WO2015132960A1 - インバータ試験装置 - Google Patents

インバータ試験装置 Download PDF

Info

Publication number
WO2015132960A1
WO2015132960A1 PCT/JP2014/055995 JP2014055995W WO2015132960A1 WO 2015132960 A1 WO2015132960 A1 WO 2015132960A1 JP 2014055995 W JP2014055995 W JP 2014055995W WO 2015132960 A1 WO2015132960 A1 WO 2015132960A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
phase
command value
phase inverter
current
Prior art date
Application number
PCT/JP2014/055995
Other languages
English (en)
French (fr)
Inventor
直人 新村
岡 利明
鈴木 寛充
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2014/055995 priority Critical patent/WO2015132960A1/ja
Priority to EP14884779.1A priority patent/EP3116117B1/en
Priority to CN201480061522.0A priority patent/CN105723233B/zh
Priority to JP2016506057A priority patent/JP6186496B2/ja
Publication of WO2015132960A1 publication Critical patent/WO2015132960A1/ja
Priority to US15/258,571 priority patent/US10509079B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/443Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Definitions

  • the present invention relates to an inverter test apparatus for testing an inverter.
  • any one phase of the single-phase inverter is set to a switching state in a predetermined operation state, and the remaining one phase is set to the above-mentioned 1 It is disclosed that the phase and amplitude are adjusted so that the phase of the current is ⁇ 180 ° to 180 ° with respect to the phase voltage (see Patent Document 1).
  • An object of the present invention is to provide an inverter test apparatus capable of testing an inverter under energization conditions close to reality.
  • An inverter test apparatus is an inverter test apparatus that tests a first single-phase inverter, a DC power source that supplies DC power to the first single-phase inverter, and the first A second single-phase inverter connected to the DC side of the single-phase inverter; an inductor connected between the AC side of the first single-phase inverter and the AC side of the second single-phase inverter; First control means for controlling the AC voltage of the first single-phase inverter to a constant frequency with a constant amplitude, current detection means for detecting a current flowing through the inductor, and controlling a current detected by the current detection means As described above, based on the phase command value calculation means for calculating the phase command value of the second single-phase inverter and the phase command value calculated by the phase command value calculation means, the second single-phase input And a second control means for controlling the phase of the chromatography data.
  • FIG. 1 is a configuration diagram showing the configuration of the inverter test apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing an equivalent circuit of the test circuit for the inverter according to the first embodiment.
  • FIG. 3 is a configuration diagram illustrating a configuration of a control unit of the control device according to the first embodiment.
  • FIG. 1 is a configuration diagram showing the configuration of the inverter test apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing an equivalent circuit of the test circuit for the inverter according to the first embodiment.
  • FIG. 3 is a configuration diagram illustrating a configuration of a control unit of the control device according to the
  • FIG. 6 is a phasor diagram during powering when V1r> V2r in the inverter test circuit according to the first embodiment.
  • FIG. 7 is a phasor diagram at the time of regeneration when V1r> V2r in the test circuit for the inverter according to the first embodiment.
  • FIG. 8 is a configuration diagram showing the configuration of the control unit according to the second embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing a configuration of an inverter test apparatus 10 according to a first embodiment of the present invention.
  • symbol is attached
  • the inverter test apparatus 10 is an apparatus for testing the inverter 1.
  • the inverter test apparatus 10 includes a test equipment inverter 2, a control apparatus 3, two inductors 4a and 4b, a diode rectifier 5, an AC power supply 6, and a current detector 7.
  • the inverter 1 is a single-phase inverter and is a neutral point clamp type three-level inverter.
  • the inverter 1 performs a power conversion operation by PWM (pulse width modulation) control.
  • the inverter 1 includes eight switching elements 11a, 11b, 11c, 11d, 12a, 12b, 12c, 12d, four neutral point clamp diodes 13a, 13b, 13c, 13d, and two capacitors 14a, 14b.
  • a free-wheeling diode is connected to each of the eight switching elements 11a to 11d and 12a to 12d.
  • the eight switching elements 11a to 11d and 12a to 12d constitute two legs.
  • the first leg has a configuration in which four switching elements 11a to 11d are connected in series.
  • the switching elements 11a, 11b, 11c, and 11d are arranged on the positive electrode side in this order.
  • the second leg has a configuration in which four switching elements 12a to 12d are connected in series.
  • the switching elements 12a, 12b, 12c, and 12d are positioned on the positive electrode side in this order.
  • the first leg and the second leg are connected in parallel.
  • Two capacitors 14a and 14b connected in series are connected in parallel with the two legs.
  • the connection point between the two switching elements 11b and 11c located at the center of the first leg and the connection point between the two switching elements 12b and 12c located at the center of the second leg are connected to the single-phase AC side terminal of the inverter 1. Become.
  • connection point of the two switching elements 11a and 11b located on the positive electrode side of the first leg and the connection point of the two switching elements 11c and 11d located on the negative electrode side of the first leg are connected in series.
  • Two connected neutral point clamp diodes 13a and 13b are connected.
  • the cathode side of the neutral point clamp diodes 13a and 13b is connected to the positive electrode side, and the anode side is connected to the negative electrode side.
  • connection point of the two switching elements 12a and 12b located on the positive electrode side of the second leg and the connection point of the two switching elements 12c and 12d located on the negative electrode side of the second leg are connected in series.
  • Two connected neutral point clamp diodes 13c and 13d are connected.
  • the cathode side of the neutral point clamp diodes 13c and 13d is connected to the positive electrode side, and the anode side is connected to the negative electrode side.
  • connection point between the two switching elements 12b and 12c located in the center of the second leg, a connection point between the two neutral point clamp diodes 13a and 13b provided in the first leg, and two capacitors 14a and 14b Is connected as a neutral point of the voltage.
