WO2015133301A1 - インホイールモータシステム - Google Patents

インホイールモータシステム Download PDF

Info

Publication number
WO2015133301A1
WO2015133301A1 PCT/JP2015/054897 JP2015054897W WO2015133301A1 WO 2015133301 A1 WO2015133301 A1 WO 2015133301A1 JP 2015054897 W JP2015054897 W JP 2015054897W WO 2015133301 A1 WO2015133301 A1 WO 2015133301A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
vehicle body
voltage
wheel motor
body side
Prior art date
Application number
PCT/JP2015/054897
Other languages
English (en)
French (fr)
Inventor
博志 藤本
岳広 居村
山本 岳
大輔 郡司
基 佐藤
Original Assignee
国立大学法人 東京大学
日本精工株式会社
東洋電機製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, 日本精工株式会社, 東洋電機製造株式会社 filed Critical 国立大学法人 東京大学
Priority to EP15759129.8A priority Critical patent/EP3115250B1/en
Priority to KR1020167027819A priority patent/KR101961218B1/ko
Priority to US15/123,731 priority patent/US10421351B2/en
Priority to JP2016506425A priority patent/JP6219495B2/ja
Publication of WO2015133301A1 publication Critical patent/WO2015133301A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • B60L2210/42Voltage source inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to an in-wheel motor system that controls an in-wheel motor in which a drive source is arranged inside a wheel of an electric vehicle or the like.
  • in-wheel motors In an electric vehicle or the like, it is desirable to provide an in-wheel motor in which a driving source is arranged inside the wheel because the driving force can be directly transmitted to the tire.
  • in-wheel motors are generally supplied with electric power from the vehicle body side by wires.
  • Patent Document 1 discloses a technique of a wheel power supply device including a non-contact electromagnetic power supply unit that uses an electromagnetic induction phenomenon.
  • An object of the present invention made in view of the above-described problems is to provide an in-wheel motor system that can stably drive an in-wheel motor and can supply power from a road surface even when a position shift of a transmission / reception coil occurs. There is.
  • an in-wheel motor system includes a power transmission unit that uses a resonance phenomenon using a magnetic field, and the power transmission unit powers an in-wheel motor built in a wheel from a vehicle body. Is transmitted wirelessly.
  • a communication unit that communicates between the vehicle body and the wheel is provided, and the communication unit communicates a control signal for driving the in-wheel motor.
  • the in-wheel motor a motor conversion unit that converts the first DC voltage during power running into an AC voltage for a motor that drives the in-wheel motor, A wheel-side capacitor that smoothes the first DC voltage; and a wheel-side converter that converts the first AC voltage from the wheel-side coil into the first DC voltage during powering, and the power transmission unit includes: The wheel-side coil that receives electric power wirelessly transmitted during power running on the wheel side, and a wheel-side resonance capacitor that is inserted in series between the wheel-side converter and the wheel-side coil are preferably provided.
  • the wheel side control part which controls switching of the switch with which the said wheel side conversion part is equipped is controlled with a 1st control signal
  • the said wheel side control part is said 1st It is preferable to generate the first control signal so as to control the DC voltage constant.
  • the wheel-side control unit outputs the first control signal so that a fundamental wave power factor of the first AC voltage and the current of the wheel-side coil is 1. It is preferable to produce.
  • the wheel side control unit adjusts a period in which the first AC voltage is zero by the first control signal.
  • the in-wheel motor system includes a wheel-side current detector that detects a current of the wheel-side conversion unit, and the wheel-side control unit uses the wheel-side current detector to detect the wheel-side conversion unit. It is preferable to detect the sign inversion of the current and generate the first control signal in accordance with the detected sign inversion information.
  • the in-wheel motor system further includes a voltage detector that detects the first DC voltage, and the wheel-side control unit has a detection value of the voltage detector and a target of the first DC voltage.
  • the first control signal is preferably generated according to a difference from the value.
  • the wheel-side control unit generates the first control signal according to a rotation speed and a torque command value of the in-wheel motor.
  • the in-wheel motor system includes a vehicle body side conversion unit that converts the second DC voltage from the battery into a second AC voltage and outputs the second AC voltage to the vehicle body side coil during power running, and the battery.
  • the power transmission unit includes the vehicle body side coil that wirelessly transmits power from the vehicle body during power running, and the vehicle body side resonance capacitor inserted in series between the vehicle body side conversion unit and the vehicle body side coil. Is preferred.
  • the vehicle body side control unit that controls the switching of the switch included in the vehicle body side conversion unit with a second control signal according to the control signal from the communication unit, It is preferable that the vehicle body side control unit generates the second control signal so as to control the first DC voltage to be constant.
  • the vehicle body side control unit generates the second control signal in accordance with a rotation speed and a torque command value of the in-wheel motor.
  • the in-wheel motor system further includes a vehicle body side current detector that detects a current of the vehicle body side conversion unit, wherein the vehicle body side control unit includes a detection value of the vehicle body side current detector and the in-wheel. It is preferable to generate the second control signal according to a difference between the motor rotation speed and a current target value corresponding to the torque command value.
  • the wheel side conversion unit functions as an inverter and the vehicle body side conversion unit functions as a converter during regeneration of the in-wheel motor.
  • the in-wheel motor system provides an in-wheel motor system that can stably drive an in-wheel motor and can supply power from a road surface even when a position shift of a transmission / reception coil occurs.
  • FIG. 1 is a configuration diagram of the in-wheel motor system of the present embodiment.
  • FIG. 2 is a diagram illustrating power transmission that can be performed by the in-wheel motor system of the present embodiment.
  • FIG. 3 is a diagram illustrating an implementation example of the in-wheel motor system of the present embodiment.
  • FIG. 4 is a partial configuration diagram of an in-wheel motor system using an equivalent circuit.
  • FIGS. 5A and 5B are diagrams illustrating switching states of the PWM inverter and the PWM converter.
  • 6A and 6B are diagrams for explaining the average passing current of the PWM converter.
  • 7A and 7B are block diagrams of DC link voltage stabilization control.
  • FIG. 1 is a diagram illustrating a configuration of an in-wheel motor system 1 according to the present embodiment.
  • the power transmission unit 100 and the communication unit 110 will be described as an overview of the in-wheel motor system 1 with reference to FIG.
  • the in-wheel motor system 1 includes an in-wheel motor 10 that is a motor built in a wheel, and moves the vehicle by rotating the in-wheel motor 10.
  • the in-wheel motor system 1 is installed on the vehicle body side and wheel side of the vehicle.
  • the in-wheel motor system 1 includes a power transmission unit 100 that wirelessly transmits and receives power P between the vehicle body side and the wheel side.
  • the power transmission unit 100 transmits power wirelessly using a method using a resonance phenomenon using a magnetic field.
  • the power transmission unit 100 can wirelessly transmit the necessary power P from the vehicle body side to the wheel side when the in-wheel motor 10 is powered.
  • the power transmission unit 100 can wirelessly transmit the regenerative power from the wheel side to the vehicle body side when the in-wheel motor 10 is regenerated (for example, when the vehicle is decelerated). Since the in-wheel motor system 1 wirelessly transmits and receives the power P between the vehicle body side and the wheel side of the vehicle without using a wire (wired), it is possible to improve the reliability against the risk of wire cutting.
  • the method using the resonance phenomenon using the magnetic field used by the power transmission unit 100 is selected so that sufficient power can be supplied to the in-wheel motor 10 even if the wheel is displaced relative to the vehicle body by the movement of the suspension.
  • a method generally called an electromagnetic resonance method or a magnetic field resonance coupling method can be selected.
  • magnetic resonance coupling is a circuit topology in which the resonance frequencies of the primary side (that is, the vehicle body side) and the secondary side (that is, the wheel side) are made the same.
  • the magnetic field resonance coupling method is more resistant to displacement (displacement between the vehicle body side coil 5 and the wheel side coil 6 in the example of FIG. 1) than the electromagnetic induction method.
  • the in-wheel motor system 1 wirelessly transmits power P between the vehicle body and the wheels as shown in FIG.
  • wireless transmission of electric power P from the road surface to the wheel side is also possible.
  • the power source 21 and the coil 20 in FIG. 2 are embedded in the road surface.
  • the configurations of the power source 21 and the coil 20 may be the same as those of the battery 2 and the vehicle body side coil 5 described later, respectively.
  • the other elements in FIG. 2 are denoted by the same reference numerals as those in FIG. 1 and will be described later with reference to FIG.
  • the in-wheel motor system 1 includes a communication unit 110 that wirelessly communicates a control signal CTL for driving the in-wheel motor 10 between the vehicle body side and the wheel side.
  • the communication unit 110 includes, for example, a wheel side communication unit 17 and a vehicle body side communication unit 18, and each has a wireless antenna and can transmit and receive a control signal CTL.
  • the wheel side communication unit 17 and the vehicle body side communication unit 18 are respectively connected to a wheel side control unit 13 and a vehicle body side control unit 14 which will be described later. Therefore, it is possible for the vehicle body side control unit 14 to execute control according to the rotational speed of the in-wheel motor 10 on the wheel side and the torque command value by the control signal CTL.
  • a wireless communication method of the communication unit 110 for example, Bluetooth (registered trademark), a wireless LAN standard, or the like may be used.
  • the in-wheel motor system 1 includes an in-wheel motor 10, a motor conversion unit 9 that converts the first DC voltage Vd ⁇ b> 1 into a motor AC voltage that drives the in-wheel motor 10, A wheel-side capacitor 11 that smoothes the first DC voltage Vd1, a wheel-side converter 8 that converts the first AC voltage Va1 from the wheel-side coil 6 into the first DC voltage Vd1, and a second from the battery 2.
  • the vehicle body side conversion unit 3 that converts the direct current voltage Vd2 into the second AC voltage Va2 and outputs the converted voltage to the vehicle body side coil 5 and the battery 2 are provided.
  • a capacitor 12 may be provided in parallel with the battery 2 on the vehicle body side.
  • the capacitor 12 corresponds to the wheel side capacitor 11 and is provided for stabilizing the second DC voltage Vd2.
  • the power transmission unit 100 of the in-wheel motor 10 includes a wheel side coil 6 that receives wirelessly transmitted power P on the wheel side, and a wheel side that is inserted in series between the wheel side conversion unit 8 and the wheel side coil 6.
  • a resonance capacitor 7, a vehicle body side coil 5 that wirelessly transmits power P from the vehicle body, and a vehicle body side resonance capacitor 4 inserted in series between the vehicle body side conversion unit 3 and the vehicle body side coil 5 are provided.
  • the vehicle body side coil 5 and the wheel side coil 6 are also called antennas.
  • the motor conversion unit 9 is a three-phase voltage type inverter configured with an insulated gate bipolar transistor (IGBT: Insulated Gate Bipolar Transistor), but is not limited to such a configuration. .
  • the wheel side conversion unit 8 of the in-wheel motor system 1 includes four full-bridge switches G1, G2, G3, and G4 (hereinafter referred to as switches G1 to G4).
  • the vehicle body side conversion unit 3 includes four full-bridge switches G 11, G 12, G 13, and G 14 (hereinafter referred to as switches G 11 to G 14).
  • the in-wheel motor system 1 includes a wheel side control unit 13 that controls switching of the switches G1 to G4 included in the wheel side conversion unit 8 using a first control signal CT1.
  • the in-wheel motor system 1 includes a vehicle body side control unit 14 that controls switching of the switches G11 to G14 included in the vehicle body side conversion unit 3 with a second control signal CT2.
  • the switches G1 to G4 and the switches G11 to G14 may be, for example, insulated gate bipolar transistors, but are not limited thereto.
  • the above-described components of the in-wheel motor system 1 are classified into a vehicle body side or a wheel side.
  • the battery 2, the capacitor 12, the vehicle body side conversion unit 3, the vehicle body side resonance capacitor 4, the vehicle body side coil 5, the vehicle body side control unit 14, and the vehicle body side communication unit 18 are arranged on the vehicle body side.
  • condenser 11, the wheel side conversion part 8, the wheel side resonance capacitor 7, the wheel side coil 6, the wheel side control part 13, and the wheel side communication part 17 are the wheel side. Placed in.
  • the wheel-side control unit 13 and the vehicle body-side control unit 14 generate a first control signal CT1 and a second control signal CT2, respectively, so as to control the first DC voltage Vd1 constant. Details of the first control signal CT1 and the second control signal CT2 will be described later.
  • the secondary side with respect to the fluctuation of the load (the motor conversion unit 9 and the in-wheel motor 10) and the relative displacement of the power transmission / reception coil (the vehicle body side coil 5 and the wheel side coil 6) That is, it is known that the voltage and current on the wheel side fluctuate.
  • the motor converter 9 which is a voltage type inverter that drives the in-wheel motor 10
  • the wheel side control unit 13 and the vehicle body side control unit 14 generate appropriate first control signals CT1 and second control signals CT2 to make the first DC voltage Vd1 constant.
  • at least one of the wheel-side control unit 13 and the vehicle body-side control unit 14 may perform control to make the first DC voltage Vd1 constant.
  • the wheel side control unit 13 may make the first DC voltage Vd1 constant.
  • the first AC voltage Va1 and the fundamental wave power factor of the current Ia1 of the wheel side coil 6 are set to 1.
  • the control signal CT1 may be generated.
  • the wheel side control unit 13 may adjust the period in which the first AC voltage Va1 is zero so that the fundamental wave power factor becomes 1.
  • the in-wheel motor system 1 can also be controlled by causing only the wheel side to function.
  • the wheel-side control unit 13 controls the switching of the switches G1 to G4 included in the wheel-side conversion unit 8 by using the first control signal CT1, so that the fluctuation of the electric power P can be made independent from the vehicle body side. It can be adjusted only on the wheel side.
  • the in-wheel motor system 1 is a wheel side current detector 15, the voltage detector 16, and vehicle body side current detection like FIG. A container 19 may be provided.
  • the wheel-side current detector 15 is, for example, a current sensor, detects the current Ia1 of the wheel-side coil 6, and outputs the detected value to the wheel-side control unit 13.
  • the wheel-side control unit 13 may detect the sign inversion of the current Ia1 of the wheel-side coil 6 and generate the first control signal CT1 according to the detected sign inversion information.
  • the voltage detector 16 is, for example, a voltage sensor, detects the first DC voltage Vd1, and outputs the detected value to the wheel side control unit 13.
  • the wheel side control unit 13 may generate the first control signal CT1 according to the difference between the detected value of the first DC voltage Vd1 and the target value of the first DC voltage Vd1.
  • the wheel-side control unit 13 may generate the first control signal CT1 in accordance with the rotational speed of the in-wheel motor 10 and the torque command value indicating the actual running state of the vehicle.
  • the wheel side control unit 13 may receive the rotation speed of the in-wheel motor 10 as the signal MRT and receive the torque command value from the vehicle body side as the control signal CTL.
  • the signal MRT is output from the load state detection unit (not shown) that detects the states of the motor conversion unit 9 and the in-wheel motor 10 to the wheel side control unit 13.
  • the vehicle body side control unit 14 may perform control to make the first DC voltage Vd1 constant instead of the wheel side control unit 13 or together with the wheel side control unit 13.
  • the vehicle body side control unit 14 may receive the signal MRT from the vehicle body side communication unit 18 and generate the second control signal CT2 according to the rotational speed of the in-wheel motor 10 and the torque command value.
  • the wheel side control unit 13 includes the signal MRT in the control signal CTL and wirelessly transmits the signal from the wheel side communication unit 17 to the vehicle body side communication unit 18.
  • the vehicle body side current detector 19 is, for example, a current sensor, detects the current Ia2 of the vehicle body side coil 5, and outputs the detected value to the vehicle body side control unit 14.
  • the vehicle body side control unit 14 determines the difference between the detection value of the vehicle body side current detector 19 (current Ia2 of the vehicle body side coil 5) and the current target value corresponding to the rotational speed and torque command value of the in-wheel motor 10.
  • the second control signal CT2 may be generated.
  • the in-wheel motor system 1 of the present embodiment includes a symmetrical configuration on the vehicle body side and the wheel side.
  • the vehicle body side conversion unit 3 and the wheel side conversion unit 8 have the same configuration. That is, the switches G11 to G14 correspond to the switches G1 to G4, respectively.
  • the configurations of the vehicle body side coil 5 and the wheel side coil 6 are the same, and the configurations of the vehicle body side resonance capacitor 4 and the wheel side resonance capacitor 7 are the same. That is, in the circuit configuration example of FIG. 1, there is a portion that is mirror-symmetric with respect to the virtual boundary line BD between the vehicle body side and the wheel side.
  • the in-wheel motor system 1 can transmit the power P with high efficiency not only when the in-wheel motor 10 is powered but also during regeneration.
  • the wheel side conversion unit 8 functions as an inverter and the vehicle body side conversion unit 3 functions as a converter, contrary to power running.
  • the same configuration of the vehicle body side conversion unit 3 and the wheel side conversion unit 8 means that the basic waveforms of the first control signal CT1 and the second control signal CT2 can be made the same. means. That is, it means that the wheel side control unit 13 and the vehicle body side control unit 14 can share the main part of the control.
  • FIG. 3 is an enlarged view of a part of the inside of the vehicle, and shows a vehicle body portion (left side of the paper) covered with a metal frame and one wheel (right side of the paper).
  • a unit P1 is disposed at a substantially central portion
  • a unit P2 is disposed on the wheel side of the unit P1.
  • a unit P3 is disposed in a portion close to the vehicle body
  • a unit P4 is disposed in a portion close to the wheel.
  • illustration of the battery 2 is abbreviate
  • the unit P2 in FIG. 3 is a vehicle body side coil 5
  • the unit P1 is a vehicle body side component excluding the vehicle body side coil 5 and the battery 2 (capacitor 12, vehicle body side conversion unit 3, vehicle body side resonance capacitor 4, vehicle body side A side control unit 14, a vehicle body side communication unit 18, and a vehicle body side current detector 19).
  • 3 is a wheel side coil 6
  • unit P4 is a wheel side component excluding the wheel side coil 6 (in-wheel motor 10, motor conversion unit 9, wheel side capacitor 11, wheel side conversion unit. 8, wheel side resonance capacitor 7, wheel side control unit 13, wheel side communication unit 17, wheel side current detector 15 and voltage detector 16).
  • the units P1 and P4 do not have to include all the constituent elements illustrated, but may include at least a part.
  • the in-wheel motor system 1 includes a symmetric configuration between the vehicle body side and the wheel side, which reduces the number of parts when mounted on the vehicle in a manner as shown in FIG.
  • the unit P2 that is the vehicle body side coil 5 and the unit P3 that is the wheel side coil 6 can be shared. This reduces the types of units and leads to increased production efficiency during mounting.
  • the first control signal is used for the control method of the wheel side control unit 13 and the vehicle body side control unit 14.
  • a detailed description will be given while showing waveforms of the CT1 and the second control signal CT2.
  • the shapes of the vehicle body side coil 5 and the wheel side coil 6 that are suitable for the in-wheel motor system 1 will also be described.
  • FIG. 4 is a partial configuration diagram of the in-wheel motor system 1 in which the power transmission unit 100 is replaced with an equivalent circuit.
  • the control method of the wheel side control part 13 and the vehicle body side control part 14 is demonstrated in detail using FIG.
  • the wheel side control unit 13, the vehicle body side control unit 14, and the communication unit 110 are not shown in FIG. 4, but these components are the same as those in FIG.
  • the vehicle body side conversion unit 3 and the motor conversion unit 9 are inverters, and the wheel side conversion unit 8 is a converter.
  • control is performed using a PWM signal as described later, and a voltage type inverter and converter are used. Therefore, for easy understanding, the vehicle body side conversion unit 3 is expressed as a voltage type PWM inverter, the wheel side conversion unit 8 is expressed as a voltage type PWM converter, and the motor conversion unit 9 is expressed as a three-phase voltage type PWM inverter.
  • the vehicle body side and the wheel side in FIG. 1 are expressed as a primary side and a secondary side in FIG. 4, respectively.
  • the power P is wirelessly transmitted from the primary side (that is, the vehicle body side). Then, the secondary side (that is, the wheel side) receives the electric power P.
  • the wheel side conversion unit 8 functions as an inverter, and the vehicle body side conversion unit 3 functions as a converter. Is omitted.
  • the power transmission unit 100 is replaced with an equivalent circuit composed of a resistor, a coil, and a capacitor.
  • the resistors are R 1 and R 2 resistance values
  • the coils are L m , L 1 -L m , L 2 -L m inductance values
  • the capacitors are C 1 and C 2 capacitance values, respectively.
  • the current Ia1 of the wheel side coil 6, the first AC voltage Va1, the current Ia2 of the vehicle body side coil 5, and the second AC voltage Va2 in FIG. 1 are represented by a current i conv and a voltage v, respectively.
  • conv , current i inv , and voltage v inv are represented by the wheel side capacitor 11 and the first DC voltage Vd1 in FIG. 1 .
  • the smoothing capacitor Cs and the DC link voltage Vdc respectively, in FIG.
  • the current i cin in FIG. 4 is a current flowing into the smoothing capacitor Cs, and the current I dc is a DC link current.
  • the battery 2, the capacitor 12, and the in-wheel motor 10 in FIG. 4 are the same as those in FIG.
  • the dotted line which surrounds the motor converter 9 and the in-wheel motor 10 in FIG. 4 means that these are handled as loads.
  • the voltage E of the battery 2 is converted into an alternating current having a resonance frequency by a primary-side voltage type PWM inverter (vehicle body side conversion unit 3).
  • the electric power P transmitted by the magnetic resonance coupling is converted into a direct current by the secondary side voltage type PWM converter (wheel side conversion unit 8).
  • the transmission power is controlled by controlling the duty ratio of the voltage type PWM converter and the voltage type PWM inverter by the first control signal CT1 and the second control signal CT2.
  • a three-phase voltage type PWM inverter (motor conversion unit 9) is used to drive the in-wheel motor 10 that is a load.
  • the DC link voltage V dc that is the input voltage constant.
  • the mounting space on the secondary side is particularly limited. Therefore, it is preferable that the DC link voltage V dc can be made constant only by controlling the voltage type PWM converter, for example, even when a load change occurs.
  • the duty ratio control will be described below after modeling the load and examining the equivalent circuit of the power transmission unit 100 in detail.
  • the load is modeled.
  • the fundamental wave power factor of the power receiving side rectifier circuit is 1 and there is no loss
  • the entire load including the rectifier circuit can be equivalently regarded as a pure resistance (load resistance). This is defined as equivalent load resistance RL .
  • load resistance RL is defined as equivalent load resistance RL .
  • the mechanical output Pm of the in-wheel motor 10 is expressed by the following formula (1).
  • ⁇ m is the motor efficiency
  • ⁇ inv is the inverter efficiency
  • I dc is the DC link current
  • the equivalent load resistance R L depends on the mechanical output Pm of the in-wheel motor 10.
  • the transfer function G io from the primary side voltage to the secondary side current is expressed by the following formula (3) by solving the voltage equation.
  • the coefficients are the following formulas (4) to (8), and the symbols (for example, L 1 -L m , C 1, etc.) represent the resistance value, the inductance value, and the capacitance value as described above.
  • the duty ratio of the primary side voltage type PWM inverter (vehicle body side conversion unit 3) and the secondary side voltage type PWM converter (wheel side conversion unit 8) and the DC link voltage Vdc will be described.
  • the voltage type PWM inverter and the voltage type PWM converter operate in the switching state of FIGS. 5A and 5B, respectively. That is, both the voltage type PWM inverter and the voltage type PWM converter perform switching of three levels (in the example of FIG. 5A, + E, 0 (zero), -E).
  • the duty ratio is defined as T p /(0.5T), which is the ratio of the pulse width T p to the half cycle 0.5T (see FIGS. 5A and 5B).
  • the waveform is a square wave with a voltage of ⁇ E and does not take a 0 (zero) state.
  • the fundamental wave amplitude V inv1 of the output voltage with respect to the duty ratio d inv can be obtained by the following formula (10) by Fourier series expansion.
  • the voltage-type PWM converter (wheel-side converter 8) operates in three switching modes that can be switched by the first control signal CT1 (see FIG. 1).
  • the three switching modes are indicated as mode1, mode2, and mode3, respectively.
  • the voltage type PWM inverter also has the second control signal CT2 (FIG. 1), in order to avoid redundant explanation, only the voltage-type PWM converter will be described in detail here.
  • FIG. 6A is an enlarged view of the voltage type PWM converter (wheel side conversion unit 8) of FIG. 4 and shows switches G1 to G4.
  • the three switching modes will be described with reference to FIG.
  • the first control signal CT1 (see FIG. 1) causes the voltage type PWM converter to operate in the first mode (mode1) by turning on the switch G1 and the switch G4.
  • the first control signal CT1 turns on the switch G2 and the switch G3 to operate the voltage type PWM converter in the second mode (mode 2).
  • the first mode and the second mode are modes in which a current is allowed to flow from the secondary coil to the smoothing capacitor Cs, and are connected to a load resistor.
  • the first control signal CT1 operates the voltage type PWM converter in the third mode (mode 3) by turning on the switch G2 and the switch G4.
  • the third mode is a short circuit state where the load resistance is zero.
  • the first control signal CT1 can adjust the period during which the voltage is zero by operating the voltage-type PWM converter in the third mode.
  • the load resistance is zero in the third mode. Therefore, the apparent load resistance varies depending on the ratio of the third mode. Therefore, an apparent load resistance R La according to the duty ratio d conv of the voltage-type PWM converter expressed by the following equation (11) is introduced.
  • the amplitude I conv of the input current of the voltage type PWM converter is expressed by the following equation (12), where ⁇ in is the driving angular frequency of the voltage type PWM inverter.
  • the transfer function G ioa is obtained by replacing the equivalent load resistance R L with the apparent load resistance R La .
  • the time constant of the first-order lag system of the smoothing capacitor Cs is sufficiently slow with respect to the driving frequency, the current i cin flowing into the smoothing capacitor Cs can be handled as an average value.
  • FIG. 6B is an enlarged view of the half period (0 to 0.5T) of FIG. 5B, and shows the average value of the current i cin flowing into the smoothing capacitor Cs. Since the current passes only in the section of the duty ratio d conv , that is, only in the first mode (or the second mode), the average current I Cave flowing into the smoothing capacitor Cs is expressed by the following formula (13).
  • the carrier signal is converted to the converter input current (current i conv ) so that the fundamental wave power factor at the input of the voltage type PWM converter (wheel side conversion unit 8) is 1. Need to synchronize.
  • the wheel side control unit 13 receives the current i conv detected by the wheel side current detector 15 (see FIG. 1). Then, as shown in FIG. 6A , the wheel-side control unit 13 may generate a PWM carrier with reference to the timing at which the current i conv is zero crossed .
  • the wheel side control unit 13 may detect the sign inversion of the current i conv and set the detected timing of the sign inversion as the zero cross point.
  • the stabilization control of the DC link voltage V dc will be studied focusing on the function sharing between the primary side and the secondary side.
  • a load power fluctuation load
  • the equivalent load resistance RL changes according to the power required by the load by keeping the DC link voltage V dc constant. Therefore, supply of necessary power is achieved by controlling the DC link voltage V dc to be constant.
  • the duty ratio of the voltage type PWM converter may be controlled, or the duty ratio of the voltage type PWM inverter may be controlled.
  • the in-wheel motor system 1 since the in-wheel motor system 1 performs information transmission between the primary side and the secondary side through the wireless communication by the communication unit 110, communication speed limitation and communication delay may occur. Therefore, in the in-wheel motor system 1, it is preferable to perform feedforward control with the primary-side voltage type PWM inverter and to perform feedback control with respect to the DC link voltage Vdc with the secondary-side voltage type PWM converter.
  • d convn be the nominal value of the duty ratio operated by the secondary side voltage type PWM converter (value when feedforward control by the primary side voltage type PWM inverter is ideal).
  • the command value d * inv of the duty ratio of the voltage type PWM inverter with respect to the target value V * dc of the DC link voltage is obtained from the equation (16) as the following equation (17).
  • the voltage-type PWM converter on the secondary side controls the DC link voltage V dc with two degrees of freedom using the dynamics of the smoothing capacitor Cs as a plant.
  • the secondary side voltage type PWM converter uses the transfer function from the current flowing into the smoothing capacitor Cs to the DC link voltage V dc represented by the equation (9), and uses the DC link voltage V dc in two degrees of freedom. Control the degree.
  • the transient characteristic of the equivalent circuit of the power transmission unit 100 is sufficiently faster than the response of the smoothing capacitor Cs, it can be ignored.
  • the equivalent load resistance RL the equivalent load resistance R * L is used, and the inductance value Lm is a nominal value.
  • the feedback controller of the wheel-side control unit 13 is arranged at the root of ⁇ p [rad / s] as PI control.
  • the feedforward controller of the wheel side control part 13 follows the following formula
  • the operation amount of the wheel side control unit 13 is an average current I * Cave flowing into the smoothing capacitor Cs, and the command value d * conv of the duty ratio is expressed by the following equation (22) from the equation (16).
  • FIG. 7A and FIG. 7B summarize the stabilization control of the DC link voltage V dc described above.
  • FIG. 7A shows the primary side control
  • FIG. 7B shows the secondary side control.
  • the vehicle body side control unit 14 obtains the mechanical output P * m of the in-wheel motor 10 and the target value V * dc of the DC link voltage, and the equation (2) and the above-mentioned
  • the equivalent load resistance R * L is determined based on at least one of the maps (tables).
  • the vehicle body side control unit 14 obtains a command value d * inv of the duty ratio of the voltage type PWM inverter according to the equation (17), and performs PWM control.
  • the voltage v inv is generated, and the current i conv flows to the secondary side.
  • the wheel-side control unit 13 acquires the target value V * dc of the DC link voltage, performs feedforward control according to the equation (21), and PI according to the equation (18). Take control. And the wheel side control part 13 calculates
  • the types of the vehicle body side coil 5 and the wheel side coil 6 of the in-wheel motor system 1 are not particularly limited, but the following shapes and materials are preferable. In the following, it is assumed that the vehicle body side coil 5 and the wheel side coil 6 have the same shape and material, and these are collectively referred to simply as a coil.
  • the shape of the coil may be, for example, a helical type or a flat type.
  • a flat type that is compact and hardly affected by surrounding objects is preferable.
  • litz wire is considered suitable for the coil wire from the viewpoint of heat resistance and reduction of skin effect.
  • the arrangement of the ferrite there are mainly considered a case where it is arranged on the front surface of the coil and a case where it is arranged on the back surface of the coil. According to some experiments, it was possible to increase the transmission efficiency of the power P by arranging the ferrite on the back surface of the coil. This is considered to be because a large mutual inductance can be obtained when ferrite is arranged on the back surface of the coil.
  • the in-wheel motor system 1 includes the power transmission unit 100 that uses a resonance phenomenon using a magnetic field. Since the power transmission unit 100 uses, for example, a magnetic field resonance coupling method, it is more resistant to displacement than the electromagnetic induction method. Therefore, even if the vehicle body side coil 5 and the wheel side coil 6 are displaced, the in-wheel motor 10 is driven stably. In addition, since the power transmission unit 100 using a resonance phenomenon using a magnetic field is provided, wireless transmission of power P from the road surface to the wheel side (power supply from the road surface) is also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)

Abstract

 送受信コイルの位置ずれが生じても安定してインホイールモータを駆動でき、路面からの給電も可能なインホイールモータシステムを提供する。 インホイールモータシステム1であって、磁界を用いた共振現象を利用した電力伝送部100を備え、電力伝送部100は、車体から車輪に内蔵されたインホイールモータ10に電力Pを無線送信する。また、車体と車輪の間で通信する通信部110を備え、通信部110は、インホイールモータを駆動するための制御信号CTLを通信してもよい。

Description

インホイールモータシステム 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2014−45477号(2014年3月7日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本発明は、電気自動車等のホイール内部に駆動源を配置するインホイールモータを制御するインホイールモータシステムに関するものである。
 電気自動車等において、ホイール内部に駆動源を配置するインホイールモータを備えることは、駆動力をタイヤに直接伝達できるため望ましい。従来、インホイールモータは車体側からワイヤ(有線)により電力が供給されることが一般的であった。
 電力の供給をワイヤレス(無線)化することでワイヤの切断リスクに対する信頼性の向上や路面からの給電への応用が期待できる。例えば、特許文献1は電磁誘導現象を利用した非接触式電磁給電部を備える車輪給電装置の技術について開示する。
特開2013−5544号公報
 しかし、インホイールモータはサスペンションの動きにより車体と相対変位するため、位置ずれ(具体的には送受信コイルのずれ)が生じる。電磁誘導現象を利用した非接触式電磁給電部では、位置ずれによって給電の効率が低下し、インホイールモータへ十分な給電を実行できない可能性が高い。また、同様の理由から、路面からの給電も実現が困難である。
 前記のような問題点に鑑みてなされた本発明の目的は、送受信コイルの位置ずれが生じても安定してインホイールモータを駆動でき、路面からの給電も可能なインホイールモータシステムを提供することにある。
 前記課題を解決するため、本発明に係るインホイールモータシステムは、磁界を用いた共振現象を利用した電力伝送部を備え、前記電力伝送部は、車体から車輪に内蔵されたインホイールモータに電力を無線送信する。
 また、本発明に係るインホイールモータシステムにおいて、前記車体と前記車輪の間で通信する通信部を備え、前記通信部は、前記インホイールモータを駆動するための制御信号を通信することが好ましい。
 また、本発明に係るインホイールモータシステムにおいて、前記インホイールモータと、力行時に第1の直流電圧を、前記インホイールモータを駆動するモータ用交流電圧に変換するモータ用変換部と、力行時に前記第1の直流電圧を平滑化する車輪側コンデンサと、力行時に車輪側コイルからの第1の交流電圧を前記第1の直流電圧に変換する車輪側変換部と、を備え、前記電力伝送部は、力行時に無線送信された電力を車輪側で受け取る前記車輪側コイルと、前記車輪側変換部と前記車輪側コイルの間に直列に挿入される車輪側共振コンデンサと、を備えることが好ましい。
 また、本発明に係るインホイールモータシステムにおいて、前記車輪側変換部が備えるスイッチの切り替えを、第1の制御信号で制御する車輪側制御部を備え、前記車輪側制御部は、前記第1の直流電圧を一定に制御するように前記第1の制御信号を生成することが好ましい。
 また、本発明に係るインホイールモータシステムにおいて、前記車輪側制御部は、前記第1の交流電圧と前記車輪側コイルの電流の基本波力率が1になるように前記第1の制御信号を生成することが好ましい。
 また、本発明に係るインホイールモータシステムにおいて、前記車輪側制御部は、前記第1の制御信号によって前記第1の交流電圧が零である期間を調整することが好ましい。
 また、本発明に係るインホイールモータシステムにおいて、前記車輪側変換部の電流を検出する車輪側電流検出器を備え、前記車輪側制御部は、前記車輪側電流検出器により前記車輪側変換部の電流の符号反転を検出し、検出した符号反転の情報に応じて前記第1の制御信号を生成することが好ましい。
 また、本発明に係るインホイールモータシステムにおいて、前記第1の直流電圧を検出する電圧検出器を備え、前記車輪側制御部は、前記電圧検出器の検出値と前記第1の直流電圧の目標値との差分に応じて前記第1の制御信号を生成することが好ましい。
 また、本発明に係るインホイールモータシステムにおいて、前記車輪側制御部は、前記インホイールモータの回転数およびトルク指令値に応じて、前記第1の制御信号を生成することが好ましい。
 また、本発明に係るインホイールモータシステムにおいて、力行時にバッテリからの第2の直流電圧を第2の交流電圧に変換して車体側コイルに出力する車体側変換部と、前記バッテリと、を備え、前記電力伝送部は、力行時に前記車体から電力を無線送信する前記車体側コイルと、前記車体側変換部と前記車体側コイルの間に直列に挿入される車体側共振コンデンサと、を備えることが好ましい。
 また、本発明に係るインホイールモータシステムにおいて、前記車体側変換部が備えるスイッチの切り替えを、前記通信部からの制御信号に応じて、第2の制御信号で制御する車体側制御部を備え、前記車体側制御部は、前記第1の直流電圧を一定に制御するように前記第2の制御信号を生成することが好ましい。
 また、本発明に係るインホイールモータシステムにおいて、前記車体側制御部は、前記インホイールモータの回転数およびトルク指令値に応じて、前記第2の制御信号を生成することが好ましい。
 また、本発明に係るインホイールモータシステムにおいて、前記車体側変換部の電流を検出する車体側電流検出器を備え、前記車体側制御部は、前記車体側電流検出器の検出値と前記インホイールモータの回転数およびトルク指令値に応じた電流目標値との差分に応じて、前記第2の制御信号を生成することが好ましい。
 また、本発明に係るインホイールモータシステムにおいて、前記インホイールモータの回生時に、前記車輪側変換部はインバータとして機能し、前記車体側変換部はコンバータとして機能することが好ましい。
 本発明に係るインホイールモータシステムによれば、送受信コイルの位置ずれが生じても安定してインホイールモータを駆動でき、路面からの給電も可能なインホイールモータシステムが提供される。
図1は、本実施形態のインホイールモータシステムの構成図である。 図2は、本実施形態のインホイールモータシステムが実行可能な電力送信を示す図である。 図3は、本実施形態のインホイールモータシステムの実装例を示す図である。 図4は、等価回路を用いたインホイールモータシステムの部分構成図である。 図5(A)および図5(B)はPWMインバータおよびPWMコンバータのスイッチング状態を説明する図である。 図6(A)および図6(B)はPWMコンバータの平均通過電流を説明するための図である。 図7(A)および図7(B)はDCリンク電圧安定化制御のブロック図である。
(全体構成)
 本発明に係るインホイールモータシステム1の実施形態について、図面を参照して説明する。インホイールモータシステム1は車輪を備える様々な移動体で使用可能であるが、本実施形態では車両に使用されているとして以下に説明する。図1は、本実施形態に係るインホイールモータシステム1の構成を示す図である。まず、図1を参照して、インホイールモータシステム1の概略として、電力伝送部100と通信部110について説明する。
 インホイールモータシステム1は、車輪に内蔵されたモータであるインホイールモータ10を備え、インホイールモータ10を回転させることで車両を移動させる。インホイールモータシステム1は車両の車体側および車輪側に装備される。そして、インホイールモータシステム1は、車体側と車輪側との間で電力Pを無線で送受信する電力伝送部100を備える。
 電力伝送部100は、磁界を用いた共振現象を利用した方式を用いて無線で送電する。電力伝送部100は、インホイールモータ10の力行時に、必要な電力Pを車体側から車輪側へ無線送信できる。また、電力伝送部100は、インホイールモータ10の回生時(例えば車両の減速時等)に、回生電力を車輪側から車体側へと無線送信できる。インホイールモータシステム1は車両の車体側と車輪側との電力Pの送受信を、ワイヤ(有線)を使わずに無線で行うため、ワイヤの切断リスクに対する信頼性の向上が可能である。
 ここで、電力伝送部100が用いる磁界を用いた共振現象を利用した方式は、車輪がサスペンションの動きにより車体と相対変位してもインホイールモータ10へ十分な給電を実行できるものが選択される。例えば、一般に電磁共鳴方式または磁界共振結合方式と呼ばれる方式を選択することができる。磁界共振結合は、電磁誘導とは異なり、一次側(すなわち車体側)と二次側(すなわち車輪側)の共振周波数を同じにした回路トポロジーである。磁界共振結合方式は電磁誘導方式と比べて位置ずれ(図1の例では車体側コイル5と車輪側コイル6とのずれ)に強い。電磁誘導方式の場合、少しの位置ずれでも十分な電力Pの送信ができなくなる。一方、磁界共振結合方式は、コイルのQ(図1の例では車体側コイル5および車輪側コイル6のQ)が高ければ、結合係数が低下しても高い伝送効率で電力Pの送信ができることが知られている。
 電力伝送部100が磁界を用いた共振現象を利用した方式を用いることにより、本発明に係るインホイールモータシステム1は、図2に示されるように、車体と車輪との間で電力Pの無線供給が可能であるだけでなく、路面から車輪側への電力Pの無線送信(路面からの給電)も可能である。図2の電源21とコイル20は路面に埋め込まれている。なお、電源21、コイル20の構成は、それぞれ後述するバッテリ2、車体側コイル5と同じであってもよい。また、図2の他の要素については図1と同じ符号を付しており、図1を参照して後述するので、ここでは言及しない。
 再び図1を参照する。インホイールモータシステム1は、車体側と車輪側との間でインホイールモータ10を駆動するための制御信号CTLを無線で通信する通信部110を備える。通信部110は、例えば車輪側通信部17と車体側通信部18とを備え、それぞれが無線アンテナを有しており制御信号CTLを送受信できる。車輪側通信部17、車体側通信部18はそれぞれ後述する車輪側制御部13、車体側制御部14と接続されている。そのため、制御信号CTLによって、車体側制御部14が例えば車輪側のインホイールモータ10の回転数およびトルク指令値に応じた制御を実行することも可能である。なお、通信部110の無線通信の方式としては、例えばブルートゥース(Bluetooth(登録商標))、や無線LANの規格等が用いられてもよい。
 ここで、インホイールモータシステム1の全体構成の詳細について説明するが、以下において回生時との明記がなければ、インホイールモータ10の力行時であることを前提とした説明である。図1に示されるように、インホイールモータシステム1は、インホイールモータ10と、第1の直流電圧Vd1をインホイールモータ10を駆動するモータ用交流電圧に変換するモータ用変換部9と、第1の直流電圧Vd1を平滑化する車輪側コンデンサ11と、車輪側コイル6からの第1の交流電圧Va1を第1の直流電圧Vd1に変換する車輪側変換部8と、バッテリ2からの第2の直流電圧Vd2を第2の交流電圧Va2に変換して車体側コイル5に出力する車体側変換部3と、バッテリ2と、を備える。また、車体側にバッテリ2と並列にコンデンサ12が備えられてもよい。コンデンサ12は車輪側コンデンサ11に対応し、第2の直流電圧Vd2の安定化のために設けられる。また、インホイールモータ10の電力伝送部100は、無線送信された電力Pを車輪側で受け取る車輪側コイル6と、車輪側変換部8と車輪側コイル6の間に直列に挿入される車輪側共振コンデンサ7と、車体から電力Pを無線送信する車体側コイル5と、車体側変換部3と車体側コイル5の間に直列に挿入される車体側共振コンデンサ4と、を備える。なお、車体側コイル5、車輪側コイル6はアンテナとも呼ばれる。また、図1の例では、モータ用変換部9は絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)で構成された三相電圧型インバータであるが、このような構成に限定されるものではない。
 本実施形態において、インホイールモータシステム1の車輪側変換部8は、フルブリッジの4つのスイッチG1、G2、G3、G4(以下、スイッチG1~G4と表記する)で構成される。また、車体側変換部3も、車輪側変換部8と同様に、フルブリッジの4つのスイッチG11、G12、G13、G14(以下、スイッチG11~G14と表記する)で構成される。インホイールモータシステム1は、車輪側変換部8が備えるスイッチG1~G4の切り替えを第1の制御信号CT1で制御する車輪側制御部13を備える。また、インホイールモータシステム1は、車体側変換部3が備えるスイッチG11~G14の切り替えを第2の制御信号CT2で制御する車体側制御部14を備える。スイッチG1~G4、スイッチG11~G14は、例えば絶縁ゲートバイポーラトランジスタであってもよいが、これに限定されるものではない。
 図1に示されるように、インホイールモータシステム1の前記の構成要素は、車体側または車輪側に区分される。具体的には、バッテリ2、コンデンサ12、車体側変換部3、車体側共振コンデンサ4、車体側コイル5、車体側制御部14、および車体側通信部18は車体側に配置される。そして、インホイールモータ10、モータ用変換部9、車輪側コンデンサ11、車輪側変換部8、車輪側共振コンデンサ7、車輪側コイル6、車輪側制御部13、および車輪側通信部17は車輪側に配置される。電力Pを送受信する車体側コイル5と車輪側コイル6との間にワイヤ(有線)による接続はなく、また、制御信号CTLを送受信する車輪側通信部17と車体側通信部18との間にもワイヤ(有線)による接続はない。よって、前記のようにワイヤの切断リスクに対する信頼性の向上が可能であり、路面からの給電も可能である(図2参照)。
 車輪側制御部13、車体側制御部14は、第1の直流電圧Vd1を一定に制御するように、それぞれ第1の制御信号CT1、第2の制御信号CT2を生成する。第1の制御信号CT1、第2の制御信号CT2の詳細については後述する。
 磁界共振結合方式による電力Pの無線送信では負荷(モータ用変換部9およびインホイールモータ10)の変動や送受電コイル(車体側コイル5および車輪側コイル6)の相対変位に対して二次側、すなわち車輪側の電圧および電流が変動することが知られている。これに対し、インホイールモータ10を駆動する電圧型のインバータであるモータ用変換部9においては一般にDCリンク電圧、すなわち第1の直流電圧Vd1が一定に保たれる必要がある。そのため、車輪側制御部13、車体側制御部14は、適切な第1の制御信号CT1、第2の制御信号CT2を生成して、第1の直流電圧Vd1を一定にする。なお、車輪側制御部13、車体側制御部14の少なくとも一方が、第1の直流電圧Vd1を一定にする制御を実行すればよい。
 例えば、車輪側制御部13が、第1の直流電圧Vd1を一定にするために、第1の交流電圧Va1と車輪側コイル6の電流Ia1の基本波力率が1になるように第1の制御信号CT1を生成してもよい。このとき、車輪側制御部13は、第1の交流電圧Va1が零である期間を調整し、前記の基本波力率が1になるようにしてもよい。
 なお、インホイールモータシステム1は、車輪側のみを機能させて制御することも可能である。後述するように、車輪側制御部13は、第1の制御信号CT1によって車輪側変換部8が備えるスイッチG1~G4の切り替えを制御することにより、電力Pの変動を、車体側から独立して車輪側のみで調整することができる。
 また、車輪側制御部13、車体側制御部14の前記の制御に用いるために、インホイールモータシステム1は、図1のように車輪側電流検出器15、電圧検出器16、車体側電流検出器19を備えていてもよい。車輪側電流検出器15は、例えば電流センサーであって、車輪側コイル6の電流Ia1を検出し、検出値を車輪側制御部13に出力する。車輪側制御部13は、車輪側コイル6の電流Ia1の符号反転を検出し、検出した符号反転の情報に応じて第1の制御信号CT1を生成してもよい。
 また、電圧検出器16は、例えば電圧センサーであって、第1の直流電圧Vd1を検出し、検出値を車輪側制御部13に出力する。車輪側制御部13は、第1の直流電圧Vd1の検出値と、第1の直流電圧Vd1の目標値との差分に応じて第1の制御信号CT1を生成してもよい。ここで、車輪側制御部13は、車両の実際の走行状態等を示すインホイールモータ10の回転数およびトルク指令値に応じて第1の制御信号CT1を生成してもよい。このとき、車輪側制御部13は、インホイールモータ10の回転数を信号MRTとして受け取り、車体側からのトルク指令値を制御信号CTLとして受け取ってもよい。なお、信号MRTは、モータ用変換部9およびインホイールモータ10の状態を検出する負荷状態検出部(不図示)から車輪側制御部13へと出力される。
 ここで、前記のように、車体側制御部14が車輪側制御部13に代わって、または車輪側制御部13とともに第1の直流電圧Vd1を一定にする制御を行ってもよい。例えば、車体側制御部14は、車体側通信部18から信号MRTを受け取って、インホイールモータ10の回転数およびトルク指令値に応じて、第2の制御信号CT2を生成してもよい。このとき、車輪側制御部13は、制御信号CTLに信号MRTを含めて、車輪側通信部17から車体側通信部18へと無線送信させる。
 また、車体側電流検出器19は、例えば電流センサーであって、車体側コイル5の電流Ia2を検出し、検出値を車体側制御部14に出力する。車体側制御部14は、車体側電流検出器19の検出値(車体側コイル5の電流Ia2)とインホイールモータ10の回転数およびトルク指令値に応じた電流目標値との差分に応じて、第2の制御信号CT2を生成してもよい。
 ここで、本実施形態のインホイールモータシステム1は、車体側と車輪側とで対称的な構成を含む。例えば、車体側変換部3と車輪側変換部8とは構成が同じである。つまり、スイッチG11~G14は、それぞれスイッチG1~G4に対応する。また、電力伝送部100において、車体側コイル5と車輪側コイル6の構成が同じであり、車体側共振コンデンサ4と車輪側共振コンデンサ7の構成が同じである。つまり、図1の回路構成例では、車体側と車輪側との仮想境界線BDに対して鏡対称になっている部分がある。このような構成により、インホイールモータシステム1は、インホイールモータ10の力行時だけでなく、回生時にも高い効率で電力Pの送信が可能である。ここで、インホイールモータ10の回生時には、力行時とは逆に、車輪側変換部8はインバータとして機能し、車体側変換部3はコンバータとして機能する。
 また、インホイールモータシステム1において、車体側変換部3と車輪側変換部8の構成が同じであることは、第1の制御信号CT1と第2の制御信号CT2の基本波形を同じにできることを意味する。つまり、車輪側制御部13と車体側制御部14とが制御の主要部分を共通化できることを意味する。
 以上に説明したインホイールモータシステム1の構成要素は、例えば図3に示すような態様で車両に実装される。図3は、車両の内部の一部を拡大した図であり、金属の枠で覆われた車体部分(紙面左側)と1つの車輪(紙面右側)とが示されている。車体部分には、ほぼ中央部分にユニットP1が配置され、ユニットP1より車輪側にユニットP2が配置されている。また、車輪側には、車体に近い部分にユニットP3が配置され、車輪に近い部分にユニットP4が配置されている。なお、図3ではバッテリ2の図示を省略している。
 ここで、図3のユニットP2は車体側コイル5であり、ユニットP1は車体側コイル5とバッテリ2を除く車体側の構成要素(コンデンサ12、車体側変換部3、車体側共振コンデンサ4、車体側制御部14、車体側通信部18および車体側電流検出器19)を含む。また、図3のユニットP3は車輪側コイル6であり、ユニットP4は車輪側コイル6を除く車輪側の構成要素(インホイールモータ10、モータ用変換部9、車輪側コンデンサ11、車輪側変換部8、車輪側共振コンデンサ7、車輪側制御部13、車輪側通信部17、車輪側電流検出器15および電圧検出器16)を含む。なお、ユニットP1、ユニットP4は例示した全ての構成要素を含まないといけないわけではなく、少なくとも一部を含めばよい。
 ここで、前記のように、インホイールモータシステム1が車体側と車輪側とで対称的な構成を含むことは、図3に示すような態様で車両に実装される場合に部品点数の削減やユニットの共通化につながる。例えば、車体側コイル5であるユニットP2と、車輪側コイル6であるユニットP3とを共通化することが可能である。このことは、ユニットの種類を削減することとなり、実装時の生産効率を高めることにつながる。
 以上のように図1~図3を参照しながらインホイールモータシステム1の全体構成を説明したが、以下では、車輪側制御部13、車体側制御部14の制御手法について、第1の制御信号CT1、第2の制御信号CT2の波形等を示しながら詳細に説明する。また、インホイールモータシステム1に適している車体側コイル5、車輪側コイル6の形状等についても説明する。
(制御手法の詳細)
 図4は、電力伝送部100を等価回路に置き換えたインホイールモータシステム1の部分構成図である。以下では、図4を用いて、車輪側制御部13、車体側制御部14の制御手法について詳細に説明する。なお、見やすさのために、図4では車輪側制御部13、車体側制御部14および通信部110の図示を省略しているが、これらの構成要素については図1と同じである。
 ここでは、インホイールモータ10の力行時の動作を説明する。車体側変換部3、モータ用変換部9はインバータ、車輪側変換部8はコンバータである。ここで、図4の例では、後述するようにPWM信号を用いて制御を行い、電圧型のインバータ、コンバータを用いる。よって、説明をわかりやすくするため、車体側変換部3を電圧型PWMインバータ、車輪側変換部8を電圧型PWMコンバータ、モータ用変換部9を三相電圧型PWMインバータと表現する。また、図1の車体側、車輪側を図4ではそれぞれ一次側、二次側と表現する。インホイールモータ10の力行時には、一次側(すなわち車体側)から電力Pが無線送信される。そして、二次側(すなわち車輪側)が電力Pを受け取る。なお、インホイールモータ10の回生時には、車輪側変換部8はインバータ、車体側変換部3はコンバータとして機能するが、車輪側制御部13、車体側制御部14の制御手法は同じであるため説明を省略する。
 図4では、電力伝送部100は抵抗、コイル、コンデンサで構成される等価回路に置き換えている。この等価回路において、抵抗はそれぞれR、Rの抵抗値、コイルはそれぞれ、L、L−L、L−Lのインダクタンス値、コンデンサはそれぞれC、Cの容量値を有する。
 また、説明をわかりやすくするため、図1における車輪側コイル6の電流Ia1、第1の交流電圧Va1、車体側コイル5の電流Ia2、第2の交流電圧Va2は、それぞれ電流iconv、電圧vconv、電流iinv、電圧vinvと言い換えている。また、図1における車輪側コンデンサ11、第1の直流電圧Vd1も、図4において、それぞれ平滑コンデンサCs、DCリンク電圧Vdcと言い換えている。
 図4の電流icinは平滑コンデンサCsに流れ込む電流であり、電流IdcはDCリンク電流である。なお、図4におけるバッテリ2、コンデンサ12、インホイールモータ10については図1と同じであり説明を省略する。また、図4でモータ用変換部9とインホイールモータ10とを囲む点線は、これらが負荷として扱われることを意味する。
 図4に示されるインホイールモータシステム1において、まず、バッテリ2の電圧Eは、一次側の電圧型PWMインバータ(車体側変換部3)により共振周波数の交流に変換される。磁界共振結合により伝送された電力Pは二次側の電圧型PWMコンバータ(車輪側変換部8)で直流に変換される。インホイールモータシステム1では、第1の制御信号CT1、第2の制御信号CT2によって、電圧型PWMコンバータ、電圧型PWMインバータのデューティー比を制御することで伝送電力を制御する。負荷であるインホイールモータ10の駆動には三相電圧型PWMインバータ(モータ用変換部9)を用いる。したがって、その入力電圧であるDCリンク電圧Vdcを一定に保つ必要がある。ここで、インホイールモータシステム1においては、特に二次側の搭載スペースが限られている。そのため、負荷変動が生じた場合でも、例えば電圧型PWMコンバータの制御のみでDCリンク電圧Vdcを一定にできることが好ましい。以下に、負荷をモデル化し、電力伝送部100の等価回路について詳細に検討した上で、前記のデューティー比の制御について説明する。
 まず、負荷についてモデル化する。一般に、受電側整流回路の基本波力率が1で損失がないと仮定すると、等価的に、整流回路を含めた負荷全体を純抵抗(負荷抵抗)とみなせることが知られている。これを等価負荷抵抗Rと定義する。三相電圧型PWMインバータで駆動されるインホイールモータ10の負荷に関して、インホイールモータ10の機械出力Pmは以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、ηはモータ効率、ηinvはインバータ効率、IdcはDCリンク電流である。
 式(1)で等価負荷抵抗Rを用いると以下の式(2)となる。
Figure JPOXMLDOC01-appb-M000002
 DCリンク電圧Vdcが一定に保たれている場合、等価負荷抵抗Rはインホイールモータ10の機械出力Pmに依存する。等価負荷抵抗Rを導入することで、負荷(モータ用変換部9、インホイールモータ10)を純抵抗負荷と同様の解析手法で取り扱うことができる。
 次に、電力伝送部100の等価回路について詳細に検討する。この等価回路において、一次側電圧から二次側電流への伝達関数Gioはそれぞれ電圧方程式を解くことにより以下の式(3)で表される。ここで、各係数は以下の式(4)~式(8)であり、その記号(例えばL−L、Cなど)は前記のように抵抗値、インダクタンス値、容量値を表す。
Figure JPOXMLDOC01-appb-M000003
 共振周波数におけるゲインに比べ高調波成分のゲインは十分に小さいため、以下では基本波である共振周波数成分のみに着目する。ここで、平滑コンデンサCsのダイナミクスについて検討する。平滑コンデンサCs(図1の車輪側コンデンサ11)に流れ込む電流icinから等価負荷抵抗Rの端子電圧(DCリンク電圧Vdc)までの伝達関数は、以下の式(9)のように一次遅れ系で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 以下では、一次側の電圧型PWMインバータ(車体側変換部3)、二次側の電圧型PWMコンバータ(車輪側変換部8)のデューティー比とDCリンク電圧Vdcの関係について説明する。電圧型PWMインバータ、電圧型PWMコンバータはそれぞれ図5(A)、図5(B)のスイッチング状態で動作する。つまり、電圧型PWMインバータ、電圧型PWMコンバータはともに3レベル(図5(A)の例では、+E、0(零)、−E)のスイッチングをする。ここで、デューティー比を半周期0.5Tに対するパルス幅Tの比であるT/(0.5T)と定義する(図5(A)、図5(B)参照)。例えば、一次側の電圧型PWMインバータにおいてデューティー比が1.0である場合、波形は電圧が±Eの矩形波になり、0(零)の状態をとらない。
 電圧型PWMインバータについて基本波のみに着目すると、デューティー比dinvに対する、その出力電圧の基本波振幅Vinv1はフーリエ級数展開により以下の式(10)で求められる。
Figure JPOXMLDOC01-appb-M000005
 ここで、図5(B)に示されるように、電圧型PWMコンバータ(車輪側変換部8)は第1の制御信号CT1(図1参照)によって切り替え可能な3つのスイッチングモードで動作する。図5(B)では3つのスイッチングモードは、それぞれmode1、mode2、mode3と示されている。なお、前記のように電圧型PWMコンバータ(車輪側変換部8)と電圧型PWMインバータ(車体側変換部3)とは同じ構成であるため、電圧型PWMインバータも第2の制御信号CT2(図1参照)によって3つのスイッチングモードで動作させることができるが、重複説明回避のために、ここでは電圧型PWMコンバータについてのみ詳細に説明する。
 図6(A)は、図4の電圧型PWMコンバータ(車輪側変換部8)の部分を拡大してスイッチG1~G4を示した図である。図6(A)を参照して3つのスイッチングモードについて説明する。第1の制御信号CT1(図1参照)は、スイッチG1およびスイッチG4をオン状態とすることで電圧型PWMコンバータを第1モード(mode1)で動作させる。また、第1の制御信号CT1は、スイッチG2およびスイッチG3をオン状態とすることで電圧型PWMコンバータを第2モード(mode2)で動作させる。第1モードおよび第2モードは、二次側のコイルから平滑コンデンサCsに電流を流入させるモードであり、負荷抵抗に接続された状態である。一方、第1の制御信号CT1は、スイッチG2およびスイッチG4をオン状態とすることで電圧型PWMコンバータを第3モード(mode3)で動作させる。第3モードは、短絡状態であって、負荷抵抗がゼロの状態である。第1の制御信号CT1は、電圧型PWMコンバータを第3モードで動作させることで、電圧が零である期間を調整することが可能である。
 第1モードおよび第2モードと異なり、第3モードでは負荷抵抗がゼロとなる。そのため、第3モードの割合によってみかけの負荷抵抗が変動する。そこで、下記の式(11)で示される、電圧型PWMコンバータのデューティー比dconvに応じた、みかけの負荷抵抗RLaを導入する。
Figure JPOXMLDOC01-appb-M000006
 電圧型PWMコンバータの入力電流の振幅Iconvは、電圧型PWMインバータの駆動角周波数をωinとすると下記の式(12)で表される。
Figure JPOXMLDOC01-appb-M000007
 ただし、伝達関数Gioaは、等価負荷抵抗Rをみかけの負荷抵抗RLaで置き換えたものである。ここで、平滑コンデンサCsの一次遅れ系の時定数が駆動周波数に対して十分遅い場合、平滑コンデンサCsに流れ込む電流icinは平均値で取り扱うことができる。
 ここで、図6(B)は、図5(B)の半周期(0~0.5T)を拡大して、平滑コンデンサCsに流れ込む電流icinの平均値を重ねて示したものである。デューティー比dconvの区間のみ、つまり、第1モード(または第2モード)でのみ電流が通過するため、平滑コンデンサCsに流れ込む平均電流ICaveは下記の式(13)で表される。
Figure JPOXMLDOC01-appb-M000008
 式(10)および式(12)を用いて、式(13)を再度計算すると、下記の式(14)が得られる。
Figure JPOXMLDOC01-appb-M000009
 従って、DCリンク電圧Vdcの定常値は、下記の式(15)のようになる。
Figure JPOXMLDOC01-appb-M000010
 ここで、式(15)のR|Gioa(jωin)|の項において、負荷変動やコイル相対変位により動的に変化するのは、等価負荷抵抗R、電圧型PWMコンバータのデューティー比dconvおよび電力伝送部100のコイルのインダクタンス値のLである。そこで、これをK(R、L、dconv)に置き換えると下記の式(16)が得られる。
Figure JPOXMLDOC01-appb-M000011
 スイッチング信号(第1の制御信号CT1)の生成においては、電圧型PWMコンバータ(車輪側変換部8)の入力における基本波力率を1とするためキャリア信号をコンバータ入力電流(電流iconv)と同期させる必要がある。その手法として、車輪側制御部13は、車輪側電流検出器15(図1参照)によって検出された電流iconvを受け取る。そして、図6(A)に示すように、車輪側制御部13は、電流iconvがゼロクロス(zero cross)するタイミングを基準としてPWMキャリア(carrier)を生成すればよい。なお、電流iconvのゼロクロス点を検出する具体的な手法として、車輪側制御部13は、電流iconvの符号反転を検出し、検出した符号反転のタイミングをゼロクロス点とすればよい。
 次に、DCリンク電圧Vdcの安定化制御について、一次側と二次側の機能分担を中心に検討する。インホイールモータ10のように電力が変動する負荷(電力変動負荷)への電力伝送では、負荷が必要な電力を瞬時に供給する必要がある。ここで負荷として電圧型インバータを含む場合、DCリンク電圧Vdcを一定に保つことで、負荷が必要とする電力に応じて等価負荷抵抗Rが変化する。そのため、DCリンク電圧Vdcを一定に保つように制御することで必要な電力の供給が達成される。ここで、インホイールモータシステム1では、前記のように、電圧型PWMコンバータのデューティー比を制御してもよいし、電圧型PWMインバータのデューティー比を制御してもよい。つまり、一次側でも二次側でも制御できるという2つの制御自由度を有している。しかし、インホイールモータシステム1は、一次側と二次側の間の情報伝達を通信部110によって無線通信で行うため、通信速度の制限、通信の遅延が生じ得る。そこで、インホイールモータシステム1では、一次側の電圧型PWMインバータでフィードフォワード制御をし、二次側の電圧型PWMコンバータでDCリンク電圧Vdcについてフィードバック制御をすることが好ましい。
 まず、一次側の電圧型PWMインバータでのフィードフォワード制御について説明する。モータの角速度が無線通信により取得可能でモータのトルク応答が指令値に対して十分速い場合、式(2)よりインホイールモータ10の機械出力PmとDCリンク電圧の目標値V dcから等価負荷抵抗R が決まる。実際にはインホイールモータ10、三相電圧型インバータの効率特性を考慮する必要があるため、あらかじめインホイールモータ10の機械出力Pmに対する等価負荷抵抗R のマップ(テーブル)を用意することが好ましい。このとき、前記のインダクタンス値のLm(相互インダクタンス)はノミナル値を用いてもよい。
 ここで、一次側から送る電力Pは二次側でフィードバック制御を行なう余地を持たせる。二次側の電圧型PWMコンバータで操作されるデューティー比のノミナル値(一次側の電圧型PWMインバータでのフィードフォワード制御が理想的である場合の値)をdconvnとする。このとき、DCリンク電圧の目標値V dcに対する電圧型PWMインバータのデューティー比の指令値d invは式(16)より以下の式(17)のように求められる。
Figure JPOXMLDOC01-appb-M000012
 一方、二次側の電圧型PWMコンバータは、平滑コンデンサCsのダイナミクスをプラントとしてDCリンク電圧Vdcを二自由度制御する。つまり、二次側の電圧型PWMコンバータは、式(9)で表される、平滑コンデンサCsに流入する電流からDCリンク電圧Vdcへの伝達関数を用いて、DCリンク電圧Vdcを二自由度制御する。ここで、電力伝送部100を等価回路の過渡特性は平滑コンデンサCsの応答に比べ十分に速いので無視することができる。また、等価負荷抵抗Rとしては、前記の等価負荷抵抗R を用いて、前記のインダクタンス値のLmはノミナル値を用いる。例えば、車輪側制御部13のフィードバックコントローラはPI制御として、−p[rad/s]の重根に極配置する。
Figure JPOXMLDOC01-appb-M000013
 また、車輪側制御部13のフィードフォワードコントローラは、逆プラントとカットオフ周波数ω[rad/s]のローパスフィルタにより下記の式(21)に従う。
Figure JPOXMLDOC01-appb-M000014
 車輪側制御部13の操作量は平滑コンデンサCsに流れ込む平均電流I Caveであり、デューティー比の指令値d convは式(16)より下記の式(22)となる。
Figure JPOXMLDOC01-appb-M000015
 図7(A)、図7(B)は、以上に説明したDCリンク電圧Vdcの安定化制御についてまとめたものである。図7(A)は一次側の制御を、図7(B)は二次側の制御を表している。まず、図7(A)のように、車体側制御部14は、インホイールモータ10の機械出力Pm、DCリンク電圧の目標値V dcを取得して、式(2)と前記のマップ(テーブル)の少なくとも一方に基づいて等価負荷抵抗R を決定する。その後、車体側制御部14は、式(17)に従って電圧型PWMインバータのデューティー比の指令値d invを求めて、PWM制御を行う。このとき、電圧vinvが生成されて、二次側に電流iconvが流れることになる。
 また、図7(B)のように、車輪側制御部13は、DCリンク電圧の目標値V dcを取得して、式(21)に従ってフィードフォワード制御を行うとともに、式(18)に従ってPI制御を行う。そして、車輪側制御部13は、式(22)に従って電圧型PWMコンバータのデューティー比の指令値d convを求めて、PWM制御を行う。そして、DCリンク電圧Vdcが生成され、その値はフィードバックされる。
(コイルの形状と材質)
 インホイールモータシステム1の車体側コイル5、車輪側コイル6は、その種類が特に限定されるものではないが、以下のような形状、材質が好ましい。なお、以下では車体側コイル5、車輪側コイル6は同じ形状、材質であるとし、これらをまとめて単にコイルという。
 まず、コイルの形状は例えばヘリカル型やフラット型が考えられるが、送受電コイルの搭載スペースが図3のように限られているため、コンパクトで周囲物体の影響を受けにくいフラット型が好ましい。
 また、コイルの線材には耐熱性や表皮効果の低減の観点から例えばリッツ線が適していると考えられる。ここで、漏れ磁束を低減するために、コイルにはフェライトを挿入することが好ましい。フェライトの配置としては、コイルの前面に配置する場合とコイルの背面に配置する場合が主に考えられる。いくつかの実験によると、コイルの背面にフェライトを配置することで、電力Pの送信の効率を高めることができた。これは、コイルの背面にフェライトを配置した場合に、大きな相互インダクタンスを得られるからだと考えられる。
 以上のように、本実施形態に係るインホイールモータシステム1は、磁界を用いた共振現象を利用した電力伝送部100を備える。電力伝送部100は、例えば磁界共振結合方式を用いるため、電磁誘導方式と比べて位置ずれに強い。そのため、車体側コイル5と車輪側コイル6とのずれが生じても安定してインホイールモータ10が駆動される。また、磁界を用いた共振現象を利用した電力伝送部100を備えるため、路面から車輪側への電力Pの無線送信(路面からの給電)も可能である。
 本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。
1   インホイールモータシステム
2   バッテリ
3   車体側変換部
4   車体側共振コンデンサ
5   車体側コイル
6   車輪側コイル
7   車輪側共振コンデンサ
8   車輪側変換部
9   モータ用変換部
10  インホイールモータ
11  車輪側コンデンサ
12  コンデンサ
13  車輪側制御部
14  車体側制御部
15  車輪側電流検出器
16  電圧検出器
17  車輪側通信部
18  車体側通信部
19  車体側電流検出器
20  コイル
21  電源
100 電力伝送部
110 通信部

Claims (14)

  1.  磁界を用いた共振現象を利用した電力伝送部を備え、
     前記電力伝送部は、車体から車輪に内蔵されたインホイールモータに電力を無線送信するインホイールモータシステム。
  2.  前記車体と前記車輪の間で通信する通信部を備え、
     前記通信部は、前記インホイールモータを駆動するための制御信号を無線で通信する、請求項1に記載のインホイールモータシステム。
  3.  前記インホイールモータと、
     力行時に第1の直流電圧を、前記インホイールモータを駆動するモータ用交流電圧に変換するモータ用変換部と、
     力行時に前記第1の直流電圧を平滑化する車輪側コンデンサと、
     力行時に車輪側コイルからの第1の交流電圧を前記第1の直流電圧に変換する車輪側変換部と、を備え、
     前記電力伝送部は、
     力行時に無線送信された電力を車輪側で受け取る前記車輪側コイルと、
     前記車輪側変換部と前記車輪側コイルの間に直列に挿入される車輪側共振コンデンサと、
    を備える、請求項2に記載のインホイールモータシステム。
  4.  前記車輪側変換部が備えるスイッチの切り替えを、第1の制御信号で制御する車輪側制御部を備え、
     前記車輪側制御部は、
     前記第1の直流電圧を一定に制御するように前記第1の制御信号を生成する、請求項3に記載のインホイールモータシステム。
  5.  前記車輪側制御部は、
     前記第1の交流電圧と前記車輪側コイルの電流の基本波力率が1になるように前記第1の制御信号を生成する、請求項4に記載のインホイールモータシステム。
  6.  前記車輪側制御部は、
     前記第1の制御信号によって前記第1の交流電圧が零である期間を調整する、請求項4または5に記載のインホイールモータシステム。
  7.  前記車輪側変換部の電流を検出する車輪側電流検出器を備え、
     前記車輪側制御部は、
     前記車輪側電流検出器により前記車輪側コイルの電流の符号反転を検出し、検出した符号反転の情報に応じて前記第1の制御信号を生成する、請求項4または5に記載のインホイールモータシステム。
  8.  前記第1の直流電圧を検出する電圧検出器を備え、
     前記車輪側制御部は、
     前記電圧検出器の検出値と前記第1の直流電圧の目標値との差分に応じて前記第1の制御信号を生成する、請求項4または5に記載のインホイールモータシステム。
  9.  前記車輪側制御部は、
     前記インホイールモータの回転数およびトルク指令値に応じて、前記第1の制御信号を生成する、請求項8に記載のインホイールモータシステム。
  10.  力行時にバッテリからの第2の直流電圧を第2の交流電圧に変換して車体側コイルに出力する車体側変換部と、
     前記バッテリと、を備え、
     前記電力伝送部は、
     力行時に前記車体から電力を無線送信する前記車体側コイルと、
     前記車体側変換部と前記車体側コイルの間に直列に挿入される車体側共振コンデンサと、を備える、請求項3から5のいずれか1項に記載のインホイールモータシステム。
  11.  前記車体側変換部が備えるスイッチの切り替えを、前記通信部からの制御信号に応じて、第2の制御信号で制御する車体側制御部を備え、
     前記車体側制御部は、
     前記第1の直流電圧を一定に制御するように前記第2の制御信号を生成する、請求項10に記載のインホイールモータシステム。
  12.  前記車体側制御部は、
     前記インホイールモータの回転数およびトルク指令値に応じて、前記第2の制御信号を生成する、請求項11に記載のインホイールモータシステム。
  13.  前記車体側変換部の電流を検出する車体側電流検出器を備え、
     前記車体側制御部は、
     前記車体側電流検出器の検出値と前記インホイールモータの回転数およびトルク指令値に応じた電流目標値との差分に応じて、前記第2の制御信号を生成する、請求項11に記載のインホイールモータシステム。
  14.  前記インホイールモータの回生時に、
     前記車輪側変換部はインバータとして機能し、前記車体側変換部はコンバータとして機能する、請求項10に記載のインホイールモータシステム。
PCT/JP2015/054897 2014-03-07 2015-02-16 インホイールモータシステム WO2015133301A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15759129.8A EP3115250B1 (en) 2014-03-07 2015-02-16 In-wheel motor system
KR1020167027819A KR101961218B1 (ko) 2014-03-07 2015-02-16 인휠 모터 시스템
US15/123,731 US10421351B2 (en) 2014-03-07 2015-02-16 In-wheel motor system
JP2016506425A JP6219495B2 (ja) 2014-03-07 2015-02-16 インホイールモータシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014045477 2014-03-07
JP2014-045477 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133301A1 true WO2015133301A1 (ja) 2015-09-11

Family

ID=54055111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054897 WO2015133301A1 (ja) 2014-03-07 2015-02-16 インホイールモータシステム

Country Status (6)

Country Link
US (1) US10421351B2 (ja)
EP (1) EP3115250B1 (ja)
JP (1) JP6219495B2 (ja)
KR (1) KR101961218B1 (ja)
TW (1) TWI642570B (ja)
WO (1) WO2015133301A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3151381A1 (en) * 2015-10-02 2017-04-05 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
JP2017070180A (ja) * 2015-10-02 2017-04-06 パナソニックIpマネジメント株式会社 無線電力伝送システム
JP2017112711A (ja) * 2015-12-16 2017-06-22 三菱自動車工業株式会社 車両用駆動力配分装置
JP2017163802A (ja) * 2016-03-11 2017-09-14 東洋電機製造株式会社 電力伝送装置
JP2018054847A (ja) * 2016-09-28 2018-04-05 国立大学法人 東京大学 移動体装置、露光装置、フラットパネルディスプレイの製造方法、およびデバイス製造方法
JP2018183012A (ja) * 2017-04-21 2018-11-15 東洋電機製造株式会社 電力変換装置
JP2020191758A (ja) * 2019-05-23 2020-11-26 キヤノン株式会社 制御システム

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079079B (zh) * 2014-07-14 2018-02-23 南京矽力杰半导体技术有限公司 谐振型非接触供电装置、集成电路和恒压控制方法
CN104701999B (zh) * 2015-03-27 2017-12-26 南京矽力杰半导体技术有限公司 谐振型非接触供电装置、电能发射端和控制方法
JPWO2017130080A1 (ja) * 2016-01-29 2019-01-31 株式会社半導体エネルギー研究所 電力制御システム
JP6645241B2 (ja) * 2016-02-16 2020-02-14 株式会社Ihi 送電装置
US10873221B1 (en) * 2017-01-31 2020-12-22 Apple Inc. Wireless power control system
US11760439B2 (en) 2017-04-27 2023-09-19 Advancing Technologies B.V. Bicycle transmission wireless actuation system
JP7217860B2 (ja) * 2018-03-20 2023-02-06 マツダ株式会社 車両駆動装置
US10931147B2 (en) * 2018-03-29 2021-02-23 Nuvolta Technologies (Hefei) Co., Ltd. Hybrid power converter
EP3696072A1 (en) 2018-10-16 2020-08-19 Advancing Technologies B.V. Bicycle transmission actuation system
CN110422061B (zh) * 2019-07-18 2020-11-17 华中科技大学 一种无线双向电能变换拓扑及其控制方法
JP7398699B2 (ja) * 2019-10-09 2023-12-15 国立大学法人 東京大学 無線受電システム、移動体、及び車輪
JP7419021B2 (ja) * 2019-10-29 2024-01-22 キヤノン株式会社 無線装置
JP2021072671A (ja) 2019-10-29 2021-05-06 キヤノン株式会社 制御システム
US11362567B2 (en) * 2020-01-16 2022-06-14 The Boeing Company Electrical power generation from turbine engines
JP2021141757A (ja) * 2020-03-06 2021-09-16 キヤノン株式会社 無線装置
US11193426B2 (en) 2020-04-16 2021-12-07 The Boeing Company Electrically geared turbofan
CN112583285A (zh) * 2020-11-27 2021-03-30 中国科学院电工研究所 确定无线充电系统整流电路等效负载阻抗的方法及系统
CN114070166A (zh) * 2021-11-17 2022-02-18 西安交通大学 基于无线电能传输的n型开关磁阻电机驱动系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10210040A (ja) * 1997-01-20 1998-08-07 Fujitsu Ten Ltd 車載用無線多重通信装置
JP2001298879A (ja) * 2000-04-17 2001-10-26 Furukawa Electric Co Ltd:The 車両構造体モジュール
JP2008260332A (ja) * 2007-04-10 2008-10-30 Nissan Motor Co Ltd 車両無線通信システム及び車両無線通信方法
JP2012125138A (ja) * 2010-11-18 2012-06-28 Fuji Electric Co Ltd 非接触給電装置及びその制御方法
WO2013076806A1 (ja) * 2011-11-22 2013-05-30 パイオニア株式会社 車両駆動装置
JP2013172500A (ja) * 2012-02-20 2013-09-02 Sumitomo Electric Ind Ltd 電力伝送システム、送電装置及び受電装置
JP2014039469A (ja) * 2009-11-06 2014-02-27 Mitsubishi Electric Corp 設定診断装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6934167B2 (en) * 2003-05-01 2005-08-23 Delta Electronics, Inc. Contactless electrical energy transmission system having a primary side current feedback control and soft-switched secondary side rectifier
US20090143940A1 (en) * 2007-11-30 2009-06-04 James Rhodes Steering control for a vehicle
US10035387B2 (en) * 2007-11-30 2018-07-31 Volvo Lastvagnar Ab Wheel-monitoring module
JP5177751B2 (ja) * 2008-09-29 2013-04-10 ルネサスエレクトロニクス株式会社 表示駆動回路
US9561730B2 (en) * 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
JP2012157082A (ja) * 2011-01-21 2012-08-16 Nissan Motor Co Ltd 車輪給電装置
JP5562276B2 (ja) * 2011-03-07 2014-07-30 Ntn株式会社 電気自動車
JP2013005544A (ja) 2011-06-15 2013-01-07 Nissan Motor Co Ltd 車輪給電装置
JP5822951B2 (ja) * 2011-12-26 2015-11-25 パイオニア株式会社 車両駆動装置
US9660487B1 (en) * 2016-06-13 2017-05-23 Megau LLC Intelligent wireless power transferring system with automatic positioning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10210040A (ja) * 1997-01-20 1998-08-07 Fujitsu Ten Ltd 車載用無線多重通信装置
JP2001298879A (ja) * 2000-04-17 2001-10-26 Furukawa Electric Co Ltd:The 車両構造体モジュール
JP2008260332A (ja) * 2007-04-10 2008-10-30 Nissan Motor Co Ltd 車両無線通信システム及び車両無線通信方法
JP2014039469A (ja) * 2009-11-06 2014-02-27 Mitsubishi Electric Corp 設定診断装置
JP2012125138A (ja) * 2010-11-18 2012-06-28 Fuji Electric Co Ltd 非接触給電装置及びその制御方法
WO2013076806A1 (ja) * 2011-11-22 2013-05-30 パイオニア株式会社 車両駆動装置
JP2013172500A (ja) * 2012-02-20 2013-09-02 Sumitomo Electric Ind Ltd 電力伝送システム、送電装置及び受電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3115250A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3151381A1 (en) * 2015-10-02 2017-04-05 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
JP2017070180A (ja) * 2015-10-02 2017-04-06 パナソニックIpマネジメント株式会社 無線電力伝送システム
CN106560980A (zh) * 2015-10-02 2017-04-12 松下知识产权经营株式会社 无线电力传输系统
CN106560980B (zh) * 2015-10-02 2021-04-27 松下知识产权经营株式会社 无线电力传输系统
JP2017112711A (ja) * 2015-12-16 2017-06-22 三菱自動車工業株式会社 車両用駆動力配分装置
JP2017163802A (ja) * 2016-03-11 2017-09-14 東洋電機製造株式会社 電力伝送装置
JP2018054847A (ja) * 2016-09-28 2018-04-05 国立大学法人 東京大学 移動体装置、露光装置、フラットパネルディスプレイの製造方法、およびデバイス製造方法
JP2018183012A (ja) * 2017-04-21 2018-11-15 東洋電機製造株式会社 電力変換装置
JP2020191758A (ja) * 2019-05-23 2020-11-26 キヤノン株式会社 制御システム
JP7414405B2 (ja) 2019-05-23 2024-01-16 キヤノン株式会社 制御システムおよび制御方法

Also Published As

Publication number Publication date
TW201545922A (zh) 2015-12-16
US20180111473A2 (en) 2018-04-26
KR20160130836A (ko) 2016-11-14
KR101961218B1 (ko) 2019-03-22
US20170008385A1 (en) 2017-01-12
JP6219495B2 (ja) 2017-10-25
US10421351B2 (en) 2019-09-24
EP3115250A4 (en) 2018-02-21
JPWO2015133301A1 (ja) 2017-04-06
TWI642570B (zh) 2018-12-01
EP3115250A1 (en) 2017-01-11
EP3115250B1 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
JP6219495B2 (ja) インホイールモータシステム
US10097012B2 (en) Power supplying device and wireless power-supplying system
EP3215393B1 (en) Systems, apparatus and method for adaptive wireless power transfer
US10148128B2 (en) Power-supplying device, and wireless power-supplying system
JP6394632B2 (ja) ワイヤレス電力伝送システム
WO2012099169A1 (ja) 非接触給電システム
CN105703450A (zh) 基于低频pwm整流器及补偿电容的无线充电装置
JP6102898B2 (ja) 電力変換装置
EP3157136B1 (en) Wireless power transmission system
KR20170041763A (ko) 공진 주파수 보상
US9744856B2 (en) Power conversion apparatus
WO2014196239A1 (ja) 給電装置、および非接触給電システム
JP2015204639A (ja) 電力変換装置及びその制御方法
JP5888468B2 (ja) 給電装置及び非接触給電システム
CN111262235A (zh) 用于运行与直流电网连接的至少两个脉冲变换器的方法、电路组件和机动车
EP3649007B1 (en) Hybrid charging system
CN101051758B (zh) 具有充电装置的地面输送机械
Gunji et al. Fundamental research of power conversion circuit control for wireless in-wheel motor using magnetic resonance coupling
JP6369509B2 (ja) 電力変換回路
CN106464147A (zh) 频率转换器
WO2020175582A1 (ja) 無線給電ユニットおよび受電モジュール
KR20220022677A (ko) 통합형 트랜스포머, 및 이를 구비하는 전력변환장치
JPWO2019163000A1 (ja) モータ駆動システム
JP2018183012A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759129

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506425

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15123731

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015759129

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015759129

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167027819

Country of ref document: KR

Kind code of ref document: A