WO2015133587A1 - 熱サイクル用作動媒体および熱サイクルシステム - Google Patents

熱サイクル用作動媒体および熱サイクルシステム Download PDF

Info

Publication number
WO2015133587A1
WO2015133587A1 PCT/JP2015/056563 JP2015056563W WO2015133587A1 WO 2015133587 A1 WO2015133587 A1 WO 2015133587A1 JP 2015056563 W JP2015056563 W JP 2015056563W WO 2015133587 A1 WO2015133587 A1 WO 2015133587A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
working medium
hfo
ratio
hfc
Prior art date
Application number
PCT/JP2015/056563
Other languages
English (en)
French (fr)
Inventor
正人 福島
真維 橋本
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP15758976.3A priority Critical patent/EP3115431A4/en
Priority to JP2016506559A priority patent/JPWO2015133587A1/ja
Priority to CN201580012054.2A priority patent/CN106062124A/zh
Publication of WO2015133587A1 publication Critical patent/WO2015133587A1/ja
Priority to US15/254,409 priority patent/US20160369147A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a working medium for heat cycle and a heat cycle system.
  • HFC Thermal cycle systems used for refrigerators, air conditioners, power generation systems (waste heat recovery power generation, etc.), latent heat transport devices (heat pipes, etc.), etc.
  • Those using HFC are known.
  • HFC may cause global warming.
  • 1,1,1,2-tetrafluoroethane (HFC-134a) used as a refrigerant for automobile air conditioners has a large global warming potential of 1430 (100-year value).
  • HFO hydrofluoroolefin
  • thermal cycle systems (1) to (3) can be mentioned.
  • HFO-1243zf 3,3,3-trifluoropropene
  • HFO-1234ze 1,3,3,3-tetrafluoropropene
  • 2-fluoropropene HFO-1261yf
  • Patent Document 1 3,3,3-trifluoropropene (HFO-1243zf), 1,3,3,3-tetrafluoropropene (HFO-1234ze), 2-fluoropropene (HFO-1261yf), 2,3,3 Cycle system using a working medium containing 1,3,4-tetrafluoropropene (HFO-1234yf), 1,1,2-trifluoropropene (HFO-1243yc) and the like
  • both the thermal cycle systems (1) and (2) have insufficient cycle performance (capability).
  • the thermal cycle system (3) provides excellent cycle performance
  • the HFO-1123 used has combustibility.
  • the working medium may leak from the connection hose, bearing portion, etc., so the gas phase working medium formed in the system leaks, the working medium mixes with air, It is important to ensure the safety of the system by using a working medium that does not spread easily even if it ignites.
  • an object of the present invention is to provide a thermal cycle system which has little influence on the ozone layer and global warming even when leaked, has excellent cycle performance, and is excellent in safety.
  • the working medium for heat cycle of the present invention includes trifluoroethylene (hereinafter referred to as HFO-1123), 1,1,1,2-tetrafluoroethane (hereinafter referred to as HFC-134a), and pentafluoroethane. (Hereinafter referred to as HFC-125), wherein the ratio of HFO-1123 to the total mass of the working medium is 42% by mass or less. And In the thermal cycle working medium of the present invention, the ratio of the total amount of HFC-134a and HFC-125 to the total mass of the thermal cycle working medium is preferably 58% by mass or more.
  • the working medium for heat cycle of the present invention includes HFO-1123, HFC-134a, HFC-125, and 2,3,3,3-tetrafluoropropene (hereinafter referred to as HFO-1234yf).
  • the ratio of the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf to the total mass of the working medium is more than 90% by mass and not more than 100% by mass, and HFO-
  • the ratio of HFO-1123 to the total amount of 1123, HFC-134a, HFC-125, and HFO-1234yf is 3 mass% to 35 mass%
  • the ratio of HFC-134a is 10 mass% to 53 mass%
  • HFC The ratio of -125 is 4 mass% to 50 mass%
  • the ratio of HFO-1234yf is 5 mass% to 50 mass%.
  • the ratio of HFO-1123 to the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf is 6% by mass to 25% by mass, and the ratio of HFC-134a is 20% by mass to 35% by mass.
  • HFC-125 is preferably 8% by mass to 30% by mass
  • HFO-1234yf is preferably 20% by mass to 50% by mass.
  • the global warming potential of the working medium for heat cycle is 2000 or less.
  • a thermal cycle system is a thermal cycle system using a thermal cycle working medium including HFO-1123 and one or both of HFC-134a and HFC-125, and the thermal cycle system includes The ratio of HFO-1123 in the formed gas phase is 50% by mass or less.
  • the ratio of HFO-1123 to the total mass of the working medium in the system is preferably 42% by mass or less.
  • the ratio of the total amount of HFC-134a and HFC-125 to the total mass of the working medium in the system is preferably 58% by mass or more.
  • the thermal cycle system of the present invention is a thermal cycle system using a thermal cycle working medium including HFO-1123, HFC-134a, HFC-125, and HFO-1234yf, and is based on the total mass of the working medium.
  • the ratio of the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf is more than 90% by mass and 100% by mass or less, The ratio of HFO-1123 to 3 mass% to 35 mass% and the ratio of HFC-134a to 10 mass% to 53 mass% with respect to the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf
  • the ratio of HFC-125 is preferably 4% by mass or more and 50% by mass or less, and the ratio of HFO-1234yf is preferably 5% by mass or more and 50% by mass or less.
  • the ratio of HFO-1123 to the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf is 6% by mass to 25% by mass, and the ratio of HFC-134a is 20% by mass to 35% by mass.
  • HFC-125 is preferably 8% by mass to 30% by mass
  • HFO-1234yf is preferably 20% by mass to 50% by mass.
  • the global warming potential of the working medium for heat cycle is 2000 or less.
  • the heat cycle system of the present invention is preferably used for a refrigeration / refrigeration device, an air conditioner, a power generation system, a heat transport device, or a secondary cooler.
  • the heat cycle system of the present invention includes a room air conditioner, a store packaged air conditioner, a building packaged air conditioner, a facility packaged air conditioner, a gas engine heat pump, a train air conditioner, an automobile air conditioner, a built-in showcase, and a separate showcase. It is preferably used for a case, a commercial freezer / refrigerator, an ice maker or a vending machine.
  • the heat cycle working medium of the present invention is nonflammable, has little influence on the ozone layer and global warming, has excellent cycle performance when used in a heat cycle system, and is excellent in safety.
  • the thermal cycle system of the present invention has a non-flammable working medium, has little influence on the ozone layer and global warming even if leaked, has excellent cycle performance, and is excellent in safety.
  • FIG. 2 is a cycle diagram in which a change in state of a working medium in the refrigeration cycle system of FIG. 1 is described on a pressure-enthalpy diagram.
  • FIG. 3 is a diagram showing a combustion range of HFO-1123 / HFC-134a / air system in Example 1.
  • 6 is a diagram showing a combustion range of HFO-1123 / HFC-125 / air system in Example 2.
  • FIG. 16 is a diagram showing a vapor-liquid equilibrium relationship of the HFO-1123 / HFC-134a system in Example 16.
  • FIG. 18 is a view showing a vapor-liquid equilibrium relationship of HFO-1123 / HFC-125 system in Example 17.
  • the working medium for heat cycle (hereinafter, also simply referred to as working medium) of the present invention is a working medium containing HFO-1123 and one or both of HFC-134a and HFC-125.
  • the working medium of the present invention preferably further comprises HFO-1234yf.
  • the combustibility of the working medium in the gas phase can be suppressed by controlling the ratio of the HFO-1123 in the gas phase formed in the system to a specific range.
  • the gas phase formed in the system means a working medium existing in the gas phase in the system.
  • a part of the working medium may exist in a liquid state, and a part of the working medium may be dissolved in a coexisting liquid such as a lubricating oil. Therefore, the working medium in the gas phase formed in the system is a part excluding the working medium that is liquefied and the working medium that is dissolved in a liquid such as lubricating oil.
  • the proportion of HFO-1123 in the gas phase formed in the system is 50% by mass or less.
  • the ratio of HFO-1123 in the gas phase formed in the system is 50% by mass or less means that the ratio of HFO-1123 in the gas phase formed in all processes of the system is always 50% by mass or less. It means that there is.
  • the proportion of HFO-1123 in the gas phase formed in the system is 50% by mass or less, the gas phase working medium leaks out of the system and is incombustible even when mixed with air, thus ensuring safety. Excellent.
  • the proportion of HFO-1123 in the gas phase formed in the system is 50% by mass or less, preferably 5 to 50% by mass, more preferably 10 to 45% by mass, and further preferably 10 to 40% by mass. If the ratio of HFO-1123 in the gas phase is less than or equal to the upper limit value, the working medium leaks out of the system and is nonflammable even when mixed with air, which is excellent in safety. When the ratio of HFO-1123 in the gas phase is equal to or higher than the lower limit, excellent cycle performance is easily obtained.
  • the ratio of HFO-1123 in the gas phase formed in the system in the case of the composition of HFO-1123 and HFC-134a is 50% by mass or less, preferably 5 to 40% by mass, 21 to 39% by mass is more preferable, and 21 to 30% by mass is even more preferable.
  • the ratio of HFO-1123 in the gas phase formed in the system in the case of the composition of HFO-1123 and HFC-125 is 50% by mass or less, preferably 5 to 50% by mass, 5 to 42% by mass is more preferable, and 21 to 39% by mass is more preferable.
  • the proportion of HFO-1123 in the gas phase formed in the system in the case of the composition of HFO-1123, HFC-134a and HFC-125 is not more than 50% by mass and is 5 to 50% by mass. %, More preferably 5 to 45% by mass, still more preferably 10 to 35% by mass.
  • the ratio of HFO-1123 to the total mass (100% by mass) of the working medium in the system of the thermal cycle system is preferably 42% by mass or less, more preferably 5 to 42% by mass, further preferably 10 to 35% by mass, 10 to 30% by mass is particularly preferable.
  • the ratio of HFO-1123 is equal to or higher than the lower limit, excellent cycle performance can be easily obtained.
  • the ratio of the HFO-1123 is less than or equal to the upper limit, the flammability of the gas phase working medium formed in the system is suppressed, so that the working medium leaks out of the system, mixes with air, and ignites. Even if it does not spread easily, it is excellent in safety.
  • the “total mass of the working medium in the system” means the total amount of the working medium present in the gas phase in the system, the working medium present in liquid form, and the working medium dissolved in the liquid such as lubricating oil, That is, the total amount of working medium present in the system.
  • the ratio of each working medium component (eg, HFO-1123) to the total working medium mass in the system is equal to the ratio of each working medium component in the working medium.
  • the ratio of the total amount of HFC-134a and HFC-125 to the total mass of the working medium in the system is preferably 58% by mass or more, more preferably 58 to 95% by mass, further preferably 65 to 90% by mass, ⁇ 90% by weight is most preferred.
  • the ratio of the total mass is equal to or more than the lower limit value, it is easy to suppress the combustibility of the gas phase working medium formed in the system. If the ratio of the total mass is equal to or less than the upper limit value, the content of HFO-1123 can be relatively increased, so that excellent cycle performance can be easily obtained.
  • the working medium of the present invention includes HFO-1123, HFC-134a, HFC-125, and HFO-1234yf, and the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf with respect to the total amount of the working medium.
  • the ratio is more than 90% by mass and 100% by mass or less, and the ratio of HFO-1123 to the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf is 3% by mass to 35% by mass,
  • the ratio of HFC-134a is preferably 10% by mass to 53% by mass
  • the ratio of HFC-125 is 4% by mass to 50% by mass
  • the ratio of HFO-1234yf is preferably 5% by mass to 50% by mass.
  • the working medium of the present invention includes HFO-1123, HFC-134a, HFC-125, and HFO-1234yf, and the total of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf with respect to the total amount of the working medium.
  • the ratio of the amount is more than 90% by mass and not more than 100% by mass, and the ratio of HFO-1123 to the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf is 6% by mass or more and 25% by mass
  • the ratio of HFC-134a is 20% by mass to 35% by mass
  • the ratio of HFC-125 is 8% by mass to 30% by mass
  • the ratio of HFO-1234yf is 20% by mass to 50% by mass. Even more preferred.
  • the working medium is non-flammable, and is more excellent in safety, has less influence on the ozone layer and global warming, and is even better when used in a heat cycle system.
  • the working medium having a high cycle performance can be obtained.
  • HFO other than HFO-1123 and HFO-1234yf examples include 1,2-difluoroethylene (HFO-1132), 2-fluoropropene (HFO-1261yf), 1,1,2-trifluoropropene (HFO-1243yc), Trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), cis-1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)), 3,3,3- Trifluoropropene (HFO-1243zf), trans-1,2,3,3,3-pentafluoropropene (HFO-1225ye (E)), cis-1,2,3,3,3-pentafluoropropene (HFO) -1225ye (Z)) and the like. HFOs other than HFO-1123 and HFO-1234yf may be used alone or in combination of two or more.
  • the ratio of the total mass of the HFO to the total mass (100% by mass) of the working medium in the system is preferably 1 to 30% by mass. 10 mass% is more preferable.
  • HFCs other than HFC-134a and HFC-125 are components that improve the cycle performance (capability) of the thermal cycle system.
  • HFCs other than HFC-134a and HFC-125 HFCs that have little influence on the ozone layer and little influence on global warming are preferable.
  • HFCs other than HFC-134a and HFC-125 include difluoromethane, difluoroethane, trifluoroethane, pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclopentane, and the like.
  • difluoromethane (HFC-32) and 1,1-difluoroethane (HFC-152a) are particularly preferable because they have little influence on the ozone layer and little influence on global warming.
  • HFCs other than HFC-134a and HFC-125 may be used alone or in combination of two or more.
  • the content of HFC other than HFC-134a and HFC-125 can be controlled according to the required characteristics of the working medium.
  • the ratio of the total mass of the HFC to the total mass (100% by mass) of the working medium in the system is preferably 1 to 40% by mass. 10 mass% is more preferable.
  • hydrocarbon is a component which improves the solubility to the working medium of the mineral oil mentioned later.
  • examples of the hydrocarbon include propane, propylene, cyclopropane, butane, isobutane, pentane, isopentane and the like.
  • a hydrocarbon may be used individually by 1 type and may be used in combination of 2 or more type.
  • the ratio of the total mass of hydrocarbons to the total mass (100% by mass) of the working medium in the system is preferably 1 to 10% by mass, and more preferably 2 to 5% by mass. If the ratio of the total mass of the hydrocarbon is not less than the lower limit value, the solubility of the lubricating oil in the working medium becomes good. If the ratio of the total mass of the hydrocarbon is equal to or less than the upper limit value, it is easy to suppress the combustibility of the working medium.
  • HCFO and CFO are components that suppress the combustibility of the working medium and improve the solubility of the lubricating oil in the working medium.
  • HCFO and CFO having a small influence on the ozone layer and a small influence on global warming are preferable.
  • HCFO examples include hydrochlorofluoropropene and hydrochlorofluoroethylene.
  • hydrochlorofluoropropene examples include hydrochlorofluoropropene and hydrochlorofluoroethylene.
  • HCFO- 1-chloro-2,3,3,3-tetrafluoropropene
  • HCFO-1122 1-chloro-1,2-difluoroethylene
  • HCFO may be used alone or in combination of two or more.
  • CFO examples include chlorofluoropropene and chlorofluoroethylene.
  • 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO) is used from the viewpoint of sufficiently suppressing the flammability of the working medium without greatly reducing the cycle performance (capacity) of the thermal cycle system.
  • CFO-1112 1,2-dichloro-1,2-difluoroethylene
  • the ratio of the total mass of HCFO and CFO to the total mass (100 mass%) of the working medium in the system is preferably 1 to 20 mass%. More preferred is 10% by mass.
  • Chlorine atoms have the effect of suppressing flammability, and the addition of HCFO and CFO can sufficiently suppress the flammability of the working medium without significantly reducing the cycle performance (capability) of the thermal cycle system. .
  • Examples of other compounds include alcohols having 1 to 4 carbon atoms, or compounds used as conventional working media, refrigerants, and heat transfer media. Also, perfluoropropyl methyl ether (C 3 F 7 OCH 3 ), perfluorobutyl methyl ether (C 4 F 9 OCH 3 ), perfluorobutyl ethyl ether (C 4 F 9 OC 2 H 5 ), 1, 1, 2, 2 Fluorine-containing ethers such as tetrafluoroethyl-2,2,2-trifluoroethyl ether (CF 2 HCF 2 OCH 2 CF 3 , manufactured by Asahi Glass Co., Ltd., AE-3000) may be used.
  • perfluoropropyl methyl ether C 3 F 7 OCH 3
  • perfluorobutyl methyl ether C 4 F 9 OCH 3
  • perfluorobutyl ethyl ether C 4 F 9 OC 2 H 5
  • the ratio of the total mass of other compounds to the total mass (100 mass%) of the working medium in the system may be in a range that does not significantly reduce the effect of the present invention, preferably 30 mass% or less, and preferably 20 mass% or less. More preferred is 15% by mass or less.
  • composition for thermal cycle system can be used as a composition for a heat cycle system, usually mixed with a lubricating oil when applied to a heat cycle system.
  • the composition for a heat cycle system containing the working medium and the lubricating oil of the present invention may further contain known additives such as a stabilizer and a leak detection substance.
  • the working medium described above may be used by mixing with a lubricating oil.
  • a lubricating oil a known lubricating oil used in a heat cycle system can be employed.
  • the lubricating oil include oxygen-containing synthetic oils (such as ester-based lubricating oils and ether-based lubricating oils), fluorine-based lubricating oils, mineral oils, and hydrocarbon-based synthetic oils.
  • ester-based lubricating oil examples include dibasic acid ester oil, polyol ester oil, complex ester oil, and polyol carbonate oil.
  • the dibasic acid ester oil includes a dibasic acid having 5 to 10 carbon atoms (glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.) and a carbon number having a linear or branched alkyl group.
  • Esters with 1 to 15 monohydric alcohols are preferred.
  • Specific examples include ditridecyl glutarate, di (2-ethylhexyl) adipate, diisodecyl adipate, ditridecyl adipate, di (3-ethylhexyl) sebacate and the like.
  • Polyol ester oils include diols (ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 1,5-pentadiol, neopentyl glycol, 1,7- Heptanediol, 1,12-dodecanediol, etc.) or polyol having 3 to 20 hydroxyl groups (trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, glycerin, sorbitol, sorbitan, sorbitol glycerin condensate, etc.); Fatty acids having 6 to 20 carbon atoms (hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, eicosanoic acid,
  • esters of is preferable.
  • the polyol ester oil may have a free hydroxyl group.
  • Polyol ester oils include esters of hindered alcohols (neopentyl glycol, trimethylol ethane, trimethylol propane, trimethylol butane, pentaerythritol, etc.) (trimethylol propane tripelargonate, pentaerythritol 2-ethylhexanoate). And pentaerythritol tetrapelargonate) are more preferable.
  • the complex ester oil is an ester of a fatty acid and a dibasic acid, a monohydric alcohol and a polyol.
  • Examples of the fatty acid, dibasic acid, monohydric alcohol, and polyol include the same as those mentioned for the dibasic acid ester oil and polyol ester oil.
  • the polyol carbonate oil is an ester of carbonic acid and polyol.
  • examples of the polyol include diols and polyols (same as those mentioned for the polyol ester oil).
  • the polyol carbonate oil may be a ring-opening polymer of cyclic alkylene carbonate.
  • ether lubricants include polyoxyalkylene compounds and polyvinyl ethers.
  • the polyoxyalkylene compound include polyoxyalkylene compounds obtained by polymerizing alkylene oxides having 2 to 4 carbon atoms (ethylene oxide, propylene oxide, etc.) using water, alkane monool, the diol, the polyol, or the like as an initiator. Examples include alkylene monools and polyoxyalkylene polyols.
  • the polyoxyalkylene compound a part or all of the hydroxyl groups of polyoxyalkylene monool or polyoxyalkylene polyol may be alkyl etherified.
  • the number of oxyalkylene units in one molecule of the polyoxyalkylene compound may be one, or two or more.
  • the polyoxyalkylene compound those containing at least an oxypropylene unit in one molecule are preferable.
  • Polyalkylene glycol oil is one of the above polyoxyalkylene compounds, and examples thereof include the above polyoxyalkylene monools, polyoxyalkylene diols, and alkyl etherified products thereof.
  • a polyhydride obtained by adding an alkylene oxide having 2 to 4 carbon atoms to a monohydric or dihydric alcohol methanol, ethanol, butanol, ethylene glycol, propylene glycol, 1,4-butanediol, etc.
  • Examples include oxyalkylene compounds and compounds obtained by alkyl etherifying some or all of the hydroxyl groups of the obtained polyoxyalkylene compounds.
  • the polyalkylene glycol oil is preferably a dialkyl ether of polyoxypropylene diol.
  • polyvinyl ether examples include a polymer of a vinyl ether monomer, a copolymer of a vinyl ether monomer and a hydrocarbon monomer having an olefinic double bond, and a copolymer of a vinyl ether monomer and a vinyl ether monomer having a polyoxyalkylene chain. It is done.
  • the vinyl ether monomer is preferably an alkyl vinyl ether, and the alkyl group is preferably an alkyl group having 6 or less carbon atoms.
  • a vinyl ether monomer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • hydrocarbon monomers having an olefinic double bond examples include ethylene, propylene, various butenes, various pentenes, various hexenes, various heptenes, various octenes, diisobutylene, triisobutylene, styrene, ⁇ -methylstyrene, various alkyl-substituted styrenes, etc. Is mentioned.
  • the hydrocarbon monomer which has an olefinic double bond may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the vinyl ether copolymer may be either a block or a random copolymer.
  • fluorine-based lubricating oils include compounds in which hydrogen atoms of synthetic oils (described later, such as mineral oils, poly ⁇ -olefins, alkylbenzenes, and alkylnaphthalenes) are substituted with fluorine atoms, perfluoropolyether oils, fluorinated silicone oils, and the like.
  • a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation or vacuum distillation is refined (solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, hydrorefining, And paraffinic mineral oils, naphthenic mineral oils, etc., which are refined by appropriately combining white clay treatment and the like.
  • hydrocarbon synthetic oil examples include poly ⁇ -olefin, alkylbenzene, alkylnaphthalene and the like.
  • a lubricating oil may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the lubricating oil one or both of a polyol ester oil and a polyalkylene glycol oil are preferable from the viewpoint of compatibility with the working medium, and a polyalkylene glycol is preferable because a remarkable antioxidant effect is obtained by the stabilizer. Oil is particularly preferred.
  • the amount of the lubricating oil used may be in a range that does not significantly reduce the effect of the present invention, and may be appropriately determined depending on the application, the type of the compressor, and the like.
  • the ratio of the total mass of the lubricating oil in the system is preferably 10 to 100 parts by mass and more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the working medium.
  • a stabilizer is a component that improves the stability of the working medium against heat and oxidation.
  • the stabilizer include an oxidation resistance improver, a heat resistance improver, and a metal deactivator.
  • Examples of the oxidation resistance improver and heat resistance improver include N, N′-diphenylphenylenediamine, p-octyldiphenylamine, p, p′-dioctyldiphenylamine, N-phenyl-1-naphthylamine, and N-phenyl-2-naphthylamine.
  • the oxidation resistance improver and the heat resistance improver may be used alone or in combination of two or more.
  • Metal deactivators include imidazole, benzimidazole, 2-mercaptobenzthiazole, 2,5-dimercaptothiadiazole, salicyridin-propylenediamine, pyrazole, benzotriazole, tolyltriazole, 2-methylbenzimidazole, 3,5-dimethyl Of pyrazole, methylenebis-benzotriazole, organic acids or their esters, primary, secondary or tertiary aliphatic amines, amine salts of organic or inorganic acids, heterocyclic nitrogen-containing compounds, alkyl acid phosphates Examples thereof include amine salts and derivatives thereof.
  • the ratio of the total mass of the stabilizer to the total mass (100 mass%) of the working medium in the system may be in a range that does not significantly reduce the effect of the present invention, preferably 5 mass% or less, and more preferably 1 mass% or less. preferable.
  • leak detection substances examples include ultraviolet fluorescent dyes, odorous gases and odor masking agents.
  • the ultraviolet fluorescent dyes are described in U.S. Pat. No. 4,249,412, JP-T-10-502737, JP-T 2007-511645, JP-T 2008-500437, JP-T 2008-531836.
  • known ultraviolet fluorescent dyes examples include known fragrances such as those described in JP-T-2008-500337 and JP-T-2008-531836.
  • a solubilizing agent that improves the solubility of the leak detection substance in the working medium may be used.
  • the solubilizer include those described in JP-T-2007-511645, JP-T-2008-500437, JP-T-2008-531836.
  • the ratio of the total mass of the leakage detection substance to the total mass (100 mass%) of the working medium in the system may be in a range that does not significantly reduce the effect of the present invention, and is preferably 2 mass% or less, preferably 0.5 mass%. The following is more preferable.
  • a method for suppressing the water concentration in the heat cycle system a method using a desiccant (silica gel, activated alumina, zeolite, etc.) can be mentioned.
  • a desiccant sica gel, activated alumina, zeolite, etc.
  • a zeolitic desiccant is preferable from the viewpoint of the chemical reactivity between the desiccant and the working medium and the moisture absorption capacity of the desiccant.
  • a zeolitic desiccant when a lubricating oil having a higher moisture absorption than conventional mineral oils is used, a zeolitic system mainly composed of a compound represented by the following formula (1) is used because of its superior moisture absorption capacity.
  • a desiccant is preferred.
  • M is a Group 1 element such as Na or K, or a Group 2 element such as Ca
  • n is the valence of M
  • x and y are values determined by the crystal structure.
  • pore size and fracture strength are particularly important.
  • a desiccant having a pore size larger than the molecular diameter of the working medium is used, the working medium is adsorbed in the desiccant, resulting in a chemical reaction between the working medium and the desiccant, and generation of a non-condensable gas.
  • Undesirable phenomena such as a decrease in the strength of the desiccant and a decrease in the adsorption capacity will occur. Therefore, it is preferable to use a zeolitic desiccant having a small pore size as the desiccant.
  • a sodium / potassium A type synthetic zeolite having a pore diameter of 3.5 mm or less is preferable.
  • the shape of the zeolitic desiccant is preferably granular or cylindrical.
  • the zeolitic desiccant can be formed into an arbitrary shape by solidifying powdered zeolite with a binder (such as bentonite). As long as the zeolitic desiccant is mainly used, other desiccants (silica gel, activated alumina, etc.) may be used in combination.
  • the use ratio of the zeolitic desiccant with respect to the working medium is not particularly limited.
  • the presence of chlorine in the thermal cycle system has adverse effects such as deposit formation due to reaction with metal, bearing wear, decomposition of working medium and lubricating oil.
  • the chlorine concentration in the heat cycle system is preferably 100 ppm or less, and particularly preferably 50 ppm or less in terms of a mass ratio with respect to the working medium.
  • Noncondensable gas concentration If a non-condensable gas is mixed in the heat cycle system, adverse effects such as poor heat transfer in the condenser or evaporator and an increase in operating pressure are required, so it is necessary to suppress the mixing of the non-condensable gas as much as possible.
  • oxygen which is one of non-condensable gases, reacts with the working medium and lubricating oil and promotes its decomposition.
  • Non-condensable gases include nitrogen, oxygen, air and the like.
  • the concentration of the non-condensable gas in the thermal cycle system is preferably 1.5% by volume or less, particularly preferably 0.5% by volume or less, in the volume ratio with respect to the working medium in the gas phase in the system.
  • Examples of the heat cycle system of the present invention include a refrigeration cycle system, a Rankine cycle system, a heat pump cycle system, and a heat transport system.
  • the refrigeration cycle system is a system that cools the load fluid to a lower temperature by removing the heat energy from the load fluid in the evaporator in the evaporator.
  • the refrigeration cycle system 10 compresses the working medium vapor A into a high-temperature and high-pressure working medium vapor B, and cools and liquefies the working medium vapor B discharged from the compressor 11 to operate at a low temperature and high pressure.
  • the condenser 12 as the medium C, the expansion valve 13 that expands the working medium C discharged from the condenser 12 to form the low-temperature and low-pressure working medium D, and the working medium D discharged from the expansion valve 13 are heated.
  • a system schematically including an evaporator 14 that is a high-temperature and low-pressure working medium vapor A, a pump 15 that supplies a load fluid E to the evaporator 14, and a pump 16 that supplies a fluid F to the condenser 12. is there.
  • the working medium vapor A discharged from the evaporator 14 is compressed by the compressor 11 to obtain a high-temperature and high-pressure working medium vapor B.
  • the working medium vapor B discharged from the compressor 11 is cooled by the fluid F in the condenser 12 and liquefied to obtain a low temperature and high pressure working medium C.
  • the fluid F is heated to become a fluid F ′ and discharged from the condenser 12.
  • the working medium C discharged from the condenser 12 is expanded by the expansion valve 13 to obtain a low-temperature and low-pressure working medium D.
  • the refrigeration cycle system 10 is a cycle composed of adiabatic / isentropic change, isenthalpy change and isobaric change, and the state change of the working medium can be expressed as shown in FIG. 2 on the pressure-enthalpy diagram.
  • the AB process is a process in which adiabatic compression is performed by the compressor 11 and the high-temperature and low-pressure working medium vapor A is converted into a high-temperature and high-pressure working medium vapor B.
  • the BC process is a process in which isobaric cooling is performed by the condenser 12 and the high-temperature and high-pressure working medium vapor B is converted into a low-temperature and high-pressure working medium C.
  • the CD process is a process in which isenthalpy expansion is performed by the expansion valve 13 and the low-temperature and high-pressure working medium C is used as the low-temperature and low-pressure working medium D.
  • the DA process is a process in which isobaric heating is performed by the evaporator 14 and the low-temperature and low-pressure working medium D is returned to the high-temperature and low-pressure working medium vapor A.
  • Rankin cycle system In the Rankine cycle system, the working medium is heated in the evaporator by geothermal energy, solar heat, medium to high temperature waste heat of about 50 to 200 ° C, etc., and the working medium turned into high-temperature and high-pressure steam is insulated by an expander. This is a system for generating power by driving the generator by work generated by expansion and adiabatic expansion.
  • Rankine cycle system examples include the following.
  • An expander that expands high-temperature and high-pressure working medium vapor into low-temperature and low-pressure working medium vapor, a generator driven by work generated by adiabatic expansion of the working medium vapor in the expander, and operation discharged from the expander
  • a condenser that cools and vaporizes the medium vapor to form a working medium
  • a pump that pressurizes the working medium discharged from the condenser to form a high-pressure working medium, and heats the working medium discharged from the pump to a high temperature
  • a system that includes an evaporator configured as high-pressure working medium vapor, a pump that supplies fluid to the condenser, and a pump that supplies fluid to the evaporator.
  • the high-temperature and high-pressure working medium vapor discharged from the evaporator is expanded by an expander to form a low-temperature and low-pressure working medium vapor.
  • the generator is driven by work generated by adiabatic expansion of the working medium vapor in the expander to generate power.
  • the working medium vapor discharged from the expander is cooled with a fluid in a condenser and liquefied to form a working medium. At this time, the fluid supplied to the condenser is heated and discharged from the condenser.
