WO2015132853A1 - 大気圧プラズマ発生装置、対被処理体作業機 - Google Patents

大気圧プラズマ発生装置、対被処理体作業機 Download PDF

Info

Publication number
WO2015132853A1
WO2015132853A1 PCT/JP2014/055276 JP2014055276W WO2015132853A1 WO 2015132853 A1 WO2015132853 A1 WO 2015132853A1 JP 2014055276 W JP2014055276 W JP 2014055276W WO 2015132853 A1 WO2015132853 A1 WO 2015132853A1
Authority
WO
WIPO (PCT)
Prior art keywords
atmospheric pressure
gas
plasma generator
pressure plasma
plasma
Prior art date
Application number
PCT/JP2014/055276
Other languages
English (en)
French (fr)
Inventor
俊之 池戸
神藤 高広
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2014/055276 priority Critical patent/WO2015132853A1/ja
Priority to EP14884286.7A priority patent/EP3116289B1/en
Priority to KR1020167021602A priority patent/KR102110636B1/ko
Priority to JP2016505965A priority patent/JP6307591B2/ja
Publication of WO2015132853A1 publication Critical patent/WO2015132853A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32825Working under atmospheric pressure or higher
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2240/00Testing
    • H05H2240/10Testing at atmospheric pressure

Definitions

  • the present invention relates to an atmospheric pressure plasma generator for generating plasma under atmospheric pressure.
  • the atmospheric pressure plasma generator for example, a process gas is converted into plasma by applying a voltage between a pair of electrodes, and a plasma process is performed on an object to be processed using plasma.
  • the processing gas is turned into plasma, high-voltage power is applied, so that the plasma becomes high temperature and the object to be processed may be deformed or altered by heat.
  • the atmospheric pressure plasma generator described in the following patent document includes a gas cooler for cooling the processing gas before the voltage is applied, depending on the temperature of the plasma.
  • the processing gas is cooled by a gas cooling device.
  • a temperature sensor is provided at the plasma outlet of the atmospheric pressure plasma generator, and the temperature of the plasma is measured by the temperature sensor.
  • the operation of the gas cooler is feedback-controlled using the plasma temperature measured by the temperature sensor. That is, when the temperature of the plasma measured by the temperature sensor is higher than a predetermined temperature, the operation of the gas cooler is controlled so that the temperature of the processing gas is lowered, and the temperature of the plasma measured by the temperature sensor is reduced. When the temperature is lower than the predetermined temperature, the operation of the gas cooler is controlled so that the temperature of the processing gas becomes higher. As a result, the temperature of the generated plasma can be maintained at a predetermined temperature, and generation of high temperature plasma can be prevented.
  • the atmospheric pressure plasma generator described in the above patent document also flows in the vicinity of the electrode at a temperature at which the processing gas becomes plasma. If plasma generation is continued at such a temperature that it is converted to plasma, the electrodes of the atmospheric pressure plasma generator are quickly consumed and their life is shortened.
  • an atmospheric pressure plasma generator described in the present application is provided with a casing, a first section provided in the casing, and a gas heating that flows a first processing gas heated into the first section. And a second zone adjacent to the first zone, a gas cooler for flowing the second processing gas cooled into the second zone, a plasma generating electrode provided in the second zone, A plasma generator for converting the first processing gas existing in the first section into plasma by an electrode for generating plasma and a blow-out port for blowing out plasma gas converted into plasma by the plasma generator are provided.
  • the plasma generating electrode is cooled by the second processing gas in the second zone, it is possible to suppress consumption of the electrode.
  • FIG. 1 It is a figure which shows the atmospheric pressure plasma generator which is an Example of this invention.
  • the figure which looked at the atmospheric pressure plasma generator which is an Example of this invention from the opening 18 for discharge is shown.
  • FIG. 1 shows an atmospheric pressure plasma generator 30 according to an embodiment of the present invention.
  • the atmospheric pressure plasma generator 30 is an apparatus for generating plasma under atmospheric pressure.
  • the atmospheric pressure plasma generator 30 has a housing 12, and the housing 12 is constituted by a first area 16 and a second area 14.
  • the first processing gas flow path 6 is connected and a blower outlet 20 is formed.
  • the blower outlet 20 opens in the direction toward the workpiece.
  • One end of the first process gas flow path 6 is connected to the upper surface of the first area 16, and one end of the second process gas flow path 8 is connected to the upper surface of the second area 14. Further, the other end portions of the first processing gas flow path 6 and the second processing gas flow path 8 are connected to the vortex tube 4 disposed close to the housing 12. *
  • the vortex tube 4 is a device for generating a cooling gas and a high-temperature gas by utilizing the vortex effect. Since the vortex tube 4 is a known device, it will be briefly described below. As shown in FIG. 2, the vortex tube 4 includes a generally tubular housing 50, and a cooling gas outlet 52 and a hot gas outlet 54 are formed at both ends. Further, a compressed gas supply port 56 is formed on the side surface of the tubular housing 50. When the compressed gas is supplied into the housing 50 from the compressed gas supply port 56, the supplied gas 57 flows in a spiral shape along the inner wall surface of the housing 50 toward the hot gas outlet 54. *
  • a valve 58 is provided at the hot gas outlet 54. For this reason, a part of the gas supplied into the housing 50 is blown out from the hot gas outlet 54 according to the opening / closing amount of the valve 58, but the remaining gas is returned into the housing 50.
  • the gas 59 returned into the housing 50 by the valve 58 flows inside the gas 57 that flows spirally along the inner wall surface of the housing 50, that is, in the central portion in the radial direction of the housing 50. Then, the gas 59 flowing through the central portion of the housing 50 flows toward the cooling gas outlet 52 and is blown out from the cooling gas outlet 52.
  • the vortex tube 4 having the above structure is disposed in the vicinity of the housing 12.
  • the compressed gas supply port 56 of the vortex tube 4 is connected to the compressed gas channel 2
  • the cooling gas outlet 52 is connected to the second gas channel 8
  • the high temperature gas outlet 54 is the first processing gas channel. 6 is connected.
  • the first area 16 is separated from the second area 14 and is provided so as to be sandwiched between the second areas. Further, the first section 16 is connected to the vortex tube 4 so that the high temperature gas as the first processing gas flows through the first processing gas flow path 6. In the first area 16, the first processing gas is turned into plasma by the discharge between the plasma generating electrodes 24. Further, the plasma flows so as to be blown out from the outlet 20 of the first section 16.
  • a plasma generating electrode 24 is provided in the second area 14 so as to be opposed to each other with the first area 16 in between.
  • the second section 14 is connected to the vortex tube 4 so that the cooling gas, which is the second processing gas, flows through the second processing gas flow path 8.
  • the second zone 14 is separated from the first zone by the sorting member 32.
  • the sorting member 32 is provided with a discharge opening 18 so that a current flows between the plasma generating electrodes 24.
  • the cooling gas as the second process gas flows from the discharge opening 18 to the first section 16.
  • the plasma generating electrode 24 is connected to a socket 22 for wiring. *
  • the sorting member 32 is tubular, its function can be further exhibited. This is because the plasma generating electrode 24 is efficiently cooled by the cooling gas when the direction from the socket to the electrode is substantially parallel to the longitudinal direction of the tubular member.
  • the housing 12 in order to design the housing 12 in a compact manner, it is desirable that the direction in which the gas flows from the second section to the first section is substantially perpendicular to the direction in which the cooling gas flows in the second section.
  • the sealing member 34 is preferably formed so as to be removable from the outside of the housing 12 with a tool or the like. This is because the work of removing contamination and the work of replacing the electrodes can be easily performed.
  • a cooling gas discharge opening may be provided in the second area 16 in addition to the discharge opening 18. In this way, contamination can be collected separately, and cooling of the first area 16 with the cooling gas can be prevented. It is desirable to provide the cooling gas discharge opening in a direction that does not face the object to be processed, for example, in the lateral direction shown in FIG.
  • the atmospheric pressure plasma generator 30 includes a control device 80.
  • the control device 80 includes a controller 82, a drive circuit 84, and a control circuit 86.
  • the drive circuit 84 is connected to the electromagnetic linear valve 66.
  • the linear valve supplies the compressed processing gas to the compressed gas passage 2.
  • the control circuit 86 is connected to a pair of electrodes 72.
  • the controller 82 includes a CPU, a ROM, a RAM, and the like, mainly a computer, and is connected to a drive circuit 84 and a control circuit 86.
  • the operation of the electromagnetic linear valve 66 and the application of voltage to the pair of electrodes 72 are controlled by the controller 82. *
  • the atmospheric pressure plasma generator 30 converts the gas into plasma by applying a voltage to the gas supplied into the housing 12 with the above-described configuration. And the atmospheric pressure plasma generator 30 performs a plasma process with respect to a to-be-processed object by blowing out plasma from the blower outlet 20. FIG. Specifically, the generation of plasma by the atmospheric pressure plasma generator 30 will be described in detail below. *
  • the atmospheric pressure plasma generator 30 first supplies a compressed processing gas to the compressed gas flow path 2.
  • the processing gas may be a gas obtained by mixing an inert gas such as nitrogen and an active gas such as oxygen in the air at an arbitrary ratio, or may be only an inert gas or air.
  • the processing gas supplied to the compressed gas channel 2 is supplied to the vortex tube 4. Thereby, as described above, the processing gas is cooled, and the cooled processing gas is blown out from the cooling gas outlet 52 of the vortex tube 4. Further, the processing gas is heated, and the high temperature processing gas is blown out from the high temperature gas outlet 54 of the vortex tube 4. *
  • the processing gas blown out from the cooling gas outlet 52 flows into the second section 14 via the second processing gas flow path 8.
  • the processing gas blown from the high temperature gas outlet 54 flows into the first section 16 through the first processing gas flow path 6.
  • the control device 80 applies a voltage to the pair of plasma generating electrodes 24 in the housing 12 after the first processing gas and the second processing gas are filled in the first section 16 and the second section 14, respectively. Current flows between them. Thereby, a discharge is generated between the electrodes, and the processing gas is turned into plasma by the discharge. And plasma is blown out from the blower outlet 20, and the plasma process with respect to a to-be-processed object is performed.
  • the control device 80 has a timer, and after the operation of the electromagnetic linear valve 66, the flow rate of the processing gas flowing through the known compressed gas passage 2 and the atmospheric pressure plasma generator. This is performed by applying a voltage after the time required from the volume of the space in 30 has elapsed.
  • the atmospheric pressure plasma generator 30 cools and heats the processing gas by the vortex tube 4. For this reason, the atmospheric pressure plasma generator 30 does not cool or heat the processing gas beyond the capacity of the vortex tube 4. Thereby, even if an abnormality occurs in the atmospheric pressure plasma generation apparatus 30, the atmospheric pressure plasma generation apparatus 10 reliably prevents generation of inappropriate low temperature or high temperature plasma in the object to be processed.
  • the atmospheric pressure plasma generator 30 employs a normally closed electromagnetic linear valve 66. For this reason, for example, when the atmospheric pressure plasma generator 30 stops supplying power to the electromagnetic linear valve 66 for some reason, the electromagnetic linear valve 66 is closed, so that the compressed gas flow path 2 is moved to. The process gas flow stops. That is, the atmospheric pressure plasma generator 30 stops the supply of the processing gas when the power supply to the electromagnetic linear valve 66 is stopped. Thus, even when the atmospheric pressure plasma generator 30 stops supplying power to the electromagnetic linear valve 66, it is possible to reliably prevent generation of inappropriate plasma in the object to be processed. *
  • the atmospheric pressure plasma generator 30 employs the vortex tube 4 as a device for cooling the processing gas.
  • the vortex tube 30 can cool the processing gas without using electric power or chemicals. For this reason, the atmospheric pressure plasma generator 30 becomes the atmospheric pressure plasma generator 30 with good environmental performance.
  • the atmospheric pressure plasma generator 30 converts the plasma into the first zone using the high temperature processing gas generated by the vortex tube 5. That is, the atmospheric pressure plasma generator 30 does not use power, chemicals, or the like not only when cooling the processing gas but also when adjusting the temperature of the cooled processing gas. Thereby, the environmental performance of the atmospheric pressure plasma generator 30 can be considerably increased.
  • the temperature of the cooling gas and the hot gas is determined by the specifications of the vortex tube and the pressure of the compressed gas. Therefore, fail-safe can be realized without the temperature significantly exceeding or lowering the design value.
  • a material such as molybdenum is usually used for the plasma generating electrode.
  • FIG. 5 is a view showing the object work machine 102.
  • the atmospheric pressure plasma generator 110 and the vortex tube 114 can move in the workpiece work machine 102.
  • the workpiece 103 is carried into and held by the workpiece work machine 1022 by the transfer lane 104, and is carried out after the processing is completed. *
  • the atmospheric pressure plasma generator is an object-to-be-processed work machine characterized in that it is attached to a robot head that moves in at least one direction, and a gas heater and a gas cooler are both attached to the head.
  • the atmospheric pressure plasma generator can efficiently perform plasma processing on the object to be processed.
  • the vortex tube can be cooled and heated more efficiently if it is arranged as close as possible.
  • the vortex tube 4 is employed as a device for cooling the processing gas, but a device using a cooling medium or the like can be employed.
  • the processing gas heated by the vortex tube 4 is used for temperature adjustment of the cooled processing gas, the temperature of the cooled processing gas can be adjusted by a heating device such as a heater. It is.
  • Vortex tube 18 Opening for discharge 30: Atmospheric pressure plasma generator 36: Vortex tube 80: Control device 102: Work object working machine 102

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

筐体(12)と前記筐体(12)内に設けられる第1区域(16)と前記第1区域(16)に加温した第1処理ガスを流入するガス加温器と前記筐体(12)内に設けられ第1区域(16)に隣接する第2区域(14)と前記第2区域(14)に冷却した第2処理ガスを流入するガス冷却器と前記第2区域(14)内に設けられるプラズマ発生用電極(24)と前記プラズマ発生用電極(24)により前記第1区域(16)に存する第1処理ガスをプラズマ化するプラズマ発生器と前記プラズマ発生器によりプラズマ化されたプラズマガスを吹き出す吹出口(20)とを備えることを特徴とする大気圧プラズマ発生装置。

Description

[規則37.2に基づきISAが決定した発明の名称] 大気圧プラズマ発生装置、対被処理体作業機
本発明は、大気圧下でプラズマを発生させる大気圧プラズマ発生装置に関するものである。
大気圧プラズマ発生装置は、例えば、1対の電極間に電圧を印加することで、処理ガスをプラズマ化させ、プラズマにより、被処理体に対するプラズマ処理が行われる。ただし、処理ガスをプラズマ化させる際には、高電圧の電力が印加されるため、プラズマが高温となり、被処理体が熱により変形,変質する虞がある。このようなことに鑑みて、下記特許文献に記載の大気圧プラズマ発生装置は、電圧が印加される前に、処理ガスを冷却するためのガス冷却器を備えており、プラズマの温度に応じて、処理ガスが、ガス冷却装置によって冷却される。 
詳しくは、大気圧プラズマ発生装置のプラズマの吹出口に、温度センサが設けられており、プラズマの温度が、温度センサによって測定される。そして、温度センサによって測定されたプラズマの温度を用いて、ガス冷却器の作動がフィードバック制御される。つまり、温度センサによって測定されたプラズマの温度が所定の温度より高い場合には、処理ガスの温度が低くなるように、ガス冷却器の作動が制御され、温度センサによって測定されたプラズマの温度が所定の温度より低い場合には、処理ガスの温度が高くなるように、ガス冷却器の作動が制御される。これにより、発生するプラズマの温度を所定の温度に保つことが可能となり、高温のプラズマの発生を防止することが可能となる。
特開2010-061938号公報
上記特許文献に記載の大気圧プラズマ発生装置は、処理ガスがプラズマ化する程度の温度で電極付近にも流れる。このようにプラズマ化する程度の温度でプラズマ発生を続けると、大気圧プラズマ発生装置の電極は消耗が早く進み寿命が短くなる。
上記課題を解決するために、本願に記載の大気圧プラズマ発生装置は、筐体と前記筐体内に設けられる第1区域と前記第1区域に加温した第1処理ガスを流入するガス加温器と前記筐体内に設けられ第1区域に隣接する第2区域と前記第2区域に冷却した第2処理ガスを流入するガス冷却器と前記第2区域内に設けられるプラズマ発生用電極と前記プラズマ発生用電極により前記第1区域に存する第1処理ガスをプラズマ化するプラズマ発生器と前記プラズマ発生器によりプラズマ化されたプラズマガスを吹き出す吹出口とを備えることを特徴とする。
本願に記載の大気圧プラズマ発生装置では、プラズマ発生用電極が第2区域内で第2処理ガスによって冷却されるため、電極の消耗を抑えることができる。
本発明の実施例である大気圧プラズマ発生装置を示す図である。 本発明の実施例である大気圧プラズマ発生装置を放電用開口18側から見た図を示すものである。 図1の大気圧プラズマ発生装置が備えるボルテックスチューブを示す概略図である。 図1の大気圧プラズマ発生装置が備える制御装置を示すブロック図である。 図1の大気圧プラズマ発生装置を備える対被処理体作業機を示す図である。
以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。 
<大気圧プラズマ発生装置の構成> 図1に、本発明の実施例の大気圧プラズマ発生装置30を示す。大気圧プラズマ発生装置30は、大気圧下でプラズマを発生させるための装置である。大気圧プラズマ発生装置30は、筐体12を有しており、筐体12は、第1区域16と第2区域14によって構成される。第1区域16には、第1処理ガス流路6が繋がれと吹出口20が形成されている。吹出口20は被処理体へ向かう方向へ開口する。第1処理ガス流路6の一端部は、第1区域16の上面に繋がれ、第2処理ガス流路8の一端部は、第2区域14の上面に繋がれる。また、第1処理ガス流路6、及び、第2処理ガス流路8の他端部は、筐体12に近接して配設されたボルテックスチューブ4に接続されている。 
ボルテックスチューブ4は、ボルテックス効果を利用して、冷却ガスと高温ガスとを発生させるための装置である。ボルテックスチューブ4は公知の装置であるため、以下に簡単に説明する。ボルテックスチューブ4は、図2に示すように、概してチューブ状のハウジング50を備えており、両端部に、冷却ガス吹出口52と高温ガス吹出口54とが形成されている。さらに、チューブ状のハウジング50の側面には、圧縮ガス供給口56が形成されている。そして、圧縮ガスが、圧縮ガス供給口56からハウジング50内に供給されると、供給されたガス57は、ハウジング50の内壁面に沿って渦状に、高温ガス吹出口54に向かって流れる。 
その高温ガス吹出口54には、バルブ58が設けられている。このため、ハウジング50内に供給されたガスの一部が、バルブ58の開閉量に応じて、高温ガス吹出口54から吹き出されるが、残りのガスは、ハウジング50内に戻される。バルブ58によってハウジング50内に戻されたガス59は、ハウジング50の内壁面に沿って渦状に流れるガス57の内側、つまり、ハウジング50の径方向における中心部を流れる。そして、ハウジング50の中心部を流れるガス59は、冷却ガス吹出口52に向かって流れ、冷却ガス吹出口52から吹き出される。 
この際、ハウジング50の内壁面に沿って渦状に流れるガス57の運動エネルギーと、ハウジング50の中心部を流れるガス59の運動エネルギーとの差により、ハウジング50の中心部を流れるガス59から、ハウジング50の内壁面に沿って渦状に流れるガス57に熱エネルギーが移動する。これにより、高温ガス吹出口54から、高温のガスが吹き出され、冷却ガス吹出口52からは、冷却されたガスが吹き出される。 
上記構造のボルテックスチューブ4が、図1に示すように、筐体12に近接して配設されている。そして、ボルテックスチューブ4の圧縮ガス供給口56は、圧縮ガス流路2に接続され、冷却ガス吹出口52は第2ガス流路8に接続され、高温ガス吹出口54は第1処理ガス流路6に接続されている。 
第1区域16は、第2区域14と区分けされ、第2区域に挟まれるように設ける。また、第1区域16は第1処理ガス流路6を介して第1処理ガスである高温ガスが流れ込むようにボルテックスチューブ4と繋がれる。そして、第1区域16ではプラズマ発生用電極24間の放電により第1処理ガスがプラズマ化される。さらに、プラズマは第1区域16の吹出口20から吹き出されるように流れる。
第2区域14には、その内部にプラズマ発生電極24が第1区域16を挟んで対向するように設けられる。また、第2区域14は、第2処理ガス流路8を介して第2処理ガスである冷却ガスが流れ込むようにボルテックスチューブ4と繋がれる。そして、第2区域14は区分け部材32により第1区域と区分けされている。さらに、区分け部材32には放電用開口18がプラズマ発生用電極24間に電流が流れるように設けられる。この放電用開口18から第2処理ガスである冷却ガスが第1区域16へ流れる。プラズマ発生用電極24は、配線のためのソケット22が繋がれる。 
区分け部材32は管状であるとその作用をさらに発揮することができる。これは、ソケットから電極へ向かう方向が管状部材の長手方向と略平行であるとプラズマ発生電極24が効率的に冷却ガスにより冷却されるからである。 
また、プラズマ発生用電極24に電圧を印加するとプラズマが発生するが、このとき電極にコンタミが発生し消耗する。区分け部材32は管状であって封止部材34によって第2区域14の下方が冷却ガスの流れを止める空間になっていると、そこにコンタミを付着させ第1区域16へコンタミが流出することを防ぐことができる。さらに、筐体12をコンパクトに設計するため、第2区域から第1区域へガスを流す方向は、第2区域内で冷却ガスが流れる方向と略垂直であることが望ましい。 
封止部材34は筐体12の外側から工具などで取り外し可能に形成されていることが望ましい。コンタミを除去する作業や、電極を交換する作業が容易に行うことができるからである。 
さらに、第2区域16に放電用開口18とは別に冷却ガス排出用開口を設けても良い。このようにすればコンタミを別に回収することができるし、冷却ガスによって第1区域16を冷却することを防ぐことができる。冷却ガス排出用開口は被処理体へは向かわない方向、例えば図1で示すところの横方向などに設けることが望ましい。
大気圧プラズマ発生装置30は、図3に示すように、制御装置80を備えている。制御装置80は、コントローラ82と駆動回路84と制御回路86とを備えている。駆動回路84は電磁式リニア弁66に接続されている。そして、このリニア弁は圧縮ガス流路2に圧縮された処理ガスを供給するものである。また、制御回路86は、1対の電極72に接続されている。コントローラ82は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、駆動回路84および制御回路86に接続されている。これにより、電磁式リニア弁66の作動、および、1対の電極72への電圧の印加が、コントローラ82によって制御される。 
<大気圧プラズマ発生装置によるプラズマの発生>大気圧プラズマ発生装置30は、上述した構成により、筐体12内に供給されたガスに、電圧を印加することで、ガスをプラズマ化させる。そして、大気圧プラズマ発生装置30は、吹出口20からプラズマを吹き出すことで、被処理体に対してプラズマ処理を施す。具体的に、大気圧プラズマ発生装置30によるプラズマの発生について以下に、詳しく説明する。 
大気圧プラズマ発生装置30は、まず、圧縮ガス流路2に圧縮された処理ガスを供給する。処理ガスは、窒素等の不活性ガスと、空気中の酸素等の活性ガスとを任意の割合で混合させたガスであってもよく、不活性ガスや空気のみであってもよい。圧縮ガス流路2に供給された処理ガスは、ボルテックスチューブ4に供給される。これにより、上述したように、処理ガスが冷却され、ボルテックスチューブ4の冷却ガス吹出口52から、冷却された処理ガスが吹き出される。また、処理ガスが加熱され、ボルテックスチューブ4の高温ガス吹出口54から、高温の処理ガスが吹き出される。 
冷却ガス吹出口52から吹き出された処理ガスは、第2処理ガス流路8を介して、第2区域14に流入する。一方、高温ガス吹出口54から吹き出された処理ガスは、第1処理ガス流路6を介して、第1区域16に流入する。 
制御装置80は第1処理ガスと第2処理ガスがそれぞれ第1区域16と第2区域14内に充満してから、筐体12内において1対のプラズマ発生用電極24に電圧が印加され電極間に電流が流れる。これにより、電極間に放電が生じ、その放電により処理ガスがプラズマ化される。そして、プラズマが吹出口20から吹き出され被処理体に対するプラズマ処理が行われる。ガスが充満してから電圧を印加することは、制御装置80がタイマーを持ち、電磁式リニア弁66の作動後に、既知である圧縮ガス流路2を処理ガスが流れる流量と大気圧プラズマ発生装置30内の空間の体積から求められる時間が経過した後、電圧を印加することで行う。 
大気圧プラズマ発生装置30は、ボルテックスチューブ4により処理ガスを冷却・加熱する。このため、大気圧プラズマ発生装置30はボルテックスチューブ4が持つ能力以上に処理ガスが冷却・加熱されることがない。これにより、大気圧プラズマ発生装置30に異常が発生した場合であっても、大気圧プラズマ発生装置10は、被処理体において不適切な低温や高温
のプラズマの発生を確実に防止する。 
さらに言えば、大気圧プラズマ発生装置30では、常閉型の電磁式リニア弁66が採用されている。このため、例えば、大気圧プラズマ発生装置30が、何らかの理由で、電磁式リニア弁66への電力供給を停止した場合には、電磁式リニア弁66は閉弁するため、圧縮ガス流路2への処理ガスの流入が停止する。つまり、大気圧プラズマ発生装置30は、電磁式リニア弁66への電力供給を停止した場合に、処理ガスの供給を停止する。このように、大気圧プラズマ発生装置30は、電磁式リニア弁66への電力供給を停止した場合あっても、被処理体において不適切なプラズマの発生を確実に防止することが可能となる。 
また、大気圧プラズマ発生装置30は、処理ガスを冷却する機器として、ボルテックスチューブ4を採用している。ボルテックスチューブ30は、電力や薬品等を用いることなく、処理ガスを冷却することが可能である。このため、大気圧プラズマ発生装置30は、環境性能のよい大気圧プラズマ発生装置30となる。 
さらに、大気圧プラズマ発生装置30は、ボルテックスチューブ5により発生した高温の処理ガスを用いて第1区域においてプラズマ化を行う。つまり、大気圧プラズマ発生装置30は、処理ガスを冷却する際だけでなく、冷却された処理ガスの温度調整を行う際にも、電力や薬品等を用いていない。これにより、大気圧プラズマ発生装置30の環境性能を相当高くすることが可能となる。 
ボルテックスチューブはその仕様や圧縮ガスの圧力によって冷却ガスと高温ガスの温度が決まる。したがって、温度が設計値より大幅に上回ったり下回ったりすることがなくフェールセーフを実現することができる。 
プラズマ発生用電極には通常モリブデン等の材料が用いられる。 
図5は対被処理体作業機102を示す図である。Xロボット122とYロボット108により、大気圧プラズマ発生装置110とボルテックスチューブ114は対被処理体作業機102内を移動することができる。被処理体103は搬送レーン104により対被処理体作業機1022に搬入・保持され、処理が終わったら搬出される。 
大気圧プラズマ発生装置は、少なくとも1方向に動くロボットのヘッドに取り付けられガス加温器とガス冷却器も共に前記ヘッドに取り付けられることを特徴とする対被処理体作業機とすることが望ましい。このような態様により、大気圧プラズマ発生装置は被処理体に対し効率的にプラズマ処理を施すことができる。また、ボルテックスチューブはなるべく近い位置に配置した方が、より効率的に冷却、加温を行うことができる。 
なお、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。具体的には、例えば、上記実施例では、処理ガスを冷却する機器として、ボルテックスチューブ4が採用されているが、冷却媒体等を用いた機器等を採用することが可能である。また、冷却された処理ガスの温度調整に、ボルテックスチューブ4によって加温された処理ガスが用いられているが、ヒータ等の加温装置によって、冷却された処理ガスの温度調整を行うことが可能である。
4:ボルテックスチューブ18:放電用開口30:大気圧プラズマ発生装置36:ボルテックスチューブ80:制御装置102:対被処理体作業機102

Claims (10)

  1. 筐体と、前記筐体内に設けられる第1区域と、前記第1区域に加温した第1処理ガスを流入するガス加温器と、前記筐体内に設けられ第1区域に隣接する第2区域と、前記第2区域に冷却した第2処理ガスを流入するガス冷却器と、前記第2区域内に設けられるプラズマ発生用電極と、前記プラズマ発生用電極により前記第1区域に存する第1処理ガスをプラズマ化するプラズマ発生器と、前記プラズマ発生器によりプラズマ化されたプラズマガスを吹き出す吹出口と、を備えることを特徴とする大気圧プラズマ発生装置。
  2. 前記大気圧プラズマ発生装置は、前記第1区域と前記第2区域の間に区分け部材を備え、前記第2区域に前記プラズマ発生用電極を2つ備え、前記プラズマ発生用電極は前記第1区域を挟んで対向するよう設けられ、前記区分け部材には、前記プラズマ発生用電極から第1区域を向く方向に放電用開口が設けられ、前記放電用開口を通して前記プラズマ発生用電極によりプラズマを発生させること、を特徴とする請求項1に記載の大気圧プラズマ発生装置。
  3. 前記プラズマ発生用電極はソケットと電極片を備え、前記第2区域は管状部材により前記第1区域と区分けされ、前記ソケットから前記電極片へ向かう方向と前記管状部材の長手方向とが略平行であること、を特徴とする請求項1乃至請求項2に記載の大気圧プラズマ発生装置。
  4. 前記第2処理ガスが流れる冷却方向と前記放電用開口を通して前記第2処理ガスが第1区域へ流れる向きが略垂直であること、を特徴とする請求項1乃至3に記載の大気圧プラズマ発生装置。
  5. 前記第2区域の下端には処理ガスが流れないような封止部材を備え、前記放電用開口の下端と前記封止部材との間に空間が設けられること、を特徴とする請求項1乃至請求項4に記載の大気圧プラズマ発生装置。
  6. 前記ガス加温器又は前記ガス冷却器の少なくとも一方がボルテックスチューブであることを特徴とする請求項1乃至請求項5に記載の大気圧プラズマ発生装置。
  7. 前記大気圧プラズマ発生装置は、ボルテックスチューブを備え、前記ガス加温器はボルテックスチューブの暖気排出口であり、前記ガス冷却器がボルテックスチューブの冷気吹出口であることを特徴とする請求項1乃至請求項6に記載の大気圧プラズマ発生装置。
  8. 前記吹出口は前記第1区域に繋がること、を特徴とする請求項1乃至請求項7に記載の大気圧プラズマ発生装置。
  9. 前記大気圧プラズマ発生装置は、制御装置を備え、前記制御装置は、前記第1処理ガス及び前記第2処理ガスが前記筐体に内に充満してから前記プラズマ発生電極に電圧を印加すること、を特徴とする請求項1乃至請求項8に記載の大気圧プラズマ発生装置。
  10. 請求項1乃至請求項9に記載の大気圧プラズマ発生装置は、少なくとも1方向に動くロボットのヘッドに取り付けられ、前記ガス加温器と前記ガス冷却器も共に前記ヘッドに取り付けられること、を特徴とする対被処理体作業機。
PCT/JP2014/055276 2014-03-03 2014-03-03 大気圧プラズマ発生装置、対被処理体作業機 WO2015132853A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2014/055276 WO2015132853A1 (ja) 2014-03-03 2014-03-03 大気圧プラズマ発生装置、対被処理体作業機
EP14884286.7A EP3116289B1 (en) 2014-03-03 2014-03-03 Atmospheric pressure plasma generator and work machine for workpiece
KR1020167021602A KR102110636B1 (ko) 2014-03-03 2014-03-03 대기압 플라스마 발생 장치, 쌍피처리체 작업기
JP2016505965A JP6307591B2 (ja) 2014-03-03 2014-03-03 大気圧プラズマ発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055276 WO2015132853A1 (ja) 2014-03-03 2014-03-03 大気圧プラズマ発生装置、対被処理体作業機

Publications (1)

Publication Number Publication Date
WO2015132853A1 true WO2015132853A1 (ja) 2015-09-11

Family

ID=54054697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055276 WO2015132853A1 (ja) 2014-03-03 2014-03-03 大気圧プラズマ発生装置、対被処理体作業機

Country Status (4)

Country Link
EP (1) EP3116289B1 (ja)
JP (1) JP6307591B2 (ja)
KR (1) KR102110636B1 (ja)
WO (1) WO2015132853A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565921A (zh) * 2016-08-11 2019-04-02 株式会社富士 等离子体产生装置及等离子体照射方法
CN112512707A (zh) * 2018-08-02 2021-03-16 株式会社富士 除油方法、粘接方法、组装装置及大气压等离子体装置
US20210166919A1 (en) * 2018-08-28 2021-06-03 Fuji Corporation Plasma generation device and plasma head cooling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142150A (en) * 1978-04-28 1979-11-06 Agency Of Ind Science & Technol Method and apparatus for generating plasma flame
JPS6316574U (ja) * 1986-07-18 1988-02-03
JP2010061938A (ja) * 2008-09-03 2010-03-18 Akitoshi Okino プラズマ温度制御装置及びプラズマ温度制御方法
JP2012178348A (ja) * 2011-02-24 2012-09-13 Mak Co Ltd プラズマトーチ
JP2013152913A (ja) * 2012-01-25 2013-08-08 Osamu Ikeda プラズマ発生装置用冷却器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103766001B (zh) * 2011-09-09 2016-06-29 东芝三菱电机产业系统株式会社 等离子体产生装置及cvd装置
JP2015144078A (ja) * 2014-01-31 2015-08-06 富士機械製造株式会社 大気圧プラズマ発生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142150A (en) * 1978-04-28 1979-11-06 Agency Of Ind Science & Technol Method and apparatus for generating plasma flame
JPS6316574U (ja) * 1986-07-18 1988-02-03
JP2010061938A (ja) * 2008-09-03 2010-03-18 Akitoshi Okino プラズマ温度制御装置及びプラズマ温度制御方法
JP2012178348A (ja) * 2011-02-24 2012-09-13 Mak Co Ltd プラズマトーチ
JP2013152913A (ja) * 2012-01-25 2013-08-08 Osamu Ikeda プラズマ発生装置用冷却器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565921A (zh) * 2016-08-11 2019-04-02 株式会社富士 等离子体产生装置及等离子体照射方法
EP3500072A4 (en) * 2016-08-11 2020-03-18 Fuji Corporation PLASMA GENERATION DEVICE AND PLASMA IRRADIATION METHOD
CN109565921B (zh) * 2016-08-11 2021-05-18 株式会社富士 等离子体产生装置及等离子体照射方法
CN112512707A (zh) * 2018-08-02 2021-03-16 株式会社富士 除油方法、粘接方法、组装装置及大气压等离子体装置
US20210166919A1 (en) * 2018-08-28 2021-06-03 Fuji Corporation Plasma generation device and plasma head cooling method
US11929237B2 (en) * 2018-08-28 2024-03-12 Fuji Corporation Plasma generation device and plasma head cooling method

Also Published As

Publication number Publication date
EP3116289A1 (en) 2017-01-11
KR102110636B1 (ko) 2020-05-13
JP6307591B2 (ja) 2018-04-04
KR20160128304A (ko) 2016-11-07
EP3116289B1 (en) 2018-09-19
JPWO2015132853A1 (ja) 2017-03-30
EP3116289A4 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
CN109565921B (zh) 等离子体产生装置及等离子体照射方法
JP6307591B2 (ja) 大気圧プラズマ発生装置
KR102408315B1 (ko) 노즐들 및 다른 소모품들을 포함하는 플라즈마 아크 절단 시스템 및 관련된 작동 방법들
JP5461476B2 (ja) 摩擦攪拌接合装置
WO2011133556A1 (en) Plasma torch electrode with high cooling capability
KR101760832B1 (ko) 아크 용접방식을 갖는 3d 프린터의 냉각 시스템
JP2018531799A (ja) レーザ部品の水冷のためのレーザ加工ヘッド用の熱調整装置
ITVI20130220A1 (it) Torcia al plasma con sistema di raffreddamento perfezionato e relativo metodo di raffreddamento.
KR101509694B1 (ko) 스폿 용접 장치의 냉각유닛
US20100252537A1 (en) Steam plasma torch
JP2001321847A (ja) 超塑性成形装置および超塑性加工方法
JP2015144078A (ja) 大気圧プラズマ発生装置
EP3527049A1 (en) Consumable assembly with internal heat removal elements
CN110519905A (zh) 温控装置和等离子设备
CN106001877A (zh) 空气等离子割机
US11632850B2 (en) Plasma cutting method and torch for implementing same
KR101518903B1 (ko) 스폿 용접 장치의 냉각유닛
JP2013059806A (ja) 抵抗溶接機用溶接ヘッドおよび溶接方法
JP4783000B2 (ja) 加工機械
JP2016516618A (ja) 成形型熱転移管理
CN112543990B (zh) 大气压等离子体发生装置
EP3264867A1 (en) Nozzle for a narrow bevel angle plasma torch and plasma torch comprising the same
EP3616825A1 (en) Cryo cooling of gas cooled plasma arc torches
KR102197715B1 (ko) 차량용 난방 시스템 및 이를 포함하는 차량
KR20180007379A (ko) 하이브리드 온수기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505965

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167021602

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014884286

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014884286

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE