WO2015133391A1 - トランジスタの製造方法 - Google Patents

トランジスタの製造方法 Download PDF

Info

Publication number
WO2015133391A1
WO2015133391A1 PCT/JP2015/055806 JP2015055806W WO2015133391A1 WO 2015133391 A1 WO2015133391 A1 WO 2015133391A1 JP 2015055806 W JP2015055806 W JP 2015055806W WO 2015133391 A1 WO2015133391 A1 WO 2015133391A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
alignment mark
transistor
manufacturing
forming
Prior art date
Application number
PCT/JP2015/055806
Other languages
English (en)
French (fr)
Inventor
誠吾 中村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016506454A priority Critical patent/JP6286024B2/ja
Publication of WO2015133391A1 publication Critical patent/WO2015133391A1/ja
Priority to US15/244,398 priority patent/US20160359114A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/236Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers using printing techniques, e.g. applying the etch liquid using an ink jet printer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method of manufacturing a transistor using a film such as a plastic film as a substrate. Specifically, the present invention relates to a method of manufacturing a transistor capable of forming a source electrode, a drain electrode, and the like without causing a pattern shift.
  • film substrates such as plastic films are used in devices using logic circuits such as TFTs (thin film transistors), RFIDs (RF tags) and memories used for liquid crystal displays and organic EL displays. Is used.
  • a transistor such as a TFT has a fine structure in which fine electrodes and the like are formed. Therefore, when manufacturing a transistor, it is necessary to pattern electrodes and the like with an accuracy on the order of ⁇ m.
  • many steps involve heating, application of a solution, and the like.
  • the film, particularly the plastic film undergoes large expansion and contraction due to temperature and humidity, as compared to glass and the like conventionally used as a substrate. Therefore, when a film is used as a substrate, pattern displacement (positional displacement) of members constituting the transistor occurs due to the expansion and contraction of the substrate, and an appropriate transistor can not be stably manufactured.
  • alignment marks serving as marks for alignment are formed at four corners of the substrate surface and the like. Then, the position of the alignment mark is detected prior to the formation of the pattern of the electrode or the like. In addition, pattern exposure is also included in formation of a pattern.
  • the positions of the alignment marks formed on the substrate are known. Therefore, positional deviation of the alignment mark, that is, expansion and contraction of the substrate can be detected from the difference between the detected position and distance of the alignment mark and the original formed position and distance of the alignment mark.
  • the pattern is re-set (re-computed) so that the pattern is formed at an appropriate position with respect to the alignment mark, and according to the reset pattern, for example, inkjet or laser
  • the reset pattern for example, inkjet or laser
  • the alignment mark it is possible to manufacture a transistor having an appropriate positional relationship between the source electrode and the drain electrode and the source electrode, for example, by eliminating the pattern deviation of each member constituting the transistor.
  • the object of the present invention is to solve the problems of the prior art as described above, and in the manufacture of a transistor using a film as a substrate, there is no pattern deviation of each component by using an alignment mark. It is an object of the present invention to provide a method of manufacturing a transistor which can manufacture a proper transistor, and which does not require resetting of a pattern according to the detection result of an alignment mark and can use a photomask.
  • a method of manufacturing a transistor of the present invention is used in the manufacture of a film-based transistor, Using a substrate on which three or more alignment marks are formed,
  • a method for manufacturing a transistor including performing an expansion / contraction control process of controlling expansion / contraction of a substrate by detecting an alignment mark and controlling expansion / contraction of a substrate according to a detection result of the alignment mark.
  • the manufacturing of the transistor includes at least a step of forming a gate electrode, a step of forming a gate insulating film, a step of forming a semiconductor layer, and a step of forming a source electrode and a drain electrode. It is preferable to perform expansion / contraction control processing during or before at least one of the steps of forming the gate electrode, forming the gate insulating film, forming the semiconductor layer, and forming the source and drain electrodes.
  • the expansion / contraction control process is at least one of temperature control of the substrate and humidity control of the substrate.
  • the size of the displacement of the eyelet mark is detected, and the temperature control of the substrate is performed from the size of the displacement of the eyelet mark and at least one of the linear expansion coefficient and the hygroscopic expansion coefficient of the substrate. It is preferable to perform at least one of humidity control of the substrate and the substrate.
  • the substrate is fixed to a carrier to manufacture a transistor, and in a state where the substrate is fixed to the carrier, at least one of the linear expansion coefficient and the hygroscopic expansion coefficient of the substrate is known, and the information obtained is used
  • at least one of temperature control of the substrate and humidity control of the substrate is performed.
  • the expansion and contraction control process be performed by spraying humidity controlled gas onto the substrate.
  • the alignment mark is detected, the expansion / contraction control process is performed downstream of the detection position of the alignment mark, and the pattern formation in the manufacturing of the transistor is performed downstream of the expansion / contraction control process. Is preferred.
  • the substrate is a gas barrier film formed by forming a gas barrier film on a support, and the gas barrier film is formed by alternately laminating one or more organic layers and an inorganic layer.
  • the inorganic layer is preferably a silicon nitride film.
  • the position of the alignment mark that is, the expansion and contraction of the substrate is returned to the original position by temperature control or humidity control of the substrate according to the detection result of the alignment mark formed on the substrate to form an electrode or the like. it can. Therefore, according to the manufacturing method of the present invention, it is possible to stably manufacture an appropriate transistor having no pattern deviation of electrodes, wirings and the like. In addition, since it is not necessary to reset (recalculate) the pattern according to the detection result of the alignment mark, the manufacturing cost of the transistor can be reduced. Furthermore, according to the manufacturing method of the present invention, it is possible to cope with a method of using a photomask with one photomask.
  • FIGS. 1A to 1D are conceptual diagrams for explaining an example of a method for manufacturing a transistor of the present invention.
  • FIGS. 2E to 2G are conceptual diagrams for describing an example of a method for manufacturing a transistor of the present invention.
  • FIG. 3A is a conceptual diagram of an example in which the method for manufacturing a transistor of the present invention is applied to a roll-to-roll manufacturing apparatus, and
  • FIG. 3B is for the manufacturing apparatus shown in FIG. It is a conceptual diagram of an example of the substrate used.
  • FIGS. 1A to 2 G conceptually show an example of a method for manufacturing a transistor of the present invention.
  • the method of manufacturing a transistor of the present invention is to form a transistor using a film substrate 10 on which three or more alignment marks are formed.
  • the gate electrode 14 is formed on the film substrate 10 on which the alignment mark 12 is formed, as an example of the manufacturing method of the transistor of the present invention.
  • the gate insulating film 16 is formed to cover 14, the source electrode 18 and the drain electrode 20 are formed on the gate insulating film 16, and the semiconductor layer 24 is formed on the gate insulating film 16 and the source electrode 18 and the drain electrode 20.
  • This is an example used for manufacturing a bottom gate-bottom contact type transistor.
  • the present invention is not limited to this, and can be used to manufacture various known transistors such as top gate-bottom contact type, bottom gate-top contact type, top gate-bottom contact type and the like.
  • the film substrate 10 may be a film (film-like material) made of various materials used as a substrate in a so-called thin film transistor such as metal such as silicon, ceramic, glass, plastic, etc. is there.
  • the method for manufacturing a transistor of the present invention is also simply referred to as "the manufacturing method of the present invention”.
  • the film substrate 10 is also simply referred to as a "substrate 10".
  • plastic film is suitably used as the substrate 10 in terms of cost, flexibility, weight reduction, non-breakage, insulation and the like.
  • plastic film forming materials include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, fluorine resin, polyimide, fluorinated polyimide resin, polyamide resin, polyamide imide resin, polyether imide resin Cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin resin, fluorene ring modified polycarbonate resin, alicyclic modified Thermoplastic resins, such as polycarbonate resin, fluorene ring modified polyester resin, and an acryloyl compound, etc. are mentioned.
  • a gas barrier film obtained by forming a gas barrier film on the surface of such a plastic film as a support is more suitably used as the substrate 10.
  • an organic layer of acrylic resin, methacrylic resin or the like and an inorganic layer of silicon oxide or silicon nitride are alternately formed as a gas barrier film on the surface.
  • An organic-inorganic laminated gas barrier film is particularly preferably used as the substrate 10.
  • various materials can be used to form the organic layer and the inorganic layer.
  • the inorganic layer is generally weak against expansion and contraction, which may cause cracks due to the expansion and contraction.
  • the inorganic layer is preferably a silicon nitride film, and particularly preferably a silicon nitride film formed by CVD. Since the silicon nitride film formed by CVD contains hydrogen atoms in the film, it is considered that high stretchability can be obtained by hydrogen bonding.
  • the lowermost layer may be an organic layer or an inorganic layer.
  • the top layer may also be an organic layer or an inorganic layer.
  • the number of laminated layers of the organic layer and the inorganic layer may be one by one, or a plurality of the organic layer and the inorganic layer may be alternately laminated, or the number of the organic layer and the inorganic layer may be different.
  • the lowermost layer of the gas barrier film is a layer formed on the surface of the support.
  • the uppermost layer of the gas barrier film is a layer on the surface of the gas barrier film opposite to the support.
  • the transistor When a gas barrier film is used as the substrate 10, it is usually preferable to form the transistor on the gas barrier film. That is, when an organic-inorganic laminated gas barrier film is used as the substrate 10, the transistor is preferably formed on the surface of the organic layer or the inorganic layer. In the case where a gas barrier film is used as the substrate 10, if a support is provided inside the gas barrier film with respect to the transistor, moisture contained in the support or a change with time of the support may adversely affect the transistor. On the other hand, this disadvantage can be avoided by forming the transistor on the gas barrier film.
  • the substrate 10 is preferably heat-treated prior to the manufacture of the transistor.
  • Plastic films are usually produced by drawing. At this time, the amount of stretching is often different between the MD direction and the TD direction. Therefore, the plastic films often have different thermal contraction rates in the MD direction and the TD direction.
  • the MD direction is the film transport direction in the production of plastic
  • the TD direction is the MD direction, that is, the direction orthogonal to the film transport direction.
  • expansion and contraction control processing is performed to control expansion and contraction of the substrate 10 by temperature control or humidity control of the substrate 10.
  • the expansion / contraction control process is a process for improving the positional deviation of the alignment mark.
  • thermal contraction rate is different between the MD direction and the TD direction
  • expansion and contraction control processing by temperature control and humidity control can not be properly performed. Therefore, in the manufacturing method of the present invention, if necessary, heat treatment for eliminating the thermal contraction between the MD direction and the TD direction of the substrate 10, that is, the plastic film prior to the manufacture of the transistor (thermal contraction / thermal relaxation treatment) Is preferred.
  • the heat treatment may be performed by a known method such as heating by a heater, heating using a thermostat, heating using warm air, or the like. Further, conditions of heat treatment such as temperature and time of heat treatment are conditions which can eliminate shrinkage between the MD direction and the TD direction through the manufacturing process of the transistor depending on the forming material, thickness and the like of the substrate 10 used. It may be set as appropriate. As an example, conditions under which heat treatment is performed at a temperature higher than or equal to the maximum temperature in the manufacturing process of the transistor are illustrated.
  • the manufacturing method of the present invention manufactures a transistor on such a substrate 10.
  • the manufacture of the transistor described below may be performed using only the substrate 10.
  • the rigidity is weak only with the substrate 10, and the shape of the substrate 10 may be unstable. Therefore, preferably, a carrier substrate such as a glass plate is attached to the back surface (the non-formation surface of the transistor) of the substrate 10 to manufacture the transistor.
  • formation of the gate electrode 14 mentioned later, etc. can be performed in the state which maintained the shape of the board
  • the carrier substrate may be attached to the substrate 10 by a known method using a carrier film (film having removability) or the like.
  • the gate electrode 14 is patterned on the surface of the substrate 10.
  • materials for forming the gate electrode 14 various known materials used as gate electrodes in thin film transistors can be used.
  • metals such as aluminum, chromium, copper, molybdenum, tungsten, gold, silver, alloys, transparent conductive oxides (TCO) such as indium tin oxide (ITO), polyethylenedioxythiophene-polystyrenesulfonic acid (PEDOT-)
  • TCO transparent conductive oxides
  • ITO indium tin oxide
  • PEDOT- polyethylenedioxythiophene-polystyrenesulfonic acid
  • PSS laminated structures thereof, and the like.
  • a method of forming the gate electrode 14 various known methods depending on the material to be formed can be used.
  • a method using vapor phase film forming method such as sputtering or vacuum deposition and photolithography
  • a method using vapor phase film forming method and shadow mask a method by printing such as ink jet etc Is illustrated.
  • the shadow mask is a mask that covers the non-formation portion (non-film formation portion).
  • the alignment mark 12 is also formed together with the gate electrode 14 when the gate electrode 14 is formed, that is, the pattern formation of the lowermost layer is performed. Therefore, in this case, gate electrode 14 and alignment mark 12 are simultaneously formed of the same material. Depending on the formation pattern of the gate electrode 14, the gate electrode 14 can be used as an alignment mark. As a result, even if the alignment mark is not detected, the gate electrode 14 (the pattern of the lowermost layer) can be manufactured in an appropriate positional relationship with the alignment mark. In addition, since the alignment mark can be formed simultaneously with the gate electrode 14, it is preferable in that the number of steps can be reduced as compared with the case where the alignment mark is separately formed.
  • the manufacturing method of the present invention is not limited thereto, and the gate electrode 14 may be formed after forming the alignment mark first.
  • the gate electrode 14 and the alignment mark 12 may be formed of the same material or different materials.
  • the method of forming the gate electrode 14 and the alignment mark 12 may be different.
  • the alignment mark 12 is not formed simultaneously with the gate electrode 14
  • various known materials used as an alignment mark in thin film transistors can be used as the material for forming the alignment mark.
  • the ink etc. which contain various dye and a pigment are illustrated.
  • the alignment mark 12 is not formed at the same time as the gate electrode 14
  • various methods of forming the alignment mark may be used known methods used as a method of forming the alignment mark in thin film transistors. Specifically, a method of forming the above-described gate electrode 14 and the like are exemplified.
  • the number of alignment marks 12 may be appropriately set according to the size of the substrate 10 or the like, but basically, it may be three or more. In the case of RtoR described later, the size of the substrate 10 is the length and width of the substrate. By forming three or more alignment marks 12, positional deviation of the alignment marks 12 in the xy direction (biaxial direction), that is, expansion and contraction of the substrate 10 can be detected. It will be possible.
  • the size, shape, color, etc. of the alignment mark 12 can also be appropriately detected according to the manufacturing process of the transistor to be carried out and the forming material of each part, etc. It should be set. That is, the alignment mark may have a shape and a size that can obtain the positional accuracy necessary for the transistor to be manufactured. In other words, the alignment mark may have a shape and size that can obtain the required accuracy calculated from the positional accuracy (alignment accuracy) required for the transistor to be manufactured. Furthermore, the positional relationship between the alignment mark 12 and the position of the alignment mark 12 can be suitably corrected by the expansion control process described later, such as the position of the alignment mark 12 and the distance between the alignment marks 12. It may be set appropriately according to
  • the substrate 10 the alignment mark A gate insulating film 16, that is, an insulator layer is formed to cover 12 and the gate electrode 14.
  • metal oxides such as silicon oxide (SiO x ), magnesium oxide, aluminum oxide, titanium oxide, germanium oxide, yttrium oxide, zirconium oxide, niobium oxide, tantalum oxide, and metal nitrides such as silicon nitride (SiN x )
  • metal nitride oxides metal oxynitrides
  • SiO x N y silicon nitride oxide
  • DLC diamond-like carbon
  • the gate insulating film 16 various known forming methods depending on the material can be used.
  • various chemical vapor deposition (CVD) including various physical vapor deposition (PVD) such as sputtering, vacuum deposition, ion plating, atomic layer deposition (ALD or ALE) And coating methods, printing methods, transfer methods and the like.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • ALD or ALE atomic layer deposition
  • coating methods printing methods, transfer methods and the like.
  • the alignment mark 12 formed on the substrate 10 may be used for positioning with respect to the forming apparatus. The same applies to the formation of the semiconductor layer 24 and the resist layer 32 which will be described later.
  • the source electrode 18 and the drain electrode 20 are patterned.
  • materials for forming the source electrode 18 and the drain electrode 20 various known materials used in organic thin film transistors can be used.
  • various materials exemplified for the aforementioned gate electrode 14 are exemplified.
  • various known methods can be used to form patterns of the source electrode 18 and the drain electrode 20 according to the materials to be formed.
  • various methods exemplified for the gate electrode 14 described above are illustrated.
  • the source electrode 18 and the drain electrode 20 may be formed on a charge injection layer or the like by patterning.
  • the charge injection layer is a hole injection layer in the case of a p-type semiconductor and an electron injection layer in the case of an n-type semiconductor.
  • the source electrode 18 and the drain electrode 20 are formed using a vapor deposition method and photolithography. Note that even when the source electrode 18 and the drain electrode 20 are formed by vapor deposition using a shadow mask, printing by an inkjet method, etc., the following is shown before forming the pattern, preferably while forming the pattern. Expansion control processing such as temperature control or humidity control may be performed.
  • the metal layer 30 to be the source electrode 18 and the drain electrode 20 is formed to cover the gate insulating film 16.
  • the metal layer 30 is formed by vapor deposition such as vacuum evaporation.
  • the metal layer 30 is covered to form a resist layer 32 made of photoresist.
  • the resist layer 32 is formed by applying a solution containing a photoresist or the like to be the resist layer 32 by spin coating or the like, and then performing post-baking to form a known resist layer 32 used in transistor production. You can do it by the method.
  • the alignment mark 12 formed on the substrate 10 is detected, and expansion and contraction control processing is performed to control the expansion and contraction of the substrate 10.
  • various methods used in the manufacture of thin film transistors utilizing alignment marks such as a method using an imaging device such as a CCD sensor, a method using a microscope as in aligner, etc. .
  • the detection of the alignment mark 12 may be performed from the front surface, that is, the formation surface of the transistor, or from the back surface.
  • the substrate 10 is shrunk as illustrated conceptually in FIG. 1D by heating or humidification (temperature change or humidity change) or the like in the manufacturing process up to this point, and the alignment mark It is assumed that 12 positional deviations have occurred.
  • the substrate 10 on which the resist layer 32 is formed is subjected to temperature control before pattern exposure using the photo mask 34, that is, pattern formation (patterning) is performed.
  • the substrate 10 is heated and stretched to align the alignment marks 12 of the substrate 10 with the alignment marks 36 of the photomask 34.
  • the substrate 10 is cooled and contracted to align the alignment mark 12 of the substrate 10 with the alignment mark 36 of the photomask 34.
  • the substrate 10 and / or the photomask 34 is moved to align the position and / or the angle between the substrate 10 and the photomask 34.
  • the exposure of the resist layer 32 is performed by the photomask 34.
  • the alignment mark 36 of the photomask 34 is formed so that the position in the surface direction when exposing the resist layer 32 matches the alignment mark 12 formed on the substrate 10. Therefore, the expansion and contraction of the substrate 10 is improved by aligning the alignment marks 12 of the substrate 10 with the alignment marks 36 of the photomask 34 due to heating, that is, improving the positional deviation of the alignment marks 12. It can be in the same state as when it was formed. Therefore, by the improvement of the position of the alignment mark 12 by the heating, the resist layer 32 can be pattern-exposed precisely corresponding to the forming positions of the source electrode 18 and the drain electrode 20 indicated by reference numeral 32a. That is, the source electrode 18 and the drain electrode 20 can be formed at appropriate positions with respect to the gate electrode 14 without causing pattern displacement.
  • Patent Document 1 and Patent Document 2 it is known in the manufacture of a transistor using a film substrate that an alignment mark is used to form an electrode or the like without causing a pattern shift.
  • pattern displacement is prevented by resetting the pattern according to the detection result of the alignment mark and forming an electrode according to the reset pattern. .
  • the method of resetting the pattern to be formed can not be used for the method using a photomask, or it is necessary to prepare a large number of photomasks for one pattern. is there.
  • the substrate 10 is stretched or shrunk so that the substrate 10 itself is stretched or contracted.
  • a pattern is formed by improving the positional deviation. That is, the substrate 10 is extended or contracted according to the detection result of the alignment mark 12 to improve the positional deviation of the alignment mark 12, thereby returning the substrate 10 to the state at the time of forming the alignment mark 12 and forming a pattern.
  • it is possible not only to form the pattern of the electrodes etc. without causing the pattern displacement, but also to reduce the manufacturing cost of the transistor by eliminating the need to reset the pattern.
  • pattern exposure using a photomask is possible with one photomask.
  • the positional deviation of the alignment mark 12 is improved by heating or cooling the substrate 10 by the temperature control means 40 in accordance with the detection result of the alignment mark 12. That is, expansion and contraction control processing is performed by temperature control.
  • the expansion / contraction control process by temperature control finds the relationship between the positional displacement amount of the alignment mark 12 and the linear expansion coefficient (thermal expansion coefficient) of the substrate 10, for example, the positional displacement amount of the alignment mark 12
  • a table (LUT) or an arithmetic expression indicating the relationship between heating temperature / cooling temperature for improving the positional deviation is created, and a method of controlling the temperature of the substrate 10 using this table or the arithmetic expression is exemplified. Be done.
  • the carrier substrate may be attached to the substrate 10 to perform the manufacturing method of the present invention.
  • the linear expansion coefficient of the substrate 10 is found in a state where the substrate 10 is attached (fixed) to the carrier substrate, and the positional deviation amount of the alignment mark 12 and the heating temperature for improving this positional deviation It is preferable to create a table or an arithmetic expression showing the relationship with the temperature / cooling temperature.
  • the expansion / contraction control process by temperature control may be performed using only this table or arithmetic expression.
  • the alignment mark 12 is re-detected in a state in which the expansion / contraction control process is performed by temperature control, and if the alignment mark 12 is misaligned, temperature adjustment is further performed to detect the alignment mark. It is preferable to perform pattern exposure (pattern formation) after confirming that the alignment mark 12 is at an appropriate position without positional deviation.
  • the positional shift of the alignment mark 12 of the substrate 10 is improved by matching the alignment mark 12 of the substrate 10 with the alignment mark 36 of the photomask 34.
  • the method of controlling the temperature of the substrate 10 so as to obtain the appropriate distance by detecting the distance between the alignment marks 12, and the distance from the end of the substrate 10 The positional deviation of the alignment mark 12 of the substrate 10 is detected by a method of detecting the position of the mark 12 and controlling the temperature of the substrate 10 so that the position of each alignment mark 12 becomes an appropriate position, It may be improved.
  • the exposure by the photomask 34 is performed in the state where the substrate 10 is mounted on the temperature control means 40.
  • the present invention is not limited to this, and when the expansion / contraction control process is performed by the temperature control unit 40, the substrate 10 may be removed from the temperature control unit and the exposure by the photomask 34 may be performed.
  • pattern exposure with a photomask 34 or the like film formation by vapor deposition using a shadow mask, printing such as inkjet in a state where temperature control is performed, ie, a state where substrate temperature in expansion control processing is maintained. By performing the pattern formation, the pattern formation can be performed in a state where the positional deviation of the alignment mark 12 is more properly eliminated.
  • the temperature control method (temperature control method) of the substrate 10 is also a method of using a heater or a hot plate, a method of circulating a temperature control medium, a method of using a Peltier element, a known film-like material (sheet-like material) temperature control method , Various, available.
  • various known methods such as a method using light beam scanning can be used other than the method using the photomask 34.
  • the process of improving the positional deviation of the alignment mark 12 according to the detection result of the alignment mark 12, that is, the expansion / contraction control process of controlling the expansion and contraction of the substrate 10, also controls the humidity of the substrate 10 besides temperature control It is suitably used.
  • humidity control covers not only water but also a solvent used for a solution for forming the resist layer 32 or the like.
  • humidification and dehumidification of the substrate 10 may include control of the solvent content of the substrate 10 as well as moisture.
  • humidity control methods can be used as the humidity control method.
  • a method of spraying the dried gas or the moistened gas (humidified gas), a method of keeping the substrate 10 in a high humidity atmosphere or a dry atmosphere, dehydration in a vacuum environment, etc. are exemplified.
  • substrate 10 it is necessary to perform spraying of gas from the gas barrier film and the reverse side (support body side).
  • humidity control is performed so as to dehumidify (dry) when shrinking the substrate 10 and to humidify when extending the substrate 10.
  • both temperature control and humidity control may be performed to perform the expansion / contraction control process.
  • a method of improving the positional deviation of the alignment mark 12 by stretching by pulling the substrate 10 can be used besides temperature control and humidity control.
  • the resist layer 32 is developed to remove the resist layer 32 except for the region indicated by reference numeral 32a.
  • the metal layer 30 is etched using the remaining resist layer 32 as a mask to form the source electrode 18 and the drain electrode 20 as shown in FIG. 2 (F).
  • expansion / contraction control processing for expanding / contracting the substrate 10 by temperature control is performed to improve positional deviation of the alignment mark 12 and pattern exposure of the resist layer 32 is performed. It is carried out. Therefore, the source electrode 18 and the drain electrode 20 can be formed without causing pattern deviation.
  • the semiconductor layer 24 is formed to cover the source electrode 18 and the drain electrode 20 and the gate insulating film 16, thereby completing the transistor. .
  • the transistor may be completed by sealing with a sealing layer.
  • various materials used in thin film transistors such as amorphous silicon, polycrystalline silicon, organic semiconductor materials, oxide semiconductors, and the like can be used.
  • pentacene derivatives such as 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS pentacene), and 5,11-bis (triethylsilylethynyl) anthradithiophene in light of weight reduction, cost reduction, flexibility and the like.
  • Anthradithiophene derivatives such as (TES-ADT), benzodithiophene (BDT) derivatives, benzothienobenzothiophene (BTBT) derivatives such as dioctylbenzothienobenzothiophene (C 8 -BTBT), and dinaphthothienothiophene (DNTT) derivatives , Dinaphthobenzodithiophene (DNBDT) derivatives, 6,12-Dioxaanthanthrene (perixanthenoxanthene) derivatives, Naphthalene tetracarboxylic acid diimide (NTCDI) derivatives, Perylene tetracarboxylic acid diimide (PTCDI) derivatives , Polythiophene derivatives, poly (2,5-bis (thiophen-2-yl) thieno [3,2-b] thiophene) (PBTTT) derivatives, tetracyanoquinodimethane (TCN
  • the method of forming the semiconductor layer 24 is also used to form a semiconductor layer in the manufacture of a thin film transistor, such as a coating method, a vapor deposition method, a combination of these film forming methods and photolithography, a printing method such as inkjet.
  • a coating method such as a coating method, a vapor deposition method, a combination of these film forming methods and photolithography, a printing method such as inkjet.
  • a printing method such as inkjet.
  • Various known methods are available.
  • the present invention is not limited to the above-described bottom gate-bottom contact type transistor, but also various types such as top gate-bottom contact type, bottom gate-top contact type, and top gate-bottom contact type.
  • the alignment mark 12 is detected in forming the gate electrode, forming the gate insulating film, forming the semiconductor layer, forming the source electrode and drain electrode, etc., and according to the detection result.
  • An expansion and contraction control process for controlling expansion and contraction of the substrate 10 may be performed.
  • the expansion / contraction control process is preferably performed corresponding to the pattern formation in the process involving the pattern formation.
  • the pattern deviation from the pattern of the upper layer or the lower layer becomes a problem such as the pattern formation of the source electrode and drain electrode in the manufacture of the bottom gate type transistor and the pattern formation of the gate electrode in the manufacture of the top gate type transistor It is preferable to perform expansion / contraction control processing corresponding to the process in which accurate pattern formation is required.
  • the expansion and contraction control process may be performed only once in the manufacture of the transistor, or in a plurality of steps such as formation of a gate electrode, formation of a gate insulating film, formation of a semiconductor layer, and formation of a source electrode and a drain electrode.
  • a plurality of expansion and contraction control processes may be performed.
  • FIGS. 1A to 2G is the manufacture of a so-called batch type transistor, but the manufacturing method of the present invention is also used in the manufacture of a so-called roll-to-roll (RtoR) transistor.
  • RtoR roll-to-roll
  • a substrate is delivered from a roll formed by winding a long substrate (object to be treated), and while it is transported in the longitudinal direction, coating of the coating composition, drying and the like is performed. Is a manufacturing method of rolling up the substrate in the form of a roll.
  • FIG. 3A conceptually shows an example of a manufacturing apparatus by RtoR that implements the manufacturing method of the present invention.
  • the manufacturing apparatus 48 shown in FIG. 3A draws the workpiece 50 from a workpiece roll 50R formed by winding a long workpiece 50 in a roll, and conveys it in the longitudinal direction while forming a pattern.
  • the processed material 52 which has been drawn and drawn is wound into a roll to form a processed material roll 52R.
  • Such a manufacturing apparatus 48 basically includes a mark detection unit 54, an expansion / contraction control unit 56, and a pattern formation unit 58.
  • the manufacturing device 48 also has various members possessed by a known RtoR device such as a conveyance roller pair for guiding the processing object 50 and the like properly, a guide member, various sensors, and the like. You may
  • the material to be treated 50 is, for example, an object in which the gate electrode 14 and the gate insulating film 16 are formed on the substrate 10 shown in FIG.
  • An example in which the gate electrode 14, the gate insulating film 16, the metal layer 30, and the resist layer 32 are formed on the substrate 10 is exemplified.
  • a material to be treated 50 having the pattern of the gate electrode 14 formed on the substrate 60 as shown in FIG. 3B and a material to be treated 50 having the gate insulating film 16 formed thereon are preferably exemplified.
  • the gate insulating film 16 may be patterned or non-patterned. Further, as shown in FIG.
  • alignment marks 12 are formed at equal intervals in the longitudinal direction in the vicinity of both end portions in the width direction on the substrate 60 of the processing material 50 at the same position in the longitudinal direction.
  • this elongated substrate 60 is also preferably subjected to heat treatment prior to the manufacture of the transistor.
  • a carrier substrate may be attached to the back surface of the long substrate 60 to manufacture a transistor.
  • the manufacturing apparatus 48 of FIG. 3 only improves the positional deviation of the alignment mark 12 and forms a pattern.
  • the positional deviation of the alignment mark 12 is improved by temperature control and / or humidity control.
  • the plurality of processes including pattern formation or the entire process of transistor manufacture can be performed by delivering the material to be treated 50 from one roll, The process may be performed during winding of the processed material 50 onto a roll.
  • the resist solution is applied and prebaked (drying of the solvent from the applied resist solution) during one delivery of the process target material 50 from the roll and winding of the treated process material 50 to the roll. Removal), improvement of the positional deviation of the alignment mark 12 (temperature / humidity adjustment), and pattern formation may be performed continuously.
  • a mark detection unit 54 is disposed downstream of the processing material roll 50R in the transport direction of the processing material 50.
  • the downstream of the transport direction of the material to be treated 50 is also simply referred to as “downstream”.
  • the mark detection unit 54 detects the alignment mark 12 formed on the substrate 60 of the processing material 50 and sends the detection result to the control unit 56 a of the expansion control unit 56.
  • Various known methods can be used to detect the alignment mark 12 by the mark detection unit 54.
  • the alignment mark 12 may be detected using an imaging device such as a CCD sensor.
  • An expansion control unit 56 is disposed downstream of the mark detection unit 54.
  • the expansion / contraction control unit 56 performs the above-described expansion / contraction control process of controlling the expansion / contraction of the substrate 60, and includes a control unit 56a and a temperature control unit 56b.
  • the control unit 56a is a part that determines the temperature control performed by the temperature control unit 56b from the detection result of the alignment mark by the mark detection unit 54. That is, in the control unit 56a, the exact position of the alignment mark 12 formed on the substrate 60, the positional deviation amount of the alignment mark 12 described above, and the heating temperature / cooling temperature for improving the positional deviation. A table showing the relationship is stored. As an example of the exact position of the alignment mark 12 formed on the substrate 60, the spacing between the alignment mark 12 in the width direction and the longitudinal direction may be exemplified. The control unit 56 a detects the positional deviation amount of the alignment mark 12 from the detection result of the alignment mark by the mark detection unit 54. Next, using the table, the heating temperature or the cooling temperature by the temperature control unit 56b is determined from the positional displacement amount, and an instruction is issued to the temperature control unit 56b.
  • the temperature control unit 56b is a known heating / cooling unit, and heats or cools the processing material 50 (substrate 60) according to the heating temperature or the cooling temperature sent from the control unit 56a.
  • the temperature control by the temperature control unit 56 b may be upstream of the pattern forming unit 58.
  • the temperature control unit 56 b performs temperature control (humidity control) of the processing target material 50 up to the pattern formation region by the pattern formation unit 58 as a preferred embodiment.
  • the expansion control process by the manufacturing apparatus 48 is not limited to temperature control, but may be humidity control or the like, as in the above-described batch-type transistor manufacture.
  • the manufacturing apparatus 48 is provided with a means for blowing a dry gas or a humidified gas to the processing target 50 (substrate 60) instead of the temperature control means 56b.
  • the control unit 56a stores a table indicating the relationship between the positional displacement amount of the alignment mark 12 and the humidification / dehumidification (drying) for improving the positional displacement.
  • the pattern forming unit 58 is for performing pattern formation for manufacturing a transistor by means known in the art used for forming various patterns in the manufacture of the transistor.
  • the manufacturing apparatus 48 is an apparatus shown in FIG. 1B in which the object to be processed 50 is formed by forming the gate electrode 14 and the gate insulating film 16 on the substrate 10
  • pattern formation An example of the portion 58 is an inkjet printer having a nozzle row in the width direction (direction orthogonal to the transport direction) of the workpiece 50 for patterning the source electrode 18 and the drain electrode 20.
  • the pattern formation unit 58 a light beam scanning device for scanning a light beam in the width direction of the processing object 50 for pattern exposure of the resist layer 32 is exemplified. Moreover, when performing pattern exposure to the to-be-processed material 50 (resist layer 32 grade
  • a second alignment detection unit is further disposed in the temperature control region by the temperature control unit 56b upstream of the pattern forming unit 58, and the detection result of the alignment mark 12 by the second alignment detection unit Therefore, the temperature control by the temperature control means 56b may be corrected.
  • the mark detection unit 54 detects the alignment mark 12 formed on the substrate 60 when it is pulled out from the processing material roll 50R and conveyed in the longitudinal direction, and the detection result of the alignment mark 12 is an expansion / contraction control unit It sends to the 56 control units 56a.
  • the control unit 56a detects the positional shift amount of the alignment mark 12 from the detection result of the alignment mark, determines the heating temperature or the cooling temperature by the temperature control unit 56b using the above-mentioned table, and instructs the temperature control unit 56b. Put out.
  • the temperature control unit 56b heats or cools the processing material 50 in response to an instruction from the control unit 56a.
  • the substrate 60 is expanded and contracted to perform expansion and contraction control processing, and the positional deviation of the alignment mark is improved. Furthermore, after temperature adjustment is performed, the positions and / or angles of the inkjet head and the photomask are adjusted as necessary to align the positions and / or angles of the processing material 50 and the pattern forming portion 58.
  • the pattern forming unit 58 is conveyed in the longitudinal direction, and performs pattern formation on the processing target material 50 whose temperature is controlled by the temperature control unit 56 b.
  • the positional deviation of the alignment mark is improved by the temperature adjustment by the temperature adjustment means 56b. Therefore, the pattern formation part 58 can form a pattern in the appropriate position of the to-be-processed material 50, without producing pattern shift.
  • the patterned processed material 52 is then rolled around the processed material roll 52R.
  • Example 1 and Comparative Example 1 A 5 ⁇ 5 cm gas barrier film was prepared as a substrate.
  • This gas barrier film has a 100 ⁇ m thick polyethylene naphthalate (PEN) film as a support and has on the surface an organic layer consisting of a 2 ⁇ m thick acrylic polymer, and on this organic layer a plasma CVD method It is the above-mentioned organic-inorganic laminate type gas barrier film having the formed inorganic layer made of silicon nitride and having a thickness of 30 nm.
  • PEN polyethylene naphthalate
  • this substrate was subjected to heat treatment at 150 ° C. for 24 hours.
  • a glass plate as a carrier substrate was attached to the back surface (PEN film side) of the heat-treated substrate using a carrier film.
  • a gold thin film having a thickness of 50 nm was formed by vacuum evaporation.
  • a resist layer was formed on this gold thin film.
  • the resist layer was formed by a spin coater.
  • the substrate on which the resist layer was formed was placed on the stage of a microscope.
  • the stage of the microscope has a heating and cooling mechanism.
  • a glass mask having a light shielding portion corresponding to the alignment mark was superimposed, and exposure with ultraviolet light was performed on the stage. After exposure, the substrate was removed from the stage of the microscope, and development was performed to remove the resist other than the formation portion of the alignment mark. Thereafter, etching was performed to remove the gold thin film, and a substrate having gold alignment marks at four corners was produced.
  • the substrate thus produced was left at room temperature for 24 hours. After standing, the substrate was placed on the stage of the same microscope, the exposed glass mask was overlapped, and the positional deviation of the alignment mark was measured by the microscope. As a result, the positional deviation of the alignment mark was 3 ⁇ m (Comparative Example 1).
  • the positional deviation of the alignment marks in this example is the average of positional deviations of the other three alignment marks in a state where one alignment mark of the substrate is overlapped with the alignment mark of the glass mask.
  • the substrate was then heated to 28 ° C. by driving the heating and cooling mechanism of the stage of the microscope. After heating the substrate, the positional deviation of the alignment mark was similarly measured. As a result, the positional deviation of the alignment mark was less than 1 ⁇ m (Example 1).
  • Example 2 and Comparative Example 2
  • a substrate having gold alignment marks at four corners was produced. This substrate was left in an environment of 150 ° C. for 30 minutes as a simulation process assuming a manufacturing process of a transistor. After leaving, the displacement of the alignment mark was measured in the same manner as in Example 1. As a result, the positional deviation of the alignment mark was 10 ⁇ m (Comparative Example 2).
  • the substrate was then heated to 35 ° C. by driving the heating and cooling mechanism of the stage of the microscope. After heating the substrate, the positional deviation of the alignment mark was similarly measured. As a result, the positional deviation of the alignment mark was less than 1 ⁇ m (Example 2).
  • Example 3 and Comparative Example 3 In the same manner as in Example 1, a substrate having gold alignment marks at four corners was produced. This substrate was immersed in water for 5 minutes as a simulation process assuming a manufacturing process of a transistor. After immersion, the positional deviation of the alignment mark was measured in the same manner as in Example 1. As a result, the positional deviation of the alignment mark was 6 ⁇ m (Comparative Example 3). The substrate was then cooled to 20 ° C. by driving the heating and cooling mechanism of the stage of the microscope. After cooling the substrate, the positional deviation of the alignment mark was measured in the same manner as in Example 1. As a result, the positional deviation of the alignment mark was less than 1 ⁇ m (Example 3).
  • Example 4 and Comparative Example 4 In the same manner as in Example 1, a substrate having gold alignment marks at four corners was produced. This substrate was immersed in acetone for 5 minutes as a simulation process assuming a manufacturing process of a transistor. After immersion, the positional deviation of the alignment mark was measured in the same manner as in Example 1. As a result, the positional deviation of the alignment mark was 5 ⁇ m (Comparative Example 4). The substrate was then cooled to 20 ° C. by driving the heating and cooling mechanism of the stage of the microscope. After cooling the substrate, the positional deviation of the alignment mark was measured in the same manner as in Example 1. As a result, the positional deviation of the alignment mark was less than 1 ⁇ m (Example 4).
  • Example 5 Other than using a 100 ⁇ m thick polyimide (PI) film instead of the gas barrier film as a substrate (Example 5), Except using a 100 ⁇ m thick PEN film instead of the gas barrier film as a substrate (Example 6), Other than using a 100 ⁇ m thick polyethylene terephthalate (PET) film instead of the gas barrier film as a substrate (Example 7), In the same manner as in Example 1, a substrate having gold alignment marks at four corners was produced.
  • PI polyimide
  • PEN polyethylene terephthalate
  • Example 1 Each substrate was left to stand at room temperature for 24 hours as in Example 1. After standing, the substrate was placed on the stage of the same microscope, and the positional deviation of the alignment mark was measured in the same manner as in Example 1. After measurement, drive the heating and cooling mechanism of the microscope stage, Heating the substrate to 29 ° C. (Example 5), Heating the substrate to 27 ° C. (Example 6); The substrate was cooled to 22 ° C. (Example 7). After temperature control of the substrate was performed, the positional deviation of the alignment mark was measured in the same manner as in Example 1. As a result, in each example, the positional deviation of the alignment mark was less than 1 ⁇ m. The results are summarized in Table 1 below.
  • the positional deviation of the alignment mark occurs due to the expansion and contraction of the substrate regardless of the presence or absence of the simulation process. From the linear expansion coefficient and the hygroscopic expansion coefficient of each film, even if a temperature change of 1 ° C. or a humidity change of 1% RH occurs, it is considered that positional deviation of the alignment mark occurs. Further, according to the present invention, in which expansion and contraction control processing is performed by controlling the temperature of the substrate utilizing this characteristic, it is possible to improve the positional deviation of the alignment mark and manufacture a transistor having no pattern deviation.
  • Example 8 and Comparative Example 8 In the same manner as in Example 1, a substrate having gold alignment marks at four corners was produced. This substrate was left to stand at room temperature for 24 hours in the same manner as Example 1. After leaving, the displacement of the alignment mark was measured in the same manner as in Example 1. As a result, the positional deviation of the alignment mark was 3 ⁇ m (Comparative Example 8).
  • the substrate was removed from the stage, and the glass plate as a carrier substrate was peeled off. After that, the substrate was sprayed with air submerged in water for 30 seconds.
  • the air which has been submerged in water is also referred to as "humidified air”.
  • the humidified air was blown from the PEN film side. After blowing humidified air, the positional deviation of the alignment mark was measured in the same manner as in Example 1. As a result, the positional deviation of the alignment mark was less than 1 ⁇ m (Example 8).
  • the heating and cooling mechanism of the stage of the microscope is not driven in this example and the following Examples 9 to 14.
  • Example 9 and Comparative Example 9 In the same manner as in Example 1, a substrate having gold alignment marks at four corners was produced. This substrate was left in an environment of 150 ° C. for 30 minutes as a simulation process assuming a manufacturing process of a transistor. After leaving, the displacement of the alignment mark was measured in the same manner as in Example 1. As a result, the positional deviation of the alignment mark was 10 ⁇ m (Comparative Example 9). Then, the substrate was removed from the stage, and the glass plate as a carrier substrate was peeled off. Thereafter, humidified air was blown onto the substrate from the PEN film side for 2 minutes. After blowing humidified air, the positional deviation of the alignment mark was measured in the same manner as in Example 1. As a result, the positional deviation of the alignment mark was less than 1 ⁇ m (Example 9).
  • Example 10 and Comparative Example 10 In the same manner as in Example 1, a substrate having gold alignment marks at four corners was produced. This substrate was immersed in water for 5 minutes as a simulation process assuming a manufacturing process of a transistor. After immersion, the positional deviation of the alignment mark was measured in the same manner as in Example 1. As a result, the positional deviation of the alignment mark was 6 ⁇ m (Comparative Example 10). Then, the substrate was removed from the stage, and the glass plate as a carrier substrate was peeled off. Thereafter, dry air was blown onto the substrate from the PEN film side for 1 minute. After blowing dry air, the positional deviation of the alignment mark was measured in the same manner as in Example 1. As a result, the positional deviation of the alignment mark was less than 1 ⁇ m (Example 10).
  • Example 11 and Comparative Example 11 In the same manner as in Example 1, a substrate having gold alignment marks at four corners was produced. This substrate was immersed in acetone for 5 minutes as a simulation process assuming a manufacturing process of a transistor. After immersion, the positional deviation of the alignment mark was measured in the same manner as in Example 1. As a result, the positional deviation of the alignment mark was 5 ⁇ m (Comparative Example 11). Then, the substrate was removed from the stage, and the glass plate as a carrier substrate was peeled off. Thereafter, dry air was blown onto the substrate from the PEN film side for 1 minute. After blowing dry air, the positional deviation of the alignment mark was measured in the same manner as in Example 1. As a result, the positional deviation of the alignment mark was less than 1 ⁇ m (Example 11).
  • Example 12 Other than using a 100 ⁇ m thick PI film as a substrate instead of the gas barrier film (Example 12), Except using a 100 ⁇ m thick PEN film instead of the gas barrier film as a substrate (Example 13), Except using a PET film with a thickness of 100 ⁇ m instead of the gas barrier film as a substrate (Example 14), In the same manner as in Example 1, a substrate having gold alignment marks at four corners was produced.
  • Example 12 Each substrate was left to stand at room temperature for 24 hours as in Example 1. After standing, the substrate was placed on the stage of the same microscope, and the positional deviation of the alignment mark was measured in the same manner as in Example 1. Then, the substrate was removed from the stage, and the glass plate as a carrier substrate was peeled off. After that, Humidified air is applied to the substrate (Example 12), Humidified air is applied to the substrate (Example 13), Dry air on the substrate (Example 14), Each was sprayed for 30 seconds. After blowing air, the positional deviation of the alignment mark was measured in the same manner as in Example 1. As a result, the positional deviation of the alignment mark was less than 1 ⁇ m. The results are summarized in Table 2 below.
  • Example 15 Sixteen bottom gate bottom contact type organic thin film transistors were fabricated on the same substrate 10 as in Example 1 by the method shown in FIGS. 1 (A) to 2 (G).
  • the same substrate 10 as in Example 1 is, as described above, an organic-inorganic laminate type having a PEN film as a support, an organic layer on the surface of the support, and an inorganic layer on the organic layer. It is a gas barrier film.
  • Example 2 the same heat treatment as in Example 1 was performed on the substrate 10, and a glass plate as a carrier substrate was attached to the back surface.
  • An aluminum film having a thickness of 50 nm was formed on the surface of the substrate on the inorganic layer side by vacuum evaporation.
  • a gate electrode 14 having a length of 10 ⁇ m was formed by photolithography using a photomask.
  • circular alignment marks 12 were formed at the four corners of the substrate 10.
  • a PGMEA (propylene glycol monomethyl ether acetate) solution of the composition for gate insulating film was spin-coated thereon, and baked at 150 ° C. for 60 minutes to form a gate insulating film 16 with a film thickness of 400 nm.
  • the composition for gate insulating film used polyvinyl phenol / melamine of mass ratio 1/1, and PGMEA solution made solution concentration 2 mass%.
  • gold was vacuum deposited on the gate insulating film 16 to form a metal layer 30.
  • a solution containing a photoresist was applied by spin coating on the metal layer 30 to form a resist layer 32.
  • the resist layer 32 was exposed using a photomask 34 having alignment marks 36 corresponding to the alignment marks 12 formed on the substrate 10. Before the exposure, the alignment mark 36 of the photomask 34 was used to detect the positional deviation of the alignment mark 12 of the substrate 10. Furthermore, the substrate 10 was heated to 36 ° C. before and during the exposure.
  • the resist layer 32 was developed to remove unnecessary resist, and then etching was performed to form a source electrode 18 and a drain electrode 20 with a channel length of 5 ⁇ m and a channel width of 180 ⁇ m.
  • An organic semiconductor layer (TIPS-Pentacene) was formed by spin coating on the source electrode 18, the drain electrode 20, and the gate insulating film 16 so as to have a thickness of 100 nm. Thereafter, the organic semiconductor layer was separated for each element by a cutter to obtain a semiconductor layer 24. Further, a composition for forming a sealing layer (Cytop CTL-107MK, manufactured by AGC Corporation) is spin-coated on the semiconductor layer 24 and baked at 140 ° C. for 20 minutes to form a 2 ⁇ m-thick sealing layer (maximum The upper layer was formed to obtain 16 organic thin film transistors.
  • a composition for forming a sealing layer (Cytop CTL-107MK, manufactured by AGC Corporation) is spin-coated on the semiconductor layer 24 and baked at 140 ° C. for 20 minutes to form a 2 ⁇ m-thick sealing layer (maximum The upper layer was formed to obtain 16 organic thin film transistors.
  • Example 16 instead of heating before and during exposure of the resist layer 32 using the photomask 34, the glass plate as a carrier substrate is peeled off, humidified air is sprayed from a support (PEN film side) for 2 minutes, and then photo Exposure using the mask 34 was performed, and then a glass plate as a carrier substrate was attached again, and 16 organic thin film transistors were produced in the same manner as in Example 15 except that the subsequent steps were performed.
  • Comparative Example 12 Sixteen organic thin film transistors were produced in the same manner as in Example 15 except that heating before and during exposure of the resist layer 32 using the photomask 34 was not performed.
  • Each electrode of the organic thin film transistor manufactured in this way is connected to each terminal of a manual prober connected to a semiconductor parameter analyzer (4155C, manufactured by Agilent Technologies) to evaluate a field effect transistor (FET).
  • a semiconductor parameter analyzer 4155C, manufactured by Agilent Technologies
  • FET field effect transistor

Abstract

 トランジスタの製造において、3個以上のアライメントマークが形成されたフィルム基板を用い、アライメントマークを検出して、その検出結果に応じて、基板の伸縮を制御する処理を1回以上行う。これにより、フィルムを基板とするトランジスタの製造において、環境変化に起因する基板の伸縮によらず、ソース電極やドレイン電極等のトランジスタの構成部材をパターンズレなく形成できる。

Description

トランジスタの製造方法
 本発明は、プラスチックフィルム等のフィルムを基板として用いるトランジスタの製造方法に関する。詳しくは、パターンズレを生じることなくソース電極やドレイン電極等を形成できるトランジスタの製造方法に関する。
 軽量化やフレキシブル化等が可能であることから、液晶ディスプレイや有機ELディスプレイに用いられるTFT(薄膜トランジスタ)、RFID(RFタグ)やメモリなどの論理回路を用いる装置等に、プラスチックフィルム等のフィルム基板が用いられている。
 TFT等のトランジスタは、微細な電極等を形成してなる微細構造を有する。従って、トランジスタの製造する際には、μmオーダの精度で電極等をパターン形成する必要がある。
 周知のように、トランジスタの製造では、加熱や溶液の塗布等を伴う工程も多い。ところが、フィルム、特にプラスチックフィルムは、従来より基板として用いられているガラス等に比して、温度や湿度による伸縮が大きい。
 そのため、フィルムを基板として用いる場合には、基板の伸縮に起因して、トランジスタを構成する部材のパターンズレ(位置ズレ)が生じてしまい、適正なトランジスタを安定して製造することができない。
 このような基板の伸縮(歪み)によらず、パターンズレを生じることなく適正な微細パターンを形成する方法として、特許文献1や特許文献2に示されるような、アライメントマークを用いる方法が知られている。
 この方法は、基板表面の四隅などに、位置合わせを行うための目印となるアライメントマークを形成しておく。その上で、電極等のパターンの形成に先立って、アライメントマークの位置を検出する。なお、パターンの形成には、パターン露光も含まれる。
 基板に形成したアライメントマークの位置は、当然、既知である。従って、検出したアライメントマークの位置や間隔と、もとのアライメントマークの形成位置や間隔との違いから、アライメントマークの位置ズレすなわち基板の伸縮を検出できる。従って、アライメントマークの検出結果に応じて、アライメントマークに対して適正な位置にパターンを形成するように、パターンを再設定(再演算)し、再設定したパターンに応じて、例えば、インクジェットやレーザビーム露光等によってパターンを形成することで、パターンズレの無いトランジスタを作製できる。
特開2007-110048号公報 国際公開第2009/130791号
 アライメントマークを利用することにより、トランジスタを構成する各部材のパターンズレを無くして、例えば、ソース電極およびドレイン電極と、ソース電極との位置関係等が適正なトランジスタを製造できる。
 しかしながら、アライメントマークを用いる従来の方法では、アライメントマークの検出結果に応じて、各パターンの位置を再設定する必要があるため、トランジスタの製造コストが高くなってしまう。
 また、フォトリソグラフィを利用するトランジスタの製造においては、フォトマスクを用いた露光によるパターンの形成が行われる。しかしながら、アライメントマークの検出結果に応じて、形成するパターンの位置を再設定する方法は、フォトマスクを用いる方法には利用できない。あるいは、アライメントマークの検出結果に応じて、形成するパターンの位置を再設定する方法を、フォトマスクを用いる方法に利用するためには、1つのパターンに対して、多数の種類のフォトマスクを用意する必要がある。
 本発明の目的は、このような従来技術の問題点を解決することにあり、フィルムを基板として用いるトランジスタの製造において、アライメントマークを利用することにより、各構成部材のパターンズレが無い、位置関係が適正なトランジスタを製造でき、しかも、アライメントマークの検出結果に応じたパターンの再設定が不要で、フォトマスクの使用も可能なトランジスタの製造方法を提供することにある。
 このような目的を達成するために、本発明のトランジスタの製造方法は、フィルムを基板とするトランジスタの製造において、
 3つ以上のアライメントマークが形成された基板を用い、
 アライメントマークを検出して、アライメントマークの検出結果に応じて、基板の伸縮を制御する伸縮制御処理を、1回以上、行うことを特徴とするトランジスタの製造方法を提供する。
 このような本発明のトランジスタの製造方法において、トランジスタの製造が、少なくとも、ゲート電極の形成工程、ゲート絶縁膜の形成工程、半導体層の形成工程、ならびに、ソース電極およびドレイン電極の形成工程を含み、ゲート電極の形成工程、ゲート絶縁膜の形成工程、半導体層の形成工程、ならびに、ソース電極およびドレイン電極の形成工程の少なくとも1つの工程の途中あるいは前に、伸縮制御処理を行うのが好ましい。
 また、伸縮制御処理が、基板の温度制御および基板の湿度制御の少なくとも一方であるのが好ましい。
 また、アライメントマークの検出結果から、アイメントマークのズレの大きさを検出して、アイメントマークのズレの大きさと、基板の線膨張係数および吸湿膨張係数の少なくとも一方とから、基板の温度制御および基板の湿度制御の少なくとも一方を行うのが好ましい。
 また、基板をキャリアに固定してトランジスタの製造を行うものであり、基板をキャリアに固定した状態で、基板の線膨張係数および吸湿膨張係数の少なくとも一方を知見しておき、知見した情報を用いて、基板の温度制御および基板の湿度制御の少なくとも一方を行うのが好ましい。
 また、伸縮処理制御による基板の温度および湿度の少なくとも一方を保った状態で、印刷法もしくはフォトマスクを用いるパターン露光を行うことにより、トランジスタの製造におけるパターン形成を行うのが好ましい。
 また、伸縮制御処理が湿度制御であり、基板に湿度を制御したガスを吹き付けることにより、伸縮制御処理を行うのが好ましい。
 また、長尺な基板を長手方向に搬送しつつ、アライメントマークの検出を行い、アライメントマークの検出位置の下流において伸縮制御処理を行い、伸縮制御処理の下流においてトランジスタの製造におけるパターン形成を行うのが好ましい。
 また、基板が、支持体にガスバリア膜を形成してなるガスバリアフィルムであって、ガスバリア膜が、有機層と無機層とを交互に1層以上積層してなるものであるのが好ましい。
 また、無機層が、窒化ケイ素膜であるのが好ましい。
 また、有機半導体層の形成工程を含むのが好ましい。
 また、最初に行う伸縮制御処理よりも前に、基板の熱処理を行うのが好ましい。
 さらに、アライメントマークの形成工程を含み、アライメントマークを、トランジスタの製造における最下層のパターンを行う際に形成するのが好ましい。
 このような本発明によれば、基板に形成したアライメントマークの検出結果に応じて、基板の温度制御や湿度制御などによって、アライメントマークの位置すなわち基板の伸縮を元に戻して、電極等を形成できる。
 そのため、本発明の製造方法によれば、電極や配線等のパターンズレが無い適正なトランジスタを安定して製造できる。しかも、アライメントマークの検出結果に応じたパターンの再設定(再演算)が不要であるため、トランジスタの製造コストを低減できる。さらに、本発明の製造方法によれば、1つのフォトマスクで、フォトマスクを用いる方法にも対応できる。
図1(A)~図1(D)は、本発明のトランジスタの製造方法の一例を説明するための概念図である。 図2(E)~図2(G)は、本発明のトランジスタの製造方法の一例を説明するための概念図である。 図3(A)は、本発明のトランジスタの製造方法をロール・トゥ・ロールによる製造装置に利用した一例の概念図であり、図3(B)は、図3(A)に示す製造装置に用いられる基板の一例の概念図である。
 以下、本発明のトランジスタの製造方法について、添付の図面に示される好適例を基に、詳細に説明する。
 図1(A)~図2(G)に、本発明のトランジスタの製造方法の一例を概念的に示す。
 本発明のトランジスタの製造方法は、3つ以上のアライメントマークが形成されたフィルム基板10を用いて、トランジスタを形成するものである。
 図1(A)~図2(G)に示す例は、一例として、本発明のトランジスタの製造方法を、アライメントマーク12が形成されたフィルム基板10の上にゲート電極14を形成し、ゲート電極14を覆ってゲート絶縁膜16を形成し、ゲート絶縁膜16の上にソース電極18およびドレイン電極20を形成し、ゲート絶縁膜16ならびにソース電極18およびドレイン電極20の上に半導体層24を形成する、ボトムゲート-ボトムコンタクト型のトランジスタの製造に利用した例である。
 しかしながら、本発明は、これに限定はされず、トップゲート-ボトムコンタクト型、ボトムゲート-トップコンタクト型、トップゲート-ボトムコンタクト型など、公知の各種のトランジスタの製造に利用可能である。
 本発明のトランジスタの製造方法において、フィルム基板10は、シリコン等の金属、セラミック、ガラス、プラスチックなど、いわゆる薄膜トランジスタにおいて基板として利用される、各種の材料からなるフィルム(フィルム状物)が利用可能である。以下の説明では、本発明のトランジスタの製造方法を、単に『本発明の製造方法』とも言う。また、以下の説明では、フィルム基板10を単に『基板10』とも言う。
 中でも、コスト、可撓性、軽量化、割れない、絶縁性等の点で、プラスチックフィルム(樹脂フィルム)は、基板10として好適に利用される。
 プラスチックフィルムの形成材料としては、一例として、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、弗素樹脂、ポリイミド、弗素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂などが挙げられる。
 その中でも、このようなプラスチックフィルムを支持体として、その表面にガスバリア膜を形成してなる、ガスバリアフィルムは、基板10としてより好適に利用される。
 その中でも特に、このようなプラスチックフィルムを支持体として、その表面に、ガスバリア膜として、アクリル樹脂やメタクリル樹脂等からなる有機層と、酸化ケイ素や窒化ケイ素等からなる無機層とを交互に形成してなる、有機-無機積層型のガスバリアフィルムは、基板10として特に好適に利用される。
 基板10として有機-無機積層型のガスバリアフィルムを利用する場合において、有機層および無機層の形成材料は、各種のものが利用可能である。ここで、無機層は、一般的に伸縮に対して弱く、伸縮によってクラックを生じる場合がある。無機層にクラックが生じると、ガスバリア性能の劣化が起こる。そのため、無機層は、窒化ケイ素膜が好ましく、特に、CVDで成膜した窒化ケイ素膜が好ましい。CVDで成膜した窒化ケイ素膜は、膜中に水素原子を含むため、水素結合により高い伸縮性が得られると考えられる。
 なお、基板10として有機-無機積層型のガスバリアフィルムを用いる場合には、最下層は、有機層でも無機層でもよい。また、最上層も、有機層でも無機層でもよい。さらに、有機層と無機層との積層数も、1層ずつであってもよく、複数の有機層および無機層を交互に積層したものでもよく、有機層と無機層との数が異なるものでもよい。
 ガスバリアフィルムの最下層とは、支持体表面に形成される層である。ガスバリアフィルムの最上層とは、支持体と逆側のガスバリアフィルムの表面の層である。
 基板10としてガスバリアフィルムを用いる場合には、トランジスタは、通常、ガスバリア膜の上に形成するのが好ましい。すなわち、基板10として有機-無機積層型のガスバリアフィルムを用いる場合には、トランジスタは、有機層もしくは無機層の表面に形成するのが好ましい。
 基板10としてガスバリアフィルムを用いる場合に、トランジスタに対して、ガスバリア膜の内側に支持体が有ると、支持体に含まれる水分や支持体の経時変化が、トランジスタに悪影響を与える可能性が有る。これに対し、トランジスタをガスバリア膜の上に形成することにより、この不都合を回避できる。
 本発明の製造方法においては、トランジスタの製造に先立ち、基板10の熱処理を行うのが好ましい。
 プラスチックフィルムは、通常、延伸を行って製造する。この際、MD方向とTD方向とで、延伸の量が異なる場合が多い。そのため、プラスチックフィルムは、多くの場合、MD方向とTD方向とで熱収縮率が異なる。MD方向とは、プラスチックの製造におけるフィルムの搬送方向であり、TD方向とは、MD方向すなわちフィルムの搬送方向と直交する方向である。
 後述するが、本発明の製造方法では、好ましい態様として、基板10の温度制御や湿度制御によって、基板10の伸縮を制御する伸縮制御処理を行う。伸縮制御処理とは、言い換えれば、アライメントマークの位置ズレを改善する処理である。
 しかしながら、MD方向とTD方向とで熱収縮率が異なると、温度制御や湿度制御による伸縮制御処理を適正に行うことができない。
 そのため、本発明の製造方法においては、必要に応じて、トランジスタの製造に先立って、基板10すなわちプラスチックフィルムのMD方向とTD方向との熱収縮を無くすための熱処理(熱収縮枯らし/熱緩和処理)を行うのが好ましい。
 熱処理は、ヒータによる加熱、恒温槽を用いる加熱、温風を用いる加熱等、公知の方法で行えばよい。
 また、熱処理の温度や時間等の熱処理の条件は、使用する基板10の形成材料、厚さ等に応じて、トランジスタの製造プロセスを通じてMD方向とTD方向との収縮を無くすことができる条件を、適宜、設定すればよい。一例として、トランジスタの製造プロセス中における最高温度以上の温度で、熱処理を行う条件が例示される。
 本発明の製造方法は、このような基板10にトランジスタを製造する。
 ここで、以下に示すトランジスタの製造は、基板10のみを用いて行ってもよい。しかしながら、基板10の形成材料や厚さ等によっては、基板10のみでは、剛性が弱く、基板10の形状が不安定になってしまう場合が有る。
 従って、好ましくは、基板10の裏面(トランジスタの非形成面)にガラス板等のキャリア基板を貼着して、トランジスタの製造を行う。これにより、基板10の形状を適正に保った状態で、後述するゲート電極14の形成等を行うことができる。
 基板10へのキャリア基板の貼着は、キャリアフィルム(再剥離性能を有するフィルム)等を用いる公知の方法で行えばよい。
 図示例においては、図1(A)に概念的に示すように、まず、基板10の表面に、ゲート電極14をパターン形成する。
 ゲート電極14の形成材料は、薄膜トランジスタでゲート電極として利用されている公知の物が、各種、利用可能である。一例として、アルミニウム、クロム、銅、モリブデン、タングステン、金、銀等の金属、合金、酸化インジウム錫(ITO)等の透明導電性酸化物(TCO)、ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸(PEDOT-PSS)等の導電性高分子、これらの積層構造等が例示される。
 また、ゲート電極14の形成方法も、形成材料に応じた公知の方法が、各種、利用可能である。
 一例として、スパッタリングや真空蒸着等の気相成膜法(気相堆積法)とフォトリソグラフィとを利用する方法、気相成膜法とシャドウマスクとを利用する方法、インクジェットなどの印刷による方法等が例示される。シャドウマスクとは、非形成部(非成膜部)を覆うマスクである。
 ここで、図示例においては、好ましい態様として、ゲート電極14の形成すなわち最下層のパターン形成を行う際に、ゲート電極14と一緒にアライメントマーク12も形成する。従って、この場合には、ゲート電極14とアライメントマーク12とは、同時に、同じ材料で形成される。なお、ゲート電極14の形成パターンによっては、ゲート電極14を、アライメントマークとして利用することもを可能である。
 これにより、アライメントマークの検出を行わなくても、ゲート電極14(最下層のパターン)をアライメントマークとの位置関係を適正にして作製できる。また、ゲート電極14と同時にアライメントマークを形成できるため、アライメントマークを別に形成する場合と比較して、工程数を減らすことができる点でも好ましい。
 しかしながら、本発明の製造方法は、これに限定はされず、先にアライメントマークを形成した後、ゲート電極14の形成を行ってもよい。
 この場合には、ゲート電極14とアライメントマーク12とは、同じ材料で形成されても、異なる材料で形成されてもよい。また、ゲート電極14とアライメントマーク12との形成方法が異なってもよい。
 なお、ゲート電極14と同時にアライメントマーク12を形成しない場合において、アライメントマークの形成材料は、薄膜トランジスタでアライメントマークとして利用されている公知の物が、各種、利用可能である。
 具体的には、前述のゲート電極14の形成材料に加え、各種の染料や顔料を含むインキ等が例示される。
 また、ゲート電極14と同時にアライメントマーク12を形成しない場合において、アライメントマークの形成方法は、薄膜トランジスタでアライメントマークの形成方法として利用されている公知の方法が、各種、利用可能である。
 具体的には、前述のゲート電極14の形成方法等が例示される。
 アライメントマーク12の数は、基板10の大きさ等に応じて、適宜、設定すればよいが、基本的に、3つ以上であればよい。なお、後述するRtoRであれば、基板10の大きさは、基板の長さと幅である。
 3つ以上のアライメントマーク12を形成することで、x-y方向(2軸方向)でアライメントマーク12の位置ズレすなわち基板10の伸縮を検出できるので、後述する伸縮制御処理を適正に行うことが可能になる。
 アライメントマーク12の大きさ、形状、色等も、実施するトランジスタの製造工程や各部位の形成材料等に応じて、後述する伸縮制御処理を行う際に確実に検出できる大きさ等を、適宜、設定すればよい。すなわち、アライメントマークは、製造するトランジスタで必要な位置精度が得られる形状およびサイズであればよい。言い換えれば、アライメントマークは、製造するトランジスタに要求される位置精度(アライメント精度)から計算される必要な精度が得られる形状およびサイズであればよい。
 さらに、アライメントマーク12の形成位置、各アライメントマーク12の間隔などの互いの位置関係も、後述する伸縮制御処理によって、アライメントマーク12の位置ズレを好適に直せる位置等を、基板10の大きさ等に応じて、適宜、設定すればよい。
 図1(A)~図2(G)に示すトランジスタの製造において、基板10にアライメントマーク12およびゲート電極14を形成したら、図1(B)に概念的に示すように、基板10、アライメントマーク12およびゲート電極14を覆って、ゲート絶縁膜16すなわち絶縁体層を形成する。
 ゲート絶縁膜16の形成材料も、同様に、薄膜トランジスタでゲート絶縁膜として利用されている公知の物が、各種、利用可能である。
 一例として、酸化ケイ素(SiOx)、酸化マグネシウム、酸化アルミニウム、酸化チタン、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ニオブ、酸化タンタル等の金属酸化物、窒化ケイ素(SiNx)等の金属窒化物、窒化酸化ケイ素(SiOxy)等の金属窒化酸化物(金属酸化窒化物)、ダイヤモンド状炭素(DLC)等の無機材料や各種高分子材料、これらの積層構造等が例示される。
 また、ゲート絶縁膜16の形成方法も、材料に応じた公知の各種の形成方法が利用可能である。
 一例として、スパッタリング、真空蒸着、イオンプレーティング等の各種の物理的気相成膜法(PVD)、原子層堆積法(ALD法またはALE法)を含む各種の化学的気相成膜法(CVD)、塗布法、印刷法、転写法等が例示される。
 なお、ゲート電極14を形成する際に、形成装置に対する位置決めに、基板10に形成したアライメントマーク12を利用してもよい。この点に関しては、後述する半導体層24やレジスト層32の形成等でも同様である。
 ゲート絶縁膜16を形成したら、ソース電極18およびドレイン電極20をパターン形成する。
 ソース電極18およびドレイン電極20の形成材料は、有機薄膜トランジスタで利用されている公知の物が、各種、利用可能である。一例として、前述のゲート電極14で例示した各種の材料が例示される。
 また、ソース電極18およびドレイン電極20のパターン形成方法も、形成材料に応じた公知の方法が、各種、利用可能である。一例として、前述のゲート電極14で例示した各種の方法が例示される。また、ソース電極18およびドレイン電極20は、電荷注入層等をパターン形成して、その上に形成してもよい。なお、電荷注入層は、p型半導体の場合は正孔注入層、n型半導体の場合は電子注入層である。
 図示例においては、気相成膜法とフォトリソグラフィとを利用して、ソース電極18およびドレイン電極20を形成する。
 なお、シャドウマスクを用いる気相堆積による成膜、インクジェットなどの印刷等によってソース電極18およびドレイン電極20を形成する場合でも、パターン形成を行う前、好ましくはさらにパターンの形成中に、以下に示す温度制御や湿度制御等の伸縮制御処理を行えばよい。
 前述のようにゲート絶縁膜16を形成したら、図1(C)に示すように、ゲート絶縁膜16を覆って、ソース電極18およびドレイン電極20となる金属層30を形成する。金属層30は、真空蒸着等の気相堆積法で形成する。
 次いで、図1(D)に示すように、金属層30を覆って、フォトレジストからなるレジスト層32を形成する。レジスト層32の形成は、レジスト層32となるフォトレジスト等を含む溶液をスピンコート等で塗布し、その後、ポストベークを行う方法等、トランジスタの製造で利用されている公知のレジスト層32の形成方法で行えばよい。
 レジスト層32を形成したら、基板10に形成したアライメントマーク12を検出して、基板10の伸縮を制御する伸縮制御処理を行う。
 アライメントマーク12の検出は、CCDセンサ等の撮像素子を用いる方法、アライナー等と同様に顕微鏡を利用する方法等、アライメントマークを利用する薄膜トランジスタの製造で利用されている各種の方法が利用可能である。
 なお、アライメントマーク12の検出は、表面すなわちトランジスタの形成面から行っても、裏面から行ってもよい。
 図示例においては、一例として、ここまでの製造工程での加熱や加湿(温度変化や湿度変化)等によって、図1(D)に概念的に示すように、基板10が収縮して、アライメントマーク12の位置ズレが生じていたとする。
 これに対応して、図2(E)に概念的に示すように、フォトマスク34を用いるパターン露光すなわちパターン形成(パターンニング)を行う前に、レジスト層32を形成した基板10を温度調節手段40に載置して、基板10を加熱して伸長させて、基板10のアライメントマーク12とフォトマスク34のアライメントマーク36とを一致させる。
 なお、基板10が伸長していた場合には、基板10を冷却して収縮させることにより、基板10のアライメントマーク12とフォトマスク34のアライメントマーク36とを一致させる。
 さらに、必要に応じて、基板10および/またはフォトマスク34を移動して、基板10とフォトマスク34との位置および/または角度を合せる。
 次いで、この加熱状態を保ったまま、フォトマスク34によってレジスト層32の露光を行う。
 フォトマスク34のアライメントマーク36は、レジスト層32を露光する際における面方向の位置が、基板10に形成したアライメントマーク12と一致するように形成されている。そのため、加熱による基板10のアライメントマーク12とフォトマスク34のアライメントマーク36とを一致させること、すなわちアライメントマーク12の位置ズレを改善することによって、基板10の伸縮を改善して、アライメントマーク12を形成した時と同じ状態にできる。
 従って、この加熱によるアライメントマーク12の位置の改善によって、符号32aで示すソース電極18およびドレイン電極20の形成位置に正確に対応して、レジスト層32をパターン露光できる。すなわち、パターンズレを生じることなく、ゲート電極14に対して適正な位置に、ソース電極18およびドレイン電極20を形成できる。
 特許文献1や特許文献2に示されるように、フィルム基板を用いるトランジスタの製造において、アライメントマークを利用して、パターンズレを生じることなく電極等を形成することが知られている。
 従来のアライメントマークを利用するトランジスタの製造方法では、アライメントマークの検出結果に応じて、パターンを再設定し、再設定したパターンに応じて電極等を形成することにより、パターンズレを防止している。しかしながら、このような従来の方法では、アライメントマークの検出結果に応じたパターンの再設定を行うため、トランジスタの製造コストが向上してしまう。また、アライメントマークの検出結果に応じて、形成するパターンを再設定する方法は、フォトマスクを用いる方法には利用できず、あるいは、1つのパターンに対して、多数のフォトマスクを用意する必要がある。
 これに対して、本発明の製造方法では、基板10に形成したアライメントマーク12の検出結果に応じて、基板10自身を伸長あるいは収縮させる、基板10の伸縮制御処理を行って、アライメントマーク12の位置ズレを改善して、パターン形成を行う。すなわち、アライメントマーク12の検出結果に応じて、基板10を伸長あるいは収縮させてアライメントマーク12の位置ズレを改善することにより、基板10をアライメントマーク12の形成時の状態に戻して、パターン形成を行う。
 従って、本発明の製造方法によれば、パターンズレを生じることなく電極等をパターン形成できるのみならず、パターンの再設定を不要にして、トランジスタの製造コストを低減できる。また、本発明の製造方法によれば、1つのフォトマスクで、フォトマスクによるパターン露光が可能である。
 図示例においては、アライメントマーク12の検出結果に応じて、温度調節手段40によって基板10を加熱あるいは冷却することによって、アライメントマーク12の位置ズレを改善している。すなわち、温度制御によって、伸縮制御処理を行う。
 温度制御による伸縮制御処理は、一例として、アライメントマーク12の位置ズレ量と、基板10の線膨張係数(熱膨張係数)との関係を知見しておき、例えば、アライメントマーク12の位置ズレ量と、この位置ズレを改善するための加熱温度/冷却温度との関係とを示すテーブル(LUT)や演算式を作成し、このテーブルや演算式を用いて、基板10の温度制御を行う方法が例示される。
 なお、前述のように、基板10にキャリア基板を貼着して、本発明の製造方法を行う場合も有る。
 この場合には、キャリア基板に基板10を貼着(固定)した状態で、基板10の線膨張係数を知見して、アライメントマーク12の位置ズレ量と、この位置ズレを改善するための加熱温度/冷却温度との関係とを示すテーブルや演算式を作成するのが好ましい。
 温度制御による伸縮制御処理は、このテーブルや演算式のみを用いて行ってもよい。
 しかしながら、好ましくは、温度制御による伸縮制御処理を行った状態でアライメントマーク12を再検出して、アライメントマーク12が位置ズレしている場合には、さらに温度調節を行って、アライメントマークを検出し、アライメントマーク12が、位置ズレ無く、適正な位置に有ることを確認した後に、パターン露光(パターン形成)を行うのが好ましい。
 また、図示例においては、基板10のアライメントマーク12とフォトマスク34のアライメントマーク36とを一致させることで、基板10のアライメントマーク12の位置ズレを改善している。
 しかしながら、本発明は、この方法以外にも、各アライメントマーク12の間隔を検出して、適正な間隔となるように基板10の温度を制御する方法、基板10の端部からの距離など各アライメントマーク12の位置を検出して、各アライメントマーク12の位置が適正な位置となるように基板10の温度を制御する方法、これらを併用する方法等で、基板10のアライメントマーク12の位置ズレを改善してもよい。
 図示例においては、好ましい態様として、温度調節手段40に基板10を載置した状態で、フォトマスク34による露光を行っている。本発明は、これに限定はされず、温度調節手段40で伸縮制御処理を行ったら、温度制御手段から基板10取り外して、フォトマスク34による露光を行ってもよい。
 しかしながら、図示例のように、温度制御を行った状態すなわち伸縮制御処理における基板温度を保った状態で、フォトマスク34等によるパターン露光、シャドウマスクを用いる気相堆積による成膜、インクジェットなどの印刷を行って、パターン形成を行うことにより、より適正にアライメントマーク12の位置ズレを無くした状態で、パターン形成を行うことが可能になる。
 なお、以上の点に関しては、後述する湿度制御による伸縮制御処理でも、同様である。
 基板10の温度制御方法(温度調節方法)も、ヒータやホットプレートを利用する方法、温度調節媒体の循環による方法、ペルチェ素子を用いる方法、公知のフィルム状物(シート状物)温度制御方法が、各種、利用可能である。
 さらに、レジスト層32のパターン露光の方法は、フォトマスク34を用いる方法以外にも、光ビーム走査による方法等の公知の各種の方法が利用可能である。
 アライメントマーク12の検出結果に応じて、アライメントマーク12の位置ズレを改善する処理すなわち基板10の伸縮を制御する伸縮制御処理は、図示例のような温度制御以外にも、基板10の湿度制御も好適に利用される。
 なお、本発明の製造方法において、湿度制御は、水分のみならずレジスト層32を形成するための溶液等に用いられる溶剤も対象とする。従って、基板10の加湿および除湿とは、水分のみならず、基板10における溶剤含有量の制御を含んでもよい。
 湿度制御の方法も、公知のフィルム状物の湿度制御方法(湿度調節方法)が、各種、利用可能である。
 一例として、基板10を乾燥したガスあるいは湿らせたガス(加湿ガス)を吹き付ける方法、高湿雰囲気中あるいは乾燥雰囲気中に保持する方法、真空環境での脱水等が例示される。なお、基板10としてガスバリアフィルムを用いる場合には、ガスの吹き付けは、ガスバリア膜と逆側(支持体側)から行う必要が有る。
 いずれの方法でも、基板10を収縮させる場合には除湿(乾燥)するように、基板10を伸長させる場合には加湿するように、湿度制御を行う。
 なお、本発明の製造方法においては、温度制御および湿度制御の両方を行って、伸縮制御処理を行ってもよい。
 さらに、伸縮制御方法は、温度制御および湿度制御以外にも、基板10を引っ張ることで伸長して、アライメントマーク12の位置ズレを改善する方法も、利用可能である。
 このようにしてレジスト層32をパターン露光したら、レジスト層32を現像して、符号32aで示す領域を残してレジスト層32を除去する。次いで、残ったレジスト層32をマスクにして金属層30のエッチングを行って、図2(F)に示すように、ソース電極18およびドレイン電極20を形成する。
 ここで、図示例においては、アライメントマーク12の検出結果に応じて、温度制御によって基板10を伸縮させる伸縮制御処理を行い、アライメントマーク12の位置ズレを改善した上で、レジスト層32のパターン露光を行っている。従って、パターンズレを生じることなく、ソース電極18およびドレイン電極20を形成できる。
 ソース電極18およびドレイン電極20を形成したら、図2(G)に示すように、ソース電極18およびドレイン電極20と、ゲート絶縁膜16とを覆って半導体層24を形成して、トランジスタを完成する。あるいは、さらに、封止層によって封止を行って、トランジスタを完成してもよい。
 半導体層24の形成材料は、アモルファスシリコン、多結晶シリコン、有機半導体材料、酸化物半導体等、薄膜トランジスタで利用されている、各種の材料が利用可能である。
 中でも、軽量化、低コスト化、柔軟化等の点で、6,13-ビス(トリイソプロピルシリルエチニル)ペンタセン(TIPSペンタセン)等のペンタセン誘導体、5,11‐ビス(トリエチルシリルエチニル)アントラジチオフェン(TES‐ADT)等のアントラジチオフェン誘導体、ベンゾジチオフェン(BDT)誘導体、ジオクチルベンゾチエノベンゾチオフェン(C8-BTBT)等のベンゾチエノベンゾチオフェン(BTBT)誘導体、ジナフトチエノチオフェン(DNTT)誘導体、ジナフトベンゾジチオフェン(DNBDT)誘導体、6,12‐ジオキサアンタントレン(ペリキサンテノキサンテン)誘導体、ナフタレンテトラカルボン酸ジイミド(NTCDI)誘導体、ペリレンテトラカルボン酸ジイミド(PTCDI)誘導体、ポリチオフェン誘導体、ポリ(2,5‐ビス(チオフェン‐2‐イル)チエノ[3,2‐b]チオフェン)(PBTTT)誘導体、テトラシアノキノジメタン(TCNQ)誘導体、オリゴチオフェン類、フタロシアニン類、フラーレン類等の有機半導体材料は、好適に利用される。
 半導体層24の形成方法も、塗布法や気相堆積法、これらの成膜方法とフォトリソグラフィとの組み合わせ、インクジェットなどの印刷による方法等、薄膜トランジスタの製造において半導体層の形成に利用されている、公知の各種の方法が利用可能である。
 図1(A)~図2(G)に示す方法では、ボトムゲート-ボトムコンタクト型のトランジスタの製造において、ソース電極18およびドレイン電極20のパターン形成すなわちレジスト層32のパターン露光を行う際に、アライメントマーク12の検出して、その検出結果に応じて、アライメントマーク12の位置ズレを改善する処理すなわち基板10の伸縮を制御する伸縮制御処理を行っている。
 しかしながら、本発明は、これ以外にも、前述のボトムゲート-ボトムコンタクト型のトランジスタのみならず、トップゲート-ボトムコンタクト型、ボトムゲート-トップコンタクト型、および、トップゲート-ボトムコンタクト型等の各種のトランジスタの製造において、ゲート電極の形成時、ゲート絶縁膜の形成時、半導体層の形成時、ソース電極およびドレイン電極の形成時等に、アライメントマーク12を検出して、その検出結果に応じて基板10の伸縮を制御する伸縮制御処理を行ってもよい。
 具体的には、伸縮制御処理は、パターン形成を伴う工程において、パターン形成に対応して行うのが好ましい。
 特に、ボトムゲート型のトランジスタの製造におけるソース電極およびドレイン電極のパターン形成や、トップゲート型のトランジスタの製造におけるゲート電極のパターン形成など、上層あるいは下層のパターンとのパターンズレが問題になり、高精度なパターン形成が要求される工程に対応して、伸縮制御処理を行うのが好ましい。
 なお、伸縮制御処理は、トランジスタの製造において1回のみ行ってもよく、あるいは、ゲート電極の形成、ゲート絶縁膜の形成、半導体層の形成、ソース電極およびドレイン電極の形成などの複数の工程に対応して、複数回の伸縮制御処理を行ってもよい。
 図1(A)~図2(G)に示す例は、いわゆるバッチ式によるトランジスタの製造であるが、本発明の製造方法は、いわゆるロール・トゥ・ロール(RtoR)によるトランジスタの製造でも、利用可能である。
 周知のように、RtoRとは、長尺な基板(被処理物)を巻回してなるロールから、基板を送り出し、長手方向に搬送しつつ、塗布組成物の塗布や乾燥等を行い、処理済の基板をロール状に巻き取る製造方法である。
 図3(A)に、本発明の製造方法を実施するRtoRによる製造装置の一例を概念的に示す。
 図3(A)に示す製造装置48は、長尺な被処理材50をロール状に巻回してなる被処理材ロール50Rから被処理材50を引き出して、長手方向に搬送しつつパターン形成を行い、描画を行った処理済材52をロール状に巻回して処理済材ロール52Rとするものである。
 このような製造装置48は、基本的に、マーク検出部54と、伸縮制御部56と、パターン形成部58とを有して構成される。なお、製造装置48は、これらの部材以外にも、被処理材50等を適正に搬送するための搬送ローラ対やガイド部材、各種のセンサ等、公知のRtoRによる装置が有する各種の部材を有してもよい。
 製造装置48において、被処理材50は、例えば、図1(B)に示す、基板10の上にゲート電極14およびゲート絶縁膜16を形成してなる物や、図1(D)に示す、基板10の上にゲート電極14、ゲート絶縁膜16、金属層30およびレジスト層32を形成してなる物が例示される。中でも、図3(B)に示すような基板60に、ゲート電極14のパターンを形成してなる被処理材50や、ゲート絶縁膜16を形成してなる被処理材50が、好ましく例示される。この際において、ゲート絶縁膜16は、パターン化されたものでもよく、非パターンのものでもよい。
 また、図3(B)に示すように、被処理材50の基板60には、長手方向の同位置において、幅方向の両端部近傍に、長手方向に等間隔でアライメントマーク12が形成されている。なお、この長尺な基板60も、トランジスタの製造に先立ち、熱処理が施されるのが好ましい。さらに、この長尺な基板60にも、裏面にキャリア基板を貼着して、トランジスタの製造を行ってもよい。
 図3の製造装置48は、アライメントマーク12の位置ズレの改善およびパターン形成のみを行う。なお、アライメントマーク12の位置ズレの改善は、温度調節および/または湿度調節によって行う。
 しかしながら、本発明の製造方法をRtoRに利用する場合には、これ以外にも、パターン形成を含む複数の工程あるいはトランジスタ製造の全工程を、1回のロールからの被処理材50の送り出し、および、処理済の被処理材50のロールへの巻取りの間に行ってもよい。
 例えば、1回のロールからの被処理材50の送り出し、および、処理済の被処理材50のロールへの巻取の間に、レジスト液の塗布、プリベーク(塗布したレジスト液からの溶媒の乾燥除去)、アライメントマーク12の位置ズレの改善(温度/湿度調節)、および、パターン形成を、連続的に行ってもよい。
 製造装置48において、被処理材50の搬送方向の被処理材ロール50Rの下流には、マーク検出部54が配置される。以下の説明では、被処理材50の搬送方向の下流を、単に『下流』とも言う。
 マーク検出部54は、被処理材50の基板60に形成されたアライメントマーク12を検出して、検出結果を伸縮制御部56の制御部56aに送る。マーク検出部54によるアライメントマーク12の検出方法は、公知の各種の手段が利用可能であり、例えばCCDセンサ等の撮像素子を用いてアライメントマーク12を検出すればよい。
 マーク検出部54の下流には、伸縮制御部56が配置される。伸縮制御部56は、基板60の伸縮を制御する前述の伸縮制御処理を行うものであり、制御部56aと、温度調節手段56bとから構成される。
 制御部56aは、マーク検出部54によるアライメントマークの検出結果から、温度調節手段56bが行う温度調節を決定する部位である。
 すなわち、制御部56aには、基板60に形成されたアライメントマーク12の正確な位置、および、前述のアライメントマーク12の位置ズレ量と、この位置ズレを改善するための加熱温度/冷却温度との関係を示すテーブルを記憶している。基板60に形成されたアライメントマーク12の正確な位置としては、一例として、幅方向および長手方向のアライメントマーク12の間隔等が例示される。
 制御部56aは、マーク検出部54によるアライメントマークの検出結果から、アライメントマーク12の位置ズレ量を検出する。次いで、テーブルを用いて、位置ズレ量から温度調節手段56bによる加熱温度あるいは冷却温度を決定し、温度調節手段56bに指示を出す。
 温度調節手段56bは、公知の加熱/冷却手段であり、制御部56aから送られた加熱温度あるいは冷却温度に応じて、被処理材50(基板60)を加熱もしくは冷却する。
 なお、温度調節手段56bによる温度調節は、パターン形成部58の上流までであってもよい。しかしながら、図示例の製造装置48においては、温度調節手段56bは、好ましい態様として、パターン形成部58によるパターン形成領域まで、被処理材50の温度調節(湿度調節)を行う。
 なお、先のバッチ式によるトランジスタの製造と同様、製造装置48による伸縮制御処理も、温度制御に限定はされず、湿度制御等も利用可能である。
 この場合には、製造装置48には、温度調節手段56bに変えて、乾燥ガスや加湿ガスを被処理材50(基板60)に吹き付けるガスの吹き付け手段等が設けられる。また、制御部56aには、アライメントマーク12の位置ズレ量と、この位置ズレを改善するための加湿/除湿(乾燥)との関係を示すテーブルが記憶される。
 パターン形成部58は、トランジスタの製造における各種のパターン形成に利用される公知の手段によって、トランジスタを製造するためのパターン形成を行うものである。
 例えば、製造装置48が、図1(B)に示す、基板10の上にゲート電極14およびゲート絶縁膜16を形成してなる物を被処理材50とする装置である場合には、パターン形成部58としては、ソース電極18およびドレイン電極20をパターン形成するための、被処理材50の幅方向(搬送方向と直交する方向)にノズル列を有するインクジェットプリンタが例示される。
 あるいは、製造装置48が、図1(D)に示す、基板10の上にゲート電極14、ゲート絶縁膜16、金属層30およびレジスト層32を形成してなる物を被処理材50とする装置である場合には、パターン形成部58としては、レジスト層32をパターン露光するための、被処理材50の幅方向に光ビームを走査する光ビーム走査装置が例示される。
 また、被処理材50(レジスト層32等)にパターン露光を行う場合には、パターン形成部58は、フォトマスクを利用する露光装置であってもよい。
 なお、製造装置48においては、パターン形成部58の上流の温度調節手段56bによる温度制御領域に、さらに、第2のアライメント検出部を配置し、第2のアライメント検出部によるアライメントマーク12の検出結果から、温度調節手段56bによる温度調節を補正するようにしてもよい。
 以下、製造装置48の作用を説明する。
 製造装置48において、被処理材ロール50Rから引き出され、長手方向に搬送されると、マーク検出部54が基板60に形成されたアライメントマーク12を検出し、アライメントマーク12の検出結果を伸縮制御部56の制御部56aに送る。
 制御部56aは、アライメントマークの検出結果から、アライメントマーク12の位置ズレ量を検出し、前述のテーブルを用いて、温度調節手段56bによる加熱温度あるいは冷却温度を決定し、温度調節手段56bに指示を出す。
 温度調節手段56bは、制御部56aからの指示に応じて、被処理材50を加熱もしくは冷却する。これにより、基板60が伸縮して伸縮制御処理され、アライメントマークの位置ズレが改善される。さらに、温度調節を行った後、必要に応じて、インクジェットヘッドやフォトマスクの位置および/または角度を調節して、被処理材50とパターン形成部58との位置および/または角度を合せる。
 パターン形成部58は、長手方向に搬送され、温度調節手段56bによって温度調節された被処理材50にパターン形成を行う。ここで、被処理材50は、温度調節手段56bによる温度調節によって、アライメントマークの位置ズレが改善されている。従って、パターン形成部58は、パターンズレを生じることなく、被処理材50の適正な位置にパターンを形成できる。
 パターンを形成された処理済材52は、次いで、処理済材ロール52Rにロール状に巻回される。
 以上、本発明のトランジスタの製造方法について詳細に説明したが、本発明は、上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
 以下、本発明の具体的実施例を挙げ、本発明のトランジスタの製造方法について、より詳細に説明する。
 [実施例1および比較例1]
 基板として、5×5cmのガスバリアフィルムを用意した。
 このガスバリアフィルムは、厚さ100μmのポリエチレンナフタレート(PEN)フィルムを支持体として、表面に、厚さ2μmのアクリル系ポリマーからなる有機層を有し、この有機層の上に、プラズマCVD法によって形成した厚さ30nmの窒化ケイ素からなる無機層を有する、前述の有機-無機積層型のガスバリアフィルムである。
 まず、この基板に、150℃の熱処理を24時間行った。次いで、熱処理を行った基板の裏面(PENフィルム側)に、キャリアフィルムを用いて、キャリア基板としてガラス板を貼着した。
 この基板の無機層側の表面に、真空蒸着によって厚さ50nmの金薄膜を成膜した。
 この金薄膜の上に、レジスト層を形成した。レジスト層は、スピンコータによって形成した。