  • the positive side of the two legs is a positive terminal, and the negative side of the two legs is a negative terminal.
  • the diode rectifier 5 is connected to the DC side of the inverter 1 at three points: a positive terminal, a neutral point terminal, and a negative terminal.
  • the diode rectifier 5 is a DC power source that supplies DC power to the inverter 1.
  • the diode rectifier 5 converts the three-phase AC power supplied from the AC power source 6 into DC power and outputs the DC power to the inverter 1.
  • the AC power source 6 is a commercial power source or the like. Note that a generator, a battery, a power converter, or the like may be provided instead of the diode rectifier 5 and the AC power supply 6 as long as it outputs DC power.
  • Test equipment inverter 2 is a single-phase inverter and is a neutral clamp type three-level inverter.
  • the test equipment inverter 2 performs power conversion operation by being PWM controlled.
  • the DC side of the test equipment inverter 2 is connected to the DC side of the inverter 1.
  • the test facility inverter 2 has the same configuration as the inverter 1 to be tested, and thus detailed description thereof is omitted.
  • the test equipment inverter 2 includes eight switching elements 21a, 21b, 21c, 21d, 22a, 22b, 22c, 22d, four neutral point clamp diodes 23a, 23b, 23c, 23d, and two capacitors 24a, 24b. .
  • a reflux diode is connected to each of the eight switching elements 21a to 21d and 22a to 22d.
  • the third leg is composed of four switching elements 21a to 21d.
  • the fourth leg is composed of four switching elements 22a to 22d.
  • the third leg, the fourth leg, and the two capacitors 24a and 24b connected in series are connected in parallel.
  • the connection point between the two switching elements 21b and 21c located at the center of the third leg and the connection point between the two switching elements 22b and 22c located at the center of the fourth leg are connected to the single-phase AC side terminal of the inverter 2.
  • a connection point of two neutral point clamp diodes 23a and 23b provided in the third leg, a connection point of two neutral point clamp diodes 23c and 23d provided in the fourth leg, and two capacitors 24a , 24b are short-circuited as neutral points of the voltage.
  • the positive side of the two legs is a positive terminal, and the negative side of the two legs is a negative terminal.
  • connection point of the two switching elements 11b and 11c located in the center of the first leg of the inverter 1 and the connection point of the two switching elements 21b and 21c located in the center of the third leg of the test equipment inverter 2 are: It is connected via an inductor 4a.
  • the connection point of the two switching elements 12b and 12c located in the center of the second leg of the inverter 1 and the connection point of the two switching elements 22b and 22c located in the center of the fourth leg of the test equipment inverter 2 are: It is connected via an inductor 4b.
  • the direct current sides of the inverter 1 and the test equipment inverter 2 are connected by a positive electrode, a neutral point, and a negative electrode, respectively.
  • the current detector 7 is provided on the electric wire provided with the inductor 4a closer to the inverter 1 than the inductor 4a.
  • the current detector 7 detects the energization current i flowing through the inductor 4 a and outputs it to the control device 3.
  • the control device 3 is a device that controls the inverter 1 and the test equipment inverter 2.
  • the control device 3 includes a control unit 31, a PWM control unit 32, and a PWM control unit 33.
  • the control unit 31 performs control based on the energization current i detected by the current detector 7.
  • the control unit 31 calculates a voltage command value v1r for the inverter 1 and a voltage command value v2r for the test equipment inverter 2.
  • the PWM control unit 32 performs PWM control on the inverter 1 according to the voltage command value v1r for the inverter 1 calculated by the control unit 31.
  • the PWM control unit 33 performs PWM control on the test facility inverter 2 according to the voltage command value v2r for the test facility inverter 2 calculated by the control unit 31. Thereby, the energization test of the inverter 1 is performed.
  • FIG. 2 is a circuit diagram showing an equivalent circuit of the test circuit of the inverter 1.
  • L indicates the inductance of the inductors 4a and 4b.
  • the control device 3 controls the single-phase AC voltage v1 of the inverter 1 and the single-phase AC voltage v2 of the test equipment inverter 2.
  • a voltage command value v1r for the inverter 1 and a voltage command value v2r for the test equipment inverter 2 are given by the following equations.
  • V1r V1r ⁇ cos ( ⁇ r ⁇ t) (1)
  • v2r V2r ⁇ cos ( ⁇ r ⁇ t + ⁇ 2r) (2)
  • V1r and V2r are voltage amplitude command values
  • ⁇ r is an angular velocity command value
  • ⁇ 2r is a phase command value.
  • the control device 3 controls the AC voltage of the inverter 1 with a constant amplitude and a constant frequency regardless of the energization current i.
  • the control device 3 performs current control by controlling the amplitude of the AC voltage of the test equipment inverter 2 to be basically constant and changing the phase command value ⁇ 2r by the energization current i.
  • FIG. 3 is a configuration diagram showing the configuration of the control unit 31 of the control device 3.
  • the control unit 31 includes an effective value calculation unit 311, a subtractor 312, a PI (proportional-plus-integral control) control (proportional integration control) unit 313, a polarity determination unit 314, and a voltage command value calculation unit 315.
  • an effective value calculation unit 311 a subtractor 312, a PI (proportional-plus-integral control) control (proportional integration control) unit 313, a polarity determination unit 314, and a voltage command value calculation unit 315.
  • the effective value calculator 311 calculates an effective value from the energization current i (instantaneous value) detected by the current detector 7.
  • the effective value calculator 311 outputs the energization current amplitude I obtained from the effective value to the subtractor 312.
  • the subtractor 312 subtracts the energization current amplitude I calculated by the effective value calculation unit 311 from a preset current amplitude command value Ir.
  • the subtractor 312 outputs the calculation result to the PI control unit 313.
  • the PI control unit 313 performs proportional-integral control so that the calculation result by the subtractor 312 becomes zero. That is, the PI control unit 313 controls the energization current amplitude I so as to follow the current amplitude command value Ir.
  • the PI control unit 313 outputs the calculation result to the polarity determination unit 314.
  • the polarity determination unit 314 multiplies the calculation result by the PI control unit 313 by a coefficient K that determines polarity.
  • the coefficient K 1.
  • the coefficient K -1.
  • the polarity determination unit 314 outputs the calculation result as the phase command value ⁇ 2r to the voltage command value calculation unit 315.
  • the set value of the coefficient K may be switched automatically according to a predetermined test schedule, or may be switched manually.
  • the voltage command value calculation unit 315 calculates the voltage command value v2r for the test equipment inverter 2 using the equation (2) based on the phase command value ⁇ 2r calculated by the polarity determination unit 314.
  • the voltage command value calculation unit 315 outputs the calculated voltage command value v2r to the PWM control unit 33 that controls the test facility inverter 2.
  • FIG. 4 to 7 are phasor diagrams for each test condition of the test circuit of the inverter 1.
  • FIG. 4 to 7 are phasor diagrams for each test condition of the test circuit of the inverter 1.
  • the conduction current amplitude I is determined by the vector difference between the voltage v1 of the inverter 1 and the voltage v2 of the test equipment inverter 2. 4 and 5, the energizing current amplitude I increases as the phase delays during power running, and the energizing current amplitude I increases as the phase proceeds during regeneration. Therefore, the polarity determination unit 314 changes the polarity between powering and regeneration.
  • V1r V2r
  • the power factor of the energization current i can be changed by setting V1r> V2r.
  • FIG. 6 is a phasor diagram during powering with V1r> V2r.
  • FIG. 7 is a phasor diagram during regeneration when V1r> V2r.
  • the diode rectifier 5 may have a capacity sufficient to supply the loss.
  • the inverter 1 and the test equipment inverter 2 are single-phase inverters, current control of a single-phase circuit is required to perform the test. Therefore, current control of a three-phase circuit using general dq conversion cannot be performed.
  • the control device 3 can control the current with a single-phase circuit using only the energization current i as a feedback amount. For example, even when the inverter 1 is one of three units constituting a three-phase inverter circuit, the inverter 1 can be tested as a single unit and a single-phase circuit.
  • FIG. 8 is a configuration diagram showing the configuration of the control unit 31A according to the second embodiment of the present invention.
  • the inverter test apparatus 10 is obtained by replacing the control unit 31 of the control device 3 shown in FIG. 3 with a control unit 31A in the first embodiment. Other points are the same as in the first embodiment.
  • control unit 31A removes the polarity determination unit 314, replaces the voltage command value calculation unit 315 with the voltage command value calculation unit 315A, replaces the power command value calculation unit 316, and the subtractor 317. , A PI control unit 318, and a subtracter 319. Other points are the same as those of the control unit 31 according to the first embodiment.
  • phase command value ⁇ 2r in the first embodiment, there is no multiplication of the coefficient K by the polarity determining unit 314, and the output of the PI control unit 313 is directly used as the phase command value ⁇ 2r.
  • the calculated phase command value ⁇ 2r is input to the voltage command value calculation unit 315A.
  • the energization current i detected by the current detector 7 is input to the power factor calculation unit 316.
  • the power factor calculation unit 316 calculates the power factor cos ⁇ by a function determined in advance based on the energization current i.
  • the calculated power factor cos ⁇ is treated as a current power factor measurement.
  • the power factor calculation unit 316 outputs the calculated power factor cos ⁇ to the subtractor 317.
  • the power factor calculation unit 316 obtains the power factor only from the energization current i, but it may obtain the power factor by detecting the voltage v1 of the inverter 1.
  • the subtractor 317 subtracts the power factor cos ⁇ calculated by the power factor calculation unit 316 from a preset power factor command value cos ⁇ r.
  • the subtractor 317 outputs the calculation result to the PI control unit 318.
  • the PI control unit 318 performs proportional integration control so that the calculation result by the subtractor 312 becomes zero. That is, the PI control unit 318 controls the power factor cos ⁇ to follow the power factor command value cos ⁇ r.
  • the PI control unit 318 outputs the calculation result to the subtracter 319.
  • the subtracter 319 subtracts the calculation result by the PI control unit 318 from the preset voltage amplitude command value V1r for the inverter 1.
  • the subtractor 319 outputs the calculation result to the voltage command value calculation unit 315A as the voltage amplitude command value V2r for the test equipment inverter 2.
  • the voltage command value calculation unit 315A receives the phase command value ⁇ 2r calculated by the PI control unit 313 and the voltage amplitude command value V2r calculated by the subtractor 319.
  • the voltage command value calculation unit 315A calculates the voltage command value v2r for the test equipment inverter 2 using the equation (2) based on the voltage amplitude command value V2r and the phase command value ⁇ 2r.
  • the voltage command value calculation unit 315A outputs the calculated voltage command value v2r to the PWM control unit 33 that controls the test facility inverter 2.
  • an energization test can be performed so that the power factor cos ⁇ follows the power factor command value cos ⁇ r. For example, by programming to change the power factor command value cos ⁇ r with time, it is possible to perform a test such that the power factor cos ⁇ changes with time.
  • the polarity determination part 314 was provided in the control apparatus 3, when only any one of a power running test or a regenerative test is implemented, the polarity determination part 314 may be abbreviate
  • the inverter 1 and the test equipment inverter 2 are not limited to those described in each embodiment, and any inverter may be used as long as it is a single-phase inverter.
  • preset parameters can be set or changed according to test conditions and the like. These parameters may be automatically updated according to a predetermined test schedule, or may be manually updated.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)

Abstract

 単相インバータ(1)の試験をするインバータ試験装置(10)であって、インバータ(1)に直流電力を供給する直流電源(5)と、インバータ(1)の直流側に接続される試験設備インバータ(2)と、インバータ(1)の交流側と試験設備インバータ(2)の交流側との間に接続されるインダクタ(4a)と、インバータ(1)の交流電圧を一定振幅で一定周波数に制御するPWM制御部(32)と、インダクタ(4a)に流れる電流(i)を検出する電流検出器(7)と、電流検出器(7)により検出された電流を制御するように、試験設備インバータ(2)の位相指令値(θ2r)を演算する制御部(31)と、演算された位相指令値(θ2r)に基づいて、試験設備インバータ(2)の位相を制御するPWM制御部(33)とを備える。

Description

インバータ試験装置
 本発明は、インバータを試験するインバータ試験装置に関する。
 一般に、インバータを試験する様々な方法が知られている。
 例えば、試験対象のインバータの交流側に交流電源を接続して試験する方法がある。また、単相インバータの負荷側にリアクトルが接続された自励式変換器の試験方法において、単相インバータの任意の1相を所定の運転状態におけるスイッチング状態に設定し、残りの1相を前記1相の電圧に対し電流の位相が-180°~180°になるように位相及び振幅を調整することが開示されている(特許文献1参照)。
 しかしながら、インバータの交流側に交流電源を接続すると、試験装置に掛かるコストが増える。また、インバータの交流側に交流電源を接続しない場合、インバータを本来の通電条件で試験することが困難になる。例えば、前述の試験方法では、電力変換回路を構成する2レグのうち一方が力行となり、もう片方が回生となる特殊な通電条件下での試験となる。
特開平11-285265号公報
 本発明の目的は、現実に近い通電条件で、インバータを試験することのできるインバータ試験装置を提供することにある。
 本発明の観点に従ったインバータ試験装置は、第1の単相インバータの試験をするインバータ試験装置であって、前記第1の単相インバータに直流電力を供給する直流電源と、前記第1の単相インバータの直流側に接続される第2の単相インバータと、前記第1の単相インバータの交流側と前記第2の単相インバータの交流側との間に接続されるインダクタと、前記第1の単相インバータの交流電圧を一定振幅で一定周波数に制御する第1の制御手段と、前記インダクタに流れる電流を検出する電流検出手段と、前記電流検出手段により検出された電流を制御するように、前記第2の単相インバータの位相指令値を演算する位相指令値演算手段と、前記位相指令値演算手段により演算された前記位相指令値に基づいて、前記第2の単相インバータの位相を制御する第2の制御手段とを備える。
図1は、本発明の第1の実施形態に係るインバータ試験装置の構成を示す構成図である。 図2は、第1の実施形態に係るインバータの試験回路の等価回路を示す回路図である。 図3は、第1の実施形態に係る制御装置の制御部の構成を示す構成図である。 図4は、第1の実施形態に係るインバータの試験回路におけるV1r=V2rで力行時のフェーザ図である。 図5は、第1の実施形態に係るインバータの試験回路におけるV1r=V2rで回生時のフェーザ図である。 図6は、第1の実施形態に係るインバータの試験回路におけるV1r>V2rで力行時のフェーザ図である。 図7は、第1の実施形態に係るインバータの試験回路におけるV1r>V2rで回生時のフェーザ図である。 図8は、本発明の第2の実施形態に係る制御部の構成を示す構成図である。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係るインバータ試験装置10の構成を示す構成図である。なお、図面における同一部分には同一符号を付して重複する説明を適宜省略し、異なる部分について主に述べる。
 インバータ試験装置10は、インバータ1を試験するための装置である。インバータ試験装置10は、試験設備インバータ2、制御装置3、2つのインダクタ4a,4b、ダイオード整流器5、交流電源6、及び電流検出器7を備える。
 インバータ1は、単相インバータであり、中性点クランプ型の3レベルインバータである。インバータ1は、PWM(pulse width modulation)制御されることにより、電力変換動作をする。
 インバータ1は、8つのスイッチング素子11a,11b,11c,11d,12a,12b,12c,12d、4つの中性点クランプダイオード13a,13b,13c,13d、及び2つのコンデンサ14a,14bを備える。8つのスイッチング素子11a~11d,12a~12dには、それぞれ還流ダイオードが接続されている。
 8つのスイッチング素子11a~11d,12a~12dは、2つのレグを構成する。第1のレグは、4つのスイッチング素子11a~11dが直列に接続された構成である。スイッチング素子11a,11b,11c,11dの順に、正極側に位置する。第2のレグは、4つのスイッチング素子12a~12dが直列に接続された構成である。スイッチング素子12a,12b,12c,12dの順に、正極側に位置する。第1のレグと第2のレグは、並列に接続されている。直列に接続された2つのコンデンサ14a,14bは、2つのレグと並列に接続されている。第1のレグの中央に位置する2つのスイッチング素子11b,11cの接続点と第2のレグの中央に位置する2つのスイッチング素子12b,12cの接続点は、インバータ1の単相交流側端子となる。
 第1のレグの正極側に位置する2つのスイッチング素子11a,11bの接続点と第1のレグの負極側に位置する2つのスイッチング素子11c,11dの接続点とを接続するように、直列に接続された2つの中性点クランプダイオード13a,13bが接続されている。中性点クランプダイオード13a,13bのカソード側は、正極側に接続され、アノード側は、負極側に接続されている。
 第2のレグの正極側に位置する2つのスイッチング素子12a,12bの接続点と第2のレグの負極側に位置する2つのスイッチング素子12c,12dの接続点とを接続するように、直列に接続された2つの中性点クランプダイオード13c,13dが接続されている。中性点クランプダイオード13c,13dのカソード側は、正極側に接続され、アノード側は、負極側に接続されている。
 第2のレグの中央に位置する2つのスイッチング素子12b,12cの接続点と、第1のレグに設けられた2つの中性点クランプダイオード13a,13bの接続点と、2つのコンデンサ14a,14bの接続点は、電圧の中性点として短絡されている。2つのレグの正極側が正極端子となり、2つのレグの負極側が負極端子となる。
 ダイオード整流器5は、インバータ1の直流側に、正極端子、中性点端子、及び負極端子の3点で接続されている。ダイオード整流器5は、インバータ1に直流電力を供給する直流電源である。ダイオード整流器5は、交流電源6から供給される三相交流電力を直流電力に変換して、インバータ1に出力する。交流電源6は、商用電源などである。なお、直流電力を出力するものであれば、ダイオード整流器5及び交流電源6の代わりに、発電機、電池、又は電力変換装置などを設けてもよい。
 試験設備インバータ2は、単相インバータであり、中性点クランプ型の3レベルインバータである。試験設備インバータ2は、PWM制御されることで、電力変換動作をする。インバータ1がインバータ試験装置10に接続されることで、試験設備インバータ2の直流側は、インバータ1の直流側に接続される。なお、試験設備インバータ2は、試験対象のインバータ1と同様の構成であるため、詳しい説明を省略する。
 試験設備インバータ2は、8つのスイッチング素子21a,21b,21c,21d,22a,22b,22c,22d、4つの中性点クランプダイオード23a,23b,23c,23d、及び2つのコンデンサ24a,24bを備える。8つのスイッチング素子21a~21d,22a~22dには、それぞれ還流ダイオードが接続されている。
 第3のレグは、4つのスイッチング素子21a~21dで構成される。第4のレグは、4つのスイッチング素子22a~22dで構成される。第3のレグ、第4のレグ、及び直列に接続された2つのコンデンサ24a,24bは、並列に接続されている。第3のレグの中央に位置する2つのスイッチング素子21b,21cの接続点と第4のレグの中央に位置する2つのスイッチング素子22b,22cの接続点は、インバータ2の単相交流側端子となる。第3のレグに設けられた2つの中性点クランプダイオード23a,23bの接続点と、第4のレグに設けられた2つの中性点クランプダイオード23c,23dの接続点と、2つのコンデンサ24a,24bの接続点は、電圧の中性点として短絡されている。2つのレグの正極側が正極端子となり、2つのレグの負極側が負極端子となる。
 インバータ1の第1のレグの中央に位置する2つのスイッチング素子11b,11cの接続点と、試験設備インバータ2の第3のレグの中央に位置する2つのスイッチング素子21b,21cの接続点は、インダクタ4aを介して接続されている。インバータ1の第2のレグの中央に位置する2つのスイッチング素子12b,12cの接続点と、試験設備インバータ2の第4のレグの中央に位置する2つのスイッチング素子22b,22cの接続点は、インダクタ4bを介して接続されている。インバータ1と試験設備インバータ2の直流側同士は、正極、中性点及び負極のそれぞれで接続されている。
 電流検出器7は、インダクタ4aが設けられている電線に、インダクタ4aよりもインバータ1側に設けられている。電流検出器7は、インダクタ4aに流れる通電電流iを検出し、制御装置3に出力する。
 制御装置3は、インバータ1及び試験設備インバータ2を制御する装置である。制御装置3は、制御部31、PWM制御部32、PWM制御部33を備える。制御部31は、電流検出器7により検出された通電電流iに基づいて、制御を行う。制御部31は、インバータ1に対する電圧指令値v1r及び試験設備インバータ2に対する電圧指令値v2rを演算する。PWM制御部32は、制御部31により演算されたインバータ1に対する電圧指令値v1rに従って、インバータ1をPWM制御する。PWM制御部33は、制御部31により演算された試験設備インバータ2に対する電圧指令値v2rに従って、試験設備インバータ2をPWM制御する。これにより、インバータ1の通電試験が行われる。
 次に、制御装置3による制御について説明する。
 図2は、インバータ1の試験回路の等価回路を示す回路図である。Lはインダクタ4a,4bのインダクタンスを示している。
 制御装置3は、インバータ1の単相交流電圧v1及び試験設備インバータ2の単相交流電圧v2を制御する。インバータ1に対する電圧指令値v1r及び試験設備インバータ2に対する電圧指令値v2rを、次式のように与える。
 v1r=V1r×cos(ωr・t)        …式(1)
 v2r=V2r×cos(ωr・t+θ2r)    …式(2)
 ここで、V1r、V2rは電圧振幅指令値、ωrは角速度指令値、θ2rは位相指令値である。
 制御装置3は、通電電流iに依らず、インバータ1の交流電圧を一定振幅で一定周波数に制御する。制御装置3は、試験設備インバータ2の交流電圧の振幅を基本的に一定に制御し、位相指令値θ2rを通電電流iにより変化させることで、電流制御を行う。
 図3は、制御装置3の制御部31の構成を示す構成図である。
 制御部31は、実効値演算部311、減算器312、PI(proportional-plus-integral control)制御(比例積分制御)部313、極性決定部314、及び電圧指令値演算部315を備える。
 実効値演算部311は、電流検出器7により検出された通電電流i(瞬時値)から実効値を演算する。実効値演算部311は、実効値から求まる通電電流振幅Iを減算器312に出力する。
 減算器312は、予め設定された電流振幅指令値Irから実効値演算部311により演算された通電電流振幅Iを減算する。減算器312は、演算結果をPI制御部313に出力する。PI制御部313は、減算器312による演算結果がゼロになるように、比例積分制御を行う。即ち、PI制御部313は、通電電流振幅Iを電流振幅指令値Irに追従させるように制御する。PI制御部313は、演算結果を極性決定部314に出力する。
 極性決定部314は、PI制御部313による演算結果に極性を決める係数Kを掛ける。インバータ1の力行試験をする場合は、係数K=1とする。インバータ1の回生試験をする場合は、係数K=-1とする。極性決定部314は、演算結果を位相指令値θ2rとして電圧指令値演算部315に出力する。係数Kの設定値は、予め決められた試験スケジュールに従って自動的に切り替えてもよいし、手動で切り替えるようにしてもよい。
 電圧指令値演算部315は、極性決定部314により演算された位相指令値θ2rに基づいて、式(2)を用いて、試験設備インバータ2に対する電圧指令値v2rを演算する。電圧指令値演算部315は、演算した電圧指令値v2rを、試験設備インバータ2を制御するPWM制御部33に出力する。
 次に、制御装置3による制御の原理について説明する。図4~図7は、インバータ1の試験回路の試験条件別のフェーザ図である。
 図4は、V1r=V2rで力行時のフェーザ図である。図5は、V1r=V2rで回生時のフェーザ図である。通電電流振幅Iは、インバータ1の電圧v1と試験設備インバータ2の電圧v2のベクトル差により決まる。図4及び図5により、力行時は位相が遅れるほど通電電流振幅Iが大きくなり、回生時は位相が進むほど通電電流振幅Iが大きくなる。従って、極性決定部314により、力行と回生で極性を変化させている。
 図4及び図5は、V1r=V2rの場合の場合だが、V1r>V2rとすることで、通電電流iの力率を変更することができる。
 図6は、V1r>V2rで力行時のフェーザ図である。図7は、V1r>V2rで回生時のフェーザ図である。力行時は遅れ力率、回生時は進み力率となるが、V1r=V2rの場合に比べて力率が低下した定格電流が得られる。即ち、試験対象であるインバータ1にとっては、試験設備インバータ2の電圧振幅指令値V2rを減少させることで、任意の力率の定格電圧で定格電流の力行又は回生試験が可能になることを示している。
 本実施形態によれば、インダクタ4aに流れる通電電流iに基づいて、試験設備インバータ2の位相を変化させることで、インバータ1の定格電圧で定格電流の通電試験において、力行と回生の切り替えと、力率調整をすることができる。
 また、インバータ試験装置10による試験では、通電電流iは、インバータ1と試験設備インバータ2の間を循環するため、ダイオード整流器5は、損失分を供給するだけの容量でよい。
 さらに、インバータ1及び試験設備インバータ2が単相インバータであるため、試験を実施するには、単相回路の電流制御が必要となる。従って、一般的なdq変換を用いた三相回路の電流制御をすることはできない。これに対して、制御装置3は、通電電流iのみをフィードバック量として、単相回路で電流制御をすることができる。例えば、インバータ1が三相インバータ回路を構成する3つのユニットのうちの1つである場合でも、インバータ1を単体で、単相回路で試験をすることができる。
(第2の実施形態)
 図8は、本発明の第2の実施形態に係る制御部31Aの構成を示す構成図である。
 本実施形態に係るインバータ試験装置10は、第1の実施形態において、図3に示す制御装置3の制御部31を、制御部31Aに代えたものである。その他の点は、第1の実施形態と同様である。
 制御部31Aは、第1の実施形態に係る制御部31において、極性決定部314を取り除き、電圧指令値演算部315を電圧指令値演算部315Aに代え、力率値演算部316、減算器317、PI制御部318、及び減算器319を追加したものである。その他の点は、第1の実施形態に係る制御部31と同様である。
 制御部31Aにおいて、位相指令値θ2rを演算する方法については、第1の実施形態において、極性決定部314による係数Kの掛け算がなく、PI制御部313の出力をそのまま位相指令値θ2rとする。演算された位相指令値θ2rは、電圧指令値演算部315Aに入力される。
 次に、制御部31Aによる試験設備インバータ2に対する電圧振幅指令値V2rの演算方法について説明する。
 力率演算部316には、電流検出器7により検出された通電電流iが入力される。力率演算部316は、通電電流iに基づいて予め決められた関数により力率cosφを演算する。演算された力率cosφは、現在の力率の測定値として扱われる。力率演算部316は、演算した力率cosφを減算器317に出力する。なお、ここでは、力率演算部316は、通電電流iのみで力率を求めたが、インバータ1の電圧v1を検出して求めてもよい。
 減算器317は、予め設定された力率指令値cosφrから力率演算部316により演算された力率cosφを減算する。減算器317は、演算結果をPI制御部318に出力する。PI制御部318は、減算器312による演算結果がゼロになるように、比例積分制御を行う。即ち、PI制御部318は、力率cosφを力率指令値cosφrに追従させるように制御する。PI制御部318は、演算結果を減算器319に出力する。減算器319は、予め設定されたインバータ1に対する電圧振幅指令値V1rからPI制御部318による演算結果を減算する。減算器319は、演算結果を試験設備インバータ2に対する電圧振幅指令値V2rとして電圧指令値演算部315Aに出力する。
 電圧指令値演算部315Aには、PI制御部313により演算された位相指令値θ2r及び減算器319により演算された電圧振幅指令値V2rが入力される。電圧指令値演算部315Aは、電圧振幅指令値V2r及び位相指令値θ2rに基づいて、式(2)を用いて、試験設備インバータ2に対する電圧指令値v2rを演算する。電圧指令値演算部315Aは、演算した電圧指令値v2rを、試験設備インバータ2を制御するPWM制御部33に出力する。
 本実施形態によれば、第1の実施形態による作用効果に加え、力率cosφが力率指令値cosφrに追従するように、通電試験をすることができる。例えば、力率指令値cosφrを時間とともに変化させるようにプログラミングをすることで、力率cosφが時間とともに変化するような試験を実施することができる。
 なお、第1の実施形態では、制御装置3に極性決定部314を設けたが、力行試験又は回生試験のいずれか一方しか実施しない場合には、極性決定部314を省略してもよい。
 インバータ1及び試験設備インバータ2は、各実施形態で説明したものに限らず、単相インバータであれば、どのようなインバータでもよい。
 各実施形態において、予め設定されているパラメータは、試験条件などに応じて設定又は変更することができる。これらのパラメータは、予め決められた試験のスケジュールに従って、自動的に更新されるようにしてもよいし、手動で更新する作業をしてもよい。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。

Claims (5)

  1.  第1の単相インバータの試験をするインバータ試験装置であって、
     前記第1の単相インバータに直流電力を供給する直流電源と、
     前記第1の単相インバータの直流側に接続される第2の単相インバータと、
     前記第1の単相インバータの交流側と前記第2の単相インバータの交流側との間に接続されるインダクタと、
     前記第1の単相インバータの交流電圧を一定振幅で一定周波数に制御する第1の制御手段と、
     前記インダクタに流れる電流を検出する電流検出手段と、
     前記電流検出手段により検出された電流を制御するように、前記第2の単相インバータの位相指令値を演算する位相指令値演算手段と、
     前記位相指令値演算手段により演算された前記位相指令値に基づいて、前記第2の単相インバータの位相を制御する第2の制御手段と
    を備えることを特徴とするインバータ試験装置。
  2.  前記位相指令値演算手段は、前記第1の単相インバータの力行と回生で、前記位相指令値の極性を変えること
    を特徴とする請求項1に記載のインバータ試験装置。
  3.  前記電流検出手段により検出された電流に基づいて、前記第1の単相インバータの力率を制御するように、前記第2の単相インバータの電圧振幅指令値を演算する電圧振幅指令値演算手段を備え、
     前記第2の制御手段は、前記電圧振幅指令値演算手段により演算された前記電圧振幅指令値に基づいて、前記第2の単相インバータの電圧振幅を制御すること
    を特徴とする請求項1又は請求項2に記載のインバータ試験装置。
  4.  第1の単相インバータの試験をするインバータ試験方法であって、
     前記第1の単相インバータの直流側に第2の単相インバータを接続し、
     前記第1の単相インバータの交流側と前記第2の単相インバータの交流側との間にインダクタを接続し、
     前記第1の単相インバータの交流電圧を一定振幅で一定周波数に制御し、
     前記インダクタに流れる電流を検出し、
     検出した電流を制御するように、前記第2の単相インバータの位相指令値を演算し、
     演算した前記位相指令値に基づいて、前記第2の単相インバータの位相を制御すること
    を含むことを特徴とするインバータ試験方法。
  5.  第1の単相インバータの直流側に第2の単相インバータが接続され、前記第1の単相インバータの交流側と前記第2の単相インバータの交流側との間にインダクタが接続され、前記第1の単相インバータの試験をするインバータ試験装置の制御装置であって、
     前記第1の単相インバータの交流電圧を一定振幅で一定周波数に制御する第1の制御手段と、
     前記インダクタに流れる電流を検出する電流検出手段と、
     前記電流検出手段により検出された電流を制御するように、前記第2の単相インバータの位相指令値を演算する位相指令値演算手段と、
     前記位相指令値演算手段により演算された前記位相指令値に基づいて、前記第2の単相インバータの位相を制御する第2の制御手段と
    を備えることを特徴とするインバータ試験装置の制御装置。
PCT/JP2014/055995 2014-03-07 2014-03-07 インバータ試験装置 WO2015132960A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/055995 WO2015132960A1 (ja) 2014-03-07 2014-03-07 インバータ試験装置
EP14884779.1A EP3116117B1 (en) 2014-03-07 2014-03-07 Inverter testing apparatus
CN201480061522.0A CN105723233B (zh) 2014-03-07 2014-03-07 逆变器试验装置
JP2016506057A JP6186496B2 (ja) 2014-03-07 2014-03-07 インバータ試験装置
US15/258,571 US10509079B2 (en) 2014-03-07 2016-09-07 Inverter test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055995 WO2015132960A1 (ja) 2014-03-07 2014-03-07 インバータ試験装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/258,571 Continuation US10509079B2 (en) 2014-03-07 2016-09-07 Inverter test apparatus

Publications (1)

Publication Number Publication Date
WO2015132960A1 true WO2015132960A1 (ja) 2015-09-11

Family

ID=54054792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055995 WO2015132960A1 (ja) 2014-03-07 2014-03-07 インバータ試験装置

Country Status (5)

Country Link
US (1) US10509079B2 (ja)
EP (1) EP3116117B1 (ja)
JP (1) JP6186496B2 (ja)
CN (1) CN105723233B (ja)
WO (1) WO2015132960A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017060208A (ja) * 2015-09-14 2017-03-23 富士電機株式会社 負荷模擬装置
JP2017142237A (ja) * 2016-01-19 2017-08-17 ディスペース デジタル シグナル プロセッシング アンド コントロール エンジニアリング ゲゼルシャフト ミット ベシュレンクテル ハフツングdspace digital signal processing and control engineering GmbH シミュレーション装置およびシミュレーション方法
JP2018077211A (ja) * 2016-11-11 2018-05-17 エルエス産電株式会社Lsis Co., Ltd. 電力補償装置のサブモジュールの性能を試験するための合成試験回路及びその試験方法
JP2020145909A (ja) * 2019-03-08 2020-09-10 東芝三菱電機産業システム株式会社 電力変換装置の試験システムおよび試験方法
US11378628B2 (en) 2019-09-02 2022-07-05 Toshiba Mitsubishi—Electric Industrial Systems Corporation Testing device of inverter device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6821685B2 (ja) * 2016-08-24 2021-01-27 東芝三菱電機産業システム株式会社 Pwmコンバータ用入力フィルタの通電評価試験装置
CN106771792B (zh) * 2017-03-29 2023-11-03 株洲中达特科电子科技有限公司 一种机车变流器测试系统
US11095233B2 (en) * 2017-03-31 2021-08-17 Nidec Corporation Electric power conversion apparatus, motor drive unit and electric motion power steering apparatus
US10933735B2 (en) * 2017-03-31 2021-03-02 Honda Motor Co., Ltd. Vehicle
JP6937496B2 (ja) * 2018-02-16 2021-09-22 ローム株式会社 交流電源装置
WO2021005662A1 (ja) * 2019-07-05 2021-01-14 三菱電機株式会社 異常診断システムおよび異常診断方法
CN111781532B (zh) * 2020-07-10 2021-06-08 北京交通大学 一种实现三相逆变器功率模块老化实验的电路及方法
CN115980493B (zh) * 2023-01-03 2023-11-07 广州市德珑电子器件有限公司 多电感的光伏逆变器测试方法、装置、设备以及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285265A (ja) * 1998-03-27 1999-10-15 Toshiba Corp 自励式変換器の試験方法
JP2000069765A (ja) * 1998-08-24 2000-03-03 Yamabishi Denki Kk インバータ試験装置
JP2004104891A (ja) * 2002-09-09 2004-04-02 Toshiba Corp 自励式変換器の試験方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969957A (en) * 1998-02-04 1999-10-19 Soft Switching Technologies Corporation Single phase to three phase converter
JP2008167655A (ja) * 2001-08-27 2008-07-17 Shinko Electric Co Ltd インバータ試験装置
JP4811917B2 (ja) * 2005-12-27 2011-11-09 三菱電機株式会社 電力変換装置
EP2001117A4 (en) * 2006-03-27 2013-07-17 Mitsubishi Electric Corp POWER CONVERTER
KR20080068254A (ko) * 2007-01-18 2008-07-23 삼성전자주식회사 인버터의 입력전류 검출장치 및 그 방법
JP4757815B2 (ja) * 2007-03-05 2011-08-24 本田技研工業株式会社 電動機の制御装置および車両
JP2011151918A (ja) * 2010-01-20 2011-08-04 Fanuc Ltd 電源回生機能を有するモータ駆動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285265A (ja) * 1998-03-27 1999-10-15 Toshiba Corp 自励式変換器の試験方法
JP2000069765A (ja) * 1998-08-24 2000-03-03 Yamabishi Denki Kk インバータ試験装置
JP2004104891A (ja) * 2002-09-09 2004-04-02 Toshiba Corp 自励式変換器の試験方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3116117A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017060208A (ja) * 2015-09-14 2017-03-23 富士電機株式会社 負荷模擬装置
JP2017142237A (ja) * 2016-01-19 2017-08-17 ディスペース デジタル シグナル プロセッシング アンド コントロール エンジニアリング ゲゼルシャフト ミット ベシュレンクテル ハフツングdspace digital signal processing and control engineering GmbH シミュレーション装置およびシミュレーション方法
JP2017167119A (ja) * 2016-01-19 2017-09-21 ディスペース デジタル シグナル プロセッシング アンド コントロール エンジニアリング ゲゼルシャフト ミット ベシュレンクテル ハフツングdspace digital signal processing and control engineering GmbH シミュレーション方法およびシミュレーション装置
JP2018077211A (ja) * 2016-11-11 2018-05-17 エルエス産電株式会社Lsis Co., Ltd. 電力補償装置のサブモジュールの性能を試験するための合成試験回路及びその試験方法
US10436844B2 (en) 2016-11-11 2019-10-08 Lsis Co., Ltd. Synthetic test circuit for testing submodule performance in power compensator and test method thereof
JP2020145909A (ja) * 2019-03-08 2020-09-10 東芝三菱電機産業システム株式会社 電力変換装置の試験システムおよび試験方法
JP7154158B2 (ja) 2019-03-08 2022-10-17 東芝三菱電機産業システム株式会社 電力変換装置の試験システムおよび試験方法
US11378628B2 (en) 2019-09-02 2022-07-05 Toshiba Mitsubishi—Electric Industrial Systems Corporation Testing device of inverter device

Also Published As

Publication number Publication date
EP3116117A4 (en) 2017-11-15
EP3116117B1 (en) 2023-07-05
CN105723233B (zh) 2020-04-17
JPWO2015132960A1 (ja) 2017-03-30
US20160377687A1 (en) 2016-12-29
CN105723233A (zh) 2016-06-29
JP6186496B2 (ja) 2017-08-23
US10509079B2 (en) 2019-12-17
EP3116117A1 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6186496B2 (ja) インバータ試験装置
US9509229B2 (en) Power supply apparatus including power conversion circuit controlled by PWM control circuit
KR101594662B1 (ko) 전력 변환 장치
US9780692B2 (en) Control device of neutral-point-clamped power converter apparatus, and control method of neutral-point-clamped power converter apparatus
CN111149287A (zh) 功率转换装置
US20170272006A1 (en) Power conversion apparatus; motor driving apparatus, blower, and compressor, each including same; and air conditioner, refrigerator, and freezer, each including at least one of them
WO2014049779A1 (ja) 電力変換装置
JP6834018B2 (ja) 電力変換装置
JP5115730B2 (ja) Pwmコンバータ装置
JPWO2018109805A1 (ja) 高調波電流補償装置および空気調和システム
JP7193248B2 (ja) 電力変換装置
US10008937B1 (en) Apparatus for controlling DC link voltage in power cell of medium-voltage inverter
US10581338B2 (en) Power supply system
JP6480290B2 (ja) 電力変換装置
WO2018179234A1 (ja) H型ブリッジ変換器およびパワーコンディショナ
JP4842179B2 (ja) 電力変換装置及びその制御方法
Dzung et al. Model predictive current control for T-type NPC inverter using new on-line inductance estimation method
JP5950970B2 (ja) 電力変換装置
JP5169396B2 (ja) 電力変換装置の制御回路
JP2014023310A (ja) コンバータシステムの制御方法および制御装置
JP5530009B1 (ja) 電源装置
JP2005110335A (ja) 電力変換装置
US20180034393A1 (en) Power supply and drive device for a permanent magnet electric motor
JP2005348563A (ja) 交流電源装置
Misra Decoupled Vector Control of Grid Side Converter with Less Number of Sensors under imbalanced Grid Conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506057

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014884779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014884779

Country of ref document: EP