  • the working medium discharged from the condenser is pressurized with a pump to form a high-pressure working medium.
  • the working medium discharged from the pump is heated by a fluid in an evaporator to form high-temperature and high-pressure working medium vapor. At this time, the fluid supplied to the evaporator is cooled and discharged from the evaporator.
  • the heat pump cycle system is a system in which heat energy of a working medium is given to a load fluid in a condenser to heat the load fluid and raise the temperature to a higher temperature.
  • heat pump cycle system examples include the following.
  • a compressor that compresses the working medium vapor into a high-temperature and high-pressure working medium vapor
  • a condenser that cools and liquefies the working medium vapor discharged from the compressor, and discharges it from the condenser
  • Expansion valve that expands the working medium into a low-temperature and low-pressure working medium
  • an evaporator that heats the working medium discharged from the expansion valve into high-temperature and low-pressure working medium vapor, and supplies a heat source fluid to the evaporator
  • a pump that supplies a load fluid to the condenser.
  • the working medium vapor discharged from the evaporator is compressed by a compressor to form a high-temperature and high-pressure working medium vapor.
  • the working medium vapor discharged from the compressor is cooled by a load fluid in a condenser and liquefied to obtain a low temperature and high pressure working medium. At this time, the load fluid is heated and discharged from the condenser.
  • the working medium discharged from the condenser is expanded by an expansion valve to form a low-temperature and low-pressure working medium.
  • the working medium discharged from the expansion valve is heated by a heat source fluid in an evaporator to form high-temperature and low-pressure working medium vapor. At this time, the heat source fluid is cooled and discharged from the evaporator.
  • Heat transport system evaporates the working medium by a heat source and absorbs the heat energy in the working medium, transports the working medium in the form of vapor, condenses it at the destination, releases the heat energy, and transports the heat energy.
  • the heat transport system include the following.
  • a pipe disposed from a heat source to a heat transport destination, in which a working medium is enclosed, a wig (mesh structure) disposed on the inner surface of the pipe, and an end of the pipe opposite to the heat source.
  • a system that includes a heat dissipating section and is generally configured.
  • the following cycle is repeated.
  • the working medium In the pipe on the heat source side, the working medium is evaporated by the heat energy from the heat source to form working medium vapor.
  • the working medium vapor is transported from the heat source side to the heat radiating portion, and the working medium vapor is condensed and liquefied in the heat radiating portion.
  • the liquefied working medium is transported by the wig to the heat source side using the capillary action and circulated.
  • thermal cycle system includes, for example, refrigeration / refrigeration equipment, air conditioning equipment, power generation systems, heat transport devices, or secondary coolers. More specifically, for example, room air conditioners, store packaged air conditioners, building packaged air conditioners, facility packaged air conditioners, gas engine heat pumps, train air conditioners, automotive air conditioners, built-in showcases, separate showcases, Commercial freezer / refrigerator, ice machine or vending machine.
  • room air conditioners store packaged air conditioners, building packaged air conditioners, facility packaged air conditioners, gas engine heat pumps, train air conditioners, automotive air conditioners, built-in showcases, separate showcases, Commercial freezer / refrigerator, ice machine or vending machine.
  • GWP Global warming potential
  • IPCC Intergovernmental Panel on climate Change
  • the global warming potential (100 years) of HFO-1123 contained in the working medium according to the present invention is 0.3. This value is much smaller than GWP of other HFOs, for example, 6 of HFO-1234ze, 4 of HFO-1234yf, and the like.
  • R410A HFC-125 and HFC-32 used in air conditioning applications such as room air conditioners, store packaged air conditioners, building packaged air conditioners, and facility packaged air conditioners to be replaced by the working medium according to the present invention.
  • 1 (mass) composition) has a very high GWP of 2088.
  • R404A HFC-125 and 1,1,1-trifluoroethane (HFC-143a) and HFC, which are used for freezing and refrigeration applications such as built-in showcases, stand-alone showcases, and commercial refrigeration / refrigerators.
  • the 11: 13: 1 (mass) composition with -134a) has a GWP that is twice as large as 3922 and R410A.
  • the working medium of the present invention preferably has a low global warming potential from the viewpoint of the effect on global warming.
  • the GWP of the working medium of the present invention is preferably 2000 or less, more preferably 1500 or less, and particularly preferably 1000 or less.
  • GWP2000 is about 50% of R404A used for freezing and refrigeration applications
  • GWP1000 is about 25% of R404A and about 50% of R410A used for air conditioning applications. It shows that the influence can be reduced.
  • the working medium of the present invention contains optional components other than HFO-1123, HFC-134a, and HFC-125
  • the GWP per unit mass of the optional component is further weighted averaged by the composition mass, The GWP of the working medium can be obtained.
  • Example 1 HFO-1123 and HFC-134a were mixed at a predetermined ratio to evaluate the combustibility of the two-component working medium.
  • FIG. 3 shows the relationship between the proportion of HFO-1123, HFC-134a and air in the gas phase in the flask and the combustibility.
  • the working medium having a HFO-1123 ratio of 50 mass% or less in the working medium in the gas phase can be suppressed in combustibility regardless of the concentration of the working medium in the gas phase with air. all right.
  • Example 2 HFO-1123 and HFC-125 were mixed at a predetermined ratio to evaluate the combustibility of the two-component working medium.
  • FIG. 4 shows the relationship between the proportion of HFO-1123, HFC-125 and air in the gas phase in the flask and the presence or absence of combustibility.
  • the working medium having a HFO-1123 ratio of 50 mass% or less in the working medium in the gas phase can be suppressed in combustibility regardless of the concentration of the working medium in the gas phase with air. all right.
  • HFO-1123, HFC-134a, and HFC-125 are mixed so that the ratio of each medium in the gas phase when reaching the equilibrium state is as shown in Table 2 to prepare a three-component working medium Then, the combustibility was evaluated when the working medium was mixed with air at a ratio of every 10% by mass between 10 to 90% by mass with respect to the air to reach an equilibrium state. The evaluation results are shown in Table 2.
  • Examples 8 to 12 A pressure-resistant container having an internal volume of 12 liters was charged with 9 kg of a three-component working medium in which HFO-1123, HFC-134a, and HFC-125 were mixed at the ratio shown in Table 3. After reaching the equilibrium state, a gas phase working medium was collected from the pressure vessel, and the working medium was mixed with air at an arbitrary ratio in the flask, and the flammability was evaluated in the same manner as in Examples 1-7.
  • Examples 13 to 15 HFO-1123, HFC-134a, HFC-125, and HFO-1234yf are mixed so that the ratio of each medium in the gas phase when the equilibrium state is reached is as shown in Table 4 to operate a four-component system A medium was prepared, and the flammability when the working medium was mixed with air at a ratio of every 10% by mass between 10 to 90% by mass with respect to air to reach an equilibrium state was evaluated.
  • the evaluation results are shown in Table 4.
  • Table 4 the working media of Examples 13 to 15 were suppressed in combustibility.
  • Example 16 Evaluation of vapor-liquid equilibrium relationship
  • HFO-1123 and HFC-134a having predetermined concentrations were filled in a pressure-resistant container at 25 ° C., stirred, and allowed to stand until a vapor-liquid equilibrium state was reached. Thereafter, the gas phase and the liquid phase in the pressure vessel were collected, and the composition was analyzed by gas chromatography.
  • FIG. 5 shows the liquid phase concentration (mass%) and gas phase concentration (mass%) of HFO-1123 in a vapor-liquid equilibrium state of a mixture composed of HFO-1123 and HFC-134a prepared by changing the above various compositions. It is a graph which shows a relationship.
  • FIG. 5 shows the liquid phase concentration (mass%) and gas phase concentration (mass%) of HFO-1123 in a vapor-liquid equilibrium state of a mixture composed of HFO-1123 and HFC-134a prepared by changing the above various compositions. It is a graph which shows a relationship.
  • FIG. 5 shows the liquid phase concentration (mass%) and gas phase concentration
  • the solid line shows the relationship between the liquid phase concentration (mass%) and gas phase concentration (mass%) of HFO-1123 measured above.
  • FIG. 5 shows that when the concentration of HFO-1123 in the liquid phase in the vapor-liquid equilibrium state is 30% by mass, the concentration of HFO-1123 in the gas phase is 50% by mass. This confirms that it is nonflammable.
  • the concentration of HFO-1123 in the liquid phase in the vapor-liquid equilibrium state is 50% by mass, it indicates that the concentration of HFO-1123 in the gas phase is 67% by mass. It can be seen that it has a combustion range.
  • a composition having a liquid phase concentration of 30% by mass or less of HFO-1123 in a vapor-liquid equilibrium state has an HFO-1123 concentration of 50% by mass or less in the gas phase in the sealed container, and is incombustible even in the gas phase. It is. Therefore, even when it leaks from the gas phase part by mistake or when the equipment is filled from the gas phase part, it does not have combustibility.
  • FIG. 6 shows the liquid phase concentration (mass%) and gas phase concentration (mass%) of HFO-1123 in a gas-liquid equilibrium state of a mixture consisting of HFO-1123 and HFC-125 prepared by changing the above various compositions. It is a graph which shows a relationship.
  • FIG. 6 shows that when the concentration of HFO-1123 in the liquid phase in the vapor-liquid equilibrium state is 42% by mass, the concentration of HFO-1123 in the gas phase is 50% by mass. This confirms that it is nonflammable.
  • the refrigeration cycle performance (refrigeration capacity and coefficient of performance) was evaluated as the cycle performance (capacity and efficiency) when the working medium was applied to the refrigeration cycle system 10 of FIG.
  • the average evaporation temperature of the working medium in the evaporator 14 is 0 ° C.
  • the average condensation temperature of the working medium in the condenser 12 is 40 ° C.
  • the degree of supercooling of the working medium in the condenser 12 is 5 ° C.
  • the operation in the evaporator 14 is performed. It carried out by setting the degree of superheating of the medium to 5 ° C., respectively.
  • the refrigeration capacity Q and the coefficient of performance ⁇ can be obtained from the following equations (2) and (3) when the enthalpy h of each state (where the subscript h represents the state of the working medium).
  • Q h A -h D
  • the characteristic value of the thermodynamic property necessary for calculating the refrigeration cycle performance was calculated based on the generalized equation of state (Soave-Redrich-Kwong equation) based on the corresponding state principle and the thermodynamic relational equations. When characteristic values were not available, calculations were performed using an estimation method based on the group contribution method.
  • the coefficient of performance represents the refrigeration efficiency in the refrigeration cycle system 10, and the higher the coefficient of performance, the smaller the input (the amount of power required to operate the compressor) and the larger the output (refrigeration capacity). It represents what can be obtained.
  • the refrigeration capacity represents the ability to cool the load fluid, and the higher the refrigeration capacity, the more work can be done in the same system. In other words, the larger the refrigeration capacity, the more the target performance can be obtained with a small amount of working medium, and the system can be miniaturized.
  • GWP Global Warming Potential
  • Tables 5-7 The values of global warming potential of the working media used are also shown in Tables 5-7.
  • the global warming potential (100 years) of HFC-134a is 1430 according to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (2007), and the global warming potential of HFC-125 (100 The year is 3500.
  • the global warming potential (100 years) of HFO-1123 is 0.3 as a value measured according to the IPCC Fourth Assessment Report.
  • GWP in a mixture is shown as a weighted average by a composition mass.
  • Example 18 to 52 A ternary working medium prepared by mixing HFO-1123, HFC-134a, and HFC-125 so that the ratio when reaching the equilibrium state is as shown in Table 5 and Table 6 is shown in FIG.
  • the refrigeration cycle performance was evaluated by applying to the cycle system 10. The evaluation was performed by obtaining the relative performance (each working medium / R410A) of the refrigeration cycle performance (refrigeration capacity and coefficient of performance) of each working medium based on the refrigeration cycle performance when R410A was used as the working medium. The evaluation results are shown in Table 5 and Table 6.
  • a working medium in which HFC-134a was added to HFO-1123 was used so that the ratio of HFO-1123 in the gas phase formed in the system was 50% by mass or less.
  • the coefficient of performance was improved as compared with Example 52 using HFO-1123 alone as the working medium.
  • the refrigerating capacity was higher than that in Example 51 using HFC-134a alone as the working medium.
  • GWP is smaller than R404A (GWP: 3922) used for freezing and refrigeration.
  • Examples 27 to 35 using a working medium in which HFC-125 was added to HFO-1123 so that the ratio of HFO-1123 in the gas phase formed in the system was 50% by mass or less, HFO was used as the working medium. Compared to Example 52 using -1123 alone, the coefficient of performance was the same and the refrigeration capacity decreased, but 0.77 or more was maintained. In addition, Examples 27 to 35 had a higher refrigeration capacity than Example 50 using HFC-125 alone as a working medium. In Examples 27 to 35, the GWP is smaller than that of R404A or the like used for freezing and refrigeration.
  • Examples 36 to 36 in which a working medium using HFC-134a and HFC-125 in combination with HFO-1123 so that the ratio of HFO-1123 in the gas phase formed in the system is 50% by mass or less are used. 47, the coefficient of performance was improved as compared with Example 52 where HFO-1123 alone was used as the working medium, and the sufficient refrigeration capacity was maintained, although the refrigeration capacity decreased. In Examples 36 to 47, the GWP is smaller than that of R404A or the like used for freezing and refrigeration. In addition, the same tendency was observed in Examples 48 and 49 in which the proportion of HFO-1123 in the gas phase was more than 50% by mass, but the combustibility of these compositions was not sufficiently suppressed.
  • Example 53 to 93 A four-component working medium prepared by mixing HFO-1123, HFC-125, HFO-1234yf, and HFC-134a in the proportions shown in Table 7 is applied to the refrigeration cycle system 10 of FIG.
  • the refrigeration cycle performance (refrigeration capacity and coefficient of performance) was evaluated.
  • the evaluation was performed by obtaining the relative performance (each working medium / R410A) of the refrigeration cycle performance (refrigeration capacity and coefficient of performance) of each working medium based on the refrigeration cycle performance when R410A was used as the working medium. Table 7 shows the evaluation results.
  • the ratio of HFO-1123 to 3% by mass to 35% by mass and the ratio of HFC-134a to the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf is 10%.
  • Examples 53 to 87 in which the ratio of HFC-125 is 4% by weight to 50% by weight and the ratio of HFO-1234yf is 5% by weight to 50% by weight are examples outside this range. It can be seen that the coefficient of performance and the refrigerating capacity are generally at a high level as compared to 88 to 93, and the GWP is suppressed to a lower level.
  • the heat cycle system of the present invention is useful in refrigerators, air conditioners, power generation systems (waste heat recovery power generation, etc.), latent heat transport devices (heat pipes, etc.) and the like. It should be noted that the entire contents of the specification, claims, abstract and drawings of Japanese Patent Application No. 2014-044171 filed on March 6, 2014 are cited here as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Lubricants (AREA)

Abstract

 作動媒体が不燃性であり、漏洩してもオゾン層および地球温暖化への影響が少なく、優れたサイクル性能を有し、かつ安全性に優れる熱サイクルシステムを提供すること。 トリフルオロエチレンと、1,1,1,2-テトラフルオロエタンおよびペンタフルオロエタンのいずれか一方または両方を含む作動媒体を用いた熱サイクルシステムであって、システム内に形成される気相中のトリフルオロエチレンの割合が50質量%以下である、熱サイクルシステム。たとえば、圧縮機11、凝縮器12、膨張弁13、蒸発器14を有し、作動媒体が前記のように制御された冷凍サイクルシステム10。

Description

熱サイクル用作動媒体および熱サイクルシステム
 本発明は、熱サイクル用作動媒体および熱サイクルシステムに関する。
 冷凍機、空調機器、発電システム(廃熱回収発電等)、潜熱輸送装置(ヒートパイプ等)等に用いられる熱サイクルシステムとしては、作動媒体として、オゾン層への影響が少ないヒドロフルオロカーボン(以下、HFCと記す。)を用いるものが知られている。しかし、HFCは、地球温暖化の原因となる可能性が指摘されている。たとえば、自動車用空調装置の冷媒として用いられている1,1,1,2-テトラフルオロエタン(HFC-134a)は、地球温暖化係数が1430(100年値)と大きい。
 オゾン層への影響が少なく、かつ地球温暖化への影響が少ない作動媒体を用いた熱サイクルシステムとしては、ヒドロフルオロオレフィン(以下、HFOと記す。)を用いた熱サイクルシステムが提案されている。HFOは、オゾン層への影響が少ないうえ、大気中のOHラジカルによって分解されやすい炭素-炭素二重結合を有するため、地球温暖化への影響も少ない。
 具体的には、以下の(1)~(3)の熱サイクルシステムが挙げられる。
 (1)3,3,3-トリフルオロプロペン(HFO-1243zf)、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、2-フルオロプロペン(HFO-1261yf)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)等を含む作動媒体を用いた熱サイクルシステム(特許文献1)。
 (2)1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye)、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))、HFO-1234yf等を含む作動媒体を用いた熱サイクルシステム(特許文献2)。
 (3)トリフルオロエチレン(HFO-1123)を含む作動媒体を用いた熱サイクルシステム(特許文献3)。
特開平4-110388号公報 特表2006-512426号公報 国際公開第2012/157764号
 しかし、熱サイクルシステム(1)、(2)は、いずれもサイクル性能(能力)が不充分である。
 また、熱サイクルシステム(3)は優れたサイクル性能が得られるものの、用いられるHFO-1123が燃焼性を有している。たとえば自動車用空調装置等では、接続ホース、軸受け部等から作動媒体が漏洩する可能性があるため、システム内に形成される気相の作動媒体が漏洩し、該作動媒体が空気と混合し、着火したとしても、燃え広がりにくい作動媒体を用い、システムの安全性を確保することは重要である。
 本発明は、不燃性であり、漏洩してもオゾン層および地球温暖化への影響が少なく、優れたサイクル性能を有し、かつ安全性に優れる熱サイクル用作動媒体、および作動媒体が不燃性であり、漏洩してもオゾン層および地球温暖化への影響が少なく、優れたサイクル性能を有し、かつ安全性に優れる熱サイクルシステムを提供することを目的とする。
 本発明の熱サイクル用作動媒体は、トリフルオロエチレン(以下、HFO-1123と記す。)と、1,1,1,2-テトラフルオロエタン(以下、HFC-134aと記す。)およびペンタフルオロエタン(以下、HFC-125と記す。)のいずれか一方または両方とを含む熱サイクル用作動媒体であって、前記作動媒体の総質量に対するHFO-1123の割合が42質量%以下であることを特徴とする。
 本発明の熱サイクル用作動媒体は、前記熱サイクル用作動媒体の総質量に対する、HFC-134aおよびHFC-125の合計量の割合は58質量%以上であることが好ましい。
 また、本発明の熱サイクル用作動媒体は、HFO-1123とHFC-134aとHFC-125と2,3,3,3-テトラフルオロプロペン(以下、HFO-1234yfと記す。)とを含む熱サイクル用作動媒体であって、前記作動媒体の総質量に対するHFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量の割合が90質量%を超え100質量%以下であり、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量に対する、HFO-1123の割合が3質量%以上35質量%以下、HFC-134aの割合が10質量%以上53質量%以下、HFC-125の割合が4質量%以上50質量%以下、HFO-1234yfの割合が5質量%以上50質量%以下であることが好ましい。
 さらに、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量に対する、HFO-1123の割合は6質量%以上25質量%以下、HFC-134aの割合は20質量%以上35質量%以下、HFC-125の割合は8質量%以上30質量%以下、HFO-1234yfの割合は20質量%以上50質量%以下であることが好ましい。
 また、前記熱サイクル用作動媒体の地球温暖化係数は2000以下であることが好ましい。
 本発明の熱サイクルシステムは、HFO-1123と、HFC-134aおよびHFC-125のいずれか一方または両方とを含む熱サイクル用作動媒体を用いた熱サイクルシステムであって、該熱サイクルシステム内に形成される気相中のHFO-1123の割合が50質量%以下であることを特徴とする。
 また、本発明の熱サイクルシステムにおいては、システム内の前記作動媒体の総質量に対するHFO-1123の割合は42質量%以下であることが好ましい。
 また、システム内の前記作動媒体の総質量に対する、HFC-134aおよびHFC-125の合計量の割合は58質量%以上であることが好ましい。
 また、本発明の熱サイクルシステムは、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとを含む熱サイクル用作動媒体を用いた熱サイクルシステムであって、前記作動媒体の総質量に対するHFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量の割合が90質量%を超え100質量%以下であり、
 HFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量に対する、HFO-1123の割合が3質量%以上35質量%以下、HFC-134aの割合が10質量%以上53質量%以下、HFC-125の割合が4質量%以上50質量%以下、HFO-1234yfの割合が5質量%以上50質量%以下であることが好ましい。
 さらに、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量に対する、HFO-1123の割合は6質量%以上25質量%以下、HFC-134aの割合は20質量%以上35質量%以下、HFC-125の割合は8質量%以上30質量%以下、HFO-1234yfの割合は20質量%以上50質量%以下であることが好ましい。
 また、前記熱サイクル用作動媒体の地球温暖化係数は2000以下であることが好ましい。
 本発明の熱サイクルシステムは、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機に用いられることが好ましい。
 また、本発明の熱サイクルシステムは、ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置、内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、製氷機または自動販売機に用いられることが好ましい。
 本発明の熱サイクル作動媒体は、不燃性であり、オゾン層および地球温暖化への影響が少なく、熱サイクルシステムに用いた際に優れたサイクル性能を有し、かつ安全性に優れる。
 本発明の熱サイクルシステムは、作動媒体が不燃性であり、漏洩してもオゾン層および地球温暖化への影響が少なく、優れたサイクル性能を有し、かつ安全性に優れる。
本発明の熱サイクルシステムの一例である冷凍サイクルシステムを示した概略構成図である。 図1の冷凍サイクルシステムにおける作動媒体の状態変化を圧力-エンタルピ線図上に記載したサイクル図である。 例1におけるHFO-1123/HFC-134a/空気系の燃焼範囲を示した図である。 例2におけるHFO-1123/HFC-125/空気系の燃焼範囲を示した図である。 例16におけるHFO-1123/HFC-134a系の気液平衡関係を示した図である。 例17におけるHFO-1123/HFC-125系の気液平衡関係を示した図である。
[熱サイクル用作動媒体]
 本発明の熱サイクル用作動媒体(以下、単に作動媒体ともいう)は、HFO-1123と、HFC-134aおよびHFC-125のいずれか一方または両方を含む作動媒体である。本発明の作動媒体は、好ましくは、さらにHFO-1234yfを含む。
 本発明の作動媒体を用いた熱サイクルシステムにおいて、システム内に形成される気相中のHFO-1123の比率を特定の範囲に制御することで、該気相の作動媒体の燃焼性が抑えられることを本発明者は見出した。
 なお、本発明において、「システム内に形成される気相」とはシステム内の気相に存在する作動媒体をいう。システム内において、作動媒体は、その一部が液状で存在する場合があり、また共存する潤滑油等の液体にその一部が溶解している場合がある。したがって、システム内に形成される気相中の作動媒体は、液化している作動媒体および潤滑油等の液体に溶解している作動媒体を除いた部分である。
 本発明の熱サイクルシステムにおいて、システム内に形成される気相中のHFO-1123の割合は50質量%以下である。
 システム内に形成される気相中のHFO-1123の割合が50質量%以下であるとは、システムのすべての過程において形成される気相中で常にHFO-1123の割合が50質量%以下であることを意味する。システム内に形成される気相中のHFO-1123の割合が50質量%以下であると、該気相の作動媒体がシステム外に漏洩し、空気と混合しても不燃性であり、安全性に優れる。
 システム内に形成される気相中のHFO-1123の割合は、50質量%以下であり、5~50質量%が好ましく、10~45質量%がより好ましく、10~40質量%がさらに好ましい。前記気相中のHFO-1123の割合が前記上限値以下であれば、作動媒体がシステム外に漏洩し、空気と混合しても不燃性であり、安全性に優れる。前記気相中のHFO-1123の割合が前記下限値以上であれば、優れたサイクル性能が得られやすい。
 HFO-1123とHFC-134aの組成物の場合のシステム内に形成される気相中のHFO-1123の割合は、同様の理由から、50質量%以下であり、5~40質量%が好ましく、21~39質量%がより好ましく、21~30質量%がさらに好ましい。
 HFO-1123とHFC-125の組成物の場合のシステム内に形成される気相中のHFO-1123の割合は、同様の理由から、50質量%以下であり、5~50質量%が好ましく、5~42質量%がより好ましく、21~39質量%がさらに好ましい。
 HFO-1123、HFC-134aおよびHFC-125の組成物の場合のシステム内に形成される気相中のHFO-1123の割合は、同様の理由から、50質量%以下であり、5~50質量%が好ましく、5~45質量%がより好ましく、10~35質量%がさらに好ましい。
 熱サイクルシステムのシステム内の作動媒体の総質量(100質量%)に対するHFO-1123の割合は、42質量%以下が好ましく、5~42質量%がより好ましく、10~35質量%がさらに好ましく、10~30質量%が特に好ましい。前記HFO-1123の割合が前記下限値以上であれば、優れたサイクル性能が得られやすい。前記HFO-1123の割合が前記上限値以下であれば、システム内に形成される気相の作動媒体の燃焼性が抑えられるため、該作動媒体がシステム外に漏洩し、空気と混合し、着火しても燃え広がりにくく、安全性に優れる。
 なお、「システム内の作動媒体の総質量」とはシステム内の気相に存在する作動媒体と液状で存在している作動媒体と潤滑油等の液体に溶解している作動媒体の合計量、すなわちシステム内に存在する作動媒体の全量、をいう。したがって、システム内の作動媒体の総質量に対する各作動媒体成分(たとえば、HFO-1123)の割合は、作動媒体中の各作動媒体成分の割合に等しい。
 システム内の作動媒体の総質量に対する、HFC-134aおよびHFC-125の合計量の割合は、58質量%以上が好ましく、58~95質量%がより好ましく、65~90質量%がさらに好ましく、70~90質量%が最も好ましい。前記合計質量の割合が前記下限値以上であれば、システム内に形成される気相の作動媒体の燃焼性を抑えやすい。前記合計質量の割合が前記上限値以下であれば、HFO-1123の含有量を相対的に増やせるため、優れたサイクル性能が得られやすい。
 本発明の作動媒体は、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとを含み、作動媒体全量に対するHFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量の割合が90質量%を超え100質量%以下であり、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量に対する、HFO-1123の割合が3質量%以上35質量%以下、HFC-134aの割合が10質量%以上53質量%以下、HFC-125の割合が4質量%以上50質量%以下、HFO-1234yfの割合が5質量%以上50質量%以下であることが好ましい。このような作動媒体とすることにより、作動媒体が不燃性であり、かつ安全性に優れ、オゾン層および地球温暖化への影響をより少なくし、熱サイクルシステムに用いた際により優れたサイクル性能を有する作動媒体とすることができる。
