WO2015129001A1 - 磁性テープ及びシールドケーブル - Google Patents

磁性テープ及びシールドケーブル Download PDF

Info

Publication number
WO2015129001A1
WO2015129001A1 PCT/JP2014/054952 JP2014054952W WO2015129001A1 WO 2015129001 A1 WO2015129001 A1 WO 2015129001A1 JP 2014054952 W JP2014054952 W JP 2014054952W WO 2015129001 A1 WO2015129001 A1 WO 2015129001A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic tape
magnetic
tape
burr
insulated wire
Prior art date
Application number
PCT/JP2014/054952
Other languages
English (en)
French (fr)
Inventor
秋元 克弥
千綿 直文
陽介 角
克俊 中谷
賢司 安嶋
寛 沖川
康晴 武藤
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to PCT/JP2014/054952 priority Critical patent/WO2015129001A1/ja
Priority to EP14883741.2A priority patent/EP3026678B1/en
Priority to US14/915,157 priority patent/US9679688B2/en
Priority to JP2016504944A priority patent/JP6137402B2/ja
Priority to CN201480044313.5A priority patent/CN105474328A/zh
Publication of WO2015129001A1 publication Critical patent/WO2015129001A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • H01B11/10Screens specially adapted for reducing interference from external sources
    • H01B11/1008Features relating to screening tape per se
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0098Shielding materials for shielding electrical cables

Definitions

  • the present invention relates to a magnetic tape and a shielded cable.
  • This high-frequency attenuation cable is formed by winding a magnetic tape made of a magnetic material around a conductor wire in a spiral shape. Thereby, electromagnetic wave noise emitted from the conductor wire is attenuated by the magnetic tape, and flexibility can be ensured.
  • the magnetic tape is generally formed by slitting, that is, by continuously cutting a long sheet having a large width at a constant width and winding it on a roll or a reel.
  • burrs are generated on both end surfaces in the width direction when slitting the magnetic tape, so when the magnetic tape is wound spirally, the tip of the burrs comes into contact with the surface of the tape.
  • the tape may be lifted and the effective permeability may be reduced.
  • an object of the present invention is to provide a magnetic tape and a shielded cable that are less likely to lift the tape when wound on a conductor wire, thereby suppressing a decrease in effective magnetic permeability.
  • the present invention is a magnetic tape formed by continuously cutting a long sheet made of a magnetic material with a certain width, Provided is a magnetic tape having at least a rear surface along a longitudinal direction with a groove accommodating at least one burr of a pair of burrs formed on both end surfaces in the width direction at the time of cutting.
  • the present invention is a magnetic tape formed by continuously cutting a long sheet made of a magnetic material having a resin layer formed on the back surface thereof with a certain width in order to solve the above problems.
  • a magnetic tape having a groove along at least the back surface along the longitudinal direction for accommodating at least one burr of a pair of burrs formed on both end surfaces in the width direction when the long sheet is cut.
  • the magnetic material may be an amorphous alloy.
  • the magnetic material contains Fe, Si, B, and Cu, and further contains an amorphous alloy containing at least one element selected from Ti, V, Zr, Nb, Mo, Hf, Ta, and W. It may be a nanocrystalline soft magnetic alloy that has been subjected to nanocrystallization heat treatment.
  • the present invention comprises an insulated wire in which the periphery of a conductor wire is covered with an insulator, and a magnetic tape layer formed by winding a magnetic tape around the insulated wire,
  • the magnetic tape is a magnetic tape formed by continuously cutting a long sheet made of a magnetic material at a constant width, and is formed on both end surfaces in the width direction when the long sheet is cut.
  • a shielded cable having a groove accommodating at least one burr of a pair of formed burrs along a longitudinal direction on at least a surface facing the insulated wire side.
  • the present invention aims to solve the above-described problems, and includes an insulated wire having a conductor wire covered with an insulator and a magnetic tape layer formed by winding a magnetic tape around the insulated wire.
  • the magnetic tape is a magnetic tape formed by continuously cutting a long sheet made of a magnetic material having a resin layer formed on the surface on the insulated wire side with a constant width,
  • a shielded cable having a groove that accommodates at least one burr of a pair of burrs formed on both end surfaces in the width direction when a long sheet is cut, at least on a surface facing the insulated wire side along the longitudinal direction.
  • the magnetic material constituting the magnetic tape may be an amorphous alloy.
  • the magnetic material constituting the magnetic tape contains Fe, Si, B, and Cu, and further contains at least one element selected from Ti, V, Zr, Nb, Mo, Hf, Ta, and W.
  • a nanocrystalline soft magnetic alloy obtained by subjecting the amorphous alloy to be subjected to a heat treatment for nanocrystallization may be used.
  • the tape it is difficult for the tape to be lifted when it is wound around a conductor wire, thereby suppressing a decrease in effective magnetic permeability.
  • FIG. 1 is a perspective view showing a schematic configuration of a shielded cable according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the shielded cable shown in FIG.
  • FIG. 3 is a partial cross-sectional view showing a state in which the magnetic tape according to the first embodiment is wound around the resin tape layer.
  • 4 is a cross-sectional view of the magnetic tape shown in FIG.
  • FIG. 5A is a cross-sectional view showing an example of the manufacturing process of the magnetic tape according to the first embodiment.
  • FIG. 5B is a cross-sectional view showing an example of the manufacturing process of the magnetic tape according to the first embodiment.
  • FIG. 5C is a cross-sectional view showing an example of the manufacturing process of the magnetic tape according to the first embodiment.
  • FIG. 6 is a partial cross-sectional view showing a state in which the magnetic tape according to the second embodiment of the present invention is wound around the resin tape layer.
  • FIG. 7 is a cross-sectional
  • FIG. 1 is a perspective view showing a schematic configuration of a shielded cable according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the shielded cable shown in FIG.
  • illustration of the inclusion 5 is abbreviate
  • This shielded cable 1 is formed by a plurality (three in this embodiment) of insulated wires 4 in which the conductor wire 2 is covered with an insulator 3 and an inclusion 5 interposed around the plurality of insulated wires 4.
  • the conductor wire 2 is formed by twisting a plurality of thin metal wires 2a (seven in this embodiment).
  • the insulated wire 4 transmits power at a signal of 100 MHz to 10 GHz or a carrier frequency of 10 MHz or less, for example.
  • the conductor wire 2 may be a single wire.
  • the insulated wire 4 was made into multiple in this Embodiment, one may be sufficient.
  • the insulated wire 4 may be a twisted pair wire that transmits a differential signal.
  • the resin tape layer 6 is formed by winding the resin tape around the plurality of insulated wires 4 with the inclusions 5 interposed in the cable longitudinal direction.
  • a tape made of a resin such as polyethylene terephthalate (PET) or polypropylene resin can be used.
  • the magnetic tape layer 7 is formed by, for example, winding a magnetic tape 70 formed of a magnetic material around the resin tape layer 6 in a spiral shape in the longitudinal direction of the cable.
  • the sheath 8 is made of, for example, vinyl chloride resin, ethylene-vinyl acetate polymer, fluorine resin, silicone resin, or the like.
  • FIG. 3 is a partial cross-sectional view showing a state in which the magnetic tape 70 is wound around the resin tape layer 6.
  • 4 is a cross-sectional view of the magnetic tape 70 shown in FIG.
  • the magnetic tape 70 is formed by continuously slitting (cutting) a long sheet made of a magnetic material with a certain width.
  • the magnetic tape 70 has a groove 74 that accommodates one burr 75b of a pair of burrs 75a and 75b formed on both end faces 73a and 73b in the width direction when a long sheet is cut.
  • the back surface 72 is provided along the longitudinal direction.
  • the groove 74 is located closer to one end surface 73a side than the center in the width direction of the magnetic tape 70, that is, when the magnetic tape 70 is spirally wound around the resin tape layer 6, the other burr 75b is formed in the groove. 74 is formed at a position where it enters.
  • one back surface 72a of the back surface 72 separated by the groove 74 is in contact with the front surface 71 of the magnetic tape 70, and the other back surface 72b is Contact the resin tape layer 6. Since the magnetic tapes 70 wound in a spiral form are in surface contact with each other, electromagnetic noise is difficult to leak, and a decrease in effective magnetic permeability can be suppressed.
  • the magnetic material of the magnetic tape 70 is preferably made of a soft magnetic material having a small coercive force and a large magnetic permeability in order to suppress electromagnetic noise.
  • soft magnetic materials include amorphous alloys such as Co-based amorphous alloys and Fe-based amorphous alloys, ferrites such as Mn—Zn ferrite, Ni—Zn ferrite, Ni—Zn—Cu ferrite, and Fe—Ni alloys.
  • Soft magnetic metals such as alloys (permalloy), Fe-Si-Al alloys (Sendust), Fe-Si alloys (silicon steel), or Fe, Si, B, Cu, and Ti, V, Zr, Nanocrystalline soft magnetic alloy powder obtained by performing nanocrystallization heat treatment on an amorphous alloy containing at least one element selected from Nb, Mo, Hf, Ta, and W can be used.
  • the nanocrystalline soft magnetic alloy powder is preferable because the relative permeability is as large as that of the Co-based amorphous alloy and the change in relative permeability with time is small.
  • the magnetic tape 70 having a thickness of 25 ⁇ m, 50 ⁇ m or 75 ⁇ m and a width of 10 to 20 mm can be used, for example.
  • the depth d of the groove 74 is to accommodate the height h (for example, about 10 ⁇ m) h of the burrs 75a and 75b. 1 ⁇ 2 times to 5 times the average value of the values measured in (1), preferably 4/5 times to 2 times.
  • the width of the groove 74 is preferably, for example, 1 mm or more and 3 mm or less in consideration of winding accuracy and displacement of the magnetic tape 70 in the cable length direction when the cable is bent.
  • Magnetic tape manufacturing process 5A to 5C are cross-sectional views showing an example of the manufacturing process of the magnetic tape 70 according to the first embodiment.
  • an example of a manufacturing process of the magnetic tape 70 formed from an amorphous alloy will be described.
  • a wide magnetic sheet 700 formed into an amorphous alloy is passed through the groove processing apparatus 10 to form grooves 74 by rolling.
  • the groove processing device 10 is provided at a position facing the pressing roller 11 that presses the magnetic sheet 700 and the pressing roller 11, and the processing roller 12 that forms the groove 74, and the pressing roller 11 and the processing roller 12 can be rotated integrally.
  • a shaft 13 to be connected and a motor (not shown) that rotates the shaft 13 are provided.
  • the grooves 74 are alternately formed on the front surface 700a and the back surface 700b of the magnetic sheet 700 along the width direction.
  • the groove processing apparatus may perform a cutting process to form the groove 74.
  • the amorphous magnetic sheet 700 is passed through the slit processing apparatus 20 to form a magnetic tape 70 having a narrower width than the magnetic sheet 700.
  • the slit processing apparatus 20 is formed by integrating the upper cutters 21a and 21b disposed on the front surface 700a side of the magnetic sheet 700, the lower cutters 22a and 22b disposed on the rear surface 700b side of the magnetic sheet 700, and the upper cutters 21a and 21b.
  • a shaft 23 that is rotatably connected, a shaft 24 that rotatably connects the lower cutters 22a and 22b, and a motor that rotates the shaft 23 and the shaft 24 in synchronization are provided.
  • the clearances between the upper cutter 21a and the lower cutter 22a and between the upper cutter 21b and the lower cutter 22b are adjusted so that the burrs 75a and 75b are as small as possible. Further, the upper cutters 21a and 21b are inward or outward with respect to the lower cutters 22a and 22b so that the burrs 75a and 75b formed on the both end faces 73a and 73b in the width direction face the same direction. It arrange
  • burrs 75a and 75b are formed on both end faces 73a and 73b of the magnetic tape 70 slit by the slit processing apparatus 20. Thereafter, each magnetic tape 70 is wound on a roll or a reel.
  • the following operations and effects are achieved.
  • the magnetic tape layer 7 is formed by winding the magnetic tape 70 in a spiral shape, it is possible to provide a shielded cable with excellent bending characteristics.
  • FIG. 6 is a partial cross-sectional view showing a state in which the magnetic tape according to the second embodiment of the present invention is wound around the resin tape layer.
  • FIG. 7 is a cross-sectional view of the magnetic tape shown in FIG.
  • the magnetic tape layer 7 is configured using the magnetic tape 70 on which the resin layer is not formed on the back surface 72.
  • the resin layer 91 is formed on the back surface 72 of the magnetic tape 70.
  • the magnetic tape layer 9 with a resin layer is configured using the magnetic tape 90 with a resin layer formed.
  • the magnetic tape 90 with a resin layer is an example of a magnetic tape
  • the magnetic tape layer 9 with a resin layer is an example of a magnetic tape layer.
  • the magnetic tape layer 9 with a resin layer includes, for example, a magnetic tape 90 with a resin layer spirally arranged in the longitudinal direction of the cable so that the resin layer 91 faces the resin tape layer 6 side around the resin tape layer 6. Formed by wrapping across.
  • a resin such as polyethylene terephthalate (PET) or polypropylene resin can be used.
  • PET polyethylene terephthalate
  • polypropylene resin for example, a resin such as polyethylene terephthalate (PET) or polypropylene resin can be used.
  • the resin layer-attached magnetic tape 90 is formed, for example, by slitting (cutting) a long sheet made of a magnetic material having a resin layer formed on both sides at a constant width.
  • the magnetic tape 90 with a resin layer has a groove 74 having a depth d that accommodates one burr 75b of a pair of burrs 75a and 75b formed on both ends 73a and 73b in the width direction when a long sheet is cut.
  • the back surface 90a is provided along the longitudinal direction.
  • the groove 74 is positioned closer to one end surface 73a than the center in the width direction of the magnetic tape 90 with a resin layer, that is, when the magnetic tape 90 with a resin layer is spirally wound around the resin tape layer 6,
  • the burr 75 b is formed at a position where it enters the groove 74.
  • one back surface 72a of the back surface 72 separated by the groove 74 contacts the surface 71 of the magnetic tape 70 through the resin layer 91a.
  • the other back surface 72b is in contact with the resin tape layer 6 through the resin layer 91b.
  • the resin layer 91 has a thickness of 5 to 10 ⁇ m, for example. Since the magnetic tape 90 with a resin layer wound spirally is opposed to each other through a thin resin layer 91a, electromagnetic noise is difficult to leak, and a decrease in effective magnetic permeability can be suppressed.
  • a wide magnetic sheet 700 formed into an amorphous alloy is passed through the groove processing apparatus 10 to form grooves 74 by rolling.
  • the resin layer 91 is formed on both surfaces of the magnetic sheet 700 in which the groove 74 is formed.
  • the resin layer 91 may be formed avoiding the groove 74, or the position corresponding to the groove 74 may be removed by etching or the like after the resin layer 91 is formed on the entire surface.
  • the magnetic tape 700 having a narrower width than the magnetic sheet 700 is formed by passing the amorphous magnetic sheet 700 through the slit processing apparatus 20.
  • the magnetic tape 70 slitted by the slit processing apparatus 20 peels off the resin layer on the side where the grooves 74 are not formed, and then, as shown in FIG. 5C, burrs 75a and 75b are formed on both end faces 73a and 73b. The Thereafter, each magnetic tape 70 is wound on a roll or a reel.
  • the embodiment of the present invention is not limited to the above-described embodiment, and various embodiments are possible.
  • Slit processing may be performed so that the other burr 75b is formed on the front surface 71 side.
  • the groove 74 may be formed at the position of the surface 71 corresponding to the burr 75a.
  • a magnetic material of the magnetic tape 70 when the Curie temperature is Tc and the crystallization temperature is Tx, an amorphous alloy ribbon that satisfies Tx> Tc is heat-treated in a temperature range of Tc to Tc + 50 ° C.
  • a composite magnetic strip for processing characterized by forming a resin layer on the strip may be used (see Japanese Patent No. 3512109).
  • the alloy composition is represented by Fe 100-abc-d M a Si b B c C d (atomic%), where M is Ti, V, Zr, Nb, Mo, It is at least one element selected from Hf, Ta, and W, and 0 ⁇ a ⁇ 10, 8 ⁇ b ⁇ 17, 5 ⁇ c ⁇ 10, 0.02 ⁇ d ⁇ 0.8, 13 ⁇ a + b + c + d ⁇ 35
  • an amorphous alloy ribbon composed of unavoidable impurities, in which Fe is substituted by 0.5 atomic% or more and 2 atomic% or less of Cu with an element concentration in the depth direction from the surface of the amorphous alloy ribbon.
  • Amorphous alloy ribbon characterized by having a C concentration peak in a depth range of 2 to 20 nm from the surface of the amorphous alloy ribbon in terms of SiO 2 when measured by GD-OES May be used (see Japanese Patent No. 5182601).
  • the magnetic tape layer is formed by winding the magnetic tape in a spiral shape.
  • the magnetic tape layer is not limited to the spiral shape, and the magnetic tape layer may be formed by braiding the magnetic tape, for example.
  • a shield layer made of a conductive wire made of a conductive material may be provided inside or outside the magnetic tape layer 7.
  • the magnetic tape layer 7 absorbs the magnetic field of the electromagnetic wave noise generated from the insulated wire 4 and shields the electromagnetic wave noise mainly in the low frequency band.
  • the shield layer made of a conductive material absorbs the electromagnetic noise generated from the insulated wire 4 and shields the electromagnetic noise mainly in the high frequency band. For this reason, a highly reliable shielded cable suitable for noise shielding of a wide frequency band can be provided.
  • the inclusion 5 may be omitted if there is no problem in winding the resin tape around the plurality of insulated wires 4.
  • the present invention is suitable for a power cable such as a three-core power cable connecting a motor and an inverter, or a signal transmission cable such as a differential cable for transmitting a differential signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Insulated Conductors (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Communication Cables (AREA)

Abstract

【課題】導体線上に巻き付けたときにテープの浮き上がりが発生し難くなり、これにより実効透磁率の低下を抑制することができる磁性テープ及びシールドケーブルを提供する。 【解決手段】シールドケーブル1は、導体線2の周囲を絶縁体3で被覆した絶縁電線4と、絶縁電線4の周囲に磁性テープ70が巻かれて形成された磁性テープ層7とを備え、磁性テープ70は、磁性材料からなる長尺状のシートを一定の幅で連続して切断して形成される磁性テープであって、長尺状のシートの切断の際に幅方向両端面に形成される一対のバリ75a、75bの少なくとも一方のバリ75bを収容する溝74を少なくとも絶縁電線4側に向く面72に長手方向に沿って有する。

Description

磁性テープ及びシールドケーブル
 本発明は、磁性テープ及びシールドケーブルに関する。
 従来、EMI(Electro Magnetic Interference:電波障害)の防止を図った高周波減衰ケーブルが提案されている(例えば、特許文献1参照。)。
 この高周波減衰ケーブルは、導体線の周囲に磁性材料からなる磁性テープを一部重なるように螺旋状に巻き付けたものである。これにより、導体線から放出される電磁波ノイズが磁性テープによって減衰されるとともに、可撓性を確保することができる。磁性テープは、一般に、スリット加工、すなわち大きな幅の長尺状のシートを一定の幅で連続して切断し、ロールやリールに巻き取ることで形成される。
特開昭62-190609号公報
 しかし、従来の高周波減衰ケーブルによれば、磁性テープはスリット加工時に幅方向の両端面にバリが発生するため、磁性テープを螺旋状に巻き付けたときにバリの先端がテープの表面に接触してテープが浮き上がり、実効透磁率が低下するおそれがある。
 そこで、本発明の目的は、導体線上に巻き付けたときにテープの浮き上がりが発生し難くなり、これにより実効透磁率の低下を抑制することができる磁性テープ及びシールドケーブルを提供することにある。
 本発明は、上記課題を解決することを目的として、磁性材料からなる長尺状のシートを一定の幅で連続して切断して形成される磁性テープであって、前記長尺状のシートの切断の際に幅方向両端面に形成される一対のバリの少なくとも一方のバリを収容する溝を少なくとも裏面に長手方向に沿って有する磁性テープを提供する。
 また、本発明は、上記課題を解決することを目的として、裏面に樹脂層が形成された磁性材料からなる長尺状のシートを一定の幅で連続して切断して形成される磁性テープであって、前記長尺状のシートの切断の際に幅方向両端面に形成される一対のバリの少なくとも一方のバリを収容する溝を少なくとも裏面に長手方向に沿って有する磁性テープを提供する。
 前記磁性材料は、アモルファス合金でもよい。また、前記磁性材料は、Fe、Si、B、Cuを含有し、さらにTi、V、Zr、Nb、Mo、Hf、Ta、Wから選ばれた少なくとも1種の元素を含有する非晶質合金にナノ結晶化の熱処理を施したナノ結晶軟磁性合金でもよい。
 本発明は、上記課題を解決することを目的として、導体線の周囲を絶縁体で被覆した絶縁電線と、前記絶縁電線の周囲に磁性テープが巻かれて形成された磁性テープ層とを備え、前記磁性テープは、磁性材料からなる長尺状のシートを一定の幅で連続して切断して形成される磁性テープであって、前記長尺状のシートの切断の際に幅方向両端面に形成される一対のバリの少なくとも一方のバリを収容する溝を少なくとも前記絶縁電線側に向く面に長手方向に沿って有するシールドケーブルを提供する。
 また、本発明は、上記課題を解決することを目的として、導体線の周囲を絶縁体で被覆した絶縁電線と、前記絶縁電線の周囲に磁性テープが巻かれて形成された磁性テープ層とを備え、前記磁性テープは、前記絶縁電線側の面に樹脂層が形成された磁性材料からなる長尺状のシートを一定の幅で連続して切断して形成される磁性テープであって、前記長尺状のシートの切断の際に幅方向両端面に形成される一対のバリの少なくとも一方のバリを収容する溝を少なくとも前記絶縁電線側に向く面に長手方向に沿って有するシールドケーブルを提供する。
 前記磁性テープを構成する前記磁性材料は、アモルファス合金でもよい。また、前記磁性テープを構成する前記磁性材料は、Fe、Si、B、Cuを含有し、さらにTi、V、Zr、Nb、Mo、Hf、Ta、Wから選ばれた少なくとも1種の元素を含有する非晶質合金にナノ結晶化の熱処理を施したナノ結晶軟磁性合金でもよい。
 本発明によれば、導体線上に巻き付けたときにテープの浮き上がりが発生し難くなり、これにより実効透磁率の低下を抑制することができる。
図1は、本発明の第1の実施の形態に係るシールドケーブルの概略の構成を示す斜視図である。 図2は、図1に示すシールドケーブルの横断面図である。 図3は、第1の実施の形態に係る磁性テープを樹脂テープ層の周囲に巻き付けた状態を示す部分断面図である。 図4は、図3に示す磁性テープの横断面図である。 図5Aは、第1の実施の形態に係る磁性テープの製造工程の一例を示す断面図である。 図5Bは、第1の実施の形態に係る磁性テープの製造工程の一例を示す断面図である。 図5Cは、第1の実施の形態に係る磁性テープの製造工程の一例を示す断面図である。 図6は、本発明の第2の実施の形態に係る磁性テープを樹脂テープ層の周囲に巻き付けた状態を示す部分断面図である。 図7は、図6に示す磁性テープの横断面図である。
 以下、本発明の実施の形態について図面を参照して説明する。なお、各図中、実質的に同一の機能を有する構成要素については、同一の符号を付してその重複した説明を省略す
る。
[第1の実施の形態]
 図1は、本発明の第1の実施の形態に係るシールドケーブルの概略の構成を示す斜視図である。図2は、図1に示すシールドケーブルの横断面図である。なお、図1では、介在物5の図示を省略する。
 このシールドケーブル1は、導体線2の周囲を絶縁体3で被覆した複数(本実施の形態では3本)の絶縁電線4と、複数の絶縁電線4の周囲に介在物5を介在させて形成された樹脂テープ層6と、樹脂テープ層6の周囲に設けられた磁性テープ層7と、磁性テープ層7の周囲に設けられた樹脂等からなる絶縁保護層としてのシース8とを備える。
 導体線2は、複数本(本実施の形態では7本)の金属細線2aを撚り合わせて構成されている。絶縁電線4は、例えば100MHz~10GHzの信号、又は搬送周波数10MHz以下で電力を伝送する。なお、導体線2は、単線でもよい。また、絶縁電線4は、本実施の形態では複数本としたが、1本でもよい。また、絶縁電線4は、差動信号を伝送するツイストペア線でもよい。
 樹脂テープ層6は、樹脂テープを複数の絶縁電線4の周囲に介在物5を介在させてそれらの周囲にケーブル長手方向に渡って巻き付けることにより形成される。樹脂テープは、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレン系樹脂等の樹脂からなるテープを用いることができる。
 磁性テープ層7は、例えば、樹脂テープ層6の周囲に磁性材料から形成された磁性テープ70を螺旋状にケーブル長手方向に渡って巻き付けることにより形成される。
 シース8は、例えば、塩化ビニル樹脂、エチレン-酢酸ビニル重合体、フッ素系樹脂、シリコーン系樹脂等から形成される。
(磁性テープ層の構成)
 図3は、磁性テープ70を樹脂テープ層6の周囲に巻き付けた状態を示す部分断面図である。図4は、図3に示す磁性テープ70の横断面図である。
 磁性テープ70は、磁性材料からなる長尺状のシートを一定の幅で連続してスリット加工(切断)して形成される。磁性テープ70は、長尺状のシートの切断の際に幅方向の両端面73a、73bに形成される一対のバリ75a、75bの一方のバリ75bを収容する溝74を表面71と反対側の裏面72に長手方向に沿って有する。溝74は、磁性テープ70の幅方向の中央よりも一方の端面73a側に寄った位置、すなわち、磁性テープ70を樹脂テープ層6の周囲に螺旋状に巻き付けたとき、他方のバリ75bが溝74に入り込む位置に形成されている。また、磁性テープ70を樹脂テープ層6の周囲に巻き付けたとき、溝74によって分離された裏面72の一方の裏面72aは、磁性テープ70の表面71に接触し、他の方の裏面72bは、樹脂テープ層6に接触する。螺旋状に巻き付けられた磁性テープ70同士は面接触するため、電磁波ノイズが漏れ難くなり、実効透磁率の低下を抑制することができる。
 磁性テープ70の磁性材料は、電磁波ノイズを抑制するため、保磁力が小さく透磁率が大きい軟磁性材料からなるものが好ましい。軟磁性材料として、例えば、Co基アモルファス合金、Fe基アモルファス合金等のアモルファス合金や、Mn-Zn系フェライト、Ni-Zn系フェライト、Ni-Zn-Cu系フェライト等のフェライトや、Fe-Ni系合金(パーマロイ)、Fe-Si-Al系合金(センダスト)、Fe-Si系合金(珪素鋼)等の軟磁性金属、又はFe、Si、B、Cuを含有し、さらにTi、V、Zr、Nb、Mo、Hf、Ta、Wから選ばれた少なくとも1種の元素を含有する非晶質合金にナノ結晶化の熱処理を施したナノ結晶軟磁性合金粉を用いることができる。これらの軟磁性材料のうち、ナノ結晶軟磁性合金粉は、比透磁率がCo基アモルファス合金と同様に大きく、比透磁率の経時変化が小さいので好ましい。
 磁性テープ70は、例えば厚さ25μm、50μm又は75μm、幅10~20mmのものを用いることができる。溝74の深さdは、バリ75a、75bの高さ(例えば10μm程度)hを収容するため、バリ75a、75bの平均高さ(例えば、長さ1mにつき片側10箇所計20箇所をマイクロメータで測定した値の平均値)の1/2倍以上5倍以下が好ましく、4/5倍以上2倍以下がより好ましい。溝74の幅は、巻き付け精度やケーブルを曲げたときのケーブル長さ方向への磁性テープ70のズレを考慮して、例えば1mm以上3mm以下が好ましい。
(磁性テープの製造工程)
 図5A~図5Cは、第1の実施の形態に係る磁性テープ70の製造工程の一例を示す断面図である。以下、アモルファス合金から形成された磁性テープ70の製造工程の一例について説明する。
 まず、図5Aに示すように、アモルファス合金化された幅の広い磁性シート700を溝加工装置10に通過させ、圧延加工によって溝74を形成する。溝加工装置10は、磁性シート700を押える押えローラ11と、押えローラ11に対向する位置に設けられ、溝74を形成する加工ローラ12と、押えローラ11及び加工ローラ12を一体に回転可能に連結する軸13と、軸13を回転させる図示しないモータとを備える。溝74は、磁性シート700の表面700a及び裏面700bに幅方向に沿って交互に形成される。なお、溝加工装置は切削加工を行って溝74を形成するものでもよい。
 次に、図5Bに示すように、アモルファス化された磁性シート700をスリット加工装置20に通過させることにより磁性シート700よりも幅の狭い磁性テープ70を形成する。スリット加工装置20は、磁性シート700の表面700a側に配置された上カッタ21a、21bと、磁性シート700の裏面700b側に配置された下カッタ22a、22bと、上カッタ21a、21bを一体に回転可能に連結する軸23と、下カッタ22a、22bを一体に回転可能に連結する軸24と、軸23及び軸24を同期させて回転させるモータとを備える。上カッタ21aと下カッタ22aの間、及び上カッタ21bと下カッタ22bの間のクリアランスは、バリ75a、75bができるだけ小さくなるように調整される。また、幅方向両端面73a、73bに形成されるバリ75a、75bが互いに同じ方向に向くように、各磁性テープ70に対して上カッタ21a、21bが下カッタ22a、22bに対して内側又は外側に位置するように配置される。
 スリット加工装置20によってスリット加工された磁性テープ70は、図5Cに示すように、両端面73a、73bにバリ75a、75bが形成される。その後、それぞれの磁性テープ70は、ロール又はリールに巻き取られる。
(第1の実施の形態の作用、効果)
 第1の実施の形態によれば、以下の作用、効果を奏する。
(1)磁性テープ70を樹脂テープ層6の周囲に螺旋状に巻き付けたとき、他方のバリ75bが溝74に入り込み、磁性テープ70同士は面接触するため、磁性テープ70の浮き上がりが発生し難くなり、これにより実効透磁率の低下を抑制することができる。
(2)磁性テープ層7は、絶縁電線4から発生する電磁波ノイズの磁界を吸収して電磁波ノイズの放射を抑制する。
(3)磁性テープ層7は、磁性テープ70を螺旋状に巻き付けて形成されているため、曲げ特性に優れたシールドケーブルを提供することができる。
[第2の実施の形態]
 図6は、本発明の第2の実施の形態に係る磁性テープを樹脂テープ層の周囲に巻き付けた状態を示す部分断面図である。図7は、図6に示す磁性テープの横断面図である。
 第1の実施の形態では、裏面72に樹脂層が形成されていない磁性テープ70を用いて磁性テープ層7を構成したが、本実施の形態は、磁性テープ70の裏面72に樹脂層91が形成された樹脂層付き磁性テープ90を用いて樹脂層付き磁性テープ層9を構成したものである。なお、樹脂層付き磁性テープ90は、磁性テープの一例であり、樹脂層付き磁性テープ層9は、磁性テープ層の一例である。
 本実施の形態の樹脂層付き磁性テープ層9は、例えば、樹脂テープ層6の周囲に樹脂層91が樹脂テープ層6側に向くように樹脂層付き磁性テープ90を螺旋状にケーブル長手方向に渡って巻き付けることにより形成される。
 樹脂層91は、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレン系樹脂等の樹脂を用いることができる。
 樹脂層付き磁性テープ90は、例えば、両面に樹脂層が形成された磁性材料からなる長尺状のシートを一定の幅で連続してスリット加工(切断)して形成される。樹脂層付き磁性テープ90は、長尺状のシートの切断の際に幅方向両端面73a、73bに形成される一対のバリ75a、75bの一方のバリ75bを収容する深さdの溝74を裏面90aに長手方向に沿って有する。溝74は、樹脂層付き磁性テープ90の幅方向の中央よりも一方の端面73aに寄った位置、すなわち、樹脂層付き磁性テープ90を樹脂テープ層6の周囲に螺旋状に巻き付けたとき、他方のバリ75bが溝74に入り込む位置に形成されている。また、樹脂層付き磁性テープ90を樹脂テープ層6の周囲に巻き付けたとき、溝74によって分離された裏面72の一方の裏面72aは、樹脂層91aを介して磁性テープ70の表面71に接触し、他の方の裏面72bは、樹脂層91bを介して樹脂テープ層6に接触する。樹脂層91は、例えば厚さ5~10μmを有する。螺旋状に巻き付けられた樹脂層付き磁性テープ90同士は薄い樹脂層91aを介して対向するため、電磁波ノイズが漏れ難くなり、実効透磁率の低下を抑制することができる。
(磁性テープの製造工程)
 まず、図5Aに示すように、アモルファス合金化された幅の広い磁性シート700を溝加工装置10に通過させ、圧延加工によって溝74を形成する。
 次に、溝74が形成された磁性シート700の両面に樹脂層91を形成する。なお、溝74を避けて樹脂層91を形成してもよいし、樹脂層91を全面に形成した後、溝74に対応する位置をエッチング等によって除去してもよい。
 次に、図5Bに示すように、アモルファスとなった磁性シート700をスリット加工装置20に通過させることにより磁性シート700よりも幅の狭い磁性テープ70を形成する。
 スリット加工装置20によってスリット加工された磁性テープ70は、溝74が形成されていない側の樹脂層を剥離した後、図5Cに示すように、両端面73a、73bにバリ75a、75bが形成される。その後、それぞれの磁性テープ70は、ロール又はリールに巻き取られる。
(第2の実施の形態の作用、効果)
 第2の実施の形態によれば、以下の作用、効果を奏する。
(1)樹脂層付き磁性テープ90を樹脂テープ層6の周囲に螺旋状に巻き付けたとき、他方のバリ75bが溝74に入り込み、樹脂層付き磁性テープ90同士は、面接触するため、樹脂層付き磁性テープ90の浮き上がりが発生し難くなり、これにより実効透磁率の低下を抑制することができる。
(2)樹脂層付き磁性テープ層9は、絶縁電線4から発生する電磁波ノイズの磁界を吸収して電磁波ノイズを放射を抑制する。
(3)樹脂層付き磁性テープ層9は、樹脂層付き磁性テープ90を螺旋状に巻き付けて形成されているため、曲げ特性に優れたシールドケーブルを提供することができる。
(4)スリット加工時に磁性シートの両面に樹脂層を形成しているので、バリの発生を抑制することができる。
 なお、本発明の実施の形態は、上記実施の形態に限定されず、種々な実施の形態が可能である。例えば、第1及び第2の実施の形態では、磁性テープ70の幅方向両端面に発生するバリ75a、75bを磁性テープ70の表面71側に形成する場合について説明したが、一方のバリ75aを裏面72側に形成し、他方のバリ75bを表面71側に形成するようにスリット加工を行ってもよい。この場合、溝74をバリ75aに対応する表面71の位置に形成すればよい。
 また、磁性テープ70の磁性材料として、キュリー温度をTc、結晶化温度をTxとするとき、Tx>Tcを満足するアモルファス合金薄帯をTc~Tc+50℃の温度範囲で熱処理し、該アモルファス合金薄帯に樹脂層を形成することを特徴とする加工用複合磁性薄帯を用いてもよい(特許第3512109号公報参照)。
 磁性テープ70の磁性材料として、合金組成がFe100-a-b-c-dSi(原子%)で表され、前記MはTi、V、Zr、Nb、Mo、Hf、Ta、Wから選ばれた少なくとも1種の元素であり、0<a≦10、8≦b≦17、5≦c≦10、0.02≦d≦0.8、13<a+b+c+d≦35および不可避不純物からなり、Feの0.5原子%以上、2原子%以下をCuで置換した非晶質合金薄帯であり、前記非晶質合金薄帯の表面から深さ方向に元素濃度をGD-OESで測定したとき、SiO換算で前記非晶質合金薄帯の表面から2~20nmの深さの範囲内にC濃度のピークが存在することを特徴とする非晶質合金薄帯を用いてもよい(特許第5182601号公報参照)。
 また、磁性テープ70の他の磁性材料として、合金組成がFe100-a-b-c-dSiCu(原子%)で表され、0≦a≦10、0≦b≦20、4≦c≦20、0.1≦d≦3、9≦a+b+c≦35および不可避不純物からなる非晶質合金薄帯であり、ここでMはTi、V、Zr、Nb、Mo、Hf、Ta、Wから選ばれた少なくとも1種の元素であり、前記非晶質合金薄帯の表面側に最表面部よりも高い濃度でCuが偏析しているCu偏析部が存在し、そのCu偏析部でのCu濃度の最大値が4原子%以下であることを特徴とする非晶質合金薄帯を用いてもよい(特許第5339192号公報参照)。
 上記各実施の形態では、磁性テープを螺旋状に巻いて磁性テープ層を形成したが、螺旋状に限られず、例えば磁性テープを編組にして磁性テープ層を形成してもよい。
 また、磁性テープ層7の内側又は外側に導電性材料からなるシールド線によるシールド層を設けてもよい。これにより、磁性テープ層7は、絶縁電線4から発生する電磁波ノイズの磁界を吸収して主として低周波帯域の電磁波ノイズを遮蔽する。また、導電性材料からなるシールド層は、絶縁電線4から発生する電磁波ノイズの電界を吸収して主として高周波帯域の電磁波ノイズを遮蔽する。このため、広い周波帯域のノイズ遮蔽に適した信頼性の高いシールドケーブルを提供することができる。
 また、本発明の要旨を変更しない範囲内で、上記実施の形態の構成要素の一部を省くことや変更することが可能である。例えば、複数の絶縁電線4の周囲に樹脂テープを巻き付ける上で支障がなければ、介在物5を省いてもよい。
 本発明は、モータとインバータを接続する3芯電源ケーブル等の電源ケーブルや、差動信号を伝送する差動用ケーブル等の信号伝送ケーブルに好適である。
1…シールドケーブル、2…導体線、2a…金属細線、3…絶縁体、4…絶縁電線、5…介在物、6…樹脂テープ層、7…磁性テープ層、8…シース、9…樹脂層付き磁性テープ層、10…溝加工装置、11…押えローラ、12…加工ローラ、13…軸、20…スリット加工装置、21a、21b…上カッタ、22a、22b…下カッタ、23、24…軸、70…磁性テープ、71…表面、72、72a、72b…裏面、73a、73b…端面、74…溝、75a、75b…バリ、90…樹脂層付き磁性テープ、90a…裏面、91、91a、91b…樹脂層、700…磁性シート、700a…表面、700b…裏面

Claims (8)

  1.  磁性材料からなる長尺状のシートを一定の幅で連続して切断して形成される磁性テープであって、
     前記長尺状のシートの切断の際に幅方向両端面に形成される一対のバリの少なくとも一方のバリを収容する溝を少なくとも裏面に長手方向に沿って有する磁性テープ。
  2.  裏面に樹脂層が形成された磁性材料からなる長尺状のシートを一定の幅で連続して切断して形成される磁性テープであって、
     前記長尺状のシートの切断の際に幅方向両端面に形成される一対のバリの少なくとも一方のバリを収容する溝を少なくとも裏面に長手方向に沿って有する磁性テープ。
  3.  前記磁性材料は、アモルファス合金である、請求項1又は2に記載の磁性テープ。
  4.  前記磁性材料は、Fe、Si、B、Cuを含有し、さらにTi、V、Zr、Nb、Mo、Hf、Ta、Wから選ばれた少なくとも1種の元素を含有する非晶質合金にナノ結晶化の熱処理を施したナノ結晶軟磁性合金である、請求項1又は2に記載の磁性テープ。
  5.  導体線の周囲を絶縁体で被覆した絶縁電線と、
     前記絶縁電線の周囲に磁性テープが巻かれて形成された磁性テープ層とを備え、
     前記磁性テープは、磁性材料からなる長尺状のシートを一定の幅で連続して切断して形成される磁性テープであって、前記長尺状のシートの切断の際に幅方向両端面に形成される一対のバリの少なくとも一方のバリを収容する溝を少なくとも前記絶縁電線側に向く面に長手方向に沿って有するシールドケーブル。
  6.  導体線の周囲を絶縁体で被覆した絶縁電線と、
     前記絶縁電線の周囲に磁性テープが巻かれて形成された磁性テープ層とを備え、
     前記磁性テープは、前記絶縁電線側の面に樹脂層が形成された磁性材料からなる長尺状のシートを一定の幅で連続して切断して形成される磁性テープであって、前記長尺状のシートの切断の際に幅方向両端面に形成される一対のバリの少なくとも一方のバリを収容する溝を少なくとも前記絶縁電線側に向く面に長手方向に沿って有するシールドケーブル。
  7.  前記磁性テープを構成する前記磁性材料は、アモルファス合金である、請求項5又は6に記載のシールドケーブル。
  8.  前記磁性テープを構成する前記磁性材料は、Fe、Si、B、Cuを含有し、さらにTi、V、Zr、Nb、Mo、Hf、Ta、Wから選ばれた少なくとも1種の元素を含有する非晶質合金にナノ結晶化の熱処理を施したナノ結晶軟磁性合金である、請求項5又は6に記載のシールドケーブル。
PCT/JP2014/054952 2014-02-27 2014-02-27 磁性テープ及びシールドケーブル WO2015129001A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/054952 WO2015129001A1 (ja) 2014-02-27 2014-02-27 磁性テープ及びシールドケーブル
EP14883741.2A EP3026678B1 (en) 2014-02-27 2014-02-27 Magnetic tape and shield cable
US14/915,157 US9679688B2 (en) 2014-02-27 2014-02-27 Magnetic tape and shield cable
JP2016504944A JP6137402B2 (ja) 2014-02-27 2014-02-27 磁性テープ及びシールドケーブル
CN201480044313.5A CN105474328A (zh) 2014-02-27 2014-02-27 磁性带和屏蔽电缆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054952 WO2015129001A1 (ja) 2014-02-27 2014-02-27 磁性テープ及びシールドケーブル

Publications (1)

Publication Number Publication Date
WO2015129001A1 true WO2015129001A1 (ja) 2015-09-03

Family

ID=54008368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054952 WO2015129001A1 (ja) 2014-02-27 2014-02-27 磁性テープ及びシールドケーブル

Country Status (5)

Country Link
US (1) US9679688B2 (ja)
EP (1) EP3026678B1 (ja)
JP (1) JP6137402B2 (ja)
CN (1) CN105474328A (ja)
WO (1) WO2015129001A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551669A (zh) * 2016-03-06 2016-05-04 北京工业大学 一种具有磁屏蔽功能的电力电缆
JP2021068815A (ja) * 2019-10-24 2021-04-30 国立大学法人信州大学 コイルおよびコイルユニットおよび無線電力伝送装置およびコイルの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952357B2 (en) * 2016-04-04 2021-03-16 3M Innovative Properties Company Magnetic shielding tape for cable and method for manufacturing thereof
CN105788746B (zh) * 2016-05-02 2017-12-08 北京工业大学 一种防电磁干扰的混合电缆
CN107195397B (zh) * 2017-05-12 2019-04-30 番禺得意精密电子工业有限公司 线缆的制造方法及线缆
US11715583B2 (en) * 2020-03-06 2023-08-01 AFC Cable Systems, Inc. MC cable with tearable assembly tape
EP4015208B1 (en) * 2020-12-21 2023-08-30 Nexans Laminate water barrier
CN114360780A (zh) * 2021-12-21 2022-04-15 中车青岛四方机车车辆股份有限公司 一种电缆
DE202022103105U1 (de) 2022-06-01 2023-06-07 Frank Vogelsang Magnetvorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816614A (en) * 1986-01-20 1989-03-28 Raychem Limited High frequency attenuation cable
JPH11260160A (ja) * 1998-03-06 1999-09-24 Murata Mfg Co Ltd 放射ノイズ抑制用磁性複合テープ及びこの複合テープを用いた放射ノイズ抑制部品
JP2008171690A (ja) * 2007-01-12 2008-07-24 Sumitomo Electric Ind Ltd 同軸ケーブル及び多心ケーブル

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US714429A (en) * 1902-09-02 1902-11-25 Emil Witzenmann Metallic spiral hose.
US1068553A (en) * 1912-09-18 1913-07-29 Rollin Abell Flexible tubing.
US3219951A (en) * 1963-05-03 1965-11-23 Don B Clark Interference attenuating power conductor utilizing intensified skin effect to attenuate high frequencies
US3474186A (en) * 1967-04-13 1969-10-21 Moore & Co Samuel Electrostatically shielded wire bundle
JPH0412298Y2 (ja) * 1986-12-26 1992-03-25
JPH1074613A (ja) * 1996-08-30 1998-03-17 Tokin Corp テープ、粘着テープ及び自己融着テープ
CN2328101Y (zh) * 1998-10-14 1999-07-07 深圳市天有实业发展有限公司 电池极板用穿孔钢带
WO2007086087A1 (en) * 2006-01-26 2007-08-02 Giovanni Arvedi Hot steel strip particularly suited for the production of electromagnetic lamination packs
JP4868461B2 (ja) * 2007-11-12 2012-02-01 北川工業株式会社 雑音吸収具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816614A (en) * 1986-01-20 1989-03-28 Raychem Limited High frequency attenuation cable
JPH11260160A (ja) * 1998-03-06 1999-09-24 Murata Mfg Co Ltd 放射ノイズ抑制用磁性複合テープ及びこの複合テープを用いた放射ノイズ抑制部品
JP2008171690A (ja) * 2007-01-12 2008-07-24 Sumitomo Electric Ind Ltd 同軸ケーブル及び多心ケーブル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551669A (zh) * 2016-03-06 2016-05-04 北京工业大学 一种具有磁屏蔽功能的电力电缆
JP2021068815A (ja) * 2019-10-24 2021-04-30 国立大学法人信州大学 コイルおよびコイルユニットおよび無線電力伝送装置およびコイルの製造方法

Also Published As

Publication number Publication date
CN105474328A (zh) 2016-04-06
EP3026678A4 (en) 2017-03-15
EP3026678A1 (en) 2016-06-01
US20160211060A1 (en) 2016-07-21
US9679688B2 (en) 2017-06-13
JPWO2015129001A1 (ja) 2017-03-30
JP6137402B2 (ja) 2017-05-31
EP3026678B1 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
JP6137402B2 (ja) 磁性テープ及びシールドケーブル
US20210168975A1 (en) Magnetic Shielding Tape for Cable and Method for Manufacturing Thereof
JP2015153497A (ja) シールドケーブル
US9659687B2 (en) Noise reduction cable
US9484128B2 (en) Noise suppression cable
US10225967B2 (en) Noise suppression cable
JP2016201272A (ja) ノイズシールドケーブル
CN106229071A (zh) 噪声抑制缆线
JP2016024953A (ja) ノイズシールド用テープ及びノイズシールドケーブル
JP6439594B2 (ja) ノイズ抑制ケーブル
JP6759693B2 (ja) ノイズ抑制ケーブル
JPH11185542A (ja) 薄膜磁性体シ−ルド付きケ−ブル
US10952357B2 (en) Magnetic shielding tape for cable and method for manufacturing thereof
JP2016207361A (ja) ノイズ抑制ケーブルの製造方法及び巻き付け補助具
JP6519293B2 (ja) ノイズ抑制ケーブルの製造方法
US20160358696A1 (en) Noise shield cable
TW201126543A (en) Coaxial cable shielding
US20160360653A1 (en) Noise shield cable
JP2017139189A (ja) 差動信号伝送用ケーブル
CN207663811U (zh) 电力拖动用中压变频电缆
CN106992039B (zh) 差动传输用电缆以及多对差动传输用电缆
CN203325495U (zh) 屏蔽型高清多媒体数据线缆
US20170316851A1 (en) Data cable and method for producing such a data cable
JP2014057450A (ja) 回転電機用コイル導線およびコイル体
JP2017139130A (ja) ノイズ抑制ケーブル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044313.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504944

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14915157

Country of ref document: US

Ref document number: 2014883741

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE