WO2015129559A1 - 不織布状金属吸着材およびその製造方法 - Google Patents

不織布状金属吸着材およびその製造方法 Download PDF

Info

Publication number
WO2015129559A1
WO2015129559A1 PCT/JP2015/054713 JP2015054713W WO2015129559A1 WO 2015129559 A1 WO2015129559 A1 WO 2015129559A1 JP 2015054713 W JP2015054713 W JP 2015054713W WO 2015129559 A1 WO2015129559 A1 WO 2015129559A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
metal
polymer
glycidyl
glycidyl group
Prior art date
Application number
PCT/JP2015/054713
Other languages
English (en)
French (fr)
Inventor
嘉則 井上
健寛 梶原
斉藤 雅春
隆幸 藤井
Original Assignee
日本フイルコン株式会社
Kbセーレン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本フイルコン株式会社, Kbセーレン株式会社 filed Critical 日本フイルコン株式会社
Priority to CN201580007145.7A priority Critical patent/CN105960280A/zh
Publication of WO2015129559A1 publication Critical patent/WO2015129559A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/327Polymers obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3278Polymers being grafted on the carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/325Amines
    • D06M13/332Di- or polyamines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3562Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/20Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2400/00Specific information on the treatment or the process itself not provided in D06M23/00-D06M23/18
    • D06M2400/01Creating covalent bondings between the treating agent and the fibre

Definitions

  • the present invention has a high adsorption capacity suitable for adsorption / recovery of metals in a wide range of solutions such as factory effluent, industrial water, environmental water, and manufacturing process water, has high chemical resistance, and is easy to diversify.
  • the present invention relates to a nonwoven metal adsorbent that can be processed into various forms and a method for producing the same.
  • Another problem is that the process is complicated and costly, and that other than precious metals cannot be profitable.
  • it is urgent to establish a system for collecting and recycling valuable metals, and at the same time, it is necessary to develop and establish efficient adsorption and separation techniques for valuable metals.
  • agglomeration, coprecipitation, solvent extraction, and particulate adsorbent are used for removing and collecting metals.
  • a method using a particulate adsorbent such as an ion exchange resin or a chelate resin is effective.
  • a chelate resin has a higher affinity for a metal than an ion exchange resin, and thus can be said to be an optimal adsorbent for metal (Non-Patent Documents 1 to 3).
  • iminodiacetic acid type chelating resins such as iminodiacetic acid type, low molecular weight polyamine type, aminophosphoric acid type, and isothionium type are commercially available, but iminodiacetic acid type chelating resin applicable to a wide range of metal adsorption is mainly used.
  • iminodiacetic acid-type chelate resins do not have a large complexing ability with metal elements, and in many cases, high recovery cannot be obtained in actual use.
  • iminodiacetic acid type chelate resin also has a slow metal adsorption rate, it is difficult to treat a large amount of treated water quickly.
  • this iminodiacetic acid type chelate resin is in the form of particles, it must be used by filling a specific can body, and it is often difficult to apply depending on the use conditions and installation environment.
  • the chelate resin needs to further improve the metal adsorption characteristics, and it is necessary to study diversification of the adsorbent form.
  • a fibrous metal adsorbent is in progress as a chelate resin.
  • the fibrous adsorbent since the adsorption site is limited to the fiber surface, the problem of diffusion resistance into the pores, which is often a problem with the particulate adsorbent in general, does not occur.
  • the fibrous adsorbent exhibits rapid adsorption / desorption characteristics, and since it is fibrous, it can be processed into a fabric (cloth, woven fabric, non-woven fabric, etc.) or paper, and can be further processed further. .
  • Patent Document 1 discloses a method of introducing a chelating functional group into a fibrous member by a chemical grafting method.
  • Patent Documents 2 and 3 disclose chelation on the surface of a fibrous member by radical generation / graft polymerization method by irradiation.
  • Patent Document 4 discloses a method for introducing a functional functional group, and Patent Document 4 discloses a method for injecting a low-molecular chelating agent into a general-purpose fiber under high temperature and pressure.
  • the types of fibers that can be grafted are limited and the manufacturing process is complicated.
  • the radiation grafting method has an advantage that it can be applied to various fibers as compared with the chemical grafting method, but it is not a simple and inexpensive manufacturing method because it is a work in a specific environment from the viewpoint of radiation handling.
  • the chelating agent injection / impregnation method has an advantage that various fibers can be used, but the versatility is poor because it is impregnation under high temperature and high pressure.
  • Patent Document 5 and Patent Document 6 disclose a method for producing a fibrous metal adsorbent using a mixed spinning method.
  • a long-chain ligand (a compound having a long molecular chain length and a metal-adsorbing ability) is added to polyvinyl alcohol, and after spinning by a wet method or a dry method, it is further formalized to form a fibrous metal.
  • a method of manufacturing an adsorbent is disclosed, and this manufacturing method can manufacture a fibrous metal adsorbent at low cost and in large quantities using existing equipment.
  • Patent Document 6 a method for producing a fibrous metal adsorbent by wet spinning method by adding the same long-chain ligand as in Patent Document 5 to viscose is disclosed.
  • a fibrous metal adsorbent at low cost and in large quantities using existing equipment. Since the fibrous metal adsorbent produced by these methods is fibrous, it is possible to produce a nonwoven fabric (see Patent Document 6), and various forms of metal can be obtained by further processing the resulting nonwoven fabric. It is possible to produce an adsorbent.
  • the fibrous metal adsorbents disclosed in Patent Document 5 and Patent Document 6 are easy to manufacture and use long-chain ligands, so that they are more complex than iminodiacetic acid-type chelate resins. In addition to showing ability, it has high element selectivity.
  • the fibrous metal adsorbent of the rayon base material manufactured in Patent Document 6 has the following problems. That is, the solution to be treated for metal recovery is generally an acidic solution containing hydrochloric acid, sulfuric acid, nitric acid and the like. For this reason, since rayon decomposes when exposed to a strongly acidic condition, the use of the fibrous metal adsorbent of the rayon base material is restricted under acidic conditions.
  • the fibrous metal adsorbent of the rayon base material has a problem that it cannot withstand continuous use over a long period of time or a plurality of recycle uses. Furthermore, the fibrous metal adsorbent of the polyvinyl alcohol base material disclosed in Patent Document 5 has the following problems. That is, polyvinyl alcohol is improved in acid resistance and alkali resistance by being formalized, but resistance to an organic solvent is not necessarily high. For this reason, the fibrous metal adsorbent of the polyvinyl alcohol base material has a problem that its application is limited to recovering and removing valuable metals (for example, a palladium catalyst for coupling reaction) in an organic solvent.
  • valuable metals for example, a palladium catalyst for coupling reaction
  • the fibrous adsorbent prepared by the above spinning method can be made into a non-woven fabric by a known method such as a needle punch method or a water jet method after opening using a roller card machine or the like, and further by secondary processing. It is possible to use various forms of adsorbents.
  • a method for producing a nonwoven fabric requires a multi-step process such as a spinning process, a fiber opening process, and a nonwoven fabric forming process, and the production process becomes complicated.
  • generated in the opening process and the nonwoven fabric formation process is contained in a nonwoven fabric.
  • JP 2001-113272 A Japanese Patent No. 4119966 Japanese Patent No. 3247704 JP 2007-247104 A JP 2011-056349 A JP 2011-056350 A
  • the present invention has been made in view of the above problems, and is used for adsorption and recovery of metals in a solution. It has a high adsorption capacity, high chemical resistance, and various metal adsorption by chemical modification. Non-woven metal adsorbents that can be imparted with characteristics, can be manufactured using existing manufacturing equipment without using special equipment or complicated operations, and can be easily processed into various forms, and their manufacture It aims to provide a method.
  • a polymer having a glycidyl group and a polyolefin fiber matrix polymer having a flow start temperature of 200 ° C. or less are melt-mixed, and a melt blow method (also called a melt blown method)
  • a melt blow method also called a melt blown method
  • a long-chain metal arrangement having an amino group or an imino group on a glycidyl group present on the fiber surface of the nonwoven fabric or a halohydrin group formed by treating this glycidyl group with hydrogen halide It has been found that by introducing a metal adsorbing functional group by reacting a ligand, a non-woven metal adsorbent having a high adsorption capacity, high chemical resistance and processable into various forms can be produced.
  • the present invention relates to a nonwoven metal adsorbent described below and a method for producing the same.
  • Nonwoven-like metal-adsorbing material is prepared by reacting a long-chain metal ligand introducing metal adsorbing functional group having an amino group or an imino group after.
  • the polymer having a glycidyl group is a homopolymer of a monomer selected from an acrylate ester having a glycidyl group or a methacrylate ester having a glycidyl group, or an acrylate ester having no glycidyl group and the glycidyl group, glycidyl A copolymer with a monomer selected from a methacrylic acid ester having no group or a vinyl aromatic monomer, and the molecular weight of these homopolymers or copolymers is 8,000 to 100,000 in terms of weight average molecular weight
  • the non-woven fabric metal adsorbent according to 1) above which is characterized in that it exists.
  • the long-chain metal ligand having an amino group or imino group is a polymer or polymer mixture selected from the group consisting of polyethyleneimine, polyallylamine, partial carboxymethylated products thereof, and mixtures thereof.
  • partially saponified poly [ Ethylene-vinyl acetate] and a polyolefin fiber matrix polymer selected from the group consisting of these mixtures, the mixing ratio of the polymer having a glycidyl group and the polyolefin fiber matrix polymer is 10: After melt mixing at 90 to 60:40 and forming a nonwoven fabric by melt blow method or spun bond method, it is reacted with a long-chain metal ligand having an amino group or imino group on the glycidyl group on the fiber surface, and a metal adsorbing function Group or by reacting this glycidyl group with a hydrogen halide and converting it to a halohydrin group.
  • a method of manufacturing a nonwoven fabric-like metal adsorbent Bruno by reacting long-chain metal ligand having a group or imino group introduced metal-adsorbing functional group, A polymer or polymer mixture selected from the group consisting of polyethyleneimine, polyallylamine, partial carboxymethylated products thereof, and mixtures thereof is used as the long-chain metal ligand having an amino group or imino group.
  • a method for producing a nonwoven metal adsorbent is a method for producing a nonwoven fabric-like metal adsorbent.
  • the polymer having a glycidyl group is a homopolymer of a monomer selected from an acrylate ester having a glycidyl group or a methacrylate ester having a glycidyl group, or an acrylate ester having no glycidyl group and glycidyl group, glycidyl
  • a copolymer with a monomer selected from a methacrylic acid ester having no group or a vinyl aromatic monomer, and the molecular weight of these homopolymers or copolymers is 8,000 to 100,000 in terms of weight average molecular weight 4.
  • the polymer having a glycidyl group one having an epoxy value of 128 to 600 g / equivalent is used.
  • examples of the polymer having a glycidyl group include a homopolymer of a monomer having a glycidyl group, or a copolymer of a monomer having a glycidyl group and a monomer having no glycidyl group.
  • examples of the homopolymer include a homopolymer of an acrylate ester having a glycidyl group and a homopolymer of a methacrylic ester having a glycidyl group.
  • the copolymer examples include a copolymer of an acrylate monomer having a glycidyl group and an acrylate monomer having no glycidyl group, a methacrylate monomer having no glycidyl group, or a vinyl aromatic monomer, and a glycidyl group. And a copolymer of a methacrylic acid ester monomer having an acrylate monomer having no glycidyl group, a methacrylic acid ester monomer having no glycidyl group, or a vinyl aromatic monomer.
  • the molecular weight of the polymer having a glycidyl group an average molecular weight (weight average molecular weight) of 8,000 to 100,000 is preferably used.
  • polymers having a glycidyl group having an epoxy value of 128 to 600 g / equivalent include, for example, glycidyl acrylates, glycidyl acrylate homopolymer (epoxy value 128 g / equivalent), glycidyl methacrylate homopolymer (epoxy value 142 g / equivalent) Can be given.
  • the epoxy value is 542 g / equivalent).
  • the epoxy value does not exceed 600, a high adsorption capacity is shown. However, if the epoxy value exceeds this, the adsorption capacity tends to decrease.
  • the existing production equipment can be used as it is without improving the high adsorption capacity. It is possible to manufacture a non-woven metal adsorbent that has high chemical resistance and can be easily processed into various forms.
  • the nonwoven metal adsorbent obtained by the present invention is rich in flexibility, and can be easily processed into a cylindrical form by tube winding, a laminated form by lamination, or a laminated form by folding (pleating). Thus, metal adsorbents having various forms suitable for valuable metal recovery and heavy metal removal can be produced. Moreover, since the nonwoven fabric-like metal adsorbent obtained by the present invention is sufficiently fused between fibers, it is difficult for lint to be generated, and it can also be used for cleaning treatment of pure water, irrigation water and the like.
  • a reactive amino group is present in the long-chain metal ligand molecule.
  • the imino group remain, it is possible to change the metal adsorption property by further chemically modifying the remaining amino group or imino group by a secondary reaction.
  • FIG. 2 shows an electron micrograph of a poly [ethylene-vinyl acetate] nonwoven fabric mixed with 30% by mass of an acrylic polymer having a glycidyl group obtained in Example 2.
  • FIG. 3 The relationship between the mixing ratio of the copolymer of glycidyl methacrylate and styrene and the copper adsorption capacity in the non-woven metal adsorbent mixed with the copolymer of glycidyl methacrylate and styrene obtained in Example 3 is shown.
  • FIG. 4 shows an electron micrograph of a poly [ethylene-vinyl acetate] non-woven metal adsorbent containing 30% by mass of a copolymer of glycidyl methacrylate and styrene obtained at a spinning temperature of 190 ° C. and a spinning temperature of 220 ° C. in Example 4.
  • FIG. A shows a case where the spinning temperature is 190 ° C.
  • FIG. 4 shows an electron micrograph of an 80% saponified poly [ethylene-vinyl acetate] nonwoven fabric metal adsorbent obtained by mixing 40% by mass of a glycidyl methacrylate-styrene copolymer obtained in Example 6.
  • FIG. 4 shows an electron micrograph of an 80% saponified poly [ethylene-vinyl acetate] nonwoven fabric metal adsorbent obtained by mixing 40% by mass of a glycidyl methacrylate-styrene copolymer obtained in Example 6.
  • FIG. 1 shows an example of the process for producing the nonwoven metal adsorbent of the present invention.
  • a fiber matrix obtained by kneading a polymer having a glycidyl group and a polyolefin fiber matrix polymer having a flow start temperature of 200 ° C. or less and mixing a polymer having a glycidyl group as a spinning raw material.
  • a polymer material is prepared.
  • the fiber matrix polymer mixed with the polymer having the glycidyl group is formed into a nonwoven fabric by a melt blow method or a spun bond method.
  • a metal adsorbing functional group is introduced by reacting a long-chain metal ligand having an amino group or an imino group directly with the glycidyl group on the fiber surface of the obtained nonwoven fabric (polymer mixed nonwoven fabric having a glycidyl group). Or by reacting the glycidyl group with a hydrogen halide to form a halohydrin group, and reacting the generated halohydrin group with a long-chain metal ligand having an amino group or an imino group to introduce a metal-adsorptive functional group Thus, a non-woven metal adsorbent is obtained.
  • the nonwoven metal adsorbent produced by this process has a high adsorption capacity of metal elements and high chemical resistance, and further changes to a nonwoven metal adsorbent with various metal adsorption characteristics by chemical modification. In addition, it can be easily processed into various forms such as pleating and tube winding.
  • a nonwoven fabric is produced by a melt blow method or a spun bond method. These methods use a low-melting-point thermoplastic resin (mainly polypropylene, polyethylene, etc.) as a raw material resin to produce a nonwoven fabric composed of fibers with a fiber diameter of sub- ⁇ m to several tens of ⁇ m, for example, 0.5 to 50 ⁇ m. can do. These manufacturing methods can obtain a nonwoven fabric by a series of processes, without opening using a roller card machine etc.
  • a nonwoven fabric is produced by blowing a thermoplastic resin from a nozzle installed after an extruder on a collection screen with a high-temperature and high-speed air stream.
  • the desired nonwoven fabric can be produced in one step without going through the steps of spinning, opening, and entanglement to make a nonwoven fabric.
  • the spun fibers are fused and cooled to solidify into a non-woven fabric, the manufactured non-woven fabric has high strength and is less likely to lint.
  • a molten thermoplastic resin is extruded from a nozzle installed after the extruder and spun, and the extruded fibers are superposed on a conveyor, and then the fibers are heat-sealed by a heat roller. Producing non-woven fabric.
  • the nonwoven fabric Since a nonwoven fabric composed of endless long fibers is produced by this method, the nonwoven fabric has high strength and dimensional stability and does not generate lint.
  • the melt blow method is suitable for the production of a small amount of various types of nonwoven fabrics
  • the spunbond method is suitable for the manufacture of a large amount of small types of nonwoven fabrics.
  • spinning and non-woven fabric can be performed at the same time or almost simultaneously. Therefore, after the pre-spun fibers are opened, the needle punch method, the water jet method, etc. It is possible to simplify the complicated process of making a nonwoven fabric by a technique.
  • the nonwoven fabric obtained by these methods has a feature that lint does not occur or hardly occurs because fibers are sufficiently fused. Furthermore, these non-woven fabric forming methods also have the feature that the fibers constituting the non-woven fabric can be made into fine fibers, and a continuous roll-shaped non-woven fabric can be produced continuously.
  • the polymer having a glycidyl group used in the present invention is preferably a homopolymer of a vinyl monomer having a glycidyl group capable of reacting with an amino group or an imino group, or a copolymer with a monomer copolymerizable therewith.
  • a vinyl monomer having a glycidyl group capable of reacting with an amino group or an imino group, or a copolymer with a monomer copolymerizable therewith.
  • Examples of the vinyl monomer having a glycidyl group include glycidyl methacrylate, glycidyl acrylate, and glycidoxymethylstyrene.
  • One or more of these vinyl monomers having a glycidyl group may be used as a homopolymer or a copolymer of vinyl monomers having a glycidyl group.
  • Examples of the monomer having no glycidyl group that can be copolymerized with a vinyl monomer having a glycidyl group include styrene, methacrylic acid ester, acrylic acid ester, methacrylamide, and acrylamide.
  • styrene methacrylic acid ester
  • acrylic acid ester methacrylamide
  • acrylamide acrylamide
  • the molecular weight of the polymer having a glycidyl group is high, the brittleness becomes high, the kneadability and spinnability are lowered, and the metal adsorbent is low in flexibility.
  • the molecular weight is too low, it becomes difficult to uniformly knead with the fiber matrix polymer.
  • a metal-adsorbing functional group is introduced into a non-woven fabric produced using a material having a low molecular weight, there is a problem that the metal-adsorbing functional group is detached or eluted depending on use conditions. Therefore, in the present invention, it is preferable to use a polymer having an average molecular weight (weight average molecular weight) of 8,000 to 100,000.
  • examples of the fiber matrix polymer that is melt-mixed and spun with a polymer having a glycidyl group include polyolefin-based thermoplastic resins having a flow start temperature of 200 ° C. or less.
  • the melt mixing spinning with a fiber base material having a flow start temperature exceeding 200 ° C. causes reduction or disappearance of glycidyl groups.
  • Polyethylene, polypropylene, poly [ethylene-vinyl acetate], partially saponified poly [ethylene-vinyl acetate], or a mixture thereof is used as the fiber matrix polymer having a flow start temperature of 200 ° C. or lower.
  • non-woven fabrics prepared using partially saponified poly [ethylene-vinyl acetate] having a high degree of saponification such as partially saponified poly [ethylene-vinyl acetate] having a saponification degree exceeding 85%, are extremely Swells, part of the fusion between the fibers collapses, and there is a tendency for the tensile strength to decrease. Therefore, it is preferable to use partially saponified poly [ethylene-vinyl acetate] having a saponification degree of 85% or less.
  • These fiber matrix polymers are not easily attacked by acids and alkalis in the general solution to be treated, and also have solvent resistance, so they can be used to prepare non-woven metal adsorbents with high chemical resistance and durability. Suitable as a fiber matrix polymer for. Further, since it has flexibility and can be fused with other polymers, it can be easily processed into various forms that can meet various needs.
  • the metal adsorption capacity of the nonwoven metal adsorbent of the present invention is determined by the mixing ratio (mixing ratio) of the polymer having a glycidyl group to the fiber matrix polymer and a long chain arrangement having an amino group or an imino group to be reacted with the glycidyl group. Depends on the amount of ligand introduced. When the mixing ratio of the polymer having a glycidyl group is low, the introduction amount of the long-chain ligand having an amino group or an imino group is lowered, and as a result, the metal adsorption capacity tends to be lowered.
  • the mixing ratio of the polymer having a glycidyl group is high, but the polymer having a glycidyl group is highly brittle, and if the mixing ratio is increased, the spinnability may be lowered. Therefore, the mixing ratio of the polymer having a glycidyl group and the fiber matrix polymer is preferably 10:90 to 60:40, more preferably 20:80 to 50:50 as a mass ratio.
  • the metal-adsorptive functional group into the polymer-mixed non-woven fabric having a glycidyl group is carried out by utilizing a reaction of a glycidyl group or a halohydrin group generated by reacting this glycidyl group with a hydrogen halide.
  • the epoxy group and halohydrin group of the glycidyl group are easily reacted with an amino group or an imino group. It can be said that the halohydrin group is a kind of a reactive derivative of an epoxy group.
  • metal-coordinating low-molecular compounds that serve as metal-adsorbing functional groups are known, and among these metal-coordinating low-molecular compounds, there are many compounds that can easily react with glycidyl groups.
