group It can be synthesized using the aromatic nucleophilic substitution reaction.
  • the monomer mixture or segment mixture can be reacted in the presence of a basic compound.
  • the polymerization can be carried out in a temperature range of 0 to 350 ° C., but a temperature of 50 to 250 ° C. is preferable. When the temperature is lower than 0 ° C., the reaction may not proceed sufficiently. When the temperature is higher than 350 ° C., decomposition of the polymer may start to occur.
  • the polymerization reaction can be carried out in the absence of a solvent, but is preferably carried out in a solvent.
  • Solvents that can be used include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphontriamide, etc.
  • Examples of the aprotic polar organic solvent include, but are not limited to, any solvents that can be used as a stable solvent in the aromatic nucleophilic substitution reaction. These organic solvents may be used alone or as a mixture of two or more.
  • Examples of the basic compound used for the aromatic nucleophilic substitution reaction include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc., but aromatic diols are active phenoxide structures. However, the present invention is not limited to these and can be used. In order to increase the nucleophilicity of phenoxide, it is also preferable to add a crown ether such as 18-crown-6. These crown ethers may be preferably used because they may be coordinated to a sodium ion or potassium ion of a sulfonic acid group to improve the solubility in an organic solvent.
  • water may be generated as a by-product.
  • water can be removed from the system as an azeotrope by coexisting toluene or the like in the reaction system.
  • a water-absorbing agent such as molecular sieve can also be used.
  • Azeotropic agents used to remove reaction water or water introduced during the reaction generally do not substantially interfere with polymerization, co-distill with water and boil between about 25 ° C. and about 250 ° C. Any inert compound.
  • Commonly used azeotropic agents include benzene, toluene, xylene, chlorobenzene, methylene chloride, dichlorobenzene, trichlorobenzene, cyclohexane and the like. Of course, it is beneficial to select an azeotropic agent whose boiling point is lower than that of the dipolar solvent used.
  • An azeotropic agent is commonly used, but it is not always necessary when high reaction temperatures, such as temperatures above 200 ° C., are used, especially when the reaction mixture is continuously sparged with inert gas. In general, it is desirable to carry out the reaction in an inert atmosphere and in the absence of oxygen.
  • the aromatic nucleophilic substitution reaction is carried out in a solvent
  • the desired polymer is obtained by removing the solvent from the reaction solution by evaporation and washing the residue as necessary.
  • the reaction solution by adding the reaction solution to a solvent having low polymer solubility and high by-product inorganic salt solubility, the inorganic salt is removed, the polymer is precipitated as a solid, and the polymer is obtained by filtering the precipitate. You can also.
  • the recovered polymer is optionally washed with water, alcohol or other solvent and dried.
  • halide or phenoxide end groups can optionally be reacted by introducing a phenoxide or halide end-capping agent that forms a stable end group.
  • the polyazole is a segment containing an ionic group by appropriately selecting the polarity (hydrophilicity or hydrophobicity). It is possible to concentrate the hydrophilic domain formed by (A1) or the hydrophobic domain formed by the segment (A2) not containing an ionic group.
  • Hydroxyl radical and hydrogen peroxide are usually highly hydrophilic and are present in the hydrophilic domain formed by the segment (A1) containing an ionic group and are considered to cut the segment. Therefore, application of hydrophilic polyazole is effective to stabilize the segment (A1) containing an ionic group.
  • the polyazole concentration in the hydrophilic medium domain is at least twice the polyazole concentration in the hydrophobic domain.
  • the polyazole concentration in each domain is determined by mapping the nitrogen content using an energy dispersive X-ray analysis (EDX) or an electron beam microanalyzer (EPMA) when the phase separation structure is observed by TEM.
  • the concentration of polyazole in each domain can be calculated according to the following formula by conducting elemental analysis at 50 points for each of the hydrophilic domain and the hydrophobic domain to determine the average nitrogen amount in the domain.
  • Polyazole concentration (wt%) 100 ⁇ [average nitrogen content in domain (% by weight) ⁇ polymer nitrogen content (% by weight)] / [Azole nitrogen content (wt%)-Polymer nitrogen content (wt%)]
  • the amount of polymer nitrogen and the amount of azole nitrogen are the amounts of nitrogen contained in the polymer electrolyte and polyazole, respectively.
  • the hydrophobic domain formed by the segment (A2) that does not contain an ionic group is a component responsible for mechanical strength, and therefore, by placing a hydrophobic polyazole, there is an effect of improving physical durability. Conceivable. It is also preferable to use a hydrophilic polyazole and a hydrophobic polyazole in combination as necessary.
  • the ionic group-containing polymer electrolyte constituting the polymer electrolyte membrane includes a segment (A1) containing an ionic group and a segment (A2) containing no ionic group.
  • phase-separated structure can be expressed in a block copolymer composed of two or more types of incompatible segments, and the structural form is largely co-continuous (M1), lamella (M2), cylinder ( M3) and sea island (M4) (FIG. 1).
  • the phase separation structure is composed of a hydrophilic domain comprising a component containing an ionic group and a hydrophobic comprising a component not containing an ionic group. Often formed from sex domains.
  • the light-colored continuous phase is formed by one domain selected from the hydrophilic domain and the hydrophobic domain, and the dark-colored continuous phase or dispersed phase is formed by the other domain.
  • the phase separation structure composed of co-continuous (M1) and lamella (M2) both the hydrophilic domain and the hydrophobic domain form a continuous phase.
  • phase separation structure is described in, for example, Annual Review of Physical Chemistry (Annual Review of Physical Chemistry), 41, 1990, p. 525 etc.
  • excellent proton conductivity can be realized even under low humidification and low temperature conditions.
  • the structure shown in FIG. 1 is (M1), (M2), that is, a structure that is co-continuous (M1) or lamellar (M2), a continuous proton conducting channel is formed, resulting in excellent proton conductivity.
  • a polymer electrolyte molded body can be obtained, but at the same time, a polymer electrolyte membrane having extremely excellent fuel barrier properties, solvent resistance, mechanical strength, and physical durability can be realized by the crystallinity of the hydrophobic domain. .
  • a co-continuous (M1) phase separation structure is particularly preferred.
  • the ratio of the component constituting the hydrophobic domain is relatively small relative to the component constituting the hydrophilic domain, the proton conductivity is excellent, but the crystalline hydrophobicity is poor. Since there are few domains, it is inferior to fuel-blocking property, solvent resistance, mechanical strength, and physical durability, and the effect of this invention may not fully be acquired.
  • the domain means a lump formed by aggregating similar substances and segments in one molded body.
  • having a co-continuous (M1) or lamellar (M2) phase separation structure can be confirmed by observing a desired image by the following method.
  • a three-dimensional view of a digital slice obtained by TEM tomography observation of a polymer electrolyte membrane is compared with a three-dimensional view of a digital slice cut out from three directions of length, width, and height.
  • the phase separation structure is in the case of continuous-like (M1) or lamellar-like (M2), the hydrophilic domain containing (A1) and the hydrophobic domain containing (A2) together form a continuous phase in all three views.
  • each of the continuous phases shows a complicated pattern, whereas in the case of a lamellar structure, a pattern in which the layers are continuous is shown.
  • the continuous phase means a phase in which individual domains are connected without being isolated from each other macroscopically, but there may be a part that is not partially connected.
  • a polymer in order to clarify the aggregation state and contrast of the segment (A1) containing an ionic group and the segment (A2) containing no ionic group, a polymer is added in a 2% by weight lead acetate aqueous solution.
  • the ionic group is ion-exchanged with lead, and then subjected to transmission electron microscope (TEM) and TEM tomography observation.
  • TEM transmission electron microscope
  • the block copolymer used as the ionic group-containing polymer (A) As the block copolymer used as the ionic group-containing polymer (A), a phase separation structure is observed when TEM observation is performed at 50,000 times, and the average interlayer distance or average interparticle distance measured by image processing is What is 5 nm or more and 500 nm or less is preferable. Among these, the average interlayer distance or the average interparticle distance is more preferably 10 nm or more and 50 nm or less, and most preferably 15 nm or more and 30 nm or less.
  • the phase separation structure is not observed by a transmission electron microscope, or when the average interlayer distance or the average interparticle distance is less than 5 nm, the continuity of the ion channel may be insufficient and the conductivity may be insufficient. Further, when the interlayer distance exceeds 500 nm, the mechanical strength and dimensional stability may be poor.
  • the block copolymer used as the ionic group-containing polymer (A) preferably has crystallinity while having a phase-separated structure, and the crystallinity is recognized by differential scanning calorimetry (DSC) or wide-angle X-ray diffraction.
  • DSC differential scanning calorimetry
  • the heat of crystallization measured by differential scanning calorimetry is 0.1 J / g or more, or the crystallinity measured by wide-angle X-ray diffraction is 0.5% or more. It is preferable.
  • “having crystallinity” means that the polymer can be crystallized when the temperature is raised, has a crystallizable property, or has already been crystallized.
  • An amorphous polymer means a polymer that is not a crystalline polymer and that does not substantially proceed with crystallization. Therefore, even if it is a crystalline polymer, if the crystallization is not sufficiently advanced, the polymer may be in an amorphous state.
  • the ionic group-containing polymer electrolyte and polyazole form an intermolecular interaction at the ionic group and nitrogen atom portion.
  • hydrogen peroxide and hydroxy radicals are highly hydrophilic compounds, and easily diffuse in the vicinity of an ionic group having high hydrophilicity and high water concentration in the electrolyte membrane. Therefore, ionic group-containing polymer electrolyte membrane and polyazole can decompose hydrogen peroxide and hydroxy radicals diffusing near the ionic group by forming intermolecular interaction in the ionic group and nitrogen part.
  • the chemical stability of the polymer electrolyte membrane can be further improved.
  • the ionic group-containing polymer electrolyte membrane and polyazole have an intermolecular interaction, a three-dimensional cross-link is formed, so that swelling / shrinkage due to humidity change is suppressed and mechanical strength is also increased. It becomes possible to improve.
  • intermolecular interaction of the present invention examples include ion complex, hydrogen bond, dipole interaction, van der Waals force, etc., but are not particularly limited. Among these, those that form ion complexes, hydrogen bonds, and dipole interactions are preferred, those that form ion complexes and hydrogen bonds are more preferred, and those that form ion complexes are particularly preferred.
  • the stronger the intermolecular interaction between the ionic group and the nitrogen atom the more concentrated the polyazole will be in the vicinity of the ionic group, increasing the rate of decomposition of diffusing hydrogen peroxide and hydroxy radicals. Is possible.
  • the stronger the intermolecular interaction the stronger the crosslinking between the ionic group-containing polymer and the polyazole, which suppresses the swelling / shrinkage of the polymer electrolyte membrane of the present invention and improves the mechanical strength. Is possible.
  • FT-IR Fourier-Transform Infrared Spectrometer
  • the polymer electrolyte membrane of the present embodiment is measured using FT-IR, if a spectrum in which the original peak position of the polymer electrolyte or the original peak position of the polyazole compound is shifted is observed, It can be determined that a part of the electrolyte forms an intermolecular interaction with a part of the polyazole compound.
  • the polyazole is a hydrocarbon-based organic solvent such as hexane, benzene, toluene, xylene, or an alcohol-based organic solvent such as methanol, ethanol, isopropyl alcohol or the like from the viewpoint of ease of processing and suppression of formation of a phase separation structure.
  • Ester organic solvents such as ethyl acetate and butyl acetate, ketone organic solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ether organic solvents such as diethyl ether and tetrahydrofuran, dimethylformamide, dimethylacetamide and dimethylimidazolide It is preferably one that can be dissolved in a general-purpose organic solvent such as an aprotic polar organic solvent such as non, dimethyl sulfoxide, or N-methyl-2-pyrrolidone.
  • a general-purpose organic solvent such as an aprotic polar organic solvent such as non, dimethyl sulfoxide, or N-methyl-2-pyrrolidone.
  • the polyazole forms a uniform solution can be confirmed by the following method. That is, it can be confirmed by preparing a 0.5% by weight solution of polyazole and measuring the particle size distribution using a dynamic light scattering method (hereinafter sometimes abbreviated as DLS).
  • the particle size of the polyazole in the solution may be an arithmetic average particle size of 10 nm or less, preferably 5 nm or less, and more preferably 2 nm or less.
  • a solution in which particles having a particle diameter exceeding 2 nm are not confirmed can be particularly preferably used.
  • the polyazole since the polyazole generally has low solubility in a solvent, in order to obtain a uniform composition with the ionic group-containing polymer electrolyte, it must be solubilized in a polymer solution.
  • the solubilization method is not particularly limited, but it is preferable to apply (1) spray drying method, (2) alkali dissolution, and (3) low molecular weight, (1) spray drying method, (2) alkali dissolution. Is more preferable, and (1) spray drying is more preferable.
  • the spray drying method of (1) is a method of instant drying by spraying a solution of a target substance as fine particles of several hundred ⁇ m or less in a flow of high-temperature air or nitrogen gas or in a vacuum chamber. It is. By applying this method, an amorphous porous body of polyazole can be obtained, and normally insoluble and hardly soluble polyazole can be easily dissolved at a high concentration by stirring at room temperature.
  • the alkali dissolution of (2) is a method of forming a salt and solubilizing it by reacting polyazole with an alkali metal hydroxide.
  • an alkali metal hydroxide is used in a protic solvent composed of a mixture of water, an organic solvent such as methanol, ethanol, n-propanol, isopropyl alcohol, butanol or glycerin.
  • a protic solvent composed of a mixture of water, an organic solvent such as methanol, ethanol, n-propanol, isopropyl alcohol, butanol or glycerin.
  • the method etc. which mix a polyazole with what melt
  • the polyazole forms a salt and can be dissolved in a polar organic solvent such as dimethyl sulfoxide or N-methyl-2-pyrrolidone.
  • the molecular weight to be used differs depending on the structure of the polyazole.
  • the weight average molecular weight is 1000 or more and 10,000. The following are preferably used.
  • Step 1 A step of producing polyazole particles using a spray drying method
  • Step 2 An ionic group-containing polymer electrolyte, the polyazole particle, and both the ionic group-containing polymer electrolyte and the polyazole particle.
  • step 3 a step of forming a film of the electrolyte composition solution.
  • Step 1 it is necessary to prepare a polyazole solution to be subjected to spray drying.
  • polyazole has very low solubility, and it is difficult to prepare a solution by mixing and stirring with an organic solvent.
  • a dilute solution of polyazole it is possible to prepare a dilute solution of polyazole to be subjected to spray drying by using an autoclave. That is, it was possible to prepare a dilute solution of polyazole by placing polyazole and an organic solvent in an autoclave container, sealing, and heating.
  • the organic solvent used in the preparation process of the dilute solution of polyazole is not particularly limited as long as it can dissolve polyazole, and can be appropriately selected according to the structure of polyazole. Usually, polyazole is soluble. However, the organic solvents that can be used at a low level are limited. Examples of the organic solvent include aprotic polar organic solvents such as N, N-dimethylacetamide, N, N-dimethylformamide, N, N′-dimethylimidazolidinone, N-methyl-2-pyrrolidone, dimethylsulfoxide, and the like Preferably, the organic solvent is selected from the group consisting of:
  • the heating temperature in the autoclave is not particularly limited as long as polyazole can be dissolved, but it is preferably not lower than the boiling point of the organic solvent of the dilute polyazole and not higher than 300 ° C. If the heating temperature is less than the boiling point of the organic solvent, the pressure in the autoclave is low, and the polyazole may not be sufficiently dissolved. On the other hand, when the heating temperature exceeds 300 ° C., the dissolution rate of polyazole increases, but the organic solvent and polyazole are denatured and decomposed, so that the effects of the present invention may not be sufficiently obtained.
  • the inlet temperature of spray drying is preferably 100 ° C. or higher and 250 ° C. or lower, and more preferably 150 ° C. or higher and 220 ° C. or lower.
  • the inlet temperature is less than 100 ° C., the organic solvent may not be sufficiently evaporated and polyazole particles may not be obtained.
  • the inlet temperature is higher than 250 ° C., the organic solvent and polyazole are altered and decomposed, so that the effects of the present invention may not be sufficiently obtained.
  • the outlet temperature of spray drying is preferably 100 ° C. or lower, more preferably 60 ° C. or lower.
  • the produced polyazole particles may be coarsened.
  • the lower limit of the outlet temperature is not particularly limited, but is often about 0 ° C. to 40 ° C. due to the specifications of the apparatus.
  • the polyazole particles thus prepared are preferably those in which particles having a particle size exceeding 2 nm are not confirmed in the particle size distribution measured by the dynamic light scattering method described above.
  • the ionic group-containing polymer electrolyte is mixed with polyazole particles and an organic solvent capable of dissolving both at a predetermined ratio, and a conventionally known method such as a homomixer, homodisper, wafer blower, homogenizer, It can prepare by mixing using mixers, such as a disperser, a paint conditioner, a ball mill, a magnetic stirrer, and a mechanical stirrer.
  • mixers such as a disperser, a paint conditioner, a ball mill, a magnetic stirrer, and a mechanical stirrer.
  • the rotational speed of the rotary mixer is not particularly limited as long as a uniform electrolyte composition solution can be prepared, but is preferably 50 times / minute or more, more preferably 100 times / minute or more from the viewpoint of production efficiency, and 200 More preferably, times / minute or more.
  • the mixing time by the mixer is not particularly limited as long as a uniform electrolyte composition solution can be prepared, but is preferably 1 minute or longer, more preferably 10 minutes or longer, and further preferably 1 hour or longer. If the number of revolutions and mixing time are insufficient, a uniform electrolyte composition solution with the polymer electrolyte and polyazole particles cannot be obtained, and as a result, the phase separation of the polymer electrolyte and polyazole exceeds 2 nm. Since the structure is formed, sufficient durability may not be obtained.
  • a polymer electrolyte solution in which the ionic group-containing polymer electrolyte is dissolved in the organic solvent and a polyazole solution in which the polyazole particles are dissolved in the organic solvent are prepared, and the polymer electrolyte is prepared.
  • a method of preparing a uniform electrolyte composition solution by mixing the solution and the polyazole solution can also be preferably used.
  • the organic solvent for preparing the electrolyte composition solution is not particularly limited as long as it can dissolve the ionic group-containing polymer electrolyte and polyazole particles and then remove them.
  • N, N-dimethylacetamide, N, N— Aprotic polar organic solvents such as dimethylformamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, ester organic solvents such as ⁇ -butyrolactone, butyl acetate, ethylene carbonate , Carbonate-based organic solvents such as propylene carbonate, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, or Alcoholic organic solvents such as isopropyl alcohol, water and mixtures thereof are preferably used, is preferred for high highest solubility aprotic polar organic solvent
  • the solution casting in the step 3 is not particularly limited as long as the electrolyte composition solution produced in the step 2 can be applied in a film shape to obtain a polymer electrolyte membrane.
  • a method of removing the organic solvent after the electrolyte composition solution is cast on a support and applied in a film shape is exemplified.
  • a known method can be used, but it is preferable to cast a solution having a constant concentration so as to have a constant thickness.
  • doctor blades, applicators, bar coaters, knife coaters, etc. use a method of pressing the solution into a gap of a certain gap to make the thickness of the cast film constant, or using a slit die to change the electrolyte composition solution. Examples thereof include a method of supplying and casting at a constant speed, and a method of transferring a certain amount of an electrolyte composition solution onto a support using a gravure roll.
  • the casting on the support may be carried out by a batch method, but it is preferable to carry it continuously because the productivity is good.
  • the support for casting the electrolyte composition solution is not particularly limited as long as it does not dissolve in the organic solvent of the electrolyte composition solution.
  • resin films such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyarylate, polyamide, polyimide, polyamideimide, polyaramid, and polybenzazole, and inorganic compounds such as silica, titania, and zirconia are coated on the surface.
  • a film made of a metal such as stainless steel, a glass substrate, or the like.
  • polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyarylate, polyamide, polyimide, polyaramid, and glass substrate are preferable.
  • the solid content concentration of the electrolyte composition solution used for the solution casting in the step 3 can be appropriately determined depending on the molecular weight of the ionic group-containing polymer electrolyte, the temperature at the time of casting, and the like. It is preferable that it is below wt%. If it is less than 5% by weight, it may take time to remove the solvent in the subsequent step, and the quality of the film may deteriorate, or the solvent content in the film may not be appropriately controlled. If it exceeds 50% by weight, the viscosity of the solution may become too high and handling may be difficult. More preferably, it is 5 to 35% by weight.
  • the viscosity of the electrolyte composition solution is not particularly limited, but is preferably in a range where it can be cast on a support. More preferably, the viscosity is 1 Pa ⁇ s or more and 1000 Pa ⁇ s or less at the casting temperature.
  • the method of removing the organic solvent from the film obtained by casting the electrolyte composition solution is not particularly limited.
  • the method of evaporating the organic solvent by heating the film obtained by casting Is mentioned.
  • the content of the solvent in the polymer electrolyte membrane obtained by heating the membrane obtained by casting is preferably 50% by weight or less, more preferably 30% by weight, and further preferably 10% by weight or less. preferable. If it is more than 50% by weight, the swelling property of the polymer electrolyte membrane may increase.
  • the heating temperature at the time of heating the film obtained by casting as described above is preferably 300 ° C. or lower, or lower than the boiling point of the organic solvent, and more preferably 200 ° C. or lower.
  • the heating temperature exceeds 300 ° C., the removal efficiency of the organic solvent is improved, but the organic solvent and the polymer electrolyte membrane are decomposed and altered, and the form of the obtained polymer electrolyte membrane is deteriorated (the quality is lowered). ) There are cases.
  • about the minimum of heating temperature 50 degreeC is preferable. If the heating temperature is less than 50 ° C., it may be difficult to sufficiently remove the organic solvent.
  • the heating method can be performed by any known method such as hot air, infrared rays, and microwaves. Moreover, you may carry out in inert gas atmosphere, such as nitrogen.
  • the organic solvent in the membrane it is preferable to extract the organic solvent in the membrane with a poor solvent of the polymer electrolyte membrane that is mixed with the organic solvent after the membrane obtained by casting is heated to evaporate the organic solvent. Without such extraction, the amount of the organic solvent remaining in the polymer electrolyte membrane becomes too large, and characteristics such as a decrease in ionic conductivity and an increase in membrane swelling tend to occur.
  • an appropriate solvent may be used depending on the type of the precursor film and the solvent used in the casting process.
  • water, alcohol, ketone, ether, low molecular weight hydrocarbon, halogen-containing solvent and the like can be mentioned.
  • the solvent used in the casting step is miscible with water, it is preferable to use water as the poor solvent.
  • the method for extracting the organic solvent in the polymer electrolyte membrane with a poor solvent is not particularly limited, but it is preferable that the poor solvent be in uniform contact with the polymer electrolyte membrane.
  • Examples thereof include a method of immersing the polymer electrolyte membrane in a poor solvent and a method of applying or spraying the poor solvent to the polymer electrolyte membrane. These methods may be performed two or more times or in combination.
  • the polymer electrolyte membrane of the present invention includes at least one selected from Ce, Mn, Ti, Zr, V, Cr, Mo, W, Co, Rh, Ir, Ni, Pd, Pt, Ag, Au, and Ru. It is also preferable to further contain the transition metal. These transition metals may be one or more selected from the group consisting of such transition metals, ions of such transition metals, salts containing such transition metal ions, complexes containing such transition metal ions, and oxides of such transition metals. it can.
  • Ce, Mn, V, W, Co, Rh, Ir, Ni, Pd, Pt, Ag, Au, and Ru are preferably used because of their high functions as radical scavengers and peroxide decomposers. More preferably, Ce, Mn, Co, Rh, Ir, Ni, Pd, Pt, Au, Ru, more preferably Ce, Mn, Co, Rh, Ni, Pd, Pt, Ru, most preferably Ce , Mn, Co, Rh, Pd, Pt, Ru.
  • the content of the transition metal in the polymer electrolyte membrane can be appropriately selected in consideration of the balance between power generation characteristics and durability. However, it is preferably 0.002% by weight or more and 15% by weight or less of the entire polymer electrolyte composition. More preferably, they are 0.01 weight% or more and 5 weight% or less, Most preferably, they are 0.02 weight% or more and 3 weight% or less. When it is 0.002% by weight or more, durability is further improved, and when it is 15% by weight or less, proton conductivity is further improved.
  • the content ratio of polyazole and transition metal in the polymer electrolyte membrane should be appropriately selected in consideration of the balance between power generation characteristics and durability.
  • the molar ratio of nitrogen / transition metal is 0.1 or more and 100 or less. More preferably, it is 1 or more and 20 or less, and most preferably 5 or more and 10 or less. If it is 0.1 or more, proton conductivity and hot water resistance are further improved, and if it is 100 or less, durability is further improved.
  • the transition metal ion in such a case is not particularly limited, but specific examples include chloride ion, bromide ion, iodide ion, nitrate, sulfate, sulfonate, carbonate, phosphate, Examples thereof include phosphonates, acetates, oxalates, and acetylacetonate complexes. Among them, nitrates, sulfates, sulfonates, carbonates, phosphates, phosphonates, and acetates are preferable because they are highly effective in suppressing oxidative degradation, and are inexpensive and easy to add to the electrolyte composition. Therefore, nitrates, phosphates, and acetates are more preferable.
  • the transition metal ion may exist alone or as a complex coordinated with an organic compound, a polymer, or the like.
  • a complex with a phosphine compound or the like is preferable from the viewpoint that elution of additives during use is suppressed, and when a polydentate phosphine compound is used, a polymer electrolyte membrane excellent in hot water resistance can be obtained. To preferred.
  • cerium oxide manganese oxide, cobalt oxide, nickel oxide, chromium oxide, iridium oxide, and lead oxide.
  • cerium oxide and manganese oxide are preferably used because they have a high effect of suppressing oxidative degradation.
  • the polymer electrolyte membrane of the present invention preferably further contains a sulfur-containing additive.
  • a sulfur-containing additive sulfides are preferable from the viewpoint of power generation performance, aromatic polysulfides are more preferable from the viewpoint of heat resistance and chemical stability, and polyparaphenylene sulfide is particularly preferable from the viewpoint of manufacturing cost.
  • a method of bringing the polymer electrolyte membrane into contact with a solution in which polyazole is dissolved may be employed. It can. Dipping, bar coating, spray coating, slit die, knife coating, air knife, brushing, gravure coating, screen printing, ink jet printing, doctor blade over roll (additive solution or dispersion liquid is formed into polymer electrolyte composition) And the like, but not limited to, a method of applying to the body and then removing excess liquid through a gap between the knife and the support roll).
  • the film thickness of the polymer electrolyte membrane of the present invention is preferably 1 to 2000 ⁇ m. In order to obtain mechanical strength and physical durability of a membrane that can withstand practical use, it is preferably thicker than 1 ⁇ m, and in order to reduce membrane resistance, that is, improve power generation performance, it is preferably thinner than 2000 ⁇ m. A more preferable range of the film thickness is 3 to 50 ⁇ m, and a particularly preferable range is 1 0 to 30 ⁇ m. Such a film thickness can be controlled by the concentration of the electrolyte composition solution used for the above-mentioned solution casting or the coating thickness on the substrate.
  • additives such as crystallization nucleating agents, plasticizers, stabilizers, antioxidants or mold release agents used for ordinary polymer compounds Can be further added within a range not contrary to the object of the present invention.
  • polymers, elastomers, fillers, fine particles, fine particles for the purpose of improving mechanical strength, thermal stability, processability, etc. within a range that does not adversely affect the above-mentioned various properties.
  • Various additives may be included.
  • An electrolyte membrane with a catalyst layer formed by applying or transferring an electrode catalyst layer to the polymer electrolyte membrane of the present invention can also be preferably used.
  • Membrane electrode composite When such a polymer electrolyte membrane is used in a fuel cell, a membrane electrode assembly in which the polymer electrolyte membrane and an electrode are joined is prepared. At this time, the method for joining the polymer electrolyte membrane and the electrode (membrane electrode complex) is not particularly limited, and a known method (for example, chemical plating method described in Electrochemistry, 1985, 53, p. 269, Electrochemical Association). (J. Electrochem. Soc.), Electrochemical Science and Technology, 1988, 135, 9, p. 2209. It is.
  • the temperature and pressure may be appropriately selected depending on the thickness of the electrolyte membrane, the moisture content, the catalyst layer, and the electrode substrate. Further, in the present invention, it is possible to form a composite by pressing even when the electrolyte membrane is in a dry state or in a state of absorbing water.
  • Specific pressing methods include a roll press that defines pressure and clearance, and a flat plate press that defines pressure. From the viewpoint of industrial productivity and suppression of thermal decomposition of a polymer material having an ionic group, it is 0. It is preferably carried out in the range of from °C to 250 °C.
  • the pressurization is preferably as weak as possible from the viewpoint of electrolyte membrane and electrode protection.
  • a pressure of 10 MPa or less is preferable, and the electrode and the electrolyte membrane are stacked without carrying out the complexing by the hot press process.
  • Cell formation is also one of the preferred options from the viewpoint of preventing short-circuiting of the anode and cathode electrodes.
  • the application of the polymer electrolyte fuel cell using the polymer electrolyte membrane of the present invention is not particularly limited, but a power supply source for a moving body is preferable.
  • mobile devices such as mobile phones, personal computers, PDAs, televisions, radios, music players, game machines, headsets, DVD players, human-type and animal-type robots for industrial use, home appliances such as cordless vacuum cleaners, and toys , Electric bicycles, motorcycles, automobiles, buses, trucks and other vehicles and ships, power supplies for mobiles such as railways, stationary primary generators such as stationary generators, or alternatives to these It is preferably used as a hybrid power source.
  • Ion exchange capacity It measured by the neutralization titration method by the following procedures. The measurement was performed 3 times and the average value was taken.
  • 50 mL of a 5 wt% aqueous sodium sulfate solution was added to the electrolyte, and the mixture was allowed to stand for 12 hours for ion exchange.
  • the generated sulfuric acid was titrated using 0.01 mol / L sodium hydroxide aqueous solution.
  • Ion exchange capacity [Concentration of sodium hydroxide aqueous solution (mmol / ml) ⁇ Drip amount (ml)] / Dry weight of sample (g)
  • Proton conductivity H + conductivity
  • a Solartron electrochemical measurement system (Solartron 1287, Electrochemical Interface and Solartron 1255B Frequency Response Analyzer) was used to measure proton impedance by a two-terminal method.
  • the AC amplitude was 50 mV.
  • a sample having a width of 10 mm and a length of 50 mm was used.
  • the measurement jig was made of phenol resin, and the measurement part was opened.
  • As an electrode a platinum plate (thickness: 100 ⁇ m, 2 sheets) was used. The electrodes were arranged at a distance of 10 mm between the front and back sides of the sample film so as to be parallel to each other and perpendicular to the longitudinal direction of the sample film.
  • the film thickness was measured using Mitutoyo ID-C112 type set on Mitutoyo granite comparator stand BSG-20. Measurement is 1 cm from the left end of the electrolyte membrane, center part of the electrolyte membrane, 1 cm part from the right end of the electrolyte membrane, 1 cm part from the left end and the middle part, and 1 cm part from the right end and the middle part between the center part The average was made into the film thickness.
  • a 100 nm thick flake was cut at room temperature using an ultramicrotome, and the obtained flake was collected on a Cu grid and subjected to TEM observation. Observation was carried out at an acceleration voltage of 100 kV, and photography was carried out so that the photographic magnifications were ⁇ 8,000, ⁇ 20,000, and ⁇ 100,000.
  • TEM H7100FA manufactured by Hitachi, Ltd.
  • Polyazole concentration (wt%) 100 ⁇ [average nitrogen content in domain (% by weight) ⁇ polymer nitrogen content (% by weight)] / [Azole nitrogen content (wt%)-Polymer nitrogen content (wt%)]
  • the amount of polymer nitrogen and the amount of azole nitrogen are the amounts of nitrogen contained in the polymer electrolyte and polyazole, respectively.
  • This membrane / electrode assembly was set in a JARI standard cell “Ex-1” (electrode area 25 cm 2) manufactured by Eiwa Co., Ltd. and kept at 80 ° C. while maintaining low humidity (70 mL / min, back pressure 0.1 MPaG) And air (174 mL / min, back pressure 0.05 MPaG) were introduced into the cell, and an accelerated deterioration test was performed in an open circuit. After operating the fuel cell under these conditions for 200 hours, the membrane-electrode assembly was taken out, put into a mixed solution of ethanol / water, and further subjected to ultrasonic treatment to remove the catalyst layer. Then, the molecular weight of the remaining polymer electrolyte membrane was measured and evaluated as a molecular weight retention rate.
  • a membrane electrode assembly was prepared by the same method as described above, and set in an evaluation cell. Subsequently, a deterioration acceleration test in an open circuit was performed under the same conditions as described above. The time until the open circuit voltage decreased to 0.7 V or less was evaluated as the open circuit holding time.
  • Synthesis example 3 (Synthesis of oligomer a1 ′ not containing an ionic group represented by the following general formula (G3))
  • a 1000 mL three-necked flask equipped with a stirrer, a nitrogen inlet tube, and a Dean-Stark trap 16.59 g of potassium carbonate (Aldrich reagent, 120 mmol), 25.8 g (100 mmol) of K-DHBP obtained in Synthesis Example 1 and 4,4 20.3 g of '-difluorobenzophenone (Aldrich reagent, 93 mmol) was added, purged with nitrogen, dehydrated at 160 ° C in 300 mL of N-methylpyrrolidone (NMP) and 100 mL of toluene, heated to remove toluene, at 180 ° C Polymerization was performed for 1 hour. Purification was performed by reprecipitation with a large amount of methanol to obtain an oligomer a1 (terminal
  • the reaction was carried out at 105 ° C. for 1 hour. Purification was performed by reprecipitation with a large amount of isopropyl alcohol to obtain an oligomer a1 '(terminal fluoro group) containing no ionic group represented by the following formula (G3).
  • the number average molecular weight was 12000, and the number average molecular weight of the oligomer a1 'not containing an ionic group was determined to be 11400 obtained by subtracting the linker moiety (molecular weight 630).
  • NMP N-methylpyrrolidone
  • G4 oligomer a2 (terminal hydroxyl group) containing an ionic group represented by the following formula (G4).
  • the number average molecular weight was 17000.
  • M represents Na or K.
  • the block copolymer b1 contains 50 mol of the structural units represented by the general formulas (S1) and (S2) as a segment (A1) containing an ionic group and a segment (A2) containing no ionic group. % And 100 mol%.
  • the block copolymer b1 itself is a polymer electrolyte membrane
  • the ion exchange capacity obtained from neutralization titration is 1.8 meq / g
  • Synthesis example 4 (Synthesis of a polyethersulfone (PES) block copolymer precursor b2 ′ comprising a segment represented by the following formula (G6) and a segment represented by the following formula (G7)) 1.62 g of anhydrous nickel chloride and 15 mL of dimethyl sulfoxide were mixed and adjusted to 70 ° C. To this, 2.15 g of 2,2′-bipyridyl was added and stirred at the same temperature for 10 minutes to prepare a nickel-containing solution.
  • PES polyethersulfone
  • the reaction mixture was added to 60 mL of methanol, and then 60 mL of 6 mol / L hydrochloric acid was added and stirred for 1 hour.
  • the precipitated solid was separated by filtration and dried to obtain 1.62 g of a block copolymer b2 ′ containing segments represented by the following formula (G6) and the following formula (G7) of grayish white with a yield of 99%. .
  • the weight average molecular weight was 230,000.
  • Synthesis example 5 (Synthesis of PES block copolymer b2 composed of a segment represented by the formula (G7) and a segment represented by the following formula (G8)) Add 0.23 g of the block copolymer precursor b2 ′ obtained in Synthesis Example 4 to a mixed solution of 0.16 g of lithium bromide monohydrate and 8 mL of N-methyl-2-pyrrolidone, and react at 120 ° C. for 24 hours. I let you. The reaction mixture was poured into 80 mL of 6 mol / L hydrochloric acid and stirred for 1 hour. The precipitated solid was separated by filtration.
  • the separated solid was dried to obtain a block copolymer b2 composed of a gray-white segment represented by the formula (G7) and a segment represented by the following formula (G8).
  • the resulting polyarylene had a weight average molecular weight of 190,000.
  • the ion exchange capacity obtained from neutralization titration was 2.0 meq / g.
  • the resulting reaction solution was allowed to cool and then diluted by adding 100 mL of toluene.
  • the precipitate of the inorganic compound produced as a by-product was removed by filtration, and the filtrate was put into 2 L of methanol.
  • the precipitated product was separated by filtration, collected, dried, and then dissolved in 250 mL of tetrahydrofuran. This was reprecipitated in 2 L of methanol to obtain 107 g of the target oligomer a3.
  • the number average molecular weight of the oligomer a3 was 7,600.
  • reaction solution was slowly poured onto 1000 g of crushed ice and extracted with ethyl acetate, the organic layer was washed with brine and dried over magnesium sulfate, and then ethyl acetate was distilled off to obtain pale yellow crude crystals 3 -(2,5-Dichlorobenzoyl) benzenesulfonic acid chloride was obtained, and the crude crystals were used without purification in the next step.
  • hydrophobic oligomer (a3) synthesized in Synthesis Example 6 was added to 166 mL of dried N, N-dimethylacetamide (DMAc) in a 1 L three-necked flask connected with a stirrer, thermometer, and nitrogen introduction tube.
  • DMAc dried N, N-dimethylacetamide
  • the reaction system was heated with stirring (finally heated to 82 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the polymerization reaction solution was diluted with 175 mL of DMAc, stirred for 30 minutes, and filtered using Celite as a filter aid. Lithium bromide (24.4 g, 281 mmol) was added to this filtrate in 1/3 portions in three portions at 1 hour intervals through a 1 L three-neck equipped with a stirrer, and reacted at 120 ° C. for 5 hours under a nitrogen atmosphere. I let you. After the reaction, the mixture was cooled to room temperature, poured into 4 L of acetone and solidified.
  • the coagulum was collected by filtration, air-dried, pulverized with a mixer, and washed with 1500 mL of 1N sulfuric acid while stirring. After filtration, the product was washed with ion exchanged water until the pH of the washing solution reached 5 or higher, and then dried at 80 ° C. overnight to obtain 38.0 g of the target block copolymer b3.
  • the weight average molecular weight of this block copolymer was 180,000.
  • the ion exchange capacity determined from neutralization titration was 2.5 meq / g.
  • Example 1 (Production of soluble (PBI) by spray drying) 5 g of PBI synthesized in Synthesis Example 9 and 95 g of dimethylacetamide were sealed in an autoclave, heated to 250 ° C. and held for 24 hours. The autoclave was naturally cooled to prepare a DMAc solution having a PBI concentration of 5% by weight.
  • the polymer electrolyte membrane f1 was obtained by immersing in a large excess amount of pure water for 24 hours and thoroughly washing.
  • Example 2 An electrolyte membrane f2 was produced in the same manner as in Example 1 except that the PBI was changed to 6 g.
  • Example 3 An electrolyte membrane f3 was produced in the same manner as in Example 1 except that the PBI was changed to 4 mg.
  • Example 4 (Preparation of phthalocyanine-added film) An electrolyte membrane f4 was produced in the same manner as in Example 1 except that phthalocyanine (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of PBI.
  • Example 5 (Preparation of PBI, cerium (III) nitrate added film) 0.716 g of cerium (III) nitrate (manufactured by Aldrich) was dissolved in pure water to make 30 L to prepare a 55 ⁇ mol / L cerium (III) nitrate solution. In this solution, 20 g of the polymer electrolyte membrane f1 produced in Example 1 was immersed for 72 hours, and cerium ions were incorporated by ion exchange with sulfonic acid groups to obtain a polymer electrolyte membrane f5.
  • Example 6 (Preparation of PBI, platinum fine particle added film) An electrolyte membrane f6 was produced in the same manner as in Example 1 except that 200 mg of platinum fine particles (manufactured by STREM) was used in addition to 200 mg of PBI.
  • Example 7 (Preparation of PBI, palladium (II) acetate added film) An electrolyte membrane f7 was produced in the same manner as in Example 1 except that 200 mg of palladium (II) acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was used in addition to 200 mg of PBI.
  • Example 8 Preparation of PBI, polyphenylene sulfide (PPS) -added film
  • An electrolyte membrane f8 was produced in the same manner as in Example 1 except that 200 mg of PPS (manufactured by Aldrich, 375 ° C. melt viscosity 275 poise) was used in addition to 200 mg of PBI.
  • Example 9 (Preparation of PBI, palladium (II) acetate, PPS-added film) An electrolyte membrane f9 was prepared in the same manner as in Example 1 except that palladium nitrate (II) (manufactured by Wako Pure Chemical Industries, Ltd.) and PPS (manufactured by Aldrich, 375 ° C. melt viscosity 275 poise) were used in addition to 200 mg of PBI. Manufactured.
  • palladium nitrate (II) manufactured by Wako Pure Chemical Industries, Ltd.
  • PPS manufactured by Aldrich, 375 ° C. melt viscosity 275 poise
  • Example 10 (Preparation of PBI alkali salt added film) 5 g of PBI synthesized in Synthesis Example 9, 1.5 g of sodium hydroxide, 1 g of water and 2 g of ethanol were mixed and stirred at 80 ° C. for 12 hours to obtain a reddish brown solution of PBI. After distilling off the organic solvent, it was washed with a large amount of pure water to remove excess sodium hydroxide, thereby obtaining 5.2 g of PBI alkali salt. When the DLS of this alkali salt was measured, particles having a particle size of 2 nm or more were not observed.
  • An electrolyte membrane f10 was produced in the same manner as in Example 1 except that 214 mg of PBI alkali salt was used instead of 200 mg of PBI solubilized by spray drying.
  • Example 11 (Synthesis of low molecular weight PBI) Low molecular weight PBI was synthesized in the same manner as in Synthesis Example 9 except that the amount of diphenyl isophthalate charged was changed to 28.0 g. The weight average molecular weight was 5000. Further, when DLS was measured, particles having a particle diameter of 2 nm or more were not observed.
  • An electrolyte membrane f11 was produced in the same manner as in Example 1 except that 200 mg of low molecular weight PBI was used instead of 200 mg of PBI solubilized by spray drying.
  • Example 12 (Preparation of NRE211CS and spray dry solubilized PBI mixed film) An electrolyte membrane f12 was produced in the same manner as in Example 1 except that NRE211CS (Nafion) was used instead of the block copolymer b1.
  • Example 13 (Preparation of PES block copolymer and spray dry solubilized PBI mixed film) An electrolyte membrane f13 was produced in the same manner as in Example 1 except that the PES block copolymer b2 obtained in Synthesis Example 5 was used instead of the block copolymer b1.
  • Example 14 (Preparation of polyarylene block copolymer and spray dry solubilized PBI mixed film) An electrolyte membrane f14 was produced in the same manner as in Example 1 except that the polyarylene block copolymer b3 obtained in Synthesis Example 8 was used instead of the block copolymer b1.
  • Example 15 Provide of polymer electrolyte solution and polymer electrolyte membrane by mixing block copolymer solution and spray dry solubilized PBI solution) (Preparation of PBI-added film) After mixing 20 g of the block copolymer b1 and 79.2 g of NMP, the mixture was stirred with a stirrer at 20,000 rpm for 3 minutes to prepare a block copolymer solution s1. Separately, 200 mg of PBI solubilized by spray drying and 800 mg of NMP were mixed and dissolved by stirring at 20,000 rpm for 3 minutes with a stirrer to prepare a spray dry solubilized PBI solution s2.
  • All of the obtained solutions s1 and s2 were mixed to obtain a transparent polymer electrolyte solution having a polymer concentration of 20% by weight.
  • the obtained polymer electrolyte solution was subjected to pressure filtration using a glass fiber filter, and then applied to a glass substrate by casting on a glass substrate, dried at 100 ° C. for 4 hours, and then subjected to 10 at 150 ° C. under nitrogen. It heat-processed for minutes and obtained the polyketal ketone film
  • the polymer electrolyte membrane f15 was obtained by immersing in a large excess amount of pure water for 24 hours and thoroughly washing.
  • Comparative Example 1 An electrolyte membrane f1 ′ was produced in the same manner as in Example 1 except that PBI was not used.
  • Comparative Example 2 0.716 g of cerium (III) nitrate (manufactured by Aldrich) was dissolved in pure water to make 30 L to prepare a 55 ⁇ mol / L cerium (III) nitrate solution. In this solution, the electrolyte membrane f1 ′ produced in Comparative Example 1 was immersed for 72 hours to incorporate Ce 3+ to obtain a polymer electrolyte membrane f2 ′.
  • Comparative Example 3 An electrolyte membrane f3 ′ was produced in the same manner as in Comparative Example 1 except that NRE211CS (Nafion) was used instead of the block copolymer b1.
  • Comparative Example 4 An electrolyte membrane f4 ′ was produced in the same manner as in Comparative Example 1 except that the block copolymer b2 was used instead of the block copolymer b1.
  • Comparative Example 5 An electrolyte membrane f5 ′ was produced in the same manner as in Comparative Example 1 except that the block copolymer b3 was used instead of the block copolymer b1.
  • Comparative Example 6 An electrolyte membrane f6 ′ was produced in the same manner as in Example 1 except that 200 mg of PBI synthesized in Synthesis Example 9 was used without being solubilized in place of 200 mg of PBI solubilized by spray drying. When the DLS of the dispersion prepared by stirring untreated PBI in NMP at 20,000 rpm for 3 minutes was measured, the arithmetic average particle diameter was 20 nm.
  • Example 15 in which a polymer electrolyte membrane was prepared by preparing a block copolymer solution and a polyazole solution in advance and mixing the solutions, the molecular weight retention rate was improved over Examples 1 to 11 in which polyazole was added to the block copolymer solution.
  • Comparative Example 6 to which insoluble polyazole particles were added also had a longer open circuit retention time due to the addition of polyazole, but compared with Examples 1 to 11 to which soluble polyazole was added, the open circuit retention time was shorter and the swelling rate was also higher. It was a big one.
  • Example 12 and Comparative Example 3 Example 13 and Comparative Example 4, Example 14 and Comparative Example 5, the direction which added the additive was excellent in swelling rate and open circuit retention time, or molecular weight retention rate.
  • the polyazole of the present invention can impart excellent durability against hydrogen peroxide or peroxide radicals generated by power generation of a fuel cell to a polymer electrolyte membrane.
  • the polymer electrolyte membrane of the present invention can be applied to various electrochemical devices (for example, a fuel cell, a water electrolysis device, a chloroalkali electrolysis device, a hydrogen compression device, a redox flow battery, a deoxygenation membrane, etc.).
  • electrochemical devices for example, a fuel cell, a water electrolysis device, a chloroalkali electrolysis device, a hydrogen compression device, a redox flow battery, a deoxygenation membrane, etc.
  • it is suitable for a fuel cell, and particularly suitable for a fuel cell using hydrogen as a fuel.
  • Applications of the polymer electrolyte fuel cell of the present invention are not particularly limited, but are portable devices such as mobile phones, personal computers, PDAs, video cameras, digital cameras, home appliances such as cordless vacuum cleaners, toys, electric bicycles, automatic It is preferably used as a power supply source for vehicles such as motorcycles, automobiles, buses, trucks, etc., moving bodies such as ships, railways, etc., conventional primary batteries such as stationary generators, alternatives to secondary batteries, or hybrid power sources with these. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

 本発明は、燃料電池運転中の強い酸化雰囲気に耐えうる優れた化学的安定性を有し、なおかつ、低加湿条件下における優れたプロトン伝導性、優れた機械強度と物理的耐久性を達成することができる実用性に優れた高分子電解質組成物、ならびにそれを用いた高分子電解質膜、膜電極複合体および固体高分子型燃料電池を提供せんとするものである。 本発明の高分子電解質膜は、少なくともイオン性基含有高分子電解質と、ポリアゾールとを含有する高分子電解質膜であって、透過型電子顕微鏡観察においてポリアゾールを主成分とする2nm以上の相分離が観察されない高分子電解質膜である。

Description

高分子電解質膜、およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池
 本発明は、高分子電解質膜に関し、なかでも、燃料電池運転中の強い酸化雰囲気に耐えうる優れた化学的安定性を有し、なおかつ、低加湿条件下における優れたプロトン伝導性、優れた機械強度と物理的耐久性を達成することができる実用性に優れた高分子電解質膜、ならびにそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池に関するものである。
 燃料電池は、水素、メタノールなどの燃料を電気化学的に酸化することによって、電気エネルギーを取り出す一種の発電装置であり、近年、クリーンなエネルギー供給源として注目されている。なかでも固体高分子型燃料電池は、標準的な作動温度が100℃前後と低く、かつ、エネルギー密度が高いことから、比較的小規模の分散型発電施設、自動車や船舶など移動体の発電装置として幅広い応用が期待されている。また、小型移動機器、携帯機器の電源としても注目されており、ニッケル水素電池やリチウムイオン電池などの二次電池に替わり、携帯電話やパソコンなどへの搭載が期待されている。
 燃料電池は通常、発電を担う反応の起こるアノードとカソードの電極と、アノードとカソード間のプロトン伝導体となる高分子電解質膜とが、膜電極複合体(以降、MEAと略称することがある。)を構成し、このMEAがセパレータによって挟まれたセルをユニットとして構成されている。高分子電解質膜の主成分は、イオン性基含有ポリマー(高分子電解質材料)であるが、耐久性を高めるために添加剤等を配合した高分子電解質組成物を使用することもできる。高分子電解質組成物は、特に厳しい酸化雰囲気で使用される電極触媒層のバインダー等にも好適である。高分子電解質膜および高分子電解質組成物の要求特性としては、第一に高いプロトン伝導性が挙げられ、特に高温低加湿条件でも高いプロトン伝導性を有する必要がある。また、高分子電解質膜および高分子電解質組成物は、燃料と酸素の直接反応を防止するバリアとしての機能を担うため、燃料の低透過性が要求される。その他にも燃料電池運転中の強い酸化雰囲気に耐えるための化学的安定性、薄膜化や膨潤乾燥の繰り返しに耐えうる機械強度および物理的耐久性などを併せ持つ必要がある。
 これまで高分子電解質膜には、パーフルオロスルホン酸系ポリマーであるナフィオン(登録商標)(デュポン社製。)が広く用いられてきた。ナフィオン(登録商標)は多段階合成を経て製造されるため非常に高価であり、燃料クロスオーバーが大きいという課題があった。また、軟化点が低く高温で使用できないという問題、使用後の廃棄処理の問題や材料のリサイクルが困難といった問題が指摘されてきた。また、ナフィオン(登録商標)に替わり得る安価で膜特性に優れた高分子電解質膜として、炭化水素系電解質膜の開発も近年活発化してきている。
 しかしながら、これらの高分子電解質膜はいずれも、固体高分子型燃料電池に用いる場合、化学的安定性が不足するという問題があった。化学劣化に関するメカニズムは十分には解明されていないが、発電時に主に電極にて発生する過酸化水素や、前記過酸化水素が膜中の鉄イオンや銅イオンと反応することで生成するヒドロキシラジカルにより、ポリマー鎖や側鎖が切断され、高分子電解質膜が膜痩せしたり、脆弱になったりしていることが考えられる。加えて、湿度変化に合わせて膨潤・収縮を繰り返すうちに、脆弱になった高分子電解質膜が破損し、発電できなくなるという問題があった。
 こうした状況において、パーフルオロ系電解質膜や炭化水素系電解質膜に酸化防止剤を配合することより、機械強度や化学安定性を向上し、耐久性を改善する検討が行われている。
 例えば、特許文献1には、パーフルオロスルホン酸系ポリマーに硫黄含有ポリマーであるポリフェニレンスルフィド(以下PPSと略称することがある)と、窒素含有ポリマーであるポリベンズイミダゾール(以下PBIと略称することがある)を配合する高分子電解質膜が提案されている。
 特許文献2には、パーフルオロスルホン酸系ポリマーやスルホン酸基含有ポリエーテルケトン系重合体(以下sPEKと略称することがある)にポリアミック酸やポリイミドを配合する高分子電解質膜が提案されている。
 特許文献3には、パーフルオロスルホン酸系ポリマーやsPEKに不溶性のPBI粒子を配合する高分子電解質膜が提案されている。
 特許文献4には、スルホン化PPS存在下、不溶性のPBIを合成し、析出した混合粉末を熱プレスにより成型し製造した高分子電解質が提案されている。
 特許文献5には、高分子電解質とPBIとを混合し、不溶性のPBI粒子を含有する高分子電解質膜が提案されている。
国際公開2008/102851号 特開2005-350658号公報 特開2013-80701号公報 特開2004-55257号公報 国際公開2006/67872号
 しかしながら、特許文献1では、耐久性は充分なものではなかった。
 特許文献2は、耐久性の改良を意図しているが、充分ではなく、発電性能も不充分であった。
 特許文献3は、高分子電解質膜の耐久性をある程度向上させることができているものの、更なる長期耐久性の向上が望まれるものであった。
 特許文献4、5においても、耐久性は充分なものではなかった。
 このように、従来技術による高分子電解質膜は、経済性、加工性、プロトン伝導性、機械強度、化学的安定性、物理的耐久性を向上する手段としては不充分であり、産業上有用な高分子電解質膜とはなり得ていなかった。
 本発明は、かかる従来技術の背景に鑑み、燃料電池運転中の強い酸化雰囲気に耐えうる優れた化学的安定性を有し、なおかつ、低加湿条件下における優れたプロトン伝導性、優れた機械強度と物理的耐久性を達成することができる実用性に優れた高分子電解質膜、触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池を提供せんとするものである。
 本発明者らは、燃料電池等の高分子電解質膜として、前記課題を克服すべく、鋭意検討を重ねた結果、イオン性基含有高分子電解質にポリアゾールを配合し、均一な高分子電解質膜とすることにより、特に燃料電池用途において、低加湿条件下を含むプロトン伝導性と発電特性、製膜性などの加工性、耐酸化性、耐ラジカル性、耐加水分解性などの化学的安定性、膜の機械強度、耐熱水性などの物理的耐久性において優れた性能を発現でき、かかる課題を一挙に解決できることを究明するとともに、さらに種々の検討を加え、本発明を完成した。
 すなわち、本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、本発明の高分子電解質膜は、少なくともイオン性基含有高分子電解質と、ポリアゾールとを含有する高分子電解質膜であって、透過型電子顕微鏡観察においてポリアゾールを主成分とする2nm以上の相分離が観察されない高分子電解質膜であることを特徴とするものである。
 本発明によれば、燃料電池運転中の強い酸化雰囲気に耐えうる優れた化学的安定性を有し、なおかつ、低加湿条件下における優れたプロトン伝導性、優れた機械強度と物理的耐久性を達成することができる実用性に優れた高分子電解質膜、触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池を提供することができる。
(M1)~(M4)は、高分子電解質膜における相分離構造の態様を模式的に示す説明図であり、(M1)は共連続様、(M2)はラメラ様、(M3)はシリンダー構造、(M4)は海島構造を例示する。
 以下、本発明について詳細に説明する。
 本発明の高分子電解質膜は、イオン性基含有高分子電解質と、ポリアゾールとを含有する高分子電解質膜であって、透過型電子顕微鏡観察においてポリアゾールを主成分とする2nm以上の相分離が観察されない高分子電解質膜である。なお、本発明の高分子電解質膜の好ましい製造方法としては、イオン性基含有高分子電解質とポリアゾールとを含有する高分子電解質組成物を溶液製膜する方法があげられるが、それに限定するものではない。
 まず、高分子電解質膜の原料となる高分子電解質組成物を構成する各成分について説明する。
 〔ポリアゾール〕
 本発明において高分子電解質組成物を構成する成分の一つであるポリアゾールは、アゾール環を分子内に複数有する化合物である。アゾール環を分子内に複数有する化合物の中でも、化学的安定性、耐熱性、耐溶出性が優れていることからアゾール環を骨格に含むポリマーが本発明に好ましく使用される。ここでアゾール環とは、環内に窒素原子を1個以上含む複素五員環である。なお、複素五員環は、炭素以外の異原子として窒素以外に酸素、硫黄等を含むものであっても構わない。
 アゾール環としては、例えば、炭素原子以外の異原子として1個の窒素原子のみを含有するピロール環の他に、炭素原子以外の異原子が2個のものとしては、イミダゾール(1,3-ジアゾール)環、オキサゾール環、チアゾール環、セレナゾール環、ピラゾール(1,2-ジアゾール)環、イソオキサゾール環、イソチアゾール環、等が、異原子が3個のものとしては、1H-1,2,3-トリアゾール(1,2,3-トリアゾール)環、1H-1,2,4-トリアゾール(1,2,4-トリアゾール)環、1,2,3-オキサジアゾール(ジアゾアンヒドリド)環、1,2,4-オキサジアゾール(ジアゾアンヒドリド)環、1,2,3-チアジアゾール環、1,2,4-チアジアゾール環等が、異原子が4個のものとしては、1H-1,2,3,4-テトラゾール(1,2,3,4-テトラゾール)環、1,2,3,5-オキサトリアゾール環、1,2,3,5-チアトリアゾール環などが挙げられるが、特に限定されるものではない。
 これらアゾール環の中でも、酸性条件下における安定性から、イミダゾール環、オキサゾール環、チアゾール環、セレナゾール環、1H-1,2,3-トリアゾール(1,2,3-トリアゾール)環、1H-1,2,4-トリアゾール(1,2,4-トリアゾール)環が好ましく、合成が容易で安価に用いることができることから、イミダゾール環がより好ましい。
 前記したようなアゾール環は、ベンゼン環などの芳香族環と縮合したものであってもよく、例えば、p-フェニレン基、m-フェニレン基、ナフタレン基、ジフェニレンエーテル基、ジフェニレンスルホン基、ビフェニレン基、ターフェニル基、2,2-ビス(4-カルボキシフェニレン)ヘキサフルオロプロパン基等の2価の芳香族基が複素五員環と結合した化合物を用いることが耐熱性を得る観点から好ましい。
 本発明において用いられるポリアゾールとしては、例えば、ポリイミダゾール系化合物、ポリベンズイミダゾール系化合物、ポリベンゾビスイミダゾール系化合物、ポリベンゾオキサゾール系化合物、ポリオキサゾール系化合物、ポリチアゾール系化合物、ポリベンゾチアゾール系化合物等の重合体が挙げられるが、特に限定されるものではない。
 これらポリアゾールの中でも、耐熱性、加工性の観点からポリベンズイミダゾール系化合物、ポリベンズビスイミダゾール系化合物、ポリベンズオキサゾール系化合物、ポリベンズチアゾール系化合物が好ましく、合成が容易で安価に用いることができることから、ポリベンズイミダゾール系化合物がより好ましい。
 本発明における耐久性向上のメカニズムは十分に解明されていないが、発明者らは、次の3点が理由であると推定している。但し、これらの推定は何ら本発明を限定するものではない。
(1)ポリアゾールに含まれる3価の窒素原子が5価のN-オキシドに酸化されることで、過酸化物分解剤として機能すること。
(2)ポリアゾールに含まれる窒素原子と、イオン性基含有高分子電解質に含まれるイオン性基とが、イオンコンプレックスや水素結合などの分子間相互作用により三次元的な架橋を形成することで、高分子電解質膜の機械強度が向上すると共に燃料電池運転中の膨潤・収縮が抑制されることにより物理的な劣化が抑制されること。
(3)窒素原子の部分が金属イオン(Fe2+、Cu2+など)に対する配位子として作用し、強固な錯体を形成することにより不活性化する金属不活性化剤としても機能すること。
 本発明の高分子電解質膜は、イオン性基含有高分子電解質とポリアゾールとを含有しており、透過型電子顕微鏡観察(以下「TEM観察」と略称することがある)においてポリアゾールを主成分とする2nm以上の相分離が観察されないものである。ここで、TEM観察においてポリアゾールを主成分とする2nm以上の相分離が観察されないとは、高分子電解質膜において、イオン性基含有高分子電解質とポリアゾールとが、均一に混合している状態を定量的に表現したものである。ポリアゾールを主成分とする2nm以上の相分離が観察される場合、燃料電池運転中における高分子電解質膜の膨潤・収縮により、相分離の界面部分において破断するため耐久性が低下するものと推測される。加えて、相分離の界面部分のみにおいてポリアゾールとイオン性基含有高分子電解質とが接触している状態であるため、前記ポリアゾールによる、高分子電解質中の過酸化物を分解する効果を充分に得ることができず、またポリアゾールによるイオン性基との分子間相互作用形成が困難となるため本発明の効果が充分に得られなくなるものと推測される。
 前記高分子電解質膜におけるイオン性基含有高分子電解質とポリアゾールとの相分離の有無は、以下のような方法により、ポリアゾールを主成分とする2nm以上の相分離が観察されないことにより確認することができる。
 即ち、高分子電解質膜の厚み方向の断面について、任意に1箇所の15μm×15μmの領域をTEMで観察し、相分離の有無及びサイズを確認する。イオン性基含有高分子電解質とポリアゾールが均一に混合せず相分離している場合、染色処理を施さずにTEM観察を行った場合のTEM像に、黒い島状の粒子(島相、或いは島粒子)が、灰色又は白色の海相(連続相)に分散した状態が観察される。島相(島粒子)の形状は、円形、楕円形、多角形、不定形等、特に限定されない。海/島構造において、黒い島粒子のコントラストは主にポリアゾールに起因し、白色の海(連続相)の部分は主にイオン性基含有高分子電解質に起因するものと考えられる。なお、海相に関しては、ポリマーの構造やTEM観察のコントラストによっては白色と灰色の共連続様またはラメラ様の相分離構造を形成していることがあるが、特に限定されるものではない。
 前記島相がポリアゾールを主成分としていることは、前記相分離構造をTEMにより観察する際、エネルギー分散型X線分析(EDX)もしくは電子線マイクロアナライザ(EPMA)を用いて、窒素含有量をマッピングすることにより判定する。
 具体的な方法として、前記海/島構造において島相の50点において元素分析を行い島相内平均窒素量求め、下記の式に従い島相内におけるポリアゾール濃度を算出する。このとき、ポリアゾール濃度が50重量%以上であれば、該島相はポリアゾールが主成分であると判定することができる。
 ポリアゾール濃度(重量%)=
 100×〔島相内平均窒素量(重量%)-ポリマー窒素量(重量%)〕/
 〔アゾール窒素量(重量%)-ポリマー窒素量(重量%)〕
 なお、ポリマー窒素量及びアゾール窒素量は、各々高分子電解質及びポリアゾールが含有する窒素量である。
 本発明のポリアゾールの重量平均分子量は、500以上30万以下であることが好ましく、500以上25万以下であればより好ましく、1000以上25万以下であればさらに好ましい。重量平均分子量が500未満の場合、ポリアゾールが高分子電解質膜の表面にブリードアウトすることにより発電性能を低下させることがある。一方、重量平均分子量が30万よりも大きい場合には、膜中におけるポリアゾールの分散性が悪くなるため高分子電解質とポリアゾールが2nm以上の相分離構造を形成しない高分子電解質膜の製造が困難になる場合がある。
 本発明の高分子電解質膜に使用されるポリアゾールとしては、スルホン酸基などを有する強酸性物質を含む水溶液に溶解しないものが好ましい。かかる観点からポリアゾールは、60℃の水及び硫酸に対する溶解度が100mg/L以下であれば好ましく、20mg/L以下であればより好ましく、4mg/L以下であれば特に好ましい。この範囲内であれば、ポリアゾールが、膜外に溶出することなく、効果を維持でき、より優れた化学的安定性や耐久性を得ることができる。
 本発明の高分子電解質膜中のポリアゾールの含有量は、発電特性と耐久性のバランスを考慮して適宜選択することができ、限定されるものではないが、高分子電解質膜中の不揮発性成分全体の0.002重量%以上、15重量%以下であることが好ましい。より好ましくは、0.01重量%以上、5重量%以下、さらに好ましくは0.02重量%以上、3重量%以下である。0.002重量%未満では、耐久性が不足する場合がある。また、15重量%を越える場合は、プロトン伝導性が不足する場合がある。
 本発明で使用するポリアゾールはイオン性基を含有していないものが好ましい。ここで、イオン性基とは、カルボキシル基、スルホン酸基、ホスホン酸基、ヒドロキシル基等を指す。ポリアゾールがイオン性基を有している場合、水及び酸への溶解性が上がるため、ポリアゾールが膜外へ溶出し化学的安定性や耐久性が低下する場合がある。また、ポリアゾールが含有するイオン性基と窒素原子とが塩を形成するため、イオン性基含有高分子電解質が有するイオン性基との分子間相互作用を形成しにくくなり、過酸化水素やヒドロキシラジカルの分解、膨潤・収縮の抑制、機械強度の向上といった効果が充分に得られない場合がある。
 〔イオン性基含有高分子電解質〕
 次に、本発明に使用するイオン性基含有高分子電解質について説明する。
 本発明で使用するイオン性基含有高分子電解質としては、後述する様なイオン性基を含有し発電特性と化学的安定性を両立できるものであれば、構造は限定されないが、例えばパーフルオロ系ポリマーや炭化水素系ポリマーが代表的なものとして挙げられる。
 パーフルオロ系ポリマーとは、ポリマー中のアルキル基および/またはアルキレン基の水素の大部分または全部がフッ素原子に置換されたものであり、イオン性基を有するパーフルオロ系ポリマーの代表例としては、ナフィオン(登録商標)(デュポン社製)、フレミオン(登録商標)(旭硝子社製)およびアシプレックス(登録商標)(旭化成社製)などの市販品を挙げることができる。これらパーフルオロ系ポリマーは、湿度変化に伴う膨潤・収縮が小さいため、湿度変化に伴う電解質膜の破損は起こりにくいことから好ましく用いることができる。
 一方で、これらパーフルオロ系ポリマーは、非常に高価であり、ガスクロスオーバーが大きいという課題がある。かかる観点からは、イオン性基含有高分子電解質として炭化水素系ポリマーを用いることが好ましい。また、炭化水素系ポリマーは、機械強度、化学的安定性などの点からも、好ましく用いることができ、主鎖に芳香環を有する炭化水素系ポリマーであることがより好ましい。中でも、エンジニアリングプラスチックとして使用されるような十分な機械強度および物理的耐久性を有する炭化水素系ポリマーが好ましい。ここで、芳香環は、炭化水素のみからなる芳香環だけでなく、ヘテロ環などを含んでいてもよい。また、芳香環ユニットと共に一部脂肪族系ユニットや、炭化水素以外の結合基がポリマーを構成していてもかまわない。
 主鎖に芳香環を有する炭化水素系ポリマーの好ましい例としては、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリアリーレンエーテル系ポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリアリーレン系ポリマー、ポリアリーレンケトン、ポリエーテルケトン、ポリアリーレンホスフィンホキシド、ポリエーテルホスフィンホキシド、ポリベンズオキサゾール、ポリベンズチアゾール、ポリベンズイミダゾール、芳香族ポリアミド、ポリイミド、ポリエーテルイミド、ポリイミドスルホン等のポリマーが挙げられるが、これらに限定されない。
 機械強度や物理的耐久性と、製造コストの観点を総合すると、芳香族ポリエーテル系ポリマーがさらに好ましい。さらに、主鎖骨格構造のパッキングの良さおよび極めて強い分子間凝集力から結晶性を示し、一般的な溶媒に溶解しない性質を有するとともに、引張強伸度、引裂強度および耐疲労性に優れる点から、芳香族ポリエーテルケトン系ポリマーが特に好ましい。ここで、芳香族ポリエーテルケトン系ポリマーとは、主鎖に少なくとも芳香環、エーテル結合およびケトン結合を有しているポリマーの総称であり、芳香族ポリエーテルケトン、芳香族ポリエーテルケトンケトン、芳香族ポリエーテルエーテルケトン、芳香族ポリエーテルエーテルケトンケトン、芳香族ポリエーテルケトンエーテルケトンケトン、芳香族ポリエーテルケトンスルホン、芳香族ポリエーテルケトンホスフィンオキシド、芳香族ポリエーテルケトンニトリルなどを含む。
 イオン性基含有高分子電解質のイオン性基は、負電荷を有する原子団が好ましく、プロトン交換能を有するものが好ましい。このような官能基としては、スルホン酸基、スルホンイミド基、硫酸基、ホスホン酸基、リン酸基、カルボン酸基が好ましく用いられる。中でも、プロトン伝導度が高いという点から少なくともスルホン酸基、スルホンイミド基または硫酸基を有することがより好ましく、原料コストの点から少なくともスルホン酸基を有することがさらに好ましい。
 また、イオン性基は、塩となっている場合を含むものとする。イオン性基が、塩を形成している場合の対カチオンとしては、任意の金属カチオン、NR (Rは任意の有機基)等を例として挙げることができる。金属カチオンの場合、その価数等特に限定されるものではなく、使用することができる。好ましい金属カチオンの具体例としては、Li、Na、K、Rh、Mg、Ca、Sr、Ti、Al、Fe、Pt、Rh、Ru、Ir、Pd等のカチオンが挙げられる。中でも、安価でかつ容易にプロトン置換可能なNa、K、Liのカチオンが好ましく使用される。
 本発明に使用するイオン性基含有高分子電解質の構造について詳細は後述するが、当該構造中にイオン性基を導入する方法は、イオン性基を有するモノマーを用いて重合する方法と、高分子反応でイオン性基を導入する方法が挙げられる。
 イオン性基を有するモノマーを用いて重合する方法としては、繰り返し単位中にイオン性基を有したモノマーを用いればよい。かかる方法は例えば、ジャーナル オブ メンブレン サイエンス(Journal of Membrane Science),197,2002,p.231-242に記載がある。この方法はポリマーのイオン交換容量の制御が容易であり好ましい。
 高分子反応でイオン性基を導入する方法としては、例えば、ポリマープレプリンツ(Polymer Preprints, Japan),51,2002,p.750等に記載の方法によって可能である。芳香族系高分子へのリン酸基導入は、例えばヒドロキシル基を有する芳香族系高分子のリン酸エステル化によって可能である。芳香族系高分子へのカルボン酸基導入は、例えばアルキル基やヒドロキシアルキル基を有する芳香族系高分子を酸化することによって可能である。芳香族系高分子への硫酸基導入は、例えばヒドロキシル基を有する芳香族系高分子の硫酸エステル化によって可能である。芳香族系高分子へのスルホン酸基の導入は、たとえば特開平2-16126号公報あるいは特開平2-208322号公報等に記載の方法を用いることができる。具体的には、例えば、芳香族系高分子をクロロホルム等の溶媒中でクロロスルホン酸のようなスルホン化剤と反応させたり、濃硫酸や発煙硫酸中で反応させたりすることによりスルホン化することができる。スルホン化剤には芳香族系高分子をスルホン化するものであれば特に制限はなく、上記以外にも三酸化硫黄等を使用することができる。この方法により芳香族系高分子をスルホン化する場合には、スルホン化の度合いはスルホン化剤の使用量、反応温度および反応時間により、制御することができる。芳香族系高分子へのスルホンイミド基の導入は、例えばスルホン酸基とスルホンアミド基を反応させる方法によって可能である。
 このようにして得られるイオン性基含有高分子電解質の分子量は、ポリスチレン換算重量平均分子量で、0.1万~500万であることが好ましく、1万~50万であることがより好ましい。0.1万未満では、成型した膜にクラックが発生するなど機械強度、物理的耐久性、耐溶剤性のいずれかが不十分な場合がある。一方、500万を超えると、溶解性が不充分となり、また溶液粘度が高く、加工性が不良になるなどの問題が生じる場合がある。
 本発明に使用するイオン性基含有高分子電解質としては、低加湿条件でのプロトン伝導性や発電特性の点から、イオン性基を含有するセグメント(A1)とイオン性基を含有しないセグメント(A2)とをそれぞれ1個以上含有するブロック共重合体であることが好ましい。また、さらにセグメント間を連結するリンカー部位を有するブロック共重合体はさらに好ましい。リンカーの存在により、副反応を効果的に抑制しながら異なるセグメントを連結することができる。
 イオン性基を含有するセグメント(A1)、イオン性基を含有しないセグメント(A2)の数平均分子量は、低加湿でのプロトン伝導性と物理的耐久性のバランスから、それぞれ0.5万以上が好ましく、1万以上がより好ましく、1.5万以上がさらに好ましい。また、5万以下が好ましく、4万以下がより好ましくは、3万以下がさらに好ましい。
 イオン性基含有高分子電解質として、イオン性基を含有するセグメント(A1)とイオン性基を含有しないセグメント(A2)とをそれぞれ1個以上含有するブロック共重合体を使用する場合におけるブロック共重合体としては、イオン性基を含有するセグメント(A1)が下記一般式(S1)で、イオン性基を含有しないセグメント(A2)が下記一般式(S2)で、表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000001
(一般式(S1)中、Ar~Arは任意の2価のアリーレン基を表し、ArおよびArの少なくとも1つは置換基としてイオン性基を有している。ArおよびArは置換基としてイオン性基を有しても有しなくてもよい。Ar~Arはイオン性基以外の基で任意に置換されていてもよい。Ar~Arは構成単位ごとに同じでも異なっていてもよい。*は一般式(S1)または他の構成単位との結合部位を表す。)
Figure JPOXMLDOC01-appb-C000002
(一般式(S2)中、Ar~Arは任意の2価のアリーレン基を表し、置換されていてもよいが、イオン性基を有しない。Ar~Arは構成単位ごとに同じでも異なっていてもよい。*は一般式(S2)または他の構成単位との結合部位を表す。)
 上記一般式(S1)および(S2)で表される構成単位を含有するブロック共重合体は、電子吸引性のケトン基で全てのアリーレン基が化学的に安定化されており、なおかつ、平面に近い構造であるため分子のパッキングが良くなることから結晶性の付与により機械強度を向上させることができる。また、ガラス転移温度が低下することにより柔軟化し、物理的耐久性を高くすることもできることから好ましい。
 上記一般式(S1)および(S2)における2価のアリーレン基Ar~Arの無置換の骨格としては、フェニレン基、ナフチレン基、ビフェニレン基、フルオレンジイル基などの炭化水素系アリーレン基、ピリジンジイル、キノキサリンジイル、チオフェンジイルなどのヘテロアリーレン基が挙げられ、好ましくはフェニレン基であり、より好ましくはp-フェニレン基である。
 上記イオン性基を含有するセグメント(A1)としては、化学的に安定で、電子吸引効果により酸性度が高められ、イオン性基が高密度に導入された構成単位がより好ましい。また、イオン性基を含有しないセグメント(A2)としては、化学的に安定な上、強い分子間凝集力を持たせ得ることから結晶性を示す構成単位がより好ましい。
 上記イオン性基を含有するセグメント(A1)中に含まれる一般式(S1)で表される構成単位の含有率としては、イオン性基を含有するセグメント(A1)中の20モル%以上であることが好ましく、50モル%以上であることがより好ましく、80モル%以上であることがさらに好ましい。また、イオン性基を含有しないセグメント(A2)中に含まれる一般式(S2)で表される構成単位の含有率としては、イオン性基を含有しないセグメント(A2)中の20モル%以上であることが好ましく、50モル%以上であることがより好ましく、80モル%以上であることがさらに好ましい。イオン性基を含有しないセグメント(A2)中に含まれる一般式(S2)の含有率が20モル%未満である場合には、結晶性の付与による機械強度、寸法安定性、物理的耐久性に対する本発明の効果が不足する場合がある。
 上記一般式(S1)で表される構成単位の好ましい具体例としては、原料入手性の点で、下記一般式(P2)で表される構成単位が挙げられる。中でも、原料入手性と重合性の点から、下記式(P3)で表される構成単位がより好ましく、下記式(P4)で表される構成単位がさらに好ましい。
Figure JPOXMLDOC01-appb-C000003
(式(P2)(P3)(P4)中、M~Mは、水素カチオン、金属カチオン、アンモニウムカチオンNR (Rは任意の有機基)を表し、M~Mは互いに同一であっても異なっていてもよい。また、r1~r4は、それぞれ独立に0~4の整数を表し、r1+r2は1~8の整数であり、r1~r4は構成単位ごとに異なっていてもよい。*は式(P2)(P3)(P4)または他の構成単位との結合部位を表す。)
 本発明でイオン性基含有高分子電解質として、イオン性基を含有するセグメント(A1)とイオン性基を含有しないセグメント(A2)とをそれぞれ1個以上含有するブロック共重合体を使用する場合におけるブロック共重合体としては、イオン性基を含有するセグメント(A1)と、イオン性基を含有しないセグメント(A2)のモル組成比(A1/A2)が、0.2以上であることが好ましく、0.33以上がより好ましく、0.5以上がさらに好ましい。また、5以下が好ましく、3以下がより好ましく、2以下がさらに好ましい。モル組成比A1/A2が、0.2未満あるいは5を越えると、低加湿条件下でのプロトン伝導性が不足したり、耐熱水性や物理的耐久性が不足したりする場合がある。
 上記イオン性基を含有するセグメント(A1)のイオン交換容量は、低加湿条件下でのプロトン伝導性の点から、は2.5meq/g以上が好ましく、3meq/g以上がより好ましく、3.5meq/g以上がさらに好ましい。また、6.5meq/g以下が好ましく、5meq/g以下がより好ましく、4.5meq/g以下がさらに好ましい。イオン性基を含有するセグメント(A1)のイオン交換容量が2.5meq/g未満であると、低加湿条件下でのプロトン伝導性が不足する場合があり、6.5meq/gを越えると、耐熱水性や物理的耐久性が不足する場合がある。
 上記イオン性基を含有しないセグメント(A2)のイオン交換容量は、耐熱水性、機械強度、寸法安定性、物理的耐久性の点から、低いことが好ましく、は1meq/g以下が好ましく、0.5meq/g以下がより好ましく、0.1meq/g以下がさらに好ましい。イオン性基を含有しないセグメント(A2)のイオン交換容量が1meq/gを越えると、耐熱水性、機械強度、寸法安定性、物理的耐久性が不足する場合がある。
 イオン性基含有高分子電解質として、イオン性基を含有するセグメント(A1)とイオン性基を含有しないセグメント(A2)とをそれぞれ1個以上含有するブロック共重合体でありブロック共重合体のイオン性基を含有するセグメント(A1)がスルホン酸基を有する場合、イオン交換容量は、プロトン伝導性と耐水性のバランスの点から、0.1meq/g以上5meq/g以下が好ましく、下限については1.5meq/g以上がより好ましく、2meq/g以上がさらに好ましい。上限については、3.5meq/g以下がより好ましく、3meq/g以下がさらに好ましい。イオン交換容量が0.1meq/gより小さい場合には、プロトン伝導性が不足する場合があり、5meq/gより大きい場合には、耐水性が不足する場合がある。
 なお、本明細書において、イオン交換容量は中和滴定法により求めた値である。中和滴定法は、以下のとおりに行う。なお、測定は3回以上行ってその平均値を取るものとする。
(1)プロトン置換し、純水で十分に洗浄した電解質膜の膜表面の水分を拭き取った後、100℃にて12時間以上真空乾燥し、乾燥重量を求める。
(2)電解質に5重量%硫酸ナトリウム水溶液を50mL加え、12時間静置してイオン交換する。
(3)0.01mol/L水酸化ナトリウム水溶液を用いて、生じた硫酸を滴定する。指示薬として市販の滴定用フェノールフタレイン溶液0.1w/v%を加え、薄い赤紫色になった点を終点とする。
(4)下記式によりイオン交換容量を求める。
  イオン交換容量(meq/g)=
  〔水酸化ナトリウム水溶液の濃度(mmol/ml)×滴下量(ml)〕/試料の乾燥重量(g)
 イオン性基を含有するセグメント(A1)およびイオン性基を含有しないセグメント(A2)の合成方法は、実質的に十分な分子量が得られる方法であれば特に限定されるものではないが、例えば芳香族活性ジハライド化合物と2価フェノール化合物の芳香族求核置換反応、またはハロゲン化芳香族フェノール化合物の芳香族求核置換反応を利用して合成することができる。
 イオン性基を含有するセグメント(A1)の合成に用いる芳香族活性ジハライド化合物として、芳香族活性ジハライド化合物にイオン性基を導入した化合物をモノマーとして用いることは、化学的安定性、製造コスト、イオン性基の量を精密制御が可能な点から好ましい。かかるモノマーに好ましく導入されるイオン性基としては、スルホン酸基、ホスホン酸基、スルホンイミド基が挙げられる。
 イオン性基としてスルホン酸基を有するモノマーの好ましい具体例としては、3,3’-ジスルホネート-4,4’-ジクロロジフェニルスルホン、3,3’-ジスルホネート-4,4’-ジフルオロジフェニルスルホン、3,3’-ジスルホネート-4,4’-ジクロロジフェニルケトン、3,3’-ジスルホネート-4,4’-ジフルオロジフェニルケトン、3,3’-ジスルホネート-4,4’-ジクロロジフェニルフェニルホスフィンオキシド、3,3’-ジスルホネート-4,4’-ジフルオロジフェニルフェニルホスフィンオキシド、等を挙げることができる。なかでも化学的安定性と物理的耐久性の点から、3,3’-ジスルホネート-4,4’-ジクロロジフェニルケトン、3,3’-ジスルホネート-4,4’-ジフルオロジフェニルケトンがより好ましく、重合活性の点から3,3’-ジスルホネート-4,4’-ジフルオロジフェニルケトンがさらに好ましい。
 ホスホン酸基を有するモノマーの好ましい具体例としては、3,3’-ジホスホネート-4,4’-ジクロロジフェニルスルホン、3,3’-ジホスホネート-4,4’-ジフルオロジフェニルスルホン、3,3’-ジホスホネート-4,4’-ジクロロジフェニルケトン、3,3’-ジホスホネート-4,4’-ジフルオロジフェニルケトン、3,3’-ジホスホネート-4,4’-ジクロロジフェニルフェニルホスフィンオキシド、3,3’-ジホスホネート-4,4’-ジフルオロジフェニルフェニルホスフィンオキシド、等を挙げることができる。
 スルホンイミド基を有するモノマーの好ましい具体例としては、5,5’-カルボニルビス(2-フルオロ-N-(フェニルスルホニル)ベンゼンスルホンアミド)、5,5’-カルボニルビス(2-クロロ-N-(フェニルスルホニル)ベンゼンスルホンアミド)、5,5’-スルホニルビス(2-フルオロ-N-(フェニルスルホニル)ベンゼンスルホンアミド)、5,5’-スルホニルビス(2-クロロ-N-(フェニルスルホニル)ベンゼンスルホンアミド)、5,5’-(フェニルホスホリル)ビス(2-フルオロ-N-(フェニルスルホニル)ベンゼンスルホンアミド)、5,5’-(フェニルホスホリル)ビス(2-クロロ-N-(フェニルスルホニル)ベンゼンスルホンアミド)、などを挙げることができる。
 また、イオン性基を含有するセグメント(A1)およびイオン性基を含有しないセグメント(A2)の合成に用いるイオン性基を有しない芳香族活性ジハライド化合物としては、4,4’-ジクロロジフェニルスルホン、4,4’-ジフルオロジフェニルスルホン、4,4’-ジクロロジフェニルケトン、4,4’-ジフルオロジフェニルケトン、4,4’-ジクロロジフェニルフェニルホスフィンオキシド、4,4’-ジフルオロジフェニルフェニルホスフィンオキシド、2,6-ジクロロベンゾニトリル、2,6-ジフルオロベンゾニトリル、等を挙げることができる。中でも4,4’-ジクロロジフェニルケトン、4,4’-ジフルオロジフェニルケトンが結晶性の付与、機械強度や物理的耐久性、耐熱水性の点からより好ましく、重合活性の点から4,4’-ジフルオロジフェニルケトンが最も好ましい。これら芳香族活性ジハライド化合物は、単独で使用することができるが、複数の芳香族活性ジハライド化合物を併用することも可能である。
 また、イオン性基を含有するセグメント(A1)およびイオン性基を含有しないセグメント(A2)の合成に用いるイオン性基を有しないモノマーとして、ハロゲン化芳香族ヒドロキシ化合物を挙げることができる。当該化合物は、前記芳香族活性ジハライド化合物と共重合することで、前記セグメントを合成できる。ハロゲン化芳香族ヒドロキシ化合物は特に制限されることはないが、4-ヒドロキシ-4’-クロロベンゾフェノン、4-ヒドロキシ-4’-フルオロベンゾフェノン、4-ヒドロキシ-4’-クロロジフェニルスルホン、4-ヒドロキシ-4’-フルオロジフェニルスルホン、4-(4’-ヒドロキシビフェニル)(4-クロロフェニル)スルホン、4-(4’-ヒドロキシビフェニル)(4-フルオロフェニル)スルホン、4-(4’-ヒドロキシビフェニル)(4-クロロフェニル)ケトン、4-(4’-ヒドロキシビフェニル)(4-フルオロフェニル)ケトン、等を例として挙げることができる。これらは、単独で使用することができるほか、2種以上の混合物として使用することもできる。さらに、活性化ジハロゲン化芳香族化合物と芳香族ジヒドロキシ化合物の反応においてこれらのハロゲン化芳香族ヒドロキシ化合物を共に反応させて芳香族ポリエーテル系化合物を合成してもよい。
 上記ブロック共重合体の合成方法は、実質的に十分な分子量が得られる方法であれば特に限定されるものではないが、例えば、前記イオン性基を含有するセグメントとイオン性基を含有しないセグメントの芳香族求核置換反応を利用して合成することができる。
 上記ブロック共重合体のセグメントやブロック共重合体を得るために行う芳香族求核置換反応は、前記モノマー混合物やセグメント混合物を塩基性化合物の存在下で反応させることができる。重合は、0~350℃の温度範囲で行うことができるが、50~250℃の温度であることが好ましい。0℃より低い場合には、十分に反応が進まない場合にあり、350℃より高い場合には、ポリマーの分解も起こり始める場合がある。
 重合反応は、無溶媒下で行うこともできるが、溶媒中で行うことが好ましい。使用できる溶媒としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、スルホラン、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性有機溶媒などを挙げることができるが、これらに限定されることはなく、芳香族求核置換反応において安定な溶媒として使用できるものであればよい。これらの有機溶媒は、単独でも2種以上の混合物として使用されてもよい。
 芳香族求核置換反応に用いる塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等があげられるが、芳香族ジオール類を活性なフェノキシド構造にしうるものであれば、これらに限定されず使用することができる。また、フェノキシドの求核性を高めるために、18-クラウン-6などのクラウンエーテルを添加することも好ましい。これらクラウンエーテル類は、スルホン酸基のナトリウムイオンやカリウムイオンに配位して有機溶媒に対する溶解性が向上する場合があり、好ましく使用できる。
 芳香族求核置換反応においては、副生物として水が生成する場合がある。この際は、重合溶媒とは関係なく、トルエンなどを反応系に共存させて共沸物として水を系外に除去することもできる。水を系外に除去する方法としては、モレキュラーシーブなどの吸水剤を使用することもできる。
 反応水又は反応中に導入された水を除去するのに用いられる共沸剤は、一般に、重合を実質上妨害せず、水と共蒸留し且つ約25℃~約250℃の間で沸騰する任意の不活性化合物である。通常用いられる共沸剤には、ベンゼン、トルエン、キシレン、クロルベンゼン、塩化メチレン、ジクロルベンゼン、トリクロルベンゼン、シクロヘキサンなどが含まれる。もちろん、その沸点が用いた双極性溶媒の沸点よりも低いような共沸剤を選定することが有益である。共沸剤が普通用いられるが、高い反応温度、例えば200℃以上の温度が用いられるとき、特に反応混合物に不活性ガスを連続的に散布させるときにはそれは常に必要ではない。一般には、反応は不活性雰囲気下に酸素が存在しない状態で実施するのが望ましい。
 芳香族求核置換反応を溶媒中で行う場合、得られるポリマー濃度として5~50重量%となるようにモノマーを仕込むことが好ましい。5重量%よりも少ないと、重合度が上がりにくい場合がある。一方、50重量%よりも多いと、反応系の粘性が高くなりすぎ、反応物の後処理が困難になる場合がある。
 重合反応終了後は、反応溶液より蒸発によって溶媒を除去し、必要に応じて残留物を洗浄することによって、所望のポリマーが得られる。また、反応溶液を、ポリマーの溶解度が低く、副生する無機塩の溶解度が高い溶媒中に加えることによって、無機塩を除去、ポリマーを固体として沈殿させ、沈殿物の濾取によりポリマーを得ることもできる。回収されたポリマーは場合により水やアルコール又は他の溶媒で洗浄され、乾燥される。所望の分子量が得られたならば、ハライドあるいはフェノキシド末端基は場合によっては安定な末端基を形成させるフェノキシドまたはハライド末端封止剤を導入することにより反応させることができる。
 〔高分子電解質膜〕
 本発明の高分子電解質膜においてイオン性基含有高分子電解質としてブロック共重合体を用いる場合、ポリアゾールは、その極性(親水性や疎水性)を適宜選択することにより、イオン性基を含有するセグメント(A1)が形成する親水性ドメイン、または、イオン性基を含有しないセグメント(A2)が形成する疎水性ドメインに集中して配置させることが可能である。
 ヒドロキシラジカルや過酸化水素は、通常親水性が高く、イオン性基を含有するセグメント(A1)が形成する親水性ドメインに存在して、当該セグメントを切断すると考えられている。従って、親水性のポリアゾールの適用は、イオン性基を含有するセグメント(A1)を安定化するために有効である。このような効果を目的とする場合、親水中ドメインにおけるポリアゾール濃度が、疎水性ドメインにおけるポリアゾール濃度の2倍以上であることが好ましい。各ドメインにおけるポリアゾール濃度は、前記相分離構造をTEMにより観察する際、エネルギー分散型X線分析(EDX)もしくは電子線マイクロアナライザ(EPMA)を用いて、窒素含有量をマッピングすることにより判定する。
 具体的な方法として、親水性ドメイン、疎水性ドメイン、各々について50点において元素分析を行いドメイン内平均窒素量を求めることで、下記の式に従い各ドメインにおけるポリアゾール濃度を算出することができる。
 ポリアゾール濃度(重量%)=
 100×〔ドメイン内平均窒素量(重量%)-ポリマー窒素量(重量%)〕/
 〔アゾール窒素量(重量%)-ポリマー窒素量(重量%)〕
 なお、ポリマー窒素量及びアゾール窒素量は、各々高分子電解質及びポリアゾールが含有する窒素量である。
 
 一方、イオン性基を含有しないセグメント(A2)が形成する疎水性ドメインは、機械強度を担う成分であるため、疎水性のポリアゾールを配置させることにより、物理的耐久性を向上する効果があると考えられる。親水性のポリアゾールと疎水性のポリアゾールは、必要に応じて併用することも好ましい。
 本発明の高分子電解質膜では、高分子電解質膜を構成するイオン性基含有高分子電解質が、イオン性基を含有するセグメント(A1)とイオン性基を含有しないセグメント(A2)とをそれぞれ1個以上含有するブロック共重合体である場合に、前記イオン性基を含有するセグメント(A1)から構成される親水性ドメインと前記イオン性基を含有しないセグメント(A2)から構成される疎水性ドメインとが共連続様またはラメラ様の相分離構造を有していることが好ましい。このような相分離構造は、非相溶な2種以上のセグメントからなるブロック共重合体などにおいて発現し得るものであり、その構造形態は大きく共連続(M1)、ラメラ(M2)、シリンダー(M3)、海島(M4)の四つに分けられる(図1)。
 本発明のようなイオン性基含有高分子化合物を含有する高分子電解質膜においては、前記相分離構造はイオン性基を含む成分からなる親水性ドメインと、イオン性基を含まない成分からなる疎水性ドメインから形成されることが多い。図1(M1)~(M4)において、薄い色の連続相が親水性ドメイン、疎水性ドメインから選ばれる一方のドメインにより形成され、濃い色の連続相または分散相が、他方のドメインにより形成される。とくに共連続(M1)およびラメラ(M2)からなる相分離構造において、親水性ドメインおよび疎水性ドメインが、いずれも連続相を形成する。
 かかる相分離構造は、例えばアニュアル レビュー オブ フィジカル ケミストリ-(Annual Review of Physical Chemistry), 41, 1990, p.525等に記載がある。これら親水性ドメインを構成する化合物と疎水性ドメインを構成する化合物の構造や組成を制御することで、低加湿および低温条件下においても優れたプロトン伝導性が実現可能となる。特にその構造が図1に示した(M1)、(M2)すなわち共連続様(M1)、ラメラ様(M2)からなる構造の際、連続したプロトン伝導チャネルが形成されことによりプロトン伝導性に優れる高分子電解質成形体を得ることができるが、同時に疎水性ドメインの結晶性により極めて優れた燃料遮断性、耐溶剤性や機械強度、物理的耐久性を有した高分子電解質膜が実現可能となる。なかでも共連続様(M1)の相分離構造が特に好ましい。
 一方、図1に示した(M3)、(M4)すなわちシリンダー構造(M3)、海島構造(M4)の相分離構造の場合でも、連続したプロトン伝導チャネルを形成可能と考えられる。しかしながら、両構造ともに、親水性ドメインを構成する成分の比率が疎水性ドメインを構成する成分に対して相対的に少ない場合、もしくは疎水性ドメインを構成する成分の比率が、親水性ドメインを構成する成分に対して相対的に少ない場合に構築される構造である。親水性ドメインを構成する成分の比率が疎水性ドメインを構成する成分に対し相対的に少ない場合、プロトン伝導を担うイオン性基量が絶対的に減少し、特に海島構造では、連続したプロトン伝導チャネルそのものが形成されないため、プロトン伝導性に劣り、疎水性ドメインを構成する成分の比率が親水性ドメインを構成する成分に対し相対的に少ない場合、プロトン伝導性には優れるものの、結晶性の疎水性ドメインが少ないため、燃料遮断性、耐溶剤性や機械強度、物理的耐久性に劣り、本発明の効果が十分に得られない場合がある。
 ここでドメインとは、一つの成形体において、類似する物質やセグメントが凝集してできた塊のことを意味する。
 本発明において、共連続様(M1)、ラメラ様(M2)の相分離構造を有することは、以下の手法により、所望とする像が観察されることで確認することができる。高分子電解質膜の、TEMトモグラフィー観察により得られた3次元図に対して、縦、横、高さの3方向から切り出したデジタルスライス3面図を比較する。例えば、前記イオン性基を含有するセグメント(A1)とイオン性基を含有しないセグメント(A2)とをそれぞれ1個以上有するブロック共重合体からなる高分子電解質膜において、その相分離構造が、共連続様(M1)またはラメラ様(M2)の場合、3面図すべてにおいて(A1)を含む親水性ドメインと(A2)を含む疎水性ドメインがともに連続相を形成する。
 一方、シリンダー構造(M3)や海島構造(M4)の場合、少なくとも1面で前記ドメインのいずれかが連続相を形成しないため前者と区別でき、また3面図の各々が示す模様から構造を判別できる。具体的には、共連続構造の場合、連続相のそれぞれが入り組んだ模様を示すのに対し、ラメラ構造では、層状に連なった模様を示す。ここで連続相とは、巨視的に見て、個々のドメインが孤立せずに繋がっている相のことを意味するが、一部繋がっていない部分があってもかまわない。
 特に、本発明においては、イオン性基を含有するセグメント(A1)とイオン性基を含有しないセグメント(A2)の凝集状態やコントラストを明確にするために、2重量%酢酸鉛水溶液中に高分子電解質膜を2日間浸漬することにより、イオン性基を鉛でイオン交換した後、透過電子顕微鏡(TEM)およびTEMトモグラフィー観察に供するものとする。
 イオン性基含有ポリマー(A)として用いるブロック共重合体としては、TEMによる観察を5万倍で行った場合に相分離構造が観察され、画像処理により計測した平均層間距離または平均粒子間距離が5nm以上、500nm以下であるものが好ましい。中でも、平均層間距離または平均粒子間距離が10nm以上、50nm以下がより好ましく、最も好ましくは15nm以上、30nm以下である。透過型電子顕微鏡によって相分離構造が観察されない、または、平均層間距離または平均粒子間距離が5nm未満である場合には、イオンチャンネルの連続性が不足し、伝導度が不足する場合がある。また、層間距離が500nmを越える場合には、機械強度や寸法安定性が不良となる場合がある。
 イオン性基含有ポリマー(A)として用いるブロック共重合体は、相分離構造を有しながら、結晶性を有することが好ましく、示差走査熱量分析法(DSC)あるいは広角X線回折によって結晶性が認められることが好ましく、具体的には示差走査熱量分析法によって測定される結晶化熱量が0.1J/g以上、または、広角X線回折によって測定される結晶化度が0.5%以上であることが好ましい。なお、「結晶性を有する」とはポリマーが昇温すると結晶化されうる、結晶化可能な性質を有する、あるいは既に結晶化していることを意味する。また、非晶性ポリマーとは、結晶性ポリマーではない、実質的に結晶化が進行しないポリマーを意味する。従って、結晶性ポリマーであっても、結晶化が十分に進行していない場合には、ポリマーの状態としては非晶状態である場合がある。
 本発明の高分子電解質膜においては、イオン性基含有高分子電解質とポリアゾールとがイオン性基と窒素原子の部分において分子間相互作用を形成しているものも好ましい。一般に、過酸化水素やヒドロキシラジカルは親水性の高い化合物であり、電解質膜中においても親水性が高く水濃度の高いイオン性基近傍に拡散しやすい。それゆえ、イオン性基含有高分子電解質膜とポリアゾールとがイオン性基と窒素の部分において分子間相互作用を形成することにより、イオン性基近傍に拡散する過酸化水素やヒドロキシラジカルを分解することで、高分子電解質膜の化学的安定性をより向上させることが可能となる。また、イオン性基含有高分子電解質膜とポリアゾールとが分子間相互作用を有することにより、三次元的な架橋を形成するため、湿度変化に起因する膨潤・収縮を抑制すると共に、機械強度をも向上させることが可能となる。
 本発明の分子間相互作用の具体例としては、イオンコンプレックスや水素結合、双極子相互作用、ファンデルワールス力などが挙げられるが、特に限定されるものではない。中でも、イオンコンプレックス、水素結合、双極子相互作用を形成するものが好ましく、イオンコンプレックス、水素結合を形成するものがより好ましく、イオンコンプレックスを形成するものが特に好ましい。イオン性基と窒素原子との間にはたらく分子間相互作用が強固な力であるほど、ポリアゾールはイオン性基の近傍に集中し、拡散する過酸化水素やヒドロキシラジカルを分解する速度を向上させることが可能となる。更に、分子間相互作用が強固な力であるほど、イオン性基含有ポリマーとポリアゾールの架橋も強固なものとなり、本発明の高分子電解質膜の膨潤・収縮を抑制し、機械強度を向上させることが可能となる。
 上記分子間相互作用が生じているか否かについては、フーリエ変換赤外分光計(Fourier-Transform Infrared Spectrometer)(以下「FT-IR」と略称することがある。)を用いて確認することができる。
 本実施の形態の高分子電解質膜をFT-IRを用いて測定した場合、高分子電解質の本来のピーク位置や、ポリアゾール系化合物の本来のピーク位置がシフトしたスペクトルが観察されれば、高分子電解質の一部が、ポリアゾール系化合物中の一部と分子間相互作用を形成していると判定できる。
 本発明においてポリアゾールは、加工の簡便さと相分離構造の形成を抑制する観点から、ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素系の有機溶媒、メタノール、エタノール、イソプロピルアルコール等のアルコール系の有機溶媒、酢酸エチル、酢酸ブチル等のエステル系の有機溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系の有機溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル系の有機溶媒、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルイミダゾリジノン、ジメチルスルホキシド、N-メチル-2-ピロリドン等の非プロトン性極性有機溶媒といった汎用有機溶媒に溶解するものであることが好ましい。ポリアゾールを可溶な汎用有機溶媒を用いることで、イオン性基含有ポリマーとの均一な溶液を得ることが可能となり、イオン性基含有高分子電解質との相分離構造の形成を抑制できるようになる。
 前記ポリアゾールが均一な溶液を形成するか否かについては、以下の方法で確認することが可能である。即ち、ポリアゾールの0.5重量%溶液を調製し、動的光散乱法(以下DLSと略称することがある)を用いて粒子径分布を測定することにより確認することができる。溶液中のポリアゾールの粒径としては、算術平均粒子径が10nm以下であればよく、5nm以下であれば好ましく、2nm以下であればより好ましい。粒径2nmを超える粒子が確認されない溶液は特に好ましく用いることができる。
 前記ポリアゾールは一般的に溶媒への溶解性が低いため、イオン性基含有高分子電解質との均一な組成物を得るためには、ポリマー溶液へ可溶化させる必要がある。可溶化させる方法としては特に限定されないが、(1)スプレードライ法、(2)アルカリ溶解、(3)低分子量化、を適用することが好ましく、(1)スプレードライ法、(2)アルカリ溶解を適用することがより好ましく、(1)スプレードライ法を適用することが更に好ましい。
 前記(1)のスプレードライ法とは、高温の空気や窒素ガスのフロー中、または減圧チャンバー内に、目的物質の溶液を数百μm以下の微細粒子として噴霧することで瞬間的に乾燥させる方法である。この方法を適用することで、ポリアゾールのアモルファス状の多孔質体を得ることができ、通常では不溶性・難溶性のポリアゾールを、常温での撹拌により容易に高濃度で溶解させることが可能となる。
 前記(2)のアルカリ溶解とは、ポリアゾールとアルカリ金属水酸化物を反応させることにより塩を形成させ可溶化させる方法である。ポリアゾールとアルカリ金属水酸化物を反応させる方法としては、メタノール、エタノール、n-プロパノール、イソプロピルアルコール、ブタノール又はグリセリン等の有機溶媒と、水との混合物からなるプロトン性の溶媒にアルカリ金属水酸化物を溶解させたものにポリアゾールを混合させる方法などが挙げられるが、特に限定されるものではない。この方法を適用することにより、ポリアゾールが塩を形成しジメチルスルホキシドやN-メチル-2-ピロリドン等の極性の有機溶媒に溶解させることが可能となる。
 前記(3)の低分子量化においては、ポリアゾールの構造によってどの程度の分子量のものを用いるかが異なるが、例えばポリアゾールの一種であるポリベンズイミダゾールの場合には、重量平均分子量で1000以上1万以下のものが好ましく用いられる。比較的分子量の低い化合物を適用することにより、添加剤分子鎖同士の相互作用を低減し可溶化することができる。
 前記(1)のスプレードライ法を適用する場合には、更に以下の工程1~工程3を適用し高分子電解質膜を製造することが好ましい。即ち、工程1:スプレードライ法を用いてポリアゾール粒子を作製する工程、工程2:イオン性基含有高分子電解質と、前記ポリアゾール粒子と、前記イオン性基含有高分子電解質および前記ポリアゾール粒子の両者を溶解可能な有機溶媒とを混合し、均一な電解質組成物溶液を調製する工程、工程3:前記電解質組成物溶液を溶液製膜する工程である。
 前記工程1においては、スプレードライに供するポリアゾール溶液を調製する必要があるが、一般にポリアゾールは溶解性が非常に低く、有機溶媒と混合、撹拌する方法で溶液を調製することは困難であった。
 本発明においては、オートクレーブを用いることでスプレードライに供するポリアゾールの希薄溶液を調製することを可能とした。即ち、ポリアゾールと有機溶媒とをオートクレーブ容器中に入れ密閉後、加熱することにより、ポリアゾールの希薄溶液を調製することを可能とした。
 ポリアゾールの希薄溶液の調製工程において使用する有機溶媒としては、ポリアゾールを溶解することが出来れば特に限定されることはなく、ポリアゾールの構造に応じて適宜選択することが出来るが、通常ポリアゾールは溶解性が低く使用出来る有機溶媒は限られたものである。前記有機溶媒としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N,N’-ジメチルイミダゾリジノン、N-メチル-2-ピロリドン、ジメチルスルホキシド等の非プロトン性極性有機溶媒及びそれらの混合物からなる群より選択される有機溶媒であることが好ましい。
 前記オートクレーブにおける加熱温度は、ポリアゾールを溶解することが出来れば特に限定されるものではないが、ポリアゾール希薄溶液の有機溶媒の沸点以上、300℃以下であることが好ましい。加熱温度が有機溶媒の沸点に満たないと、オートクレーブ内の圧力が低く、ポリアゾールの溶解が不十分となる場合がある。また、加熱温度が300℃を超えると、ポリアゾールの溶解速度は速くなるものの、有機溶媒やポリアゾールが変質、分解するため、本発明の効果が充分に得られない場合がある。
 スプレードライの入口温度は100℃以上250℃以下が好ましく、150℃以上220℃以下がより好ましい。入口温度が100℃未満の場合、有機溶媒の蒸発が不十分となりポリアゾール粒子が得られない場合がある。入口温度が250℃よりも高い場合、有機溶媒やポリアゾールが変質、分解するため、本発明の効果が充分に得られない場合がある。
 スプレードライの出口温度は100℃以下が好ましく、60℃以下がより好ましい。出口温度が100℃よりも高い場合、生成したポリアゾール粒子が粗大化する場合がある。なお、出口温度下限については、特に限定されるものではないが、装置の仕様上0℃~40℃程度となることが多い。このようにして作製したポリアゾール粒子は、前述の動的光散乱法により測定される粒子径分布において粒径2nmを超える粒子が確認されないものであることが好ましい。
 前記工程2においては、イオン性基含有高分子電解質をポリアゾール粒子と両者を溶解可能な有機溶媒とを所定の割合で混合し、従来公知の方法、例えばホモミキサー、ホモディスパー、ウエーブローター、ホモジナイザー、ディスパーサー、ペイントコンディショナー、ボールミル、マグネチックスターラー、メカニカルスターラーなどの混合機を用いて混合することにより調製することができる。回転式混合機の回転速度は、均一な電解質組成物溶液を調製することができれば特に制限はないが、製造効率の観点から50回/分以上が好ましく、100回/分以上がより好ましく、200回/分以上がさらに好ましい。回転数に特に上限値はないが、現実的には、20,000回/分または30,000回/分が混合機の性能上の限界となる場合が多い。また、混合機による混合時間は、均一な電解質組成物溶液を調製することができれば特に制限はないが、1分以上が好ましく、10分以上がより好ましく、1時間以上がさらに好ましい。混合時の回転数や混合時間が不十分である場合、高分子電解質およびポリアゾール粒子との均一な電解質組成物溶液を得ることができず、結果として高分子電解質とポリアゾールとが2nmを超える相分離構造を形成するため十分な耐久性が得られない場合がある。
 また、前記工程2においては、前記イオン性基含有高分子電解質を前記有機溶媒に溶解した高分子電解質溶液と、前記ポリアゾール粒子を前記有機溶媒に溶解したポリアゾール溶液をそれぞれ調製し、該高分子電解質溶液と該ポリアゾール溶液とを混合することで均一な電解質組成物溶液を調製する方法も好ましく用いることができる。予め高分子電解質溶液とポリアゾール溶液をそれぞれ調製することで、より簡便にイオン性基含有高分子電解質とポリアゾールとを溶液中に均一に分散させることが可能となる。結果として高分子電解質とポリアゾールとが相分離構造を形成しにくくなり、高分子電解質膜の品質が向上する。
 電解質組成物溶液を調製する有機溶媒としては、イオン性基含有高分子電解質及びポリアゾール粒子を溶解し、その後に除去し得るものであればよく、例えば、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノン等の非プロトン性極性有機溶媒、γ-ブチロラクトン、酢酸ブチルなどのエステル系の有機溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系の有機溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル、あるいはイソプロピルアルコールなどのアルコール系の有機溶媒、水およびこれらの混合物が好ましく用いられるが、非プロトン性極性有機溶媒が最も溶解性が高く好ましい。
 前記工程3の溶液製膜は、前記工程2で製造した電解質組成物溶液を膜状に塗布し高分子電解質膜を得ることができれば特に限定されるものではない。好ましくは前記電解質組成物溶液を支持体上に流延することで膜状に塗布した後、前記有機溶媒を除去する方法が例示される。
 電解質組成物溶液を支持体上に流延する方法としては、公知の方法を用いることができるが、一定の濃度の溶液を一定の厚みになるように流延することが好ましい。例えば、ドクターブレード、アプリケーター、バーコーター、ナイフコーターなど、一定のギャップの空隙に溶液を押しこんで流延した膜の厚みを一定にする方法や、スリットダイなどを用いて、電解質組成物溶液を一定速度で供給して流延する方法、グラビアロールを用いて一定量の電解質組成物溶液を支持体上に転写する方法が挙げられる。支持体上への流延は、バッチ方式で行ってもよいが、連続して行うほうが生産性がよいため好ましい。
 電解質組成物溶液を流延する支持体としては、電解質組成物溶液の有機溶媒に溶解しないものであれば特に限定されるものではない。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート、ポリアミド、ポリイミド、ポリアミドイミド、ポリアラミド、ポリベンザゾールなどの樹脂フィルムや、それらの表面にシリカやチタニア、及びジルコニアなどの無機化合物をコートしたもの、あるいはステンレス鋼などの金属質からなるフィルム、ガラス基板などが挙げられる。耐熱性及び耐溶剤性の面から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート、ポリアミド、ポリイミド、ポリアラミド、ガラス基板が好ましい。
 前記工程3の溶液製膜に用いる電解質組成物溶液の固形分濃度は、イオン性基含有高分子電解質の分子量や、流延する際の温度などによって適宜決定することができ、5重量%以上50重量%以下であることが好ましい。5重量%未満であると、後工程で行う溶媒の除去に時間を要して膜の品位が低下したり、膜中の溶媒含有量を適切に制御できない場合がある。50重量%を超えると、溶液の粘度が高くなりすぎてハンドリングが困難になることがある。より好ましくは5重量%以上35重量%以下である。
 電解質組成物溶液の粘度は、特に限定されるものではないが、支持体上に良好に流延することができる範囲であることが好ましい。より好ましくは、流延する温度において、粘度が1Pa・s以上1000Pa・s以下である。
 電解質組成物溶液を流延して得た膜から前記有機溶媒を除去する方法としては、特に限定されるものではなく、例えば、流延して得た膜を加熱して有機溶媒を蒸発させる方法が挙げられる。流延して得た膜を加熱して得られる高分子電解質膜における溶媒の含有率は、50重量%以下が好ましく、30重量%であることがより好ましく、10重量%以下であることがさらに好ましい。50重量%よりも多いと、高分子電解質膜の膨潤性が大きくなる場合がある。
 流延して得た膜を上記のごとく加熱する際の加熱温度は、300℃以下か、前記有機溶媒の沸点以下であることが好ましく、200℃以下であることがより好ましい。加熱温度が300℃を超えると、有機溶媒の除去効率は向上するが、有機溶媒や高分子電解質膜の分解・変質が起こったり、得られる高分子電解質膜の形態が悪くなる(品位が低下する)場合がある。また加熱温度の下限については、50℃が好ましい。加熱温度が50℃未満であると、十分に有機溶媒を除去することが困難になる場合がある。加熱方法は、熱風、赤外線、マイクロ波など公知の任意の方法で行うことができる。また、窒素などの不活性ガス雰囲気下で行ってもよい。
 本発明では、流延して得た膜を加熱して有機溶媒を蒸発した後、当該有機溶媒と混和する、高分子電解質膜の貧溶媒で、膜中の有機溶媒を抽出することが好ましい。かかる抽出を行わないと、高分子電解質膜に残留する有機溶媒量が多くなりすぎて、イオン伝導性の低下や、膜の膨潤の増大といった特性の低下が生じ易くなる。
 貧溶媒としては、前駆体膜や、流延する工程で用いた溶媒の種類に応じて適切なものを用いればよい。例えば、水、アルコール、ケトン、エーテル、低分子炭化水素、含ハロゲン溶媒などが挙げられる。流延する工程で用いた溶媒が水と混和する場合には、貧溶媒として水を用いることが好ましい。
 高分子電解質膜中の有機溶媒を貧溶媒で抽出する方法としては、特に限定されないが、高分子電解質膜に対して貧溶媒が均一に接触するように行うことが好ましい。例えば、高分子電解質膜を貧溶媒中に、貧溶媒中に浸漬する方法や、高分子電解質膜に貧溶媒を塗布あるいは噴霧する方法が挙げられる。これらの方法は、2回以上行っても、また組み合わせて行ってもよい。
 本発明の高分子電解質膜としては、Ce、Mn、Ti、Zr、V、Cr、Mo、W、Co、Rh、Ir、Ni、Pd、Pt、Ag、Au、Ruから選ばれた少なくとも1種の遷移金属をさらに含有することも好ましい。これら遷移金属は、かかる遷移金属、かかる遷移金属のイオン、かかる遷移金属イオンを含む塩、かかる遷移金属イオンを含む錯体、かかる遷移金属の酸化物からなる群から選ばれる1種以上を用いることができる。
 なかでも、ラジカル捕捉剤、過酸化物分解剤としての機能が高いことから、Ce、Mn、V、W、Co、Rh、Ir、Ni、Pd、Pt、Ag、Au、Ruを用いることが好ましく、より好ましくは、Ce、Mn、Co、Rh、Ir、Ni、Pd、Pt、Au、Ru、さらに好ましくは、Ce、Mn、Co、Rh、Ni、Pd、Pt、Ru、最も好ましくは、Ce、Mn、Co、Rh、Pd、Pt、Ruである。
 本発明の高分子電解質膜が遷移金属を含有するものである場合の高分子電解質膜中における遷移金属の含有率は、発電特性と耐久性のバランスを考慮して適宜選択することができ、限定されるものではないが、高分子電解質組成物全体の0.002重量%以上、15重量%以下であることが好ましい。より好ましくは、0.01重量%以上、5重量%以下、最も好ましくは0.02重量%以上、3重量%以下である。0.002重量%以上であれば、耐久性がより向上し、15重量%以下であれば、プロトン伝導性がより向上する。
 また、本発明の高分子電解質膜が遷移金属を含有するものである場合の高分子電解質膜中におけるポリアゾールと遷移金属の含有比率も、発電特性と耐久性のバランスを考慮して適宜選択することができ、限定されるものではないが、窒素/遷移金属のモル比率が、0.1以上、100以下であることが好ましい。より好ましくは、1以上、20以下、最も好ましくは5以上、10以下である。0.1以上であれば、プロトン伝導性や耐熱水性がより向上し、100以下であれば、耐久性がより向上する。
 かかる場合における遷移金属イオンの態様としては特に限定されるものではないが、具体例として、塩化物イオン、臭化物イオン、ヨウ化物イオン、硝酸塩、硫酸塩、スルホン酸塩、炭酸塩、リン酸塩、ホスホン酸塩、酢酸塩、シュウ酸塩、アセチルアセトナト錯体などが挙げられる。中でも、酸化劣化を抑制する効果が高いことから、硝酸塩、硫酸塩、スルホン酸塩、炭酸塩、リン酸塩、ホスホン酸塩、酢酸塩が好ましく、安価で電解質組成物への添加が容易であることから、硝酸塩、リン酸塩、酢酸塩がより好ましい。
 かかる場合における遷移金属イオンは、単独で存在してもよいし、有機化合物、ポリマー等と配位した錯体として存在してもよい。なかでも、ホスフィン化合物等との錯体であると、使用中における添加剤の溶出が抑えられるという観点で好ましく、多座ホスフィン化合物を用いた場合に特に耐熱水性に優れた高分子電解質膜となることから好ましい。
 また、かかる場合において遷移金属の酸化物を用いる場合、酸化セリウム、酸化マンガン、酸化コバルト、酸化ニッケル、酸化クロム、酸化イリジウム、酸化鉛が好ましい例として挙げられる。なかでも、酸化劣化を抑制する効果が高いことから、酸化セリウム、酸化マンガンを用いることが好ましい。
 本発明の高分子電解質膜は、硫黄含有添加剤を更に含有することも好ましい。中でも、発電性能の観点からスルフィド類が好ましく、耐熱性、化学的安定性の観点から芳香族ポリスルフィドがより好ましく、製造コストの観点からポリパラフェニレンスルフィドが特に好ましい。
 本発明において、イオン性基含有高分子電解質膜にポリアゾールを含有せしめる方法として先に述べた方法の他に、例えばポリアゾールを溶解させた液に、高分子電解質膜を接触させる方法を採用することもできる。接触させる方法として、浸漬、バーコーティング、スプレーコーティング、スリットダイ、ナイフコーティング、エアナイフ、ブラッシング、グラビアコーティング、スクリーン印刷、インクジェット印刷、ドクターブレードオーバーロール(添加剤溶液または分散液を高分子電解質組成物成形体に塗布し、次いでナイフと支持ロールとの間の隙間に通し余分な液を除去する方法)、などが挙げられるがこれらに限定されない。
 本発明の高分子電解質膜の膜厚は、1~2000μmが好ましい。実用に耐える膜の機械強度、物理的耐久性を得るには1μmより厚い方が好ましく、膜抵抗の低減つまり発電性能の向上のためには2000μmより薄い方が好ましい。かかる膜厚のさらに好ましい範囲は3~50μm、特に好ましい範囲は1
0~30μmである。かかる膜厚は、前述の溶液製膜に用いる電解質組成物溶液の濃度あるいは基板上へ塗布厚により制御することができる。
 本発明の高分子電解質膜には、先に述べた主たる組成の他に通常の高分子化合物に使用される結晶化核剤、可塑剤、安定剤、酸化防止剤あるいは離型剤等の添加剤を、本発明の目的に反しない範囲内でさらに添加することができる。
 本発明の高分子電解質膜には、前述の諸特性に悪影響をおよぼさない範囲内で機械的強度、熱安定性、加工性などの向上を目的に、各種ポリマー、エラストマー、フィラー、微粒子、各種添加剤などを含有させてもよい。また、微多孔膜、不織布、メッシュ等で補強してもよい。
 本発明の高分子電解質膜に電極触媒層を塗布または転写することにより積層してなる触媒層付電解質膜も好ましく用いることができる。
 〔膜電極複合体〕
 かかる高分子電解質膜を燃料電池に用いる際には、高分子電解質膜と電極とを接合した、膜電極複合体を作製する。このとき高分子電解質膜と電極の接合法(膜電極複合体)については特に制限はなく、公知の方法(例えば、電気化学,1985, 53, p.269.記載の化学メッキ法、電気化学協会編(J. Electrochem. Soc.)、エレクトロケミカル サイエンス アンド テクノロジー (Electrochemical Science and Technology),1988, 135, 9, p.2209. 記載のガス拡散電極の熱プレス接合法など)を適用することが可能である。
 加熱プレスにより一体化する場合は、その温度や圧力は、電解質膜の厚さ、水分率、触媒層や電極基材により適宜選択すればよい。また、本発明では電解質膜が乾燥した状態または吸水した状態でもプレスによる複合化が可能である。具体的なプレス方法としては圧力やクリアランスを規定したロールプレスや、圧力を規定した平板プレスなどが挙げられ、工業的生産性やイオン性基を有する高分子材料の熱分解抑制などの観点から0℃~250℃の範囲で行うことが好ましい。加圧は電解質膜や電極保護の観点からできる限り弱い方が好ましく、平板プレスの場合、10MPa以下の圧力が好ましく、加熱プレス工程による複合化を実施せずに電極と電解質膜を重ね合わせ燃料電池セル化することもアノード、カソード電極の短絡防止の観点から好ましい選択肢の一つである。この方法を適用し、燃料電池として発電を繰り返すと、短絡箇所が原因と推測される電解質膜の劣化が抑制される傾向があり、燃料電池として耐久性が良好となる。
 本発明の高分子電解質膜を使用した固体高分子型燃料電池の用途としては、特に限定されないが、移動体の電力供給源が好ましいものである。特に、携帯電話、パソコン、PDA、テレビ、ラジオ、ミュージックプレーヤー、ゲーム機、ヘッドセット、DVDプレーヤーなどの携帯機器、産業用などの人型、動物型の各種ロボット、コードレス掃除機等の家電、玩具類、電動自転車、自動二輪、自動車、バス、トラックなどの車両や船舶、鉄道などの移動体の電力供給源、据え置き型の発電機など従来の一次電池、二次電池の代替、もしくはこれらとのハイブリット電源として好ましく用いられる。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。なお、各物性の測定条件は次の通りである。測定n数は特に記載のないものは、n=1で実施した。
 (1)イオン交換容量(IEC)
 以下の手順による中和滴定法により測定した。測定は3回行って、その平均値を取った。
(i)プロトン置換し、純水で十分に洗浄した電解質膜の膜表面の水分を拭き取った後、100℃にて12時間以上真空乾燥し、乾燥重量を求めた。
(ii)電解質に5重量%硫酸ナトリウム水溶液を50mL加え、12時間静置してイオン交換した。
(iii)0.01mol/L水酸化ナトリウム水溶液を用いて、生じた硫酸を滴定した。指示薬として市販の滴定用フェノールフタレイン溶液0.1w/v%を加え、薄い赤紫色になった点を終点とした。
(iv)イオン交換容量は下記の式により求めた。 
 イオン交換容量(meq/g)=
 〔水酸化ナトリウム水溶液の濃度(mmol/ml)×滴下量(ml)〕/試料の乾燥重量(g)
 (2)プロトン伝導度(H+伝導度)
 膜状の試料を25℃の純水に24時間浸漬した後、80℃、相対湿度25~95%の恒温恒湿槽中にそれぞれのステップで30分保持し、定電位交流インピーダンス法でプロトン伝導度を測定した。
 測定装置としては、Solartron製電気化学測定システム(Solartron 1287 Electrochemical InterfaceおよびSolartron 1255B Frequency Response Analyzer)を使用し、2端子法で定電位インピーダンス測定を行い、プロトン伝導度を求めた。交流振幅は、50mVとした。サンプルは幅10mm、長さ50mmの膜を用いた。測定治具はフェノール樹脂で作製し、測定部分は開放させた。電極として、白金板(厚さ100μm、2枚)を使用した。電極は電極間距離10mm、サンプル膜の表側と裏側に、互いに平行にかつサンプル膜の長手方向に対して直交するように配置した。
 (3)数平均分子量、重量平均分子量
 ポリマーの数平均分子量、重量平均分子量をGPCにより測定した。紫外検出器と示差屈折計の一体型装置として東ソー製HLC-8022GPCを、またGPCカラムとして東ソー製TSK gel SuperHM-H(内径6.0mm、長さ15cm)2本を用い、N-メチル-2-ピロリドン溶媒(臭化リチウムを10mmol/L含有するN-メチル-2-ピロリドン溶媒)にて、サンプル濃度0.1重量%、流量0.2mL/min、温度40℃で測定し、標準ポリスチレン換算により数平均分子量、重量平均分子量を求めた。
 (4)膜厚
 ミツトヨ製グラナイトコンパレータスタンドBSG-20にセットしたミツトヨ製ID-C112型を用いて測定した。測定は電解質膜左端より1cmの部位、電解質膜の中央部位、電解質膜の右端より1cmの部位、左端より1cmの部位と中央部位との中間部位、右端より1cmの部位と中央部位との中間部位の五箇所で実施し、その平均を膜厚とした。
 (5)純度の測定方法
 下記条件のガスクロマトグラフィー(GC)により定量分析した。
カラム:DB-5(J&W社製) L=30m Φ=0.53mm D=1.50μm
キャリヤー:ヘリウム(線速度=35.0cm/sec)
分析条件
Inj.temp. 300℃
Detct.temp. 320℃
Oven 50℃×1min
Rate 10℃/min
Final 300℃×15min
SP ratio 50:1
 (6)核磁気共鳴スペクトル(NMR)
 下記の測定条件で、1H-NMRの測定を行い、構造確認、およびイオン性基を含有するセグメント(A1)とイオン性基を含有しないセグメント(A2)のモル組成比の定量を行った。該モル組成比は、8.2ppm(ジスルホネート-4,4’-ジフルオロベンゾフェノン由来)と6.5~8.0ppm(ジスルホネート-4,4’-ジフルオロベンゾフェノンを除く全芳香族プロトン由来)に認められるピークの積分値から算出した。
  装置    :日本電子社製EX-270
  共鳴周波数 :270MHz(1H-NMR)
  測定温度  :室温
  溶解溶媒  :DMSO-d6
  内部基準物質:TMS(0ppm)
  積算回数  :16回
 (7)透過電子顕微鏡(TEM)による相分離構造の観察
 染色剤として2重量%酢酸鉛水溶液中に試料片を浸漬させ、25℃下で24時間放置した。染色処理された試料を取りだし、可視光硬化樹脂で包埋し、可視光を30秒照射し固定した。
 ウルトラミクロトームを用いて室温下で100nmの厚さの薄片を切削し、得られた薄片をCu グリッド上に回収しTEM観察に供した。観察は加速電圧100kVで実施し、撮影は、写真倍率として×8,000、×20,000、×100,000になるように撮影を実施した。機器としては、TEM H7100FA(日立製作所社製)を使用した。
 また、酢酸鉛溶液浸漬による染色工程を経ず、同様のTEM観察を実行することでポリアゾールに由来する島状の相分離構造の有無を確認した。
 (8)エネルギー分散型X線分析(EDX)
 rTEM検出器(アメテック製)を上記TEMに接続し使用した。詳細な分析内容は下記(a)、(b)に示す通りである。
 (a)親水性ドメイン及び疎水性ドメインにおけるポリアゾール濃度の分析
 親水性ドメイン、疎水性ドメイン、各々について50点において元素分析を行いドメイン内平均窒素量を求め、下記の式に従い各ドメインにおけるポリアゾール濃度を算出した。
 ポリアゾール濃度(重量%)=
 100×〔ドメイン内平均窒素量(重量%)-ポリマー窒素量(重量%)〕/
 〔アゾール窒素量(重量%)-ポリマー窒素量(重量%)〕
 なお、ポリマー窒素量及びアゾール窒素量は、各々高分子電解質及びポリアゾールが含有する窒素量である。
 (b)海/島構造形成時におけるポリアゾールを主成分とする相分離構造の分析
 前記高分子電解質膜が海/島構造を形成した場合は、以下に示す方法を用いてポリアゾールの分布を測定した。
 即ち、前記海/島構造において島相の50点において元素分析を行い島相内平均窒素量求め前記(a)項と同様にして、島相におけるポリアゾールの含有量を求めた。このとき、ポリアゾール含有量が50%以上のとき、該島相はポリアゾールが主成分であると判定した。
 (9)化学的安定性
 (A)分子量保持率
 N-メチルピロリドン(NMP)に可溶な電解質膜については、以下の方法にて電解質膜を劣化させ、劣化試験前後の分子量を比較することで化学安定性を評価した。
 市販の電極、BASF社製燃料電池用ガス拡散電極“ELAT(登録商標)LT120ENSI”5g/m2Ptを5cm角にカットしたものを1対準備し、燃料極、酸化極として電解質膜を挟むように対向して重ね合わせ、150℃、5MPaで3分間加熱プレスを行い、評価用膜電極接合体を得た。
 この膜電極接合体を英和(株)製 JARI標準セル“Ex-1”(電極面積25cm2)にセットし、80℃に保ちながら、低加湿状態の水素(70mL/分、背圧0.1MPaG)と空気(174mL/分、背圧0.05MPaG)をセルに導入し、開回路での劣化加速試験を行った。この条件で燃料電池セルを200時間作動させた後、膜-電極接合体を取り出してエタノール/水の混合溶液に投入し、さらに超音波処理することで触媒層を取り除いた。そして、残った高分子電解質膜の分子量を測定し、分子量保持率として評価した。
 (B)開回路保持時間
 NMPに溶解不可能な電解質膜については、以下の方法にて電解質膜を劣化させ、開回路電圧の保持時間を比較することで化学安定性を評価した。
 上記と同様の方法にて膜電極接合体を作製し、評価用セルにセットした。続いて、上記と同様の条件にて、開回路での劣化加速試験を行った。開回路電圧が0.7V以下まで低下するまでの時間を開回路保持時間として評価した。
 (C)電圧保持率
 上記(B)の開回路保持時間評価を行っても5000時間以上、0.7V以上を維持できる場合には、そこで評価を打ち切り初期電圧と5000時間後の電圧を比較し電圧保持率として化学耐久性を評価した。
 (10)膨潤率
 以下の手法を用いて、膜状試料のサイズに基づいて測定した。
(i)試料を約5cm四方に切り出し、各辺のサイズを測定した。このとき、任意の一辺をx方向、x方向に垂直な一辺をy方向とした。
(ii)80℃の純水に2時間浸漬し、試料に水を吸収させた。
(iii)試料を水より取り出し、(i)にてx方向、y方向とした2辺の長さを測定した。
(iv)各方向の膨潤量は下記式に基づいて計算した。
 膨潤率(%)=
 [{水浸漬後の長さ(cm)-水浸漬前の長さ(cm)}/水浸漬前の長さ(cm)]×100
(11)動的光散乱(DLS)
 濃度0.5重量%となるようにポリアゾールをN-メチル-2-ピロリドンに溶解した。この溶液を、堀場製作所社製動的光散乱式粒径分布測定装置LB-500を用いて25℃における算術平均粒子径を測定した。
 合成例1
 下記一般式(G1)で表される2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン(K-DHBP)の合成
Figure JPOXMLDOC01-appb-C000004
 攪拌器、温度計及び留出管を備えた500mLフラスコに、4,4′-ジヒドロキシベンゾフェノン49.5g、エチレングリコール134g、オルトギ酸トリメチル96.9g及びp-トルエンスルホン酸1水和物0.50gを仕込み溶解する。その後78~82℃で2時間保温攪拌した。更に、内温を120℃まで徐々に昇温、ギ酸メチル、メタノール、オルトギ酸トリメチルの留出が完全に止まるまで加熱した。この反応液を室温まで冷却後、反応液を酢酸エチルで希釈し、有機層を5重量%炭酸カリウム水溶液100mLで洗浄し分液後、有機溶媒を留去した。残留物にジクロロメタン80mLを加え結晶を析出させ、濾過し、乾燥して2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン52.0gを得た。この結晶をGC分析したところ99.9重量%の2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソランと0.1重量%の4,4′-ジヒドロキシベンゾフェノンであった。
 合成例2
 下記一般式(G2)で表されるジソジウム 3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの合成
Figure JPOXMLDOC01-appb-C000005
 4,4’-ジフルオロベンゾフェノン109.1g(アルドリッチ試薬)を発煙硫酸(50重量%SO)150mL(和光純薬試薬)中、100℃で10時間反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、上記一般式(G2)で示されるジソジウム 3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンを得た。純度は99.4重量%であった。構造は1H-NMRで確認した。不純物はキャピラリー電気泳動(有機物)およびイオンクロマトグラフィー(無機物)で定量分析を行った。
 合成例3
 (下記一般式(G3)で表されるイオン性基を含有しないオリゴマーa1’の合成)
 撹拌機、窒素導入管、Dean-Starkトラップを備えた1000mL三口フラスコに、炭酸カリウム16.59g(アルドリッチ試薬、120mmol)、前記合成例1で得たK-DHBP25.8g(100mmol)および4,4’-ジフルオロベンゾフェノン20.3g(アルドリッチ試薬、93mmol)を入れ、窒素置換後、N-メチルピロリドン(NMP)300mL、トルエン100mL中にて160℃で脱水後、昇温してトルエン除去、180℃で1時間重合を行った。多量のメタノールで再沈殿することで精製を行い、イオン性基を含有しないオリゴマーa1(末端ヒドロキシル基)を得た。数平均分子量は10000であった。
 撹拌機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム1.1g(アルドリッチ試薬、8mmol)、イオン性基を含有しない前記オリゴマーa1(末端ヒドロキシル基)を20.0g(2mmol)を入れ、窒素置換後、N-メチルピロリドン(NMP)100mL、シクロヘキサン30mL中にて100℃で脱水後、昇温してシクロヘキサン除去し、デカフルオロビフェニル4.0g(アルドリッチ試薬、12mmol)を入れ、105℃で1時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記式(G3)で示されるイオン性基を含有しないオリゴマーa1’(末端フルオロ基)を得た。数平均分子量は12000であり、イオン性基を含有しないオリゴマーa1’の数平均分子量は、リンカー部位(分子量630)を差し引いた値11400と求められた。
Figure JPOXMLDOC01-appb-C000006
 (下記一般式(G4)で表されるイオン性基を含有するオリゴマーa2の合成)
 撹拌機、窒素導入管、Dean-Starkトラップを備えた1000mL三口フラスコに、炭酸カリウム27.6g(アルドリッチ試薬、200mmol)、前記合成例1で得たK-DHBP12.9g(50mmol)および4,4’-ビフェノール9.3g(アルドリッチ試薬、50mmol)、前記合成例2で得たジソジウム 3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン39.3g(93mmol)、および18-クラウン-6、17.9g(和光純薬82mmol)を入れ、窒素置換後、N-メチルピロリドン(NMP)300mL、トルエン100mL中にて170℃で脱水後、昇温してトルエン除去、180℃で1時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記式(G4)で示されるイオン性基を含有するオリゴマーa2(末端ヒドロキシル基)を得た。数平均分子量は17000であった。
Figure JPOXMLDOC01-appb-C000007
(式(G4)において、Mは、NaまたはKを表す。)
 (イオン性基を含有するセグメント(A1)としてオリゴマーa2、イオン性基を含有しないセグメント(A2)としてオリゴマーa1、リンカー部位としてオクタフルオロビフェニレンを含有するブロック共重合体b1の合成)
 撹拌機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム0.56g(アルドリッチ試薬、4mmol)、イオン性基を含有するオリゴマーa2(末端ヒドロキシル基)を16g(1mmol)入れ、窒素置換後、N-メチルピロリドン(NMP)100mL、シクロヘキサン30mL中にて100℃で脱水後、昇温してシクロヘキサン除去し、イオン性基を含有しないオリゴマーa1’(末端フルオロ基)11g(1mmol)を入れ、105℃で24時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、ブロック共重合体b1を得た。重量平均分子量は37万であった。
 ブロック共重合体b1は、イオン性基を含有するセグメント(A1)、イオン性基を含有しないセグメント(A2)として、前記一般式(S1)および(S2)で表される構成単位をそれぞれ50モル%、100モル%含有していた。
 ブロックコポリマーb1そのものを高分子電解質膜としたときの、中和滴定から求めたイオン交換容量は1.8meq/g、1H-NMRから求めたモル組成比(A1/A2)は、56mol/44mol=1.27、ケタール基の残存は認められなかった。
 合成例4
 (下記式(G6)で表されるセグメントと下記式(G7)で表されるセグメントからなるポリエーテルスルホン(PES)系ブロックコポリマー前駆体b2’の合成)
 無水塩化ニッケル1.62gとジメチルスルホキシド15mLとを混合し、70℃に調整した。これに、2,2’-ビピリジル2.15gを加え、同温度で10分撹拌し、ニッケル含有溶液を調製した。
 ここに、2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)1.49gと下記式(G5)で示される、スミカエクセルPES5200P(住友化学社製、Mn=40,000、Mw=94,000)0.50gとを、ジメチルスルホキシド5mLに溶解させて得られた溶液に、亜鉛粉末1.23gを加え、70℃に調整した。これに前記ニッケル含有溶液を注ぎ込み、70℃で4時間重合反応を行った。反応混合物をメタノール60mL中に加え、次いで、6mol/L塩酸60mLを加え1時間攪拌した。析出した固体を濾過により分離し、乾燥し、灰白色の下記式(G6)と下記式(G7)で表されるセグメントを含むブロック共重合体b2’を1.62gを収率99%で得た。重量平均分子量は23万であった。
Figure JPOXMLDOC01-appb-C000008
 合成例5
 (式(G7)で表されるセグメントと下記式(G8)で表されるセグメントからなるPES系ブロックコポリマーb2の合成)
 合成例4で得られたブロックコポリマー前駆体b2’0.23gを、臭化リチウム1水和物0.16gとN-メチル-2-ピロリドン8mLとの混合溶液に加え、120℃で24時間反応させた。反応混合物を、6mol/L塩酸80mL中に注ぎ込み、1時間撹拌した。析出した固体を濾過により分離した。分離した固体を乾燥し、灰白色の式(G7)で示されるセグメントと下記式(G8)で表されるセグメントからなるブロックコポリマーb2を得た。得られたポリアリーレンの重量平均分子量は19万であった。
 ブロックコポリマーb2そのものを高分子電解質膜としたときの、中和滴定から求めたイオン交換容量は2.0meq/gであった。
Figure JPOXMLDOC01-appb-C000009
 合成例6
 (下記式(G9)で表される疎水性オリゴマ-a3の合成)
Figure JPOXMLDOC01-appb-C000010
 撹拌機、温度計、冷却管、Dean-Stark管、窒素導入の三方コックを取り付けた1Lの三口フラスコに、2,6-ジクロロベンゾニトリル49.4g(0.29mol)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン88.4g(0.26mol)、炭酸カリウム47.3g(0.34mol)をはかりとった。
 窒素置換後、スルホラン346mL、トルエン173mLを加えて攪拌した。フラスコをオイルバスにつけ、150℃に加熱還流させた。反応により生成する水をトルエンと共沸させ、Dean-Stark管で系外に除去しながら反応させると、約3時間で水の生成がほとんど認められなくなった。反応温度を徐々に上げながら大部分のトルエンを除去した後、200℃で3時間反応を続けた。次に、2,6-ジクロロベンゾニトリル12.3g(0.072mol)を加え、さらに5時間反応した。
 得られた反応液を放冷後、トルエン100mLを加えて希釈した。副生した無機化合物の沈殿物を濾過除去し、濾液を2Lのメタノール中に投入した。沈殿した生成物を濾別、回収し乾燥後、テトラヒドロフラン250mLに溶解した。これをメタノール2Lに再沈殿し、目的のオリゴマーa3 107gを得た。オリゴマーa3の数平均分子量は7,600であった。
 合成例7
 (下記式(G10)で表される親水性モノマーa4の合成)
Figure JPOXMLDOC01-appb-C000011
 攪拌機、冷却管を備えた3Lの三口フラスコに、クロロスルホン酸233.0g(2mol)を加え、続いて2,5-ジクロロベンゾフェノン100.4g(400mmolを加え、100℃のオイルバスで8時間反応させた。所定時間後、反応液を砕氷1000gにゆっくりと注ぎ、酢酸エチルで抽出した。有機層を食塩水で洗浄、硫酸マグネシウムで乾燥後、酢酸エチルを留去し、淡黄色の粗結晶3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸クロリドを得た。粗結晶は精製せず、そのまま次工程に用いた。
 2,2-ジメチル-1-プロパノール(ネオペンチルアルコール)38.8g(440mmol)をピリジン300mLに加え、約10℃に冷却した。ここに上記で得られた粗結晶を約30分かけて徐々に加えた。全量添加後、さらに30分撹拌し反応させた。反応後、反応液を塩酸水1000mL中に注ぎ、析出した固体を回収した。得られた固体を酢酸エチルに溶解させ、炭酸水素ナトリウム水溶液、食塩水で洗浄後、硫酸マグネシウムで乾燥後、酢酸エチルを留去し、粗結晶を得た。これをメタノールで再結晶し、上記構造式(G10)で表される3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチルa4の白色結晶を得た。
 合成例8
 (下記式(G11)で表されるポリアリーレン系ブロックコポリマーb3の合成)
Figure JPOXMLDOC01-appb-C000012
 撹拌機、温度計、窒素導入管を接続した1Lの3口フラスコに、乾燥したN,N-ジメチルアセトアミド(DMAc)166mLを合成例6で合成した疎水性オリゴマー(a3)13.4g(1.8mmol)、合成例7で合成した3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル(a4)37.6g(93.7mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド2.62g(4.0mmol)、トリフェニルホスフィン10.5g(40.1mmol)、ヨウ化ナトリウム0.45g(3.0mmol)、亜鉛15.7g(240.5mmol)の混合物中に窒素下で加えた。
 反応系を撹拌下に加熱し(最終的には82℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。重合反応溶液をDMAc175mLで希釈し、30分撹拌し、セライトを濾過助剤に用い濾過した。撹拌機を取り付けた1Lの3つ口で、この濾液に臭化リチウム24.4g(281mmol)を1/3ずつ3回に分け1時間間隔で加え、120℃で5時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、アセトン4Lに注ぎ、凝固した。凝固物を濾集、風乾後、ミキサーで粉砕し、1N硫酸1500mLで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄後、80℃で一晩乾燥し、目的のブロックコポリマーb3 38.0gを得た。このブロックコポリマーの重量平均分子量は18万であった。
 ブロックコポリマーb3そのものを高分子電解質膜としたときの、中和滴定から求めたイオン交換容量は2.5meq/gであった。
 合成例9
(下記式(G12)で表されるポリベンズイミダゾール(PBI)化合物の合成)
Figure JPOXMLDOC01-appb-C000013
 窒素導入管を備えた250mL二口フラスコに、イソフタル酸ジフェニル(東京化成製)29.7g(93.3mmol)及びポリリン酸(和光純薬製)5gを入れ窒素置換後、150℃まで昇温し、溶融、混合した。室温まで冷却後、3,3’-ジアミノベンジジン(Aldrich製)20.0g(93.3mmol))を加え、再度150℃まで昇温した。イソフタル酸ジフェニルの融解後、5時間かけ200℃まで昇温した。200℃到達より1時間経過後、30分間減圧しフェノールを除去した後、200℃にて8時間反応を行った。得られた褐色固体を350gのNMPに溶解、濾過後、2重量%重曹水溶液3Lで再沈殿することで精製を行い、式(G12)で示すPBI化合物25.9g(収率90%)を得た。
 [実施例1]
 (スプレードライによる可溶性(PBI)の作製)
 合成例9にて合成したPBI5gとジメチルアセトアミド95gをオートクレーブ中に入れて密閉し、250℃まで昇温し24時間保持した。オートクレーブを自然冷却し、PBI濃度5重量%のDMAc溶液を作製した。
 このPBI溶液100gを有機溶媒用スプレードライヤ(ヤマト科学(株)社製ADL311S-A)を用いて噴霧し、5gのPBI粉末を得た。この時の運転条件は、入口温度200℃、出口温度50℃、送液速度1.0g/min、噴霧圧力0.25MPaであった。このスプレードライにより得られたPBI粉末をNMPに溶解してGPC法により分子量測定したところ重量平均分子量は21万であった。また、NMP溶液のDLSを測定したところ、粒径2nm以上の粒子は見られなかった。
 (PBI添加膜の作製)
 合成例3にて得た20gのブロックコポリマーb1を80gのNMPに溶解した。この溶液に、前記スプレードライにより可溶化させたPBIを200mg添加し、撹拌機で20,000rpm、3分間撹拌しポリマー濃度20重量%の透明な溶液を得た。得られた溶液を、ガラス繊維フィルターを用いて加圧ろ過後、ガラス基板上に流延することで膜状に塗布し、100℃にて4時間乾燥後、窒素下150℃で10分間熱処理し、ポリケタールケトン膜(膜厚15μm)を得た。ポリマーの溶解性は極めて良好であった。95℃で10重量%硫酸水溶液に24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、高分子電解質膜f1を得た。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。また、EDXを用いて窒素原子の分布から計算したPBIの存在比は、親水性ドメイン中:疎水性ドメイン中=85:15であった。PBIに由来する島状の相分離構造(PBIを主成分とする2nm以上の相分離)は見られなかった。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定したが、5000時間以内に評価が終了しなかったので、電圧保持率として電解質膜の化学耐久性を評価した。別途イオン交換容量、プロトン伝導度、膨潤率を測定しその結果を表1に示す。
 [実施例2]
 PBIを6gにした以外は、実施例1と同様にして電解質膜f2を製造した。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。また、EDXを用いて窒素原子の分布から計算したPBIの存在比は、親水性ドメイン中:疎水性ドメイン中=72:28であった。PBIに由来する島状の相分離構造(PBIを主成分とする2nm以上の相分離)は見られなかった。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定したが、5000時間以内に評価が終了しなかったので、電圧保持率として電解質膜の化学耐久性を評価した。別途イオン交換容量、プロトン伝導度、膨潤率を測定しその結果を表1に示す。
 [実施例3]
 PBIを4mgにした以外は、実施例1と同様にして電解質膜f3を製造した。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。また、EDXを用いて窒素原子の分布から計算したPBIの存在比は、親水性ドメイン中:疎水性ドメイン中=92:8であった。PBIに由来する島状の相分離構造(PBIを主成分とする2nm以上の相分離)は見られなかった。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 [実施例4]
 (フタロシアニン添加膜の作製)
 PBIの代わりにフタロシアニン(和光純薬工業社製)を使用した以外は、実施例1と同様にして電解質膜f4を製造した。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。また、EDXを用いて窒素原子の分布から計算したPBIの存在比は、親水性ドメイン中:疎水性ドメイン中=77:23であった。フタロシアニンに由来する島状の相分離構造(フタロシアニンを主成分とする2nm以上の相分離)は見られなかった。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定したが、5000時間以内に評価が終了しなかったので、電圧保持率として電解質膜の化学耐久性を評価した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 [実施例5]
 (PBI、硝酸セリウム(III)添加膜の作製)
 0.716gの硝酸セリウム(III)(アルドリッチ社製)を純水に溶解し30Lとして55μmol/Lの硝酸セリウム(III)溶液を調製した。この溶液に、実施例1にて製造した20gの高分子電解質膜f1を72時間浸漬し、スルホン酸基とのイオン交換により、セリウムイオンを取り込ませ高分子電解質膜f5を得た。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。また、EDXを用いて窒素原子の分布から計算したPBIの存在比は、親水性ドメイン中:疎水性ドメイン中=80:20であった。PBIに由来する島状の相分離構造(PBIを主成分とする2nm以上の相分離)は見られなかった。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定したが、5000時間以内に評価が終了しなかったので、電圧保持率として電解質膜の化学耐久性を評価した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 [実施例6]
 (PBI、白金微粒子添加膜の作製)
 200mgのPBIに加え、白金微粒子(STREM製)200mgを使用した以外は、実施例1と同様にして電解質膜f6を製造した。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。また、EDXを用いて窒素原子の分布から計算したPBIの存在比は、親水性ドメイン中:疎水性ドメイン中=84:16であった。PBIに由来する島状の相分離構造(PBIを主成分とする2nm以上の相分離)は見られなかった。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定したが、5000時間以内に評価が終了しなかったので、電圧保持率として電解質膜の化学耐久性を評価した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 [実施例7]
 (PBI、酢酸パラジウム(II)添加膜の作製)
 200mgのPBIに加え、酢酸パラジウム(II)(和光純薬工業社製)200mgを使用した以外は、実施例1と同様にして電解質膜f7を製造した。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。また、EDXを用いて窒素原子の分布から計算したPBIの存在比は、親水性ドメイン中:疎水性ドメイン中=83:17であった。PBIに由来する島状の相分離構造(PBIを主成分とする2nm以上の相分離)は見られなかった。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定したが、5000時間以内に評価が終了しなかったので、電圧保持率として電解質膜の化学耐久性を評価した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 [実施例8]
 (PBI、ポリフェニレンスルフィド(PPS)添加膜の作製)
 200mgのPBIに加え、PPS(アルドリッチ社製、375℃溶融粘度275ポイズ)200mgを使用した以外は、実施例1と同様にして電解質膜f8を製造した。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。また、EDXを用いて窒素原子の分布から計算したPBIの存在比は、親水性ドメイン中:疎水性ドメイン中=84:16であった。PBIに由来する島状の相分離構造(PBIを主成分とする2nm以上の相分離)は見られなかった。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定したが、5000時間以内に評価が終了しなかったので、電圧保持率として電解質膜の化学耐久性を評価した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 [実施例9]
 (PBI、酢酸パラジウム(II)、PPS添加膜の作製)
 200mgのPBIに加え、硝酸パラジウム(II)(和光純薬工業社製)、PPS(アルドリッチ社製、375℃溶融粘度275ポイズ)を使用した以外は、実施例1と同様にして電解質膜f9を製造した。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。また、EDXを用いて窒素原子の分布から計算したPBIの存在比は、親水性ドメイン中:疎水性ドメイン中=83:17であった。PBIに由来する島状の相分離構造(PBIを主成分とする2nm以上の相分離)は見られなかった。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定したが、5000時間以内に評価が終了しなかったので、電圧保持率として電解質膜の化学耐久性を評価した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 [実施例10]
 (PBIアルカリ塩添加膜の作製)
 合成例9にて合成したPBI5gと水酸化ナトリウム1.5g、水1g、エタノール2gを混合し、80℃にて12時間撹拌しPBIの赤褐色溶液を得た。有機溶媒留去後に多量の純水で洗浄し過剰量の水酸化ナトリウムを除去することでPBIアルカリ塩5.2gを得た。このアルカリ塩のDLSを測定したところ粒径2nm以上の粒子は見られなかった。
 スプレードライにより可溶化させた200mgのPBIの代わりにPBIアルカリ塩214mgを使用した以外は、実施例1と同様にして電解質膜f10を製造した。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。また、EDXを用いて窒素原子の分布から計算したPBIの存在比は、親水性ドメイン中:疎水性ドメイン中=88:12であった。PBIに由来する島状の相分離構造(PBIを主成分とする2nm以上の相分離)は見られなかった。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定したが、5000時間以内に評価が終了しなかったので、電圧保持率として電解質膜の化学耐久性を評価した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 [実施例11]
 (低分子量PBIの合成)
 イソフタル酸ジフェニルの仕込み量を28.0gに変えた以外は合成例9と同様にして低分子量PBIを合成した。重量平均分子量は5000であった。また、DLSを測定したところ粒径2nm以上の粒子は見られなかった。
 (低分子量PBI添加膜の作製)
 スプレードライにより可溶化させた200mgのPBIの代わりに200mgの低分子量PBIを使用した以外は、実施例1と同様にして電解質膜f11を製造した。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。また、EDXを用いて窒素原子の分布から計算したPBIの存在比は、親水性ドメイン中:疎水性ドメイン中=89:11であった。PBIに由来する島状の相分離構造(PBIを主成分とする2nm以上の相分離)は見られなかった。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定したが、5000時間以内に評価が終了しなかったので、電圧保持率として電解質膜の化学耐久性を評価した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 [実施例12]
 (NRE211CSとスプレードライ可溶化PBI混合膜の作製)
 ブロックコポリマーb1の代わりにNRE211CS(ナフィオン)を使用した以外は、実施例1と同様にして電解質膜f12を製造した。
 TEM観察においていかなる相分離構造も確認できなかった(PBIを主成分とする2nm以上の相分離についても見られなかった)。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 [実施例13]
 (PES系ブロックコポリマーとスプレードライ可溶化PBI混合膜の作製)
 ブロックコポリマーb1の代わりに合成例5で得たPES系ブロックコポリマーb2を使用した以外は、実施例1と同様にして電解質膜f13を製造した。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。また、EDXを用いて窒素原子の分布から計算したPBIの存在比は、親水性ドメイン中:疎水性ドメイン中=84:16であった。PBIに由来する島状の相分離構造(PBIを主成分とする2nm以上の相分離)は見られなかった。
 得られた膜は、NMPに可溶であったため、耐久性試験として分子量保持率を測定した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 [実施例14]
 (ポリアリーレン系ブロックコポリマーとスプレードライ可溶化PBI混合膜の作製)
 ブロックコポリマーb1の代わりに合成例8で得たポリアリーレン系ブロックコポリマーb3を使用した以外は、実施例1と同様にして電解質膜f14を製造した。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。また、EDXを用いて窒素原子の分布から計算したPBIの存在比は、親水性ドメイン中:疎水性ドメイン中=86:14であった。PBIに由来する島状の相分離構造(PBIを主成分とする2nm以上の相分離)は見られなかった。
 得られた膜は、NMPに可溶であったため、耐久性試験として分子量保持率を測定した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 [実施例15]
 (ブロックコポリマー溶液とスプレードライ可溶化PBI溶液混合による高分子電解質溶液及び高分子電解質膜の作製)
 (PBI添加膜の作製)
 20gのブロックコポリマーb1と79.2gのNMPを混合した後、撹拌機で20,000rpm、3分間撹拌しブロックコポリマー溶液s1を作製した。別途、前記スプレードライにより可溶化させたPBI200mgと800mgのNMPを混合した後、撹拌機で20,000rpm、3分間撹拌しに溶解しスプレードライ可溶化PBI溶液s2を作製した。得られた溶液s1とs2を全量混合し、ポリマー濃度20重量%の透明な高分子電解質溶液を得た。得られた高分子電解質溶液を、ガラス繊維フィルターを用いて加圧ろ過後、ガラス基板上に流延することで膜状に塗布し、100℃にて4時間乾燥後、窒素下150℃で10分間熱処理し、ポリケタールケトン膜(膜厚15μm)を得た。95℃で10重量%硫酸水溶液に24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、高分子電解質膜f15を得た。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。また、EDXを用いて窒素原子の分布から計算したPBIの存在比は、親水性ドメイン中:疎水性ドメイン中=88:12であった。PBIに由来する島状の相分離構造(PBIを主成分とする2nm以上の相分離)は見られなかった。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定したが、5000時間以内に評価が終了しなかったので、電圧保持率として電解質膜の化学耐久性を評価した。別途イオン交換容量、プロトン伝導度、膨潤率を測定しその結果を表1に示す。
 比較例1
 PBIを使用しなかった以外は、実施例1と同様にして電解質膜f1’を製造した。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 比較例2
 0.716gの硝酸セリウム(III)(アルドリッチ社製)を純水に溶解し30Lとして55μmol/Lの硝酸セリウム(III)溶液を調製した。この溶液に、比較例1にて製造した電解質膜f1’を72時間浸漬し、Ce3+を取り込ませ高分子電解質膜f2’を得た。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 比較例3
 ブロックコポリマーb1の代わりにNRE211CS(ナフィオン)を使用した以外は、比較例1と同様にして電解質膜f3’を製造した。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 比較例4
 ブロックコポリマーb1の代わりにブロックコポリマーb2を使用した以外は、比較例1と同様にして電解質膜f4’を製造した。
 得られた膜は、NMPに可溶であったため、耐久性試験として分子量保持率を測定した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 比較例5
 ブロックコポリマーb1の代わりにブロックコポリマーb3を使用した以外は、比較例1と同様にして電解質膜f5’を製造した。
 得られた膜は、NMPに可溶であったため、耐久性試験として分子量保持率を測定した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
 比較例6
 スプレードライにより可溶化させた200mgのPBIの代わりに合成例9で合成した200mgのPBIに可溶化処理を施すことなく使用した以外は、実施例1と同様にして電解質膜f6’を製造した。未処理PBIをNMP中にて20,000rpm、3分間撹拌し作製した分散液のDLSを測定したところ、算術平均粒子径は20nmであった。
 TEM観察において、周期長30nmの共連続様の相分離構造が確認できた。イオン性基を含有するドメイン、イオン性基を含有しないドメインともに連続相を形成していた。また、算術平均粒子径20nmのPBI由来の粒子(PBIを主成分とする20nmの相分離)が観察された。
 得られた膜は、NMPに不溶であり分子量保持率が測定不能であったため、耐久性試験として開回路保持時間を測定した。別途イオン交換容量、プロトン伝導度、膨潤率を測定し、その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000014
 表1より、可溶性ポリアゾールを添加し、高分子電解質とポリアゾールとの相分離が観察されなかった実施例1~11の開回路保持時間は、同一ポリマーを用いた比較例1、2よりも長いものであった。予めブロックコポリマー溶液とポリアゾール溶液を作製し、溶液同士を混合することで高分子電解質膜を製造した実施例15は、ブロックコポリマー溶液にポリアゾールを添加した実施例1~11よりも分子量保持率が向上していた。また、不溶性ポリアゾール粒子を加えた比較例6もポリアゾール添加により開回路保持時間が長くなっていたものの、可溶性ポリアゾールを添加した実施例1~11と比較すると、開回路保持時間が短く、膨潤率も大きなものであった。また、実施例12と比較例3、実施例13と比較例4、実施例14と比較例5に関しても、添加剤を加えた方が膨潤率および開回路保持時間或いは分子量保持率が優れていた。以上より、本発明のポリアゾールは、燃料電池の発電により生成される過酸化水素または過酸化物ラジカルに対する優れた耐久性を、高分子電解質膜に付与することが出来るものである。
 本発明の高分子電解質膜は、種々の電気化学装置(例えば、燃料電池、水電解装置、クロロアルカリ電解装置、水素圧縮装置、レドックスフロー電池、脱酸素膜等)に適用可能である。これら装置の中でも、燃料電池用に好適であり、特に水素を燃料とする燃料電池に好適である。
 本発明の固体高分子型燃料電池の用途としては、特に限定されないが、携帯電話、パソコン、PDA、ビデオカメラ、デジタルカメラなどの携帯機器、コードレス掃除機等の家電、玩具類、電動自転車、自動二輪、自動車、バス、トラックなどの車両や船舶、鉄道などの移動体の電力供給源、据え置き型の発電機など従来の一次電池、二次電池の代替、もしくはこれらとのハイブリット電源として好ましく用いられる。

Claims (15)

  1. イオン性基含有高分子電解質と、ポリアゾールとを含有する高分子電解質膜であって、透過型電子顕微鏡観察においてポリアゾールを主成分とする2nm以上の相分離が観察されない高分子電解質膜。
  2. 前記ポリアゾールの重量平均分子量が500以上30万以下である、請求項1に記載の高分子電解質膜。
  3. 前記ポリアゾールの含有量が、高分子電解質膜中の不揮発性成分全体の0.002重量%以上15重量%以下である、請求項1または2に記載の高分子電解質膜。
  4. 前記イオン性基含有高分子電解質がイオン性基含有芳香族炭化水素系ポリマーである、請求項1~3のいずれかに記載の高分子電解質膜。
  5. 前記イオン性基含有高分子電解質が、イオン性基を含有するセグメント(A1)とイオン性基を含有しないセグメント(A2)をそれぞれ1個以上含有するブロック共重合体である、請求項1~4のいずれかに記載の高分子電解質膜。
  6. 前記イオン性基を含有するセグメント(A1)から構成される親水性ドメインと前記イオン性基を含有しないセグメント(A2)から構成される疎水性ドメインとが共連続様またはラメラ様の相分離構造を形成している、請求項5に記載の高分子電解質膜。
  7. 前記親水性ドメイン中のポリアゾール濃度が、前記疎水性ドメイン中のポリアゾール濃度の2倍以上である請求項6に記載の高分子電解質膜。
  8. 前記イオン性基含有高分子電解質と前記ポリアゾールとがイオンコンプレックスを形成している、請求項1~7のいずれかに記載の高分子電解質膜。
  9. 請求項1~8のいずれかに記載の高分子電解質膜に触媒層を積層してなる触媒層付電解質膜。
  10. 請求項1~8のいずれかに記載の高分子電解質膜を用いて構成されてなる膜電極複合体。
  11. 請求項1~8のいずれかに記載の高分子電解質膜を用いて構成されてなる固体高分子型燃料電池。
  12. 工程1:スプレードライ法を用いてポリアゾール粒子を作製する工程;
    工程2:イオン性基含有高分子電解質と、前記ポリアゾール粒子と、前記イオン性基含有高分子電解質および前記ポリアゾール粒子の両者を溶解可能な有機溶媒とを混合し、均一な電解質組成物溶液を調製する工程;
    工程3:前記電解質組成物溶液を溶液製膜する工程
    を含む高分子電解質膜の製造方法。
  13. 前記工程1において作製するポリアゾール粒子が、動的光散乱法により測定される粒子径分布において粒径2nmを超える粒子が確認されないものである、請求項12に記載の高分子電解質膜の製造方法。
  14. 前記工程2において、前記イオン性基含有高分子電解質を前記有機溶媒に溶解した高分子電解質溶液と、前記ポリアゾール粒子を前記有機溶媒に溶解したポリアゾール溶液をそれぞれ調製し、該高分子電解質溶液と該ポリアゾール溶液とを混合することで均一な電解質組成物溶液を調製する、請求項12または13に記載の高分子電解質膜の製造方法。
  15. 前記有機溶媒が、N-メチル-2-ピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルイミダゾリジノン、ジメチルスルホキシドおよびこれらの混合物からなる群より選択される、請求項12~14のいずれかに記載の高分子電解質膜の製造方法。
PCT/JP2015/056586 2014-03-07 2015-03-06 高分子電解質膜、およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池 WO2015133594A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP15758229.7A EP3116055A4 (en) 2015-03-06 2015-03-06 Polymer electrolyte membrane and solid polymer fuel cell, membrane-electrode assembly, and catalyst-layer-provided electrolyte membrane using same
CA2941371A CA2941371C (en) 2014-03-07 2015-03-06 Polymer electrolyte membrane, catalyst coated membrane, membrane electrode assembly, and polymer electrolyte fuel cell
KR1020167027167A KR102294769B1 (ko) 2014-03-07 2015-03-06 고분자 전해질막 및 그것을 사용한 촉매층을 갖는 전해질막, 막전극 복합체 및 고체 고분자형 연료 전지
US15/124,044 US10243229B2 (en) 2014-03-07 2015-03-06 Polymer electrolyte membrane, catalyst coated membrane, membrane electrode assembly, and polymer electrolyte fuel cell
CN201580012176.1A CN106104888B (zh) 2014-03-07 2015-03-06 高分子电解质膜、及使用其的带催化剂层的电解质膜、膜电极复合体及固体高分子型燃料电池
PCT/JP2015/056586 WO2015133594A1 (ja) 2014-03-07 2015-03-06 高分子電解質膜、およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池
JP2015516333A JP6361652B2 (ja) 2014-03-07 2015-03-06 高分子電解質膜、およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-044749 2014-03-07
PCT/JP2015/056586 WO2015133594A1 (ja) 2014-03-07 2015-03-06 高分子電解質膜、およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池

Publications (1)

Publication Number Publication Date
WO2015133594A1 true WO2015133594A1 (ja) 2015-09-11

Family

ID=63951670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056586 WO2015133594A1 (ja) 2014-03-07 2015-03-06 高分子電解質膜、およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池

Country Status (2)

Country Link
EP (1) EP3116055A4 (ja)
WO (1) WO2015133594A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141878A1 (ja) * 2016-02-18 2017-08-24 東レ株式会社 複合高分子電解質膜およびそれを用いた膜電極複合体、固体高分子型燃料電池
JP2018006109A (ja) * 2016-06-30 2018-01-11 株式会社豊田中央研究所 固体高分子型燃料電池
JP2018110108A (ja) * 2016-12-12 2018-07-12 東レ株式会社 高分子電解質組成物、それを用いた高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子形燃料電池、固体高分子形水電解式水素発生装置および電気化学式水素圧縮装置、ならびに高分子電解質組成物の製造方法
WO2024024711A1 (ja) * 2022-07-29 2024-02-01 出光興産株式会社 固体電解質の製造方法及び固体電解質

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512291A (ja) * 1998-04-18 2002-04-23 ウニヴェズィテート シュトゥットゥガルト エンジニアリングイオノマーブレンド及びエンジニアリングイオノマーブレンド膜
JP2004055257A (ja) * 2002-07-18 2004-02-19 Honda Motor Co Ltd プロトン伝導性高分子固体電解質およびその製造方法
JP2013067686A (ja) * 2011-09-21 2013-04-18 Toray Ind Inc 高分子電解質組成物、高分子電解質成型体および固体高分子型燃料電池
JP2013080701A (ja) * 2011-09-21 2013-05-02 Toray Ind Inc 高分子電解質組成物成形体、およびそれを用いた固体高分子型燃料電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028190A1 (ja) * 2004-09-09 2006-03-16 Asahi Kasei Chemicals Corporation 固体高分子電解質膜およびその製造方法
WO2006067872A1 (ja) * 2004-12-24 2006-06-29 Asahi Kasei Kabushiki Kaisha 高耐久性電極触媒層
WO2015152058A1 (ja) * 2014-03-31 2015-10-08 東レ株式会社 高分子電解質組成物、ならびに、それを用いた高分子電解質膜、触媒層被覆電解質膜、膜電極複合体および固体高分子型燃料電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512291A (ja) * 1998-04-18 2002-04-23 ウニヴェズィテート シュトゥットゥガルト エンジニアリングイオノマーブレンド及びエンジニアリングイオノマーブレンド膜
JP2004055257A (ja) * 2002-07-18 2004-02-19 Honda Motor Co Ltd プロトン伝導性高分子固体電解質およびその製造方法
JP2013067686A (ja) * 2011-09-21 2013-04-18 Toray Ind Inc 高分子電解質組成物、高分子電解質成型体および固体高分子型燃料電池
JP2013080701A (ja) * 2011-09-21 2013-05-02 Toray Ind Inc 高分子電解質組成物成形体、およびそれを用いた固体高分子型燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3116055A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141878A1 (ja) * 2016-02-18 2017-08-24 東レ株式会社 複合高分子電解質膜およびそれを用いた膜電極複合体、固体高分子型燃料電池
JPWO2017141878A1 (ja) * 2016-02-18 2018-12-06 東レ株式会社 複合高分子電解質膜およびそれを用いた膜電極複合体、固体高分子型燃料電池
US10826098B2 (en) 2016-02-18 2020-11-03 Toray Industries, Inc. Composite polymer electrolyte membrane, membrane electrode assembly and solid polymer fuel cell using same
JP2018006109A (ja) * 2016-06-30 2018-01-11 株式会社豊田中央研究所 固体高分子型燃料電池
JP2018110108A (ja) * 2016-12-12 2018-07-12 東レ株式会社 高分子電解質組成物、それを用いた高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子形燃料電池、固体高分子形水電解式水素発生装置および電気化学式水素圧縮装置、ならびに高分子電解質組成物の製造方法
JP7059608B2 (ja) 2016-12-12 2022-04-26 東レ株式会社 高分子電解質組成物、それを用いた高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子形燃料電池、固体高分子形水電解式水素発生装置および電気化学式水素圧縮装置、ならびに高分子電解質組成物の製造方法
WO2024024711A1 (ja) * 2022-07-29 2024-02-01 出光興産株式会社 固体電解質の製造方法及び固体電解質

Also Published As

Publication number Publication date
EP3116055A4 (en) 2017-11-08
EP3116055A1 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6610252B2 (ja) 高分子電解質組成物、ならびに、それを用いた高分子電解質膜、触媒層被覆電解質膜、膜電極複合体および固体高分子型燃料電池
JP6156358B2 (ja) 高分子電解質組成物、およびそれを用いた高分子電解質膜、膜電極複合体および固体高分子型燃料電池
WO2013042746A1 (ja) 高分子電解質組成物成形体、およびそれを用いた固体高分子型燃料電池
JP2015079762A (ja) 高分子電解質材料、それを用いた高分子電解質成型体およびその製造方法、膜電極複合体ならびに固体高分子型燃料電池
JP5338990B2 (ja) 高分子電解質膜、それを用いた膜電極複合体および固体高分子型燃料電池
JP6171342B2 (ja) 高分子電解質組成物、およびそれを用いた高分子電解質膜、膜電極複合体および固体高分子型燃料電池
JP7087315B2 (ja) 高分子電解質組成物ならびにそれを用いた高分子電解質膜、触媒層付き電解質膜、膜電極複合体、固体高分子形燃料電池、電気化学式水素ポンプおよび水電解式水素発生装置
JP6336601B2 (ja) 高分子電解質組成物ならびにそれを用いた高分子電解質膜、触媒層付き電解質膜、膜電極複合体および固体高分子型燃料電池
JP6361652B2 (ja) 高分子電解質膜、およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池
JP7059608B2 (ja) 高分子電解質組成物、それを用いた高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子形燃料電池、固体高分子形水電解式水素発生装置および電気化学式水素圧縮装置、ならびに高分子電解質組成物の製造方法
WO2015133594A1 (ja) 高分子電解質膜、およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池
JP5957954B2 (ja) 高分子電解質成形体、およびそれを用いた高分子電解質膜、膜電極複合体ならびに固体高分子型燃料電池。
JP6135038B2 (ja) 高分子電解質成形体、およびそれを用いた高分子電解質膜、膜電極複合体ならびに固体高分子型燃料電池。

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015516333

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2941371

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15124044

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015758229

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015758229

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167027167

Country of ref document: KR

Kind code of ref document: A