WO2015129156A1 - 防水通音膜の製造方法、防水通音膜及び電子機器 - Google Patents

防水通音膜の製造方法、防水通音膜及び電子機器 Download PDF

Info

Publication number
WO2015129156A1
WO2015129156A1 PCT/JP2015/000331 JP2015000331W WO2015129156A1 WO 2015129156 A1 WO2015129156 A1 WO 2015129156A1 JP 2015000331 W JP2015000331 W JP 2015000331W WO 2015129156 A1 WO2015129156 A1 WO 2015129156A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
ptfe
density portion
membrane
waterproof sound
Prior art date
Application number
PCT/JP2015/000331
Other languages
English (en)
French (fr)
Inventor
将明 森
橘 俊光
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201580010925.7A priority Critical patent/CN106029757A/zh
Priority to KR1020167025969A priority patent/KR20160125449A/ko
Priority to US15/113,316 priority patent/US20170006365A1/en
Priority to EP15755469.2A priority patent/EP3112404A4/en
Publication of WO2015129156A1 publication Critical patent/WO2015129156A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/023Screens for loudspeakers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/24Methods or devices for transmitting, conducting or directing sound for conducting sound through solid bodies, e.g. wires
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/18Details, e.g. bulbs, pumps, pistons, switches or casings
    • G10K9/22Mountings; Casings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • H04R1/083Special constructions of mouthpieces
    • H04R1/086Protective screens, e.g. all weather or wind screens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/44Special adaptations for subaqueous use, e.g. for hydrophone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • the present invention relates to a method for producing a waterproof sound-permeable membrane, a waterproof sound-permeable membrane, and an electronic device.
  • Electronic devices such as mobile phones, notebook computers, smartphones, portable audio devices, and portable game devices have voice functions. Inside a housing of an electronic device having an audio function, a sound generation unit such as a speaker and a buzzer and / or a sound reception unit such as a microphone are arranged.
  • a typical housing is provided with an opening that guides sound from the sound generator and / or to the sound receiver.
  • a polytetrafluoroethylene (PTFE) porous membrane is known as a waterproof sound-permeable membrane (see Patent Documents 1 to 3).
  • the PTFE porous membrane is manufactured by stretching and forming a porous body containing PTFE fine powder and a liquid lubricant.
  • a non-porous membrane is used as the waterproof sound-permeable membrane, the waterproof property of the waterproof sound-permeable membrane is ensured.
  • a non-porous film is inferior to a porous film in sound permeability. It is not easy to improve the waterproof sound-permeable membrane so that the waterproof property is improved without greatly impairing the sound-permeable property.
  • the present invention A method for producing a waterproof sound-permeable membrane having a PTFE membrane, Stretching a PTFE sheet to obtain a PTFE porous membrane having a porous structure including a plurality of fibrils and voids between the plurality of fibrils; By pressing only a part of the main surface of the PTFE porous membrane in the thickness direction of the PTFE porous membrane, or by removing a part of the main surface of the PTFE porous membrane from the main surface. By pressing in the thickness direction of the PTFE porous membrane stronger than the remaining portion, a PTFE membrane having a low density portion having the porous structure and a high density portion having a lower porosity than the low density portion is formed. And a process of A method for producing a waterproof sound-permeable membrane comprising:
  • a waterproof sound-permeable membrane provided with a PTFE membrane
  • the PTFE membrane is A low-density portion having a plurality of fibrils and voids between the plurality of fibrils and exposed on the main surface of the PTFE membrane;
  • a waterproof sound-permeable membrane having a void ratio smaller than that of the low-density portion and having a high-density portion exposed on the main surface is provided.
  • the present invention is further directed from another aspect thereof.
  • a sound generator and / or a sound receiver ;
  • a housing provided with an opening that houses the sound generation unit and / or the sound receiving unit and guides sound from the sound generation unit and / or to the sound receiving unit;
  • the waterproof sound-permeable membrane of the present invention joined to the housing so as to close the opening,
  • An electronic device including the above is provided.
  • It is a SEM (scanning electron microscope) image of the surface of the PTFE film
  • the waterproof sound-permeable membrane 10 has a sound-permeable region 11 and a peripheral region 12 that surrounds the sound-permeable region 11.
  • the sound passing area 11 is an area for transmitting sound.
  • the peripheral region 12 is used as a margin for attachment to the housing, and is welded to, for example, the surface of the housing, and an adhesive layer is joined thereto, for example.
  • the waterproof sound-permeable membrane 10 is composed of only the PTFE membrane 20 in both the sound-permeable region 11 and the peripheral region 12.
  • the front surface 20a of the PTFE film 20 and the back surface 20b opposite to the front surface 20a are in contact with the outside air in the sound conduction region 11.
  • a mode in which the front surface 20a and the back surface 20b, that is, both main surfaces are in contact with the outside air, is suitable for realizing good sound transmission.
  • the PTFE membrane 20 is obtained by pressing a part of the surface of the PTFE porous membrane obtained by stretching the PTFE sheet more strongly in the thickness direction of the PTFE porous membrane than the rest of the surface excluding this part. Can do.
  • a PTFE porous membrane obtained by stretching a PTFE sheet has a characteristic porous structure including a plurality of fibrils and voids between the plurality of fibrils.
  • the PTFE film 20 includes a low density portion 21 in which the characteristics of the porous structure are maintained, and a high density portion 22 that is compressed so that the porosity is smaller than that of the low density portion 21.
  • the porous structure may include a plurality of fibrils and a gap between the plurality of fibrils and a node (node) that connects the plurality of fibrils.
  • the low density portion 21 and the high density portion 22 are exposed on the front surface 20a and the back surface 20b of the PTFE film 20, respectively.
  • the high density portion 22 has a higher density than the low density portion 21 and a smaller porosity than the low density portion 21.
  • the magnitude relationship between the density and the porosity can be determined, for example, by observing the front surface 20a or the back surface 20b of the PTFE film 20 using SEM.
  • a plurality of low density portions 21 are formed in the high density portion 22 so as to be separated from each other.
  • the plurality of low density portions 21 have substantially the same shape and a substantially circular shape when the front surface 20a or the back surface 20b is observed from the vertical direction.
  • the low density portion 21 is disposed only in the sound passing area 11.
  • the plurality of low density portions 21 may have different shapes from each other, or may have a rectangular shape, an elliptical shape, or the like. Further, the low density portion 21 may be disposed in the sound passing area 11 and the peripheral area 12.
  • the low density portion 21 has a protruding portion 21 a that protrudes from the high density portion 22 on the surface 20 a of the PTFE film 20.
  • the low density portion 21 and the high density portion 22 form a flush back surface. Therefore, the PTFE film 20 is thicker in the low density portion 21 than in the high density portion 22.
  • the high density part 22 is formed by pressurizing the surface of the PTFE porous membrane with a stronger pressing force than the low density part 21. Since the fibrils and voids in the PTFE porous membrane are crushed, the high-density portion 22 does not have a through hole from the front surface 20a to the back surface 20b. That is, in the high density portion 22, the PTFE membrane 20 does not have air permeability in the thickness direction. However, the high density part 22 may have air permeability between both main surfaces.
  • the low density portion 21 is formed by pressing the surface of the PTFE porous membrane with a pressing force weaker than that of the high density portion 22 while the surface of the PTFE porous membrane is not pressed.
  • the PTFE membrane 20 has air permeability in its thickness direction. This air permeability is ensured by a gap between fibrils penetrating from the front surface 20a to the back surface 20b.
  • the PTFE film 20 has air permeability between the main surface (front surface 20a) and the main surface (back surface 20b) opposite to the main surface.
  • the boundary between the low density portion 21 and the high density portion 22 may be difficult to distinguish.
  • the low density portion 21 and the high density portion 22 are exposed on the surface 20a in a state where the low density portion 21 and the high density portion 22 can be clearly distinguished.
  • Such a structure is formed because the pressing force applied to the high density portion 22 is dispersed in the low density portion 21 as it proceeds from the front surface 20a to the back surface 20b.
  • the thickness A of the low density portion 21 is, for example, 1.1 ⁇ m or more and 20.0 ⁇ m or less
  • the thickness B of the high density portion 22 is, for example, 1.0 ⁇ m or more and 19.9 ⁇ m. It is as follows.
  • the height C of the protruding portion 21a of the low density portion 21 is, for example, not less than 0.1 ⁇ m and not more than 5.0 ⁇ m.
  • the height C corresponds to the difference obtained by subtracting the thickness B from the thickness A.
  • the outer diameter D of the protruding portion 21a of the low density portion 21 is, for example, not less than 0.1 ⁇ m and not more than 20.0 ⁇ m.
  • the ratio of the area of the high density part 22 to the area of the low density part 21 is, for example, 40:60 to 99: 1. Preferably, it is 60:40 to 95: 5.
  • a mixture containing PTFE fine powder and processing aid is sufficiently kneaded to prepare a paste for extrusion molding.
  • the preformed paste is molded by a known extrusion method to obtain a sheet-shaped or rod-shaped molded body.
  • the sheet-shaped or rod-shaped compact is rolled to obtain a strip-shaped PTFE sheet.
  • the rolled PTFE sheet is dried in a dryer.
  • the processing aid is volatilized by the drying step, and a PTFE sheet in which the content of the processing aid is sufficiently reduced is obtained.
  • the dried PTFE sheet is stretched in the longitudinal direction (MD) and the width direction (TD) orthogonal to the longitudinal direction.
  • the heat press apparatus has an upper mold (pressing member) 31 and a lower mold 32.
  • the upper mold 31 has a pressing surface including a flat reference surface 31a and a plurality of recesses 31b formed in the reference surface 31a.
  • the lower mold 32 has a flat surface arranged so as to face the pressing surface of the upper mold 31.
  • a part of the surface of the PTFE porous membrane 30 is pressed with a strong pressing force by the reference surface 31 a, and a part of the pressed PTFE porous membrane 30 becomes the high density portion 22.
  • the remaining portion of the surface of the PTFE porous membrane 30 is pressed with a pressing force weaker than that of the high-density portion 22 by the plurality of concave portions 31 b to become the low-density portion 21.
  • the low density portion 21 is formed with a protruding portion 21 a that protrudes from the high density portion 22.
  • the pressing member 31 may have a through hole instead of the recess 31b.
  • the pressing member 31 should just have the recessed part which is a recessed part or a through-hole.
  • the apparatus for forming the low density part 21 and the high density part 22 on the surface of the PTFE film 20 is not limited to a heat press apparatus, and may be a thermal head pressing apparatus and a heat roll apparatus.
  • the average pore diameter of the PTFE membrane measured according to ASTM (American Society for Testing Materials) F316-86 is, for example, 0.4 ⁇ m or more and 0.8 ⁇ m or less.
  • the porosity of the PTFE membrane is, for example, 5% or more and 40% or less. From the viewpoint of ensuring waterproofness, it is better that the average pore diameter and the porosity are smaller (zero). However, in order to achieve both sound permeability, it is preferable to set the average pore diameter and the porosity range as described above.
  • the thickness of the PTFE membrane is preferably 1 ⁇ m or more and 8 ⁇ m or less, more preferably 1 ⁇ m or more and 7.5 ⁇ m or less from the viewpoint of achieving both sound permeability and waterproofness at a higher level.
  • Water resistance is an example of a waterproof index.
  • a water resistance tester high water pressure method described in Japanese Industrial Standard (JIS) L1092: 2009
  • JIS Japanese Industrial Standard
  • a stainless mesh opening diameter: 2 mm
  • the water pressure resistance of the PTFE membrane when measured in a state in which the deformation of the PTFE membrane is suppressed is preferably 500 kPa or more.
  • the insertion loss with respect to 1000 Hz sound of the waterproof sound-permeable membrane is preferably 3 dB or less, and more preferably 2 dB or less.
  • An example of the sound transmission index is insertion loss with respect to sound in a predetermined frequency range.
  • the insertion loss of the waterproof sound-permeable membrane with respect to sound of 100 to 5000 Hz is preferably 3 dB or less, and more preferably 2 dB or less.
  • the insertion loss of the waterproof sound-permeable membrane with respect to 1000 Hz sound may be 1 dB or more.
  • the insertion loss for the sound of 100 to 5000 Hz of the waterproof sound-permeable membrane may be 1 dB or more. Details of the measurement method of the insertion loss will be described in the column of the examples.
  • the air permeability index a value given by the air permeability measurement method B (Gurley method) defined in JIS L1096 can be mentioned.
  • the air permeability in the thickness direction of the PTFE membrane is, for example, 3 to 1000 seconds / 100 mL.
  • the PTFE membrane may be colored using a colorant such as a dye or a pigment.
  • a preferred colorant is carbon black.
  • the PTFE film may be subjected to a liquid repellent treatment.
  • a liquid repellent containing a polymer having a perfluoroalkyl group can be used.
  • the waterproof sound-permeable membrane may include a reinforcing member and / or an adhesive layer.
  • the waterproof sound-permeable membrane 40 shown in FIG. 5 includes a reinforcing member 50 fixed to the PTFE membrane 20 and a PTFE membrane opposite to the reinforcing member 50 when viewed from the PTFE membrane 20 in the peripheral region 42 surrounding the sound-permeable region 41. 20 and an adhesive layer 60 fixed to 20. Since the reinforcing member 50 is provided, the waterproof sound-permeable membrane 40 is reinforced and the waterproof sound-permeable membrane 40 can be easily handled. Further, since the reinforcing member 50 functions as a margin, the waterproof sound-permeable membrane 40 can be easily attached to the housing.
  • the reinforcing member 50 also functions as a margin for attaching a microphone or the like.
  • the microphone is directly or indirectly attached to the reinforcing member 50, interference between the sound passing region 41 and the microphone is suppressed.
  • the waterproof sound-permeable membrane 40 can be simply attached to a housing
  • the reinforcing member 50 and the adhesive layer 60 have a ring shape.
  • an adhesive layer may be disposed. In this case, the pair of adhesive layers sandwich the PTFE film 20 in the peripheral region 42.
  • the reinforcing member 50 can be formed of resin, metal, a composite material thereof, or the like.
  • the PTFE film 20 and the reinforcing member 50 can be joined by thermal welding, ultrasonic welding, adhesion with an adhesive, adhesion with a double-sided adhesive tape, or the like.
  • the pressure-sensitive adhesive layer 60 may be composed only of a pressure-sensitive adhesive, or may be a double-sided pressure-sensitive adhesive tape.
  • FIGS. 6 and 7 show an example of the electronic device of the present invention including the waterproof sound-permeable membrane 10 (which may be the waterproof sound-permeable membrane 40).
  • the electronic device shown in FIGS. 6 and 7 is a mobile phone 80.
  • the housing 89 of the mobile phone 80 is provided with openings for sound generation units and sound reception units such as a speaker 86, a microphone 87, and a buzzer 88.
  • the waterproof sound-permeable membrane 10 is attached to the housing 89 from the inside so as to close these openings.
  • the waterproof sound-permeable membrane 10 plays a role of preventing water and dust from entering the inside of the housing 89 and protecting the sound generation unit and the sound receiving unit.
  • the waterproof sound-permeable membrane 10 can be applied to various electronic devices having a sound function such as a notebook computer, a smartphone, a portable audio device, and a portable game device.
  • the electronic device of the present embodiment is provided with a sound generation unit and / or a sound reception unit, and a sound generation unit and / or a sound reception unit, and an opening for guiding sound from the sound generation unit and / or the sound reception unit.
  • a waterproof sound-permeable membrane joined to the housing so as to close the opening.
  • the average pore diameter was measured in accordance with ASTM F316-86. Specifically, the average pore diameter was measured using a commercially available measuring device (Perm-Poromometer manufactured by Porous Material) capable of automatic measurement in accordance with this rule.
  • the water pressure resistance of the PTFE membrane was measured using a water resistance tester (high water pressure method) described in JIS L 1092: 2009. However, since the waterproof sound-permeable membrane is significantly deformed in the area of the test piece shown in this regulation, the deformation of the PTFE membrane is suppressed by providing a stainless mesh (opening diameter: 2 mm) on the opposite side of the pressure surface of the PTFE membrane. In this state, the water pressure resistance of the PTFE membrane was measured.
  • Air permeability The air permeability of the PTFE membrane was evaluated based on the air permeability measurement method B (Gurley method) defined in JIS L1096.
  • the acoustic characteristics of the PTFE membranes of Examples or Comparative Examples were evaluated as follows. First, as shown in FIG. 8, an evaluation system was produced. First, a speaker 140 (SCG-16A manufactured by Star Seimitsu Co., Ltd.) connected to the speaker cable 142 and a filler 130 made of urethane sponge were prepared (FIG. 8A).
  • the filler 130 is formed with a part 130a in which a sound passage hole 132 having a diameter of 5 mm is formed, a part 130c to be the bottom of the filler 130, and a groove for accommodating the speaker 140 and the speaker cable 142.
  • the component 130b is to be sandwiched between the component 130a and the component 130c.
  • the filler 130 was assembled in a state where the speaker 140 and the speaker cable 142 were accommodated in the groove of the component 130b (FIG. 8B).
  • a simulated housing 120 made of polystyrene was prepared (FIG. 8C).
  • the simulated housing 120 is composed of a part 120 a in which a sound passage hole 122 and a notch 124 having a diameter of 2 mm are formed, and a part 120 b to be the bottom of the simulated housing 120.
  • the simulated case 120 was assembled so that the speaker 140, the speaker cable 142, and the filler 130 were accommodated therein, and the speaker cable 142 was led out of the notch 124 to the outside of the simulated case 120 (FIG. 8). (D)).
  • the outer dimension of the simulated housing 120 after assembly was 60 mm ⁇ 50 mm ⁇ 28 mm.
  • the opening based on the notch 124 was closed with putty.
  • Sample 110 for evaluation is 0.20 mm thick double-sided adhesive tape 107 (manufactured by Nitto Denko Corporation, No. 57120B), PTFE membrane 101 (PTFE membrane E1, C1, C2 or C3) of Example or Comparative Example, It is a laminate in which a 0.03 mm thick double-sided adhesive tape 106 (Nitto Denko Corporation, No. 5603) and a 0.1 mm thick PET film 105 are laminated in this order.
  • the double-sided pressure-sensitive adhesive tape 107 is obtained by sandwiching a polyethylene foam base material with an acrylic pressure-sensitive adhesive.
  • the double-sided adhesive tape 106 is obtained by sandwiching a PET base material with an acrylic adhesive.
  • the double-sided pressure-sensitive adhesive tape 107, the double-sided pressure-sensitive adhesive tape 106, and the PET film 105 are punched to have an inner diameter of 2.5 mm and an outer diameter of 5.8 mm.
  • the PTFE film 101 has an outer diameter of 5.8 mm. It has been punched to become.
  • a microphone 150 (Knowles Acoustics, SPM0405HD4H-WB) was placed above the PTFE film 101 so as to cover the PTFE film 101 (FIG. 8E). Further, the speaker cable 142 and the microphone 150 were connected to an acoustic evaluation device (B & K Co., Ltd., Multi-analyzer System 3560-B-030). The distance between the speaker 140 and the microphone 150 was 21 mm.
  • the signal attenuation A was obtained from the test signal input to the speaker 140 from the acoustic evaluation apparatus and the signal received by the microphone 150. Further, in the state where a through hole having a diameter of 2.5 mm was formed by breaking the PTFE film 101, the signal attenuation amount B (blank sound pressure level) was similarly obtained. The attenuation amount B was ⁇ 21 dB. By subtracting the attenuation amount A from the attenuation amount B, the sound insertion loss of the PTFE film 101 was obtained. It can be determined that the volume output from the speaker 140 is maintained as the insertion loss is smaller. In this test, SSR analysis (steady state response analysis, test signal 20 Hz to 10 kHz, sweep) was selected as the evaluation method. In this test, the insertion loss was automatically obtained by the acoustic evaluation apparatus.
  • SSR analysis steady state response analysis, test signal 20 Hz to 10 kHz, sweep
  • Example 1 100 parts by weight of PTFE fine powder (Mitsui DuPont, 650-J) and 20 parts by weight of n-dodecane (manufactured by Japan Energy) as a molding aid were uniformly mixed. The resulting mixture was compressed by a cylinder and then ram extruded into a sheet-like mixture. The obtained sheet-like mixture was rolled to a thickness of 0.16 mm through a pair of metal rolls, and the molding aid was dried and removed by heating at 150 ° C. Thereby, a sheet-like molded body of PTFE was obtained. Two layers of this sheet-like molded body were stacked. The obtained laminate was stretched in the longitudinal direction (rolling direction) at a stretching temperature of 260 ° C.
  • the oil repellent treatment liquid was prepared as follows. First, 100 g of a compound having a linear fluoroalkyl group represented by the following (formula 1), 0.1 g of azobisisobutyronitrile as a polymerization initiator, 300 g of a solvent (manufactured by Shin-Etsu Chemical Co., Ltd., FS thinner), was put into a flask equipped with a nitrogen inlet tube, a thermometer and a stirrer.
  • a compound having a linear fluoroalkyl group represented by the following (formula 1), 0.1 g of azobisisobutyronitrile as a polymerization initiator, 300 g of a solvent (manufactured by Shin-Etsu Chemical Co., Ltd., FS thinner), was put into a flask equipped with a nitrogen inlet tube, a thermometer and a stirrer.
  • a liquid repellent treatment solution was prepared by diluting with a diluent (manufactured by Shin-Etsu Chemical Co., Ltd., FS thinner) so that the concentration of the fluorine-containing polymer was 3.0% by mass.
  • the PTFE porous membrane subjected to the liquid repellent treatment was stretched in the width direction at a stretching temperature of 150 ° C. and a stretching ratio of 30 times, and the whole was fired at 360 ° C., which is a temperature exceeding the melting point (327 ° C.) of PTFE.
  • the ratio of the opening area of the upper mold recess to the surface area of the upper mold pressing surface is 30%, the inner diameter of the upper mold recess is 6.0 ⁇ m,
  • pressure was applied in the thickness direction under processing conditions of a processing temperature of 100 ° C., a processing pressure of 5 MPa, and a processing time of 10 seconds.
  • a PTFE film E1 in which a low density portion and a high density portion were formed was obtained.
  • the ratio of the area of the high density portion to the area of the low density portion was 70:30.
  • the thickness of the PTFE membrane E1 was 7.1 ⁇ m.
  • the outer shape of the protruding portion of the low density portion is substantially the same as the shape of the upper concave portion. That is, the outer diameter D of the protruding portion of the low density portion is substantially the same as the inner diameter of the concave portion of the upper mold, and the protruding height C of the low density portion is substantially the same as the depth of the concave portion of the upper mold. Therefore, the outer diameter D of the protruding portion of the low density portion is about 6.0 ⁇ m, and the protruding height C of the low density portion is 1.1 ⁇ m. Moreover, measuring the thickness of the PTFE film E1 using a micrometer is substantially the same as measuring the thickness A of the low density portion.
  • the thickness A of the low density portion is substantially the same as the thickness of the PTFE film E1. Therefore, the thickness A of the low density portion is 7.1 ⁇ m.
  • the thickness B of the high density portion corresponds to a difference obtained by subtracting the protrusion height C of the low density portion from the thickness A of the low density portion. Therefore, the thickness B of the high density portion is 6.0 ⁇ m.
  • aqueous dispersion having an unbaked PTFE powder concentration of 40% by weight (average particle diameter of PTFE powder 0.2 ⁇ m, 6 parts by weight of nonionic surfactant per 100 parts by weight of PTFE) was prepared.
  • a fluorosurfactant manufactured by Dainippon Ink and Co., Ltd., Megafax F-142D
  • a long polyimide film (substrate) having a thickness of 125 ⁇ m was immersed in the obtained dispersion and pulled up.
  • the thickness of the dispersion coated on the substrate was adjusted to 13 mm with a measuring bar.
  • the dispersion (and substrate) was then heated at 100 ° C. for 1 minute to evaporate the water and subsequently heated at 390 ° C. for 1 minute to bind the PTFE powder to each other. Similar dipping, coating and heating were repeated three times in total. Thereby, a PTFE non-porous film was formed on each of both surfaces of the substrate.
  • the PTFE nonporous film was peeled from the substrate. Thereby, a PTFE membrane C1 was obtained.
  • the thickness of the PTFE membrane C1 was 14.0 ⁇ m.
  • Comparative Example 2 A PTFE non-porous membrane was obtained by the same procedure as in Comparative Example 1 except that dipping, coating and heating were repeated twice in total with the measuring bar. This PTFE non-porous membrane was designated as PTFE membrane C2. The thickness of the PTFE membrane C2 was 9.0 ⁇ m.
  • Example 3 The PTFE porous membrane obtained by firing in Example 1 was designated as PTFE membrane C3.
  • the thickness of the PTFE membrane C3 was 20.0 ⁇ m.
  • Table 1 shows the results of measuring the average pore diameter, thickness, porosity, water pressure resistance, air permeability, and insertion loss for the PTFE membrane E1 and the PTFE membranes C1 to C3.
  • the insertion loss in Table 1 is a measurement result when using a sound of 1000 Hz.
  • FIG. 10 shows the relationship between sound frequency and insertion loss for each PTFE membrane.
  • a PTFE membrane was obtained by the same procedure as in Example 1 except that a heat press apparatus having a smooth pressing surface of the upper mold was used.
  • the air permeability of this PTFE membrane was “no air flow”.
  • the air permeability of the high density portion of the PTFE film E1 of Example 1 was “no air flow”.
  • the PTFE film E1 has an insertion loss of 2.3 dB for a sound of 100 Hz, an insertion loss of a sound of 1000 Hz of 1.9 dB, and an insertion loss of a sound of 5000 Hz is 1.6 dB.
  • the insertion loss decreases as the frequency increases between 100 Hz and 5000 Hz.
  • the PTFE membrane E1 had an insertion loss of 3 dB or less (more specifically, 2 dB or less) with respect to a sound of 100 to 5000 Hz. From the results shown in Table 1 and FIG. 10, it can be seen that the PTFE membrane E1 has both good waterproof properties and good sound permeability.
  • FIGS. 11 and 12 were observed using SEM.
  • FIGS. 11 and 12 were taken at a magnification of 1000 times.
  • FIG. 13 is an SEM image in which the periphery of the low density portion on the surface of the PTFE film is enlarged
  • FIG. 14 is an SEM image in which the periphery of the high density portion on the surface of the PTFE film is enlarged.
  • the SEM images in FIGS. 13 and 14 were taken at a magnification of 5000 times.
  • FIG. 12 on the back surface of the PTFE film E1
  • the boundary between the low density portion and the high density portion is difficult to distinguish.
  • a low density portion and a high density portion were confirmed on the surface of the PTFE film E1.
  • the waterproof sound-permeable membrane of the present invention is greatly used in the implementation of a waterproof sound-permeable structure of electronic devices in which acoustic devices are accommodated, for example, electronic devices such as mobile phones, notebook computers, smartphones, portable audio devices, and portable game devices. Value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Manufacturing & Machinery (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

 防水通音膜(10)は、ポリテトラフルオロエチレン(PTFE)膜(20)を備えている。PTFE膜(20)は、PTFEシートを延伸して得られた複数のフィブリルと複数のフィブリルの間の空隙とを含む多孔構造を有するPTFE多孔質膜の主面の一部のみをPTFE多孔質膜の厚さ方向に加圧することにより、又はPTFE多孔質膜の主面の一部をこの一部を除く主面の残部よりも強くPTFE多孔質膜の厚さ方向に加圧することにより得られる。PTFE膜(20)は、多孔構造を有する低密度部(21)と、低密度部(21)よりも空隙率が小さい高密度部(22)と、を有する。

Description

防水通音膜の製造方法、防水通音膜及び電子機器
 本発明は、防水通音膜の製造方法、防水通音膜及び電子機器に関する。
 携帯電話、ノートパソコン、スマートフォン、携帯用オーディオ、携帯用ゲーム機器等の電子機器は、音声機能を備えている。音声機能を備えた電子機器の筐体の内部には、スピーカー、ブザー等の発音部及び/又はマイクロフォン等の受音部等が配置されている。典型的な筐体には、音を発音部から及び/又は受音部へと導く開口が設けられている。
 電子機器の筐体の内部に水滴等の異物が進入することを防止する目的で、防水通音膜を用いて筐体の開口を塞ぐことが行われている。防水通音膜としては、ポリテトラフルオロエチレン(PTFE)多孔質膜が知られている(特許文献1~3参照)。PTFE多孔質膜は、PTFEファインパウダーと液状潤滑剤とを含む成形体を延伸して多孔化することにより製造されている。
特開2003-53872号公報 特開2004-83811号公報 特表2003-503991号公報
 防水通音膜の防水性を向上させることに対する要求が高まってきている。防水通音膜として無孔の膜を用いれば、防水通音膜の防水性は確保される。しかし、無孔の膜は、通音性において多孔質膜に劣る。通音性を大きく損なうことなく防水性が向上するように防水通音膜を改良することは容易ではない。
 このような事情に鑑み、本発明は、防水性の向上及び通音性の確保に適した防水通音膜の製造方法を提供することにある。また、本発明の目的は、防水性の向上及び通音性の確保に適した防水通音膜及びこの防水通音膜を用いた電子機器を提供することにある。
 本発明は、
 PTFE膜を備えた防水通音膜の製造方法であって、
 PTFEシートを延伸し、複数のフィブリルと前記複数のフィブリルの間の空隙とを含む多孔構造を有するPTFE多孔質膜を得る工程と、
 前記PTFE多孔質膜の主面の一部のみを前記PTFE多孔質膜の厚さ方向に加圧することにより、又は前記PTFE多孔質膜の主面の一部を前記一部を除く前記主面の残部よりも強く前記PTFE多孔質膜の厚さ方向に加圧することにより、前記多孔構造を有する低密度部と、前記低密度部よりも空隙率が小さい高密度部と、を有するPTFE膜を形成する工程と、
を具備する防水通音膜の製造方法を提供する。
 本発明は、その別の側面から、
 PTFE膜を備えた防水通音膜であって、
 前記PTFE膜が、
 複数のフィブリルと前記複数のフィブリルの間の空隙とを有し、前記PTFE膜の主面に露出する低密度部と、
 前記低密度部よりも空隙率が小さく、前記主面に露出する高密度部と、を有する、防水通音膜を提供する。
 本発明は、さらにその別の側面から、
 発音部及び/又は受音部と、
 前記発音部及び/又は前記受音部を収容し、音を前記発音部から及び/又は前記受音部へと導く開口が設けられた筐体と、
 前記開口を塞ぐように前記筐体に接合された、本発明の防水通音膜と、
を備える電子機器を提供する。
 本発明によれば、防水性の向上及び通音性の確保に適した防水通音膜を提供することができる。
本発明の防水通音膜の一例を示す断面図である。 図1に示す防水通音膜の斜視図である。 図1に示す防水通音膜の変形例を示す断面図である。 図1に示す防水通音膜の製造方法の工程図である。 本発明の防水通音膜の変形例を示す断面図である。 本発明の電子機器の例である携帯電話を示す正面図である。 図6に示す携帯電話の背面図である。 音響特性の評価システムの製造方法の工程図である。 評価用サンプルの拡大断面図である。 実施例及び比較例における評価用サンプルの音響特性を示すグラフである。 実施例におけるPTFE膜の表面のSEM(走査型電子顕微鏡)像である。 実施例におけるPTFE膜の裏面のSEM像である。 実施例におけるPTFE膜の表面の低密度部の周辺を拡大したSEM像である。 実施例におけるPTFE膜の表面の高密度部の周辺を拡大したSEM像である。
 以下、添付の図面を参照しつつ本発明の実施形態について説明するが、以下は本発明の実施形態の例示に過ぎず、本発明を制限する趣旨ではない。
 図1及び図2を用いて、本実施形態の防水通音膜を説明する。防水通音膜10は、通音領域11と、通音領域11を囲む周縁領域12とを有している。通音領域11は、音を透過させるための領域である。周縁領域12は、筐体への取り付けしろとして使用され、例えば筐体の表面に溶着され、また例えば粘着層が接合される。
 本実施形態では、防水通音膜10は、通音領域11及び周縁領域12の両方において、PTFE膜20のみにより構成されている。
 PTFE膜20の表面20aと、表面20aの反対側の裏面20bとは、通音領域11において外気に接している。表面20a及び裏面20b、すなわち両主面が外気に接している態様は、良好な通音性の実現に適している。
 PTFE膜20は、PTFEシートを延伸して得られるPTFE多孔質膜の表面の一部をこの一部を除く表面の残部よりも強くPTFE多孔質膜の厚さ方向に加圧することにより、得ることができる。PTFEシートを延伸して得られるPTFE多孔質膜は、複数のフィブリルと複数のフィブリルの間の空隙とを含む特徴的な多孔構造を有する。PTFE膜20は、この多孔構造の特徴が維持された低密度部21と、低密度部21よりも空隙率が小さくなるように圧縮された高密度部22とを有する。なお、多孔構造は、複数のフィブリル及び複数のフィブリルの間の空隙とともに、複数のフィブリルを連結する結節(ノード)を含むことがある。低密度部21及び高密度部22は、それぞれPTFE膜20の表面20a及び裏面20bに露出している。高密度部22は、低密度部21よりも高密度であり、低密度部21よりも小さい空隙率を有する。密度及び空隙率の大小関係は、例えば、SEMを用いてPTFE膜20の表面20a又は裏面20bを観察することにより、判定することができる。
 PTFE膜20では、高密度部22内に複数の低密度部21が互いに離間して形成されている。複数の低密度部21は、表面20a又は裏面20bを垂直方向から観察したときに、実質的に同一形状であって、実質的に円形である。低密度部21は、通音領域11のみに配置されている。ただし、複数の低密度部21は、その形状が互いに相違していてもよいし、その形状が矩形、楕円形等であってもよい。また、低密度部21は、通音領域11及び周縁領域12に配置されていてもよい。
 低密度部21は、PTFE膜20の表面20aにおいて、高密度部22よりも突出した突出部21aを有している。PTFE膜20の裏面20bにおいては、低密度部21と高密度部22とが面一の裏面を形成している。したがって、PTFE膜20は、低密度部21において、高密度部22よりも厚くなっている。
 高密度部22は、低密度部21よりも強い押圧力でPTFE多孔質膜の表面を加圧することにより形成される。高密度部22は、PTFE多孔質膜中のフィブリルや空隙が押し潰されているため、表面20aから裏面20bに至る貫通孔を有しない。すなわち、高密度部22では、PTFE膜20はその厚さ方向に通気性を有しない。ただし、高密度部22は、両主面の間において通気性を有していてもよい。
 低密度部21は、PTFE多孔質膜の表面が押圧されないか、又は、高密度部22よりも弱い押圧力でPTFE多孔質膜の表面を加圧することにより形成される。低密度部21では、PTFE膜20はその厚さ方向に通気性を有する。この通気性は、表面20aから裏面20bへと貫通するフィブリル間の空隙により確保されている。こうして、少なくとも低密度部21によって、PTFE膜20は、主面(表面20a)と主面と反対側の主面(裏面20b)との間において通気性を有している。
 図3に示すように、PTFE膜20の裏面20bにおいては、低密度部21と高密度部22との境界が判別しにくい状態になっていることがある。ただし、この形態においても、表面20aには、低密度部21と高密度部22とが明確に判別できる状態で露出している。このような構造は、表面20aから裏面20bに進むにつれて高密度部22に加えられた押圧力が低密度部21に分散することが原因となって形成される。
 再び図1を参照して説明すると、低密度部21の厚さAは、例えば1.1μm以上20.0μm以下であり、高密度部22の厚さBは、例えば1.0μm以上19.9μm以下である。低密度部21の突出部21aの高さCは、例えば0.1μm以上5.0μm以下である。高さCは、厚さAから厚さBを差し引いた差分に相当する。低密度部21の突出部21aの外径Dは、例えば0.1μm以上20.0μm以下である。PTFE膜20の主面(表面20a)において、高密度部22の面積と低密度部21の面積(低密度部21の合計面積)との比率は、例えば40:60~99:1であり、好ましくは60:40~95:5である。
 PTFE膜20を製造する方法の一例を以下に説明する。
 最初に、PTFE微粉末と加工助剤(液状潤滑剤)とを含む混合物を十分に混練し、押出成形用のペーストを準備する。次に、予備成形されたペーストを公知の押出法により成形し、シート状又はロッド状の成形体を得る。次に、シート状又はロッド状の成形体を圧延し、帯状のPTFEシートを得る。次に、圧延されたPTFEシートを乾燥機内で乾燥させる。乾燥工程により加工助剤が揮発し、加工助剤の含有量が十分に減じられたPTFEシートが得られる。次に、乾燥させたPTFEシートを長手方向(MD)と、長手方向に直交する幅方向(TD)とについてそれぞれ延伸する。なお、2軸方向に延伸されたPTFEシートをPTFEの融点以上の温度で焼成してもよい。このようにして、PTFE多孔質膜が得られる。
 次いで、得られたPTFE多孔質膜の表面の一部をヒートプレス装置により加圧する。図4に示すように、ヒートプレス装置は、上型(押圧部材)31及び下型32を有する。上型31は、平坦な基準面31aと、基準面31aに形成された複数の凹部31bとを含む押圧面を有している。下型32は、上型31の押圧面に対向するように配置された平坦面を有している。PTFE多孔質膜30を下型32の平坦面上に配置した状態で、上型31の押圧面をPTFE多孔質膜30の表面に押し付ける。PTFE多孔質膜30の表面の一部は、基準面31aによって強い押圧力で押圧され、押圧されたPTFE多孔質膜30の一部が高密度部22となる。PTFE多孔質膜30の表面の残部は、複数の凹部31bによって高密度部22よりも弱い押圧力で押圧され、低密度部21となる。低密度部21には、高密度部22よりも突出した突出部21aが形成される。
 なお、凹部31bが十分に深い場合には、低密度部21が加圧されず、高密度部22のみが加圧される。押圧部材31は、凹部31bに代えて貫通孔を有していてもよい。押圧部材31は、凹部又は貫通孔である後退部を有していればよい。
 PTFE膜20の表面に低密度部21及び高密度部22を形成するための装置は、ヒートプレス装置に限られるものではなく、サーマルヘッド押圧装置及びヒートロール装置であってもよい。
 PTFE膜のASTM(米国試験材料協会)F316-86に準拠して測定した平均孔径は、例えば0.4μm以上0.8μm以下である。PTFE膜の気孔率は、例えば5%以上40%以下である。防水性を確保する観点からは、平均孔径及び気孔率は小さいほうが(ゼロであるほうが)よい。しかし、通音性との両立のために、平均孔径及び気孔率の範囲は上記のように設定することが好ましい。
 通音性と防水性とをより高いレベルで両立させる観点から、PTFE膜の厚さは、好ましくは1μm以上8μm以下であり、より好ましくは1μm以上7.5μm以下である。
 防水性の指標としては、耐水圧が挙げられる。例えば、日本工業規格(JIS) L1092:2009に記載されている耐水度試験機(高水圧法)を用いて、ステンレスメッシュ(開口径:2mm)をPTFE膜の加圧面の反対側に設けることによってPTFE膜の変形を抑制した状態で測定したときのPTFE膜の耐水圧は、500kPa以上であることが好ましい。
 通音性の指標としては、1000Hzの音に対する挿入損失が挙げられる。防水通音膜の1000Hzの音に対する挿入損失は、3dB以下が好ましく、2dB以下がより好ましい。通音性の指標としては、所定の周波数範囲の音に対する挿入損失も挙げられる。防水通音膜の100~5000Hzの音に対する挿入損失は、3dB以下が好ましく、2dB以下がより好ましい。ただし、挿入損失が過度に小さい場合には、防水性が確保されにくい傾向がある。これを考慮して、防水通音膜の1000Hzの音に対する挿入損失は、1dB以上としてもよい。同様に、防水通音膜の100~5000Hzの音に対する挿入損失は、1dB以上であってもよい。挿入損失の測定方法の詳細は、実施例の欄において述べる。
 通気性の指標としては、JIS L1096に規定されている通気性測定法のB法(ガーレー法)により与えられる値が挙げられる。PTFE膜の厚さ方向の通気度は、この値にして、例えば3~1000秒/100mLである。
 PTFE膜は、染料、顔料などの着色剤を用いて着色されていてもよい。好ましい着色剤はカーボンブラックである。
 PTFE膜は、撥液処理されていてもよい。撥液処理には、パーフルオロアルキル基を有する高分子を含む撥液剤を用いることができる。
 防水通音膜は、補強部材及び/又は粘着層を含んでいてもよい。図5に示す防水通音膜40は、通音領域41を囲む周縁領域42において、PTFE膜20に固定された補強部材50と、PTFE膜20から見て補強部材50とは反対側でPTFE膜20に固定された粘着層60とを備えている。補強部材50を有するため、防水通音膜40は補強され、防水通音膜40を容易に取り扱うことができる。また、補強部材50が掴みしろとして機能するため、防水通音膜40を筐体に容易に取り付けることができる。補強部材50は、マイク等の取り付けしろとしても機能する。補強部材50にマイクが直接的又は間接的に取り付けられている場合、通音領域41とマイクとの干渉が抑制される。また、粘着層60を有するため、防水通音膜40を筐体へと簡便に取り付けることができる。補強部材50及び粘着層60はリング状の形状を有している。補強部材50に代えて、粘着層を配置してもよい。この場合は、周縁領域42においてPTFE膜20を一対の粘着層が挟み込む。
 補強部材50は、樹脂、金属、これらの複合材料等により形成できる。PTFE膜20と補強部材50とは、熱溶着、超音波溶着、接着剤による接着及び両面粘着テープによる接着等により接合できる。粘着層60は、粘着剤のみにより構成されていてもよく、両面粘着テープであってもよい。
 図6及び図7に、防水通音膜10(防水通音膜40であってもよい)を備える本発明の電子機器の一例を示す。図6及び図7に示す電子機器は、携帯電話80である。携帯電話80の筐体89には、スピーカー86、マイク87、ブザー88等の発音部及び受音部のための開口が設けられている。これらの開口を塞ぐように、防水通音膜10が内側から筐体89に取り付けられている。この例では、防水通音膜10は、筐体89の内部へ水や埃が侵入することを防止し、発音部及び受音部を保護する役割を担う。
 防水通音膜10は、ノートパソコン、スマートフォン、携帯用オーディオ、携帯用ゲーム機器のような音声機能を備えた各種電子機器にも適用可能である。要するに、本実施形態の電子機器は、発音部及び/又は受音部と、発音部及び/又は受音部を収容し、音を発音部から及び/又は受音部へと導く開口が設けられた筐体と、開口を塞ぐように筐体に接合された防水通音膜とを備えている。
 実施例により、本発明を詳細に説明する。ただし、以下の実施例は、本発明の一例を示すものであり、本発明は以下の実施例に限定されない。まず、実施例又は比較例に係るPTFE膜の評価方法を説明する。
 [平均孔径]
 ASTM F316-86の規定に準拠して、平均孔径を測定した。具体的には、この規定に準拠した自動測定が可能な市販の測定装置(Porous Material社製のPerm-Porometer)を用いて、平均孔径を測定した。
 [厚さ]
 実施例又は比較例のPTFE膜を穴径48mmのポンチで打ち抜き、打ち抜いた部分を10枚重ね合わせ、マイクロメータを用いて、10枚分の厚さを測定し、これを10で除することにより、厚さを求めた。
 [気孔率]
 体積及び重量からかさ密度を求め、PTFE膜の真密度を2.18g/cm3として、{1-(重量[g]/(厚さ[cm]×面積[cm2]×真密度[2.18g/cm3]))}×100(%)の式から、気孔率を求めた。
 [耐水圧]
 JIS L 1092:2009に記載されている耐水度試験機(高水圧法)を用いて、PTFE膜の耐水圧を測定した。ただし、この規定に示された試験片の面積では防水通音膜が著しく変形するので、ステンレスメッシュ(開口径:2mm)をPTFE膜の加圧面の反対側に設けることによってPTFE膜の変形を抑制した状態で、PTFE膜の耐水圧を測定した。
 [通気度]
 JIS L1096に規定されている通気性測定法のB法(ガーレー法)に準拠して、PTFE膜の通気度を評価した。
 [音響特性(挿入損失)]
 実施例又は比較例のPTFE膜の音響特性を以下のように評価した。最初に、図8に示すように、評価用システムを作製した。まず、スピーカーケーブル142に接続されたスピーカー140(スター精密社製、SCG-16A)と、ウレタンスポンジ製の充填材130とを準備した(図8(A))。充填材130は、径が5mmの通音孔132が形成された部品130aと、充填材130の底部となるべき部品130cと、スピーカー140及びスピーカーケーブル142を収容するための溝が形成され、部品130aと部品130cとの間に挟まれるべき部品130bとから構成される。次に、スピーカー140及びスピーカーケーブル142が部品130bの溝に収容された状態で、充填材130を組み立てた(図8(B))。次に、ポリスチレン製の模擬筐体120を準備した(図8(C))。模擬筐体120は、径が2mmの通音孔122及び切欠124が形成された部品120aと、模擬筐体120の底部となるべき部品120bとから構成される。次に、スピーカー140、スピーカーケーブル142及び充填材130が内部に収容され、かつスピーカーケーブル142が切欠124から模擬筐体120の外部へと導き出されるように、模擬筐体120を組み立てた(図8(D))。組み立て後の模擬筐体120の外寸は、60mm×50mm×28mmであった。次に、切欠124に基づく開口をパテで塞いだ。
 次に、模擬筐体120の通音孔122の外側に、評価用サンプル110を貼り付けた(図9、図8(D))。評価用サンプル110は、厚さ0.20mmの両面粘着テープ107(日東電工社製、No.57120B)と、実施例又は比較例のPTFE膜101(PTFE膜E1,C1,C2またはC3)と、厚さ0.03mmの両面粘着テープ106(日東電工社製、No.5603)と、厚さ0.1mmのPETフィルム105とをこの順に積層した積層体である。両面粘着テープ107は、ポリエチレン系発泡体の基材をアクリル系粘着剤で挟んだものである。両面粘着テープ106は、PETの基材をアクリル系粘着剤で挟んだものである。両面粘着テープ107、両面粘着テープ106及びPETフィルム105は、内径が2.5mm、外径が5.8mmとなるように打ち抜かれたものであり、PTFE膜101は、外径が5.8mmとなるように打ち抜かれたものである。
 次に、PTFE膜101を覆うように、PTFE膜101の上方にマイクロフォン150(Knowles Acoustics社製、SPM0405HD4H-WB)を設置した(図8(E))。また、スピーカーケーブル142とマイクロフォン150とを音響評価装置(B&K社製、Multi-analyzer System 3560-B-030)に接続した。スピーカー140とマイクロフォン150との距離は21mmであった。
 このような状態で、音響評価装置からスピーカー140に入力された試験信号と、マイクロフォン150で受信された信号とから、信号の減衰量Aを求めた。また、PTFE膜101を破ることによって径が2.5mmである貫通孔を形成した状態で、同様に信号の減衰量B(ブランクの音圧レベル)を求めた。減衰量Bは、-21dBであった。減衰量Bから減衰量Aを引くことによって、PTFE膜101の音の挿入損失を求めた。挿入損失が小さいほど、スピーカー140から出力された音量が維持されていると判断できる。この試験では、評価方式として、SSR分析(定常状態応答分析、試験信号20Hz~10kHz、sweep)を選択した。また、この試験では、音響評価装置により、挿入損失を自動的に求めた。
 (実施例1)
 PTFEファインパウダー(三井デュポン社製、650-J)100重量部と、成形助剤であるn-ドデカン(ジャパンエナジー社製)20重量部とを均一に混合した。得られた混合物をシリンダーによって圧縮し、その後ラム押出してシート状の混合物とした。得られたシート状の混合物を一対の金属ロールを通して厚さ0.16mmに圧延し、さらに150℃の加熱によって成形助剤を乾燥除去した。これにより、PTFEのシート状成形体を得た。このシート状成形体を、2層重ねた。得られた積層体を、長手方向(圧延方向)に延伸温度260℃、延伸倍率5倍で延伸した。これにより、PTFE多孔質膜を得た。次に、このPTFE多孔質膜を、撥液処理液に数秒間浸漬し、その後100℃で加熱することにより溶媒を乾燥させて除去した。撥油処理液は、以下のようにして調製した。まず、下記の(式1)で示す直鎖状フルオロアルキル基を有する化合物100gと、重合開始剤であるアゾビスイソブチロニトリル0.1gと、溶媒(信越化学社製、FSシンナー)300gとを、窒素導入管、温度計及び攪拌機を装着したフラスコの中に投入した。次に、このフラスコ内に窒素ガスを導入した。フラスコの内容物を撹拌しながら70℃で16時間付加重合を行い、フッ素含有重合体80gを得た。このフッ素含有重合体の数平均分子量は、100000であった。このフッ素含有重合体の濃度が3.0質量%となるように、希釈剤(信越化学社製、FSシンナー)で希釈して撥液処理液を調製した。
 CH2=CHCOOCH2CH2613 (式1)
 次に、撥液処理されたPTFE多孔質膜を延伸温度150℃、延伸倍率30倍で幅方向に延伸し、さらに全体をPTFEの融点(327℃)を超える温度である360℃で焼成した。
 次に、焼成して得られたPTFE多孔質膜を、上型の押圧面の表面積に対する上型の凹部の開口面積の比率が30%、上型の凹部の内径が6.0μm、上型の凹部の深さが1.1μmであるヒートプレス装置を使用して、処理温度が100℃、処理圧力が5MPa、処理時間が10秒となる処理条件で、厚み方向に加圧した。これにより、低密度部及び高密度部が形成されたPTFE膜E1を得た。PTFE膜E1の表面において、高密度部の面積と、低密度部の面積との比率は、70:30であった。PTFE膜E1の厚さは7.1μmであった。
 なお、低密度部の突出部の外形形状は、上型の凹部の形状と実質的に同一である。すなわち、低密度部の突出部の外径Dは上型の凹部の内径と実質的に同一であり、低密度部の突出高さCは上型の凹部の深さと実質的に同一である。したがって、低密度部の突出部の外径Dが約6.0μmであり、低密度部の突出高さCが1.1μmである。また、マイクロメータを用いてPTFE膜E1の厚さを測定することは、低密度部の厚さAを測定することと実質的に同一である。すなわち、低密度部の厚さAはPTFE膜E1の厚さと実質的に同一である。したがって、低密度部の厚さAは7.1μmである。一方、高密度部の厚さBは、低密度部の厚さAから低密度部の突出高さCを差し引いた差分に相当する。したがって、高密度部の厚さBは6.0μmである。
 (比較例1)
 未焼成PTFE粉末の濃度が40重量%である水性ディスパージョン(PTFE粉末の平均粒径0.2μm、ノニオン界面活性剤をPTFE100重量部に対し、6重量部配合)を用意した。この水性ディスパージョンに、フッ素系界面活性剤(大日本インキ社製、メガファックスF-142D)を、PTFE100重量部に対しフッ素系界面活性剤が1重量部の割合になるように添加した。得られたディスパージョン中に、厚さ125μmの長尺ポリイミド膜(基体)を浸漬して引上げた。次に、計量バーにより、基体上に塗布されたディスパージョンの厚さを13mmに調整した。次に、ディスパージョン(及び基体)を100℃で1分間加熱することにより水を蒸発させて除去し、引き続いて390℃で1分間加熱することによりPTFE粉末を相互に結着させた。同様の浸漬、塗布及び加熱を合計で3回繰り返した。これにより、基体の両面のそれぞれにPTFE無孔膜を形成した。次に、基体からPTFE無孔膜を剥離させた。これにより、PTFE膜C1を得た。PTFE膜C1の厚さは14.0μmであった。
 (比較例2)
 計量バーにより、浸漬、塗布及び加熱を合計で2回繰り返したこと以外は、比較例1と同様の手順によりPTFE無孔膜を得た。このPTFE無孔膜を、PTFE膜C2とした。PTFE膜C2の厚さは9.0μmであった。
 (比較例3)
 実施例1における焼成して得られたPTFE多孔質膜を、PTFE膜C3とした。PTFE膜C3の厚さは20.0μmであった。
 PTFE膜E1及びPTFE膜C1~C3につき、平均孔径、厚さ、気孔率、耐水圧、通気度及び挿入損失を測定した結果を表1に示す。表1の挿入損失は、1000Hzの音を用いた場合の測定結果である。各PTFE膜についての、音の周波数と挿入損失との関係を図10に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、上型の押圧面が平滑面であるヒートプレス装置を使用したこと以外は、実施例1と同様の手順によりPTFE膜を得た。このPTFE膜の通気度は、「通気なし」であった。これにより、実施例1のPTFE膜E1の高密度部の通気度は、「通気なし」であることが説明できた。
 図10に示すように、PTFE膜E1は、100Hzの音に対する挿入損失が2.3dBであり、1000Hzの音に対する挿入損失が1.9dBであり、5000Hzの音に対する挿入損失が1.6dBであり、100Hzから5000Hzの間では周波数が高くなるにつれて挿入損失が低下している。PTFE膜E1は、100~5000Hzの音に対する挿入損失が3dB以下(より詳細には2dB以下)であった。表1及び図10に示す結果から、PTFE膜E1は、良好な防水性と良好な通音性を兼ね備えていることが分かる。
 SEMを用いてPTFE膜E1の表面及び裏面を観察した。得られたSEM像を図11~図14に示す。図11は、PTFE膜の表面のSEM像であり、図12は、PTFE膜の裏面のSEM像である。図11及び図12のSEM像は、倍率を1000倍にして撮影したものである。図13は、PTFE膜の表面の低密度部の周辺を拡大したSEM像であり、図14は、PTFE膜の表面の高密度部の周辺を拡大したSEM像である。図13及び図14のSEM像は、倍率を5000倍にして撮影したものである。図12に示したように、PTFE膜E1の裏面においては、低密度部と高密度部との境界が判別しにくい状態になっている。しかし、PTFE膜E1の表面においては、低密度部及び高密度部が確認できた。
 本発明の防水通音膜は、音響装置が収容されている電子機器、例えば、携帯電話、ノートパソコン、スマートフォン、携帯用オーディオ、携帯用ゲーム機器等の電子機器の防水通音構造の実施に多大な利用価値を有する。

Claims (10)

  1.  ポリテトラフルオロエチレン膜を備えた防水通音膜の製造方法であって、
     ポリテトラフルオロエチレンシートを延伸し、複数のフィブリルと前記複数のフィブリルの間の空隙とを含む多孔構造を有するポリテトラフルオロエチレン多孔質膜を得る工程と、
     前記ポリテトラフルオロエチレン多孔質膜の主面の一部のみを前記ポリテトラフルオロエチレン多孔質膜の厚さ方向に加圧することにより、又は前記ポリテトラフルオロエチレン多孔質膜の主面の一部を前記一部を除く前記主面の残部よりも強く前記ポリテトラフルオロエチレン多孔質膜の厚さ方向に加圧することにより、前記多孔構造を有する低密度部と、前記低密度部よりも空隙率が小さい高密度部と、を有するポリテトラフルオロエチレン膜を形成する工程と、
    を具備する防水通音膜の製造方法。
  2.  前記高密度部内に複数の前記低密度部が互いに離間して形成されるように前記ポリテトラフルオロエチレン多孔質膜を加圧する、請求項1に記載の防水通音膜の製造方法。
  3.  平坦な基準面と前記基準面に形成された複数の後退部とを有する押圧面を備えた押圧部材の前記押圧面を前記ポリテトラフルオロエチレン多孔質膜の前記主面に押し付けることにより、前記ポリテトラフルオロエチレン多孔質膜を加圧する、請求項1に記載の防水通音膜の製造方法。
  4.  前記ポリテトラフルオロエチレン膜の主面において、前記高密度部の面積と前記低密度部の面積との比率が、40:60~99:1である、請求項1に記載の防水通音膜の製造方法。
  5.  ポリテトラフルオロエチレン膜を備えた防水通音膜であって、
     前記ポリテトラフルオロエチレン膜が、
     複数のフィブリルと前記複数のフィブリルの間の空隙とを有し、前記ポリテトラフルオロエチレン膜の主面に露出する低密度部と、
     前記低密度部よりも空隙率が小さく、前記主面に露出する高密度部と、を有する、防水通音膜。
  6.  前記ポリテトラフルオロエチレン膜は、前記主面と前記主面と反対側の主面との間において通気性を有する、請求項5に記載の防水通音膜。
  7.  前記ポリテトラフルオロエチレン膜は、前記低密度部において、前記高密度部よりも厚い、請求項5に記載の防水通音膜。
  8.  前記高密度部内に複数の前記低密度部が互いに離間して形成されている、請求項5に記載の防水通音膜。
  9.  前記主面において、前記高密度部の面積と前記低密度部の面積との比率が、40:60~99:1である、請求項5に記載の防水通音膜。
  10.  発音部及び/又は受音部と、
     前記発音部及び/又は前記受音部を収容し、音を前記発音部から及び/又は前記受音部へと導く開口が設けられた筐体と、
     前記開口を塞ぐように前記筐体に接合された、請求項5に記載の防水通音膜と、
    を備える電子機器。
     
PCT/JP2015/000331 2014-02-26 2015-01-26 防水通音膜の製造方法、防水通音膜及び電子機器 WO2015129156A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580010925.7A CN106029757A (zh) 2014-02-26 2015-01-26 防水透音膜的制造方法、防水透音膜以及电子设备
KR1020167025969A KR20160125449A (ko) 2014-02-26 2015-01-26 방수 통음막의 제조 방법, 방수 통음막 및 전자 기기
US15/113,316 US20170006365A1 (en) 2014-02-26 2015-01-26 Method for producing waterproof sound-permeable membrane, waterproof sound-permeable membrane, and electronic device
EP15755469.2A EP3112404A4 (en) 2014-02-26 2015-01-26 Method for manufacturing waterproof sound-transmitting film, waterproof sound-transmitting film, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014035032A JP6324109B2 (ja) 2014-02-26 2014-02-26 防水通音膜の製造方法、防水通音膜及び電子機器
JP2014-035032 2014-02-26

Publications (1)

Publication Number Publication Date
WO2015129156A1 true WO2015129156A1 (ja) 2015-09-03

Family

ID=54008495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000331 WO2015129156A1 (ja) 2014-02-26 2015-01-26 防水通音膜の製造方法、防水通音膜及び電子機器

Country Status (6)

Country Link
US (1) US20170006365A1 (ja)
EP (1) EP3112404A4 (ja)
JP (1) JP6324109B2 (ja)
KR (1) KR20160125449A (ja)
CN (1) CN106029757A (ja)
WO (1) WO2015129156A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141652A (zh) * 2015-11-24 2018-06-08 日东电工株式会社 防水透声膜、防水透声构件以及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101864054B1 (ko) * 2014-01-13 2018-06-01 세이렌가부시끼가이샤 통음 방수막 및 그 제조 방법
JP6656110B2 (ja) * 2016-07-27 2020-03-04 日本ゴア株式会社 防水通音カバー、防水通音カバー部材および音響装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503991A (ja) * 1999-07-07 2003-01-28 ゴア エンタープライズ ホールディングス,インコーポレイティド 音響保護カバーアセンブリ
JP2004083811A (ja) * 2002-08-28 2004-03-18 Nitto Denko Corp 防水通音膜
WO2008041328A1 (fr) * 2006-10-03 2008-04-10 Fujitsu Limited Dispositif portable, procédé de placement de composant acoustique et montage correspondant
WO2009011315A1 (ja) * 2007-07-18 2009-01-22 Nitto Denko Corporation 防水通音膜、防水通音膜の製造方法およびそれを用いた電気製品
JP2009111993A (ja) * 2007-10-09 2009-05-21 Nitto Denko Corp 防水通音膜を用いた通音部材およびその製造方法
WO2009154268A1 (ja) * 2008-06-20 2009-12-23 ジャパンゴアテックス株式会社 音響部品及びその製造方法
WO2013005431A1 (ja) * 2011-07-05 2013-01-10 日東電工株式会社 ポリテトラフルオロエチレン多孔質膜の製造方法
WO2013168203A1 (ja) * 2012-05-08 2013-11-14 日東電工株式会社 ポリテトラフルオロエチレン多孔質膜および防水通気部材

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10165787A (ja) * 1996-12-11 1998-06-23 Nitto Denko Corp ポリテトラフルオロエチレン多孔質膜およびその製造方法
JP2003053872A (ja) * 2001-08-13 2003-02-26 Nitto Denko Corp 通気性通音膜
JP4708134B2 (ja) * 2005-09-14 2011-06-22 日東電工株式会社 通音膜、通音膜付き電子部品及びその電子部品を実装した回路基板の製造方法
JP2010242005A (ja) * 2009-04-08 2010-10-28 Nitto Denko Corp ポリテトラフルオロエチレン多孔質シートの製造方法
US10099182B2 (en) * 2010-02-02 2018-10-16 EF-Materials Industries Inc. Water-proof and dust-proof membrane assembly and applications thereof
JP5595802B2 (ja) * 2010-06-15 2014-09-24 日東電工株式会社 伸びの異方性が小さいポリテトラフルオロエチレン多孔質膜およびその製造方法
JP5872276B2 (ja) * 2011-03-03 2016-03-01 日東電工株式会社 防水通音膜および電気製品
CN103649189B (zh) * 2011-07-05 2016-05-18 日东电工株式会社 聚四氟乙烯多孔膜及空气过滤器滤材
JP5947655B2 (ja) * 2012-08-02 2016-07-06 日東電工株式会社 ポリテトラフルオロエチレン多孔質膜、並びに、それを用いた通気膜および通気部材
US10284974B2 (en) * 2013-07-10 2019-05-07 Starkey Laboratories, Inc. Acoustically transparent barrier layer to seal audio transducers
KR102283372B1 (ko) * 2013-10-15 2021-07-30 도널드선 컴파니 인코포레이티드 음향 벤팅을 위한 미세 다공성 멤브레인 적층체

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503991A (ja) * 1999-07-07 2003-01-28 ゴア エンタープライズ ホールディングス,インコーポレイティド 音響保護カバーアセンブリ
JP2004083811A (ja) * 2002-08-28 2004-03-18 Nitto Denko Corp 防水通音膜
WO2008041328A1 (fr) * 2006-10-03 2008-04-10 Fujitsu Limited Dispositif portable, procédé de placement de composant acoustique et montage correspondant
WO2009011315A1 (ja) * 2007-07-18 2009-01-22 Nitto Denko Corporation 防水通音膜、防水通音膜の製造方法およびそれを用いた電気製品
JP2009111993A (ja) * 2007-10-09 2009-05-21 Nitto Denko Corp 防水通音膜を用いた通音部材およびその製造方法
WO2009154268A1 (ja) * 2008-06-20 2009-12-23 ジャパンゴアテックス株式会社 音響部品及びその製造方法
WO2013005431A1 (ja) * 2011-07-05 2013-01-10 日東電工株式会社 ポリテトラフルオロエチレン多孔質膜の製造方法
WO2013168203A1 (ja) * 2012-05-08 2013-11-14 日東電工株式会社 ポリテトラフルオロエチレン多孔質膜および防水通気部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3112404A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141652A (zh) * 2015-11-24 2018-06-08 日东电工株式会社 防水透声膜、防水透声构件以及电子设备
CN109151625A (zh) * 2015-11-24 2019-01-04 日东电工株式会社 防水透声膜、防水透声构件以及电子设备
EP3337180A4 (en) * 2015-11-24 2019-03-13 Nitto Denko Corporation WATERPROOF SILENCING FILM, WATERPROOF SILENT ELEMENT AND ELECTRONIC DEVICE

Also Published As

Publication number Publication date
EP3112404A1 (en) 2017-01-04
KR20160125449A (ko) 2016-10-31
JP6324109B2 (ja) 2018-05-16
JP2015160856A (ja) 2015-09-07
CN106029757A (zh) 2016-10-12
EP3112404A4 (en) 2017-09-20
US20170006365A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6438733B2 (ja) 防水通音膜および電子機器
US10491993B2 (en) Waterproof sound-transmitting membrane, waterproof sound-transmitting member including same, electronic device, electronic device case, and waterproof sound-transmitting structure
JP5947655B2 (ja) ポリテトラフルオロエチレン多孔質膜、並びに、それを用いた通気膜および通気部材
JP6178034B1 (ja) 防水通音膜、防水通音部材及び電子機器
US9578402B2 (en) Waterproof sound-transmitting membrane, sound-transmitting member, and electrical device
JP5859475B2 (ja) 通音膜、通音部材、及び電子機器
JP2016082595A (ja) 通音膜とそれを備える通音膜部材、ならびにマイクロフォンおよび電子機器
WO2014080574A1 (ja) 通音構造、通音膜、及び防水ケース
JP6069078B2 (ja) 防水通音膜およびその製造方法、ならびに防水通音部材
JP6324109B2 (ja) 防水通音膜の製造方法、防水通音膜及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755469

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15113316

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015755469

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015755469

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167025969

Country of ref document: KR

Kind code of ref document: A