 レジスト層を形成した基板を、顕微鏡のステージに載置した。この顕微鏡のステージは、加熱冷却機構を有する。ステージ上に載置した基板の上に、アライメントマークに対応する遮光部を有するガラスマスクを重ねて、ステージ上で紫外線による露光を行った。
 露光後、顕微鏡のステージから基板を取り外し、現像によってアライメントマークの形成部以外のレジストを除去した。その後、エッチングを行って金薄膜を除去し、4隅に金のアライメントマークを有する基板を作製した。
 このようにして作製した基板を、室温で24時間、放置した。
 放置後、同じ顕微鏡のステージに基板を載置し、露光を行ったガラスマスクを重ねて、顕微鏡によって、アライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは、3μmであった(比較例1)。
 なお、本例におけるアライメントマークの位置ズレとは、基板の1つのアライメントマークを、ガラスマスクのアライメントマークに重ねた状態における、他の3つのアライメントマークの位置ズレの平均である。
 次いで、顕微鏡のステージの加熱冷却機構を駆動して、基板を28℃に加熱した。基板を加熱した後、同様に、アライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは、1μm未満であった(実施例1)。
 [実施例2および比較例2]
 実施例1と同様にして、4隅に金のアライメントマークを有する基板を作製した。
 この基板を、トランジスタの製造工程を想定した模擬プロセスとして、150℃の環境に30分放置した。
 放置後、実施例1と同様にアライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは、10μmであった(比較例2)。
 次いで、顕微鏡のステージの加熱冷却機構を駆動して、基板を35℃に加熱した。基板を加熱した後、同様に、アライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは、1μm未満であった(実施例2)。
 [実施例3および比較例3]
 実施例1と同様にして、4隅に金のアライメントマークを有する基板を作製した。
 この基板を、トランジスタの製造工程を想定した模擬プロセスとして、水に5分浸漬した。
 浸漬後、実施例1と同様にアライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは、6μmであった(比較例3)。
 次いで、顕微鏡のステージの加熱冷却機構を駆動して、基板を20℃に冷却した。基板を冷却した後、実施例1と同様に、アライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは、1μm未満であった(実施例3)。
 [実施例4および比較例4]
 実施例1と同様にして、4隅に金のアライメントマークを有する基板を作製した。
 この基板を、トランジスタの製造工程を想定した模擬プロセスとして、アセトンに5分浸漬した。
 浸漬後、実施例1と同様にアライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは、5μmであった(比較例4)。
 次いで、顕微鏡のステージの加熱冷却機構を駆動して、基板を20℃に冷却した。基板を冷却した後、実施例1と同様に、アライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは、1μm未満であった(実施例4)。
 [実施例5~7]
 基板として、ガスバリアフィルムに変えて厚さ100μmのポリイミド(PI)フィルムを用いた以外(実施例5)、
 基板として、ガスバリアフィルムに変えて厚さ100μmのPENフィルムを用いた以外(実施例6)、
 基板として、ガスバリアフィルムに変えて厚さ100μmのポリエチレンテレフタレート(PET)フィルムを用いた以外(実施例7)、
は、実施例1と同様にして、4隅に金のアライメントマークを有する基板を作製した。
 各基板を、実施例1と同様に、室温で24時間、放置した。
 放置後、同じ顕微鏡のステージに基板を載置し、実施例1と同様に、アライメントマークの位置ズレを測定した。測定後、顕微鏡のステージの加熱冷却機構を駆動して、
 基板を29℃に加熱(実施例5)、
 基板を27℃に加熱(実施例6)、
 基板を22℃に冷却(実施例7)、した。
 基板の温度調節を行った後、実施例1と同様に、アライメントマークの位置ズレを測定した。その結果、何れの例も、アライメントマークの位置ズレは、1μm未満であった。
 結果を、下記の表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、フィルム基板を用いた場合には、模擬プロセスの実施の有無によらず、基板の伸縮によってアライメントマークの位置ズレが生じている。各フィルムの線膨張係数や吸湿膨張係数から、1℃の温度変化や、1%RHの湿度変化が生じても、アライメントマークの位置ズレを生じると考えられる。
 また、この特性を利用して、基板の温度制御による伸縮制御処理を行う本発明によれば、アライメントマークの位置ズレを改善して、パターンズレの無いトランジスタを製造できる。
 [実施例8および比較例8]
 実施例1と同様にして、4隅に金のアライメントマークを有する基板を作製した。
 この基板を、実施例1と同様に、室温で24時間、放置した。
 放置後、実施例1と同様にアライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは3μmであった(比較例8)。
 次いで、ステージから基板を取り外し、キャリア基板としてのガラス板を剥離した。
 その後、基板に、水に潜らせた空気を、30秒間、吹き付けた。以下、水に潜らせた空気を『加湿空気』とも言う。加湿空気の吹きつけは、PENフィルム側から行った。
 加湿空気を吹き付けた後、実施例1と同様に、アライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは、1μm未満であった(実施例8)。
 なお、本例、および、以降の実施例9~14では、顕微鏡のステージの加熱冷却機構は駆動していない。
 [実施例9および比較例9]
 実施例1と同様にして、4隅に金のアライメントマークを有する基板を作製した。
 この基板を、トランジスタの製造工程を想定した模擬プロセスとして、150℃の環境に30分放置した。
 放置後、実施例1と同様にアライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは10μmであった(比較例9)。
 次いで、ステージから基板を取り外し、キャリア基板としてのガラス板を剥離した。
 その後、PENフィルム側から、基板に加湿空気を、2分間、吹き付けた。
 加湿空気を吹き付けた後、実施例1と同様に、アライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは、1μm未満であった(実施例9)。
 [実施例10および比較例10]
 実施例1と同様にして、4隅に金のアライメントマークを有する基板を作製した。
 この基板を、トランジスタの製造工程を想定した模擬プロセスとして、水に5分間浸漬した。
 浸漬後、実施例1と同様にアライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは6μmであった(比較例10)。
 次いで、ステージから基板を取り外し、キャリア基板としてのガラス板を剥離した。
 その後、PENフィルム側から、基板に乾燥空気を、1分間、吹き付けた。
 乾燥空気を吹き付けた後、実施例1と同様に、アライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは、1μm未満であった(実施例10)。
 [実施例11および比較例11]
 実施例1と同様にして、4隅に金のアライメントマークを有する基板を作製した。
 この基板を、トランジスタの製造工程を想定した模擬プロセスとして、アセトンに5分間浸漬した。
 浸漬後、実施例1と同様にアライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは5μmであった(比較例11)。
 次いで、ステージから基板を取り外し、キャリア基板としてのガラス板を剥離した。
 その後、PENフィルム側から、基板に乾燥空気を、1分間、吹き付けた。
 乾燥空気を吹き付けた後、実施例1と同様に、アライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは、1μm未満であった(実施例11)。
 [実施例12~14]
 基板として、ガスバリアフィルムに変えて厚さ100μmのPIフィルムを用いた以外(実施例12)、
 基板として、ガスバリアフィルムに変えて厚さ100μmのPENフィルムを用いた以外(実施例13)、
 基板として、ガスバリアフィルムに変えて厚さ100μmのPETフィルムを用いた以外(実施例14)、
は、実施例1と同様にして、4隅に金のアライメントマークを有する基板を作製した。
 各基板を、実施例1と同様に、室温で24時間、放置した。
 放置後、同じ顕微鏡のステージに基板を載置し、実施例1と同様に、アライメントマークの位置ズレを測定した。
 次いで、ステージから基板を取り外し、キャリア基板としてのガラス板を剥離した。
 その後、
 基板に加湿空気を(実施例12)、
 基板に加湿空気を(実施例13)、
 基板に乾燥空気を(実施例14)、
それぞれ、30秒間、吹き付けた。
 空気を吹き付けた後、実施例1と同様に、アライメントマークの位置ズレを測定した。その結果、アライメントマークの位置ズレは、いずれも1μm未満であった。
 結果を下記の表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、基板の温度制御に変えて、基板の湿度を制御することによっても、アライメントマークの位置ズレを改善して、パターンズレの無いトランジスタを製造できる。
 [実施例15]
 図1(A)~図2(G)に示す方法で、実施例1と同様の基板10の上に、16個のボトムゲートボトムコンタクト型の有機薄膜トランジスタを作製した。実施例1と同様の基板10とは、前述のように、PENフィルムを支持体として、支持体の表面に有機層を有し、有機層の上に無機層を有する、有機-無機積層型のガスバリアフィルムである。
 まず、基板10に、実施例1と同様の熱処理を行い、裏面にキャリア基板としてガラス板を貼着した。
 この基板の無機層側の表面に、真空蒸着によって、厚さ50nmのアルミニウム膜を形成した。
 次いで、フォトマスクを用いるフォトリソグラフィによって、長さ10μmのゲート電極14を形成した。また、ゲート電極14の形成と同時に、基板10の4隅に円形のアライメントマーク12を形成した。
 その上にゲート絶縁膜用組成物のPGMEA(プロピレングリコールモノメチルエーテルアセテート)溶液をスピンコートし、150℃で60分間ベークを行い、膜厚400nmのゲート絶縁膜16を形成した。ゲート絶縁膜用組成物は、質量比1/1のポリビニルフェノール/メラミンを用い、PGMEA溶液は溶液濃度を2質量%とした。
 次いで、ゲート絶縁膜16の上に、金を真空蒸着して、金属層30を形成した。さらに、金属層30の上に、フォトレジストを含む溶液をスピンコートによって塗布して、レジスト層32を形成した。
 基板10に形成したアライメントマーク12に対応するアライメントマーク36を有するフォトマスク34を用いて、レジスト層32の露光を行った。
 なお、露光に先立ち、フォトマスク34のアライメントマーク36を用いて、基板10のアライメントマーク12の位置ズレを検出した。さらに、露光前および露光中に、基板10を36℃に加熱した。
 露光後、レジスト層32を現像して不要なレジストを除去し、次いで、エッチングを行って、チャネル長5μm、チャネル幅180μmのソース電極18およびドレイン電極20を形成した。
 ソース電極18およびドレイン電極20、ならびにゲート絶縁膜16の上に、厚さ100nmとなるように有機半導体層(TIPS-Pentacene)をスピンコートで形成した。その後、カッターで素子毎に有機半導体層を分離して、半導体層24とした。
 さらに、半導体層24の上に、封止層形成用組成物(Cytop CTL-107MK、AGC社製)をスピンコートして、140℃で20分間ベークを行い、厚さ2μmの封止層(最上層)を形成して、16個の有機薄膜トランジスタを得た。
 [実施例16]
 フォトマスク34を用いるレジスト層32の露光前および露光中における加熱に変えて、キャリア基板としてのガラス板を剥離し、支持体(PENフィルム側)から加湿空気を、2分間、吹き付け、その後、フォトマスク34を用いる露光を行い、その後、再度、キャリア基板としてのガラス板を貼着して、これ以降の工程を行った以外は、実施例15と同様に、16個の有機薄膜トランジスタを作製した。
 [比較例12]
 フォトマスク34を用いるレジスト層32の露光前および露光中における加熱を行わない以外は、実施例15と同様に、16個の有機薄膜トランジスタを作製した。
 このようにして作製した有機薄膜トランジスタの各電極と、半導体パラメータ・アナライザ(4155C、Agilent Technologies社製)に接続されたマニュアルプローバの各端子とを接続して、電界効果トランジスタ(FET)の評価を行なった。
 その結果、実施例15および実施例16は、16個の有機薄膜トランジスタが、全て、適正に作動した。
 これに対し、比較例12では、16個の有機薄膜トランジスタの内、4個しか適正に作動しなかった。
 また、有機半導体として、TIPS-Pentaceneに変えてC8-BTBTを用い、かつ、封止層を形成しない以外には、実施例15および16、比較例12と同様に16個の有機薄膜トランジスタを作製し、同様の評価を行った。
 その結果、フォトマスク34を用いるレジスト層32の露光に対応して、実施例15と同様の温度制御を行った場合、および、実施例16と同様の湿度制御を行った場合には、同様に、16個の有機薄膜トランジスタが、全て、適正に作動した。
 これに対し、比較例12と同様に伸長制御処理を行わなかった場合には、同様に、16個の有機薄膜トランジスタの内、4個しか適正に作動しなかった。
 以上の結果より、本発明の効果は明らかである。
 フィルムを基板とする薄膜トランジスタの製造に、好適に利用可能である。
 10,60 基板
 12,36 アライメントマーク
 14 ゲート電極
 16 ゲート絶縁膜
 18 ソース電極
 20 ドレイン電極
 24 半導体層
 30 金属層
 32 レジスト層
 34 フォトマスク
 48 製造装置
 50 被処理材
 52 処理済材
 54 マーク検出部
 56 伸縮制御部
 56a 制御部
 56b 温度調節手段
 58 パターン形成部

Claims (13)

  1.  フィルムを基板とするトランジスタの製造において、
     3つ以上のアライメントマークが形成された基板を用い、
     前記アライメントマークを検出して、前記アライメントマークの検出結果に応じて、前記基板の伸縮を制御する伸縮制御処理を、1回以上、行うことを特徴とするトランジスタの製造方法。
  2.  前記トランジスタの製造が、少なくとも、ゲート電極の形成工程、ゲート絶縁膜の形成工程、半導体層の形成工程、ならびに、ソース電極およびドレイン電極の形成工程を含み、
     前記ゲート電極の形成工程、ゲート絶縁膜の形成工程、半導体層の形成工程、ならびに、ソース電極およびドレイン電極の形成工程の少なくとも1つの工程の途中あるいは前に、前記伸縮制御処理を行う請求項1に記載のトランジスタの製造方法。
  3.  前記伸縮制御処理が、前記基板の温度制御および前記基板の湿度制御の少なくとも一方である請求項1または2に記載のトランジスタの製造方法。
  4.  前記アライメントマークの検出結果から、前記アイメントマークのズレの大きさを検出して、前記アイメントマークのズレの大きさと、前記基板の線膨張係数および吸湿膨張係数の少なくとも一方とから、前記基板の温度制御および前記基板の湿度制御の少なくとも一方を行う請求項3に記載のトランジスタの製造方法。
  5.  前記基板をキャリアに固定して前記トランジスタの製造を行うものであり、前記基板をキャリアに固定した状態で、前記基板の線膨張係数および吸湿膨張係数の少なくとも一方を知見しておき、前記知見した情報を用いて、前記基板の温度制御および前記基板の湿度制御の少なくとも一方を行う請求項4に記載のトランジスタの製造方法。
  6.  前記伸縮処理制御による基板の温度および湿度の少なくとも一方を保った状態で、印刷法もしくはフォトマスクを用いるパターン露光を行うことにより、トランジスタの製造におけるパターン形成を行う請求項3~5のいずれか1項に記載のトランジスタの製造方法。
  7.  前記伸縮制御処理が湿度制御であり、前記基板に湿度を制御したガスを吹き付けることにより、前記伸縮制御処理を行う請求項3~6のいずれか1項に記載のトランジスタの製造方法。
  8.  長尺な基板を長手方向に搬送しつつ、前記アライメントマークの検出を行い、前記アライメントマークの検出位置の下流において前記伸縮制御処理を行い、前記伸縮制御処理の下流においてトランジスタの製造におけるパターン形成を行う請求項1~7のいずれか1項に記載のトランジスタの製造方法。
  9.  前記基板が、支持体にガスバリア膜を形成してなるガスバリアフィルムであって、
     前記ガスバリア膜が、有機層と無機層とを交互に1層以上積層してなるものである請求項1~8のいずれか1項に記載のトランジスタの製造方法。
  10.  前記無機層が、窒化ケイ素膜である請求項9に記載のトランジスタの製造方法。
  11.  有機半導体層の形成工程を含む請求項1~10のいずれか1項に記載のトランジスタの製造方法。
  12.  最初に行う前記伸縮制御処理よりも前に、前記基板の熱処理を行う請求項1~11のいずれか1項に記載のトランジスタの製造方法。
  13.  前記アライメントマークの形成工程を含み、前記アライメントマークを、トランジスタの製造における最下層のパターンを行う際に形成する請求項1~12のいずれか1項に記載のトランジスタの製造方法。
PCT/JP2015/055806 2014-03-07 2015-02-27 トランジスタの製造方法 WO2015133391A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016506454A JP6286024B2 (ja) 2014-03-07 2015-02-27 トランジスタの製造方法
US15/244,398 US20160359114A1 (en) 2014-03-07 2016-08-23 Method for manufacturing transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-045244 2014-03-07
JP2014045244 2014-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/244,398 Continuation US20160359114A1 (en) 2014-03-07 2016-08-23 Method for manufacturing transistor

Publications (1)

Publication Number Publication Date
WO2015133391A1 true WO2015133391A1 (ja) 2015-09-11

Family

ID=54055199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055806 WO2015133391A1 (ja) 2014-03-07 2015-02-27 トランジスタの製造方法

Country Status (3)

Country Link
US (1) US20160359114A1 (ja)
JP (1) JP6286024B2 (ja)
WO (1) WO2015133391A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152656A (ja) * 2016-02-26 2017-08-31 Tianma Japan株式会社 イメージセンサおよびその製造方法
JP2017191803A (ja) * 2016-04-11 2017-10-19 株式会社小森コーポレーション 電子デバイス製造装置
KR101824383B1 (ko) * 2016-03-10 2018-02-02 재단법인대구경북과학기술원 완충층의 표면에너지 제어를 이용한 유기반도체 박막의 표면거칠기 극대화에 기반한 고성능 센서
JP2018185549A (ja) * 2018-08-31 2018-11-22 株式会社ニコン 基板処理装置の性能確認方法
WO2020039864A1 (ja) * 2018-08-24 2020-02-27 富士フイルム株式会社 有機薄膜トランジスタ、および、有機薄膜トランジスタの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255891B (zh) * 2017-08-08 2023-02-03 惠科股份有限公司 一种显示装置的制作方法
US10474027B2 (en) 2017-11-13 2019-11-12 Macronix International Co., Ltd. Method for forming an aligned mask

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073733A (ja) * 2008-09-16 2010-04-02 Fujifilm Corp トランジスタ基板及び有機エレクトロルミネッセンス表示装置
JP2010266687A (ja) * 2009-05-14 2010-11-25 Nikon Corp 露光方法、露光装置、及びデバイス製造方法
JP2011022584A (ja) * 2009-07-17 2011-02-03 Nikon Corp パターン形成装置及びパターン形成方法、並びにデバイス製造方法
JP2012203151A (ja) * 2011-03-24 2012-10-22 Hitachi High-Technologies Corp フィルム基板露光装置、及びフィルム基板露光方法
JP2012212722A (ja) * 2011-03-30 2012-11-01 Fujifilm Corp 薄膜トランジスタの製造装置およびその製造方法、ならびにプログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354638A3 (en) * 2002-04-15 2004-11-03 Fuji Photo Film Co., Ltd. Method and apparatus for manufacturing pattern members using webs on which coating films have been formed
JP4378950B2 (ja) * 2002-12-24 2009-12-09 セイコーエプソン株式会社 液滴吐出装置および電気光学装置の製造方法
TWI338323B (en) * 2003-02-17 2011-03-01 Nikon Corp Stage device, exposure device and manufacguring method of devices
TWI612556B (zh) * 2003-05-23 2018-01-21 Nikon Corp 曝光裝置、曝光方法及元件製造方法
EP2804048A1 (en) * 2003-08-29 2014-11-19 Nikon Corporation Exposure apparatus and device fabricating method
ATE441937T1 (de) * 2004-07-12 2009-09-15 Nikon Corp Belichtungsgerät und bauelemente- herstellungsverfahren
JP5494648B2 (ja) * 2009-03-13 2014-05-21 コニカミノルタ株式会社 有機エレクトロニクス素子及びその製造方法
JP2010257957A (ja) * 2009-04-01 2010-11-11 Seiko Epson Corp 有機エレクトロルミネッセンス装置
US8379186B2 (en) * 2009-07-17 2013-02-19 Nikon Corporation Pattern formation apparatus, pattern formation method, and device manufacturing method
US8235695B2 (en) * 2009-07-17 2012-08-07 Nikon Corporation Pattern forming device, pattern forming method, and device manufacturing method
WO2011129135A1 (ja) * 2010-04-14 2011-10-20 シャープ株式会社 蛍光体基板およびその製造方法、ならびに表示装置
US9117977B2 (en) * 2010-12-27 2015-08-25 Sharp Kabushiki Kaisha Light emitting device, display apparatus, and illuminating apparatus
JP2014224836A (ja) * 2011-09-16 2014-12-04 シャープ株式会社 発光デバイス、表示装置、照明装置および発電装置
US9360772B2 (en) * 2011-12-29 2016-06-07 Nikon Corporation Carrier method, exposure method, carrier system and exposure apparatus, and device manufacturing method
EP2950329B1 (en) * 2012-11-30 2022-01-05 Nikon Corporation Carrier system, exposure apparatus, and device manufacturing method
JP6400919B2 (ja) * 2013-03-07 2018-10-03 芝浦メカトロニクス株式会社 基板処理装置及び基板処理方法
EP3263316B1 (en) * 2016-06-29 2019-02-13 VELO3D, Inc. Three-dimensional printing and three-dimensional printers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073733A (ja) * 2008-09-16 2010-04-02 Fujifilm Corp トランジスタ基板及び有機エレクトロルミネッセンス表示装置
JP2010266687A (ja) * 2009-05-14 2010-11-25 Nikon Corp 露光方法、露光装置、及びデバイス製造方法
JP2011022584A (ja) * 2009-07-17 2011-02-03 Nikon Corp パターン形成装置及びパターン形成方法、並びにデバイス製造方法
JP2012203151A (ja) * 2011-03-24 2012-10-22 Hitachi High-Technologies Corp フィルム基板露光装置、及びフィルム基板露光方法
JP2012212722A (ja) * 2011-03-30 2012-11-01 Fujifilm Corp 薄膜トランジスタの製造装置およびその製造方法、ならびにプログラム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152656A (ja) * 2016-02-26 2017-08-31 Tianma Japan株式会社 イメージセンサおよびその製造方法
CN107134467A (zh) * 2016-02-26 2017-09-05 Nlt科技股份有限公司 图像传感器及其制造方法
US10615201B2 (en) 2016-02-26 2020-04-07 Tianma Microelectronics Co., Ltd. Image sensor and method of manufacturing the same
KR101824383B1 (ko) * 2016-03-10 2018-02-02 재단법인대구경북과학기술원 완충층의 표면에너지 제어를 이용한 유기반도체 박막의 표면거칠기 극대화에 기반한 고성능 센서
JP2017191803A (ja) * 2016-04-11 2017-10-19 株式会社小森コーポレーション 電子デバイス製造装置
WO2020039864A1 (ja) * 2018-08-24 2020-02-27 富士フイルム株式会社 有機薄膜トランジスタ、および、有機薄膜トランジスタの製造方法
JPWO2020039864A1 (ja) * 2018-08-24 2021-08-10 富士フイルム株式会社 有機薄膜トランジスタ、および、有機薄膜トランジスタの製造方法
JP7158485B2 (ja) 2018-08-24 2022-10-21 富士フイルム株式会社 有機薄膜トランジスタ、および、有機薄膜トランジスタの製造方法
US11765917B2 (en) 2018-08-24 2023-09-19 Fujifilm Corporation Organic thin film transistor and method of manufacturing organic thin film transistor
JP2018185549A (ja) * 2018-08-31 2018-11-22 株式会社ニコン 基板処理装置の性能確認方法

Also Published As

Publication number Publication date
US20160359114A1 (en) 2016-12-08
JP6286024B2 (ja) 2018-02-28
JPWO2015133391A1 (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
WO2015133391A1 (ja) トランジスタの製造方法
US8735871B2 (en) Organic thin film transistors
US7928429B2 (en) Organic TFT, method of manufacturing the same and flat panel display device having the same
JP2006163418A (ja) 導電パターンの形成方法とそれを利用した薄膜トランジスタ及びその製造方法
Ando et al. Self-aligned self-assembly process for fabricating organic thin-film transistors
US20040222415A1 (en) Organic device including semiconducting layer aligned according to microgrooves of photoresist layer
US7932186B2 (en) Methods for fabricating an electronic device
KR100670255B1 (ko) 박막 트랜지스터, 이를 구비한 평판표시장치, 상기 박막트랜지스터의 제조방법, 및 상기 평판 표시장치의 제조방법
WO2008093854A1 (ja) 薄膜半導体装置の製造方法および薄膜半導体装置
JP2007311677A (ja) 有機薄膜トランジスタの製造方法、有機薄膜トランジスタ
JP2008205284A (ja) 有機電界効果トランジスタおよびその製造方法
US20150001513A1 (en) Organic thin film transistor and manufacturing method thereof
US10549311B2 (en) Manufacturing device of organic semiconductor film
US7632705B2 (en) Method of high precision printing for manufacturing organic thin film transistor
US8803139B2 (en) Bottom and top gate organic transistors with fluropolymer banked crystallization well
US10468597B2 (en) Method of manufacturing organic semiconductor film
EP2871684A2 (en) Thin film transistor, method of manufacturing the same, and electronic device including the thin film transistor
US7960207B2 (en) Organic thin film transistor and method of fabricating the same
JP4899504B2 (ja) 有機薄膜トランジスタの製造方法および製造装置
US20160225994A1 (en) Organic thin film transistor and method for manufacturing the same
US20190173013A1 (en) Method of producing film
US8001491B2 (en) Organic thin film transistor and method of fabricating the same
Wang et al. High-performance polymer top-contact thin-film transistor with orthogonal photolithographic process
US9484542B2 (en) Thin film transistor panel and method of manufacturing the same, and electronic device including the thin film transistor panel
US20170155067A1 (en) Method of manufacturing semiconductor device and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506454

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758426

Country of ref document: EP

Kind code of ref document: A1