  • the short-chain length of the metal-adsorbing functional group derived from the short molecular chain length of the low-molecular compound causes The movement of this metal-adsorptive functional group moiety is very limited. Therefore, the chance of contact between the metal-adsorbing functional group and the metal element to be captured is low, and a quick adsorption characteristic is not necessarily obtained. Therefore, in the present invention, a long-chain metal ligand having an amino group or imino group is used. Examples of the long-chain ligand include polyethyleneimine, polyallylamine, partial carboxymethylated products thereof, and mixtures thereof.
  • the first form of a long-chain ligand having an amino group or an imino group for introducing a metal-adsorbing functional group into a polymer-mixed nonwoven fabric having a glycidyl group is a polyethyleneimine represented by Chemical Formula 1 (Chemical Formula 1) or It is a polyallylamine represented by Chemical Formula 2 (Chemical Formula 2).
  • Polyethyleneimine also produces a compound having a structure branched at the nitrogen site depending on the production method, and is sometimes commercially available as a mixture containing these branched compounds.
  • Polyethyleneimine having a branched structure site can also react with the glycidyl group on the fiber surface, and a polyethyleneimine mixture containing polyethyleneimine having such a branched structure can also be used.
  • polyethylene imine alone or further mixed with polyethylene imine having a branched structure is used as a long-chain ligand having an amino group or imino group to introduce a metal-adsorbing functional group into the nonwoven fabric.
  • These polyamines function as metal-adsorbing functional groups for transition metal elements, and also function as anion exchange groups to adsorb metal oxyanions such as molybdic acid and tungstic acid. It can also contribute to adsorption.
  • these polyamines have a large number of amino groups or imino groups in the molecule, they react with multiple glycidyl groups on the fiber surface or with halohydrin groups formed by reacting glycidyl groups with hydrogen halide at multiple locations. It is possible. That is, it is presumed that a large number of metal coordination functional groups are introduced at a high density on the fiber surface because the metal-adsorbing functional groups are introduced in such a manner as to cover the fiber base material surface. Furthermore, by introducing polyamine in a covering manner, the water repellency based on the fiber base material is reduced (improves hydrophilicity), and the metal element in the aqueous solution can be efficiently adsorbed and recovered. Become.
  • n is an integer of 2 or more, and the average molecular weight (weight average molecular weight) is 3,000 or less.
  • m is an integer of 1 or more, and the average molecular weight (weight average molecular weight) is 3,000 or less.
  • the second form of the long-chain ligand having an amino group or imino group for introducing a metal-adsorbing functional group into a polymer-mixed non-woven fabric having a glycidyl group is represented by Chemical Formula 3 (Chemical Formula 3) and Chemical Formula 4 (Chemical Formula 4) 4) Partial carboxymethylation of the nitrogen atom of polyethyleneimine of chemical formula 1 (chemical formula 1) or polyallylamine of chemical formula 2 (chemical formula 2) so that the amino group or imino group shown in 4) remains.
  • the degree of carboxymethylation of the partially carboxymethylated polyamine is not particularly specified, but there must be sufficient amino groups or imino groups to be introduced into the glycidyl groups in the fiber.
  • the degree of carboxymethylation is preferably 60% or less.
  • these partially carboxymethylated polyamines may be used alone or in combination with two or more kinds of polyamines having different partial carboxymethylation, and if necessary, a long chain having an amino group or an imino group. It can be used by mixing with polyamine which is the first form of the type ligand.
  • the basic metal adsorption properties of fully carboxymethylated polyamines are similar to iminodiacetic acid type ligands, but in the case of partially carboxymethylated polyamines, the amino groups that are not carboxymethylated or Since the imino group exists, the characteristics of the metal adsorbent into which the polyamine which is the first form of the present invention is introduced are also provided. Furthermore, the partially carboxymethylated polyamine has many imino groups and aminocarboxymethyl groups that are metal-adsorbing functional groups in one molecule, and is a long-chain type with a high degree of freedom. It is possible to prepare a metal adsorbent that is superior in both complex forming power and adsorption speed.
  • a part of the amino group or imino group is protected with a protecting group in advance, and then carboxymethylated with a carboxymethylating reagent (usually halogenated acetic acid) by a known method, and then the protecting group is removed.
  • the reaction may be carried out by reducing the ratio of the carboxymethylating reagent (usually halogenated acetic acid) used.
  • the fiber reacts with a plurality of glycidyl groups on the fiber surface in the same manner as in the first embodiment of the present invention. It is introduced so as to cover the surface of the base material.
  • n1 and n2 are integers of 1 or more.
  • n1 and m2 are integers of 1 or more.
  • Introducing a metal-adsorbing functional group into a polymer-mixed non-woven fabric having a glycidyl group is a method of stirring in a solution containing a long-chain ligand having an amino group or an imino group, or an amino group or an imino group. It can be performed by spraying a solution containing a long-chain ligand, or by immersing in a reaction bath filled with a solution containing a long-chain ligand having an amino group or imino group. Is possible.
  • the nonwoven fabric forming method of the present invention has a feature that it can be continuously produced in the form of a long roll.
  • the immersion method it is performed by immersing a polymer mixed nonwoven fabric having a glycidyl group in a solution containing a long-chain ligand having an amino group or an imino group for a certain period of time for reaction.
  • the long-chain ligand is bonded to a polymer having a glycidyl group by a reaction between an amino group or imino group of the long-chain ligand and a glycidyl group.
  • the long-chain ligand reacts with the glycidyl group appearing on the fiber surface, a metal-adsorbing functional group is introduced on the fiber surface. Thereby, it becomes a nonwoven fabric-like metal adsorbent with a high adsorption speed.
  • the polymer-mixed nonwoven fabric having glycidyl groups is treated with hydrohalic acid such as hydrochloric acid in advance to form glycidyl groups. It can also be halohydrinized.
  • the halohydrination of the glycidyl group can be carried out by a known method using hydrochloric acid or hydrobromic acid as the hydrogen halide, but it is preferable to chlorohydrinate using hydrochloric acid that is easily available and handled.
  • chlorohydrin can be formed by immersing a polymer mixed nonwoven fabric having a glycidyl group in a 0.05 mol / L to 1 mol / L hydrochloric acid aqueous solution for 10 to 30 minutes. At this time, in order to shorten the reaction time, it may be heated to several tens of degrees Celsius.
  • the polyolefin polymer since the polyolefin polymer has strong water repellency, the reaction rate between the polymer-mixed nonwoven fabric having a glycidyl group and the long-chain ligand may be lowered. Therefore, dioxane or dimethylformamide may be added to a solution containing a long-chain ligand for improving reactivity. However, if the amount of dioxane or dimethylformamide added to the solution is increased, the polymer having a glycidyl group may be dissolved and eluted, so it is preferable to suppress the amount added to 20% (volume%) or less.
  • the solution for dissolving the long-chain ligand may be an aqueous solution, but the polyolefin polymer is highly water-repellent, so the reaction rate of the polymer-mixed nonwoven fabric having a glycidyl group and the long-chain ligand may be lowered. is there. Therefore, the reaction is preferably performed in an alcohol solution or an aqueous solution containing alcohol so that the polymer having a glycidyl group does not dissolve or elute. Moreover, you may heat as needed.
  • the long-chain ligand introduction step may be either a continuous type or a batch type.
  • Unreacted glycidyl groups or halohydrin groups remain in the nonwoven fabric after the reaction, but water repellency based on the fiber matrix polymer by converting the glycidyl groups or halohydrin groups to hydroxyl groups by treatment with alkali or acid Can be further reduced.
  • the long-chain ligand reacts with the glycidyl group appearing on the fiber surface forming the polymer-mixed nonwoven fabric having a glycidyl group, so that a metal-adsorbing functional group is introduced on the fiber surface.
  • the amount of glycidyl groups which can be present and reacted on the fiber surface depends on the fiber diameter as well as the amount of the polymer having a glycidyl group mixed with the fiber matrix polymer.
  • the present invention has an advantage of using a melt blow method or a spun bond method capable of producing a nonwoven fabric made of fibers having a fiber diameter of sub- ⁇ m to several tens of ⁇ m, for example, 0.5 to 50 ⁇ m.
  • the metal adsorption property of the nonwoven metal adsorbent of the present invention depends on the metal adsorption property of a long-chain metal ligand having an amino group or an imino group introduced into a nonwoven fabric mixed with a polymer having a glycidyl group.
  • a reactive amino group or imino group remains even after the introduction reaction into the nonwoven fabric. It is possible to change the metal adsorption property by introducing (chemically modifying) an additional functional group into this amino group or imino group by a secondary reaction.
  • a carboxymethylation reagent (usually using a halogenated acetic acid) is used by a known method. May be used to carboxymethylate. Thereby, it is possible to convert to an aminocarboxylic acid type metal ligand such as iminodiacetic acid or ethylenediaminetetraacetic acid. This reaction can also be applied to partially carboxymethylated polyamines, and can be converted to metal adsorption properties closer to aminocarboxylic acid type metal ligands by carboxymethylation by a secondary reaction.
  • a phosphomethyl group when phosphonic acid and formaldehyde are reacted under hydrochloric acid acidity, a phosphomethyl group can be introduced into an amino group or an imino group, and the selectivity to rare earth can be improved. Furthermore, the selectivity for gold or platinum can be improved by reacting with acetic anhydride in a non-aqueous organic solvent to N-acetylate the amino group or imino group. Further, when the ion exchange capacity needs to be improved, a halogenated alkyl compound may be introduced into an amino group or imino group under alkaline conditions by a known method to form a quaternary ammonium group.
  • the obtained nonwoven metal adsorbent was immersed in a 0.5 mol / L copper sulfate solution (pH 5.5) to adsorb copper. It was 0.52 mmol Cu / g when the amount of copper adsorption in a copper sulfate solution was measured with the atomic absorption photometer and the amount of copper adsorption was calculated
  • the nonwoven metal adsorbent used for this measurement was washed with 3 mol / L nitric acid to desorb the adsorbed copper, and then immersed in 1 mol / L nitric acid for 50 hours. After the immersion, the sample was sufficiently washed with water, and the copper adsorption amount was again determined by the same method as described above.
  • the amount of metal adsorbed after the nitric acid immersion cleaning was 0.50 mmol Cu / g, and no performance degradation was observed in the strongly acidic solution. Moreover, although the nitric acid aqueous solution in which the nonwoven metal adsorbent was immersed and the rinse water after immersion were observed with a microscope, it was determined that no short fibers or fiber pieces were observed and no lint was generated.
  • Example 1 (1) and (2) instead of low density polyethylene (polyolefin fiber matrix polymer), poly [ethylene-vinyl acetate] (Mitsui / DuPont Polychemical Co., Ltd., Everflex EV420, flow start A poly [ethylene-vinyl acetate] nonwoven fabric mixed with 30% by mass of acrylic polymer was prepared under the same conditions except that the temperature was 84 ° C.).
  • a 30% by mass mixed poly [ethylene-vinyl acetate] nonwoven fabric was obtained.
  • An electron micrograph of the obtained poly [ethylene-vinyl acetate] nonwoven fabric mixed with 30% by mass of the acrylic polymer having a glycidyl group is shown in FIG.
  • a metal adsorbent was prepared. The amount of copper adsorbed was 0.73 mmol Cu / g. Moreover, the performance fall after 50-hour immersion in 3 mol / L nitric acid was not confirmed, and lint was not observed.
  • the polyolefin fiber matrix polymer is the same poly [ethylene-vinyl acetate] as in Example 2, and the polymer having glycidyl group is a copolymer of glycidyl methacrylate and styrene (manufactured by NOF Corporation, Marproof G-0250S). , Weight average molecular weight: 20,000, epoxy value: 310 g / equivalent).
  • the spinning conditions were the same as in Example 2.
  • the mixing ratio of the polymer having a glycidyl group was 30% by mass, 40% by mass, 50% by mass, and 60% by mass.
  • Tetraethylenepetamine (manufactured by Wako Pure Chemical Industries, Ltd.) was introduced into the poly [ethylene-vinyl acetate] non-woven fabric in which the copolymer of glycidyl methacrylate and styrene was mixed in the same manner as in Example 1 (3).
  • a nonwoven metal adsorbent was prepared. The results are shown in FIG. As apparent from the figure, the metal adsorption capacity increased by increasing the mixing ratio, and a metal adsorption capacity (copper adsorption capacity) of 1.32 mmol Cu / g was obtained at 60 mass%. However, the mixing rate and the metal adsorption capacity were not in a linear proportional relationship, and there was a tendency that the mixing rate was almost constant at a mixing rate of 50% by mass or more.
  • Example 3 Using the same fiber base material as in Example 3 and a polymer having a glycidyl group, a nonwoven fabric in which 70% by mass of a copolymer of glycidyl methacrylate and styrene was mixed under the same conditions as in Example 3 was produced.
  • the mixing ratio was 70% by mass, although spinning was possible, the degree of fusion between the fibers was low, and a uniform nonwoven fabric with sufficient strength could not be obtained.
  • Example 3 Based on the results of Example 3, the influence of the spinning temperature was examined.
  • the blend ratio of the same glycidyl methacrylate and styrene copolymer as in Example 3 was 30% by mass, and the same poly [ethylene-vinyl acetate] as in Example 2 was used as the fiber matrix polymer.
  • the spinning conditions were spinning temperatures of 190 ° C, 200 ° C, 210 ° C and 220 ° C.
  • the other conditions were as follows: at a spinning temperature of 190 ° C, an airflow temperature of 200 ° C, an airflow velocity of 155 m / sec, at a spinning temperature of 200 ° C, an airflow temperature of 210 ° C, an airflow velocity of 162 m / sec, and at a spinning temperature of 210 ° C, an airflow temperature of 220 ° C and an airflow velocity of 168 m. / Sec, at a spinning temperature of 220 ° C., melt blow spinning was carried out under conditions of an air flow temperature of 230 ° C.
  • FIG. 5 shows an electron micrograph of a poly [ethylene-vinyl acetate] non-woven fabric containing 30% by mass of a copolymer of glycidyl methacrylate and styrene at a spinning temperature of 190 ° C. and a spinning temperature of 220 ° C. The higher the spinning temperature, the thinner the fiber diameter. As shown in FIG. 5b, the fiber diameter at the spinning temperature of 220 ° C. was about 15 ⁇ m.
  • Partially saponified poly [ethylene-vinyl acetate] (manufactured by Tosoh Corporation, Mersen H6822, flow start temperature: 105 ° C.) having a saponification degree of 80% is used as the polyolefin fiber matrix polymer and has the same glycidyl group as in Example 1.
  • the prepared 80% partially saponified poly [ethylene-vinyl acetate] non-woven fabric mixed with 30% by mass of acrylic polymer having glycidyl groups was immersed in a 0.1 mol / L hydrochloric acid aqueous solution for 30 minutes (40 ° C.), and the glycidyl groups were chlorohydrin. After conversion to a group, partially carboxymethylated pentaethylenehexamine was introduced with reference to the method of Example 1 (3).
  • Partially carboxymethylated pentaethylenehexamine is a 1 mol / L sodium hydroxide solution containing 40% by mass of pentaethylenehexamine (manufactured by Wako Pure Chemical Industries, Ltd.), pentaethylenehexamine and sodium monochloroacetate (manufactured by Wako Pure Chemical Industries, Ltd.). And sodium monochloroacetate was added so that the blending ratio (to the nitrogen molar ratio) was 1: 0.6, and the mixture was reacted at 40 ° C. for 4 hours.
  • the obtained partially carboxymethylated pentaethylenehexamine solution was diluted twice with pure water, and a 80% partially saponified poly [ethylene-vinyl acetate] non-woven fabric mixed with 30% by mass of an acrylic polymer having a chlorohydrinized glycidyl group was obtained. It was immersed and reacted at 40 ° C. for 20 minutes. It was observed that the fibers swelled slightly during the reaction, but after the reaction, the machine of 80% partially saponified poly [ethylene-vinyl acetate] nonwoven fabric metal adsorbent mixed with 30% by mass of acrylic polymer having glycidyl groups. There was no decrease in mechanical strength.
  • the metal adsorption capacity (copper adsorption capacity) of an 80% partially saponified poly [ethylene-vinyl acetate] nonwoven fabric metal adsorbent mixed with 30% by mass of an acrylic polymer having a glycidyl group was 0.48 mmol Cu / g.
  • Example 5 instead of partially saponified poly [ethylene-vinyl acetate] having a saponification degree of 80% as a fiber matrix polymer, partially saponified poly [ethylene-vinyl acetate] having a saponification degree of 90% (manufactured by Tosoh Corporation) 90% partially saponified poly [ethylene-vinyl acetate] non-woven fabric mixed with 30% by mass of an acrylic polymer having a glycidyl group under the same conditions as in Example 5 except that Mersen H6960, flow start temperature: 118 ° C.) was used. Produced.
  • the metal adsorption capacity (copper adsorption capacity) of 90% partially saponified poly [ethylene-vinyl acetate] non-woven fabric mixed with 30% by mass of acrylic polymer having glycidyl group was 80% of 30% by mass mixed with acrylic polymer having glycidyl group.
  • % Partially saponified poly [ethylene-vinyl acetate] non-woven fabric was 0.44 mmol Cu / g slightly lower.
  • Example 5 Based on the results of Example 5, the influence of the mixing ratio of the polymer having a glycidyl group was examined using partially saponified poly [ethylene-vinyl acetate] having a saponification degree of 80%.
  • the polymer having a glycidyl group the same copolymer of glycidyl methacrylate and styrene as in Example 3 was used.
  • the mixing ratio of the polymer having a glycidyl group was 20% by mass, 30% by mass, and 40% by mass.
  • Spinning conditions were: Spinning temperature of 160 ° C., air flow temperature of 200 ° C., air flow speed of 155 m / sec, nozzle hole diameter of 0.4 mm, melt blend spinning with a basis weight of 65 g / m 2 glycidyl methacrylate and styrene copolymer mixture part A saponified poly [ethylene-vinyl acetate] nonwoven fabric was obtained.
  • tetraethylenehexamine manufactured by Wako Pure Chemical Industries
  • a metal adsorbent was prepared. The results are shown in FIG. As is clear from the figure, the metal adsorption capacity (copper adsorption capacity) was increased by increasing the mixing ratio, and a metal adsorption capacity of 0.67 mmol Cu / g was obtained at a mixing ratio of 40% by mass. Although the metal adsorption capacity was lower than when unsaponified poly [ethylene-vinyl acetate] of Example 3 was used, sufficient metal could be obtained using partially saponified poly [ethylene-vinyl acetate] having a saponification degree of 80%. A non-woven metal adsorbent having an adsorption capacity could be obtained.
  • FIG. 7 shows an electron micrograph of a partially saponified poly [ethylene-vinyl acetate] nonwoven fabric obtained by mixing 40% by mass of a copolymer of glycidyl methacrylate and styrene obtained in this example.
  • Example 1 (1) the polyolefin fiber matrix polymer was changed to polypropylene (Nippon Polypro Corporation, Novatec PP SA3A, flow start temperature: 176 ° C.), and an acrylic polymer having a glycidyl group was used. Polypropylene pellets mixed with 30% by mass of an acrylic polymer having a glycidyl group were obtained.
  • the spinning conditions were as follows: a spinning temperature of 220 ° C., an air temperature of 230 ° C., an air speed of 175 m / sec, melt blow spinning under the conditions of a nozzle hole diameter of 0.4 mm, and a polypropylene nonwoven fabric mixed with 30% by mass of an acrylic polymer having a glycidyl group. Produced.
  • Tetraethylenepetamine (manufactured by Wako Pure Chemical Industries, Ltd.) was introduced into the obtained nonwoven fabric in the same manner as in Example 1 (3) to prepare a nonwoven metal adsorbent.
  • the metal adsorption capacity (copper adsorption capacity) of polypropylene nonwoven fabric mixed with 30% by mass of acrylic polymer having glycidyl group is 0.49 mmol Cu / g, and 30% by mass of acrylic polymer having glycidyl group of Example 1 is mixed. It was almost the same as the case of the polyethylene nonwoven fabric.
  • Polymethylpentene manufactured by Mitsui Chemicals, TPX DX845, flow start temperature: 239 ° C.
  • an acrylic polymer having the same glycidyl group as in Example 1 as a polymer having a glycidyl group
  • a kneading temperature of 260 ° C. polymethylpentene pellets mixed with 30% by mass of an acrylic polymer having a glycidyl group were obtained in the same manner as in Example 1 (1).
  • the obtained pellets were markedly yellowed, the extreme decomposition of the acrylic polymer having a glycidyl group had progressed, and the yarn could not be made into a nonwoven fabric without spinnability.
  • Example 1 (3) Even after the nitric acid immersion test, no decrease in metal adsorption capacity was observed.
  • the nitric acid aqueous solution in which the nonwoven fabric-like metal adsorbent was soaked and the washing water after immersion were observed with a microscope. No fiber fragments were observed, and no lint was observed.
  • a) a step of preparing a polymer having a glycidyl group in the molecule b) a step of kneading the polymer having a glycidyl group and a polyolefin fiber matrix polymer having a flow initiation temperature of 200 ° C. or less.
  • the nonwoven metal adsorbent obtained by the present invention is rich in flexibility and can be easily processed into a cylindrical form by tube winding, a laminated form by lamination, or a laminated form by folding (pleating).
  • metal adsorbents having various forms suitable for valuable metal recovery and heavy metal removal can be produced.
  • the non-woven metal adsorbent obtained by the present invention has sufficient strength between the fibers, so that it has sufficient strength and hardly generates lint and is used for cleaning treatment such as pure water and water. It is also possible to use it. Furthermore, it is possible to change the metal adsorption characteristics by chemically modifying the amino group or imino group remaining in the long-chain metal ligand having an amino group or imino group introduced into the nonwoven fabric by a secondary reaction. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Nonwoven Fabrics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

溶液中の金属の吸着・回収に用いる不織布状金属吸着材であって、a)分子内にグリシジル基を有する高分子を用意する工程、b)グリシジル基を有する高分子と流動開始温度が200℃以下のポリオレフィン系繊維母材高分子とを混練する工程、c)メルトブロー法又はスパンボンド法で不織布化する工程、d)不織布化された繊維表面のグリシジル基、あるいはこのグリシジル基にハロゲン化水素を反応させて生成させたハロヒドリン基にアミノ基又はイミノ基を有する長鎖型金属配位子を反応させて金属吸着性官能基を導入する工程、を経ることにより製造される、高い吸着容量を有し、耐薬品性が高く、多様な金属吸着特性の付与が可能で、容易に多彩な形態に加工可能な不織布状金属吸着材及びその製造方法を提供する。

Description

不織布状金属吸着材およびその製造方法
本発明は、工場排水、用水、環境水、製造工程水等の広範囲な溶液中の金属の吸着・回収に好適な、高い吸着容量を有し、耐薬品性が高く、多様化が容易で、多彩な形態に加工可能な不織布状金属吸着材およびその製造方法に関するものである。
循環型社会の構築が叫ばれて久しい。アルミ缶やスチール缶、PET等のプラスチック、二次電池、紙類、瓶類等の分別回収・リサイクルは身近なものとなり、リサイクル率も年々向上している。一方、希土類元素、インジウム、ニオブ、マンガン等のレアメタルをはじめ、白金族、銅、亜鉛、アルミニウム等も含めた金属元素は「クリティカルメタル」と呼ばれ、ハイテク産業等において極めて重要なキーマテリアルである。これらの内、銅、亜鉛、アルミニウム等のリサイクルシステムはほぼ確立しているが、他の金属元素に関しては依然実用化のめどは立っていない。この理由としては、廃棄物や廃水中の有価金属濃度が低いため、抽出工程における効率が低いことが第一にあげられる。また、工程が煩雑でコストが高く、貴金属以外では採算が取れないということも課題としてあげられる。金属資源を取り巻く社会情勢を鑑みると、有価金属の回収・リサイクルシステムの構築が急務であり、同時に効率の良い有価金属の吸着・分離技術の開発・確立が必要である。
一般に、金属の除去・回収には、凝集、共沈、溶媒抽出、粒子状吸着材等の方法が用いられている。設備や環境負荷、さらに再生利用までを考慮すると、イオン交換樹脂やキレート樹脂等の粒子状吸着材を用いる方法が有効である。特にキレート樹脂は、イオン交換樹脂よりも金属と高い親和性を有しているため、金属の最適な吸着材であるといえる(非特許文献1~3)。現在、イミノ二酢酸型、低分子ポリアミン型、アミノリン酸型、イソチオニウム型等の種々のキレート樹脂が市販されているが、広範囲な金属の吸着に適用可能なイミノ二酢酸型キレート樹脂が主に利用されている。しかし、イミノ二酢酸型キレート樹脂は、金属元素との錯形成力がそれほど大きくなく、実際の使用においては高い回収率が得られないという場合が少なくない。また、イミノ二酢酸型キレート樹脂は、金属の吸着速度も遅いため、迅速に大量の処理水を処理することが難しい。さらに、このイミノ二酢酸型キレート樹脂は、粒子状であるがために特定の缶体に充填して使用しなければならず、使用条件や設置環境によっては適用しにくい場合も多い。
上記課題を解決し、かつ多彩な要求に対応するには、キレート樹脂は、金属吸着特性のさらなる改善が必要であるとともに、吸着材形態の多様化についても検討が必要である。このような課題の解決策の1つとして、キレート樹脂の形態として、繊維状金属吸着材に関する研究が進められている。繊維状吸着材では、吸着部位が繊維表面に限られるため、一般に粒子状吸着材でしばしば問題となる細孔内部への拡散抵抗の問題は生じない。そのため、繊維状吸着材は、迅速な吸脱着特性を示し、また、繊維状であるため布帛(布、織物、不織布等)や紙等への加工が可能で、さらなる二次加工することもできる。
繊維状吸着材の製造方法についていくつかの開示がある。特許文献1では化学的なグラフト法による繊維状部材へのキレート性官能基の導入方法が、特許文献2および特許文献3には放射線照射によるラジカル生成・グラフト重合法による繊維状部材表面へのキレート性官能基の導入方法が、特許文献4には高温高圧下での汎用繊維への低分子キレート剤の注入方法がそれぞれ開示されている。これらの方法により製造される繊維状吸着材は、十分な機能をもち、被処理液の迅速な処理が可能であると推定されるものの製造上の問題がある。化学的グラフト法は、グラフト可能な繊維種が限定されるとともに製造工程が煩雑である。放射線グラフト法は、化学的グラフト法に比べ種々の繊維に適用可能という利点があるが、放射線の取り扱い上から特定環境下での作業となるため、簡便かつ安価な製造方法とはいえない。また、キレート剤の注入・含浸法も種々の繊維を利用できるという利点があるが、高温高圧下での含浸であるため汎用性は乏しい。
特許文献5および特許文献6には、混合紡糸法を用いた繊維状金属吸着材の製造法が開示されている。特許文献5によれば、ポリビニルアルコールに長鎖型配位子(分子鎖長の長い金属吸着能を示す化合物)を添加し、湿式法あるいは乾式法により紡糸した後、さらにホルマール化して繊維状金属吸着材を製造する方法が開示されており、この製造方法は、既存設備を用いて安価にかつ大量に繊維状金属吸着材を製造することが可能である。また、特許文献6によれば、特許文献5と同じ長鎖型配位子をビスコースに添加し、湿式紡糸法により繊維状金属吸着材を製造する方法が開示されており、この製造方法は、特許文献5と同様に既存設備を用いて安価にかつ大量に繊維状金属吸着材を製造することが可能である。これらの方法により製造される繊維状金属吸着材は、繊維状であるため不織布を製造することが可能(特許文献6参照)で、得られる不織布をさらに二次加工することにより多彩な形態の金属吸着材を製造することが可能である。
特許文献5および特許文献6に開示されている繊維状金属吸着材は、製造しやすく、また、長鎖型配位子を使用しているため、イミノ二酢酸型キレート樹脂と比べて高い錯形成能力を示すとともに、高い元素選択性を有している。
しかしながら、特許文献6で製造されたレーヨン母材の繊維状金属吸着材は、以下のような問題がある。すなわち、金属回収の対象となる被処理溶液は、一般に、塩酸、硫酸、硝酸等が含まれる酸性溶液である。このため、レーヨンは強酸性の状況に曝されると分解するため、レーヨン母材の繊維状金属吸着材は、酸性条件下での使用が制限される。レーヨンは環境中の微生物等によっても分解するため、レーヨン母材の繊維状金属吸着材は、長期間にわたる連続使用や複数回の再生使用に耐えることができないという問題がある。
さらに、特許文献5に開示されているポリビニルアルコール母材の繊維状金属吸着材は、以下のような問題がある。すなわち、ポリビニルアルコールは、ホルマール化することにより耐酸・耐アルカリ性が向上するが、有機溶媒に対する耐性は必ずしも高くはない。このため、ポリビニルアルコール母材の繊維状金属吸着材は、有機溶媒中の有価金属(例えば、カップリング反応用パラジウム触媒)の回収・除去等には、その適用が限定されるという問題がある。
上記の紡糸法で調製された繊維状吸着材は、ローラーカード機等を用いて開繊後、ニードルパンチ法やウォータージェット法等の公知の手法により不織布化することができ、さらに二次加工により多彩な形態の吸着材とすることが可能である。しかし、このような不織布を製造する方法では、紡糸工程、開繊工程さらに不織布化工程といった多段階の工程が必要で、製造工程が煩雑となる。さらにこのような方法で調製した不織布では、開繊や不織布化工程において生成した短繊維(リント)が不織布中に含まれる。この不織布を使用した溶液からの金属回収は、処理水にリントの漏出が生じるため、吸着処理水からリント除去を行う必要がある。このため、金属回収する工程にこの除去工程を追加しなければならない。特に、この不織布製造方法により製造される金属吸着材を純水や用水等の清浄化処理に使用する場合には、処理水へのリントの漏出は、非常に深刻な問題となる。
レーヨン母材の不織布におけるリント漏出対策として、得られた繊維状吸着材の開繊時に熱融着繊維を混合し、不織布とした後、加熱処理する方法があげられる。この加熱処理により、繊維状金属吸着材が混合された熱融着繊維と融着して繊維同士が固定される。この方法によりリントの発生は低減されるものの、リントの漏出を完全に抑えることはできない。また、熱融着繊維の混合により単位重量当たりの繊維状吸着剤量が低下してしまうため、金属吸着量の低下を引き起こすことになる。
特開2001-113272号公報 特許4119966号公報 特許3247704号公報 特開2007-247104号公報 特開2011-056349号公報 特開2011-056350号公報
北条舒正、「キレート樹脂・イオン交換樹脂」、講談社サイエンティフィク(1976). 妹尾学、阿部光雄、鈴木喬、「イオン交換-高度分離技術の基礎」、講談社サイエンティフィク(1991). 神崎榿監修、日本イオン交換学会、「最先端イオン交換技術のすべて」、工業調査会(2009).
本発明は、上記の問題点に鑑みてなされたもので、溶液中の金属の吸着・回収に用いられ、高い吸着容量を有し、耐薬品性が高く、化学的な修飾により多様な金属吸着特性の付与が可能であるとともに、特殊な設備や煩雑な操作を用いることなく既存の製造設備を用いて製造でき、さらに容易に多彩な形態に加工が可能である不織布状金属吸着材およびその製造方法を提供することを目的とする。
本発明の発明者が鋭意研究を行った結果、グリシジル基を有する高分子と、流動開始温度が200℃以下のポリオレフィン系繊維母材高分子とを溶融混合し、メルトブロー法(メルトブローン法とも呼ばれる)あるいはスパンボンド法により不織布とした後、不織布の繊維表面に存在するグリシジル基あるいはこのグリシジル基をハロゲン化水素で処理して生成させたハロヒドリン基に、アミノ基あるいはイミノ基を有する長鎖型金属配位子を反応させて金属吸着性官能基を導入することにより、高い吸着容量を有し、耐薬品性が高く、多彩な形態に加工可能な不織布状金属吸着材を製造できることを見出した。
 より詳しくは、本発明は、以下に記載する不織布状金属吸着材およびその製造方法に関するものである。
1)エポキシ価が128~600g/当量であるグリシジル基を有する高分子と、流動開始温度が200℃以下のポリエチレン、ポリプロピレン、ポリ[エチレン-酢酸ビニル]、鹸化度85%以下の部分鹸化ポリ[エチレン-酢酸ビニル]、およびこれらの混合物よりなる群より選ばれるポリオレフィン系繊維母材高分子とを、グリシジル基を有する高分子とポリオレフィン系繊維母材高分子との混合比率が質量比で10:90~60:40で溶融混合し、メルトブロー法あるいはスパンボンド法により不織布とし、ついで不織布の繊維表面のグリシジル基にアミノ基あるいはイミノ基を有する長鎖型金属配位子を反応させて金属吸着性官能基を導入するか、あるいはこのグリシジル基にハロゲン化水素を反応させてハロヒドリン基に転換した後にアミノ基あるいはイミノ基を有する長鎖型金属配位子を反応させて金属吸着性官能基を導入することにより製造される不織布状金属吸着材。
2)グリシジル基を有する高分子が、グリシジル基を有するアクリル酸エステル、またはグリシジル基を有するメタクリル酸エステルより選ばれるモノマーのホモポリマーであるか、前記モノマーとグリシジル基を有しないアクリル酸エステル、グリシジル基を有しないメタクリル酸エステルまたはビニル芳香族モノマーより選ばれるモノマーとの共重合体であって、かつこれらのホモポリマーまたは共重合体の分子量が、重量平均分子量で8,000~100,000であることを特徴とする上記1)に記載の不織布状金属吸着材。
3)アミノ基あるいはイミノ基を有する長鎖型金属配位子が、ポリエチレンイミン、ポリアリルアミン、これらの部分カルボキシメチル化物、およびそれらの混合物よりなる群より選ばれるポリマーまたはポリマー混合物であることを特徴とする上記1)に記載の不織布状金属吸着材。
4)エポキシ価が128~600g/当量であるグリシジル基を有する高分子と、流動開始温度が200℃以下のポリエチレン、ポリプロピレン、ポリ[エチレン-酢酸ビニル]、鹸化度85%以下の部分鹸化ポリ[エチレン-酢酸ビニル]、およびこれらの混合物よりなる群より選ばれるポリオレフィン系繊維母材高分子とを、グリシジル基を有する高分子とポリオレフィン系繊維母材高分子との混合比率が質量比で10:90~60:40で溶融混合し、メルトブロー法あるいはスパンボンド法により不織布化した後、繊維表面のグリシジル基にアミノ基あるいはイミノ基を有する長鎖型金属配位子と反応させて金属吸着性官能基を導入するか、あるいはこのグリシジル基にハロゲン化水素を反応させてハロヒドリン基に転換したのちアミノ基あるいはイミノ基を有する長鎖型金属配位子を反応させて金属吸着性官能基を導入して不織布状金属吸着材を製造する方法であって、
アミノ基あるいはイミノ基を有する長鎖型金属配位子としてポリエチレンイミン、ポリアリルアミン、これらの部分カルボキシメチル化物、およびそれらの混合物よりなる群より選ばれるポリマーまたはポリマー混合物を使用することを特徴とする不織布状金属吸着材を製造する方法。
5)グリシジル基を有する高分子として、グリシジル基を有するアクリル酸エステル、またはグリシジル基を有するメタクリル酸エステルより選ばれるモノマーのホモポリマーであるか、前記モノマーとグリシジル基を有しないアクリル酸エステル、グリシジル基を有しないメタクリル酸エステルまたはビニル芳香族モノマーより選ばれるモノマーとの共重合体であって、かつこれらのホモポリマーまたは共重合体の分子量が、重量平均分子量で8,000~100,000であるものを使用することを特徴とする4)に記載の不織布状金属吸着材を製造する方法。
 ここで、グリシジル基を有する高分子としては、エポキシ価が128~600g/当量であるものが用いられる。ここで、グリシジル基を有する高分子としては、グリシジル基を有するモノマーのホモポリマー、あるいは、グリシジル基を有するモノマーとグリシジル基を有しないモノマーとの共重合体があげられる。
ホモポリマーとしては、例えば、グリシジル基を有するアクリル酸エステルのホモポリマー、グリシジル基を有するメタクリル酸エステルのホモポリマーなどがあげられる。
共重合体としては、例えば、グリシジル基を有するアクリル酸エステルモノマーとグリシジル基を有しないアクリル酸エステルモノマー、グリシジル基を有しないメタクリル酸エステルモノマーまたはビニル芳香族モノマーとの共重合体、グリシジル基を有するメタクリル酸エステルモノマーと、グリシジル基を有しないアクリル酸エステルモノマー、グリシジル基を有しないメタクリル酸エステルモノマーまたはビニル芳香族モノマーとの共重合体などがあげられる。また、これらグリシジル基を有する高分子の分子量としては、平均分子量(重量平均分子量)として、8,000~100,000のものが好ましく用いられる。
エポキシ価が128~600g/当量のグリシジル基を有する高分子としては、例えば、グリシジルアクリレート類として、グリシジルアクリレートのホモポリマー(エポキシ価128g/当量)、グリシジルメタクリレートのホモポリマー(エポキシ価142g/当量)があげられる。共重合体としては、グリシジルメタクリレートとスチレンとの共重合体(重合比率、グリシジルメタクリレート:スチレン=20:80の場合、エポキシ価544g/当量)、グリシジルメタクリレートとメチルメタクリレートとの共重合体(重合比率、グリシジルメタクリレート:メチルメタクリレート=20:80の場合、エポキシ価542g/当量)などがあげられる。エポキシ価が600を超えない範囲では高い吸着容量を示すが、これを超えると吸着容量が低下する傾向があるので、600を超えない範囲のものが最も好ましく使用することができる。
本発明によれば、a)分子内にグリシジル基を有する高分子を用意する工程、b)グリシジル基を有する高分子と流動開始温度が200℃以下のポリオレフィン系繊維母材高分子とを混練する工程、c)メルトブロー法あるいはスパンボンド法により不織布化する工程、d)不織布化された繊維表面のグリシジル基に、あるいはこのグリシジル基にハロゲン化水素を反応させて生成したハロヒドリン基にアミノ基あるいはイミノ基を有する長鎖型金属配位子を反応させて金属吸着性官能基を導入する工程、を経るという簡便な方法により、既存の製造設備を改良することなくそのまま利用して、高い吸着容量を有し、耐薬品性が高く、容易に多彩な形態に加工可能な不織布状金属吸着材を製造することができる。本発明により得られた不織布状金属吸着材は、柔軟性に富み、筒巻きによる円筒状形態、張り合わせによる積層状形態、あるいは折り畳み(プリーツ加工)による積層状形態などに容易に加工することが可能で、有価金属回収や重金属除去に好適な様々な形態を有する金属吸着体を製造することができる。また、本発明により得られた不織布状金属吸着材は、繊維間が十分に融着しているためリントが発生しにくく、純水や用水等の清浄化処理に使用することも可能である。さらに、アミノ基あるいはイミノ基を有する長鎖型金属配位子をグリシジル基を有する高分子を混合した不織布に導入した後においても、長鎖型金属配位子分子中には反応可能なアミノ基やイミノ基が残存しているため、この残存するアミノ基やイミノ基を二次反応によってさらに化学的に修飾することにより金属吸着特性を変化させることが可能である。
本発明の不織布状金属吸着材の製造工程の一例を示す。 実施例2により得られたグリシジル基を有するアクリル系高分子30質量%混合のポリ[エチレン-酢酸ビニル]不織布の電子顕微鏡写真を示す。 実施例3により得られたグリシジルメタクリレートとスチレンとの共重合体混合の不織布状金属吸着材におけるグリシジルメタクリレートとスチレンとの共重合体の混率と銅吸着容量との関係を示す。 実施例4により得られたグリシジルメタクリレートとスチレンとの共重合体混合不織布状金属吸着材における紡糸温度と銅吸着容量および繊維径との関係を示す。 実施例4において紡糸温度190℃および紡糸温度220℃の時に得られたグリシジルメタクリレートとスチレンとの共重合体30質量%混合のポリ[エチレン-酢酸ビニル]不織布状金属吸着材の電子顕微鏡写真を示す。ここで、a図は紡糸温度190℃の場合のものを、b図は紡糸温度220℃の場合のものを示す。 実施例6により得られたグリシジルメタクリレートとスチレンとの共重合体混合の不織布状金属吸着材におけるグリシジルメタクリレートとスチレンとの共重合体の混率と銅吸着容量との関係を示す。 実施例6により得られたグリシジルメタクリレートとスチレンとの共重合体40質量%混合の80%鹸化ポリ[エチレン-酢酸ビニル]不織布状金属吸着材の電子顕微鏡写真を示す。
図1は、本発明の不織布状金属吸着材を製造する工程の一例を示す。
この例では、まず、グリシジル基を有する高分子と、流動開始温度が200℃以下のポリオレフィン系繊維母材高分子とを混練して、紡糸原料であるグリシジル基を有する高分子を混合した繊維母材高分子を調製する。つぎにこのグリシジル基を有する高分子を混合した繊維母材高分子をメルトブロー法あるいはスパンボンド法により不織布化する。そして、得られた不織布(グリシジル基を有する高分子混合不織布)の繊維表面にあるグリシジル基に直接アミノ基あるいはイミノ基を有する長鎖型金属配位子を反応させて金属吸着性官能基を導入するか、あるいは上記グリシジル基にハロゲン化水素を反応させてハロヒドリン基とし、この生成したハロヒドリン基にアミノ基あるいはイミノ基を有する長鎖型金属配位子を反応させて金属吸着性官能基を導入して不織布状金属吸着材とする。この工程により製造された不織布状金属吸着材は、金属元素の高い吸着容量と高い耐薬品性を有するとともに、さらに化学的に修飾することにより多様な金属吸着特性を有する不織布状金属吸着材に変化させることができ、そのうえ、プリーツ加工や筒巻き加工など多彩な形態に容易に加工することができる。
本発明においては、メルトブロー法あるいはスパンボンド法により不織布を製造する。これらの方法は、低融点の熱可塑性樹脂(主にポリプロピレン、ポリエチレン等)を原料樹脂として使用し、繊維径がサブμm~数十μm、例えば0.5~50μm、の繊維からなる不織布を製造することができる。これらの製造方法は、ローラーカード機等を用いて開繊することなく一連の工程で不織布を得ることができる。
メルトブロー法は、溶融した熱可塑性樹脂を押出機の後に設置したノズルから、捕集スクリーン上に高温高速の気流で熱可塑性樹脂を吹き出すことにより、不織布を製造するするものである。つまり、紡糸工程、開繊工程さらに交絡工程を経て不織布化するという工程を踏むことなく、1段階で目的の不織布を製造することができる。また、紡糸された繊維は繊維同士が融着して冷却され固化して不織布となるため、製造された不織布は、高い強度をもつと同時にリントが生じにくい。
また、スパンボンド法は、溶融した熱可塑性樹脂を押出機の後に設置したノズルから押し出して紡糸し、押し出された繊維をコンベア上で重ね合わせた後、熱ローラーにより繊維同士を熱融着して不織布を製造する。この方法によりエンドレスの長繊維により構成される不織布が製造されるため、不織布は、高い強度と寸法安定性を有し、リントを発生しない。
一般に、メルトブロー法は、少量多品種の不織布の製造に適しており、スパンボンド法は、多量少品種の不織布の製造に適している。
本発明では、これらの方法を用いることにより、紡糸と不織布化を同時、あるいはほぼ同時に行うことが可能となるため、事前に紡糸した繊維を開繊した後、ニードルパンチ法やウォータージェット法等の手法により不織布化するという複雑な工程を簡略化することができる。また、これらの方法により得られる不織布は、繊維間が十分に融着しているためリントが出ないあるいは生じにくいという特徴を有している。さらに、これらの不織布化法は、不織布を構成する繊維を微細繊維とすることができ、連続して長尺のロール状の不織布を製造することができるという特徴も有している。
本発明において使用されるグリシジル基を有する高分子は、アミノ基あるいはイミノ基と反応可能なグリシジル基を有するビニルモノマーのホモポリマー、あるいはそれらと共重合が可能なモノマーとの共重合体が好適に挙げられる。
グリシジル基を有するビニルモノマーとしては、例えば、グリシジルメタクリレート、グリシジルアクリレート、グリシドキシメチルスチレン等が挙げられる。これらのグリシジル基を有するビニルモノマーの1種あるいは2種以上を使用してホモポリマーとしてもよいしグリシジル基を有するビニルモノマーどうしの共重合体としてもよい。
グリシジル基を有するビニルモノマーと共重合が可能なグリシジル基を有しないモノマーとしては、スチレン、メタクリル酸エステル、アクリル酸エステル、メタクリルアミド、アクリルアミド等が挙げられる。
しかし、グリシジル基を有しないモノマーの組成比が多い共重合体を用いた場合には、グリシジル基の含有量が低くなり、結果として金属吸着性官能基の導入量が低くなるため、エポキシ価として128~600g/当量のものを用いる。
また、グリシジル基を有する高分子の分子量が高い場合には、脆性が高くなり、混練性および紡糸性が低下するとともに、柔軟性の低い金属吸着材となる。一方、分子量が低すぎる場合には、繊維母材高分子と均一に混練し難くなる。また、低分子量のものを使用して製造した不織布に金属吸着性官能基を導入した場合、使用条件によっては金属吸着性官能基が脱離したり溶出したりしてしまうという問題も生じる。したがって、本発明では、平均分子量(重量平均分子量)として8,000~100,000の高分子を利用することが好ましい。
本発明において、グリシジル基を有する高分子と溶融混合紡糸する繊維母材高分子としては、流動開始温度が200℃以下のポリオレフィン系熱可塑性樹脂があげられる。一般に、グリシジル基は250℃程度から分解するため、流動開始温度が200℃を超える繊維母材との溶融混合紡糸ではグリシジル基の減少あるいは消失が生じる。流動開始温度が200℃以下の繊維母材高分子としては、ポリエチレン、ポリプロピレン、ポリ[エチレン-酢酸ビニル]、部分鹸化ポリ[エチレン-酢酸ビニル]、あるいはこれらの混合物を使用する。ただし、鹸化度が高い部分鹸化ポリ[エチレン-酢酸ビニル]、たとえば鹸化度が85%を超えた部分鹸化ポリ[エチレン-酢酸ビニル]を用いて調製された不織布は、水や極性有機溶媒により極度に膨潤し、繊維間の融着の一部が崩れ、引っ張り強度が低下する問題が生じる傾向がある。そのため、鹸化度85%以下の部分鹸化ポリ[エチレン-酢酸ビニル]を使用することが好ましい。これらの繊維母材高分子は、一般的な被処理溶液中の酸やアルカリには侵されにくく、耐溶媒性ももち合わせているため、耐薬品性および耐久性の高い不織布状金属吸着材調製のための繊維母材高分子として適している。また、柔軟性を有すると共に、他の高分子との融着も可能であるため、種々のニーズに対応可能な多彩な形態への加工が容易である。
本発明の不織布状金属吸着材の金属吸着容量は、繊維母材高分子へのグリシジル基を有する高分子の混合比率(混率)およびグリシジル基に反応させるアミノ基またはイミノ基をもつ長鎖型配位子の導入量に依存する。グリシジル基を有する高分子の混率が低い場合には、アミノ基またはイミノ基をもつ長鎖型配位子の導入量が低くなり、結果として金属吸着容量は低くなる傾向がある。したがって、グリシジル基を有する高分子の混合比率は高いほうが好ましいが、グリシジル基を有する高分子は、脆性が高く、混合比率を高くすると紡糸性が低下することがある。そこで、グリシジル基を有する高分子と繊維母材高分子との混合比率は、質量比として10:90~60:40が好ましく、より好ましくは20:80~50:50である。
グリシジル基を有する高分子混合不織布への金属吸着性官能基の導入は、グリシジル基あるいはこのグリシジル基とハロゲン化水素とを反応させて生成するハロヒドリン基の反応を利用して行う。グリシジル基の有するエポキシ基もハロヒドリン基も同じようにアミノ基あるいはイミノ基と反応し易い。ハロヒドリン基は、エポキシ基の反応性誘導体の一種であるといえる。金属吸着性官能基となる種々の金属配位性低分子化合物が知られており、この金属配位性低分子化合物の中には、グリシジル基と反応することが容易な化合物も多数ある。しかしながら、このような低分子化合物を金属吸着性官能基として不織布に導入した場合には、低分子化合物の分子鎖長の短かさに由来する金属吸着性官能基の短鎖長のため、溶液中でのこの金属吸着性官能基部分の動きが極めて限られる。そこで金属吸着性官能基と捕捉しようとする金属元素との接触の機会が低く、必ずしも迅速な吸着特性が得られるという訳ではない。そこで、本発明においては、アミノ基またはイミノ基を有する長鎖型の金属配位子を使用する。この長鎖型配位子としては、ポリエチレンイミン、ポリアリルアミン、およびそれらの部分カルボキシメチル化物のいずれか、あるいはそれらの混合物があげられる。
グリシジル基を有する高分子混合不織布に金属吸着性官能基を導入するためのアミノ基またはイミノ基を有する長鎖型配位子の第一の形態は、化学式1(化1)に示すポリエチレンイミンあるいは化学式2(化2)に示すポリアリルアミンである。ただし、ポリエチレンイミンは、製造方法によっては窒素部位で分岐した構造をもつ化合物も生成し、これらの分岐化合物を含む混合物として市販されていることがある。分岐構造部位を有するポリエチレンイミンも繊維表面のグリシジル基と反応が可能であり、このような分岐構造をもつポリエチレンイミンを含有するポリエチレンイミン混合物も使用できる。本発明では、ポリエチレンイミンを単独で、あるいはさらに分岐構造をもつポリエチレンイミンを混合してアミノ基またはイミノ基を有する長鎖型配位子として使用して、金属吸着性官能基を不織布に導入する。これらのポリアミンは遷移金属元素に対する金属吸着性官能基として機能するほか、陰イオン交換基として機能してモリブデン酸やタングステン酸等の金属オキシ陰イオンを吸着するとともに、酸性条件下で金や白金の吸着にも寄与することが可能である。これらのポリアミンは、分子内に多数のアミノ基またはイミノ基を有するため、繊維表面の複数のグリシジル基、あるいはグリシジル基にハロゲン化水素を反応させて生成させたハロヒドリン基と複数の箇所で反応することが可能である。つまり、金属吸着性官能基が繊維母材表面を被覆するような形で導入されるため、繊維表面に多数の金属配位性官能基が高密度で導入されるものと推定される。さらに、ポリアミンが被覆的に導入されることにより、結果として、繊維母材に基づく撥水性が低減(親水性が向上)されて、水溶液中の金属元素を効率良く吸着・回収することが可能となる。
Figure JPOXMLDOC01-appb-C000001
 
ここで、nは2以上の整数で、平均分子量(重量平均分子量)が3,000以下である。
Figure JPOXMLDOC01-appb-C000002
 
ここで、mは1以上の整数であり、平均分子量(重量平均分子量)は3,000以下である。
グリシジル基を有する高分子混合不織布に金属吸着性官能基を導入するためのアミノ基またはイミノ基をもつ長鎖型配位子の第二の形態は、化学式3(化3)および化学式4(化4)に示すアミノ基またはイミノ基が残存するように化学式1(化1)のポリエチレンイミンあるいは化学式2(化2)のポリアリルアミンの窒素原子を部分カルボキシメチル化したものである。部分カルボキシメチル化したポリアミンのカルボキシメチル化度に関しては特に規定するものではないが、繊維中のグリシジル基に導入するためのアミノ基またはイミノ基が充分に残存していなければならない。反応効率や導入率を考慮すると、カルボキシメチル化度は60%以下であることが好ましい。本発明においては、これらの部分カルボキシメチル化したポリアミンを単独で、あるいは部分カルボキシメチル化の異なる2種類以上のポリアミンを混合して、さらには、必要に応じてアミノ基またはイミノ基をもつ長鎖型配位子の第一の形態であるポリアミンと混合して使用することができる。完全にカルボキシメチル化したポリアミンの基本的な金属吸着特性は、イミノ二酢酸型配位子と類似しているが、部分カルボキシメチル化したポリアミンの場合には、カルボキシメチル化されていないアミノ基またはイミノ基が存在しているため、本発明の第一の形態であるポリアミンを導入した金属吸着材の特性も併せもつこととなる。さらに、部分カルボキシメチル化したポリアミンは、金属吸着性官能基であるイミノ基およびアミノカルボキシメチル基を一分子中に多数もち、また自由度の高い長鎖型であるため、イミノ二酢酸型キレート樹脂よりも錯形成力、吸着速度ともに優れた金属吸着材を調製することが可能である。部分カルボキシメチル化する方法としては、あらかじめ一部のアミノ基あるいはイミノ基を保護基で保護し、ついで公知の方法によりカルボキシメチル化試薬(通常、ハロゲン化酢酸)によりカルボキシメチル化した後に保護基を除去してもよいし、カルボキシメチル化試薬(通常、ハロゲン化酢酸)の使用する比率を低くすることにより反応を行ってもよい。カルボキシメチル化の度合いを調節することで、モリブデン酸やタングステン酸等に対する選択性を向上させることが可能である。なお、部分カルボキシメチル化したポリアミンを反応させる場合にも、アミノ基またはイミノ基が複数存在しているため、本発明の第一の形態と同様に繊維表面の複数のグリシジル基と反応して繊維母材表面を被覆するような形で導入される。
Figure JPOXMLDOC01-appb-C000003
 
ここで、n1およびn2は1以上の整数である。
Figure JPOXMLDOC01-appb-C000004
 
ここで、m1およびm2は1以上の整数である。
グリシジル基を有する高分子混合不織布への金属吸着性官能基の導入は、アミノ基あるいはイミノ基を有する長鎖型配位子を含む溶液中で攪拌反応させる方法、あるいはアミノ基あるいはイミノ基を有する長鎖型配位子を含む溶液を噴霧して行う方法、アミノ基あるいはイミノ基を有する長鎖型配位子を含む溶液を満たした反応浴に浸漬する方法などの方法を用いて行うことが可能である。本発明の不織布化法は、長尺のロール状で連続製造可能という特徴を有しているため、金属吸着性官能基の導入には、連続かつ反応時間の調節が容易な浸漬法を用いるのが有効である。例えば、浸漬法を用いる場合には、アミノ基あるいはイミノ基を有する長鎖型配位子を含む溶液中にグリシジル基を有する高分子混合不織布を一定時間浸漬して反応させることにより行う。
長鎖型配位子は、長鎖型配位子の有するアミノ基またはイミノ基とグリシジル基との反応によってグリシジル基を有する高分子に結合される。この時、長鎖型配位子は繊維表面に出ているグリシジル基と反応するため、繊維表面に金属吸着性官能基が導入される。これにより、吸着速度の速い不織布状金属吸着材となる。グリシジル基を有する高分子混合不織布と長鎖型配位子との反応性を改善するために、グリシジル基を有する高分子混合不織布をあらかじめ塩酸等のハロゲン化水素酸で処理して、グリシジル基をハロヒドリン化しておくこともできる。グリシジル基のハロヒドリン化は、ハロゲン化水素として塩酸あるいは臭化水素酸を用いて、公知の方法により行うことができるが、入手および取扱いが容易な塩酸を用いてクロロヒドリン化するのが好ましい。例えば、0.05mol/L~1mol/Lの塩酸水溶液に、グリシジル基を有する高分子混合不織布を10~30分浸漬すればクロロヒドリン化することができる。この時、反応時間を短縮するために数十℃に加温をしても構わない。また、ポリオレフィン系高分子は撥水性が強いためグリシジル基を有する高分子混合不織布と長鎖型配位子との反応率が低くなる恐れがある。そのため、反応性改善のために長鎖型配位子を含む溶液中にジオキサンやジメチルホルムアミドを添加してもよい。しかし、溶液へのジオキサンやジメチルホルムアミドの添加量が多くなるとグリシジル基を有する高分子が溶解・溶出する恐れがあるため、添加量を20%(体積%)以下に抑えることが好ましい。長鎖型配位子を溶解する溶液は水溶液でもよいが、ポリオレフィン系高分子は撥水性が強いため、グリシジル基を有する高分子混合不織布と長鎖型配位子の反応率が低くなる恐れがある。そのため、グリシジル基を有する高分子が溶解・溶出しないようなアルコール溶液またはアルコールを含む水溶液中で反応させることが好ましい。また、必要に応じて、加温してもよい。グリシジル基あるいはハロヒドリン基への長鎖型配位子の導入反応は比較的迅速であるため、長鎖型配位子の溶液を満たしたディップ式反応槽に、グリシジル基を有する高分子混合不織布またはグリシジル基をハロゲン化水素と反応させて生成したハロヒドリン基を多数有する高分子混合不織布を浸漬させることにより長鎖型配位子を導入することが可能である。当然のことであるが、この長鎖型配位子の導入工程は、連続式、バッチ式のいずれであっても可能である。反応後の不織布中には未反応のグリシジル基またはハロヒドリン基が残存しているが、アルカリや酸で処理してグリシジル基またはハロヒドリン基を水酸基に変換して、繊維母材高分子に基づく撥水性をさらに低減させることも可能である。
本発明においては、長鎖型配位子はグリシジル基を有する高分子混合不織布を形成する繊維表面に出ているグリシジル基と反応するため、繊維表面に金属吸着性官能基が導入される。しかし、グリシジル基を有する高分子の一部は繊維中に取り込まれており、混合したグリシジル基を有する高分子のすべてのグリシジル基が繊維表面に出ているわけではない。そのため、グリシジル基を有する高分子のすべてに長鎖型配位子を導入することはできない。繊維表面に存在して反応可能なグリシジル基の量は、グリシジル基を有する高分子の繊維母材高分子への混合量と共に、繊維径にも依存する。繊維径が細ければ単位重量当たりの繊維表面積(比表面積)が増加し、結果として、単位重量当たりの反応可能なグリシジル基の量が増加することとなり、単位重量当たりの金属吸着量を高めることが可能となる。この点においても、本発明において、繊維径がサブμm~数十μm、例えば0.5~50μmの繊維からなる不織布を製造可能なメルトブロー法あるいはスパンボンド法を用いる優位性がある。
本発明の不織布状金属吸着材の金属吸着特性は、グリシジル基を有する高分子を混合した不織布に導入したアミノ基あるいはイミノ基を有する長鎖型金属配位子の金属吸着特性に依存する。しかし、アミノ基あるいはイミノ基を有する長鎖型金属配位子分子中には、不織布への導入反応を行った後においても反応可能なアミノ基やイミノ基が残存している。このアミノ基やイミノ基に、二次反応によってさらなる官能基を導入(化学的に修飾)することにより金属吸着特性を変化させることが可能である。アミノ基またはイミノ基をもつ長鎖型配位子の第一の形態であるポリエチレンイミンあるいはポリアリルアミンを不織布に導入後、公知の方法によりカルボキシメチル化試薬(通常、ハロゲン化酢酸を用いる。)を用いてカルボキシメチル化してもよい。これにより、イミノ二酢酸やエチレンジアミン四酢酸のようなアミノカルボン酸型金属配位子に転換させることが可能である。この反応は、部分カルボキシメチル化したポリアミンにも適用可能で、二次反応によりカルボキシメチル化することで、よりアミノカルボン酸型金属配位子に近い金属吸着特性に変換することが可能である。また、ホスホン酸とホルムアルデヒドとを塩酸酸性下で反応させると、アミノ基あるいはイミノ基にホスホメチル基を導入可能で、希土類に対する選択性を向上させることが可能である。さらに、非水系有機溶媒中で無水酢酸と反応させアミノ基あるいはイミノ基をN-アセチル化することにより、金や白金に対する選択性を向上させることが可能である。また、イオン交換能力の向上が必要な場合には、公知の方法によりアルカリ条件下でハロゲン化アルキル化合物をアミノ基あるいはイミノ基に導入して、第四級アンモニウム基とすればよい。当然のことであるが、これらの反応は部分カルボキシメチル化したポリアミンにも施すことが可能であり、これにより特性の異なる複数の金属配位子を有する不織布状金属吸着材を調製することが可能となる。アミノ基あるいはイミノ基を有する長鎖型金属配位子の二次反応の他、長鎖型金属配位子導入後の残存グリシジル基にアミノ基、カルボキシル基、スルホ基等のイオン性官能基、さらには低分子型配位子を導入することによって、不織布状金属吸着材の金属吸着特性を改善させることも可能である。
次に、実施例によって本発明を説明するが、この実施例によって本発明を何ら限定するものではない。
(1)グリシジル基を有する高分子とポリエチレンの混練
ポリオレフィン系繊維母材高分子として低密度ポリエチレン(日本ポリエチレン社製、LH902、流動開始温度:107℃)7.0kgとグリシジル基を有するアクリル系高分子(日油社製、マープルーフG-0150M、重量平均分子量:8,000~10,000、エポキシ価:310g/当量)3.0kgを、二軸混練機(東芝機械社製、TEM26SS)に常法にて投入し、200℃で混練し、ペレタイザーでグリシジル基を有するアクリル系高分子30質量%混合のポリエチレンペレットを得た。
(2)溶融紡糸
(1)で得られたペレットを、50℃で24時間乾燥し、これを原料として、メルトブロー装置を用いて、紡糸温度190℃、気流温度200℃、気流速度155m/sec、ノズル孔径0.4mmの条件で、メルトブロー紡糸を行い、目付量65g/mのグリシジル基を有するアクリル系高分子30質量%混合のポリエチレン不織布を得た。
(3)金属吸着性官能基の導入
上記(2)で得られたグリシジル基を有するアクリル系高分子30質量%混合のポリエチレン不織布を裁断機で約50mm角の正方形に裁断し、40℃に保温した20質量%のペンタエチレンヘキサミン(和光純薬工業社製)を含むイソプロピルアルコール溶液に20分間浸漬し、ペンタエチレンヘキサミンを導入した。反応後、純水で洗浄し、ペンタエチレンヘキサミン導入不織布状金属吸着材を得た。得られた不織布状金属吸着材を0.5mol/Lの硫酸銅溶液(pH5.5)に浸漬し、銅を吸着させた。硫酸銅溶液中の銅の減少量を原子吸光光度計で測定して銅吸着量を求めたところ0.52mmol Cu/gであった。この測定に用いた不織布状金属吸着材を3mol/Lの硝酸で洗浄して吸着した銅を脱離させた後、1mol/Lの硝酸中に50時間浸漬させた。浸漬後、十分に水洗して、上記と同様の方法で再度銅吸着量を求めた。硝酸浸漬洗浄後の金属吸着量は0.50mmol Cu/gであり、強酸性溶液中での性能低下は確認されなかった。また、不織布状金属吸着材を浸漬させた硝酸水溶液、および浸漬後の水洗水を顕微鏡観察したが、短繊維や繊維片は観察されず、リントの発生はないものと判断した。
実施例1(1)および(2)において、低密度ポリエチレン(ポリオレフィン系繊維母材高分子)に代えてポリ[エチレン-酢酸ビニル](三井・デュポン・ポリケミカル社製、エバフレックスEV420、流動開始温度:84℃)を使用した以外は同じ条件によりアクリル系高分子30質量%混合のポリ[エチレン-酢酸ビニル]不織布を作製した。すなわち、紡糸温度190℃、気流温度200℃、気流速度155m/sec、ノズル孔径0.4mmの条件で、常法のメルトブロー紡糸を行い、目付量65g/mのグリシジル基を有するアクリル系高分子30質量%混合のポリ[エチレン-酢酸ビニル]不織布を得た。得られたグリシジル基を有するアクリル系高分子30質量%混合のポリ[エチレン-酢酸ビニル]不織布の電子顕微鏡写真を図2に示す。作製したグリシジル基を有するアクリル系高分子30質量%混合のポリ[エチレン-酢酸ビニル]不織布に実施例1(3)と同じ方法によりペンタエチレンヘキサミン(和光純薬工業社製)を導入して不織布状金属吸着材を調製した。銅吸着量は0.73mmol Cu/gであった。また、3mol/L硝酸に50時間浸漬後の性能低下は確認されず、リントも観察されなかった。
実施例2と同様の方法で、グリシジル基を有する高分子の混率の影響を調べた。ポリオレフィン系繊維母材高分子は実施例2と同じポリ[エチレン-酢酸ビニル]とし、グリシジル基を有する高分子にはグリシジルメタクリレートとスチレンとの共重合体(日油社製、マープルーフG-0250S、重量平均分子量:20,000、エポキシ価:310g/当量)を用いた。紡糸条件は実施例2と同じとした。グリシジル基を有する高分子の混率は、30質量%、40質量%、50質量%および60質量%とした。作製したグリシジルメタクリレートとスチレンとの共重合体を混合したポリ[エチレン-酢酸ビニル]不織布に実施例1(3)と同様の方法でテトラエチレンペタミン(和光純薬工業社製)を導入して不織布状金属吸着材を調製した。結果を、図3に示す。図で明白なように、混率を高くすることにより金属吸着容量は増加し、60質量%では1.32mmol Cu/gの金属吸着容量(銅吸着容量)を得た。しかし、混率と金属吸着容量とは直線的な比例関係にはなく、混率50質量%以上ではほぼ一定となる傾向がみられた。
比較例1
実施例3と同一の繊維母材およびグリシジル基を有する高分子を用いて、実施例3と同一条件で、グリシジルメタクリレートとスチレンとの共重合体を70質量%混合した不織布の作製を行った。混率70質量%では、紡糸はできたものの、繊維間の融着度合いが低く、十分な強度をもつ均一な不織布を得ることはできなかった。このグリシジルメタクリレートとスチレンとの共重合体70質量%混合ポリ[エチレン-酢酸ビニル]不織布に実施例1(3)と同様の方法でテトラエチレンペタミン(和光純薬工業社製)の導入を試みた。20質量%テトラエチレンペタミン溶液に浸漬後、数分で繊維の一部がほぐれ出し、反応時間(20分)終了後には不織布として引き上げることはできなかった。
実施例3の結果を基に、紡糸温度の影響を調べた。実施例3と同じグリシジルメタクリレートとスチレンとの共重合体の混率を30質量%とし、繊維母材高分子は実施例2と同じポリ[エチレン-酢酸ビニル]を用いた。紡糸条件は、紡糸温度を190℃、200℃、210℃および220℃とした。その他の条件は、紡糸温度190℃では気流温度200℃、気流速度155m/sec、紡糸温度200℃では気流温度210℃、気流速度162m/sec、紡糸温度210℃では気流温度220℃、気流速度168m/sec、紡糸温度220℃では気流温度230℃、気流速度175m/secとして、ノズル孔径0.4mmの条件でメルトブロー紡糸を行い、グリシジルメタクリレート-スチレン共重合体30質量%混合のポリ[エチレン-酢酸ビニル]不織布を得た。作製したグリシジルメタクリレートとスチレンとの共重合体30質量%混合のポリ[エチレン-酢酸ビニル]不織布に実施例1(3)同様の方法でテトラエチレンペタミン(和光純薬工業社製)を導入して不織布状金属吸着材を調製した。結果を、図4に示す。図で明白なように、紡糸温度を高くすることにより金属吸着容量は増加し、210℃で1.22mmol Cu/g、220℃で1.32mmol Cu/gの金属吸着容量を得た。しかし、紡糸温度と金属吸着容量とは直線的な比例関係ではなく、紡糸温度210℃以上ではほぼ一定となる傾向がみられた。紡糸温度190℃と紡糸温度220℃の時のグリシジルメタクリレートとスチレンとの共重合体30質量%混合のポリ[エチレン-酢酸ビニル]不織布の電子顕微鏡写真を図5に示す。紡糸温度の高い方が繊維径が細く、図5bに示したとおり、紡糸温度220℃の繊維径は約15μmであった。
ポリオレフィン系繊維母材高分子として鹸化度が80%の部分鹸化ポリ[エチレン-酢酸ビニル](東ソー社製、メルセンH6822、流動開始温度:105℃)を用い、実施例1と同じグリシジル基を有するアクリル系高分子を混率30質量%で混練し、実施例2と同じ条件でメルトブロー紡糸を行い、グリシジル基を有するアクリル系高分子30質量%混合の80%部分鹸化ポリ[エチレン-酢酸ビニル]不織布を得た。作製したグリシジル基を有するアクリル系高分子30質量%混合の80%部分鹸化ポリ[エチレン-酢酸ビニル]不織布を0.1mol/Lの塩酸水溶液に30分浸漬(40℃)し、グリシジル基をクロロヒドリン基に変換した後、実施例1(3)の方法を参考に、部分カルボキシメチル化ペンタエチレンヘキサミンを導入した。部分カルボキシメチル化ペンタエチレンヘキサミンは、40質量%のペンタエチレンヘキサミン(和光純薬工業社製)を含む1mol/L水酸化ナトリウム溶液に、ペンタエチレンヘキサミンとモノクロロ酢酸ナトリウム(和光純薬工業社製)との配合比(対窒素モル比)が1:0.6となるようにモノクロロ酢酸ナトリウムを加え、40℃で4時間反応させて調製した。得られた部分カルボキシメチル化ペンタエチレンヘキサミン溶液を純水で2倍に希釈し、クロロヒドリン化したグリシジル基を有するアクリル系高分子30質量%混合の80%部分鹸化ポリ[エチレン-酢酸ビニル]不織布を浸漬させ、40℃で20分間反応させた。反応中に繊維が若干膨潤するのが観察されたが、反応後において、グリシジル基を有するアクリル系高分子30質量%混合の80%部分鹸化ポリ[エチレン-酢酸ビニル]不織布状金属吸着材の機械的強度の低下はなかった。グリシジル基を有するアクリル系高分子30質量%混合の80%部分鹸化ポリ[エチレン-酢酸ビニル]不織布状金属吸着材の金属吸着容量(銅吸着容量)は、0.48mmol Cu/gであった。
比較例2
実施例5において、繊維母材高分子として鹸化度が80%の部分鹸化ポリ[エチレン-酢酸ビニル]に代えて、鹸化度が90%の部分鹸化ポリ[エチレン-酢酸ビニル](東ソー社製、メルセンH6960、流動開始温度:118℃)を用い、他の条件は実施例5と同じ条件でグリシジル基を有するアクリル系高分子30質量%混合の90%部分鹸化ポリ[エチレン-酢酸ビニル]不織布を作製した。その後、実施例5と同じ方法で、グリシジル基を有するアクリル系高分子30質量%混合の90%部分鹸化ポリ[エチレン-酢酸ビニル]不織布に、部分カルボキシメチル化ペンタエチレンヘキサミンを導入した。グリシジル基を有するアクリル系高分子30質量%混合の90%部分鹸化ポリ[エチレン-酢酸ビニル]不織布は、クロロヒドリン化および部分カルボキシメチル化ペンタエチレンヘキサミン導入時に繊維の極端な膨潤が観察された。部分カルボキシメチル化ペンタエチレンヘキサミン導入反応中には、繊維の一部がほぐれ出した。反応後は、不織布状として引き上げることができたものの、機械的強度の明らかな低下がみられ、容易に引き裂くことができた。グリシジル基を有するアクリル系高分子30質量%混合の90%部分鹸化ポリ[エチレン-酢酸ビニル]不織布の金属吸着容量(銅吸着容量)は、グリシジル基を有するアクリル系高分子30質量%混合の80%部分鹸化ポリ[エチレン-酢酸ビニル]不織布より若干低い0.44mmol Cu/gであった。
実施例5の結果を基に、鹸化度が80%の部分鹸化ポリ[エチレン-酢酸ビニル]を用いてグリシジル基を有する高分子の混率の影響を調べた。グリシジル基を有する高分子としては、実施例3と同じグリシジルメタクリレートとスチレンとの共重合体を用いた。グリシジル基を有する高分子の混率は、20質量%、30質量%、および40質量%とした。紡糸条件は、紡糸温度160℃、気流温度200℃、気流速度155m/sec、ノズル孔径0.4mmでメルトブロー紡糸を行い、目付量65g/mのグリシジルメタクリレートとスチレンとの共重合体混合の部分鹸化ポリ[エチレン-酢酸ビニル]不織布を得た。
作製したグリシジルメタクリレートとスチレンとの共重合体混合部分鹸化ポリ[エチレン-酢酸ビニル]不織布に実施例1(3)と同様の方法で、テトラエチレンヘキサミン(和光純薬工業製)を導入して不織布状金属吸着材を調製した。結果を図6に示す。図から明白なように、混率を高くすることにより金属吸着容量(銅吸着容量)は増加し、混率40質量%では0.67mmol Cu/gの金属吸着容量を得た。実施例3の未鹸化ポリ[エチレン-酢酸ビニル]を用いたときよりは低い金属吸着容量であったが、鹸化度が80%の部分鹸化ポリ[エチレン-酢酸ビニル]を用いても十分な金属吸着能力を有する不織布状金属吸着材を得ることができた。本実施例にて得られた、グリシジルメタクリレートとスチレンとの共重合体40質量%混合の部分鹸化ポリ[エチレン-酢酸ビニル]不織布の電子顕微鏡写真を図7に示す。
実施例1(1)において、ポリオレフィン系繊維母材高分子をポリプロピレン(日本ポリプロ社製、ノバテックPP SA3A、流動開始温度:176℃)に変更し、グリシジル基を有するアクリル系高分子を用いて、グリシジル基を有するアクリル系高分子30質量%混合のポリプロピレンペレットを得た。紡糸条件は、紡糸温度220℃、気流温度230℃、気流速度175m/secとして、ノズル孔径0.4mmの条件でメルトブロー紡糸を行い、グリシジル基を有するアクリル系高分子30質量%混合のポリプロピレン不織布を作製した。得られた不織布に実施例1(3)同様の方法でテトラエチレンペタミン(和光純薬工業社製)を導入して不織布状金属吸着材を調製した。グリシジル基を有するアクリル系高分子30質量%混合のポリプロピレン不織布の金属吸着容量(銅吸着容量)は0.49mmol Cu/gで、実施例1のグリシジル基を有するアクリル系高分子30質量%混合のポリエチレン不織布の場合とほぼ同等であった。
比較例3
ポリオレフィン系繊維母材高分子としてポリメチルペンテン(三井化学社製、TPX DX845、流動開始温度:239℃)を、グリシジル基を有する高分子として実施例1と同じグリシジル基を有するアクリル系高分子を用いて、グリシジル基を有するアクリル系高分子30質量%混合のポリメチルペンテン不織布の作製を試みた。混練温度260℃として、実施例1(1)と同様の方法でグリシジル基を有するアクリル系高分子30質量%混合のポリメチルペンテンペレットを得た。得られたペレットは黄変が著しく、グリシジル基を有するアクリル系高分子の極端な分解が進行しており、曳糸性もなく不織布化できなかった。
実施例1ないし実施例7の結果をみると、実施例1ないし実施例7により得られた不織布状金属吸着材は、いずれも高い金属吸着容量を有し、実施例1(3)に示した硝酸浸漬試験を行った後も金属吸着容量の低下は観察されなかった。また、硝酸浸漬試験において、不織布状金属吸着材を浸漬させた硝酸水溶液、および浸漬後の水洗水の顕微鏡観察を行ったが、各実施例で得られたいずれの不織布状金属吸着材も短繊維や繊維片の発生は観察されず、リントの発生はなかった。
本発明によれば、a)分子内にグリシジル基を有する高分子を用意する工程、b)グリシジル基を有する高分子と流動開始温度が200℃以下のポリオレフィン系繊維母材高分子と混練する工程、c)メルトブロー法あるいはスパンボンド法により不織布化する工程、d)不織布化された繊維表面のグリシジル基、あるいはこのグリシジル基にハロゲン化水素を反応させて生成したハロヒドリン基にアミノ基あるいはイミノ基を有する長鎖型金属配位子を反応させて金属吸着性官能基を導入する工程、を経るという簡便な方法により、既存の製造設備を改良することなくそのまま利用して、高い吸着容量を有し、耐薬品性が高く、容易に多彩な形態に加工可能な不織布状金属吸着材を製造できる。本発明により得られた不織布状金属吸着材は柔軟性に富み、筒巻きによる円筒状形態、張り合わせによる積層状形態、あるいは折り畳み(プリーツ加工)による積層状形態などに容易に加工することが可能で、有価金属回収や重金属除去に好適な様々な形態を有する金属吸着体を製造することができる。また、本発明により得られた不織布状金属吸着材は、繊維間が十分に融着しているため、十分な強度を有するとともに、リントが発生しにくく、純水や用水等の清浄化処理に使用することも可能である。さらに、不織布に導入されたアミノ基あるいはイミノ基を有する長鎖型金属配位子中に残存するアミノ基やイミノ基を二次反応によって化学修飾することにより、金属吸着特性を変化させることも可能である。

Claims (5)

  1. エポキシ価が128~600g/当量であるグリシジル基を有する高分子と、流動開始温度が200℃以下のポリエチレン、ポリプロピレン、ポリ[エチレン-酢酸ビニル]、鹸化度85%以下の部分鹸化ポリ[エチレン-酢酸ビニル]、およびこれらの混合物よりなる群より選ばれるポリオレフィン系繊維母材高分子とを、グリシジル基を有する高分子とポリオレフィン系繊維母材高分子との混合比率が質量比で10:90~60:40で溶融混合し、メルトブロー法あるいはスパンボンド法により不織布とし、ついで不織布の繊維表面のグリシジル基にアミノ基あるいはイミノ基を有する長鎖型金属配位子を反応させて金属吸着性官能基を導入するか、あるいはこのグリシジル基にハロゲン化水素を反応させてハロヒドリン基に転換した後にアミノ基あるいはイミノ基を有する長鎖型金属配位子を反応させて金属吸着性官能基を導入することにより製造される不織布状金属吸着材。
  2. グリシジル基を有する高分子が、グリシジル基を有するアクリル酸エステルまたはグリシジル基を有するメタクリル酸エステルより選ばれるモノマーのホモポリマーであるか、前記モノマーとグリシジル基を有しないアクリル酸エステル、グリシジル基を有しないメタクリル酸エステルまたはビニル芳香族モノマーより選ばれるモノマーとの共重合体であって、かつこれらのホモポリマーまたは共重合体の分子量が、重量平均分子量で8,000~100,000であることを特徴とする請求項1記載の不織布状金属吸着材。
  3. アミノ基あるいはイミノ基を有する長鎖型金属配位子が、ポリエチレンイミン、ポリアリルアミン、これらの部分カルボキシメチル化物、およびそれらの混合物よりなる群より選ばれるポリマーまたはポリマー混合物であることを特徴とする請求項1記載の不織布状金属吸着材。
  4. エポキシ価が128~600g/当量であるグリシジル基を有する高分子と、流動開始温度が200℃以下のポリエチレン、ポリプロピレン、ポリ[エチレン-酢酸ビニル]、鹸化度85%以下の部分鹸化ポリ[エチレン-酢酸ビニル]、およびこれらの混合物よりなる群より選ばれるポリオレフィン系繊維母材高分子とを、グリシジル基を有する高分子とポリオレフィン系繊維母材高分子との混合比率が質量比で10:90~60:40で溶融混合し、メルトブロー法あるいはスパンボンド法により不織布とした後、不織布の繊維表面のグリシジル基にアミノ基あるいはイミノ基を有する長鎖型金属配位子と反応させて金属吸着性官能基を導入するか、あるいはこのグリシジル基にハロゲン化水素を反応させてハロヒドリン基に転換したのちアミノ基あるいはイミノ基を有する長鎖型金属配位子を反応させて金属吸着性官能基を導入して不織布状金属吸着材を製造する方法であって、
    アミノ基あるいはイミノ基を有する長鎖型金属配位子としてポリエチレンイミン、ポリアリルアミン、これらの部分カルボキシメチル化物、およびそれらの混合物よりなる群より選ばれるポリマーまたはポリマー混合物を使用することを特徴とする不織布状金属吸着材を製造する方法。
  5. グリシジル基を有する高分子として、グリシジル基を有するアクリル酸エステル、またはグリシジル基を有するメタクリル酸エステルより選ばれるモノマーのホモポリマーであるか、前記モノマーとグリシジル基を有しないアクリル酸エステル、グリシジル基を有しないメタクリル酸エステルまたはビニル芳香族モノマーより選ばれるモノマーとの共重合体であって、かつこれらのホモポリマーまたは共重合体の分子量が、重量平均分子量で8,000~100,000であるものを使用することを特徴とする請求項4に記載の不織布状金属吸着材を製造する方法。
PCT/JP2015/054713 2014-02-26 2015-02-20 不織布状金属吸着材およびその製造方法 WO2015129559A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580007145.7A CN105960280A (zh) 2014-02-26 2015-02-20 无纺布状金属吸附材料及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014034773A JP5896486B2 (ja) 2014-02-26 2014-02-26 不織布状金属吸着材およびその製造方法
JP2014-034773 2014-02-26

Publications (1)

Publication Number Publication Date
WO2015129559A1 true WO2015129559A1 (ja) 2015-09-03

Family

ID=54008880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054713 WO2015129559A1 (ja) 2014-02-26 2015-02-20 不織布状金属吸着材およびその製造方法

Country Status (3)

Country Link
JP (1) JP5896486B2 (ja)
CN (1) CN105960280A (ja)
WO (1) WO2015129559A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880183A (zh) * 2021-09-26 2022-01-04 宁波方太厨具有限公司 改性聚丙烯熔喷滤芯的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6721379B2 (ja) * 2016-03-31 2020-07-15 Kbセーレン株式会社 金属吸着材用ウェッブ及び不織布、それらの製造方法
JP6615813B2 (ja) 2017-03-23 2019-12-04 株式会社東芝 二酸化炭素吸収材及び二酸化炭素分離回収システム
CN107185601A (zh) * 2017-05-26 2017-09-22 丹东明珠特种树脂有限公司 丙烷、异丁烷原料净化剂及其制备方法
CN111132756A (zh) * 2017-09-29 2020-05-08 东丽株式会社 过滤器和流体分离方法
JP7220894B2 (ja) * 2018-11-29 2023-02-13 国立研究開発法人量子科学技術研究開発機構 ジチオカルバミン酸基を有する金属吸着材とその製造方法及び金属抽出方法
FI20215894A1 (en) * 2019-03-11 2021-08-25 Nissan Chemical Corp METHOD FOR THE PREPARATION OF ORGANIC SOLVENT
CN112481713B (zh) * 2020-11-10 2022-04-08 江苏索力得新材料集团有限公司 农林土壤修复治理用耐冲洗土工合成材料制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290702A (ja) * 1998-04-09 1999-10-26 Mitsubishi Paper Mills Ltd ケミカルフィルター
JP2011056350A (ja) * 2009-09-08 2011-03-24 Nippon Filcon Co Ltd 金属吸着性不織布およびその製造方法
JP2013027863A (ja) * 2011-06-20 2013-02-07 Japan Atomic Energy Agency 金属吸着材とその製造方法及び金属吸着材を用いた金属捕集方法
WO2013111891A1 (ja) * 2012-01-27 2013-08-01 日本フイルコン株式会社 高分子吸着体
WO2014038415A1 (ja) * 2012-09-05 2014-03-13 日本フイルコン 株式会社 繊維状金属吸着材

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5538980B2 (ja) * 1972-04-19 1980-10-07
JPS5550032A (en) * 1978-10-04 1980-04-11 Kanegafuchi Chem Ind Co Ltd Manufacturing of ion exchange fiber
JP2001123381A (ja) * 1999-10-20 2001-05-08 Kiresuto Kk キレート形成性繊維およびその製法、並びにその利用法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290702A (ja) * 1998-04-09 1999-10-26 Mitsubishi Paper Mills Ltd ケミカルフィルター
JP2011056350A (ja) * 2009-09-08 2011-03-24 Nippon Filcon Co Ltd 金属吸着性不織布およびその製造方法
JP2013027863A (ja) * 2011-06-20 2013-02-07 Japan Atomic Energy Agency 金属吸着材とその製造方法及び金属吸着材を用いた金属捕集方法
WO2013111891A1 (ja) * 2012-01-27 2013-08-01 日本フイルコン株式会社 高分子吸着体
WO2014038415A1 (ja) * 2012-09-05 2014-03-13 日本フイルコン 株式会社 繊維状金属吸着材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880183A (zh) * 2021-09-26 2022-01-04 宁波方太厨具有限公司 改性聚丙烯熔喷滤芯的制备方法

Also Published As

Publication number Publication date
CN105960280A (zh) 2016-09-21
JP5896486B2 (ja) 2016-03-30
JP2015160147A (ja) 2015-09-07

Similar Documents

Publication Publication Date Title
JP5896486B2 (ja) 不織布状金属吸着材およびその製造方法
JP5590594B2 (ja) キレート性高分子化合物含有金属吸着材
JP5940313B2 (ja) 高分子吸着体
JP5545412B2 (ja) イオン交換繊維とその製造方法、水中の化学物質の除去・吸着方法及び水中の化学物質の除去・吸着装置
JP5403467B2 (ja) 微量金属捕集用液体濾過フィルタ
WO2013121863A1 (ja) ゲル状金属吸着材およびゲル状金属吸着材担持吸着体
Lee et al. Hydrolysis of oxidized polyacrylonitrile nanofibrous webs and selective adsorption of harmful heavy metal ions
Abdouss et al. Fabrication of chelating diethylenetriaminated pan micro and nano fibers for heavy metal removal
CN108118533B (zh) 一种具有环境响应性的智能纤维或其制品及其制备方法
JP2011056350A (ja) 金属吸着性不織布およびその製造方法
Lou et al. Adsorption performance of Cd (II), Cr (III), Cu (II), Ni (II), Pb (II) and Zn (II) by aminated solution-blown polyacrylonitrile micro/nanofibers
JP2011056349A (ja) 繊維状金属吸着材とその製造方法
EP0962582B1 (en) Metal chelate forming fiber, process for preparing the same, and method of metal ion sequestration using said fiber
JP5954823B2 (ja) 繊維状金属吸着材
JP2011088047A (ja) 高分子固定型金属吸着材およびその製造方法
JP2011092864A (ja) 繊維状金属吸着材の製造方法
JP6721379B2 (ja) 金属吸着材用ウェッブ及び不織布、それらの製造方法
Haji Modified textile fibers for waste water treatment
CN105175559B (zh) 一种桔皮纤维素基阴离子表面印迹聚合物合成方法
JP2009247996A (ja) 陽イオン除去用材料
JP5152669B2 (ja) 硫化水素除去性複合体および該複合体を含有する成形体
Haji et al. COMPARATIVE STUDY OF DIFFERENT HEAVY METAL CHELATING ACRYLIC MICRO AND NANO FIBERS PREPARED BY VARIOUS AMINE COMPOUNDS MODIFICATIONS
MOSHREF FABRICATION OF CHELATING DIETHYLENETRIAMINATED PAN MICRO-AND NANO-FIBERS FOR HEAVY METAL REMOVAL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755021

Country of ref document: EP

Kind code of ref document: A1