 さらに、本発明の作動媒体は、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとを含み、作動媒体全量に対するHFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量の割合が90質量%を超え100質量%以下であり、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量に対する、HFO-1123の割合が6質量%以上25質量%以下、HFC-134aの割合が20質量%以上35質量%以下、HFC-125の割合が8質量%以上30質量%以下、HFO-1234yfの割合が20質量%以上50質量%以下であることがより一層好ましい。このような作動媒体とすることにより、作動媒体が不燃性であり、かつ安全性により一層優れ、オゾン層および地球温暖化への影響をより一層少なくし、熱サイクルシステムに用いた際により一層優れたサイクル性能を有する作動媒体とすることができる。
 作動媒体は、本発明の効果を損なわない範囲であれば、必要に応じて、HFO-1123およびHFO-1234yf以外のHFO、HFC-134aおよびHFC-125以外のHFC、炭化水素、HCFO、CFO、他の化合物等を含んでいてもよい。
(HFO-1123およびHFO-1234yf以外のHFO)
 HFO-1123およびHFO-1234yf以外のHFOとしては、1,2-ジフルオロエチレン(HFO-1132)、2-フルオロプロペン(HFO-1261yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))、3,3,3-トリフルオロプロペン(HFO-1243zf)、トランス-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))、シス-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))等が挙げられる。
 HFO-1123およびHFO-1234yf以外のHFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 作動媒体がHFO-1123およびHFO-1234yf以外のHFOを含む場合、システム内の作動媒体の総質量(100質量%)に対する該HFOの総質量の割合は、1~30質量%が好ましく、2~10質量%がより好ましい。
(HFC-134aおよびHFC-125以外のHFC)
 HFC-134aおよびHFC-125以外のHFCは、熱サイクルシステムのサイクル性能(能力)を向上させる成分である。HFC-134aおよびHFC-125以外のHFCとしては、オゾン層への影響が少なく、かつ地球温暖化への影響が小さいHFCが好ましい。
 HFC-134aおよびHFC-125以外のHFCとしては、ジフルオロメタン、ジフルオロエタン、トリフルオロエタン、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、ヘプタフルオロシクロペンタン等が挙げられる。なかでも、オゾン層への影響が少なく、かつ地球温暖化への影響が小さい点から、ジフルオロメタン(HFC-32)、1,1-ジフルオロエタン(HFC-152a)が特に好ましい。
 HFC-134aおよびHFC-125以外のHFCは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 HFC-134aおよびHFC-125以外のHFCの含有量は、作動媒体の要求特性に応じて制御できる。
 作動媒体がHFC-134aおよびHFC-125以外のHFCを含む場合、システム内の作動媒体の総質量(100質量%)に対する該HFCの総質量の割合は、1~40質量%が好ましく、2~10質量%がより好ましい。
(炭化水素)
 炭化水素は、後述の鉱物油の作動媒体への溶解性を向上させる成分である。
 炭化水素としては、プロパン、プロピレン、シクロプロパン、ブタン、イソブタン、ペンタン、イソペンタン等が挙げられる。
 炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 作動媒体が炭化水素を含む場合、システム内の作動媒体の総質量(100質量%)に対する炭化水素の総質量の割合は、1~10質量%が好ましく、2~5質量%がより好ましい。前記炭化水素の総質量の割合が前記下限値以上であれば、作動媒体への潤滑油の溶解性が良好になる。前記炭化水素の総質量の割合が前記上限値以下であれば、作動媒体の燃焼性を抑えやすい。
(HCFO、CFO)
 HCFOおよびCFOは、作動媒体の燃焼性を抑え、また作動媒体への潤滑油の溶解性を向上させる成分である。HCFO、CFOとしては、オゾン層への影響が少なく、かつ地球温暖化への影響が小さいHCFO、CFOが好ましい。
 HCFOとしては、ヒドロクロロフルオロプロペン、ヒドロクロロフルオロエチレン等が挙げられる。なかでも、熱サイクルシステムのサイクル性能(能力)を大きく低下させることなく、作動媒体の燃焼性を充分に抑えやすい点から、1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)、1-クロロ-1,2-ジフルオロエチレン(HCFO-1122)が好ましい。
 HCFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 CFOとしては、クロロフルオロプロペン、クロロフルオロエチレン等が挙げられる。なかでも、熱サイクルシステムのサイクル性能(能力)を大きく低下させることなく、作動媒体の燃焼性を充分に抑える点から、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)、1,2-ジクロロ-1,2-ジフルオロエチレン(CFO-1112)が好ましい。
 作動媒体がHCFOおよびCFOのいずれか一方または両方を含む場合、システム内の作動媒体の総質量(100質量%)に対する、HCFOとCFOの合計質量の割合は、1~20質量%が好ましく、1~10質量%がより好ましい。塩素原子は燃焼性を抑制する効果を有しており、HCFOとCFOの添加によって、熱サイクルシステムのサイクル性能(能力)を大きく低下させることなく、作動媒体の燃焼性を充分に抑えることができる。
(他の化合物)
 他の化合物としては、炭素数1~4のアルコール、または、従来の作動媒体、冷媒、熱伝達媒体として用いられている化合物等が挙げられる。また、ペルフルオロプロピルメチルエーテル(COCH)、ペルフルオロブチルメチルエーテル(COCH)、ペルフルオロブチルエチルエーテル(COC)、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル(CFHCFOCHCF、旭硝子社製、AE-3000)等の含フッ素エーテルを用いてもよい。
 システム内の作動媒体の総質量(100質量%)に対する他の化合物の総質量の割合は、本発明の効果を著しく低下させない範囲であればよく、30質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下がさらに好ましい。
[熱サイクルシステムへの適用]
<熱サイクルシステム用組成物>
 本発明の作動媒体は、熱サイクルシステムへの適用に際して、通常、潤滑油と混合して熱サイクルシステム用組成物として使用することができる。本発明の作動媒体と潤滑油を含む熱サイクルシステム用組成物は、これら以外にさらに、安定剤、漏れ検出物質等の公知の添加剤を含有してもよい。
[潤滑油]
 本発明の熱サイクルシステムでは、前記した作動媒体を潤滑油と混合して使用してもよい。潤滑油としては、熱サイクルシステムに用いられる公知の潤滑油を採用できる。
 潤滑油としては、含酸素系合成油(エステル系潤滑油、エーテル系潤滑油等)、フッ素系潤滑油、鉱物油、炭化水素系合成油等が挙げられる。
 エステル系潤滑油としては、二塩基酸エステル油、ポリオールエステル油、コンプレックスエステル油、ポリオール炭酸エステル油等が挙げられる。
 二塩基酸エステル油としては、炭素数5~10の二塩基酸(グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等)と、直鎖または分枝アルキル基を有する炭素数1~15の一価アルコール(メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール等)とのエステルが好ましい。具体的には、グルタル酸ジトリデシル、アジピン酸ジ(2-エチルヘキシル)、アジピン酸ジイソデシル、アジピン酸ジトリデシル、セバシン酸ジ(3-エチルヘキシル)等が挙げられる。
 ポリオールエステル油としては、ジオール(エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、1,5-ペンタジオール、ネオペンチルグリコール、1,7-ヘプタンジオール、1,12-ドデカンジオール等)または水酸基を3~20個有するポリオール(トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスリトール、グリセリン、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物等)と、炭素数6~20の脂肪酸(ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、エイコサン酸、オレイン酸等の直鎖または分枝の脂肪酸、もしくはα炭素原子が4級であるいわゆるネオ酸等)とのエステルが好ましい。
 ポリオールエステル油は、遊離の水酸基を有していてもよい。
 ポリオールエステル油としては、ヒンダードアルコール(ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスルトール等)のエステル(トリメチロールプロパントリペラルゴネート、ペンタエリスリトール2-エチルヘキサノエート、ペンタエリスリトールテトラペラルゴネート等)がより好ましい。
 コンプレックスエステル油とは、脂肪酸および二塩基酸と、一価アルコールおよびポリオールとのエステルである。脂肪酸、二塩基酸、一価アルコール、ポリオールとしては、たとえば、二塩基酸エステル油、ポリオールエステル油で挙げたものと同様のものが挙げられる。
 ポリオール炭酸エステル油とは、炭酸とポリオールとのエステルである。
 ポリオールとしては、ジオールやポリオール(ポリオールエステル油で挙げたものと同様のもの)等が挙げられる。また、ポリオール炭酸エステル油としては、環状アルキレンカーボネートの開環重合体であってもよい。
 エーテル系潤滑油としては、ポリオキシアルキレン化合物やポリビニルエーテル等が挙げられる。
 ポリオキシアルキレン化合物としては、炭素数2~4のアルキレンオキシド(エチレンオキシド、プロピレンオキシド等)を、水、アルカンモノオール、前記ジオール、前記ポリオール等を開始剤として重合させる方法等により得られたポリオキシアルキレンモノオールやポリオキシアルキレンポリオールが挙げられる。ポリオキシアルキレン化合物としては、ポリオキシアルキレンモノオールやポリオキシアルキレンポリオールの水酸基の一部または全部をアルキルエーテル化したものであってもよい。
 ポリオキシアルキレン化合物1分子中のオキシアルキレン単位は、1種であってもよく、2種以上であってもよい。ポリオキシアルキレン化合物としては、1分子中に少なくともオキシプロピレン単位が含まれるものが好ましい。
 ポリアルキレングリコール油は、上記ポリオキシアルキレン化合物の1種であり、上記ポリオキシアルキレンモノオール、ポリオキシアルキレンジオール、およびそれらのアルキルエーテル化物が挙げられる。具体的には、たとえば、1価または2価アルコール(メタノール、エタノール、ブタノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール等)に炭素数2~4のアルキレンオキシドを付加して得られるポリオキシアルキレン化合物、および、得られたポリオキシアルキレン化合物の水酸基の一部または全部をアルキルエーテル化した化合物が挙げられる。
 ポリアルキレングリコール油としては、ポリオキシプロピレンジオールのジアルキルエーテルが好ましい。
 ポリビニルエーテルとしては、ビニルエーテルモノマーの重合体、ビニルエーテルモノマーとオレフィン性二重結合を有する炭化水素モノマーとの共重合体、ビニルエーテルモノマーとポリオキシアルキレン鎖を有するビニルエーテル系モノマーとの共重合体等が挙げられる。
 ビニルエーテルモノマーとしてはアルキルビニルエーテルが好ましく、そのアルキル基としては炭素数6以下のアルキル基が好ましい。また、ビニルエーテルモノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 オレフィン性二重結合を有する炭化水素モノマーとしては、エチレン、プロピレン、各種ブテン、各種ペンテン、各種ヘキセン、各種ヘプテン、各種オクテン、ジイソブチレン、トリイソブチレン、スチレン、α-メチルスチレン、各種アルキル置換スチレン等が挙げられる。オレフィン性二重結合を有する炭化水素モノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ビニルエーテル共重合体は、ブロックまたはランダム共重合体のいずれであってもよい。
 フッ素系潤滑油としては、合成油(後述の鉱物油、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等)の水素原子をフッ素原子に置換した化合物、ペルフルオロポリエーテル油、フッ素化シリコーン油等が挙げられる。
 鉱物油としては、原油を常圧蒸留または減圧蒸留して得られた潤滑油留分を、精製処理(溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、白土処理等)を適宜組み合わせて精製したパラフィン系鉱物油、ナフテン系鉱物油等が挙げられる。
 炭化水素系合成油としては、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等が挙げられる。
 潤滑油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 潤滑油としては、作動媒体との相溶性の点から、ポリオールエステル油およびポリアルキレングリコール油のいずれか一方または両方が好ましく、安定化剤によって顕著な酸化防止効果が得られる点から、ポリアルキレングリコール油が特に好ましい。
 作動媒体と潤滑油を混合して用いる場合、潤滑油の使用量は、本発明の効果を著しく低下させない範囲であればよく、用途、圧縮機の形式等によって適宜決定すればよい。システム内の潤滑油の総質量の割合は、作動媒体の総質量100質量部に対して、10~100質量部が好ましく、20~50質量部がより好ましい。
 [安定剤]
 安定剤は、熱および酸化に対する作動媒体の安定性を向上させる成分である。安定剤としては、耐酸化性向上剤、耐熱性向上剤、金属不活性剤等が挙げられる。
 耐酸化性向上剤および耐熱性向上剤としては、N,N’-ジフェニルフェニレンジアミン、p-オクチルジフェニルアミン、p,p’-ジオクチルジフェニルアミン、N-フェニル-1-ナフチルアミン、N-フェニル-2-ナフチルアミン、N-(p-ドデシル)フェニル-2-ナフチルアミン、ジ-1-ナフチルアミン、ジ-2-ナフチルアミン、N-アルキルフェノチアジン、6-(t-ブチル)フェノール、2,6-ジ-(t-ブチル)フェノール、4-メチル-2,6-ジ-(t-ブチル)フェノール、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)等が挙げられる。耐酸化性向上剤および耐熱性向上剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 金属不活性剤としては、イミダゾール、ベンズイミダゾール、2-メルカプトベンズチアゾール、2,5-ジメルカプトチアジアゾール、サリシリジン-プロピレンジアミン、ピラゾール、ベンゾトリアゾール、トリルトリアゾール、2-メチルベンズイミダゾール、3,5-ジメチルピラゾール、メチレンビス-ベンゾトリアゾール、有機酸またはそれらのエステル、第1級、第2級または第3級の脂肪族アミン、有機酸または無機酸のアミン塩、複素環式窒素含有化合物、アルキル酸ホスフェートのアミン塩またはそれらの誘導体等が挙げられる。
 システム内の作動媒体の総質量(100質量%)に対する安定剤の総質量の割合は、本発明の効果を著しく低下させない範囲であればよく、5質量%以下が好ましく、1質量%以下がより好ましい。
[漏れ検出物質]
 漏れ検出物質としては、紫外線蛍光染料、臭気ガスや臭いマスキング剤等が挙げられる。
 紫外線蛍光染料としては、米国特許第4249412号明細書、特表平10-502737号公報、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、公知の紫外線蛍光染料が挙げられる。
 臭いマスキング剤としては、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、公知の香料が挙げられる。
 漏れ検出物質を用いる場合には、作動媒体への漏れ検出物質の溶解性を向上させる可溶化剤を用いてもよい。
 可溶化剤としては、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等が挙げられる。
 システム内の作動媒体の総質量(100質量%)に対する漏れ検出物質の総質量の割合は、本発明の効果を著しく低下させない範囲であればよく、2質量%以下が好ましく、0.5質量%以下がより好ましい。
[水分濃度]
 たとえば、自動車用空調装置においては、振動を吸収する目的で使用されている冷媒ホースや圧縮機の軸受け部から水分が混入しやすい傾向にある。
 熱サイクルシステム内に水分が混入すると、キャピラリーチューブ内での氷結、作動媒体や潤滑油の加水分解、システム内で発生した酸成分による材料劣化、コンタミナンツの発生等の問題が発生する。特に、ポリアルキレングリコール油、ポリオールエステル油等は、吸湿性が極めて高く、また加水分解反応を起こしやすく、潤滑油としての特性が低下するため、水分が混入すると圧縮機の長期信頼性を損なう大きな原因となる。そのため、潤滑油の加水分解を抑えるためには、熱サイクルシステム内の水分濃度を抑制する必要がある。
 熱サイクルシステム内の水分濃度を抑制する方法としては、乾燥剤(シリカゲル、活性アルミナ、ゼオライト等)を用いる方法が挙げられる。乾燥剤としては、乾燥剤と作動媒体との化学反応性、乾燥剤の吸湿能力の点から、ゼオライト系乾燥剤が好ましい。
 ゼオライト系乾燥剤としては、従来の鉱物油に比べて吸湿量の高い潤滑油を用いる場合には、吸湿能力に優れる点から、下式(1)で表される化合物を主成分とするゼオライト系乾燥剤が好ましい。
 M2/nO・Al・xSiO・yHO ・・・(1)。
 ただし、Mは、Na、K等の1族の元素またはCa等の2族の元素であり、nは、Mの原子価であり、x、yは、結晶構造にて定まる値である。Mを変化させることにより細孔径を調整できる。
 乾燥剤の選定においては、細孔径および破壊強度が特に重要である。
 作動媒体の分子径よりも大きい細孔径を有する乾燥剤を用いた場合、作動媒体が乾燥剤中に吸着され、その結果、作動媒体と乾燥剤との化学反応が生じ、不凝縮性気体の生成、乾燥剤の強度の低下、吸着能力の低下等の好ましくない現象を生じることとなる。
 したがって、乾燥剤としては、細孔径の小さいゼオライト系乾燥剤を用いることが好ましい。特に、細孔径が3.5Å以下である、ナトリウム・カリウムA型の合成ゼオライトが好ましい。作動媒体の分子径よりも小さい細孔径を有するナトリウム・カリウムA型合成ゼオライトを適用することによって、作動媒体を吸着することなく、熱サイクルシステム内の水分のみを選択的に吸着除去できる。作動媒体の乾燥剤への吸着が起こりにくいことから、作動媒体の熱分解が起こりにくくなり、その結果、熱サイクルシステムを構成する材料の劣化やコンタミナンツの発生を抑制できる。
 ゼオライト系乾燥剤の大きさは、小さすぎると熱サイクルシステムの膨張弁や配管細部への詰まりの原因となり、大きすぎると乾燥能力が低下するため、約0.5~5mmが好ましい。ゼオライト系乾燥剤の形状としては、粒状または円筒状が好ましい。
 ゼオライト系乾燥剤は、粉末状のゼオライトを結合剤(ベントナイト等)で固めることにより任意の形状とすることができる。ゼオライト系乾燥剤を主体とするかぎり、他の乾燥剤(シリカゲル、活性アルミナ等)を併用してもよい。
 作動媒体に対するゼオライト系乾燥剤の使用割合は、特に限定されない。
[塩素濃度]
 熱サイクルシステム内に塩素が存在すると、金属との反応による堆積物の生成、軸受け部の磨耗、作動媒体や潤滑油の分解等、悪影響を及ぼす。
 熱サイクルシステム内の塩素濃度は、作動媒体に対する質量割合で100ppm以下が好ましく、50ppm以下が特に好ましい。
[不凝縮性気体濃度]
 熱サイクルシステム内に不凝縮性気体が混入すると、凝縮器や蒸発器における熱伝達の不良、作動圧力の上昇という悪影響を及ぼすため、不凝縮性気体の混入を極力抑制する必要がある。特に、不凝縮性気体の一つである酸素は、作動媒体や潤滑油と反応し、その分解を促進する。不凝縮性気体としては、窒素、酸素、空気等が挙げられる。
 熱サイクルシステム内の不凝縮性気体の濃度は、システム内の気相において、作動媒体に対する容積割合で1.5体積%以下が好ましく、0.5体積%以下が特に好ましい。
 本発明の熱サイクルシステムとしては、冷凍サイクルシステム、ランキンサイクルシステム、ヒートポンプサイクルシステム、熱輸送システム等が挙げられる。
[冷凍サイクルシステム]
 冷凍サイクルシステムは、蒸発器において作動媒体が負荷流体より熱エネルギーを除去することにより、負荷流体を冷却し、より低い温度に冷却するシステムである。
 以下、図1に基づいて、冷凍サイクルシステムの具体例について説明する。
 冷凍サイクルシステム10は、作動媒体蒸気Aを圧縮して高温高圧の作動媒体蒸気Bとする圧縮機11と、圧縮機11から排出された作動媒体蒸気Bを冷却し、液化して低温高圧の作動媒体Cとする凝縮器12と、凝縮器12から排出された作動媒体Cを膨張させて低温低圧の作動媒体Dとする膨張弁13と、膨張弁13から排出された作動媒体Dを加熱して高温低圧の作動媒体蒸気Aとする蒸発器14と、蒸発器14に負荷流体Eを供給するポンプ15と、凝縮器12に流体Fを供給するポンプ16とを具備して概略構成されるシステムである。
 冷凍サイクルシステム10においては、以下のサイクルが繰り返される。
 (i)蒸発器14から排出された作動媒体蒸気Aを圧縮機11にて圧縮して高温高圧の作動媒体蒸気Bとする。
 (ii)圧縮機11から排出された作動媒体蒸気Bを凝縮器12にて流体Fによって冷却し、液化して低温高圧の作動媒体Cとする。この際、流体Fは加熱されて流体F’となり、凝縮器12から排出される。
 (iii)凝縮器12から排出された作動媒体Cを膨張弁13にて膨張させて低温低圧の作動媒体Dとする。
 (iv)膨張弁13から排出された作動媒体Dを蒸発器14にて負荷流体Eによって加熱して高温低圧の作動媒体蒸気Aとする。この際、負荷流体Eは冷却されて負荷流体E’となり、蒸発器14から排出される。
 冷凍サイクルシステム10は、断熱・等エントロピ変化、等エンタルピ変化および等圧変化からなるサイクルであり、作動媒体の状態変化を圧力-エンタルピ線図上に記載すると図2のように表すことができる。
 図2中、AB過程は、圧縮機11で断熱圧縮を行い、高温低圧の作動媒体蒸気Aを高温高圧の作動媒体蒸気Bとする過程である。BC過程は、凝縮器12で等圧冷却を行い、高温高圧の作動媒体蒸気Bを低温高圧の作動媒体Cとする過程である。CD過程は、膨張弁13で等エンタルピ膨張を行い、低温高圧の作動媒体Cを低温低圧の作動媒体Dとする過程である。DA過程は、蒸発器14で等圧加熱を行い、低温低圧の作動媒体Dを高温低圧の作動媒体蒸気Aに戻す過程である。
[ランキンサイクルシステム]
 ランキンサイクルシステムは、蒸発器において地熱エネルギー、太陽熱、50~200℃程度の中~高温度域廃熱等により作動媒体を加熱し、高温高圧状態の蒸気となった作動媒体を膨張機にて断熱膨張させ、該断熱膨張によって発生する仕事によって発電機を駆動させ、発電を行うシステムである。
 ランキンサイクルシステムの具体例としては、たとえば、以下のものが挙げられる。
 高温高圧の作動媒体蒸気を膨張させて低温低圧の作動媒体蒸気とする膨張機と、膨張機における作動媒体蒸気の断熱膨張によって発生する仕事によって駆動される発電機と、膨張機から排出された作動媒体蒸気を冷却し、液化して作動媒体とする凝縮器と、凝縮器から排出された作動媒体を加圧して高圧の作動媒体とするポンプと、ポンプから排出された作動媒体を加熱して高温高圧の作動媒体蒸気とする蒸発器と、凝縮器に流体を供給するポンプと、蒸発器に流体を供給するポンプとを具備して概略構成されるシステム。
 前記ランキンサイクルシステムにおいては、以下のサイクルが繰り返される。
 (i)蒸発器から排出された高温高圧の作動媒体蒸気を膨張機にて膨張させて低温低圧の作動媒体蒸気とする。この際、膨張機における作動媒体蒸気の断熱膨張によって発生する仕事によって発電機を駆動させ、発電を行う。
 (ii)膨張機から排出された作動媒体蒸気を凝縮器にて流体によって冷却し、液化して作動媒体とする。この際、凝縮器に供給された前記流体は、加熱されて凝縮器から排出される。
 (iii)凝縮器から排出された作動媒体をポンプにて加圧して高圧の作動媒体とする。
 (iv)前記ポンプから排出された作動媒体を蒸発器にて流体によって加熱して高温高圧の作動媒体蒸気とする。この際、蒸発器に供給された前記流体は、冷却されて蒸発器から排出される。
[ヒートポンプサイクルシステム]
 ヒートポンプサイクルシステムは、凝縮器において作動媒体の熱エネルギーを負荷流体へ与えることにより、負荷流体を加熱し、より高い温度に昇温するシステムである。
 ヒートポンプサイクルシステムの具体例としては、たとえば、以下のものが挙げられる。
 作動媒体蒸気を圧縮して高温高圧の作動媒体蒸気とする圧縮機と、圧縮機から排出された作動媒体蒸気を冷却し、液化して低温高圧の作動媒体とする凝縮器と、凝縮器から排出された作動媒体を膨張させて低温低圧の作動媒体とする膨張弁と、膨張弁から排出された作動媒体を加熱して高温低圧の作動媒体蒸気とする蒸発器と、蒸発器に熱源流体を供給するポンプと、凝縮器に負荷流体を供給するポンプとを具備して概略構成されるシステム。
 前記ヒートポンプサイクルシステムにおいては、以下のサイクルが繰り返される。
 (i)蒸発器から排出された作動媒体蒸気を圧縮機にて圧縮して高温高圧の作動媒体蒸気とする。
 (ii)圧縮機から排出された作動媒体蒸気を凝縮器にて負荷流体によって冷却し、液化して低温高圧の作動媒体とする。この際、負荷流体は加熱されて凝縮器から排出される。
 (iii)凝縮器から排出された作動媒体を膨張弁にて膨張させて低温低圧の作動媒体とする。
 (iv)膨張弁から排出された作動媒体を蒸発器にて熱源流体によって加熱して高温低圧の作動媒体蒸気とする。この際、熱源流体は冷却されて蒸発器から排出される。
[熱輸送システム]
 熱輸送システムは、熱源により作動媒体を蒸発させて該作動媒体に熱エネルギーを吸収させ、蒸気となった作動媒体を輸送し、輸送先で凝縮させ、熱エネルギーを放出させて、熱エネルギーを輸送するシステムである。
 熱輸送システムの具体例としては、たとえば、以下のものが挙げられる。
 熱源から熱輸送先まで配設され、作動媒体が封入されたパイプと、該パイプの内面に配設されたウィッグ(メッシュ構造物)と、前記パイプにおける熱源と反対側の端部に設けられた放熱部とを具備して概略構成されるシステム。
 前記熱輸送システムにおいては、以下のサイクルが繰り返される。
 (i)熱源側のパイプ内において、熱源による熱エネルギーで作動媒体を蒸発させて作動媒体蒸気とする。
 (ii)作動媒体蒸気を熱源側から放熱部まで輸送し、放熱部において作動媒体蒸気を凝縮させて液化する。
 (iii)液化した作動媒体を、ウィッグにより、毛細管作用を利用して熱源側まで輸送し、循環させる。
[用途]
 熱サイクルシステムの用途としては、たとえば、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機が挙げられる。
 より具体的には、たとえば、ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置、内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、製氷機または自動販売機が挙げられる。
[地球温暖化係数(GWP)]
 本発明においては、作動媒体の地球温暖化への影響をはかる指標として、GWPを用いる。本明細書において、GWPは、特に断りのない限り気候変動に関する政府間パネル(IPCC)第4次評価報告書(2007年)の100年の値とする。
 各化合物のGWPを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明に係る作動媒体が含有するHFO-1123の地球温暖化係数(100年)は、0.3である。この値は、他のHFOのGWP、例えば、HFO-1234zeの6、HFO-1234yfの4等に比べても格段に小さい値である。
 また、本発明に係る作動媒体が代替しようとするルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン等の空調用途で使用されているR410A(HFC-125とHFC-32との1:1(質量)組成物)は、GWPが2088と極めて高い。また、内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫等の冷凍・冷蔵用途で使用されているR404A(HFC-125と1,1,1-トリフルオロエタン(HFC-143a)およびHFC-134aとの11:13:1(質量)組成物)は3922とR410Aよりさらに2倍大きいGWPを有している。
 本発明の作動媒体は、地球温暖化に対する影響の観点から、地球温暖化係数が小さいことが好ましい。具体的には、本発明の作動媒体のGWPは、2000以下が好ましく、1500以下がより好ましく、1000以下が特に好ましい。GWP2000は冷凍・冷蔵用途で使用されているR404Aの約50%であり、GWP1000はR404Aの25%、空調用途で使用されているR410Aの約50%の値であり、大幅に地球温暖化への影響を低減することができることを示している。
 なお、混合物におけるGWPは、組成質量による加重平均とする。例えば、HFO-1123とHFC-134aの質量比1:1の混合物におけるGWPは、(0.3+1430)/2=715と算出できる。本発明の作動媒体が、HFO-1123とHFC-134a、HFC-125以外の任意成分を含有する場合には、当該任意成分の単位質量あたりのGWPをさらに、組成質量により加重平均することで、作動媒体のGWPを求めることができる。
[作用効果]
 以上説明した本発明の熱サイクルシステムにあっては、HFO-1123と、HFC-134aおよびHFC-125のいずれか一方または両方を含む作動媒体を用いるため、オゾン層および地球温暖化への影響が少ない。
 また、本発明の熱サイクルシステムは、サイクル性能にも優れている。
 また、システム内に形成される気相中のHFO-1123の割合が50質量%以下となるように制御するため、該気相の作動媒体の燃焼性が抑えられる。そのため、仮にシステム内の気相の作動媒体が漏洩し、空気と混合し、着火しても燃え広がりにくく、安全性が確保される。
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。
[燃焼性の評価]
 燃焼性の評価は、ASTM E-681に規定された設備を用いて実施した。
 25℃に温度制御された恒温槽内に設置された内容積12リットルのフラスコ内を真空排気した後、図3または図4にプロットした各濃度に調整した作動媒体と空気を大気圧力まで封入した。その後、該フラスコ内の中心付近の気相において、15kV、30mAで0.4秒間放電着火させた後、火炎の広がりを目視にて確認した。上方への火炎の広がりの角度が90°を超える場合を燃焼性あり、90°未満の場合を燃焼性なし、と判断した。
[例1]
 HFO-1123とHFC-134aとを所定の比率で混合して2成分系の作動媒体の燃焼性を評価した。フラスコ内の気相におけるHFO-1123、HFC-134aおよび空気の割合と、燃焼性の関係を図3に示す。
 図3に示すように、フラスコ内の気相中の作動媒体のうちのHFO-1123の割合が50質量%以下(図3におけるHFO-1123:HFC-134a=1:1を示す直線よりも右側)の作動媒体は、燃焼範囲(「燃焼性あり」となる範囲)を持たないことがわかった。言い換えると、気相中の作動媒体のうちのHFO-1123の割合が50質量%以下の作動媒体は、該気相の作動媒体をいかなる濃度で空気と混合しても燃焼性が抑えられることがわかった。
[例2]
 HFO-1123とHFC-125とを所定の比率で混合して2成分系の作動媒体の燃焼性を評価した。フラスコ内の気相におけるHFO-1123、HFC-125および空気の割合と、燃焼性の有無の関係を図4に示す。
 図4に示すように、フラスコ内の気相中の作動媒体のうちのHFO-1123の割合が50質量%以下(図4におけるHFO-1123:HFC-125=1:1を示す直線よりも右側)の作動媒体は、燃焼範囲(「燃焼性あり」となる範囲)を持たないことがわかった。言い換えると、気相中の作動媒体のうちのHFO-1123の割合が50質量%以下の作動媒体は、該気相の作動媒体をいかなる濃度で空気と混合しても燃焼性が抑えられることがわかった。
[例3~7]
 HFO-1123とHFC-134aとHFC-125とを、平衡状態に達したときの気相中の各媒体の割合が表2に示すとおりとなるように混合して3成分系の作動媒体を調製し、その作動媒体を空気に対して10~90質量%の間の1質量%おきの比率で空気と混合して平衡状態に到達したときの燃焼性を評価した。
 評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、フラスコ内の気相中の作動媒体のうちのHFO-1123の割合が50質量%以下の例3~6の作動媒体は、燃焼性が抑えられた。
 一方、フラスコ内の気相中の作動媒体のうちのHFO-1123の割合が50質量%超の例7では、燃焼性を抑えられなかった。
[例8~12]
 内容積12リットルの耐圧容器に、HFO-1123とHFC-134aとHFC-125とを、表3に示す比率で混合した3成分系の作動媒体の9kgを充填した。
 平衡状態に到達した後に耐圧容器から気相の作動媒体を採取し、フラスコ内で該作動媒体を任意の割合で空気と混合して、例1~7と同様に燃焼性を評価した。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、耐圧容器内の作動媒体の総質量に対するHFO-1123の総質量の割合が42質量%以下の例8~10では、平衡状態に到達した気相の作動媒体をいかなる濃度で空気と混合しても燃焼性が抑えられた。これは、平衡状態に到達した気相中のHFO-1123の割合が50質量%以下となるためである。
 一方、耐圧容器内の作動媒体の総質量に対するHFO-1123の総質量の割合が50質量%の例11、12では、平衡状態に到達した気相の作動媒体の燃焼性が抑えられなかった。これは、例11、12では、HFC-134aおよびHFC-125に比べてHFO-1123が揮発しやすいために、平衡状態に到達した気相中のHFO-1123の割合が50質量%を超えるためである。
[例13~15]
 HFO-1123とHFC-134aとHFC-125とHFO-1234yfを、平衡状態に達したときの気相中の各媒体の割合が表4に示すとおりとなるように混合して4成分系の作動媒体を調製し、その作動媒体を空気に対して10~90質量%の間の1質量%おきの比率で空気と混合して平衡状態に到達したときの燃焼性を評価した。
 評価結果を表4に示す。
 表4に示すように、例13~15の作動媒体は、燃焼性が抑えられた。
Figure JPOXMLDOC01-appb-T000004
 HFO-1123と、HFC-134aおよびHFC-125のいずれか一方または両方を含む作動媒体を、以下のように気液平衡状態関係の評価を行った。
[例16]
(気液平衡関係の評価)
 所定の濃度のHFO-1123およびHFC-134aを、25℃で耐圧容器内に充填し、撹拌した後、気液平衡状態となるまで静置した。その後、耐圧容器内の気相および液相を採取し、それぞれガスクロマトグラフによって組成の分析を行った。結果を図5に示す。
 図5は、上記各種組成を変えて準備されたHFO-1123とHFC-134aからなる混合物の気液平衡状態における、HFO-1123の液相濃度(質量%)と気相濃度(質量%)の関係を示すグラフである。図5において、実線が上記で測定されたHFO-1123の液相濃度(質量%)と気相濃度(質量%)の関係を示す。図5は、気液平衡状態における液相のHFO-1123の濃度が30質量%である場合、気相のHFO-1123濃度が50質量%であることを示しており、本組成物は図3より、不燃性であることが確認される。一方、気液平衡状態における液相のHFO-1123の濃度が50質量%である場合、気相のHFO-1123濃度が67質量%であることを示しており、本組成物は図3より、燃焼範囲を有することが分かる。言い換えると、気液平衡状態のHFO-1123の液相濃度30質量%以下の組成物は、密閉容器内の気相部のHFO-1123濃度が50質量%以下であり、気相においても不燃性である。そのため、誤って気相部から漏洩した場合や気相部より機器へ充填された場合においても、燃焼性を持たない。
[例17]
 例16と同様にHFO-1123およびHFC-125について実施した結果を図6に示す。
 図6は、上記各種組成を変えて準備されたHFO-1123とHFC-125からなる混合物の気液平衡状態における、HFO-1123の液相濃度(質量%)と気相濃度(質量%)の関係を示すグラフである。図6より、気液平衡状態における液相のHFO-1123の濃度が42質量%である場合、気相のHFO-1123濃度が50質量%であることを示しており、本組成物は図4より、不燃性であることが確認される。一方、気液平衡状態における液相のHFO-1123の濃度が50質量%である場合、気相のHFO-1123濃度が68質量%であることを示しており、本組成物は図4より、燃焼範囲を有することが分かる。言い換えると、気液平衡状態のHFO-1123の液相濃度42質量%以下の組成物は、密閉容器内の気相部のHFO-1123濃度が50質量%以下であり、気相においても不燃性である。そのため、容器気相部から漏洩した場合や誤って気相部より機器へ充填された場合においても、燃焼性を持たないことから、極めて安全性が高い特徴を有している。
[冷凍サイクル性能の評価]
 図1の冷凍サイクルシステム10に作動媒体を適用した場合のサイクル性能(能力および効率)として、冷凍サイクル性能(冷凍能力および成績係数)を評価した。
 評価は、蒸発器14における作動媒体の平均蒸発温度を0℃、凝縮器12における作動媒体の平均凝縮温度を40℃、凝縮器12における作動媒体の過冷却度を5℃、蒸発器14における作動媒体の過熱度を5℃にそれぞれ設定して実施した。また、機器効率および配管、熱交換器における圧力損失はないものとした。
 冷凍能力Qおよび成績係数ηは、各状態のエンタルピh(ただし、hの添え字は作動媒体の状態を表す。)を用いると、下式(2)、(3)から求められる。
 Q=h-h ・・・(2)
 η=Q/圧縮仕事
  =(h-h)/(h-h) ・・・(3)
 冷凍サイクル性能の算出に必要となる熱力学性質の特性値は、対応状態原理に基づく一般化状態方程式(Soave-Redlich-Kwong式)、および熱力学諸関係式に基づき算出した。特性値が入手できない場合は、原子団寄与法に基づく推算手法を用いて算出を行った。
 なお、成績係数は、冷凍サイクルシステム10における冷凍効率を表しており、成績係数の値が高いほど少ない入力(圧縮機を運転するために必要とされる電力量)により大きな出力(冷凍能力)を得ることができることを表している。
 一方、冷凍能力は、負荷流体を冷却する能力を表しており、冷凍能力が高いほど、同一のシステムにおいて、多くの仕事ができることを表している。言い換えると、大きな冷凍能力を有するほど、少量の作動媒体で目的とする性能が得られ、システムを小型化できることを表している。
[地球温暖化係数(GWP)の評価]
 また、用いた作動媒体の地球温暖化係数の値を表5~7に併記した。
 HFC-134aの地球温暖化係数(100年)は、気候変動に関する政府間パネル(IPCC)第4次評価報告書(2007年)による値で1430であり、HFC-125の地球温暖化係数(100年)は3500である。HFO-1123の地球温暖化係数(100年)は、IPCC第4次評価報告書に準じて測定された値として、0.3である。また、混合物におけるGWPは、組成質量による加重平均として示す。
[例18~52]
 HFO-1123、HFC-134aおよびHFC-125を、平衡状態に到達したときの比率が表5および表6に示すとおりになるように混合して調製した3成分系の作動媒体を図1の冷凍サイクルシステム10に適用し、冷凍サイクル性能(冷凍能力および成績係数)を評価した。
 評価は、作動媒体としてR410Aを用いた場合の冷凍サイクル性能を基準として、各作動媒体の冷凍サイクル性能(冷凍能力および成績係数)の相対性能(各作動媒体/R410A)を求めて行った。評価結果を表5および表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5および表6に示すように、システム内に形成される気相中のHFO-1123の割合が50質量%以下となるように、HFO-1123にHFC-134aを添加した作動媒体を用いた例18~26では、作動媒体としてHFO-1123を単独で用いる例52に比べ、成績係数が改善された。また、例18~26では、作動媒体としてHFC-134aを単独で用いる例51に比べ、冷凍能力が高かった。また、例18~26は、冷凍・冷蔵用途で使用されているR404A(GWP:3922)等に比べてGWPが小さい。
 システム内に形成される気相中のHFO-1123の割合が50質量%以下となるように、HFO-1123にHFC-125を添加した作動媒体を用いた例27~35では、作動媒体としてHFO-1123を単独で用いる例52に比べ、成績係数は同等であり、また冷凍能力は低下するが、0.77以上が維持された。また、例27~35は、作動媒体としてHFC-125を単独で用いる例50に比べ、冷凍能力が高かった。また、例27~35は、冷凍・冷蔵用途で使用されているR404A等に比べてGWPが小さい。
 また、システム内に形成される気相中のHFO-1123の割合が50質量%以下となるように、HFO-1123に、HFC-134aおよびHFC-125を併用する作動媒体を用いた例36~47では、作動媒体としてHFO-1123を単独で用いる例52に比べ、成績係数が改善されると共に、冷凍能力は低下するものの充分な冷凍能力が維持された。また、例36~47は、冷凍・冷蔵用途で使用されているR404A等に比べてGWPが小さい。
 また、気相中のHFO-1123の割合が50質量%超の例48、例49でも同様の傾向が見られたが、これらの組成は燃焼性が充分に抑制されないものである。
[例53~93]
 HFO-1123、HFC-125、HFO-1234yfおよびHFC-134aを、表7に示すとおりの割合になるように混合して調製した4成分系の作動媒体を図1の冷凍サイクルシステム10に適用し、冷凍サイクル性能(冷凍能力および成績係数)を評価した。
 評価は、作動媒体としてR410Aを用いた場合の冷凍サイクル性能を基準として、各作動媒体の冷凍サイクル性能(冷凍能力および成績係数)の相対性能(各作動媒体/R410A)を求めて行った。評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量に対する、HFO-1123の割合が3質量%以上35質量%以下、HFC-134aの割合が10質量%以上53質量%以下、HFC-125の割合が4質量%以上50質量%以下、HFO-1234yfの割合が5質量%以上50質量%以下となる例53~87では、この範囲外の例88~93に比べて、成績係数、冷凍能力が総合的に高いレベルにあり、かつ、GWPがより低いレベルに抑えられていることがわかる。
 本発明の熱サイクルシステムは、冷凍機、空調機器、発電システム(廃熱回収発電等)、潜熱輸送装置(ヒートパイプ等)等において有用である。
 なお、2014年3月6日に出願された日本特許出願2014-044171号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10 冷凍サイクルシステム
 11 圧縮機
 12 凝縮器
 13 膨張弁
 14 蒸発器

Claims (13)

  1.  トリフルオロエチレンと、1,1,1,2-テトラフルオロエタンおよびペンタフルオロエタンのいずれか一方または両方とを含む熱サイクル用作動媒体であって、
    前記作動媒体の総質量に対するトリフルオロエチレンの割合が42質量%以下である、熱サイクル用作動媒体。
  2.  前記作動媒体の総質量に対する、1,1,1,2-テトラフルオロエタンおよびペンタフルオロエタンの合計量の割合が58質量%以上である、請求項1に記載の熱サイクル用作動媒体。
  3.  トリフルオロエチレンと1,1,1,2-テトラフルオロエタンとペンタフルオロエタンと2,3,3,3-テトラフルオロプロペンとを含む熱サイクル用作動媒体であって、
     前記作動媒体の総質量に対するトリフルオロエチレンと1,1,1,2-テトラフルオロエタンとペンタフルオロエタンと2,3,3,3-テトラフルオロプロペンとの合計量の割合が90質量%を超え100質量%以下であり、
     トリフルオロエチレンと1,1,1,2-テトラフルオロエタンとペンタフルオロエタンと2,3,3,3-テトラフルオロプロペンとの合計量に対する、トリフルオロエチレンの割合が3質量%以上35質量%以下、1,1,1,2-テトラフルオロエタンの割合が10質量%以上53質量%以下、ペンタフルオロエタンの割合が4質量%以上50質量%以下、2,3,3,3-テトラフルオロプロペンの割合が5質量%以上50質量%以下である、請求項1または2に記載の熱サイクル用作動媒体。
  4.  トリフルオロエチレンと1,1,1,2-テトラフルオロエタンとペンタフルオロエタンと2,3,3,3-テトラフルオロプロペンとの合計量に対する、トリフルオロエチレンの割合が6質量%以上25質量%以下、1,1,1,2-テトラフルオロエタンの割合が20質量%以上35質量%以下、ペンタフルオロエタンの割合が8質量%以上30質量%以下、2,3,3,3-テトラフルオロプロペンの割合が20質量%以上50質量%以下である、請求項3に記載の熱サイクル用作動媒体。
  5.  前記熱サイクル用作動媒体の地球温暖化係数が2000以下である、請求項1~4のいずれか一項に記載の熱サイクル用作動媒体。
  6.  トリフルオロエチレンと、1,1,1,2-テトラフルオロエタンおよびペンタフルオロエタンのいずれか一方または両方とを含む熱サイクル用作動媒体を用いた熱サイクルシステムであって、
     該熱サイクルシステム内に形成される気相中のトリフルオロエチレンの割合が50質量%以下である、熱サイクルシステム。
  7.  システム内の前記作動媒体の総質量に対するトリフルオロエチレンの割合が42質量%以下である、請求項6に記載の熱サイクルシステム。
  8.  システム内の前記作動媒体の総質量に対する、1,1,1,2-テトラフルオロエタンおよびペンタフルオロエタンの合計量の割合が58質量%以上である、請求項6または7に記載の熱サイクルシステム。
  9.  トリフルオロエチレンと1,1,1,2-テトラフルオロエタンとペンタフルオロエタンと2,3,3,3-テトラフルオロプロペンとを含む熱サイクル用作動媒体を用いた熱サイクルシステムであって、
     前記作動媒体の総質量に対するトリフルオロエチレンと1,1,1,2-テトラフルオロエタンとペンタフルオロエタンと2,3,3,3-テトラフルオロプロペンとの合計量の割合が90質量%を超え100質量%以下であり、
     トリフルオロエチレンと1,1,1,2-テトラフルオロエタンとペンタフルオロエタンと2,3,3,3-テトラフルオロプロペンとの合計量に対する、トリフルオロエチレンの割合が3質量%以上35質量%以下、1,1,1,2-テトラフルオロエタンの割合が10質量%以上53質量%以下、ペンタフルオロエタンの割合が4質量%以上50質量%以下、2,3,3,3-テトラフルオロプロペンの割合が5質量%以上50質量%以下である、請求項6~8のいずれか一項に記載の熱サイクルシステム。
  10.  トリフルオロエチレンと1,1,1,2-テトラフルオロエタンとペンタフルオロエタンと2,3,3,3-テトラフルオロプロペンとの合計量に対する、トリフルオロエチレンの割合が6質量%以上25質量%以下、1,1,1,2-テトラフルオロエタンの割合が20質量%以上35質量%以下、ペンタフルオロエタンの割合が8質量%以上30質量%以下、2,3,3,3-テトラフルオロプロペンの割合が20質量%以上50質量%以下である、請求項9に記載の熱サイクルシステム。
  11.  前記熱サイクル用作動媒体の地球温暖化係数が2000以下である、請求項6~10のいずれか一項に記載の熱サイクルシステム。
  12.  冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機に用いられる、請求項6~11のいずれか一項に記載の熱サイクルシステム。
  13.  ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置、内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、製氷機または自動販売機に用いられる、請求項6~11のいずれか一項に記載の熱サイクルシステム。
PCT/JP2015/056563 2014-03-06 2015-03-05 熱サイクル用作動媒体および熱サイクルシステム WO2015133587A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15758976.3A EP3115431A4 (en) 2014-03-06 2015-03-05 Working medium for heat cycle, and heat cycle system
JP2016506559A JPWO2015133587A1 (ja) 2014-03-06 2015-03-05 熱サイクル用作動媒体および熱サイクルシステム
CN201580012054.2A CN106062124A (zh) 2014-03-06 2015-03-05 热循环用工作介质以及热循环系统
US15/254,409 US20160369147A1 (en) 2014-03-06 2016-09-01 Working fluid for heat cycle and heat cycle system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-044171 2014-03-06
JP2014044171 2014-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/254,409 Continuation US20160369147A1 (en) 2014-03-06 2016-09-01 Working fluid for heat cycle and heat cycle system

Publications (1)

Publication Number Publication Date
WO2015133587A1 true WO2015133587A1 (ja) 2015-09-11

Family

ID=54055387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056563 WO2015133587A1 (ja) 2014-03-06 2015-03-05 熱サイクル用作動媒体および熱サイクルシステム

Country Status (5)

Country Link
US (1) US20160369147A1 (ja)
EP (1) EP3115431A4 (ja)
JP (2) JPWO2015133587A1 (ja)
CN (1) CN106062124A (ja)
WO (1) WO2015133587A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181910A1 (ja) * 2015-05-12 2016-11-17 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
WO2016181933A1 (ja) * 2015-05-12 2016-11-17 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
WO2016190177A1 (ja) * 2015-05-25 2016-12-01 旭硝子株式会社 熱サイクル用作動媒体および熱サイクルシステム
JPWO2017145244A1 (ja) * 2016-02-22 2018-03-01 三菱電機株式会社 冷凍サイクル装置
JP2020521855A (ja) * 2017-06-02 2020-07-27 アルケマ フランス トリフルオロエチレン系組成物とその使用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3208555A4 (en) * 2014-10-16 2018-05-30 Mitsubishi Electric Corporation Refrigeration cycle device
JP6418284B1 (ja) * 2017-06-12 2018-11-07 ダイキン工業株式会社 冷媒を含有する組成物、その使用、それを用いた冷凍方法、及びそれを含む冷凍機
CN107987798B (zh) * 2017-12-08 2021-01-29 西安近代化学研究所 一种环保混合制冷剂
CN107987797B (zh) * 2017-12-08 2021-01-29 西安近代化学研究所 一种替代hcfc-22的环保混合制冷剂
WO2019123782A1 (ja) * 2017-12-18 2019-06-27 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
JP2018079369A (ja) * 2018-01-24 2018-05-24 学校法人 日本歯科大学 歯科補綴物の作製方法、歯科補綴物作製用組成物
CN108674124B (zh) * 2018-04-24 2021-02-05 上海理工大学 一种电动汽车二次回路空调热泵系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505296A (ja) * 2008-10-10 2012-03-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 2,3,3,3−テトラフルオロプロペン、2−クロロ−2,3,3,3−テトラフルオロプロパノール、2−クロロ−2,3,3,3−テトラフルオロ酢酸プロピルまたは(2−クロロ−2,3,3,3−テトラフルオロプロポキシ)塩化亜鉛を含む組成物
WO2012157763A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
WO2012157764A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
WO2012157762A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
WO2015005290A1 (ja) * 2013-07-12 2015-01-15 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505296A (ja) * 2008-10-10 2012-03-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 2,3,3,3−テトラフルオロプロペン、2−クロロ−2,3,3,3−テトラフルオロプロパノール、2−クロロ−2,3,3,3−テトラフルオロ酢酸プロピルまたは(2−クロロ−2,3,3,3−テトラフルオロプロポキシ)塩化亜鉛を含む組成物
WO2012157763A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
WO2012157764A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
WO2012157762A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
WO2015005290A1 (ja) * 2013-07-12 2015-01-15 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3115431A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181910A1 (ja) * 2015-05-12 2016-11-17 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
WO2016181933A1 (ja) * 2015-05-12 2016-11-17 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
WO2016190177A1 (ja) * 2015-05-25 2016-12-01 旭硝子株式会社 熱サイクル用作動媒体および熱サイクルシステム
JPWO2017145244A1 (ja) * 2016-02-22 2018-03-01 三菱電機株式会社 冷凍サイクル装置
JP2020521855A (ja) * 2017-06-02 2020-07-27 アルケマ フランス トリフルオロエチレン系組成物とその使用

Also Published As

Publication number Publication date
US20160369147A1 (en) 2016-12-22
EP3115431A4 (en) 2017-10-11
CN106062124A (zh) 2016-10-26
JPWO2015133587A1 (ja) 2017-04-06
JP2015180724A (ja) 2015-10-15
EP3115431A1 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6891925B2 (ja) 作動媒体および熱サイクルシステム
JP6809566B2 (ja) 作動媒体含有組成物
JP6848977B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
CN106133110B (zh) 热循环用工作介质、热循环系统用组合物以及热循环系统
JP5935799B2 (ja) 作動媒体および熱サイクルシステム
JP6402630B2 (ja) ヒートポンプ用作動媒体およびヒートポンプシステム
US10144856B2 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
WO2015133587A1 (ja) 熱サイクル用作動媒体および熱サイクルシステム
WO2016190177A1 (ja) 熱サイクル用作動媒体および熱サイクルシステム
JP6540685B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JPWO2015186558A1 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2012157762A1 (ja) 作動媒体および熱サイクルシステム
WO2013015201A1 (ja) 熱サイクル用作動媒体および熱サイクルシステム
JP2015145452A (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2012157761A1 (ja) 作動媒体および熱サイクルシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506559

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015758976

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015758976

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE