WO2015127725A1 - 可萃取物低的高吸水性树脂的制备方法 - Google Patents

可萃取物低的高吸水性树脂的制备方法 Download PDF

Info

Publication number
WO2015127725A1
WO2015127725A1 PCT/CN2014/078875 CN2014078875W WO2015127725A1 WO 2015127725 A1 WO2015127725 A1 WO 2015127725A1 CN 2014078875 W CN2014078875 W CN 2014078875W WO 2015127725 A1 WO2015127725 A1 WO 2015127725A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
minutes
interface
crosslinking agent
acrylic acid
Prior art date
Application number
PCT/CN2014/078875
Other languages
English (en)
French (fr)
Inventor
王成
马国林
金丰富
Original Assignee
浙江卫星石化股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江卫星石化股份有限公司 filed Critical 浙江卫星石化股份有限公司
Publication of WO2015127725A1 publication Critical patent/WO2015127725A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof

Definitions

  • the invention relates to a method for preparing a superabsorbent resin with low extractables, which is polymerized by a tower reactor to form a gel, which is then ground by a mincer, dried, and then pulverized and sieved to a predetermined particle size. Finally, a surface treatment coating operation is performed.
  • the highly water-absorbent resin obtained by the present invention can be used for sanitary articles.
  • the superabsorbent resin has a strong absorption capacity, absorbs 100 times or even thousands of times its own weight of water, and does not flow out after absorption, and does not leak under pressure. It is widely used in agricultural soil water-retaining agents, sanitary products, and preservation applications for preserving food.
  • the polymerization methods are as follows: Cast film polymerization (Japanese Patent Sho 48 (1973) - 42, 466 ), polymerization on a conveyor belt (Japan) Patent Sho 58 (1983)-49, 714), a polymerization reaction carried out in a continuous kneader (Japanese Patent No. Sho 57 (1982)-34, 101), and a reaction of inverse suspension polymerization (Japanese Patent No. 59 (1984)- 37, 003).
  • the cast film polymerization reaction cannot be continuously produced, and the yield is low; while the continuous kneader reaction can be continuously produced, but the single set of production capacity is low; the reverse phase suspension reaction has high cost and low yield.
  • the present invention is first polymerized and then neutralized by a tower reactor. Since the removal of heat by the small diameter of the column is easier, the synthesized product has a large molecular weight, good performance, a large single capacity, and can adjust the production capacity according to market demand. With the combination of multiple tower reactors, the problem of continuous production can be solved. Summary of the invention
  • An object of the present invention is to provide a process for producing a highly water-absorptive resin which is low in extractables, and which is useful for absorbing water, urine and blood.
  • a method for preparing a superabsorbent resin having low extractables comprising the steps of:
  • the obtained gel particles are dried, pulverized and sieved at a temperature of 160 ° C to 250 ° C;
  • the particle size after gelation is 2 mm to 10 mm.
  • the liquid base thereof is a 48%% solution prepared by sodium hydroxide produced by ion-exchange membrane method;
  • the polymerization crosslinking agent is polyethylene glycol diacrylate (such as: polyethylene glycol (400) diacrylate), triallylamine and pentaerythritol tetraacrylate, etc., based on the total mass of refined acrylic acid The dosage range is 0.1wt% lwt%.
  • the polymerization initiator is a redox type initiator, such as: 0.01 wt% lwt% sodium persulfate or potassium persulfate is added based on the total mass of the refined acrylic acid.
  • the polymerization temperature is from -5 ° C to 60 ° C, preferably from 5 ° C to 20 ° C, and the reaction time is from 100 minutes to 360 minutes, preferably from 100 minutes to 200 minutes.
  • the tower reaction device includes a body, a feed portion, and a discharge portion.
  • the body is composed of a plurality of reaction vessels which are sequentially stacked from top to bottom.
  • a jacket is provided outside each reaction vessel for introducing cooling water to cool the reaction vessel.
  • the feeding portion is disposed at the top of the body, and the first interface, the second interface and the third interface are disposed thereon.
  • the first interface is a three-way valve for the addition of reaction materials and auxiliary materials.
  • the second interface is connected to the pressure pump and the third interface is used to connect to the device that generates the vacuum.
  • the discharge portion is disposed at the bottom end of the body, and the lower outlet section is smaller than the upper opening section, and has a flare shape, and a discharge valve is further disposed at the lower outlet.
  • the filtered particle size distribution is between 0.015 mm and 0.08 mm.
  • the surface crosslinking agent is a polyhydric alcohol such as propylene glycol, glycerin, 1,4-butanediol or diethylene glycol, and may be used singly or in combination.
  • the amount added is 0.1% by weight to 1% by weight based on the total mass of the resin particles.
  • water is also required, which is used in an amount of 2 to 5 times that of the surface crosslinking agent.
  • the surface treatment has a heating temperature of 120 ° C to 200 ° C and a treatment time of 12 minutes to 120 minutes.
  • the auxiliaries used in the preparation method are, for example, one or more of a flavoring agent, a releasing agent (e.g., fumed nano silica), a deodorant, an antibacterial agent, and a preservative.
  • the invention provides a method for preparing a superabsorbent resin with low extractables.
  • the aqueous solution of the acrylic acid monomer is added to the tower reactor, and the concentration range of the aqueous monomer solution is controlled between 20% and 1% to 40% by weight.
  • the chilled water controls the temperature range of the reaction vessel to between -5 °C and 60 °C.
  • a polymerization crosslinking agent and a polymerization initiator are added.
  • the reacted gel was made into 2-10 mm gel particles by a mincer, and the mincing aid was a liquid base.
  • Re-enter Dry in a dryer, drying temperature 160 ° C -250 ° C, drying time is 0.5 hours -1 hour. The dried material is crushed, screened, and then coated with a surface crosslinking treatment agent.
  • Another method for preparing a superabsorbent resin having low extractables of the present invention has the following steps: a) adding a precise acrylic acid and water to a column reactor by a pump, and the column reaction device is composed of five reaction vessels. For a body of 1 m and a height of 10 m, the temperature of the reaction vessel was lowered to -5 ° C, and oxygen was removed by nitrogen for 30 minutes.
  • the obtained resin pellets were introduced into the surface treatment machine at a flow rate of 3,600 kg/hr, and simultaneously sprayed into the surface treatment agent at a flow rate of 82.8 Kg/hr, reacted at 200 ° C for 30 minutes, then cooled to 80 ° C, and added to 7.2 kg.
  • the gas phase nano silica having a specific surface area of 200 m 2 /g was mixed at an hour, and after atomization of 180 Kg / hr of water, a highly water-absorbent resin product having a low soluble matter was obtained.
  • the preparation method of the super absorbent resin provided by the invention has low polymerization reaction temperature, simple production process, basically no discharge of three wastes (ie, waste gas, waste water and solid waste), and the quality of the product is also improved.
  • the product obtained has good performance, especially low extractables, fast absorption rate and low residual monomer.
  • Figure 1 is a schematic view showing the structure of an embodiment of a column reactor of the present invention. detailed description
  • a tower type reaction apparatus as shown in FIG. 1 is used, which includes a body 1, a feeding portion 2, and a discharging portion 3.
  • a plurality of reaction vessels 11 are sequentially stacked from top to bottom to constitute the body 1.
  • Each of the reaction vessels 11 is provided with a jacket 12 for introducing cooling water to cool But the reaction container.
  • the feeding portion 2 is placed at the top end of the body 1, and is provided with a first interface 21, a second interface 22 and a third interface 23.
  • the first interface 21 is a three-way valve for adding reaction materials and auxiliary materials.
  • the second port 22 is connected to a pressure pump to facilitate pressurization of the material from the bottom after the reaction has ended.
  • the third port 23 is a gas valve for introducing nitrogen gas.
  • the discharge portion 3 is disposed at the bottom end of the body, and the lower outlet section is smaller than the upper opening section, and has a flare shape, and a discharge valve 31 is further disposed at the lower outlet.
  • each reaction vessel 11 is coated with or coated with polytetrafluoroethylene to at least a pressure of 1.6 MPa.
  • the following examples of the present invention produce a highly water-absorptive resin having a low extractable property, and the water absorption rate and the liquid absorption rate are tested as follows:
  • Water absorption rate (g/g): Weigh 0.2g sample, accurate to 0.001g, and record the mass as m, pour all the sample into the beaker (beaker placed 500g 23 ⁇ 2 ° C deionized The water is placed in a constant temperature water bath). After soaking for 60 minutes, pour the contents of the beaker into a 250-mesh nylon bag. The nylon bag was suspended diagonally with a clip and dripped for 10 minutes at rest. After 10 minutes, weighed nylon sample with mass m lc performed simultaneously with nylon without sample blank value measurement, mass weighed nylon sample blank, and the mass m 2, referred to as the water absorption Calculated as follows:
  • Ci - water absorption rate the unit is g / g ;
  • the mass of the nylon bag containing the sample the unit is g;
  • Aspirate speed In a 100 mL beaker with a rotor, put 0.9% physiological saline 50.0 ⁇ 0.5 g, place the beaker on a magnetic stirrer, stir at 600 rpm, accurately weigh 2.00 g of resin , put into the whirlpool, and start timing with the stopwatch. When the vortex disappears and the liquid level becomes horizontal, the time (seconds) is recorded as the end point. Take 3 sample tests and take the average of 3 samples as the measurement result, which is accurate to one decimal place.
  • Example 1 a) Add the acrylic acid (Zhejiang Satellite Acrylic Acid) lOOOKg and water 2300Kg to the tower reactor by pump.
  • the reactor consists of 5 tower sections. The tower diameter is 1 meter and the height is 10 meters. Turn on the chilled water to set the temperature inside the tower. Reduce to -5 °C and deoxygenate for 30 minutes.
  • the above particles enter the continuous circulation hot air belt dryer or drum dryer, the first section hot air temperature is 250 ° C, the second section hot air temperature is 180 ° C, the third section hot air temperature is 170 ° C, the fourth The hot air temperature is 160 °C. Wind speed 2m/s.
  • the material was passed through the dryer for 30 minutes and cooled to 60 °C at the last section of the dryer to obtain dry granules having a water content of 5-7 wt%.
  • a) Add 2000Kg of refined acrylic acid and 4600Kg of tap water to the reactor by pump.
  • the reactor consists of 10 tower sections. The diameter of the tower is 1 meter and the height is 20 meters. Turn on the chilled water to reduce the temperature in the kettle to 20V, and pass nitrogen. Deoxidize for 30 minutes.
  • the above particles enter the continuous circulation hot air belt dryer.
  • the first section hot air temperature is 250 °C
  • the second section hot air temperature is 180 °C
  • the third section hot air temperature is 170 °C
  • the fourth section hot air temperature is 160 ° C. Wind speed 2m/s.
  • the material was passed through the dryer for 30 minutes and cooled to 70 ° C at the last section of the dryer to obtain dry granules having a water content of 5 to 7 wt%.
  • a) Add 2000Kg of refined acrylic acid and 4600Kg of tap water to the reactor by pump.
  • the reactor consists of 10 tower sections. The diameter of the tower is 1 meter and the height is 20 meters. Turn on the chilled water to reduce the temperature in the kettle to 20V, and pass nitrogen. Deoxygenation for 30 minutes.
  • the above particles enter the continuous circulation hot air belt dryer.
  • the first section hot air temperature is 250 °C
  • the second section hot air temperature is 180 °C
  • the third section hot air temperature is 170 °C
  • the fourth section hot air temperature is 160. °C. Wind speed 2m/s.
  • the material was passed through the dryer for 30 minutes and cooled to 70 °C in the last section of the dryer to obtain dry granules having a water content of 5-7 wt%.
  • Atmospheric absorption rate 63 60 59 Water retention rate (g/g) 39.5 38.5 38

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种可萃取物低的高吸水性树脂的制备方法,其制备方法至少包括下列步骤:(1) 使精丙烯酸、聚合引发剂、聚合交联剂和自来水在塔式反应器中聚合;(2) 聚合反应后生成凝胶连续进入绞碎机并进行绞碎和造粒的步骤,绞碎助剂为液碱;(3) 以温度160-250℃干燥、粉碎和筛选;(4) 连续表面交联剂涂覆和加热表面处理;(5) 根据不同要求加入其它助剂并包装。通过上述的工艺制备的高吸水性树脂可溶物低、残留单体低、吸收速度快,适用于卫生用品。

Description

可萃取物低的高吸水性树脂的制备方法
技术领域
本发明涉及一种用于可萃取物低的高吸水性树脂的制备方法, 利用塔 式反应器聚合反应生成凝胶, 再通过绞碎机绞碎后干燥, 然后粉碎并筛选 规定的粒径, 最后进行表面处理包覆操作。 通过本发明获得的高吸水性树 脂可用于卫生用品。
高吸水性树脂具有强大的吸收能力, 可吸收百倍甚至千倍于本身重量 的水, 且吸收后不会流出, 加压下也不会渗漏。 广泛运用于农业上的土壤 保水剂、 卫生用品以及保存食物用的保鲜应用等。
高吸水性树脂的制备方法有多种已应于工业界的生产,其聚合方法有: 铸膜聚合反应 (日本专利昭 48 ( 1973 ) -42, 466 ), 于输送带上进行聚合反 应 (日本专利昭 58(1983)-49, 714 ), 连续捏合机中进行的聚合反应 (日本 专利昭 57(1982)-34, 101 ), 进行反相悬浮聚合的反应 (日本专利昭 59(1984)-37 , 003 )。
铸膜聚合反应不能连续化生产, 产量低; 而连续捏合机反应能连续化 生产, 但单套产能低; 反相悬浮反应成本高且产量低。 本发明通过塔式反 应器先聚合再中和。 由于塔径小聚合反应时撤热更容易, 所以合成的产品 分子量大, 性能好, 单套产能大, 并可以根据市场需求进行调节产能。 通 过多套塔式反应器联合, 就可以解决连续化生产的问题。 发明内容
本发明目的是提供一种可萃取物低的高吸水性树脂的制备方法, 制得的树 脂可用于吸收水、 尿和血的等物质。
一种可萃取物低的高吸水性树脂的制备方法, 包括以下步骤:
a) 将精丙烯酸、 聚合引发剂、 聚合交联剂和水加入塔式反应装置并聚合, 精丙烯酸初始浓度 30wt%-45wt%;
b ) 聚合反应后生成的凝胶连续进入绞碎机并进行绞碎, 得凝胶颗粒, 使用 液碱为绞碎助剂;
c) 所得凝胶颗粒于温度 160°C-250°C干燥、 粉碎和筛选;
d ) 连续表面交联剂包覆和加热表面处理;
e) 根据不同要求加入其它助剂并包装。
在制备过程中, 其凝胶破碎后的粒径为 2mm-10mm。 在制备过程中, 其液碱是离子膜法生产的氢氧化钠配成的 48 ^%的溶液; 在制备过程中, 其聚合交联剂是聚乙二醇二丙烯酸酯(如: 聚乙二醇 (400) 二丙烯酸酯)、三烯丙胺和季戊四醇四丙烯酸酯等, 以精丙烯酸的总质量计, 用 量范围在 0.1wt% lwt%。
在制备过程中, 其聚合引发剂为氧化还原型引发剂, 如: 以精丙烯酸的总 质量为基准,加入 0.01wt% lwt%的过硫酸钠或过硫酸钾与
Figure imgf000004_0001
lwt%^ 亚硫酸氢钠组成的氧化还原引发体系, 或加入 0.01wt%^lj lwt%的过氧化氢与 0.01 wt%^lj lwt%的硫酸亚铁组成的氧化还原引发剂体系。
在制备过程中, 其聚合的反应温度为 -5°C-60°C, 优选 5°C-20°C, 反应时间 为 100分钟 -360分钟, 优选 100分钟 -200分钟。
塔式反应装置包括本体、 加料部和出料部。 本体由若干反应容器依次由 上而下叠置组成。 各个反应容器外均设有夹套, 用于通入冷却水以冷却反 应容器。 加料部置于本体顶端, 其上设有第一接口、 第二接口和第三接口。 第一接口为三通阀, 用于加入反应原料和辅料。 第二接口与压力泵连接, 第三接口用于与产生真空的设备连接。 出料部设于本体底端, 下方的出口 截面小于上方的开口截面, 而呈喇叭形, 在下方出口还设有出料阀。
在制备过程中, 其筛选后的粒径分布在 0.015mm到 0.08mm之间的树脂颗 粒。
表面交联剂为多元醇, 如: 丙二醇、 丙三醇、 1,4-丁二醇和二乙二醇等, 可 单独或混合使用。 以树脂颗粒的总质量计, 其添加量 0.1wt%-lwt%。 添加表面 处理剂时, 还需要用水, 其用量是表面交联剂的 2倍 -5倍。
表面处理的加热温度为 120°C-200°C, 处理时间 12分钟 -120分钟。
制备方法所用的助剂如: 增香剂、 防粘剂 (如: 气相纳米二氧化硅)、 除 臭剂、 抗菌剂和防腐剂中的一种或多种。
本发明提供的另一种可萃取物低的高吸水性树脂的制备方法, 精丙烯酸单 体水溶液加入塔式反应器, 单体水溶液浓度范围控制在 20\¥1%到 40wt%之间, 通冷冻水将反应容器的温度范围控制在 -5 °C-60°C。 加入聚合交联剂和聚合引发 剂。反应好的凝胶用绞碎机制成 2-10mm的凝胶颗粒, 绞碎助剂为液碱。再进入 干燥机中干燥, 干燥温度 160°C-250°C, 干燥时间为 0.5小时 -1小时。 干燥好的 物料进行破碎、 筛选, 再将表面交联处理剂进行包覆。
本发明的另一种可萃取物低的高吸水性树脂的制备方法, 其步骤如下: a)用泵将精丙烯酸和水加入塔式反应器, 塔式反应装置的由 5个反应 容器组成直径为 1米,高度为 10米的本体,将反应容器的温度降低至 -5 °C, 并通氮除氧 30分钟。
b)然后加入 0.1wt%-lwt%^聚合交联剂和 0.01 wt%¾ lwt%的聚合引发 剂。
c)物料在反应器里反应 120分钟。 然后开打底部出料阀, 并将塔内压 力升高到 IMpa, 将制得的凝胶从本体内缓慢压出。
d)将制得凝胶转入绞碎机, 并加入 48^%氢氧化钠 (离子膜法制得) 水溶液, 制成 2-10mm的凝胶颗粒。
e) 使用风速 2m/s, 依次按第一节热风温度为 250°C, 第二节热风温度 为 180°C, 第三节热风温度为 170°C, 第四节热风温度为 160°C将凝胶颗粒 在 30分钟内干燥后, 冷却到 60°C, 得到含水量 5-7wt%的干燥颗粒。
f) 将干燥后的颗粒粉碎, 用标准筛筛选出 0.015mm-0.08mm的树脂颗 粒。
g)获得的树脂颗粒以流量为 3600Kg/小时进入表面处理机,同时以 82.8 Kg/小时流量雾化喷入表面处理剂, 200 °C下反应 30分钟,然后冷却到 80°C, 加入 7.2Kg/小时的比表面积为 200m2/g的气相纳米二氧化硅混合, 雾化喷 入 180Kg /小时的水后, 得可溶物低的高吸水性树脂产品。
本发明提供的高吸水性树脂制备方法, 其聚合反应温度低, 生产工艺简单, 基本无三废 (即废气、 废水和固体废弃物) 排放, 还提高了产品的质量。 所制 得的产品性能好, 尤其是可萃取物低、 吸收速度快、 残留单体低。 附图说明
图 1为本发明塔式反应器一实施例的结构示意图。 具体实施方式
本发明如下实施例中, 均采用如图 1所示的塔式反应装置, 包括本体 1、 加料部 2和出料部 3。 本实施例中, 若干反应容器 11依次由上而下叠 置, 组成本体 1。 各个反应容器 11外均设有夹套 12, 用于通入冷却水以冷 却反应容器。 加料部 2置于本体 1顶端, 其上设有第一接口 21、 第二接口 22和第三接口 23。 第一接口 21为三通阀, 用于加入反应原料和辅料。 第 二接口 22与压力泵连接, 以便于在反应结束后加压将料从底部压出。第三 接口 23为气体阀门, 用于通入氮气。 出料部 3设于本体底端, 下方的出口 截面小于上方的开口截面, 而呈喇叭形, 在下方出口还设有出料阀 31。
各个反应容器 11内壁涂搪或涂聚四氟乙烯, 至少可耐 1.6 MPa的压力。 本发明如下实施例制得可萃取物低的高吸水性树脂, 其吸水率和吸液速度 按以下方法进行测试:
吸水率 (g/g): 称取 0.2g试样, 准确至 0.001g, 并将该质量记作 m, 将该 试样全部倒入烧杯中 (烧杯放入 500g的 23 ±2°C去离子水并放置在恒温水浴锅 中)。 浸泡 60分钟后将烧杯中物料倒入 250 目的尼龙袋中。 将尼龙袋用夹子对 角悬挂起来, 静止状态滴水 10分钟。 10分钟后, 称量装有试样的尼龙袋的质量 ml c 用没有试样的尼龙袋同时进行空白值测定, 称取空白试样尼龙袋的质量, 并将该质量记作 m2吸水率按下式计算:
Figure imgf000006_0001
式中:
ci——吸水率, 单位为 g/g ;
m——称取试样的质量, 单位为 g;
,—装有试样尼龙袋的质量, 单位为 g;
m2—空白试验尼龙袋的质量, 单位为 g。
吸液速度:在带有转子的 lOOmL烧杯中,装入 0.9%的生理盐水 50.0±0.5g, 将烧杯放在磁力搅拌机上, 以 600转 /分的速度进行搅拌, 准确称取 2.00g的树 脂, 投入到漩涡中, 同时用秒表开始计时, 当漩涡消失, 液面成为水平状态时, 作为终点, 记录其时间 (秒)。 取 3个样测试, 取 3个样的平均值作为测定结果, 精确至一位小数。
还按 ISO 标准分别进行其它项目的测试, 残留单体 (ISO 标准 17190.2:2001 )、 常压吸液率 ( ISO 标准 17190.5:2001 )、 保水率 ( ISO 标准 17190.6:2001 )、 2kPa 吸液率 ( ISO 标准 17190.7:2001 ) 和可溶物 ( ISO 标准 17190.10:2001 )。 实施例 1 a)用泵将精丙烯酸 (浙江卫星丙烯酸) lOOOKg和水 2300Kg加入塔式 反应器, 反应器由 5个塔节组成, 塔直径为 1米, 高度为 10米, 接通冷冻 水将塔内温度降低至 -5 °C, 并通氮除氧 30分钟。
b)然后用泵将 10wt%^ 30Kg聚乙二醇 (400)二丙烯酸酯和 1(^1%的过 氧化氢 50Kg和 10wt%的亚硫酸铁 50Kg加入反应器。
c) 物料在反应器里反应 120分钟。 然后开打底部出料阀, 并将塔内压 力升高到 IMpa, 将物料形成的凝胶从釜内缓慢压出。
d)从反应器里连续出来的凝胶进入绞碎机,并加入 48^%氢氧化钠(离 子膜法制得) 水溶液 866kg, 制成 2- 10mm的颗粒。
e) 上述颗粒进入连续循环热风带式干燥机或转筒干燥机,第一节热风 温度为 250°C, 第二节热风温度为 180°C, 第三节热风温度为 170°C, 第四 节热风温度为 160°C。 风速 2m/s。 物料 30分钟走完干燥机, 并在干燥机最 后一节处冷却到 60 °C, 得到含水量 5-7wt%的干燥颗粒。
f)上述颗粒连续进入粉碎机, 粉碎后, 用标准筛筛选出 0.015-0.08mm 的树脂颗粒。
g)上述筛选好的树脂颗粒以流量为 3600Kg/小时进入表面处理机, 同 时雾化喷入 25wt%的丙二醇水溶液, 流量为 82.8 Kg/小时。 200°C下反应 30 分钟, 然后冷却到 80°C, 加入 7.2Kg/小时的比表面积为 200 m2/g的气相纳 米二氧化硅 (降低了高吸水树脂吸液后的粘并性), 雾化喷入 180Kg /小时 的水, 得可溶物低的高吸水性树脂产品, 各项测试见表 1。
实施例 2
a)用泵将精丙烯酸 2000Kg和自来水 4600Kg加入反应器,反应器由 10 个塔节组成, 塔直径为 1米, 高度为 20米, 接通冷冻水将釜内温度降低至 20V , 并通氮除氧 30分钟。
b)然后用泵将 10\¥1%的 40Kg聚乙二醇 (400)二丙烯酸酯、 10\¥1%的过 硫酸钠 40Kg和 10wt%的亚硫酸氢钠 lOOKg 加入反应器。
c) 物料在反应器里反应 120分钟。 然后开打底部出料阀, 并将塔内压 力升高到 IMpa, 将物料形成的凝胶从釜内缓慢压出。
d)从反应器里连续出来的凝胶进入绞碎机, 并加入 48wt%的氢氧化钠 水溶液 1732kg, 制成 2-10mm左右的颗粒。
e) 上述颗粒进入连续循环热风带式干燥机,第一节热风温度为 250 °C, 第二节热风温度为 180°C, 第三节热风温度为 170 °C, 第四节热风温度为 160°C。 风速 2m/s。 物料 30分钟走完干燥机, 并在干燥机最后一节处冷却 到 70 °C, 得到含水量 5-7wt%的干燥颗粒。
f)上述颗粒连续进入粉碎机, 粉碎后, 用标准筛分筛出 0.015-0.08mm 的树脂颗粒。
g) 上述筛选好的树脂颗粒以流量为 3600Kg /小时进入表面处理机,同 时雾化喷入 25wt%的丙二醇水溶液, 流量为 82.8 Kg/小时。 200°C下反应 30 分钟, 冷却到 80°C, 雾化喷入 180Kg/小时的水, 得可溶物低的高吸水性树 脂产品, 各项测试见表 1。
实施例 3
a)用泵将精丙烯酸 2000Kg和自来水 4600Kg加入反应器,反应器由 10 个塔节组成, 塔直径为 1米, 高度为 20米, 接通冷冻水将釜内温度降低至 20V , 并通氮除氧 3 0分钟。
b)然后用泵将 10\¥1%的 40Kg聚乙二醇 (400)二丙烯酸酯、 10\¥1%的过 硫酸钠 50Kg和 10wt%的亚硫酸氢钠 50Kg加入反应器。
c) 物料在反应器里反应 120分钟。 然后开打底部出料阀, 并将塔内压 力升高到 IMpa, 将物料形成的凝胶从釜内缓慢压出。
d)从反应器里连续出来的凝胶进入绞碎机, 并加入 48wt%的氢氧化钠 水溶液 1732kg, 制成 2-10mm左右的颗粒。
e) 上述颗粒进入连续循环热风带式干燥机,第一节热风温度为 250 °C, 第二节热风温度为 180°C, 第三节热风温度为 170 °C, 第四节热风温度为 160°C。 风速 2m/s。 物料 30分钟走完干燥机, 并在干燥机最后一节处冷却 到 70 °C, 得到含水量 5-7wt%的干燥颗粒。
f)上述颗粒连续进入粉碎机, 粉碎后, 用标准筛筛选出 0.015-0.08mm 的树脂颗粒。
g) 上述筛选好的树脂颗粒以流量为 3600Kg /小时进入表面处理机,同 时雾化喷入 25wt%的丙二醇水溶液, 流量为 82.8Kg/小时。在 200 °C反应 30 分钟, 冷却到 80°C, 雾化喷入 180Kg/小时的水, 得可溶物低的高吸水性树 脂产品, 各项测试见表 1。 表 1
^^^^列 实施例一 实施例二 实施例三 检测名称
常压吸液率 (g/g) 63 60 59 保水率 (g/g) 39.5 38.5 38
2 kPa吸液率 (g/g) 30 28.5 28 残留单体 (ppm) 20 35 45 可溶物 (%) 4 6 7 吸水率 (g/g) 400 380 370 吸液速度 (s ) 23 30 32

Claims

权 利 要 求 书
1. 一种可萃取物低的高吸水性树脂的制备方法, 包括以下步骤:
a) 将精丙烯酸、 聚合引发剂、 聚合交联剂和水加入塔式反应装置并聚合, 所述的精丙烯酸初始浓度 30wt%-45wt%; 以精丙烯酸的总质量计, 所述的聚合 交联剂用量范围在 0.1\¥1%到 lwt%;
b ) 绞碎凝胶, 得粒径为 2mm-10mm凝胶颗粒, 使用离子膜法生产的氢氧 化钠配成的 48wt%的溶液为绞碎助剂;
c) 所得凝胶颗粒于温度 160°C-250°C干燥、 粉碎和筛选, 得到树脂颗粒; d) 以树脂颗粒的总质量计, 加入 0.1wt%-lwt%连续表面交联剂包覆和加热 表面处理后, 冷却即得。
2. 根据权利要求 1所述的制备方法, 其特征是聚合交联剂是聚乙二醇二 丙烯酸酯、 三烯丙胺和季戊四醇四丙烯酸酯一种或几种。
3. 根据权利要求 1 所述的制备方法, 其特征是所述的聚合的温度为 -5°C-60°C。
4. 根据权利要求 1 所述的制备方法, 其特征是所述的聚合的时间为 100分钟 -360分钟。
5. 根据权利要求 1所述的制备方法,其特征是表面交联剂为多元醇为丙 二醇、 丙三醇、 1,4-丁二醇和二乙二醇中的一种或几种。
6. 根据权利要求 1 所述的制备方法, 其特征是表面处理的加热温度为 120°C-200°C, 处理时间 12分钟 -120分钟。
7. 根据权利要求 1所述的制备方法, 其特征是在所述加热表面处理后, 还加入增香剂、 防粘剂、 除臭剂、 抗菌剂和防腐剂中的一种或几种。
8. 根据权利要求 1所述的制备方法, 其特征是所述的树脂颗粒的粒径 分布在 0.015mm到 0.08mm之间。
9. 根据权利要求 1所述的制备方法, 其特征是聚合引发剂选自: 以精丙烯酸的总质量为基准, 加入 0.01wt%^lj lwt%^ 过硫酸钠或过硫酸钾 与 0.01wt%^lj lwt%的亚硫酸氢钠组成, 或
以精丙烯酸的总质量为基准, 0.01\¥1%到 lwt%的过氧化氢与 0.01 \¥1%到 lwt%的硫酸亚铁组成。
10. 根据权利要求 1 所述的制备方法, 其特征是所述的塔式反应装置 包括:
本体, 由若干反应容器依次由上而下叠置组成;
加料部, 置于本体顶端, 其上设有第一接口、 第二接口和第三接口; 第一接口为三通阀; 第二接口与压力泵连接, 第三接口为气体阀门; 出料部, 设于本体底端, 下方的出口截面小于上方的开口截面, 而呈 喇叭形, 在下方出口还设有出料阀;
各个反应容器外均设有夹套,用于通入冷却水以冷却所述的反应容器。
PCT/CN2014/078875 2014-02-27 2014-05-30 可萃取物低的高吸水性树脂的制备方法 WO2015127725A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410074601.7A CN103819603B (zh) 2014-02-27 2014-02-27 可萃取物低的高吸水性树脂的制备方法
CN201410074601.7 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015127725A1 true WO2015127725A1 (zh) 2015-09-03

Family

ID=50754920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078875 WO2015127725A1 (zh) 2014-02-27 2014-05-30 可萃取物低的高吸水性树脂的制备方法

Country Status (2)

Country Link
CN (1) CN103819603B (zh)
WO (1) WO2015127725A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116194208A (zh) * 2020-10-15 2023-05-30 三洋化成工业株式会社 吸水性树脂粒子的制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103819603B (zh) * 2014-02-27 2016-04-20 浙江卫星石化股份有限公司 可萃取物低的高吸水性树脂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1412205A (zh) * 2001-10-19 2003-04-23 深圳市星原燃气轮机维修开发有限公司 塔式反应器合成高分子化合物
CN103450388A (zh) * 2013-09-12 2013-12-18 浙江卫星石化股份有限公司 一种吸收快的高吸水性树脂的制备方法
CN103819603A (zh) * 2014-02-27 2014-05-28 浙江卫星石化股份有限公司 可萃取物低的高吸水性树脂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100387634C (zh) * 2005-08-09 2008-05-14 严旭明 一种聚合反应塔

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1412205A (zh) * 2001-10-19 2003-04-23 深圳市星原燃气轮机维修开发有限公司 塔式反应器合成高分子化合物
CN103450388A (zh) * 2013-09-12 2013-12-18 浙江卫星石化股份有限公司 一种吸收快的高吸水性树脂的制备方法
CN103819603A (zh) * 2014-02-27 2014-05-28 浙江卫星石化股份有限公司 可萃取物低的高吸水性树脂的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116194208A (zh) * 2020-10-15 2023-05-30 三洋化成工业株式会社 吸水性树脂粒子的制造方法

Also Published As

Publication number Publication date
CN103819603B (zh) 2016-04-20
CN103819603A (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
TW214559B (zh)
JP6359600B2 (ja) ポリアクリル酸系吸水性樹脂粉末の製造方法
JP6094930B2 (ja) ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
KR102105733B1 (ko) 흡수제 및 그의 제조 방법
JP4587327B2 (ja) 高い透過性を有する膨潤可能なヒドロゲル形成性ポリマー
CN107376866B (zh) 聚丙烯酸(盐)系吸水剂的制造方法及其吸水剂
JP5904978B2 (ja) 超吸収性重合体の製造のための連続的重合方法
JP5342726B2 (ja) 水性液体および血液を吸収する粉末状の架橋吸収性ポリマー、その製造方法および使用
CN104582832B (zh) 颗粒状吸水剂及其制造方法
WO2011120746A1 (en) A process for the production of a superabsorbent polymer
WO2003051415A1 (en) Water-absorbent resin and production process therefor
JPH07242709A (ja) 吸水性樹脂の製造方法
CN102378778A (zh) 颗粒状吸水性树脂的制造方法
KR102373041B1 (ko) 폴리아크릴산(염)계 흡수성 수지의 제조 방법
TW201223970A (en) Water-absorbing resin
JPWO2012102406A1 (ja) ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
CN107722163B (zh) 丙烯酸吸水性树脂及低可溶性组分的吸水性树脂及其应用
WO2015127725A1 (zh) 可萃取物低的高吸水性树脂的制备方法
JP2016113465A (ja) ポリアクリル酸(塩)系吸水性樹脂及びその製造方法
JP5956232B2 (ja) 吸水性樹脂の製造方法
CN109776741B (zh) 高吸水性树脂的制造方法
JP7342035B2 (ja) 超吸収体粒子を空気輸送する方法
TWI288140B (en) Method of manufacturing the super-absorbent polymer (SAP) which is powdery, insoluble in water, and able to absorb water, blood and urine and has slight soluble things
CN106608922A (zh) 连续制备吸水聚合物颗粒的方法
CN117964850A (zh) 一种吸收快、高保水的高吸水性树脂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884003

Country of ref document: EP

Kind code of ref document: A1