WO2015128522A1 - Equipo y procedimiento para preparación de muestras de análisis por rayos-x o icp - Google Patents

Equipo y procedimiento para preparación de muestras de análisis por rayos-x o icp Download PDF

Info

Publication number
WO2015128522A1
WO2015128522A1 PCT/ES2015/070107 ES2015070107W WO2015128522A1 WO 2015128522 A1 WO2015128522 A1 WO 2015128522A1 ES 2015070107 W ES2015070107 W ES 2015070107W WO 2015128522 A1 WO2015128522 A1 WO 2015128522A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
sample
induction coil
equipment according
induction
Prior art date
Application number
PCT/ES2015/070107
Other languages
English (en)
French (fr)
Inventor
Pedro VELLOSILLO POSTIGO
Original Assignee
Equilab, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equilab, S.A. filed Critical Equilab, S.A.
Publication of WO2015128522A1 publication Critical patent/WO2015128522A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat

Definitions

  • the present invention relates to an equipment for the automatic preparation of samples of
  • ICP inductive coupling plasma analysis
  • object of the present invention is a process for the same purposes, which employs equipment according to the present invention.
  • 03028408 published on February 8, 1989, discloses an apparatus for producing a sample, which comprises a tilting mechanism of a support of a crucible, the latter is fixed to the support by a flange that allows it to tilt, by action of the mechanism
  • Both the crucible and the dish are arranged on two burners provided to heat both the crucible and dish contents.
  • the stirring means includes a mobile support, which can rotate about a horizontal axis extended perpendicularly to the axis of the induction coil, fixing means of the induction coil to the mobile support, and means for imparting rotation to said mobile support .
  • the induction coil is connected to a high frequency external current source.
  • the device described above allows for a more uniform heating of the crucible by being arranged inside an induction coil, causing a faster fusion of the sample.
  • it requires the transmission of large currents at high frequency from an external source to the equipment for operation, as well as, the working parameters (voltage, current, frequency) of said source that provides heat are not controlled, taking into account the type of crucible used and the temperature taken by said crucible until the sample melts, all of which undermine the life of said crucible and the team efficiency
  • the type of crucible to be used is selected according to the material to be melted. Usually, platinum alloy nickel crucibles are used, etc., in the case of oxidations, zirconium crucibles are used. Fundamentally, platinum crucibles have a high price, therefore, it is sought to avoid subjecting them to conditions that may damage them, with a view to increasing their useful life as much as possible.
  • the equipment comprises at least a first oscillating tank arranged in a stirring mechanism driven by a rotation motor.
  • the stirring mechanism improves and speeds up the homogenization of the melting of a sample during heating.
  • the first oscillating tank comprises a crucible mounted on a first ceramic support that is arranged inside a first induction coil.
  • An electric power is transmitted through the induction coil, coming from a first induction capacitor that is powered by a
  • the first induction capacitor is mounted on the stirring mechanism, next to the first induction coil, forming part of the first oscillating tank.
  • the arrangement of the induction capacitor on the same mobile system as the induction coil, as an integral part of the oscillator tank, eliminates the need to transmit large currents at high frequency from an external source to the equipment,
  • the equipment comprises a frequency converter control system that adjusts the resonant frequency based on current and voltage values continuously measured in the first induction coil, as well as, regulates the transmitted electrical power based on values of
  • the frequency adjustment carried out by the control system guarantees the correct operation of the frequency converter, guaranteeing at all times the power due in the crucible,
  • the absolute and continuous control of the crucible temperature and its content also contribute to its protection, following a progressive heating based on temperature ramps that allow the sample to melt in an efficient and effective manner.
  • the procedure includes the following steps: a) start heating a sample of material and a flux contained in a crucible, by means of an electromagnetic field generated by the transmission of electrical power through a first induction coil of a first oscillating tank, in which the crucible is arranged internally. b) starting a stirring mechanism of the first oscillator tank, following an alternative movement at a speed and during a melting time previously programmed according to the sample of material to be melted. c) adjust the resonance frequency of a frequency converter that feeds a first induction capacitor of the first oscillator tank based on current and voltage values continuously measured in the first induction coil. d) regulate the electrical power transmitted by the frequency converter, based on temperature values continuously measured in the crucible, which are matched with temperature values of a ramp of
  • the stirring mechanism at the end of the programmed melting time, and f) pouring the sample of completely molten material.
  • the molten material can be poured, either, into a shaping plate to form a pearl, if the sample will be analyzed with X-ray spectrometry techniques, or in a solution, if other analytical methods will be employed, such as, the analysis of inductive coupling plasma (ICP).
  • ICP inductive coupling plasma
  • the crucible that contains it will be introduced into a
  • the adjustment of the frequency of resonance of the frequency converter and the constant regulation of the temperature of the crucible are added, which allows an exhaustive control, in real time and modifiable at any time, of the process sample preparation, resulting in the care of the crucible and the efficiency of said preparation process.
  • Figure 1 represents a perspective view of the equipment for preparation of X-ray or ICP analysis samples.
  • Figure 2 represents a perspective view of a first oscillating tank of the equipment of Figure 1.
  • Figure 3 represents an exploded perspective view of a second oscillating tank of the equipment of Figure 1, without the second ceramic support covering the second induction coil.
  • Figure 4 represents a diagram, in block diagram form, of the electronic circuit of the equipment of Figure 1.
  • the present invention relates to equipment for
  • the equipment comprises at least a first oscillating tank (1) arranged in a stirring mechanism (2) driven by a rotation motor (3).
  • the first oscillator tank (1) comprises a crucible (1.1) mounted on a first ceramic support (1.2) that is arranged inside a first induction coil (1.3), which is formed by a copper tube by whose Inside a coolant circulates at the same time that an electric power is transmitted from a first induction capacitor (1.4), which is fed by a frequency converter (4).
  • the first induction capacitor (1.4) is mounted on the stirring mechanism (2), next to the first induction coil (1.3), forming part of the first oscillating tank (1). That is, the first induction capacitor (1.4) is arranged on the same mobile system of the first induction coil (1.3), as a component of the first oscillator tank (1).
  • the first oscillating tank (1) comprises two heat sinks (1.6) of the first induction capacitor (1.4), arranged on each of its sides, through which the cooling liquid of the induction coil (1.3) circulates.
  • the stirring mechanism (2) comprises two lateral discs (2.2, 2.3), centrally joined by the ends of an axis (2.1) that rotates on two supports (2.4) fixed to the equipment frame.
  • the lateral discs (2.2, 2.3) support the first oscillating tank (1) allowing its rotation, in one direction or another, within a maximum angle of 120 ° with respect to the vertical position of the crucible (1.1), according to the movement transmitted by the turning motor (3) for stirring and pouring the sample contained in the crucible (1.1).
  • one of the lateral discs (2.2) is part of a pulley and belt transmission (5) driven by the rotation motor (3).
  • side discs (2.2, 2.3) are made of a non-metallic material
  • bakelite preferably, bakelite, with a view to isolating electrically the first oscillator tank (1) of the rest of the elements that make up the equipment.
  • the frequency converter (4) that feeds the equipment can be of the resonant inverter type to LLC transistors or resonant inverter to LC series transistors.
  • the equipment has a control system (5) of the frequency converter (4).
  • said control system (5) is a phase locked oscillator commanded by a microcontroller (5.1).
  • the control system (5) adjusts the resonant frequency based on values of current (I) and voltage (V) measured continuously in the first induction coil (1.3).
  • induction (1.3) by means of a high frequency transformer with ferrite core (not shown in the figures). These values are communicated to the microcontroller (5.1), which causes the control system (5) to act on the frequency converter (4), adjusting the resonance frequency to the type and conditions of the crucible (1.1) used, based on the values of current (I) and voltage (V) measured in the first induction coil (1.3).
  • control system (5) regulates the transmitted electrical power based on temperature values (t) continuously measured in the crucible
  • Pyrometer (1.5) infrared.
  • the pyrometer (1.5), shown in Figure 2 is mounted on the stirring mechanism (2) of the first oscillation tank (1), close to the first induction coil (1.3).
  • the temperature values (t) measured in the crucible (1.1) are communicated to the micro-controller (5.1) of the control system (5), which acts on the frequency converter (4) regulating the electrical power that it delivers to the first tank of
  • variable speed stirring of the crucible (1.1) or its positioning for the dump of the fused sample contained inside
  • the equipment comprises at least a second oscillating tank (6), with a receiving plate (6.1) shaping an X-ray analysis sample, arranged under a first side (1.11 ) of the crucible (1.1) of the first oscillator tank (1).
  • the second oscillator tank (6) comprises a second induction capacitor (6.4) and a second induction coil (6.3) covered by a second ceramic support (6.2), on which the receiver plate (6.1) is arranged.
  • the second induction coil (6.3) is formed by a copper tube through which a coolant circulates internally at the same time that an electric power is transmitted that, in this case, Heat the receiving plate (6.1) to receive the fused sample and mold a bead for X-ray analysis.
  • the first and second induction coil (1.3, 6.3) are arranged at the end of a closed cooling system.
  • the second induction capacitor (6.4) be electrically connected in parallel to the first induction capacitor (1.4), its resonant frequencies being synchronized with each other.
  • the crucible (1.1) and the receiver plate (6.1) comprise two fans (7), arranged below the first and second induction coil (1.3, 6.3) respectively.
  • both fans (7) be controlled by the microcontroller (5.1), with a view to being activated when it is programmed to accelerate the
  • the team comprises at least one
  • the container (8) comprises magnetic stirring means (8.1) that keep the solution in motion while pouring the fused sample into said container (8).
  • the magnetic stirring means (8.1) of the container (8) be actuated by the microcontroller (5.1).
  • the fusion processes are instructed that will individually follow the microcontrollers (5.1) of up to 10 fusion modules arranged in the equipment, each consisting of at least one group consisting of a first oscillator tank (1), a second oscillator tank (6), and a container (8).
  • fusion modules can work
  • the external control unit can be a computer or other control system where,
  • the process of preparing X-ray or ICP analysis samples comprise the steps described below.
  • the stirring mechanism (2) of the first oscillating tank (1) is started, following an alternative movement at a speed and during a melting time previously programmed according to the sample of material to be melted.
  • the microcontroller (5.1) of the control system (5) of the equipment follows a fully customizable computer program, with previously defined fusion processes for samples of minerals, cements, refractory elements, alloys, slags, among other materials, as well as, for non-oxidized materials.
  • the resonance frequency of the frequency converter (4) that feeds the first induction capacitor (1.4) of the first oscillator tank (1) is adjusted, based on values of current (I) and voltage (V) continuously measured in the first induction coil (1.3).
  • the micro-controller (5.1) based on the values of current (I) and voltage (V) that have been provided, calculate the values
  • the microcontroller (5.1) ensures over the frequency converter (4), effective protection of the equipment is achieved against the appearance of reactive currents, due to the increase in the quality factor of the induction coil (3.1 ), for example, in the absence of a crucible (1.1), that is, when said induction coil (1.3) is empty and the equipment is in operation.
  • the micro-controller (5.1) causes the control system (5) to remove the resonance frequency converter (4), increasing the frequency of the control pulses.
  • the electrical power transmitted by the frequency converter (4) is regulated, based on temperature values (t) continuously measured in the crucible (1.1), which are mapped to temperature values of a crucible heating ramp (1.1) previously programmed according to the sample of material to be melted and the type of crucible (1.1) used.
  • the computer program which follows the micro-controller (5.1) during the automatic operation of the equipment, it has programmed the variation of speed and the melting time during which the alternative movement of the first oscillator tank (1) must be developed depending on the material to be melted, they are predefined in it a series of heating ramps that also respond to the material of the sample to be melted and the type of crucible (1.1) used.
  • the temperature values that define said ramp are reproduced during the heating of the crucible (1.1) thanks to the action of the control system (5) on the frequency converter (4) in response to the temperature values (t) measured in the crucible (1.1).
  • the alternative movement of the stirring mechanism (2) is stopped, to which, the control system (5), by order of the micro-controller (5.1), instructs the programmed actions on the pouring of the sample of completely molten material according to the type of sample to be prepared.
  • the sample of molten material is poured into a receiving plate (6.1), molder of a solid sample in the form of a pearl.
  • the sample of molten material be poured into a container (8) containing a stirred solution.
  • the oxidized material contained in this case in a zirconium crucible (1.1), once the sample is melted, it is cooled and introduced, including the crucible (1.1) containing it, in an acid solution for subsequent ICP analysis.
  • the present invention has been designed to function completely

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Equipo para preparación de muestras de análisis por rayos-X o ICP que comprende al menos un tanque oscilador, dispuesto en un mecanismo de agitación accionado por un motor de giro, con un crisol montado sobre un soporte cerámico y dispuesto en el interior de una bobina de inducción, a través de esta última se transmite una potencia eléctrica proveniente de un capacitor de inducción alimentado por un convertidor de frecuencia, donde el capacitor de inducción está montado sobre el mecanismo de agitación formando parte del tanque oscilador, un sistema de control del convertidor de frecuencia ajusta la frecuencia de resonancia en función de valores de corriente y voltaje medidos continuamente en la bobina de inducción, así como, regula la potencia eléctrica transmitida en función de valores de temperatura medidos continuamente en el crisol. Procedimiento para el mismo fin que emplea un equipo como el anteriormente descrito.

Description

EQUIPO Y PROCEDIMIENTO PARA PREPARACION DE MUESTRAS DE ANALISIS POR RAYOS-X O ICP
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se refiere a un equipo para la preparación automática de muestras de
materiales, por ejemplo, y no limitado a minerales, cementos, elementos refractarios, aleaciones, escorias, etc. a los que se desea analizar para conocer su
composición elemental; ya sea, en forma sólida (perlas), para su posterior análisis con técnicas de
espectrometría de rayos-X, o en una disolución, si se desea emplear otros métodos analíticos, tal como, el análisis de plasma de acoplamiento inductivo (ICP) . Así como, es útil para llevar a cabo oxidaciones, es decir, realizar fusiones de materiales no oxidados con
peróxidos, los cuales, una vez oxidados, pueden
constituir materia prima para la preparación de muestras de análisis por rayos-X o ICP.
También es objeto de la presente invención un procedimiento para los mismos fines, el cual, emplea un equipo según la presente invención.
ANTECEDENTES DE LA INVENCIÓN
En ciertas industrias, por ejemplo, la industria minera, cerámica y similar, a menudo es necesario producir muestras, ya sea, para llevar a cabo análisis de materiales o con otros fines.
Son conocidos diversos aparatos para la preparación de las muestras. Generalmente, constituyen equipos en donde un crisol con una porción de material y un fundente es sometido a altas temperaturas por un medio de calentamiento para provocar su completa fusión, y con ello, preparar una muestra, ya sea, una perla o una disolución, para su posterior análisis por rayos-X o ICP respectivamente. Entre los medios de calentamiento comúnmente empleados están, por ejemplo, quemadores de gas, bobinas de inducción y hornos de resistencia eléctrica . Por ejemplo, el documento de patente EP
0302848, publicado el 8 de febrero de 1989, da a conocer un aparato para producir una muestra, el cual comprende un mecanismo basculante de un soporte de un crisol, este último queda fijado al soporte mediante una brida que le permite inclinarse, por la acción del mecanismo
basculante, para verter su contenido en un plato
moldeador de una perla. Tanto el crisol como el plato están dispuestos sobre sendos quemadores proporcionados para dar calor tanto al contenido del crisol como al plato.
El empleo de quemadores de gas como fuente de calor conlleva ciertos inconvenientes, por ejemplo, el control ineficaz de la temperatura, asi como, no
constituye un ambiente óptimo para la oxidación de la muestra .
Desde el punto de vista de seguridad, resulta
problemático la presencia de llamas con riesgos de intoxicación o explosión, y es requerido el empleo de sistemas potentes de extracción de gases en las
instalaciones donde se preparan las muestras. Asi mismo, pueden existir problemas de presión de gas si dichas instalaciones se encuentran emplazadas en altura. Por su parte, el documento de patente US 4329136, publicado el 11 de mayo de 1982, da a conocer un aparato para la preparación de una muestra de
material a ser analizada por rayos-X. El aparato
comprende un crisol que contiene el material a fundir a partir del cual se moldeará la muestra, una bobina de inducción que actúa como medio de calentamiento del crisol, y unos medios de agitación del crisol que actúan mientras se produce la fusión del material, asi como, para hacer girar el crisol a partir de una posición vertical, mientras se produce la fusión del material, a una posición en el que el material fundido es vertido para ser moldeado. Los medios de agitación incluyen un soporte móvil, que puede rotar alrededor de un eje horizontal extendido perpendicularmente al eje de la bobina de inducción, unos medios de fijación de la bobina de inducción al soporte móvil, y unos medios para impartir rotación a dicho soporte móvil. La bobina de inducción está conectada a una fuente de corriente externa de alta frecuencia.
A diferencia de los que emplean quemadores de gas, donde el calor es recibido mayoritariamente por el fondo del crisol, cada vez más caliente que su parte superior, el dispositivo anteriormente descrito permite lograr un calentamiento más uniforme del crisol al estar dispuesto en el interior de una bobina de inducción, propiciando una fusión más rápida de la muestra. Sin embargo, requiere la transmisión de grandes corrientes a alta frecuencia desde una fuente externa al equipo para su funcionamiento, asi como, no se controlan los parámetros de trabajo (voltaje, corriente, frecuencia) de dicha fuente que aporta calor, teniendo en cuenta el tipo de crisol empleado y la temperatura que toma dicho crisol hasta la fusión de la muestra, todo lo cual atenta contra la vida útil de dicho crisol y la eficiencia del equipo.
Normalmente, el tipo de crisol a emplearse es seleccionado según el material a fundir. Mayormente, son empleados crisoles de aleación de platino, níquel, etc., en el caso de las oxidaciones, se emplean crisoles de circonio. Fundamentalmente, los crisoles de platino tienen un alto precio, por tanto, se busca evitar someterlos a condiciones que puedan dañarlos, con vistas a aumentar su vida útil lo más posible.
Por tanto, se requiere diseñar un dispositivo que permita llevar a cabo la preparación de una muestra de análisis por rayos-X o ICP, de una manera eficaz y eficiente, dando solución a los problemas anteriormente citados .
DESCRIPCIÓN DE LA INVENCIÓN La presente invención queda establecida y caracterizada en las reivindicaciones independientes, mientras que las reivindicaciones dependientes describen otras características de la misma. A la vista de lo anteriormente enunciado, la presente invención se refiere a un equipo para
preparación de muestras de análisis por rayos-X o ICP, así como, un procedimiento para el mismo fin que emplea dicho equipo.
El equipo comprende al menos un primer tanque oscilador dispuesto en un mecanismo de agitación accionado por un motor de giro. El mecanismo de agitación mejora y agiliza la homogenización de la fusión de una muestra durante su calentamiento. Por su parte, el primer tanque oscilador comprende un crisol montado sobre un primer soporte cerámico que queda dispuesto por el interior de una primera bobina de inducción.
A través de la bobina de inducción se transmite una potencia eléctrica, proveniente de un primer capacitor de inducción que es alimentado por un
convertidor de frecuencia, capaz de calentar, hasta fusionar, la muestra de material y su fundente
contenidos en el crisol.
Convenientemente, el primer capacitor de inducción está montado sobre el mecanismo de agitación, junto a la primera bobina de inducción, formando parte del primer tanque oscilador.
La disposición del capacitor de inducción sobre el mismo sistema móvil que la bobina de inducción, como parte integrante del tanque oscilador, elimina la necesidad de transmitir grandes corrientes a alta frecuencia desde una fuente externa al equipo,
simplificando el sistema eléctrico del mismo al
disminuir en gran medida la sección transversal de los conductores eléctricos que llevan la potencia hasta el convertidor de frecuencia, asi como, se reduce la magnitud de la corriente a través del transformador de aislamiento del convertidor de frecuencia, siendo más compacta su construcción.
Asi mismo, el equipo comprende un sistema de control del convertidor de frecuencia que ajusta la frecuencia de resonancia en función de valores de corriente y voltaje medidos continuamente en la primera bobina de inducción, asi como, regula la potencia eléctrica transmitida en función de valores de
temperatura medidos continuamente en el crisol. El ajuste de la frecuencia que lleva a cabo el sistema de control garantiza el correcto funcionamiento del convertidor de frecuencia, garantizando en todo momento la potencia debida en el crisol,
independientemente de las variaciones de sus propiedades o de las propiedades de la muestra a fundir. Esto permite que en el equipo puedan emplearse crisoles de diferentes materiales pues, éste es capaz de ajusfar automáticamente la frecuencia de resonancia del sistema según el tipo de crisol y la muestra a fundir.
Posibilidad que no tienen los aparatos conocidos.
Por otro lado, permite contar con una efectiva protección frente a corrientes reactivas, las cuales aparecen al aumentar el factor de calidad de la bobina de inducción, por ejemplo, en ausencia del crisol, es decir, bobina vacia. En este caso, el sistema de control saca al convertidor de resonancia aumentando la
frecuencia de los pulsos de control. De igual forma, el control absoluto y continuo de la temperatura del crisol y su contenido contribuyen también a su protección, siguiendo un calentamiento progresivo en base a rampas de temperaturas que permiten la fusión de la muestra de una manera eficaz y
eficiente, sin producir daños en el crisol.
Por su parte, el procedimiento comprende los siguientes pasos: a) iniciar el calentamiento de una muestra de material y un fundente contenidos en un crisol, por medio de un campo electromagnético generado por la transmisión de potencia eléctrica a través de una primera bobina de inducción de un primer tanque oscilador, en la cual, queda dispuesto interiormente el crisol. b) poner en marcha un mecanismo de agitación del primer tanque oscilador, siguiendo un movimiento alternativo a una velocidad y durante un tiempo de fusión previamente programados en función de la muestra de material a fundir. c) ajusfar la frecuencia de resonancia de un convertidor de frecuencia que alimenta a un primer capacitor de inducción del primer tanque oscilador en función de valores de corriente y voltaje medidos continuamente en la primera bobina de inducción. d) regular la potencia eléctrica transmitida por el convertidor de frecuencia, en función de valores de temperatura medidos continuamente en el crisol, los cuales, se hacen corresponder con valores de temperatura de una rampa de
calentamiento del crisol previamente programada según la muestra de material a fundir y el tipo de crisol empleado, e) detener el movimiento alternativo del
mecanismo de agitación al finalizar el tiempo de fusión programado, y f ) verter la muestra de material completamente fundido . El material fundido puede ser vertido, ya sea, en un plato moldeador para conformar una perla, si la muestra será analizada con técnicas de espectrometría de rayos-X, o en una disolución, si serán empleados otros métodos analíticos, tal como, el análisis de plasma de acoplamiento inductivo (ICP) .
De igual forma, si el material fundido es resultado de una oxidación, una vez fundida la muestra, el crisol que la contiene se introducirá en una
disolución acida para su posterior análisis por ICP.
Como puede verse, con la presente solución, de una manera sencilla y económica, quedan cubiertas la totalidad de las necesidades de la preparación de muestras, ya sean, sólidas o en disolución, incluso si es requerida la oxidación previa de la muestra.
A su beneficioso sistema de calentamiento por inducción, se suman el ajuste de la frecuencia de resonancia del convertidor de frecuencia y la regulación constante de la temperatura del crisol, lo cual permite un control exhaustivo, en tiempo real y modificable en cualquier momento, del proceso de preparación de la muestra, redundando en el cuidado del crisol y en la eficiencia de dicho proceso de preparación.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Se complementa la presente memoria descriptiva, con un juego de figuras, ilustrativas del ejemplo preferente y nunca limitativas de la invención.
La figura 1 representa una vista en perspectiva del equipo para preparación de muestras de análisis por rayos-X o ICP.
La figura 2 representa una vista en perspectiva de un primer tanque oscilador del equipo de la figura 1.
La figura 3 representa una vista en perspectiva explosionada de un segundo tanque oscilador del equipo de la figura 1, sin el segundo soporte cerámico que cubre la segunda bobina de inducción.
La figura 4 representa un esquema, en forma de diagrama en bloque, del circuito electrónico del equipo de la figura 1.
EXPOSICIÓN DE TALLADA DE LA REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de lo anteriormente enunciado, la presente invención se refiere a un equipo para
preparación de muestras de análisis por rayos-X o ICP.
Como muestran las figuras 1 y 2, el equipo comprende al menos un primer tanque oscilador (1) dispuesto en un mecanismo de agitación (2) accionado por un motor de giro (3) .
El primer tanque oscilador (1) comprende un crisol (1.1) montado sobre un primer soporte cerámico (1.2) que queda dispuesto por el interior de una primera bobina de inducción (1.3), la cual, está conformada por un tubo de cobre por cuyo interior circula un liquido refrigerante al mismo tiempo que se transmite una potencia eléctrica proveniente de un primer capacitor de inducción (1.4), el cual, es alimentado por un convertidor de frecuencia (4) .
Por su parte, el primer capacitor de inducción (1.4) está montado sobre el mecanismo de agitación (2), junto a la primera bobina de inducción (1.3), formando parte del primer tanque oscilador (1) . Es decir, el primer capacitor de inducción (1.4) está dispuesto sobre el mismo sistema móvil de la primera bobina de inducción (1.3), como componente del primer tanque oscilador (1) .
Adicionalmente, el primer taque oscilador (1) comprende sendos disipadores de calor (1.6) del primer capacitor de inducción (1.4), dispuestos en cada uno de sus lados, por donde circula el liquido refrigerante de la bobina de inducción (1.3) .
Por su parte, se prefiere que el mecanismo de agitación (2) comprenda dos discos laterales (2.2, 2.3), unidos centralmente por los extremos de un eje (2.1) que gira sobre dos apoyos (2.4) fijados al bastidor del equipo. Los discos laterales (2.2, 2.3) soportan al primer tanque oscilador (1) permitiendo su rotación, en un sentido u otro, dentro de un ángulo máximo de 120° respecto a la posición vertical del crisol (1.1), según el movimiento transmitido por el motor de giro (3) para la agitación y vertido de la muestra contenida en el crisol (1.1) .
Asi mismo, se prefiere que uno de los discos laterales (2.2) forme parte de una transmisión por poleas y correa (5) accionada por el motor de giro (3) .
Adicionalmente, los discos laterales (2.2, 2.3) son fabricados de un material no metálico,
preferiblemente, baquelita, con vistas a aislar eléctricamente el primer tanque oscilador (1) del resto de los elementos que componen el equipo.
Por otro lado, el convertidor de frecuencia (4) que alimenta el equipo puede ser del tipo inversor resonante a transistores LLC o inversor resonante a transistores LC serie.
Como puede verse en la figura 4, el equipo cuenta con un sistema de control (5) del convertidor de frecuencia (4) . Preferiblemente, dicho sistema de control (5) es un oscilador enganchado en fase comandado por un micro-controlador (5.1) . El sistema de control (5) ajusta la frecuencia de resonancia en función de valores de corriente (I) y voltaje (V) medidos continuamente en la primera bobina de inducción (1.3) .
Se prefiere que los valores de corriente (I) y voltaje (V) sean medidos en la primera bobina de
inducción (1.3) por medio de un transformador de alta frecuencia con núcleo de ferrita (no mostrado en las figuras) . Dichos valores son comunicados al micro- controlador (5.1), el cual, hace que el sistema de control (5) actúe sobre el convertidor de frecuencia (4), ajusfando la frecuencia de resonancia al tipo y condiciones del crisol (1.1) empleado, en base a los valores de corriente (I) y voltaje (V) medidos en la primera bobina de inducción (1.3) .
Asi mismo, el sistema de control (5) regula la potencia eléctrica transmitida en función de valores de temperatura (t) medidos continuamente en el crisol
(1.1) · Se prefiere que dichos valores de temperatura (t) sean medidos en el crisol (1.1) por medio de un
pirómetro (1.5) de infrarrojos. Preferiblemente, el pirómetro (1.5), mostrado en la figura 2, está montado sobre el mecanismo de agitación (2) del primer tanque de oscilación (1), próximo a la primera bobina de inducción (1.3) .
Los valores de temperatura (t) medidos en el crisol (1.1) son comunicados al micro-controlador (5.1) del sistema de control (5), el cual, actúa sobre el convertidor de frecuencia (4) regulando la potencia eléctrica que éste entrega al primer tanque de
oscilación (1), con vistas a mantener los valores de temperatura (t) medidos en el crisol (1.1) en
correspondencia con unos valores de temperatura que siguen una rampa de calentamiento del crisol (1.1) previamente programada según la muestra de material a fundir . Como muestra la figura 4, se prefiere que el motor de giro (3) sea accionado por el micro-controlador (5.1) del sistema de control (5), controlando la
agitación a velocidad variable del crisol (1.1) o su posicionamiento para el volcado de la muestra fusionada contenida en su interior.
Como muestran las figuras 1 y 3, se prefiere que el equipo comprenda al menos un segundo tanque oscilador (6), con un plato receptor (6.1) moldeador de una muestra de análisis para rayos-X, dispuesto debajo de un primer lado (1.11) del crisol (1.1) del primer tanque oscilador ( 1 ) .
Preferiblemente, el segundo tanque oscilador (6) comprende un segundo capacitor de inducción (6.4) y una segunda bobina de inducción (6.3) recubierta por un segundo soporte cerámico (6.2), sobre el cual, está dispuesto el plato receptor (6.1) . De igual forma que la primera bobina de inducción (1.3), la segunda bobina de inducción (6.3) está conformada por un tubo de cobre por donde circula interiormente un liquido refrigerante al mismo tiempo que se transmite una potencia eléctrica que, en este caso, calienta al plato receptor (6.1) para recibir la muestra fusionada y moldear una perla para análisis por rayos-X .
Preferentemente, la primera y segunda bobina de inducción (1.3, 6.3) están dispuestas al extremo de un sistema cerrado de refrigeración.
Asi mismo, se prefiere que el segundo capacitor de inducción (6.4) esté conectado eléctricamente en paralelo al primer capacitor de inducción (1.4), estando sus frecuencias resonantes sincronizadas entre si.
Por otro lado, preferentemente, el crisol (1.1) y el plato receptor (6.1) comprenden sendos ventiladores (7), dispuestos debajo de la primera y segunda bobina de inducción (1.3, 6.3) respectivamente. Como muestra la figura 4, es deseable que ambos ventiladores (7) sean controlados por el micro-controlador (5.1), con vistas a ser accionados cuando sea programado acelerar el
enfriamiento del crisol (1.1) y del plato receptor (6.1) respectivamente, ya sea, para manipular el crisol (1.1) o para extraer la perla moldeada del plato receptor (6.1) .
Por otro lado, como se muestra en la figura 1, se prefiere que el equipo comprenda al menos un
recipiente (8), con una disolución para una muestra de análisis por ICP, dispuesto debajo de un segundo lado (1.12) del crisol (1.1) del primer tanque oscilador (1) .
Preferentemente, el recipiente (8) comprende unos medios agitadores magnéticos (8.1) que mantienen de la disolución en movimiento mientras se produce el vertido de la muestra fusionada en dicho recipiente (8) .
Asi mismo, se prefiere que también los medios agitadores magnéticos (8.1) del recipiente (8) sean accionados por el micro-controlador (5.1) .
Preferiblemente, mediante una unidad de control externa (no mostrada en las figuras), se instruyen los procesos de fusión que individualmente seguirán los micro-controladores (5.1) de hasta 10 módulos de fusión dispuestos en el equipo, conformados cada uno por al menos un grupo compuesto por un primer tanque oscilador (1), un segundo tanque oscilador (6), y un recipiente (8) . Estos módulos de fusión pueden funcionar
sincronizados o totalmente independientes, incluso, desarrollando procesos de preparación de muestras de análisis de rayos-X o ICP diferentes.
La unidad de control externa puede tratarse de un ordenador u otro sistema de control en donde,
adicionalmente, se pueden programar, visualizar y analizar los parámetros de trabajo de cada módulo de fusión, diagnosticar cualquier problema que pueda surgir en alguno o varios de dichos módulos, asi como, dar las órdenes de arranque a cada uno de ellos.
Por su parte, el proceso de preparación de muestras de análisis de rayos-X o ICP, que se lleva a cabo en el equipo anteriormente descrito, comprende los pasos descritos a continuación. Primero, se inicia el calentamiento de la muestra de material y el fundente contenidos en el crisol (1.1), por medio de un campo electromagnético generado por la transmisión de potencia eléctrica a través de la primera bobina de inducción (1.3) del primer tanque oscilador (1), en la cual, queda dispuesto interiormente el crisol (1.1) .
Seguidamente, se pone en marcha el mecanismo de agitación (2) del primer tanque oscilador (1), siguiendo un movimiento alternativo a una velocidad y durante un tiempo de fusión previamente programados en función de la muestra de material a fundir.
El micro-controlador (5.1) del sistema de control (5) del equipo sigue un programa de ordenador, totalmente personalizable, con procesos de fusión previamente definidos para muestras de minerales, cementos, elementos refractarios, aleaciones, escorias, entre otros materiales, asi como, para materiales no oxidados.
Luego, se ajusta la frecuencia de resonancia del convertidor de frecuencia (4) que alimenta al primer capacitor de inducción (1.4) del primer tanque oscilador (1), en función de valores de corriente (I) y voltaje (V) medidos continuamente en la primera bobina de inducción (1.3) .
En este paso, el micro-controlador (5.1), partiendo de los valores de corriente (I) y voltaje (V) que se le han facilitado, calcula los valores
instantáneos del voltaje, la corriente y el desfase entre ellos y actúa sobre el convertidor de frecuencia (4) para mantener dichos valores calculados. De esta forma se garantiza en todo momento la entrega de la potencia debida a la carga, independientemente de las variaciones de la misma, del tipo de crisol (1.1) empleado, o del estado en que se encuentra esté último. Todo lo cual, permite que el equipo pueda emplear cualquier tipo de crisol (1.1), ya sea, de aleación de patino, níquel, cerámica, circonio, etc.
Gracias al control que mantiene el micro- controlador (5.1) sobre el convertidor de frecuencia (4), se logra una efectiva protección del equipo frente a la aparición de corrientes reactivas, ante el aumento del factor de calidad de la bobina de inducción (3.1), por ejemplo, por ausencia de crisol (1.1), es decir, cuando dicha bobina de inducción (1.3) se encuentra vacía y el equipo está en funcionamiento. En este caso, el micro-controlador (5.1) hace que el sistema de control (5) saque al convertidor de frecuencia (4) de resonancia, aumentando la frecuencia de los pulsos de control .
En el siguiente paso, se regula la potencia eléctrica transmitida por el convertidor de frecuencia (4), en función de valores de temperatura (t) medidos continuamente en el crisol (1.1), los cuales, se hacen corresponder con valores de temperatura de una rampa de calentamiento del crisol (1.1) previamente programada según la muestra de material a fundir y el tipo de crisol (1.1) empleado. Así como el programa de ordenador, que sigue el micro-controlador (5.1) durante el funcionamiento automático del equipo, tiene programado la variación de velocidad y el tiempo de fusión durante el que debe desarrollarse el movimiento alternativo del primer tanque oscilador (1) según sea el material a fundir, se predefinen en él una serie de rampas de calentamiento que igualmente responden al material de la muestra a fundir y al tipo de crisol (1.1) empleado. Los valores de temperatura que definen dicha rampa son reproducidos durante el calentamiento del crisol (1.1) gracias a la acción del sistema de control (5) sobre el convertidor de frecuencia (4) como respuesta a los valores de temperatura (t) medidos en el crisol (1.1) . Una vez finalizado el tiempo de fusión, se detiene el movimiento alternativo del mecanismo de agitación (2), al cual, el sistema de control (5), por orden del micro-controlador (5.1), le instruye las acciones programadas sobre el vertido de la muestra de material completamente fundido según el tipo de muestra que se desea preparar.
Si el tipo de muestra a preparar programado es para emplearse en análisis por rayos-X, se prefiere que la muestra de material fundido se vierta hacia un plato receptor (6.1), moldeador de una muestra sólida en forma de perla.
En cambio, si se ha programado preparar una muestra a emplearse en análisis por ICP, se prefiere que la muestra de material fundido sea vertida hacia un recipiente (8) que contiene una disolución agitada.
Sin embargo, si se ha programado llevar a cabo una oxidación, se prefiere que el material oxidado, contenido en este caso en un crisol (1.1) de circonio, una vez fundida la muestra, se enfrie y se introduzca, incluyendo el crisol (1.1) que la contiene, en una disolución acida para su posterior análisis por ICP.
Como puede verse, la presente invención se ha concebido para funcionar de forma completamente
automática, con capacidad para controlar y dar
seguimiento en tiempo real, incluso, de forma totalmente independiente, el proceso de preparación de más de una muestra desarrollados de forma simultánea.

Claims

REIVINDICACIONES
1. - Equipo para preparación de muestras de análisis por rayos-X o ICP que comprende al menos un primer tanque oscilador (1) dispuesto en un mecanismo de agitación (2) accionado por un motor de giro (3), el primer tanque oscilador (1) comprende un crisol (1.1) montado sobre un primer soporte cerámico (1.2) que queda dispuesto por el interior de una primera bobina de inducción (1.3), a través de la primera bobina de inducción (1.3) se transmite una potencia eléctrica proveniente de un primer capacitor de inducción (1.4) alimentado por un convertidor de frecuencia (4),
caracterizado por que el primer capacitor de inducción (1.4) está montado sobre el mecanismo de agitación (2), junto a la primera bobina de inducción (1.3), formando parte del primer tanque oscilador (1), un sistema de control (5) del convertidor de frecuencia (4) ajusta la frecuencia de resonancia en función de valores de corriente (I) y voltaje (V) medidos continuamente en la primera bobina de inducción (1.3), y regula la potencia eléctrica transmitida en función de valores de
temperatura (t) medidos continuamente en el crisol
(1.1) .
2. - Equipo según la reivindicación 1, en el que el sistema de control (5) del convertidor de frecuencia (4) es un oscilador enganchado en fase comandado por un micro-controlador (5.1) .
3. - Equipo según las reivindicaciones 1 y 2, en el que los valores de corriente (I) y voltaje (V) son medidos en la primera bobina de inducción (1.3) por medio de un transformador de alta frecuencia con núcleo de ferrita y comunicados al micro-controlador (5.1) .
4.- Equipo según las reivindicaciones 1 y 2, en el que los valores de temperatura (t) son medidos en el crisol (1.1) por medio de un pirómetro (1.5) y
comunicados al micro-controlador (5.1) .
5.- Equipo según las reivindicaciones 1 y 2, en el que el motor de giro (2) es accionado por el micro- controlador (5.1), controlando la agitación a velocidad variable del crisol (1.1) o su posicionamiento para el volcado de la muestra contenida en su interior.
6.- Equipo según la reivindicación 1, en el que el convertidor de frecuencia (4) es un inversor resonante transistores LLC o LC serie.
7.- Equipo según la reivindicación 1, que comprende al menos un segundo tanque oscilador (6), con un plato receptor (6.1) moldeador de una muestra de análisis para rayos-X, dispuesto debajo de un primer lado (1.11) del crisol (1.1) del primer tanque oscilador (1) .
8.- Equipo según la reivindicación 7, en el que el segundo tanque oscilador (6) comprende un segundo capacitor de inducción (6.4) y una segunda bobina de inducción (6.3) recubierta por un segundo soporte cerámico (6.2), sobre el cual está dispuesto el plato receptor (6.1) .
9.- Equipo según las reivindicaciones 1 y 8, en el que el segundo capacitor de inducción (6.4) está
conectado eléctricamente en paralelo al primer capacitor de inducción (1.4), estando sus frecuencias resonantes sincronizadas entre si.
10.- Equipo según las reivindicaciones 1 y 8, en en el que el crisol (1.1) y el plato receptor (6.1) comprenden sendos ventiladores (7), dispuestos debajo la primera y segunda bobina de inducción (1.3, 6.3) respectivamente .
11.- Equipo según las reivindicaciones 1 y 8, en el que la primera y segunda bobina de inducción (1.3, 6.3) están dispuestas al extremo de un sistema cerrado de refrigeración.
12.- Equipo según la reivindicación 1, que comprende al menos un recipiente (8), con una disolución para una muestra de análisis por ICP, dispuesto debajo de un segundo lado (1.12) del crisol (1.1) del primer tanque oscilador ( 1 ) .
13.- Procedimiento para la preparación de muestras de análisis por rayos-X o ICP, empleando el equipo de reivindicación 1, que comprende los siguientes pasos: a) iniciar el calentamiento de una muestra de material y un fundente contenidos en un crisol (1.1), por medio de un campo electromagnético generado por la transmisión de potencia eléctrica a través de una primera bobina de inducción (1.3) de un primer tanque oscilador (1), en la cual, queda dispuesto interiormente el crisol (1.1),
b) poner en marcha un mecanismo de agitación (2) del primer tanque oscilador (1), siguiendo un
movimiento alternativo a una velocidad y durante un tiempo de fusión previamente programados en función de la muestra de material a fundir,
c) ajusfar la frecuencia de resonancia de un
convertidor de frecuencia (4) que alimenta a un primer capacitor de inducción (1.4) del primer tanque oscilador (1) en función de valores de corriente (I) y voltaje (V) medidos continuamente en la primera bobina de inducción (1.3),
d) regular la potencia eléctrica transmitida por el convertidor de frecuencia (4), en función de valores de temperatura (t) medidos continuamente en el crisol (1.1), los cuales, se hacen corresponder con valores de temperatura de una rampa de
calentamiento del crisol (1.1) previamente
programada según la muestra de material a fundir y el tipo de crisol (1.1) empleado,
e) detener el movimiento alternativo del mecanismo de agitación (2) al finalizar el tiempo programado, y f) verter la muestra de material completamente
fundido .
14. - Procedimiento según la reivindicación 13, en el que en el paso f) la muestra de material fundido se vierte hacia un plato receptor (6.1) moldeador de una muestra sólida a emplearse en análisis por rayos-X.
15. - Procedimiento según la reivindicación 13, en el que en el paso f) la muestra de material fundido se vierte hacia un recipiente (8) con una disolución agitada a emplearse en análisis por ICP.
PCT/ES2015/070107 2014-02-28 2015-02-18 Equipo y procedimiento para preparación de muestras de análisis por rayos-x o icp WO2015128522A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201430280A ES2544514B1 (es) 2014-02-28 2014-02-28 Equipo y procedimiento para preparación de muestras de análisis por rayos-X o ICP
ESP201430280 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015128522A1 true WO2015128522A1 (es) 2015-09-03

Family

ID=53939549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070107 WO2015128522A1 (es) 2014-02-28 2015-02-18 Equipo y procedimiento para preparación de muestras de análisis por rayos-x o icp

Country Status (2)

Country Link
ES (1) ES2544514B1 (es)
WO (1) WO2015128522A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016168795A1 (en) * 2015-04-16 2016-10-20 Spex Sample Prep, Llc Fluxer having a modular electrically powered furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329136A (en) * 1977-02-21 1982-05-11 Institut De Recherches De La Siderurgie Francaise (Irsid) Apparatus for the automatic preparation of an X-ray spectrometry sample
US4612042A (en) * 1984-03-01 1986-09-16 Stelco Inc. Method for automatically fluxing and casting samples
US5990465A (en) * 1995-03-27 1999-11-23 Omron Corporation Electromagnetic induction-heated fluid energy conversion processing appliance
DE19927380A1 (de) * 1999-06-16 2000-12-21 Linn High Therm Gmbh Induktions-Aufschlußvorrichtung
WO2007109858A1 (en) * 2006-03-27 2007-10-04 Liquid Ceramics Technology Pty Ltd Method and apparatus for heating refractory oxides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329136A (en) * 1977-02-21 1982-05-11 Institut De Recherches De La Siderurgie Francaise (Irsid) Apparatus for the automatic preparation of an X-ray spectrometry sample
US4612042A (en) * 1984-03-01 1986-09-16 Stelco Inc. Method for automatically fluxing and casting samples
US5990465A (en) * 1995-03-27 1999-11-23 Omron Corporation Electromagnetic induction-heated fluid energy conversion processing appliance
DE19927380A1 (de) * 1999-06-16 2000-12-21 Linn High Therm Gmbh Induktions-Aufschlußvorrichtung
WO2007109858A1 (en) * 2006-03-27 2007-10-04 Liquid Ceramics Technology Pty Ltd Method and apparatus for heating refractory oxides

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016168795A1 (en) * 2015-04-16 2016-10-20 Spex Sample Prep, Llc Fluxer having a modular electrically powered furnace
US9709472B2 (en) 2015-04-16 2017-07-18 Spex Sample Prep, Llc Fluxer having a modular electrically powered furnace
AU2016248439B2 (en) * 2015-04-16 2017-12-14 Spex Sample Prep Llc Fluxer having a modular electrically powered furnace

Also Published As

Publication number Publication date
ES2544514B1 (es) 2016-06-09
ES2544514A1 (es) 2015-08-31

Similar Documents

Publication Publication Date Title
EP1294510B1 (en) Apparatus for magnetically stirring a thixotropic metal slurry
WO2013133318A1 (ja) チタン溶解装置
KR101524023B1 (ko) 서셉터 용기내 재료의 전기 유도 가열 및 용융을 위한 전력 시스템
US20100163207A1 (en) Method and device for the electromagnetic stirring of electrically conductive fluids
GB1578013A (en) Apparatus for automatically preparing analysis samples
ES2544514B1 (es) Equipo y procedimiento para preparación de muestras de análisis por rayos-X o ICP
CN107055545B (zh) 一种利用硅粉进行熔炼生产硅锭的工艺
CN100516741C (zh) 铸造方法及设备
JP4426471B2 (ja) 希土類金属含有合金の鋳造装置
EP0853131B1 (en) Process and plant for induction melting and purification of aluminium, coper, brass, lead and bronze alloys
CN113421681A (zh) 放射性废物处理系统及其熔融方法
US8571085B2 (en) Induction furnace for the controllable melting of powder/granular materials
CA2420931C (en) Process and device for preparing a melt of an alloy for a casting process
EP1747701B1 (en) Induction furnace for melting granular materials
JP5740584B2 (ja) シリコンを結晶化させる装置及び方法
WO2004058433A2 (en) Systems and methods of electromagnetic influence on electroconducting continuum
JP5039386B2 (ja) 金属の方向凝固
WO2013024163A1 (en) A method for synthesis of ingoing billets of corundum in the form of polycrystalline ingots for growing crystals of sapphire and installation therefore
CN212620128U (zh) 一种锌铜合金安全生产用工频电炉
JPS60137833A (ja) ガラスの高周波誘導加熱溶融炉
CN113465378A (zh) 放射性废物处理系统及其电源的功率控制方法
JP3041080B2 (ja) 精密鋳造装置
CN201664754U (zh) 一种交变磁场强化过流冷却制备金属半固态浆料的装置
CN106517212B (zh) 一种利用感应炉熔硅的起炉工艺
WO2011093741A1 (ru) Устройство для одновременного получения тугоплавких, металлических и неметаллических материалов и возгонов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755995

Country of ref document: EP

Kind code of ref document: A1