WO2015129657A1 - 冷凍機制御装置、冷凍機、及び冷凍機の診断方法 - Google Patents

冷凍機制御装置、冷凍機、及び冷凍機の診断方法 Download PDF

Info

Publication number
WO2015129657A1
WO2015129657A1 PCT/JP2015/055127 JP2015055127W WO2015129657A1 WO 2015129657 A1 WO2015129657 A1 WO 2015129657A1 JP 2015055127 W JP2015055127 W JP 2015055127W WO 2015129657 A1 WO2015129657 A1 WO 2015129657A1
Authority
WO
WIPO (PCT)
Prior art keywords
operation data
refrigerator
data
state
diagnosis
Prior art date
Application number
PCT/JP2015/055127
Other languages
English (en)
French (fr)
Inventor
貴晶 三浦
上田 憲治
由恵 神吉
松尾 実
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201580003437.3A priority Critical patent/CN105899894B/zh
Priority to KR1020167017016A priority patent/KR20160089505A/ko
Priority to US15/107,363 priority patent/US10139815B2/en
Publication of WO2015129657A1 publication Critical patent/WO2015129657A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/07Remote controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/023Compressor arrangements of motor-compressor units with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2613Household appliance in general

Definitions

  • the present invention relates to a refrigerator control device, a refrigerator, and a diagnostic method for a refrigerator.
  • a control device for a refrigerator such as a turbo refrigerator is configured such that only data necessary for device control is input and stored. For this reason, the storage capacity of the storage medium for storing data is small.
  • Detailed diagnosis data such as temperature data and pressure data of the equipment that constitutes the refrigerator is necessary to diagnose the operation status and failure prediction of the refrigerator, and various operation data are accumulated in time series ( Must remember). And the more the amount of operation data accumulated, the more accurate diagnosis is possible. For this reason, the storage capacity of the storage medium needs to be large in order to store the operation data. Therefore, in order to diagnose the operating state of the refrigerator and the prediction of failure, as described in Patent Document 1, a larger memory such as a control panel or a remote monitoring device provided outside the refrigerator is provided. It is performed by a device provided with a storage medium having a capacity.
  • the present invention has been made in view of such circumstances, and a refrigerator control device capable of diagnosing the state of a refrigerator without increasing the storage capacity of a storage medium for storing operation data of the refrigerator, It is an object of the present invention to provide a refrigerator and a diagnostic method for the refrigerator.
  • the refrigerator control device, the refrigerator, and the diagnosis method for the refrigerator of the present invention employ the following means.
  • the refrigerator control device includes a storage unit that stores operation data detected for each part of the refrigerator, and the operation data that is accumulated in the storage unit over time and has a large data size.
  • the refrigeration unit compresses the data size by converting the operation data every time the condition according to the type of the operation data is satisfied.
  • a state evaluation means for evaluating the state of the machine.
  • the operation data detected for each part of the refrigerator is stored by the storage means.
  • the part of the refrigerator is, for example, a relay, an inverter, a compressor, and a heat exchanger.
  • the operation data is, for example, the number of times the relay is opened and closed, the inverter temperature, the compressor motor current and the evaporator pressure, and the heat exchanger cooling water outlet temperature, condensation saturation temperature, and cooling water flow rate.
  • the operation data as described above is accumulated in the storage means with time, the data size increases.
  • the storage capacity of the storage means must be increased. Therefore, each time the condition corresponding to the type of operation data is satisfied with respect to the operation data whose data size has been increased, the operation data is converted by the compression means, thereby compressing the data size. Thereby, since the data size of operation data becomes small, it is not necessary to enlarge the memory capacity of a memory
  • the condition corresponding to the type of operation data is, for example, the continuous operation time of the refrigerator. Moreover, conversion is smoothing operation data by average or approximation, etc., and is extracting the necessary part which can evaluate the state of a refrigerator. Then, based on the operation data converted by the compression means, the state evaluation means evaluates the state of the refrigerator.
  • the state of the refrigerator can be diagnosed without increasing the storage capacity of the storage medium for storing the operation data of the refrigerator.
  • this makes it possible to diagnose the state of the refrigerator by the refrigerator control device, so that a customer who does not have a remote monitoring device or the like having a diagnostic function as in the past can also diagnose the refrigerator.
  • the operation data detected for each part of the refrigerator is compressed and stored, long-term diagnosis for each part of the refrigerator can be performed by the refrigerator control device.
  • the compression means compresses the data size by smoothing the operation data for each section corresponding to the size of the operation parameter of the refrigerator, and the state evaluation means The operation state of the refrigerator is evaluated by calculating a difference between the operation data after being compressed by the means and a reference value corresponding to the category, and comparing the difference with a threshold value corresponding to the category. It is preferable.
  • the operation data is classified for each category according to the size of the operation parameter of the refrigerator.
  • the operation parameter of the refrigerator is, for example, the output load and the vane opening, and the category is the output load factor and the angle of the vane opening.
  • the operation data is smoothed by the compression means for each section corresponding to the size of the operation parameter of the refrigerator. Then, a difference between the compressed operation data and the reference value corresponding to the category is calculated, and the difference is compared with a threshold value corresponding to the category to evaluate the operation state of the refrigerator. Therefore, according to this configuration, the state of the refrigerator can be evaluated by simple processing without increasing the storage capacity of the refrigerator control device.
  • the state evaluation unit notifies different evaluation results depending on a deviation state between the difference and the threshold value.
  • the refrigerator manager can accurately determine the state of the refrigerator.
  • a refrigerator according to the second aspect of the present invention includes the refrigerator control device described above.
  • the first step of storing the operation data detected for each part of the refrigerator in the storage means, and the data size is accumulated in the storage means with time to increase the data size.
  • a second step of compressing the data size by converting the operation data every time the condition according to the type of the operation data is satisfied And a third step of evaluating the state of the refrigerator.
  • the state of the refrigerator can be diagnosed without increasing the storage capacity of the storage medium for storing the operation data of the refrigerator.
  • FIG. 1 is a diagram showing a schematic configuration of the turbo refrigerator 11.
  • the turbo chiller 11 gives cold heat to cold water supplied to an external load 86 such as an air conditioner or a fan coil.
  • the turbo refrigerator 11 includes a turbo compressor 60 that compresses the refrigerant, a condenser 62 that condenses the high-temperature and high-pressure gas refrigerant compressed by the turbo compressor 60, and the liquid refrigerant condensed in the condenser 62.
  • a subcooler 63 that provides supercooling, a high-pressure expansion valve 64 that expands liquid refrigerant from the subcooler 63, and an intermediate cooling that is connected to the high-pressure expansion valve 64 and to the intermediate stage of the turbo compressor 60 and the low-pressure expansion valve 65.
  • an evaporator 66 that evaporates the liquid refrigerant expanded by the low-pressure expansion valve 65.
  • the turbo compressor 60 is a centrifugal two-stage compressor, and is a fixed speed machine that is driven at a constant rotation speed.
  • the fixed speed machine is illustrated in FIG. 1, it is good also as using the turbo compressor by which the rotation speed is variably controlled by the inverter.
  • An inlet guide vane (hereinafter referred to as “IGV”) 76 for controlling the flow rate of the intake refrigerant is provided at the refrigerant inlet of the turbo compressor 60, and the capacity control of the turbo refrigerator 11 can be performed.
  • the condenser 62 is provided with a condensed refrigerant pressure sensor PC for measuring the condensed refrigerant pressure.
  • the subcooler 63 is provided on the downstream side of the refrigerant flow of the condenser 62 so as to supercool the condensed refrigerant.
  • a temperature sensor Ts for measuring the refrigerant temperature after supercooling is provided.
  • the condenser 62 and the subcooler 63 are provided with a cooling water pipe 80 for cooling them.
  • the cooling water pipe 80 is connected to the cooling tower 83, and the cooling water circulates between the condenser 62, the cooling tower 83, and the subcooler 63 via the cooling water pipe 80.
  • the circulating cooling water absorbs condensation heat (exhaust heat) from the refrigerant in the condenser 62, dissipates heat in the cooling tower 83, and then is sent to the sub-cooler 63 again.
  • Heat dissipation in the cooling tower 83 is performed by heat exchange with the outside air.
  • the cooling tower 83 removes exhaust heat released when the refrigerant condenses in the condenser 62.
  • the cooling water flowing through the cooling water pipe 80 is pumped by a cooling water pump 84 installed in the cooling water pipe 80.
  • the cooling water pump 84 is driven by a cooling water pump inverter motor (not shown). Thereby, the discharge flow rate of the cooling water pump 84 can be variably controlled by making the rotation speed variable.
  • the cooling water inlet temperature is measured by a temperature sensor Tcin installed near the subcooler 63 inlet of the cooling water pipe 80, and the cooling water outlet temperature is measured by a temperature sensor Tcout provided near the condenser 62 outlet of the cooling water pipe 80.
  • the coolant flow rate is measured by a flow meter F2 installed in the coolant pipe 80.
  • the intermediate cooler 67 is provided with a pressure sensor PM for measuring the intermediate pressure.
  • the evaporator 66 is provided with a pressure sensor PE for measuring the evaporation pressure.
  • Cold water having a rated temperature (for example, 7 ° C.) is obtained by absorbing heat in the evaporator 66. That is, the cold water flowing through the cold water pipe 82 inserted into the evaporator 66 is cooled by removing heat from the refrigerant.
  • the cold water flowing through the cold water pipe 82 is pumped by a cold water pump 85 installed in the cold water pipe 82.
  • the cold water pump 85 is driven by a cold water pump inverter motor (not shown). Thereby, the discharge flow rate of the cold water pump 85 can be variably controlled by making the rotation speed variable.
  • the chilled water inlet temperature is measured by a temperature sensor Tin installed near the evaporator 66 inlet of the chilled water pipe 82, and the chilled water outlet temperature is measured by a temperature sensor Tout provided near the evaporator 66 outlet of the chilled water pipe 82. Is measured by a flow meter F1 installed in the cooling water pipe 82.
  • a hot gas bypass pipe 79 is provided between the vapor phase portion of the condenser 62 and the vapor phase portion of the evaporator 66.
  • a hot gas bypass valve 78 for controlling the flow rate of the refrigerant flowing in the hot gas bypass pipe 79 is provided. By adjusting the hot gas bypass flow rate with the hot gas bypass valve 78, it is possible to control the capacity of a very small region that is not sufficiently controlled by the IGV 76.
  • measured values measured by various sensors such as the pressure sensor PC are transmitted to the refrigerator control device 74.
  • the refrigerator control device 74 controls the opening degrees of the IGV 76 and the hot gas bypass valve 78.
  • turbo refrigerator 11 In the turbo refrigerator 11 shown in FIG. 1, a case is described in which a condenser 62 and a subcooler 63 are provided, heat is exchanged between the cooling water exhausted to the outside in the cooling tower 83 and the refrigerant, and the cooling water is warmed.
  • an air heat exchanger may be arranged in place of the condenser 62 and the subcooler 63, and heat may be exchanged between the outside air and the refrigerant in the air heat exchanger.
  • the turbo refrigerator 11 is not limited to the case where it has only the cooling function mentioned above, For example, you may have only a heating function or both a cooling function and a heating function.
  • the medium exchanged with the refrigerant may be water or air.
  • the refrigerator control device 74 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable non-volatile storage medium.
  • a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized.
  • the program is preinstalled in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. Etc. may be applied.
  • the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • FIG. 2 is a functional block diagram showing the configuration of the refrigerator control device 74.
  • the refrigerator control device 74 executes a refrigerator diagnosis process for evaluating the state of the turbo refrigerator 11 based on operation data detected for each part of the turbo refrigerator 11.
  • the parts of the turbo refrigerator 11 are, for example, a relay, an inverter, a turbo compressor 60, a heat exchanger (evaporator 66, condenser 62, and subcooler 63).
  • the part of the turbo chiller 11 is also referred to as a control object 10.
  • the operation data includes, for example, the number of times the relay is opened and closed, the inverter temperature, the motor current and the evaporator pressure of the turbo compressor 60, the cooling water outlet temperature of the heat exchanger, the condensation saturation temperature, and the cooling water flow rate.
  • the operation data is detected by the various sensors described above.
  • the refrigerator control device 74 includes an input / output unit 12, an input / output processing unit 14, an arithmetic processing unit 16, a storage unit 18, and a communication unit 20.
  • the input / output unit 12 is connected to various sensors, and the operation data (analog signal) described above is input from the various sensors.
  • the input / output unit 12 may output detection start signals or detection stop signals to various sensors.
  • the input / output unit 12 performs analog / digital conversion on the operation data that is an analog signal, converts the operation data into a digital signal, and outputs the digital signal to the input / output processing unit 14.
  • the input / output processing unit 14 outputs the operation data input via the input / output unit 12 to the arithmetic processing unit 16 or the storage unit 18 and outputs a signal from the arithmetic processing unit 16 to the input / output unit 12.
  • the arithmetic processing unit 16 generates control signals for various control objects and executes refrigerator diagnosis processing based on operation data in order to control the turbo refrigerator 11.
  • the storage unit 18 is a non-volatile storage medium that stores various data such as operation data. Further, the storage unit 18 stores various operation data (hereinafter referred to as “reference operation data”) during the trial operation of the turbo refrigerator 11.
  • the reference operation data is operation data obtained when the turbo chiller 11 is trial run at a rated or partial load, and is used in the refrigerator diagnosis process.
  • the storage unit 18 stores accumulated time (hereinafter referred to as “aged time”) during which the turbo refrigerator 11 is operated, various correction coefficients and threshold values used in the refrigerator diagnosis process.
  • the communication unit 20 is connected to the display device 22 and the remote monitoring device 24 via a communication line, and notifies the operation state of the turbo refrigerator 11 and the result of the refrigerator diagnosis process.
  • the communication line is a line for transmitting a digital signal.
  • the display device 22 displays various processing results obtained by the refrigerator control device 74.
  • the remote monitoring device 24 enables remote operation of the turbo chiller 11.
  • FIG. 3 is a functional block diagram showing the configuration of the arithmetic processing unit 16 and the storage unit 18.
  • the storage unit 18 includes a temporary storage memory space 30 and a compressed data memory space 32.
  • the temporary storage memory space 30 sequentially stores the operation data output from the input / output processing unit 14.
  • the compressed data memory space 32 stores operation data after the operation data compression processing by the arithmetic processing unit 16 (hereinafter referred to as “compressed operation data”).
  • the arithmetic processing unit 16 includes a compression unit 34 and a diagnosis unit 36.
  • the compression unit 34 performs operation data compression processing on the operation data stored in the temporary storage memory space 30 to obtain compressed operation data, which is stored in the compressed data memory space 32.
  • the diagnosis unit 36 performs a refrigerator diagnosis process based on the compression operation data.
  • the operation data output from the input / output processing unit 14 is sequentially stored in the temporary storage memory space 30. For this reason, the operation data is accumulated in the temporary storage memory space 30 with time, and the data size increases. In order to continue to store the operation data of this large data size, the storage capacity of the storage unit 18 must be increased, leading to an increase in the cost of the refrigerator control device 74.
  • compression timing condition every time the operation data whose data size is increased satisfies the condition according to the type of operation data (hereinafter referred to as “compression timing condition”), the operation data is converted by the operation data compression process. Data size is compressed.
  • the compressed operation data is stored in the compressed data memory space 32, and the operation data used for compression is deleted from the temporary storage memory space 30. Thereby, since the data size of the compression operation data is reduced, it is not necessary to increase the storage capacity of the storage unit 18.
  • the condition corresponding to the type of operation data is, for example, the continuous operation time of the turbo chiller 11.
  • the conversion means smoothing the operation data by averaging or approximation, and extracting a necessary part that can evaluate the state of the turbo refrigerator 11.
  • the temporary storage memory space 30 does not have to be a fixed memory space since operation data is temporarily stored, while the compressed data memory space 32 is preferably a fixed memory space.
  • the operation data is, for example, the number of times the relay is opened and closed
  • “1” is incremented in the temporary storage memory space 30 in accordance with the opening and closing of the relay each time. Then, when the number of relay opening / closing operations sequentially stored in the temporary storage memory space 30 exceeds 1000, for example, the compression unit 34 determines that the compression timing condition is satisfied. Then, “1000”, which is the operation data stored in the temporary storage memory space 30 by the operation data compression process, is converted to “1” and stored as compressed operation data in the compressed data memory space 32.
  • the compressed operation data indicating the number of times of opening / closing of the relay is already stored in the compressed data memory space 32
  • the compressed operation data indicating the number of times of opening / closing of the relay is incremented by “1”. That is, for example, when the number of times of opening and closing of the relay is 100,000, the compression operation data indicating the number of times of opening and closing of the relay stored in the compressed data memory space 32 is “100”.
  • the operation data when the operation data has time changes such as the motor current and the evaporator pressure of the turbo compressor 60, the cooling water outlet temperature of the heat exchanger, the condensation saturation temperature, and the cooling water flow rate, the operation data is temporarily stored in time series. Stored in the storage memory space 30. And when predetermined time (for example, 1 minute) passes since the last driving
  • predetermined time for example, 1 minute
  • the compression unit 34 averages the compression operation data averaged every minute, averages the compression operation data averaged every hour, and averages it every day.
  • the compressed operation data may be averaged step by step so as to average every month.
  • the compression unit 34 may compress the data size by smoothing the operation data for each section corresponding to the size of the operation parameter of the turbo chiller 11.
  • the operation parameter of the turbo chiller 11 is, for example, the output load or the opening degree of the IGV (hereinafter referred to as “vane opening degree”), and the category is the output load factor or the angle of the vane opening degree.
  • the output load factor is a value in which the rated load of the turbo chiller 11 is 100%.
  • FIG. 4 is a flowchart showing the flow of data compression diagnosis processing including operation data compression processing and refrigerator diagnosis processing.
  • the data compression diagnosis process is executed by the refrigerator control device 74, is started when the turbo refrigerator 11 is operated, and is ended when the turbo refrigerator 11 is stopped.
  • the refrigerator diagnosis process is executed by determining the compression timing and diagnosis timing described later for each type of operation data.
  • step 100 the operation data input via the input / output unit 12 is stored in the temporary storage memory space 30 provided in the storage unit 18.
  • step 102 it is determined whether or not the compression timing condition of the operation data is satisfied. If the determination is affirmative, the process proceeds to step 104. On the other hand, if the determination is negative, the process returns to step 100 and the operation data is continuously stored in the temporary storage memory space 30.
  • step 104 operation data compression processing is executed.
  • step 106 it is determined whether or not the timing for executing the refrigerator diagnosis process has been reached. If the determination is affirmative, the process proceeds to step 108. If the determination is negative, the process returns to step 100.
  • step 108 a refrigerator diagnosis process is executed based on the compression operation data.
  • next step 110 it is determined whether or not it is necessary to notify the result of the refrigerator diagnosis process.
  • step 112 the result of the refrigerator diagnosis process is notified to the display device 22 and the remote monitoring device 24, and the process returns to step 100.
  • the target of data compression diagnosis processing is a heat exchanger. Since the number of tubes of the heat exchanger may be several hundreds, and the occurrence of corrosion has a great influence on the turbo chiller 11, it is necessary to accurately determine the deterioration state.
  • the operation data required for diagnosis for the heat exchanger is the coolant outlet temperature, the condensation saturation temperature, the coolant flow rate, the output load factor of the refrigerator, and the like.
  • the coolant outlet temperature and the condensation saturation temperature are related to the coolant flow rate and the output load factor of the refrigerator.
  • operation data are classified according to load as operation parameters of the centrifugal chiller 11.
  • the output load factor is divided into 8 categories of 20%, 30%, ... 90%, 100% (rated), and operation data with an output load factor of 15% or more and less than 25% is output load
  • the operation data with an output load factor of 25% or more and less than 35% is roughly classified as the operation data with an output load factor of 30%.
  • the output load Operation data with a rate of 85% or more and less than 95% is roughly classified as operation data with an output load factor of 90%, and operation data with an output load factor of 95% or more and 100% or less has an output load factor of 100%. It is roughly classified as driving data.
  • the data size is compressed by averaging the cooling water outlet temperature and the condensation saturation temperature divided according to the output load factor every predetermined time (for example, 1 hour).
  • a refrigerator diagnosis process is performed based on the compression operation data.
  • the result of multiplying the temperature difference between the cooling water outlet temperature and the condensation saturation temperature (hereinafter referred to as “detected temperature difference”), which is the compression operation data, by a predetermined correction coefficient, A diagnostic value is calculated by correcting with an output load factor of 11.
  • the aging time when the centrifugal chiller 11 is operated is calculated based on the temperature difference between the cooling water outlet temperature and the condensation saturation temperature (hereinafter referred to as “reference temperature difference”) obtained from the reference operation data corresponding to the category corresponding to the diagnosis value.
  • the diagnostic reference value is calculated by multiplying the correction coefficient according to the above.
  • the refrigerator diagnosis process calculates the difference between the diagnosis value and the diagnosis reference value (hereinafter referred to as “temperature diagnosis difference”), and compares the temperature diagnosis difference with a threshold value corresponding to the category, thereby determining the centrifugal chiller. 11 driving conditions are evaluated.
  • the threshold value may change according to the aging time when the turbo refrigerator 11 is operated. For example, as the aging time is longer, the threshold value is reduced and the deterioration state is determined more strictly.
  • the administrator of the turbo chiller 11 can accurately determine the state of the turbo chiller 11.
  • the temperature diagnosis difference does not exceed the threshold value X, it is not deviated, the heat exchanger is not deteriorated, and no notification is given. Alternatively, it is notified that the state is not deteriorated.
  • the temperature diagnosis difference exceeds the threshold value X, it is a divergence state, the heat exchanger is assumed to be deteriorated, and an alarm is notified.
  • the refrigerator diagnosis process notifies the first-degree deterioration state as an alarm.
  • the first degree deterioration state for example, a predetermined portion on the screen of the display device 22 is displayed in yellow.
  • the refrigerator diagnosis processing notifies the second-degree deterioration state as an alarm.
  • the second degree deterioration state for example, a predetermined portion on the screen of the display device 22 is displayed in orange.
  • the refrigerator diagnosis process When the temperature diagnosis difference exceeds the threshold value X + predetermined value Y + predetermined value Z, the refrigerator diagnosis process notifies the user that the third-degree deterioration state is present as an alarm. In the case of the third degree deterioration state, for example, a predetermined portion on the screen of the display device 22 is displayed in red. In addition, when it determines with a 3rd degree deterioration state, the refrigerator control apparatus 74 may stop the turbo refrigerator 11. FIG.
  • the turbo compressor 60 is a main part of the turbo chiller 11 and may be removed and repaired at the factory if a failure occurs.
  • the turbo compressor 60 has a large influence on the turbo chiller 11, so that an accurate deterioration state can be determined. Cost.
  • the operation data necessary for the diagnosis on the turbo compressor 60 is the motor current, the vane opening, the output load factor of the refrigerator, and the like.
  • the motor current is associated with the vane opening degree and the output load factor.
  • the motor current is divided into eight according to the output load factor of the turbo chiller 11, and in the operation data compression process, the motor current according to each divided output load factor is changed every predetermined time (for example, one day).
  • the data size is compressed by averaging. Note that the value of the motor current when the vane opening changes excessively is not used for the operation data compression process. This is because when the vane opening changes excessively, the motor current may also change, and the use of such operation data reduces the accuracy of diagnosis.
  • a refrigerator diagnosis process is performed based on the compression operation data.
  • the difference between the motor current obtained from the compression operation data that is the motor current and the reference operation data corresponding to the category (hereinafter referred to as “current diagnosis difference”) is calculated, and the current diagnosis difference and the threshold value corresponding to the category are calculated.
  • the operation state of the turbo refrigerator 11 is evaluated.
  • the turbo compressor 60 deteriorates after several years have passed since the factory shipment of the turbo refrigerator 11. For this reason, as an example, the alarm is performed in two stages.
  • the refrigerator diagnosis process notifies the light alarm whenever the current diagnosis difference exceeds the threshold, and if the difference exceeds 20 times, the medium alarm As a notification.
  • the refrigerator diagnosis process for example, every time the compression operation data indicating the motor current and the evaporator pressure fluctuates by a predetermined value or more within a short time (for example, 1 minute), the number of abnormal fluctuations is incremented by “1”. An alarm may be notified when the number of fluctuations has exceeded a predetermined time or when it has been repeated for a predetermined number of times.
  • the refrigerator diagnosis process may be performed based on the lubricating oil system of the turbo compressor 60.
  • the operation data required in this case is a condenser pressure, a lubricating oil pressure, an evaporator pressure, and the like. These operation data are classified according to the vane opening as the operation parameters of the turbo refrigerator 11. Specifically, the vane opening degree is classified into nine, 10%, 20%,... 90%, and 100%, and the operation data with the vane opening degree of 5% or more and less than 15% is 10%. Operation data with a vane opening of 15% or more and less than 25% is classified as operation data with a vane opening of 20%. Similarly, the vane opening is 85% or more and less than 95%.
  • the operation data is classified as operation data having a vane opening degree of 90%, and the operation data having a vane opening degree of 95% or more and 100% or less is classified as operation data having a vane opening degree of 100%.
  • the data size is compressed by averaging the lubricating oil pressure and the evaporator pressure corresponding to each divided vane opening every predetermined time (for example, 1 hour).
  • a refrigerator diagnosis process is performed based on the compression operation data.
  • the pressure difference (hereinafter referred to as “detected pressure difference”) between the lubricating oil pressure and the evaporator pressure, which is the compression operation data, by a predetermined correction coefficient based on the relationship between the condenser pressure and the evaporator pressure.
  • a diagnostic value is calculated.
  • the refrigerator diagnosis processing calculates a difference between the diagnosis value and the diagnosis reference value according to the type of the turbo refrigerator 11 (hereinafter referred to as “pressure diagnosis difference”), and the threshold value corresponding to the pressure diagnosis difference and the category. And the operation state of the turbo refrigerator 11 is evaluated.
  • the threshold value may change according to the operation time during which the oil pump is operated. For example, the longer the operation time, the lower the threshold value and the more severe the deterioration state is determined.
  • the refrigerator diagnosis process notifies different evaluation results depending on the difference between the pressure diagnosis difference and the threshold value.
  • the pressure diagnosis difference does not exceed the threshold value X, there is no divergence, the turbo refrigerator 11 is not deteriorated, and no notification is given. Or it is notified that it is not in a deteriorated state.
  • the turbo refrigerator 11 is assumed to be deteriorated, and an alarm is notified. For example, when the pressure diagnosis difference exceeds the threshold value X and the continuation time has elapsed for the first time or more, the refrigerator diagnosis processing notifies the first-degree deterioration state as an alarm.
  • the refrigerator diagnosis processing notifies the second-degree deterioration state as an alarm.
  • a predetermined portion on the screen of the display device 22 is displayed in orange.
  • the refrigerator control apparatus 74 may stop the turbo refrigerator 11.
  • the data compression diagnosis process notifies the alarm with a threshold value when the number of times of opening and closing of the relay stored as the compression operation data reaches 200 times.
  • the data compression diagnosis process multiplies the inverter temperature stored as the compression operation data by a correction coefficient corresponding to the operation time of the turbo chiller 11, An alarm is notified when the multiplied value exceeds a threshold value.
  • the refrigerator control device 74 since the refrigerator control device 74 stores the operation data detected for each part of the turbo chiller 11, the refrigerator control device 74 provides maintenance information for each part of the turbo chiller 11 to the display device 22. It can be displayed. Further, based on the result of the refrigerator diagnosis process (deterioration state of each part of the turbo chiller 11), the refrigerator control device 74 sets, for example, a maintenance time earlier for a part where deterioration has progressed. Alternatively, the maintenance time may be set later for a portion where the deterioration has not progressed. As described above, since the refrigerator control device 74 compresses and stores the operation data, various operation data can be stored for a long period of time, so that the display device 22 can use the operation data for determination of the maintenance time. It becomes possible.
  • the refrigerator control device 74 includes the storage unit 18 that stores operation data detected for each part of the turbo refrigerator 11, and the data size accumulated in the storage unit 18 with time. Based on the operation data converted by the compression unit 34 and the compression unit 34 that compresses the data size by converting the operation data every time the condition corresponding to the type of operation data is satisfied. And a diagnostic unit 36 for evaluating the state of the turbo refrigerator 11.
  • the refrigerator control device 74 can diagnose the state of the turbo refrigerator 11 without increasing the storage capacity of the storage medium that stores the operation data of the turbo refrigerator 11. As a result, the state of the turbo chiller 11 can be diagnosed by the chiller control device 74, so that the customer who does not have a remote monitoring device having a diagnostic function as in the past can also diagnose the turbo chiller 11. It becomes. Further, since the operation data detected for each part of the turbo chiller 11 is compressed and stored, a long-term diagnosis for each part of the turbo chiller 11 can be performed by the refrigerator controller 74.
  • the flow of the data compression diagnosis processing described in the above embodiment is also an example, and unnecessary steps are deleted, new steps are added, and the processing order is changed within a range not departing from the gist of the present invention. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

冷凍機制御装置(74)は、ターボ冷凍機の部位毎に検知された運転データを記憶する記憶部(18)と、時間と共に記憶部(18)に蓄積されてデータサイズが大きくなった運転データに対して、運転データの種類に応じた条件を満たす毎に運転データを変換することでデータサイズを圧縮する圧縮部(34)と、圧縮部(34)によって変換された運転データに基づいて、ターボ冷凍機の状態を評価する診断部(36)と、を備える。これにより、ターボ冷凍機の運転データを記憶する記憶媒体の記憶容量を大きくすることなく、冷凍機の状態を診断することができる。

Description

冷凍機制御装置、冷凍機、及び冷凍機の診断方法
 本発明は、冷凍機制御装置、冷凍機、及び冷凍機の診断方法に関するものである。
 ターボ冷凍機等の冷凍機の制御装置は、機器制御に必要なデータのみが入力されて記憶される構成とされている。このため、データを記憶するための記憶媒体の記憶容量は小さい。
 冷凍機の運転状態や故障予知等の診断を行うためには、冷凍機を構成する機器の温度データや圧力データ等の詳細な運転データが必要であり、種々の運転データを時系列で蓄積(記憶)しなければならない。そして、運転データの蓄積量が多いほどより正確な診断が可能である。このため、運転データを記憶するために記憶媒体の記憶容量は大きい必要がある。
 そこで、冷凍機の運転状態や故障予知等の診断を行うために、特許文献1に記載されているように、冷凍機に対して外部に設けられた制御盤や遠隔監視装置等のより大きな記憶容量を有する記憶媒体を備えた機器で行われている。
特開2012-52733号公報
 しかしながら、制御盤や遠隔監視装置等で冷凍機の診断を行う場合には、通信回線を介して冷凍機から運転データを収集する必要があるが、通信回線を介して送受信可能な通信データ量には制限があり、限定された運転データでしか診断が行えない場合があった。また、遠隔監視装置が導入されていない冷凍機もあり、このような冷凍機では診断そのものが行われない場合もある。
 このため、より多くの運転データを用いた診断は、通信回線を用いずに運転データの収集が可能な制御装置で行うことが好ましいものの、上述したように、制御装置が備える記憶媒体の記憶容量は小さく、記憶容量の大きくするとコストアップを招く。
 本発明は、このような事情に鑑みてなされたものであって、冷凍機の運転データを記憶する記憶媒体の記憶容量を大きくすることなく、冷凍機の状態を診断できる、冷凍機制御装置、冷凍機、及び冷凍機の診断方法を提供することを目的とする。
 上記課題を解決するために、本発明の冷凍機制御装置、冷凍機、及び冷凍機の診断方法は以下の手段を採用する。
 本発明の第一態様に係る冷凍機制御装置は、冷凍機の部位毎に検知された運転データを記憶する記憶手段と、時間と共に前記記憶手段に蓄積されてデータサイズが大きくなった前記運転データに対して、前記運転データの種類に応じた条件を満たす毎に前記運転データを変換することでデータサイズを圧縮する圧縮手段と、前記圧縮手段によって変換された前記運転データに基づいて、前記冷凍機の状態を評価する状態評価手段と、を備える。
 本構成によれば、冷凍機の部位毎に検知された運転データが記憶手段によって記憶される。冷凍機の部位とは、例えば、リレー、インバータ、圧縮機、及び熱交換器等である。運転データとは、例えば、リレーの開閉回数、インバータの温度、圧縮機の電動機電流及び蒸発器圧力、並びに熱交換器の冷却水出口温度や凝縮飽和温度及び冷却水流量である。
 上記のような運転データを時間と共に記憶手段に蓄積していくと、そのデータサイズは大きくなる。この大きいデータサイズの運転データを記憶し続けるためには、記憶手段の記憶容量を大きくしなければならない。
 そこで、データサイズが大きくなった運転データに対して、運転データの種類に応じた条件を満たす毎に、圧縮手段によって運転データが変換されることでデータサイズが圧縮される。これにより、運転データのデータサイズは小さくなるので、記憶手段の記憶容量を大きくする必要が無い。運転データの種類に応じた条件とは、例えば冷凍機の継続運転時間等である。また、変換とは、運転データを平均又は近似等によって平滑化することであり、冷凍機の状態を評価可能な必要部分を抽出することである。
 そして、圧縮手段によって変換された運転データに基づいて、状態評価手段によって、冷凍機の状態が評価される。
 従って、本構成によれば、冷凍機の運転データを記憶する記憶媒体の記憶容量を大きくすることなく、冷凍機の状態を診断できる。また、これにより、冷凍機制御装置によって冷凍機の状態を診断が可能となるので、従来のように診断機能を有する遠隔監視装置等を有していない顧客でも冷凍機の診断が可能となる。さらに、冷凍機の部位毎に検知された運転データが圧縮されて記憶されるので、冷凍機の部位毎に長期的な診断が冷凍機制御装置で可能となる。
 上記第一態様では、前記圧縮手段が、前記冷凍機の運転パラメータの大きさに応じた区分毎に、前記運転データを平滑化することでデータサイズを圧縮し、前記状態評価手段が、前記圧縮手段によって圧縮された後の前記運転データと前記区分に応じた基準値との差を算出し、該差と前記区分に応じた閾値とを比較することで、前記冷凍機の運転状態を評価することが好ましい。
 本構成によれば、冷凍機の運転パラメータの大きさに応じた区分毎に運転データが分類される。冷凍機の運転パラメータは、例えば出力負荷やベーン開度である、区分は出力負荷率やベーン開度の角度である。
 冷凍機の運転パラメータの大きさに応じた区分毎に、圧縮手段によって運転データが平滑化される。そして、圧縮された後の運転データと区分に応じた基準値との差が算出され、該差と区分に応じた閾値とが比較され、冷凍機の運転状態が評価される。
 従って、本構成によれば、冷凍機制御装置の記憶容量を大きくすることなく、簡易な処理によって冷凍機の状態の評価ができる。
 上記第一態様では、前記状態評価手段は、前記差と前記閾値との乖離状態に応じて異なる評価結果を報知することが好ましい。
 本構成によれば、冷凍機の管理者が冷凍機の状態を的確に判断できる。
 本発明の第二態様に係る冷凍機は、上記記載の冷凍機制御装置を備える。
 本発明の第三態様に係る冷凍機の診断方法は、冷凍機の部位毎に検知された運転データを記憶手段に記憶する第1工程と、時間と共に前記記憶手段に蓄積されてデータサイズが大きくなった前記運転データに対して、前記運転データの種類に応じた条件を満たす毎に前記運転データを変換することでデータサイズを圧縮する第2工程と、圧縮された前記運転データに基づいて、前記冷凍機の状態を評価する第3工程と、を備える。
 本発明によれば、冷凍機の運転データを記憶する記憶媒体の記憶容量を大きくすることなく、冷凍機の状態を診断できる、という優れた効果を有する。
本発明の実施形態に係るターボ冷凍機の概略構成を示した図である。 本発明の実施形態に係る冷凍機制御装置の構成を示す機能ブロック図である。 本発明の実施形態に係る演算処理部及び記憶部の構成を示す機能ブロック図である。 本発明の実施形態に係るデータ圧縮診断処理の流れを示すフローチャートである。
 以下に、本発明に係る冷凍機制御装置、冷凍機、及び冷凍機の診断方法の一実施形態について、図面を参照して説明する。
 図1は、ターボ冷凍機11の概略構成を示した図である。
 ターボ冷凍機11は、空調機やファンコイル等の外部負荷86に供給する冷水に対して冷熱を与える。ターボ冷凍機11は、冷媒を圧縮するターボ圧縮機60と、ターボ圧縮機60によって圧縮された高温高圧のガス冷媒を凝縮する凝縮器62と、凝縮器62にて凝縮された液冷媒に対して過冷却を与えるサブクーラ63と、サブクーラ63からの液冷媒を膨張させる高圧膨張弁64と、高圧膨張弁64に接続されるとともにターボ圧縮機60の中間段および低圧膨張弁65に接続される中間冷却器67と、低圧膨張弁65によって膨張させられた液冷媒を蒸発させる蒸発器66とを備えている。
 ターボ圧縮機60は、遠心式の2段圧縮機であり、回転数一定で駆動する固定速機である。なお、図1では固定速機を例示しているが、インバータによって回転数が可変制御されるターボ圧縮機を用いることとしてもよい。ターボ圧縮機60の冷媒吸入口には、吸入冷媒流量を制御するインレットガイドベーン(以下「IGV」という。)76が設けられており、ターボ冷凍機11の容量制御が可能となっている。
 凝縮器62には、凝縮冷媒圧力を計測するための凝縮冷媒圧力センサPCが設けられている。サブクーラ63は、凝縮器62の冷媒流れ下流側に、凝縮された冷媒に対して過冷却を与えるように設けられている。サブクーラ63の冷媒流れ下流側直後には、過冷却後の冷媒温度を計測する温度センサTsが設けられている。
 凝縮器62及びサブクーラ63には、これらを冷却するための冷却水配管80が設置されている。この冷却水配管80は冷却塔83に接続されており、冷却水配管80を介して、凝縮器62、冷却塔83、及びサブクーラ63の間を冷却水が循環する。循環する冷却水は、凝縮器62において冷媒から凝縮熱(排熱)を吸熱し、冷却塔83において放熱した後、再びサブクーラ63へ送られる。冷却塔83における放熱は、外気との熱交換によって行われる。このように、冷却塔83によって、凝縮器62において冷媒が凝縮する際に放出する排熱が除去されるようになっている。冷却水配管80を流れる冷却水は、冷却水配管80に設置された冷却水ポンプ84によって圧送される。冷却水ポンプ84は、図示しない冷却水ポンプ用インバータモータによって駆動される。これにより、回転数を可変とすることにより、冷却水ポンプ84の吐出流量を可変に制御できるようになっている。
 冷却水入口温度は、冷却水配管80のサブクーラ63入口近傍に設置された温度センサTcinによって計測され、冷却水出口温度は、冷却水配管80の凝縮器62出口近傍に設けた温度センサTcoutによって計測され、冷却水流量は、冷却水配管80に設置された流量計F2により計測される。
 中間冷却器67には、中間圧力を計測するための圧力センサPMが設けられている。
 蒸発器66には、蒸発圧力を計測するための圧力センサPEが設けられている。蒸発器66において吸熱されることによって定格温度(例えば7℃)の冷水が得られる。すなわち、蒸発器66内に挿通された冷水配管82内を流れる冷水は、冷媒に熱が奪われることにより、冷やされる。冷水配管82を流れる冷水は、冷水配管82に設置された冷水ポンプ85によって圧送される。冷水ポンプ85は、図示しない冷水ポンプ用インバータモータによって駆動される。これにより、回転数を可変とすることにより、冷水ポンプ85の吐出流量を可変に制御できるようになっている。
 冷水入口温度は冷水配管82の蒸発器66入口近傍に設置された温度センサTinによって計測され、冷水出口温度は、冷水配管82の蒸発器66出口近傍に設けた温度センサToutによって計測され、冷水流量は、冷却水配管82に設置された流量計F1により計測される。
 凝縮器62の気相部と蒸発器66の気相部との間には、ホットガスバイパス管79が設けられている。そして、ホットガスバイパス管79内を流れる冷媒の流量を制御するためのホットガスバイパス弁78が設けられている。ホットガスバイパス弁78によってホットガスバイパス流量を調整することにより、IGV76では制御が十分でない非常に小さな領域の容量制御が可能となっている。
 図1において、圧力センサPC等の各種センサによって計測された計測値は、冷凍機制御装置74へ送信される。また、冷凍機制御装置74は、IGV76及びホットガスバイパス弁78の弁開度の制御を行う。
 図1に示したターボ冷凍機11では、凝縮器62及びサブクーラ63を設け、冷却塔83において外部へと排熱した冷却水と冷媒との間で熱交換を行い、冷却水を温める場合について述べたが、例えば、凝縮器62及びサブクーラ63に代えて空気熱交換器を配置し、空気熱交換器において外気と冷媒との間で熱交換を行うような構成としてもよい。また、ターボ冷凍機11は、上述した冷房機能のみを有する場合に限定されず、例えば、暖房機能のみ、或いは、冷房機能及び暖房機能の両方を有しているものであってもよい。また、冷媒と熱交換される媒体は、水でも空気でもよい。
 次に、上述したターボ冷凍機11が備える冷凍機制御装置74において行われるターボ冷凍機11の状態評価について図を参照して説明する。
 冷凍機制御装置74は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な不揮発性の記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
 図2は、冷凍機制御装置74の構成を示す機能ブロック図である。
 冷凍機制御装置74は、ターボ冷凍機11の部位毎に検知された運転データに基づいて、ターボ冷凍機11の状態を評価する冷凍機診断処理を実行する。
 ターボ冷凍機11の部位とは、例えば、リレー、インバータ、ターボ圧縮機60、及び熱交換器(蒸発器66、凝縮器62、及びサブクーラ63)等である。なお、以下の説明において、ターボ冷凍機11の部位を制御対象10ともいう。
 運転データとは、例えば、リレーの開閉回数、インバータの温度、ターボ圧縮機60の電動機電流及び蒸発器圧力、並びに熱交換器の冷却水出口温度や凝縮飽和温度及び冷却水流量等であり、これらの運転データは、上述した各種センサによって検出される。
 冷凍機制御装置74は、入出力部12、入出力処理部14、演算処理部16、記憶部18、及び通信部20を備える。
 入出力部12は、各種センサに接続され、上述した運転データ(アナログ信号)が各種センサから入力される。また、入出力部12は、各種センサへの検出開始信号又は検出停止信号等を出力してもよい。なお、入出力部12は、アナログ信号である運転データに対してアナログ/デジタル変換を行い、デジタル信号に変換して入出力処理部14へ出力する。
 入出力処理部14は、入出力部12を介して入力された運転データを演算処理部16又は記憶部18に出力したり、演算処理部16からの信号を入出力部12へ出力する。
 演算処理部16は、ターボ冷凍機11を制御するために、各種制御対象への制御信号を生成したり、運転データに基づいて冷凍機診断処理を実行する。
 記憶部18は、運転データ等の各種データを記憶する不揮発性の記憶媒体である。また、記憶部18には、ターボ冷凍機11の試運転時の各種運転データ(以下「基準運転データ」という。)を記憶している。基準運転データは、ターボ冷凍機11を定格又は部分負荷で試運転した場合に得られる運転データであり、冷凍機診断処理で用いられる。
 また、記憶部18には、ターボ冷凍機11を運転させた累積時間(以下「経年時間」という。)や冷凍機診断処理で用いられる各種補正係数や閾値等が記憶される。
 通信部20は、通信回線を介して表示装置22や遠隔監視装置24に接続され、ターボ冷凍機11の運転状態や、冷凍機診断処理の結果を報知する。なお、通信回線は、デジタル信号を伝送する回線である。表示装置22は、冷凍機制御装置74による各種処理結果を表示する。遠隔監視装置24は、ターボ冷凍機11の遠隔操作を可能とする。
 図3は、演算処理部16及び記憶部18の構成を示す機能ブロック図である。
 記憶部18は、一時記憶用メモリ空間30及び圧縮データ用メモリ空間32を備える。
 一時記憶用メモリ空間30は、入出力処理部14から出力された運転データを逐次記憶する。圧縮データ用メモリ空間32は、演算処理部16によって運転データ圧縮処理後の運転データ(以下「圧縮運転データ」という。)を記憶する。
 演算処理部16は、圧縮部34及び診断部36を備える。
 圧縮部34は、一時記憶用メモリ空間30に記憶された運転データに対して運転データ圧縮処理を行い圧縮運転データとし、圧縮データ用メモリ空間32に記憶させる。
 診断部36は、圧縮運転データに基づいて冷凍機診断処理を実行する。
 ここで、運転データ圧縮処理について詳述する。
 入出力処理部14から出力された運転データは、一時記憶用メモリ空間30に逐次記憶される。このため、運転データは、時間と共に一時記憶用メモリ空間30に蓄積されてデータサイズが大きくなる。
 この大きいデータサイズの運転データを記憶し続けるためには、記憶部18の記憶容量を大きくしなければならず、冷凍機制御装置74のコストアップを招く。
 そこで、データサイズが大きくなった運転データに対して、運転データの種類に応じた条件(以下「圧縮タイミング条件」という。)を満たす毎に、運転データ圧縮処理によって運転データが変換されることでデータサイズが圧縮される。圧縮運転データは、圧縮データ用メモリ空間32に記憶され、圧縮に用いられた運転データは、一時記憶用メモリ空間30から削除される。これにより、圧縮運転データのデータサイズは小さくなるので、記憶部18の記憶容量を大きくする必要が無い。
 なお、運転データの種類に応じた条件とは、例えばターボ冷凍機11の継続運転時間等である。また、変換とは、運転データを平均又は近似等によって平滑化することであり、ターボ冷凍機11の状態を評価可能な必要部分を抽出することである。
 なお、一時記憶用メモリ空間30は、一時的に運転データを記憶させるので固定されたメモリ空間でなくてもよい一方、圧縮データ用メモリ空間32は、固定されたメモリ空間であることが好ましい。
 次に、運転データ圧縮処理の具体例について説明する。
 運転データが例えばリレーの開閉回数である場合、リレーの1回毎の開閉に応じて一時記憶用メモリ空間30には“1”がインクリメントされる。そして、一時記憶用メモリ空間30に逐次記憶されたリレーの開閉回数が例えば1000回を超えると、圧縮部34によって圧縮タイミング条件を満たしたと判断される。そして、運転データ圧縮処理によって一時記憶用メモリ空間30に記憶されている運転データである“1000”が“1”に変換され、圧縮データ用メモリ空間32に圧縮運転データとして記憶される。
 なお、すでにリレーの開閉回数を示す圧縮運転データが圧縮データ用メモリ空間32に記憶されている場合は、リレーの開閉回数を示す圧縮運転データが“1”だけインクリメントされる。すなわち、例えばリレーの開閉回数が100000回であると、圧縮データ用メモリ空間32に記憶されるリレーの開閉回数を示す圧縮運転データは、“100”となる。
 また、運転データが例えばターボ圧縮機60の電動機電流及び蒸発器圧力、並びに熱交換器の冷却水出口温度や凝縮飽和温度及び冷却水流量等の時間変化を有する場合、運転データが時系列で一時記憶用メモリ空間30に記憶される。そして、前回の運転データ圧縮処理が実行されてから所定時間(例えば1分)経過すると、圧縮部34によって圧縮タイミング条件を満たしたと判断される。そして、運転データ圧縮処理によって一時記憶用メモリ空間30に記憶されている運転データが平均化されることで変換され、圧縮データ用メモリ空間32に圧縮運転データとして記憶される。これにより、圧縮データ用メモリ空間32には、1分毎に平均化された圧縮運転データが逐次記憶される。
 なお、圧縮部34は、1分毎に平均化された圧縮運転データを1時間毎に平均化し、1時間毎に平均化された圧縮運転データを1日毎に平均化し、1日毎に平均化された圧縮運転データを1月毎に平均化するように、段階的に平均化してもよい。
 また、圧縮部34は、ターボ冷凍機11の運転パラメータの大きさに応じた区分毎に、運転データを平滑化することでデータサイズを圧縮してもよい。ターボ冷凍機11の運転パラメータは、例えば出力負荷やIGVの開度(以下「ベーン開度」という。)である、区分は出力負荷率やベーン開度の角度である。出力負荷率は、ターボ冷凍機11の定格負荷を100%とした値である。
 図4は、運転データ圧縮処理及び冷凍機診断処理を含むデータ圧縮診断処理の流れを示すフローチャートである。データ圧縮診断処理は、冷凍機制御装置74で実行され、ターボ冷凍機11が運転すると開始され、ターボ冷凍機11が停止すると終了する。また、冷凍機診断処理は、各種の運転データ毎に後述する圧縮タイミングや診断タイミングが判定されて実行される。
 まず、ステップ100では、入出力部12を介して入力された運転データを、記憶部18が備える一時記憶用メモリ空間30に記憶する。
 次のステップ102では、運転データの圧縮タイミング条件を満たすか否かを判定し、肯定判定の場合はステップ104へ移行する。一方、否定判定の場合はステップ100へ戻り、運転データを一時記憶用メモリ空間30に記憶し続ける。
 ステップ104では、運転データ圧縮処理を実行する。
 次のステップ106では、冷凍機診断処理を実行するタイミングに達したか否かを判定し、肯定判定の場合はステップ108へ移行し、否定判定の場合はステップ100へ戻る。
 ステップ108では、圧縮運転データに基づいて冷凍機診断処理を実行する。
 次のステップ110では、冷凍機診断処理の結果を報知する必要があるか否かを判定し、肯定判定の場合はステップ112へ移行し、否定判定の場合はステップ100へ戻る。
 ステップ112では、冷凍機診断処理の結果を表示装置22や遠隔監視装置24に報知し、ステップ100へ戻る。
 次に、データ圧縮診断処理についての具体例について説明する。
 まず、データ圧縮診断処理の対象が熱交換器の場合について説明する。熱交換器はチューブの本数が数百本となる場合があり、腐食が発生するとターボ冷凍機11に与える影響が大きいため、正確な劣化状態の判断を要する。
 熱交換器に対する診断で必要とする運転データは、冷却水出口温度、凝縮飽和温度、冷却水流量、冷凍機の出力負荷率等である。冷却水出口温度及び凝縮飽和温度は、冷却水流量及び冷凍機の出力負荷率に関連付けられている。
 そして、これらの運転データは、ターボ冷凍機11の運転パラメータとして負荷別に区分けされる。具体的には、出力負荷率が20%、30%、・・・90%、100%(定格)の8つに区分され、出力負荷率が15%以上25%未満の運転データは、出力負荷率が20%の運転データとして近似して区分けされ、出力負荷率が25%以上35%未満の運転データは、出力負荷率が30%の運転データとして近似して区分けされ、同様に、出力負荷率が85%以上95%未満の運転データは、出力負荷率が90%の運転データとして近似して区分けされ、出力負荷率が95%以上100%以下の運転データは、出力負荷率が100%の運転データとして近似して区分けされる。
 そして、運転データ圧縮処理では、出力負荷率に応じて区分けされた冷却水出口温度と凝縮飽和温度とを所定時間毎(例えば1時間)に各々平均化することでデータサイズを圧縮する。
 次に、圧縮運転データに基づいて冷凍機診断処理が行われる。
 圧縮運転データとされた冷却水出口温度と凝縮飽和温度との温度差(以下「検出温度差」という。)に所定の補正係数を乗算した結果に対して、現在の冷却水流量やターボ冷凍機11の出力負荷率で補正することで診断値が算出される。
 一方、診断値に対応する区分に応じた基準運転データから求められる冷却水出口温度と凝縮飽和温度の温度差(以下「基準温度差」という。)に、ターボ冷凍機11が運転された経年時間に応じた補正係数を乗算することで診断基準値が算出される。
 そして、冷凍機診断処理は、診断値と診断基準値との差(以下「温度診断差」という。)を算出し、温度診断差と区分に応じた閾値とを比較することで、ターボ冷凍機11の運転状態を評価する。なお、閾値は、ターボ冷凍機11が運転された経年時間に応じて変化してもよい。例えば、経年時間が長いほど、閾値を小さくして劣化状態を厳しく判定する。
 次に、冷凍機診断処理は、温度診断差と閾値との乖離状態に応じて異なる評価結果を報知する。これにより、ターボ冷凍機11の管理者は、ターボ冷凍機11の状態を的確に判断できる。
 温度診断差が閾値Xを超えていない場合は、乖離しておらず、熱交換器が劣化していないとされ、何ら報知はされない。もしくは、劣化状態でないことが報知される。一方、温度診断差が閾値Xを超えると乖離状態であり、熱交換器が劣化しているとされ、警報が報知される。
 例えば、温度診断差が閾値Xを超えてその継続時間が第1時間以上経過した場合、冷凍機診断処理は、第1度劣化状態であることを警報として報知する。第1度劣化状態である場合は、例えば表示装置22の画面における所定箇所が黄色で表示される。
 また、温度診断差が閾値X+所定値Yを超えてその継続時間が第2時間以上経過した場合、冷凍機診断処理は、第2度劣化状態であることを警報として報知する。第2度劣化状態である場合は、例えば表示装置22の画面における所定箇所が橙色で表示される。
 また、温度診断差が閾値X+所定値Y+所定値Zを超えた場合、冷凍機診断処理は、第3度劣化状態であることを警報として報知する。第3度劣化状態である場合は、例えば表示装置22の画面における所定箇所が赤色で表示される。なお、第3度劣化状態と判定された場合は、冷凍機制御装置74がターボ冷凍機11を停止させてもよい。
 次に、データ圧縮診断処理の対象がターボ圧縮機60の場合について説明する。ターボ圧縮機60はターボ冷凍機11の主要部であり、故障が発生すると取り外して工場で修理が必要となる場合があり、ターボ冷凍機11に与える影響が大きいため、正確な劣化状態の判断を要する。
 ターボ圧縮機60に対する診断で必要とする運転データは、電動機電流、ベーン開度、及び冷凍機の出力負荷率等である。なお、電動機電流はベーン開度や出力負荷率に関連付けられている。
 そして、電動機電流は、ターボ冷凍機11の出力負荷率に応じて8つに区分けされ、運転データ圧縮処理では、各区分けされた出力負荷率に応じた電動機電流を所定時間毎(例えば1日)に平均化することでデータサイズを圧縮する。
 なお、ベーン開度が過度的に変化した場合における電動機電流の値は、運転データ圧縮処理に用いられない。ベーン開度が過度的に変化すると電動機電流も変化する場合があり、そのような運転データを用いると診断の精度が低下するためである。
 次に、圧縮運転データに基づいて冷凍機診断処理が行われる。
 冷凍機診断処理では、電動機電流である圧縮運転データと区分に応じた基準運転データから求められる電動機電流との差(以下「電流診断差」)を算出し、電流診断差と区分に応じた閾値とを比較することで、ターボ冷凍機11の運転状態を評価する。
 そして、通常であればターボ冷凍機11の工場出荷後から数年経過してからターボ圧縮機60の劣化が生じる。このため、一例として、警報は2段階で行われる。例えば、電流診断差が閾値を超えた場合の積算が20回未満の場合、冷凍機診断処理は、電流診断差が閾値を超える度に軽度警報として報知し、それ20回を超えると中度警報として報知する。
 また、冷凍機診断処理では、例えば、短時間内(例えば1分)で電動機電流や蒸発器圧力を示す圧縮運転データが所定値以上変動する毎に、異常変動回数として“1”インクリメントし、異常変動回数が所定時間以上経過した場合や、所定回数以上繰り返した発生した場合に警報を報知してもよい。
 また、ターボ圧縮機60の潤滑油系統に基づいて冷凍機診断処理が行われてもよい。この場合に必要とする運転データは、凝縮器圧力、潤滑油圧力、蒸発器圧力等である。
 そして、これらの運転データは、ターボ冷凍機11の運転パラメータとしてベーン開度別に区分けされる。具体的には、ベーン開度が10%、20%、・・・90%、100%の9つに区分され、ベーン開度が5%以上15%未満の運転データは、ベーン開度が10%の運転データとして区分けされ、ベーン開度が15%以上25%未満の運転データは、ベーン開度が20%の運転データとして区分けされ、同様に、ベーン開度が85%以上95%未満の運転データは、ベーン開度が90%の運転データとして区分けされ、ベーン開度が95%以上100%以下の運転データは、ベーン開度が100%の運転データとして区分けされる。
 そして、運転データ圧縮処理では、各区分けされたベーン開度に応じた潤滑油圧力と蒸発器圧力とを所定時間毎(例えば1時間)に各々平均化することでデータサイズを圧縮する。
 次に、圧縮運転データに基づいて冷凍機診断処理が行われる。
 圧縮運転データとされた潤滑油圧力と蒸発器圧力との圧力差(以下「検出圧力差」という。)に、凝縮器圧力と蒸発器圧力との関係に基づく所定の補正係数を乗算することで診断値が算出される。
 そして、冷凍機診断処理は、診断値とターボ冷凍機11の種類に応じたに診断基準値との差(以下「圧力診断差」という。)を算出し、圧力診断差と区分に応じた閾値とを比較することで、ターボ冷凍機11の運転状態を評価する。なお、閾値は、油ポンプが運転された運転時間に応じて変化してもよい。例えば、運転時間が長いほど、閾値を小さくして劣化状態を厳しく判定する。
 次に、冷凍機診断処理は、圧力診断差と閾値との乖離状態に応じて異なる評価結果を報知する。
 圧力診断差が閾値Xを超えていない場合は、乖離しておらず、ターボ冷凍機11は劣化していないとされ、何ら報知はされない。もしくは、劣化状態でないことが報知される。一方、圧力診断差が閾値Xを超えると乖離状態であり、ターボ冷凍機11は劣化しているとされ、警報が報知される。
 例えば、圧力診断差が閾値Xを超えてその継続時間が第1時間以上経過した場合、冷凍機診断処理は、第1度劣化状態であることを警報として報知する。第1度劣化状態である場合は、例えば表示装置22の画面における所定箇所が黄色で表示される。
 また、圧力診断差が閾値X+所定値Yを超えてその継続時間が第2時間以上経過した場合、冷凍機診断処理は、第2度劣化状態であることを警報として報知する。第2度劣化状態である場合は、例えば表示装置22の画面における所定箇所が橙色で表示される。
 また、圧力診断差が閾値X+所定値Y+所定値Zを超えた場合、冷凍機診断処理は、第3度劣化状態であることを警報として報知する。第3度劣化状態である場合は、例えば表示装置22の画面における所定箇所が赤色で表示される。なお、第3度劣化状態と判定された場合は、冷凍機制御装置74がターボ冷凍機11を停止させてもよい。
 また、データ圧縮診断処理の対象がリレーである場合、データ圧縮診断処理は、圧縮運転データとして記憶されるリレーの開閉回数が200回に達した場合を閾値とし、警報を報知する。
 また、データ圧縮診断処理の対象がインバータのコンデンサである場合、データ圧縮診断処理は、圧縮運転データとして記憶されるインバータの温度にターボ冷凍機11の運転時間に応じた補正係数を乗算して、乗算した値が閾値を超えた場合に警報を報知する。
 また、ターボ冷凍機11の部位毎に検知された運転データを冷凍機制御装置74が記憶するので、冷凍機制御装置74は、表示装置22に対してターボ冷凍機11の部位毎にメンテナンス情報を表示可能となる。
 さらに、冷凍機制御装置74は、冷凍機診断処理の結果(ターボ冷凍機11の各部位の劣化状態)に基づいて、例えば、劣化が進んでいる部位に対してはメンテナンス時期を早く設定してもよく、劣化が進んでいない部位に対してはメンテナンス時期を遅く設定してもよい。
 このように、冷凍機制御装置74が運転データを圧縮して記憶することによって、様々な運転データを長期間記憶されるので、表示装置22が、運転データをメンテナンス時期の判断に活用することも可能となる。
 以上説明したように、本実施形態に係る冷凍機制御装置74は、ターボ冷凍機11の部位毎に検知された運転データを記憶する記憶部18と、時間と共に記憶部18に蓄積されてデータサイズが大きくなった運転データに対して、運転データの種類に応じた条件を満たす毎に運転データを変換することでデータサイズを圧縮する圧縮部34と、圧縮部34によって変換された運転データに基づいて、ターボ冷凍機11の状態を評価する診断部36と、を備える。
 従って、冷凍機制御装置74は、ターボ冷凍機11の運転データを記憶する記憶媒体の記憶容量を大きくすることなく、ターボ冷凍機11の状態を診断できる。
 これにより、冷凍機制御装置74によってターボ冷凍機11の状態を診断が可能となるので、従来のように診断機能を有する遠隔監視装置等を有していない顧客でもターボ冷凍機11の診断が可能となる。
 また、ターボ冷凍機11の部位毎に検知された運転データが圧縮されて記憶されるので、ターボ冷凍機11の部位毎に長期的な診断が冷凍機制御装置74で可能となる。
 以上、本発明を、上記実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。また、上記実施形態を適宜組み合わせてもよい。
 また、上記実施形態で説明したデータ圧縮診断処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。
 10  制御対象
 11  ターボ冷凍機
 18  記憶部
 34  圧縮部
 36  診断部
 74  冷凍機制御装置

Claims (5)

  1.  冷凍機の部位毎に検知された運転データを記憶する記憶手段と、
     時間と共に前記記憶手段に蓄積されてデータサイズが大きくなった前記運転データに対して、前記運転データの種類に応じた条件を満たす毎に前記運転データを変換することでデータサイズを圧縮する圧縮手段と、
     前記圧縮手段によって変換された前記運転データに基づいて、前記冷凍機の状態を評価する状態評価手段と、
    を備える冷凍機制御装置。
  2.  前記圧縮手段は、前記冷凍機の運転パラメータの大きさに応じた区分毎に、前記運転データを平滑化することでデータサイズを圧縮し、
     前記状態評価手段は、前記圧縮手段によって圧縮された後の前記運転データと前記区分に応じた基準値との差を算出し、該差と前記区分に応じた閾値とを比較することで、前記冷凍機の運転状態を評価する請求項1記載の冷凍機制御装置。
  3.  前記状態評価手段は、前記差と前記閾値との乖離状態に応じて異なる評価結果を報知する請求項2記載の冷凍機制御装置。
  4.  請求項1から請求項3の何れか1項に記載の冷凍機制御装置を備える冷凍機。
  5.  冷凍機の部位毎に検知された運転データを記憶手段に記憶する第1工程と、
     時間と共に前記記憶手段に蓄積されてデータサイズが大きくなった前記運転データに対して、前記運転データの種類に応じた条件を満たす毎に前記運転データを変換することでデータサイズを圧縮する第2工程と、
     圧縮された前記運転データに基づいて、前記冷凍機の状態を評価する第3工程と、
    を備える冷凍機の診断方法。
PCT/JP2015/055127 2014-02-28 2015-02-24 冷凍機制御装置、冷凍機、及び冷凍機の診断方法 WO2015129657A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580003437.3A CN105899894B (zh) 2014-02-28 2015-02-24 制冷机控制装置、制冷机及制冷机的诊断方法
KR1020167017016A KR20160089505A (ko) 2014-02-28 2015-02-24 냉동기 제어 장치, 냉동기, 및 냉동기의 진단 방법
US15/107,363 US10139815B2 (en) 2014-02-28 2015-02-24 Chiller control device, chiller, and chiller diagnostic method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014039908A JP6570809B2 (ja) 2014-02-28 2014-02-28 冷凍機制御装置、冷凍機、及び冷凍機の診断方法
JP2014-039908 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129657A1 true WO2015129657A1 (ja) 2015-09-03

Family

ID=54008975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055127 WO2015129657A1 (ja) 2014-02-28 2015-02-24 冷凍機制御装置、冷凍機、及び冷凍機の診断方法

Country Status (5)

Country Link
US (1) US10139815B2 (ja)
JP (1) JP6570809B2 (ja)
KR (1) KR20160089505A (ja)
CN (1) CN105899894B (ja)
WO (1) WO2015129657A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11754321B2 (en) * 2018-03-27 2023-09-12 Bitzer Kuehlmaschinenbau Gmbh Refrigeration system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102039743B1 (ko) * 2017-08-11 2019-11-01 (주)아이티공간 구동부의 정밀 예지 보전방법
CN109906414B (zh) * 2017-08-11 2021-12-21 李荣圭 一种对驱动部的精准预知性维护方法
JP6558841B1 (ja) * 2018-03-22 2019-08-14 株式会社写真化学 状態監視システム及びそれを用いた撹拌・脱泡処理方法
BR102019003311B1 (pt) * 2019-02-18 2023-12-12 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda Método e sistema de controle em um sistema de refrigeração e compressor de sistema de refrigeração
CN110160230B (zh) * 2019-05-27 2021-12-28 上海美控智慧建筑有限公司 中央空调、空调水系统及其控制方法和控制装置
TWI718075B (zh) * 2020-06-29 2021-02-01 國立臺北科技大學 應用於冷凍系統的冷凝壓力控制方法及其冷凍系統
KR20240012814A (ko) 2022-07-21 2024-01-30 주식회사 로드맵 인공지능 기반의 콜드체인 배송차량의 냉동부최적 제어방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003015734A (ja) * 2001-07-02 2003-01-17 Toshiba Corp 時系列データ圧縮方法および時系列データ格納装置およびプログラム
JP2005049945A (ja) * 2003-07-29 2005-02-24 Toshiba Mitsubishi-Electric Industrial System Corp 監視装置及びこれを用いた電力変換装置
JP2011003038A (ja) * 2009-06-19 2011-01-06 Hitachi High-Tech Control Systems Corp プロセス監視制御装置
JP2012052733A (ja) * 2010-09-01 2012-03-15 Mitsubishi Heavy Ind Ltd ターボ冷凍機の性能評価装置
JP2013036632A (ja) * 2011-08-04 2013-02-21 Mitsubishi Heavy Ind Ltd ターボ冷凍機の運転状態データ選定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6092171A (en) * 1991-09-16 2000-07-18 Advanced Micro Devices, Inc. System and method for using a memory management unit to reduce memory requirements
JP2004158098A (ja) 2002-11-06 2004-06-03 Renesas Technology Corp システム・イン・パッケージ型半導体装置
US8219574B2 (en) * 2009-06-22 2012-07-10 Microsoft Corporation Querying compressed time-series signals
JP5523972B2 (ja) 2010-07-29 2014-06-18 三菱重工業株式会社 ターボ冷凍機の性能評価装置
JP5687639B2 (ja) * 2012-02-08 2015-03-18 株式会社東芝 コントローラ、データ記憶装置及びプログラム
CN102707713B (zh) 2012-06-15 2014-04-16 长春工业大学 汽车安全气囊装配工序的故障诊断系统及其诊断方法
CN103577456B (zh) * 2012-07-31 2016-12-21 国际商业机器公司 用于处理时序数据的方法和装置
JP2014054081A (ja) * 2012-09-07 2014-03-20 Toshiba Corp 変電所自動化システム
CN103794006B (zh) * 2012-10-31 2016-12-21 国际商业机器公司 用于处理多个传感器的时序数据的方法和装置
US9335242B2 (en) * 2013-03-07 2016-05-10 Cambridge Viscosity, Inc. Viscosity measurement of liquids at subambient temperatures
JP6396662B2 (ja) * 2013-03-15 2018-09-26 ダイキン アプライド アメリカズ インコーポレィティッド 冷凍装置および冷凍機の制御装置
US9959072B2 (en) * 2013-12-20 2018-05-01 Sandisk Technologies Llc Systems and methods of compressing data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003015734A (ja) * 2001-07-02 2003-01-17 Toshiba Corp 時系列データ圧縮方法および時系列データ格納装置およびプログラム
JP2005049945A (ja) * 2003-07-29 2005-02-24 Toshiba Mitsubishi-Electric Industrial System Corp 監視装置及びこれを用いた電力変換装置
JP2011003038A (ja) * 2009-06-19 2011-01-06 Hitachi High-Tech Control Systems Corp プロセス監視制御装置
JP2012052733A (ja) * 2010-09-01 2012-03-15 Mitsubishi Heavy Ind Ltd ターボ冷凍機の性能評価装置
JP2013036632A (ja) * 2011-08-04 2013-02-21 Mitsubishi Heavy Ind Ltd ターボ冷凍機の運転状態データ選定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11754321B2 (en) * 2018-03-27 2023-09-12 Bitzer Kuehlmaschinenbau Gmbh Refrigeration system

Also Published As

Publication number Publication date
KR20160089505A (ko) 2016-07-27
JP6570809B2 (ja) 2019-09-04
US10139815B2 (en) 2018-11-27
CN105899894B (zh) 2018-07-27
JP2015165167A (ja) 2015-09-17
US20170003679A1 (en) 2017-01-05
CN105899894A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP6570809B2 (ja) 冷凍機制御装置、冷凍機、及び冷凍機の診断方法
JP5244420B2 (ja) ターボ冷凍機および熱源システムならびにこれらの制御方法
US8109104B2 (en) System and method for detecting decreased performance in a refrigeration system
JP5234167B2 (ja) 漏洩診断装置
JP5523972B2 (ja) ターボ冷凍機の性能評価装置
JP5427563B2 (ja) インバータターボ冷凍機の性能評価装置
JP5669402B2 (ja) ヒートポンプ及びヒートポンプの熱媒流量演算方法
JP2012052733A (ja) ターボ冷凍機の性能評価装置
KR101445992B1 (ko) 열매체 유량 추정 장치, 열원기 및 열매체 유량 추정 방법
JP2013228130A (ja) 冷凍装置
EP3859249B1 (en) Refrigerant leakage determination device, freezing device including this refrigerant leakage determination device, and refrigerant leakage determination method
US10571174B2 (en) Systems and methods for defrost control
WO2022014533A1 (ja) 異常検知システム及び冷凍機、並びに異常検知方法、並びに異常検知プログラム
JP6926046B2 (ja) 異常判定装置、この異常判定装置を備える冷凍装置、及び圧縮機の異常判定方法
CN110821871A (zh) 用于预测离心式制冷压缩机的喘振的系统和其方法以及空调机组
JP6590945B2 (ja) 冷凍装置
JP2011153734A (ja) 冷凍機遠隔監視システムおよび冷凍機遠隔監視方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15756107

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15107363

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167017016

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15756107

Country of ref document: EP

Kind code of ref document: A1