WO2015125934A1 - 抗癌剤の抗腫瘍効果の増強剤 - Google Patents

抗癌剤の抗腫瘍効果の増強剤 Download PDF

Info

Publication number
WO2015125934A1
WO2015125934A1 PCT/JP2015/054843 JP2015054843W WO2015125934A1 WO 2015125934 A1 WO2015125934 A1 WO 2015125934A1 JP 2015054843 W JP2015054843 W JP 2015054843W WO 2015125934 A1 WO2015125934 A1 WO 2015125934A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate apatite
enhancer
particles
cancer
anticancer agent
Prior art date
Application number
PCT/JP2015/054843
Other languages
English (en)
French (fr)
Inventor
浩文 山本
祐一郎 土岐
森 正樹
▲しん▼ 呉
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2016504196A priority Critical patent/JP6516723B2/ja
Priority to EP15751754.1A priority patent/EP3108890B1/en
Priority to US15/119,862 priority patent/US9889155B2/en
Publication of WO2015125934A1 publication Critical patent/WO2015125934A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/06Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to an enhancer that enhances the antitumor effect of an anticancer agent.
  • the present invention also relates to a cancer therapeutic kit and a cancer therapeutic agent using the enhancer.
  • Cancer treatment methods are roughly divided into surgical therapy, radiation therapy, and chemotherapy.
  • chemotherapy is a therapy in which an anticancer drug is administered to cancer patients.
  • adjuvant chemotherapy before and after surgery to eradicate the lesion and improve healing power, It is used to treat cancers that have spread throughout the body that cannot be treated with surgery or radiation therapy.
  • various anticancer agents such as antimetabolites, alkylating drugs, platinum preparations, topoisomerase inhibitors, molecular targeting drugs, and antitumor antibiotics have been put into clinical use, and some cancers are expected to be cured. Has been reached.
  • Patent Document 1 reports that the antitumor effect of a platinum preparation can be enhanced by isosorbide dinitrate.
  • Patent Document 2 reports that the antitumor effect of an anticancer agent can be enhanced by an aldoketoreductase 1C family inhibitor.
  • Patent Document 3 reports that the antitumor effect of cisplatin can be enhanced by a phosphodiesterase III-B inhibitor.
  • anti-cancer agents enter tumor tissues and exhibit cytotoxicity, but may also act on normal tissues at the same time.
  • an anticancer agent acts on a normal tissue, not only the original antitumor effect cannot be sufficiently exerted, but various side effects may be induced. Therefore, if the anticancer agent can be efficiently accumulated in the tumor tissue, enhancement of the antitumor effect is expected, and it is also effective in reducing side effects.
  • the techniques of Patent Documents 1 to 3 do not enhance the antitumor effect by efficiently accumulating anticancer agents in tumor tissues.
  • drug delivery systems such as encapsulating drugs in liposomes or other carriers have been developed to selectively deliver drugs to tumors, and it is possible to improve the ability of anticancer drugs to accumulate in tumors. It is.
  • a carrier used in a drug delivery system there is a drawback that formulation of an anticancer agent becomes complicated, and it is difficult to prevent accumulation in normal tissues such as the liver and kidney.
  • the interstitial fluid pressure of tumor tissue is higher than that of normal tissue, and if the interstitial fluid pressure is high in the tumor tissue, the drug cannot penetrate deep into the tumor and has a sufficient antitumor effect. It is considered as one of the major causes that cannot be demonstrated. Therefore, in order to enhance the antitumor effect of anticancer drugs, it is effective to develop a drug that lowers the interstitial fluid pressure of the tumor tissue, efficiently accumulates it in the tumor tissue, and penetrates deeply into the tumor tissue Become.
  • An object of the present invention is to provide a drug that enhances an antitumor effect by efficiently accumulating an anticancer drug in a tumor tissue. It is another object of the present invention to provide a cancer treatment kit for treating cancer using the increasing drug. Furthermore, this invention aims at providing the chemical
  • the inventors of the present invention have made extensive studies to solve the above-mentioned problems, and by administering carbonate apatite together with the anticancer agent, the anticancer agent can be efficiently accumulated in the tumor tissue, and the antitumor effect of the anticancer agent can be improved. It was found to be dramatically enhanced. Furthermore, the present inventors have also found that carbonate apatite has an action of reducing the interstitial fluid pressure of tumor tissue. The present invention has been completed by further studies based on such knowledge.
  • Item 1 An enhancer used for enhancing the antitumor effect of an anticancer agent, comprising carbonate apatite as an active ingredient.
  • Item 2. Item 2. The enhancer according to Item 1, wherein the carbonate apatite is nanoparticles having an average particle size of 50 nm or less.
  • Item 3. Item 3. The enhancer according to Item 1 or 2, wherein the anticancer agent is at least one selected from the group consisting of an antimetabolite, a platinum preparation, a microtubule agonist, and an anticancer antibiotic.
  • Item 4. Item 4.
  • Item 5. The enhancer according to any one of Items 1 to 4, further comprising albumin.
  • Item 6. A cancer treatment kit comprising a first preparation containing an anticancer agent and a second preparation containing the enhancer according to any one of Items 1 to 5.
  • a cancer therapeutic agent comprising an anticancer agent and the enhancer according to any one of Items 1 to 5.
  • An interstitial fluid pressure reducing agent used for lowering the interstitial fluid pressure of tumor tissue comprising carbonate apatite as an active ingredient.
  • Item 10. A method for treating cancer, comprising a step of administering an effective amount of carbonate apatite and an anticancer agent to a cancer patient.
  • Item 11 A method for reducing interstitial fluid pressure of tumor tissue, comprising a step of administering an effective amount of carbonate apatite to a cancer patient.
  • a method for promoting accumulation of a drug in a tumor tissue comprising a step of administering an effective amount of carbonate apatite and the drug to a cancer patient.
  • Item 13 Use of carbonate apatite for the production of an enhancer used to enhance the antitumor effect of an anticancer agent.
  • Item 14 Use of carbonate apatite for the production of an interstitial fluid pressure reducing agent used for decreasing interstitial fluid pressure of tumor tissue.
  • Item 15. Use of carbonate apatite for the production of an accumulation promoter that promotes accumulation of a drug in tumor tissue.
  • the anticancer agent can be efficiently accumulated in the tumor tissue, and the antitumor effect of the anticancer agent can be remarkably enhanced. Therefore, according to the present invention, it is expected that the antitumor effect of the anticancer agent can be efficiently exerted on the tumor, and a gospel is brought to cancer patients.
  • the effect of enhancing the antitumor effect of the anticancer agent is achieved based on the following mechanism of action.
  • the interstitial fluid pressure of the tumor tissue is higher than that of the normal tissue, and this is considered to be one of the major causes that makes it difficult for the drug to penetrate deep into the tumor.
  • carbonate apatite has an action of reducing the interstitial fluid pressure of tumor tissue. This decrease in the interstitial fluid pressure of the tumor tissue makes it possible for the anticancer agent to penetrate deep into the tumor tissue, which is considered to contribute to the enhancement of the antitumor effect of the anticancer agent.
  • the present invention is not construed as being limited to the above-mentioned mechanism of action.
  • carbonate apatite accumulates in the tumor even if it is a drug other than an anticancer drug (for example, a drug used for photothermotherapy or photodynamic therapy for cancer) due to the above-described action of reducing the interstitial fluid pressure of the tumor tissue. Therefore, it can be used as an accumulation promoter for promoting accumulation of a drug in a tumor tissue.
  • an anticancer drug for example, a drug used for photothermotherapy or photodynamic therapy for cancer
  • Example 3 The result of having measured the particle size and form of the carbonate apatite nanoparticle (sCA (1) particle) obtained by the manufacture example with the scanning probe microscope is shown.
  • Example 3 the result of having measured the antitumor effect with respect to the human colon cancer cell line (SW480) in the coexistence of 5-fluorouracil and a carbonate apatite particle
  • Example 4 the result of having measured the antitumor effect with respect to a human colon cancer cell line (DLD-1) in the coexistence of 5-fluorouracil and a carbonate apatite particle is shown.
  • DLD-1 human colon cancer cell line
  • Example 5 the result of having measured the antitumor effect with respect to the human colon cancer cell line (HCT116) in the presence of doxorubicin hydrochloride and carbonate apatite particles is shown.
  • Example 6 the tumor size was observed after administering 5-fluorouracil and carbonate apatite particles to tumor model mice.
  • Example 6 the results of HE-staining after excising tumor tissue after administering 5-fluorouracil and carbonate apatite particles to tumor model mice are shown.
  • Doxorubicin (DOX) is a diagram showing that the fluorescence wavelength is detected by IVIS® Spectrum.
  • Example 7 the tumor tissue was extracted 2 hours after administration of doxorubicin hydrochloride and carbonate apatite particles to tumor model mice, and the results of detection of doxorubicin by IVIS-Spectrum are shown.
  • Enhancer The enhancer of the present invention is used for the purpose of enhancing the antitumor effect of an anticancer agent, and is characterized by containing carbonate apatite as an active ingredient.
  • the enhancer of the present invention will be described in detail.
  • Carbonate apatite used in the present invention is known per se.
  • Carbonate apatite has a chemical structure in which a hydroxyl group (OH-) of hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) is partially substituted with a carbonate group (CO 3 2- ).
  • Ca 10-m X m (PO 4) 6 (CO 3) can be represented by 1-n Y n.
  • X may be any element that can partially replace Ca in the carbonate apatite, and examples thereof include Sr, Mn, and a rare earth element.
  • m is a positive number of usually 0 or more and 1 or less, preferably 0 or more and 0.1 or less, more preferably 0 or more and 0.01 or less, and still more preferably 0 or more and 0.001 or less.
  • Y is a unit that can partially replace CO 3 in carbonate apatite, and examples thereof include OH, F, and Cl.
  • n is usually a positive number of 0 or more and 0.1 or less, preferably 0 or more and 0.01 or less, more preferably 0 or more and 0.001 or less, and further preferably 0 or more and 0.0001 or less. .
  • the carbonate apatite used in the present invention is preferably a nanoparticle having an average particle size of 50 nm or less in order to be administered in vivo and accumulate the anticancer agent in the tumor tissue.
  • the lower limit of the average particle diameter of the carbonate apatite nanoparticles is not particularly limited as long as the desired effect described above can be obtained, but is, for example, 1 nm or more, preferably 3 nm or more, more preferably 5 nm or more.
  • the upper limit of the average particle diameter of the carbonate apatite nanoparticles is more preferably 40 nm or less, still more preferably 30 nm or less, still more preferably 20 nm or less, and even more preferably 10 nm or less.
  • the average particle diameter of the carbonate apatite nanoparticles is measured by observing with a scanning probe microscope as shown in the production example described later.
  • a scanning probe microscope When measuring the average particle size, confirm the measurement site with a CCD camera. If there are huge particles that are clearly unsuitable for measurement using a scanning probe microscope (for example, a particle size of 5 ⁇ m or more), Is removed from the measurement target range.
  • the particle size means the particle size of an independent particle that can be recognized as a separate particle when measured with a scanning probe microscope. Therefore, when a plurality of particles are aggregated, the aggregate is determined as one particle.
  • the preparation form of the enhancer of the present invention is not particularly limited, but the viewpoint of efficiently enhancing the antitumor effect of the anticancer agent while suppressing the reaggregation of the carbonate apatite particles and maintaining the state of the average particle size. Therefore, a dispersion liquid is preferable.
  • the concentration of the carbonate apatite is not particularly limited, and may be set as appropriate so that the dose described later can be satisfied in consideration of the administration method and the like.
  • the concentration of the carbonate apatite is 1 ⁇ 10 8 to 1 ⁇ 10 12 pieces / ml, preferably 1 ⁇ 10 9 to 1 ⁇ 10 11 pieces / ml. 1 ⁇ 10 10 to 5 ⁇ 10 10 pieces / ml, more preferably 3 ⁇ 10 9 to 3 ⁇ 10 10 pieces / ml, and even more preferably 6 ⁇ 10 9 to 1.5 ⁇ 10 10 pieces / ml.
  • the concentration of the carbonate apatite is 1 ⁇ 10 8 to 1 ⁇ 10 12 pieces / ml, preferably 1 ⁇ 10 9 to 1 ⁇ 10 11 pieces / ml. 1 ⁇ 10 10 to 5 ⁇ 10 10 pieces / ml, more preferably 3 ⁇ 10 9 to 3 ⁇ 10 10 pieces / ml, and even more preferably 6 ⁇
  • the solvent for dispersing the carbonate apatite is not particularly limited as long as it is pharmaceutically acceptable and can disperse the carbonate apatite. May include physiological saline and other buffer solutions.
  • the method for producing carbonate apatite having the average particle diameter described above is not particularly limited, and specifically, a step of preparing a dispersion in which carbonate apatite particles are dispersed in a pharmaceutically acceptable solvent, and the dispersion A method of undergoing a process of ultrasonic vibration treatment for the liquid is mentioned.
  • Carbonate apatite particles can be obtained according to a known method. For example, by preparing and incubating an aqueous solution containing calcium ions, phosphate ions, and bicarbonate ions, carbonate apatite particles including a drug having a tumor action can be produced.
  • concentration of each ion in the aqueous solution is not particularly limited as long as carbonate apatite particles are formed, and can be appropriately set with reference to the following.
  • the calcium ion concentration in the aqueous solution is usually 0.1 mM or more, preferably 0.5 mM or more, more preferably 1 mM or more.
  • the upper limit of the calcium ion concentration is usually 1 M or less, preferably 100 mM or less, more preferably 10 mM or less.
  • the phosphate ion concentration in the aqueous solution is usually 0.1 mM or more, preferably 0.5 mM or more, more preferably 1 mM or more.
  • the upper limit of the phosphate ion concentration is usually 1 M or less, preferably 100 mM or less, more preferably 10 mM or less.
  • the bicarbonate ion concentration in the aqueous solution is usually 1.0 mM or more, preferably 5 mM or more, more preferably 10 mM or more.
  • the upper limit of the bicarbonate ion concentration is usually 10M or less, preferably 1M or less, and more preferably 100 mM or less.
  • the source of calcium ions, phosphate ions, and hydrogen carbonate ions is not particularly limited as long as these ions can be supplied in the aqueous solution.
  • salts of these ions can be added to the aqueous solution.
  • CaCl 2 can be used as the calcium ion source
  • NaH 2 PO 4 .2H 2 O can be used as the phosphate ion source
  • NaHCO 3 can be used as the carbonate ion source.
  • each ion source is not particularly limited, and the aqueous solution may be prepared in any mixing order as long as carbonate apatite particles are obtained.
  • a first solution containing calcium ions is prepared, and a second solution containing phosphate ions and bicarbonate ions is prepared separately, and the first solution and the second solution are mixed.
  • An aqueous solution can be prepared.
  • the aqueous solution for producing the carbonate apatite particles may contain components other than the above-mentioned ion supply sources as long as the purpose is not impaired.
  • Ca or CO 3 in the carbonate apatite may be partially substituted by adding fluorine ions, chlorine ions, Sr, Mn, or the like to the composition in the aqueous solution.
  • the addition amount of fluorine ions, chlorine ions, Sr, and Mn is preferably in a range that does not significantly affect the pH solubility and particle size range of the composite particles to be formed.
  • the aqueous solution for producing carbonate apatite particles can also be prepared using various media and buffers for cell culture.
  • Carbonate apatite particles can be obtained by adjusting the pH of the aqueous solution containing each of the above ions to a range of 6.0 to 9.0 and incubating for a predetermined time.
  • the pH of the aqueous solution when forming the carbonate apatite particles is preferably 7.0 or more, more preferably 7.1 or more, still more preferably 7.2 or more, still more preferably 7.3 or more, particularly Preferably it is 7.4 or more, most preferably 7.5 or more.
  • the pH of the aqueous solution when forming the carbonate apatite particles is preferably 8.5 or less, more preferably 8.0 or less.
  • the temperature condition of the aqueous solution when forming carbonate apatite particles is usually 10 ° C. or higher, Preferably it is 25 degreeC or more, More preferably, it is 37 degreeC or more.
  • the upper limit of the temperature condition is usually 80 ° C. or lower, preferably 70 ° C. or lower.
  • the incubation time of the aqueous solution for forming carbonate apatite particles is usually 1 minute to 24 hours, preferably 10 minutes to 1 hour.
  • the presence or absence of particle formation can be confirmed by observing under a microscope, for example.
  • a dispersion containing carbonate apatite particles is formed, and the carbonate apatite particles have an average particle size of more than 50 nm. Therefore, the carbonate apatite particles having the average particle diameter described above can be obtained by refining the carbonate apatite particles to make the average particle diameter 50 nm or less.
  • the carbonate apatite particles can be obtained by dissolving substances serving as various ion sources in a solvent such as water, a medium, or a buffer.
  • a solvent such as water, a medium, or a buffer.
  • the dispersion of carbonate apatite particles thus obtained is obtained.
  • the carbonate apatite particles are aggregated and the particles become enormous, so that the state changes to a state unsuitable for administration to a living body. Therefore, by replacing the dispersion medium of the aggregated carbonate apatite particles with a pharmaceutically acceptable solvent suitable for administration to a living body, and performing a refinement process described later, carbonate apatite nano particles having a desired average particle diameter are obtained.
  • the particles can be obtained in a dispersed state in a pharmaceutically acceptable solvent.
  • ultrasonic vibration treatment As a method for reducing the average particle size of carbonate apatite particles to 50 nm or less, ultrasonic vibration treatment is preferably used.
  • the ultrasonic vibration treatment is not a treatment in which an ultrasonic vibrator such as an ultrasonic crusher or a homogenizer used for so-called microbial cell crushing is directly brought into contact with a sample, but generally a precision instrument or a test.
  • This is a process using an ultrasonic cleaner in which an ultrasonic vibrator and a cleaning tank used for cleaning tubes and the like are integrated.
  • a liquid for example, water
  • a cleaning tank water tank
  • a container for example, made of plastic
  • the tube is floated and ultrasonic waves are applied to the dispersion through the liquid in the manner of washing the precision instrument. Thereby, the carbonate apatite particles can be refined simply and efficiently.
  • An apparatus that can be used for ultrasonic vibration treatment is capable of applying ultrasonic vibration to a container containing carbonate apatite particles indirectly through a solvent such as water, like the ultrasonic cleaner. If there is no particular limitation. From the viewpoint of versatility and ease of handling, it is preferable to use an ultrasonic cleaner equipped with an ultrasonic vibrator and a thermostatic bath.
  • the conditions of the above ultrasonic vibration treatment are not particularly limited as long as it can be controlled to a desired average particle diameter.
  • the temperature of the water tank can be appropriately selected from 5 to 45 ° C., preferably 10 to 35 ° C., more preferably 20 to 30 ° C.
  • the high frequency output of the ultrasonic vibration treatment can be appropriately set within a range of 10 to 500 W, for example, preferably 20 to 400 W, more preferably 30 to 300 W, and further preferably 40 to 100 W.
  • the oscillation frequency is usually 10 to 60 Hz, preferably 20 to 50 Hz, and more preferably 30 to 40 Hz.
  • the ultrasonic vibration treatment period is, for example, 30 seconds to 30 minutes, preferably 1 to 20 minutes, more preferably 3 to 10 minutes.
  • the type of container containing a dispersion containing carbonate apatite particles used when performing ultrasonic vibration treatment is not limited as long as the average particle diameter of carbonate apatite particles can be reduced to a desired range, It can be suitably selected according to the volume of the dispersion and the purpose of use.
  • a plastic tube having a capacity of 1 to 1000 ml can be used.
  • the ultrasonic vibration treatment may be performed by adding albumin to a dispersion containing carbonate apatite particles. This is because by performing ultrasonic vibration treatment in an environment in which albumin and carbonate apatite particles coexist, carbonate apatite nanoparticles having a finer particle diameter can be obtained, and reaggregation of the particles can also be suppressed. Because. In addition, when albumin is contained, reaggregation of the refined carbonate apatite nanoparticles can be suppressed.
  • albumin When albumin is added to a dispersion containing carbonate apatite particles, the amount of albumin added is not particularly limited, but from the viewpoint of refining the carbonate apatite particles and / or suppressing reaggregation, for example, 0.1 to 500 mg / ml, preferably 1 to 100 mg / ml, more preferably 1 to 10 mg / ml.
  • albumin added to make carbonate apatite particles fine can be administered in vivo together with carbonate apatite particles in a state of being contained in the enhancer of the present invention.
  • the enhancer of the present invention is used for the purpose of enhancing the antitumor effect of the anticancer agent.
  • the type of anticancer agent that enhances the antitumor effect is not particularly limited, but those that can be taken into tumor cells and exhibit an antitumor effect are preferable, for example, antimetabolite, platinum preparation, Examples include alkylating agents, microtubule agonists, anticancer antibiotics, topoisomerase inhibitors and the like.
  • Specific examples of the antimetabolite include 5-fluorouracil, methotrexate, doxyfluridine, tegafur, cytarabine, gemcitabine and the like.
  • platinum preparation examples include cisplatin, oxaliplatin, carboplatin, nedaplatin and the like.
  • alkylating agent examples include cyclophosphamide, ifosfamide, thiotepa, carbocon, and nimustine hydrochloride.
  • microtubule agonist examples include docetaxel, paclitaxel, vincristine, vindesine, vinorelbine and the like.
  • anticancer antibiotics include doxorubicin hydrochloride, mitomycin, amrubicin hydrochloride, pirarubicin hydrochloride, epirubicin hydrochloride, aclarubicin hydrochloride, mitoxantrone hydrochloride, bleomycin hydrochloride, pepromycin sulfate, and the like.
  • specific examples of the topoisomerase inhibitor include irinotecan and nogitecan hydrochloride.
  • anticancer agents can be targeted for enhancement of the antitumor effect by the enhancer of the present invention, whether used alone or in combination of two or more.
  • anticancer agents preferably antimetabolites, platinum preparations, microtubule agonists, anticancer antibiotics, more preferably 5-fluorouracil, cisplatin, oxaliplatin, docetaxel, doxorubicin hydrochloride.
  • the type of cancer to be treated in the enhancer of the present invention is not particularly limited as long as it is a cancer to be subjected to chemotherapy, and specifically includes colon cancer, colon cancer, stomach cancer, rectal cancer.
  • solid cancer is suitable as a treatment target in the enhancer of the present invention.
  • the administration method of the enhancer of the present invention is not particularly limited, and may be systemic administration or local administration. Even if the enhancer of the present invention is administered by systemic administration, it has an excellent effect of allowing the anticancer agent to specifically accumulate in the tumor tissue, and therefore, preferred administration methods include systemic administration. Specific examples of systemic administration include intravascular (intraarterial or intravenous) administration, subcutaneous administration, subcutaneous administration, intraperitoneal administration, etc., preferably intravascular administration, more preferably arterial and intravenous administration. . Intravascular administration includes continuous infusion as well as intravascular injection. In addition, the administration method of the enhancer of the present invention may be the same as or different from the administration method of the anticancer agent to be enhanced in tumor effect. When the administration method of the enhancer of the present invention is the same as the anticancer agent targeted for enhancement of tumor effect, the enhancer of the present invention and the anticancer agent may be mixed and administered separately. May be.
  • the dosage of the enhancer of the present invention is appropriately determined according to the type of anticancer agent to be enhanced for tumor effect, patient sex, age, symptoms, etc. It may be about 10 mg to 1 g / kg (body weight) per time in terms of the amount of carbonate apatite.
  • the administration timing of the enhancer of the present invention is not particularly limited, but may be within 24 hours before or after the administration of the anticancer agent to be enhanced by the tumor effect, and at the same time before or after the administration of the anticancer agent. Within 8 hours, preferably within 8 hours at the same time as the administration of the anticancer agent or before and after that.
  • it is preferable to administer immediately after the ultrasonic vibration treatment For example, administration within 1 minute, preferably within 30 seconds after ultrasonic vibration treatment is preferred.
  • administration can be performed after several minutes to several tens of minutes after the ultrasonic vibration treatment.
  • Cancer Treatment Kit Cancer Treatment Agent
  • the cancer treatment kit of the present invention is used when treating the cancer by administering the enhancer by the same or different administration method as the anticancer agent, and the first preparation containing the anticancer agent and And a second preparation containing the enhancer.
  • the cancer therapeutic agent of the present invention is used when treating the cancer by administering the enhancer in the same administration method as the anticancer agent, and comprises the anticancer agent and the enhancer in the same preparation. Characteristic (except when the anticancer agent is encapsulated in carbonate apatite).
  • the configuration and usage of the cancer treatment kit and the cancer treatment agent of the present invention are as shown in the column of “1.
  • the present invention provides an interstitial fluid pressure reducing agent using the carbonate apatite.
  • the interstitial fluid pressure reducing agent of the present invention is used for the purpose of lowering the interstitial fluid pressure of tumor tissue, and is characterized by containing carbonate apatite as an active ingredient.
  • the composition, average particle diameter, production method, administration method, dose, application target, etc. of carbonate apatite used in the interstitial fluid pressure reducing agent of the present invention are the same as those in the case of “1. .
  • the interstitial fluid pressure reducing agent of the present invention can reduce the interstitial fluid pressure of tumor tissues in cancer patients, and is used for anticancer agents, diagnostic agents, contrast agents, photothermotherapy and photodynamic therapy for cancer. Drugs (eg, indocyanine green, 5-aminolevulinic acid, etc.) can be penetrated deep into the tumor.
  • the present invention provides an accumulation promoter utilizing the carbonate apatite.
  • the accumulation promoter of the present invention is used for the purpose of promoting accumulation of a drug in a tumor tissue, and is characterized by using carbonate apatite as an active ingredient.
  • composition, average particle diameter, production method, administration method, dose, application target, and the like of carbonate apatite used in the accumulation promoter of the present invention are the same as those in the case of “1.
  • the type of drug accumulated in the tumor is not particularly limited as long as it can exhibit a desired action or purpose by being accumulated in the tumor tissue.
  • Diagnostic agents, contrast agents, drugs used for photothermotherapy or photodynamic therapy of cancer for example, indocyanine green, 5-aminolevulinic acid, etc.).
  • Production of sonicated carbonate apatite (sCA) particles (1) Production of carbonate apatite nanoparticles (sCA) using DMEM solution In 100 ml of distilled water, 1.35 g of DMEM powder and 0.37 g of NaHCO 3 was added in sequence to dissolve completely, and the pH was adjusted to 7.5 using 1N HCl. This DMEM solution (100 ml) was filtered through a 0.2 ⁇ m diameter filter, mixed with 4 ⁇ l of CaCl 2 (1M) per 1 ml of DMEM solution, and incubated in a 37 ° C. water bath for 30 minutes.
  • the solution is centrifuged at 15000 rpm ⁇ 5 minutes, and the obtained pellet is dispersed in an aqueous solution that can be administered to cells or living bodies such as distilled water, cell culture solution, or physiological saline to obtain a carbonated apatate particle dispersion.
  • aqueous solution that can be administered to cells or living bodies such as distilled water, cell culture solution, or physiological saline to obtain a carbonated apatate particle dispersion.
  • sCA (1) particles carbonate apatite nanoparticles
  • the ultrasonic vibration treatment uses a water bath having an ultrasonic vibration function to float a carbonate apatite particle dispersion in a plastic container on water set at 20 ° C. under conditions of a high frequency output of 55 W and an oscillation frequency of 38 kHz. 10 minutes.
  • the sCA (1) particles were dispersed in distilled water after centrifugation. When used for cell experiments, it is not necessary to perform the above centrifugation, or the sCA (1) particles were dispersed in a DMEM solution after the centrifugation. When used for animal experiments, sCA (1) particles were dispersed in physiological saline after centrifugation.
  • the resulting pellet was distilled water, cell culture
  • the solution is dispersed in an aqueous solution that can be administered to a cell or a living body such as a liquid or physiological saline to obtain a carbonate apatite particle dispersion, and this is subjected to ultrasonic vibration treatment for 10 minutes, whereby carbonate apatite nanoparticles (hereinafter referred to as “sCA”).
  • sCA carbonate apatite nanoparticles
  • the ultrasonic vibration treatment uses a water bath having an ultrasonic vibration function to float a carbonate apatite particle dispersion in a plastic container on water set at 20 ° C. under conditions of a high frequency output of 55 W and an oscillation frequency of 38 kHz. 10 minutes.
  • the sCA (1) particles were dispersed in distilled water after centrifugation.
  • sCA (1) particles were dispersed in a DMEM solution after centrifugation.
  • sCA (1) particles were dispersed in physiological saline after centrifugation.
  • sCA carbonate apatite nanoparticles
  • FIGS. 1 shows sCA (1) particles
  • FIG. 2 shows sCA (2) particles. From these results, it was confirmed that the particle size of the carbonate apatite particles can be reduced to 10 nm or less by ultrasonic vibration treatment.
  • Example 1 Enhanced anti-tumor effect of 5-fluorouracil
  • HCT116 human colon cancer cell line
  • a 96-well plate (1 ⁇ 10 4 cells / well) and cultured overnight.
  • the culture was performed using a DMEM medium supplemented with 10% fetal bovine serum under conditions of 5% CO 2 and 37 ° C.
  • sCA (1) particles corresponding to the amount prepared from 38 ⁇ l of DMEM solution in (1) of the above production example were dispersed in 100 ⁇ l of cell culture solution, added to each well, 5% CO 2 , 37 ° C.
  • the culture was performed under the conditions of 24 hours.
  • 5-fluorouracil was added at various concentrations, and the cells were cultured under conditions of 5% CO 2 and 37 ° C. After addition of 5-fluorouracil, the number of cells was counted at 24, 48 and 72 hours, and IC 50 (concentration of 5-fluorouracil at which 50% of cancer cells were killed) was determined. For comparison, a test was performed under the same conditions except that sCA particles were not added, and IC 50 was determined.
  • Example 2 Enhanced anti-tumor effect of 5-fluorouracil, cisplatin, oxaliplatin, and docetaxel Human colon cancer cell line (HCT116) was seeded evenly in a 24-well plate (1 ⁇ 10 4 cells / well) overnight Cultured. The culture was performed using a DMEM medium supplemented with 10% fetal bovine serum under conditions of 5% CO 2 and 37 ° C. Next, sCA (1) particles corresponding to the amount prepared from 1 ml of DMEM solution in (1) of the above production example are dispersed in 2 ml of cell culture solution, added to each well, and 5% CO 2 , 37 ° C. The culture was performed under the conditions of 24 hours.
  • 5-fluorouracil, cisplatin, oxaliplatin or docetaxel was added at various concentrations, and the cells were cultured under conditions of 5% CO 2 and 37 ° C.
  • the number of cells was counted at 48 hours after the addition of each anticancer drug, and IC 50 (5-fluorouracil concentration at which 50% of cancer cells were killed) was determined.
  • IC 50 5-fluorouracil concentration at which 50% of cancer cells were killed
  • Example 3 Enhanced anti-tumor effect of 5-fluorouracil on human colon cancer cells
  • a human colon cancer cell line (SW480) was evenly seeded in a 24-well plate (1 ⁇ 10 4 cells / well) and cultured overnight. The culture was performed using a DMEM medium supplemented with 10% fetal bovine serum under conditions of 5% CO 2 and 37 ° C.
  • sCA (1) particles corresponding to the amount prepared from 1 ml of DMEM solution in (1) of the above production example are dispersed in 2 ml of cell culture solution, added to each well, and 5% CO 2 , 37 ° C. The culture was performed under the conditions of 24 hours.
  • 5-fluorouracil was added to 0.1, 0.25, 0.5, 1, 2, and 10 ⁇ g / ml, and cultured for 72 hours under conditions of 5% CO 2 and 37 ° C. The number of later living cells was counted. For comparison, a test was performed under the same conditions except that 5-fluorouracil or sCA particles were not added, and the number of viable cells after culture was counted. The cell viability was calculated with the number of viable cells after 72 hours of culture under the condition where 5-fluorouracil was not added as 100%.
  • Example 4 Enhancement of anti-tumor effect of 5-fluorouracil on human colon cancer cells The same method as in Example 3 except that human colon cancer cell line (DLD-1) was used instead of human colon cancer cell line And the cell viability was measured.
  • DLD-1 human colon cancer cell line
  • Example 5 Enhancement of antitumor effect of doxorubicin hydrochloride on human colon cancer cells
  • HCT116 human colon cancer cell line
  • the culture was performed using a DMEM medium supplemented with 10% fetal bovine serum under conditions of 5% CO 2 and 37 ° C.
  • sCA (0.5) obtained by dispersing sCA (1) particles corresponding to the amount prepared from 1 ml of DMEM solution in (1) of the above production example in 2 ml of cell culture solution, and (1) of the above production example
  • sCA (1) particles corresponding to the amount prepared from 1 ml of DMEM solution in 1 ml of cell culture medium and prepared from 1 ml of DMEM solution in (1) of the above production example.
  • the amount of sCA (1) particles corresponding to the amount dispersed in 0.5 ml of cell culture solution is referred to as sCA (2.0), and 250 ⁇ l is added to each well for 24 hours under conditions of 5% CO 2 and 37 ° C. Culture was performed.
  • Example 6 Enhancement of antitumor effect in tumor model mice (1)
  • a model mouse having a solid tumor was prepared by subcutaneously injecting HCT116 strain, which is a human colon cancer cell, on the left and right sides of a 7-week-old BALB / cA nude mouse (manufactured by CLEA Japan, Inc.).
  • HCT116 strain which is a human colon cancer cell
  • the mice were randomly divided into two groups: a 5-FU alone administration group and a 5-FU and sCA particle administration group.
  • the time when the tumor reached a size of 5-6 mm was defined as day 0, and drug administration was performed in the manner shown in Table 4 on days 0, 2, 7, 8, 9, and 10.
  • Example 7 Enhancement of antitumor effect in tumor model mice
  • HT29 strains (5 ⁇ 10 6 cells), which are human colon cancer cells, were subcutaneously injected into the right and left back of 7-week-old BALB / cA nude mice (manufactured by CLEA Japan, Inc.) to prepare a mouse subcutaneous solid tumor model.
  • the tumor diameter reached about 10 mm
  • the mice were randomly administered to two groups shown in Table 5 for drug administration.
  • Two hours after drug administration tumors were removed from the mice, and doxorubicin hydrochloride accumulated in the tumors was detected by fluorescence imaging using IVIS Spectrum.
  • IVIS Spectrum IVIS Spectrum
  • Example 8 Reduction of interstitial fluid pressure in tumor tissue
  • Human colon cancer cells HT29 strain (5 ⁇ 10 6 cells) were subcutaneously applied to the left and right sides of 7-week-old BALB / cA nude mice (manufactured by CLEA Japan, Inc.).
  • the mouse subcutaneous solid tumor model was prepared by injection. When the diameter of the tumor reaches about 10 mm, 200 ⁇ l of physiological saline containing the sCA (2) particles prepared above (corresponding to the amount prepared from 50 ml of buffer A in (2) of the production example) was added to the tail vein. Administered.
  • Table 6 shows the obtained results. From this result, it was clarified that the carbonate apatite particles have an action of reducing the interstitial fluid pressure in the tumor. Based on this result, the enhancement of the antitumor effect observed in the mouse subcutaneous solid tumor model in Examples 6 and 7 is attributed to the action of reducing the interstitial fluid pressure in the tumor by the carbonate apatite particles. It was suggested.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 本発明の目的は、抗癌剤を腫瘍組織に効率的に集積させることにより抗腫瘍効果 を増強させる増強剤を提供することである。 抗癌剤と共に、炭酸アパタイトを投与することによって、抗癌剤を腫瘍組織に効率的に集積させることができ、抗癌剤の抗腫瘍効果が劇的に増強される。

Description

抗癌剤の抗腫瘍効果の増強剤
 本発明は、抗癌剤の抗腫瘍効果を増強させる増強剤に関する。また、本発明は、当該増強剤を使用した癌治療キット及び癌治療剤に関する。
 近年、癌の治療薬や治療法の進歩によって癌患者の生存率が上昇傾向にあるが、依然として、癌は我が国において死因の第1位を占めており、現在でも、年間30万人以上の国民が癌で亡くなっている。
 癌の治療法は、手術療法、放射線療法、化学療法に大別される。これらの内、化学療法は、癌患者に抗癌剤を投与する療法であり、手術療法や放射線療法の前後に、その病巣を根絶して治癒力を向上させる術前・術後の補助化学療法や、手術療法や放射線療法では治療できない全身に転移した癌の治療に利用されている。従来、代謝拮抗剤、アルキル化薬、白金製剤、トポイソメラーゼ阻害剤、分子標的薬、抗腫瘍性抗生物質等の各種抗癌剤が臨床的に実用化されており、幾つかの癌については、治癒が期待されるまでに至っている。
 しかしながら、従来の抗癌剤は、一定の治療効果が認められているものの、治療効果が不十分であったり、症例によって効果にバラツキが認められたりすることもあり、化学療法による治療効果に限界があることも事実である。そこで、近年、化学療法による治療効果を向上させるために、抗癌剤の抗腫瘍効果を増強させる技術が種々検討され提案されている。例えば、特許文献1には、二硝酸イソソルビドによって白金製剤の抗腫瘍効果を増強できることが報告されている。また、特許文献2には、アルドケト還元酵素1Cファミリー阻害剤によって抗癌剤の抗腫瘍効果を増強できることが報告されている。更に、特許文献3には、ホスホジエステラーゼIII B阻害剤によってシスプラチンの抗腫瘍効果を増強できることが報告されている。
 一方、抗癌剤では、腫瘍組織に入って細胞毒性を発揮するが、同時に正常組織にも作用することがある。このように、抗癌剤が正常組織に作用すると、本来の抗腫瘍効果が十分に発揮できないばかりか、様々な副作用を誘発することがある。そのため、抗癌剤を腫瘍組織に効率的に集積させることができれば、抗腫瘍効果の増強が期待され、更には副作用を低減する上でも有効になる。しかしながら、特許文献1~3の技術は、抗癌剤を腫瘍組織に効率的に集積させて抗腫瘍効果を増強させるものではない。また、従来、腫瘍に対して選択的に薬物を送達するためにリポソーム等のキャリアーに薬物を内包する等のドラックデリバリーシステムが開発されており、抗癌剤の腫瘍への集積能を向上させることも可能である。しかしながら、ドラックデリバリーシステムに使用されるキャリアーを使用する場合には、抗癌剤の製剤化が煩雑になるという欠点があり、また、肝臓や腎臓などの正常組織への集積を防ぐことは難しい。
 また、腫瘍組織の間質液圧は正常組織に比べて高いことが知られており、腫瘍組織において間質液圧が高いことが、薬剤が腫瘍深部に浸透できず、十分な抗腫瘍効果を発揮できない大きな原因の1つと考えられている。そのため、抗癌剤の抗腫瘍効果を増強させるには、腫瘍組織の間質液圧を低下させ、効率的に腫瘍組織に集積させて、腫瘍組織の深部にまで浸透させる薬剤を開発することが有効になる。
特開2011-144190号公報 特開2011-102255号公報 特開2009-242378号公報
 本発明は、抗癌剤を腫瘍組織に効率的に集積させることにより抗腫瘍効果を増強させる薬剤を提供することを目的とする。また、本発明は、当該増薬剤を使用して、癌を治療するための癌治療キットを提供することを目的とする。更に、本発明は、腫瘍組織の間質液圧を低下させる薬剤を提供することを目的とする。
 本発明者等は、前記課題を解決すべく鋭意検討を行ったところ、抗癌剤と共に、炭酸アパタイトを投与することによって、抗癌剤を腫瘍組織に効率的に集積させることができ、抗癌剤の抗腫瘍効果が劇的に増強されることを見出した。更に、本発明者等は、炭酸アパタイトには、腫瘍組織の間質液圧を低下させる作用があることも見出した。本発明は、かかる知見に基づいて更に検討を重ねることにより完成したものである。
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 炭酸アパタイトを有効成分とする、抗癌剤の抗腫瘍効果の増強に使用される増強剤。
項2. 炭酸アパタイトが、平均粒径50nm以下のナノ粒子である、項1に記載の増強剤。
項3. 抗癌剤が、代謝拮抗剤、白金製剤、微小管作用薬、及び抗癌性抗生物質よりなる群から選択される少なくとも1種である、項1又は2に記載の増強剤。
項4. 抗癌剤が、5-フルオロウラシル、シスプラチン、オキサリプラチン、ドセタキセル、及び塩酸ドキソルビシンよりなる群から選択される少なくとも1種である、項1~3のいずれかに記載の増強剤。
項5. 更にアルブミンを含有する、項1~4のいずれかに記載の増強剤。
項6. 抗癌剤を含む第1製剤と、項1~5のいずれかに記載の増強剤を含む第2製剤とを含む、癌治療キット。
項7. 抗癌剤、及び項1~5のいずれかに記載の増強剤を含有する、癌治療剤。
項8. 炭酸アパタイトを有効成分とする、腫瘍組織の間質液圧の低下に使用される間質液圧低下剤。
項9. 炭酸アパタイトを有効成分とする、薬剤の腫瘍組織への集積を促進させる集積促進剤。
項10. 癌患者に、有効量の炭酸アパタイト及び抗癌剤を投与する工程を含む、癌の治療方法。
項11. 癌患者に、有効量の炭酸アパタイトを投与する工程を含む、腫瘍組織の間質液圧の低下方法。
項12. 癌患者に、有効量の炭酸アパタイト及び薬剤を投与する工程を含む、薬剤の腫瘍組織への集積を促進させる方法。
項13. 炭酸アパタイトの、抗癌剤の抗腫瘍効果の増強に使用される増強剤の製造のための使用。
項14. 炭酸アパタイトの、腫瘍組織の間質液圧の低下に使用される間質液圧低下剤の製造のための使用。
項15. 炭酸アパタイトの、薬剤の腫瘍組織への集積を促進させる集積促進剤の製造のための使用。
 本発明によれば、抗癌剤を腫瘍組織に効率的に集積させることができ、抗癌剤の抗腫瘍効果を格段に増強することができる。従って、本発明によって、腫瘍に対して抗癌剤の抗腫瘍効果を効率的に奏させることができ、癌患者に福音をもたらすことが期待される。
 本発明において抗癌剤の抗腫瘍効果を増強させる効果は、以下の作用機序に基づいて奏されていると考えられる。腫瘍組織の間質液圧は正常組織に比べて高く、このことが薬剤が腫瘍深部に浸透し難くなっている大きな原因の1つとされている。一方、後述する実施例7に示すように、炭酸アパタイトには腫瘍組織の間質液圧を低下させる作用があることが見出されている。この腫瘍組織の間質液圧の低下によって、抗癌剤が腫瘍組織の深部まで浸透することが可能になり、そのことが、抗癌剤の抗腫瘍効果の増強をもたらす一因になっていると考えられる。勿論、本発明は、前記作用機序に限定して解釈されるものではない。
 更に、炭酸アパタイトは、前述する腫瘍組織の間質液圧の低下作用によって、抗癌剤以外の薬剤(例えば、癌の光線温熱療法や光線力学療法に使用される薬剤等)であっても腫瘍に集積するのを促進するため、薬剤の腫瘍組織への集積を促進させる集積促進剤としても利用できる。
製造例で得られた炭酸アパタイトナノ粒子(sCA(1)粒子)の粒径及び形態を走査型プローブ顕微鏡で測定した結果を示す。 製造例で得られた炭酸アパタイトナノ粒子(sCA(2)粒子)の粒径及び形態を走査型プローブ顕微鏡で測定した結果を示す。 実施例3において、5-フルオロウラシルと炭酸アパタイト粒子の共存下でのヒト結腸癌細胞株(SW480)に対する抗腫瘍効果を測定した結果を示す。 実施例4において、5-フルオロウラシルと炭酸アパタイト粒子の共存下でのヒト大腸癌細胞株(DLD-1)に対する抗腫瘍効果を測定した結果を示す。 実施例5において、塩酸ドキソルビシンと炭酸アパタイト粒子の共存下でのヒト大腸癌細胞株(HCT116)に対する抗腫瘍効果を測定した結果を示す。 実施例6において、腫瘍モデルマウスに5-フルオロウラシルと炭酸アパタイト粒子を投与した後に腫瘍サイズを観察した結果を示す。 実施例6において、腫瘍モデルマウスに5-フルオロウラシルと炭酸アパタイト粒子を投与した後に腫瘍組織を摘出してHE染色した結果を示す。 ドキソルビシン(DOX)はIVIS Spectrumによって蛍光波長が検出されることを示す図である。 実施例7において、腫瘍モデルマウスに塩酸ドキソルビシンと炭酸アパタイト粒子を投与した2時間後に腫瘍組織を摘出して、IVIS Spectrumによってドキソルビシンを検出した結果を示す。
1.増強剤
 本発明の増強剤は、抗癌剤の抗腫瘍効果を増強させる目的で使用されるものであって、炭酸アパタイトを有効成分とすることを特徴とする。以下、本発明の増強剤について詳述する。
 本発明で使用される「炭酸アパタイト」の組成自体は公知である。炭酸アパタイトは、水酸アパタイト(Ca10(PO46(OH)2)の水酸基(OH- ) の一部を炭酸基(CO3 2- ) にて置換した化学構造を有し、一般式Ca10-mm(PO46(CO31-nnで表すことができる。ここで、Xは、炭酸アパタイトにおけるCaを部分的に置換しうる元素であればよく、例えば、Sr、Mn、希土類元素等を挙げることができる。mは、通常0以上1以下の正数であり、好ましくは0以上0.1以下であり、より好ましくは0以上0.01以下であり、更に好ましくは0以上0.001以下である。Yは、炭酸アパタイトにおけるCO3を部分的に置換しうる単位であり、OH、F、Cl等を例示することができる。nは、通常0以上0.1以下の正数であり、好ましくは0以上0.01以下であり、より好ましくは0以上0.001以下であり、更に好ましくは0以上0.0001以下である。
 また、本発明で使用される炭酸アパタイトは、生体内に投与され、抗癌剤を腫瘍組織に集積させる役割を果たすために、平均粒径が50nm以下のナノ粒子であることが好ましい。炭酸アパタイトナノ粒子の平均粒径の下限値は、上述する所期の効果が得られる限り特に制限されないが、例えば、1nm以上、好ましくは3nm以上、より好ましくは5nm以上である。一方、炭酸アパタイトナノ粒子の平均粒径の上限は、より好ましくは40nm以下であり、更に好ましくは30nm以下、より更に好ましくは20nm以下、一層好ましくは10nm以下である。
 前記炭酸アパタイトナノ粒子の平均粒径は、後述する製造例に示すように、走査型プローブ顕微鏡を用いて観察することにより測定される。尚、平均粒径を測定するに際して、測定部位をCCDカメラで確認し、明らかに走査型プローブ顕微鏡を用いた測定に適さない巨大な粒子(例えば、粒径5μm以上)が存在する場合は、それらは測定対象範囲から除去される。本書において、粒径とは、走査型プローブ顕微鏡で測定した際に、別個の粒子として認識可能な独立した粒子の粒径を意味する。よって、複数の粒子が凝集している場合は、それらの集合体を一つの粒子と判断する。
 本発明の増強剤の製剤形態については、特に制限されないが、炭酸アパタイト粒子の再凝集を抑制して前記平均粒径の状態を維持させつつ、効率的に抗癌剤の抗腫瘍効果を増強させるという観点から、分散液状であることが好ましい。
 本発明の増強剤において、前記炭酸アパタイトの濃度については、特に制限されず、投与方法等を勘案して後述する投与量を充足できるように適宜設定すればよい。例えば、本発明の増強剤が分散液の場合であれば、前記炭酸アパタイトの濃度として、1×108~1×1012個/ml、好ましくは1×109~1×1011個/ml、より1×1010~5×1010個/ml、更に好ましくは3×109~3×1010個/ml、より更に好ましくは6×109~1.5×1010個/mlが挙げられる。
 また、本発明の増強剤が分散液の場合、前記炭酸アパタイトを分散させる溶媒としては、薬学的に許容され、且つ炭酸アパタイトを分散できるものであることを限度として特に制限されないが、具体的には、生理食塩水、その他緩衝溶液が挙げられる。
 前述する平均粒径の炭酸アパタイトの製造方法については、特に制限されないが、具体的には、炭酸アパタイト粒子が、薬学的に許容される溶媒に分散された分散液を調製する工程、及び当該分散液に対して超音波振動処理する工程を経る方法が挙げられる。
 炭酸アパタイト粒子は、公知の手法に従って得ることができる。例えば、カルシウムイオン、リン酸イオン、及び炭酸水素イオンを含有する水溶液を調製してインキュベートすることによって、腫瘍作用を有する薬物を包含する炭酸アパタイト粒子を製造することができる。当該水溶液中の各イオンの濃度については、炭酸アパタイト粒子が形成される限り特に制限されず、下記を参考に適宜設定することができる。
 水溶液中のカルシウムイオン濃度としては、通常0.1mM以上であり、好ましくは0.5mM以上であり、より好ましくは1mM以上が挙げられる。カルシウムイオン濃度の上限は、通常1M以下であり、好ましくは100mM以下であり、より好ましくは10mM以下が挙げられる。
 水溶液中のリン酸イオン濃度としては、通常0.1mM以上であり、好ましくは0.5mM以上であり、より好ましくは1mM以上が挙げられる。リン酸イオン濃度の上限は、通常1M以下であり、好ましくは100mM以下であり、より好ましくは10mM以下が挙げられる。
 水溶液中の炭酸水素イオン濃度としては、通常1.0mM以上であり、好ましくは5mM以上であり、より好ましくは10mM以上が挙げられる。炭酸水素イオン濃度の上限は通常10M以下であり、好ましくは1M以下であり、より好ましくは100mM以下が挙げられる。
 カルシウムイオン、リン酸イオン及び炭酸水素イオンの供給源は、水溶液中にこれらのイオンを供給可能である限り特に制限されないが、例えば、これらのイオンの塩を水溶液に添加することができる。具体的には、カルシウムイオン源としてCaCl2を用いることができ、リン酸イオン源としてNaH2PO4・2H2Oを用いることができ、炭酸イオン源としてNaHCO3を用いることができる。
 各イオン供給源の混合順序は特に限定されず、炭酸アパタイト粒子が得られる限り、いかなる混合順序で水溶液を調製してもよい。例えば、カルシウムイオンを含有する第1の溶液を調製するとともに、別途、リン酸イオン及び炭酸水素イオンを含有する第2の溶液を調製し、第1の溶液と第2の溶液とを混合して水溶液を調製することができる。
 炭酸アパタイト粒子を作製するための水溶液は、その目的を損なわない範囲で、上述する各イオン供給源以外の成分を含んでもよい。例えば、水溶液中に上記組成物中に、フッ素イオン、塩素イオン、Sr、Mn等を添加することにより、炭酸アパタイトにおけるCaまたはCO3を部分的に置換してもよい。但し、フッ素イオン、塩素イオン、Sr、Mnの添加量は、形成される複合体粒子のpH溶解性、粒径範囲に著しい影響を与えない範囲内とすることが好ましい。また、炭酸アパタイト粒子を作製するための水溶液は、細胞培養用の各種培地やバッファーを利用して調製することもできる。
 炭酸アパタイト粒子は、上記の各イオンを含有する水溶液のpHを6.0~9.0の範囲に調整し、一定時間インキュベートすることによって得ることができる。炭酸アパタイト粒子を形成する際の当該水溶液のpHは、好ましくは7.0以上であり、より好ましくは7.1以上、更に好ましくは7.2以上あり、より更に好ましくは7.3以上、特に好ましくは7.4以上、最も好ましくは7.5以上である。一方、炭酸アパタイト粒子を形成する際の当該水溶液のpHは、好ましくは8.5以下であり、より好ましくは8.0以下である。
 炭酸アパタイト粒子を形成する際の当該水溶液の温度条件は、通常10℃以上であり、
好ましくは25℃以上、より好ましくは37℃以上である。一方、温度条件の上限は通常80℃以下であり、好ましくは70℃以下である。
 炭酸アパタイト粒子を形成するための当該水溶液のインキュベート時間は、通常1分~24時間であり、好ましくは10分~1時間である。粒子形成の有無は、例えば、顕微鏡下で観察することによって確認することができる。
 斯して炭酸アパタイト粒子を含む分散液が形成されるが、当該炭酸アパタイト粒子は平均粒径が50nm超である。そこで、当該炭酸アパタイト粒子を微細化処理して平均粒径を50nm以下にすることによって、前述する平均粒径の炭酸アパタイト粒子を得ることができる。
 また、上述の通り、炭酸アパタイト粒子は、各種のイオン供給源となる物質を水、培地、又はバッファー等の溶媒に溶解させることによって得られるが、そのようにして得られる炭酸アパタイト粒子の分散液は、浸透圧、緩衝能、無菌性等の観点から必ずしも生体への投与(血管内投与)に適していない。よって、炭酸アパタイト粒子が分散した溶媒を生体への投与に適した溶媒(例えば、生理食塩水)に置換するためには、通常、遠沈によって当該炭酸アパタイト粒子を溶媒から分離し、回収して溶媒を置き換える操作が必要である。しかしながら、このような操作を行うと炭酸アパタイト粒子同士が凝集し、粒子が巨大化するため、却って生体への投与には適さない状態へと変化してしまう。そこで、凝集した炭酸アパタイト粒子の分散媒を生体への投与に適した薬学的に許容される溶媒に置換した上で、後述する微細化処理を行うことにより、所望の平均粒径の炭酸アパタイトナノ粒子を、薬学的に許容される溶媒中に分散させた状態で得ることができる。
 炭酸アパタイト粒子の平均粒径を50nm以下に微細化する方法としては、好ましくは超音波振動処理が挙げられる。ここで、超音波振動処理とは、いわゆる菌体破砕等に用いられる超音波破砕機やホモジナイザー等の超音波振動子を直接試料に接触させて超音波をかける処理ではなく、一般に精密機器や試験管等の洗浄に用いられる超音波振動子と洗浄槽とが一体となった超音波洗浄器を用いた処理である。超音波洗浄器の洗浄槽(水槽)に液体(例えば、水)を入れ、そこに、炭酸アパタイト粒子を薬学的に許容される溶媒中に分散させた分散液を収容した容器(例えば、プラスチック製のチューブ)を浮かべ、精密機器を洗浄する要領で液体を介して当該分散液に超音波をかける処理を意味する。これによって、簡便且つ効率的に炭酸アパタイト粒子を微細化することができる。
 超音波振動処理に使用可能な装置は、上記超音波洗浄器のように、水などの溶媒を介して間接的に炭酸アパタイト粒子を収容した容器に超音波振動を与えることが可能であるものであれば特に制限されない。汎用性及び取り扱い性の良さという観点から、超音波振動子及び恒温槽を備えた超音波洗浄器を用いることが好ましい。
 上記の超音波振動処理の条件は、所望の平均粒径に制御可能である限り特に制限されない。例えば、水槽の温度は、5~45℃の温度から適宜選択することができ、好ましくは10~35℃であり、より好ましくは20~30℃である。超音波振動処理の高周波出力は、例えば、10~500Wの範囲で適宜設定することができ、好ましくは20~400W、より好ましくは30~300Wであり、更に好ましくは40~100Wである。発振周波数は、通常10~60Hzであり、好ましくは20~50Hzであり、より好ましくは30~40Hzである。超音波振動処理期間は、例えば、30秒~30分であり、好ましくは1~20分、より好ましくは3~10分の範囲で適宜設定することができる。
 超音波振動処理を行う際に用いる、炭酸アパタイト粒子を含む分散液を包含する容器の種類は、炭酸アパタイト粒子の平均粒径を所望の範囲に微細化することが可能である限り制限されず、分散液の容量や使用目的に応じて適宜選択することができる。例えば、1~1000ml容量のプラスチック製チューブを用いることができる。
 また、超音波振動処理は、炭酸アパタイト粒子を含む分散液にアルブミンを添加して行ってもよい。これは、アルブミンと炭酸アパタイト粒子とが共存する環境で超音波振動処理を行うことにより、より微細な粒径を有する炭酸アパタイトナノ粒子が得られ、粒子の再凝集を抑制することも可能となるためである。また、アルブミンが含まれていると、微細化された炭酸アパタイトナノ粒子の再凝集を抑制することもできる。炭酸アパタイト粒子を含む分散液にアルブミンを添加する場合、そのアルブミンの添加量については、特に制限されないが、前記炭酸アパタイト粒子の微細化及び/又は再凝集抑制の観点から、例えば、0.1~500mg/ml、好ましくは1~100mg/ml、より好ましくは1~10mg/mlが挙げられる。このように、炭酸アパタイト粒子を微細化するために添加されたアルブミンは、炭酸アパタイト粒子と共に、本発明の増強剤に含有させた状態で生体内に投与できる。
 本発明の増強剤は、抗癌剤の抗腫瘍効果を増強させる目的で使用される。本発明の増強剤において、抗腫瘍効果の増強させる抗癌剤の種類については、特に制限されないが、腫瘍細胞内に取り込まれて抗腫瘍効果を発揮できるものが好ましく、例えば、代謝拮抗剤、白金製剤、アルキル化薬、微小管作用薬、抗癌性抗生物質、トポイソメラーゼ阻害剤等が挙げられる。代謝拮抗剤としては、具体的には、5-フルオロウラシル、メソトレキセート、ドキシフルリジン、テガフール、シタラビン、ゲムシタビン等が挙げられる。白金製剤としては、具体的には、シスプラチン、オキサリプラチン、カルボプラチン、ネダプラチン等が挙げられる。アルキル化薬としては、具体的には、シクロホスファミド、イホスファミド、チオテパ、カルボコン、塩酸ニムスチン等が挙げられる。微小管作用薬としては、具体的には、ドセタキセル、パクリタキセル、ビンクリスチン、ビンデシン、ビノレルビン等が挙げられる。抗癌性抗生物質としては、具体的には、塩酸ドキソルビシン、マイトマイシン、塩酸アムルビシン、塩酸ピラルビシン、塩酸エピルビシン、塩酸アクラルビシン、塩酸ミトキサントロン、塩酸ブレオマイシン、硫酸ペプロマイシン等が挙げられる。トポイソメラーゼ阻害剤としては、具体的には、イリノテカン、塩酸ノギテカン等が挙げられる。
 これらの抗癌剤は、1種単独で使用する場合であっても、また2種以上組み合わせて使用する場合であっても、本発明の増強剤による抗腫瘍効果の増強対象とすることができる。これらの抗癌剤の中でも、好ましくは代謝拮抗剤、白金製剤、微小管作用薬、抗癌性抗生物質、更に好ましくは5-フルオロウラシル、シスプラチン、オキサリプラチン、ドセタキセル、塩酸ドキソルビシンが挙げられる。
 また、本発明の増強剤において治療対象となる癌種については、化学療法の対象となる癌であることを限度として特に制限されないが、具体的には、大腸癌、結腸癌、胃癌、直腸癌、肝癌、膵癌、肺癌、乳癌、膀胱癌、前立腺癌、子宮頚癌、頭頚部癌、胆管癌、胆嚢癌、口腔癌等の固形癌;白血病、悪性リンパ腫等の血液癌が挙げられる。これらの中でも、固形癌は、本発明の増強剤における治療対象として好適である。
 本発明の増強剤の投与方法については、特に制限されず、全身投与であっても、また局所投与であってもよい。本発明の増強剤は、全身投与により投与しても、抗癌剤を腫瘍組織に対して特異的に蓄積させるという卓越した効果があるので、好ましい投与方法として全身投与が挙げられる。全身投与としては、具体的には、血管内(動脈内又は静脈内)投与、皮下投与、皮下投与、腹膜内投与等が挙げられ、好ましくは血管内投与、更に好ましくは動静脈内投与である。なお、血管内投与には、血管内注射のみならず、持続点滴も含まれる。なお、本発明の増強剤の投与方法は、腫瘍効果の増強対象となる抗癌剤の投与方法と同一であってもよく、また異なってもよい。本発明の増強剤の投与方法が、腫瘍効果の増強対象となる抗癌剤と同一である場合には、本発明の増強剤と抗癌剤を混合した状態で投与してもよく、またそれぞれを別々に投与してもよい。
 本発明の増強剤の投与量については、腫瘍効果の増強対象となる抗癌剤の種類、患者の性別、年齢、症状などに応じて適宜決定されるため、一概に決定することはできないが、例えば、炭酸アパタイト量換算で1回あたり10mg~1g/kg(体重)程度であればよい。
 また、本発明の増強剤の投与タイミングについては、特に制限されないが、腫瘍効果の増強対象となる抗癌剤の投与と同時又はその前後24時間以内であればよく、抗癌剤の投与と同時又はその前後12時間以内が好ましく、抗癌剤の投与と同時又はその前後8時間以内が更に好ましい。また、本発明の増強剤の投与前に炭酸アパタイト粒子が凝集することを回避するという観点から、超音波振動処理後速やかに投与することが好ましい。例えば、超音波振動処理後1分以内、好ましくは30秒以内の投与が好ましい。但し、上述するように、アルブミンを添加することによって炭酸アパタイトナノ粒子の凝集を抑制する場合は、超音波振動処理後、数分~数十分経過後に投与することも可能である。
2.癌治療キット、癌治療剤
 本発明の癌治療キットは、前記増強剤を抗癌剤と同一又は異なる投与方法で投与して癌を治療する場合に使用されるものであり、抗癌剤を含む第1製剤と、前記増強剤を含む第2製剤とを含むことを特徴とする。
 また、本発明の癌治療剤は、前記増強剤を抗癌剤と同一の投与方法で投与して癌を治療する場合に使用されるものであり、抗癌剤及び前記増強剤を同一製剤中に含むことを特徴とする(但し、抗癌剤が炭酸アパタイトに内包されている場合を除く)。
 本発明の癌治療キット及び癌治療剤の構成や使用態様等については、前記「1.増強剤」の欄に示す通りである。
3.間質液圧低下剤
 炭酸アパタイトには腫瘍組織の間質液圧を低下させる作用があるので、本発明は、炭酸アパタイトを利用した間質液圧低下剤を提供する。具体的には、本発明の間質液圧低下剤は、腫瘍組織の間質液圧を低下させる目的で使用されるものであって、炭酸アパタイトを有効成分とすることを特徴とする。
 本発明の間質液圧低下剤に使用される炭酸アパタイトの組成、平均粒径、製造方法、投与方法、投与量、適用対象等については、前記「1.増強剤」の場合と同様である。また、本発明の間質液圧低下剤は、癌患者における腫瘍組織の間質液圧を低下させることができ、抗癌剤、診断薬、造影剤、癌の光線温熱療法や光線力学療法に使用される薬剤(例えば、インドシアニングリーン、5-アミノレブリン酸等)等を腫瘍深部まで浸透させることが可能になる。
4.集積促進剤
 炭酸アパタイトには、各種薬剤を腫瘍組織に集積するのを促進する作用があるので、本発明は、炭酸アパタイトを利用した集積促進剤を提供する。具体的には、本発明の集積促進剤は、薬剤の腫瘍組織への集積を促進させる目的で使用されるものであって、炭酸アパタイトを有効成分とすることを特徴とする。
 本発明の集積促進剤に使用される炭酸アパタイトの組成、平均粒径、製造方法、投与方法、投与量、適用対象等については、前記「1.増強剤」の場合と同様である。また、本発明の集積促進剤において、腫瘍に集積させる薬剤の種類については、腫瘍組織に集積させることによって所望の作用や目的を発揮できるものであることを限度として特に制限されないが、例えば、抗癌剤、診断薬、造影剤、癌の光線温熱療法や光線力学療法に使用される薬剤(例えば、インドシアニングリーン、5-アミノレブリン酸等)等が挙げられる。
 以下、実施例を挙げて本発明を説明する。但し、本発明は、以下の実施例に限定されて解釈されるものではない。
製造例:炭酸アパタイトナノ(sonicated carbonate apatite; sCA)粒子の製造
(1)DMEM溶液を用いた炭酸アパタイトナノ粒子(sCA)の製造
 100mlの蒸留水に、1.35gのDMEM粉末及び0.37gのNaHCO3を順に添加して完全に溶解させ、1NのHClを用いてpHを7.5に調整した。このDMEM溶液(100ml)を直径0.2μmのフィルターでろ過し、1mlDMEM溶液当たり、4μlのCaCl2(1M)を混合し、37℃の水浴中で30分間インキュベートした。その後、15000rpm×5分で遠沈し、得られたペレットを蒸留水、細胞培養液又は生理食塩水等の細胞や生体に投与可能な水溶液に分散させ、炭酸アパタト粒子分散液を得て、これを10分間超音波振動処理にかけることにより、炭酸アパタイトナノ粒子(以下、「sCA(1)粒子」とする)を得た。超音波振動処理は、超音波振動機能を有するウォーターバスを用いて、20℃に設定した水に、プラスチック容器に収容した、炭酸アパタイト粒子分散液を浮かべ、高周波出力55W、発振周波数38kHzの条件で10分間行った。尚、顕微鏡を用いた粒径の測定を行う場合には、遠沈後にsCA(1)粒子を蒸留水に分散させた。細胞実験に用いる場合は、上記の遠沈を行う必要はないか、あるいは、遠沈後にsCA(1)粒子をDMEM溶液に分散させて調製した。動物実験に用いる場合は、遠沈後にsCA(1)粒子を生理食塩水に分散させて調製した。
(2)バッファーを用いた炭酸アパタイトナノ粒子(sCA)の製造
 100mlの蒸留水に、0.37gのNaHCO3、90μlのNaH2PO4・2H2O(1M)、及び180μlのCaCl2(1M)をこの順で添加して溶解させ、1NのHClでpHを7.5に調整した。これを直径0.2μmのフィルターでろ過した。斯して得られた溶液を、以下「バッファーA」と表記する。得られたバッファーA1ml当たりに4μlのCaCl2(1M)を混合し、37℃の水浴中で30分間インキュベートした後、15000rpm×5分で遠沈し、得られたペレットを、蒸留水、細胞培養液又は生理食塩水等の細胞や生体に投与可能な水溶液に分散させ、炭酸アパタイト粒子分散液を得て、これを10分間超音波振動処理にかけることにより、炭酸アパタイトナノ粒子(以下、「sCA(2)粒子」とする)を得た。超音波振動処理は、超音波振動機能を有するウォーターバスを用いて、20℃に設定した水に、プラスチック容器に収容した、炭酸アパタイト粒子分散液を浮かべ、高周波出力55W、発振周波数38kHzの条件で10分間行った。尚、顕微鏡を用いた粒径の測定を行う場合には、遠沈後にsCA(1)粒子を蒸留水に分散させた。細胞実験に用いる場合は、遠沈後にsCA(1)粒子をDMEM溶液に分散させて調製した。動物実験に用いる場合は、遠沈後にsCA(1)粒子を生理食塩水に分散させて調製した。
(3)炭酸アパタイトナノ粒子(sCA)の粒径及び形態の測定
 実施例1で作製したsCA(1)粒子及びsCA(2)粒子の粒径及び形態等をマイクロカンチレバー(OMCL-AC240TS-RS,オリンパス社製)を備えた走査型プローブ顕微鏡(SPM-9500,島津製作所製)をダイナミックモードで使用して測定した。測定は、超音波振動処理後30秒以内に2回ずつ実施した。カバーガラスの表面に約10μlのサンプル水溶液を滴下し、5分の真空乾燥後、CCDカメラにて、平滑面を選択し、1~5平方μmの範囲について測定した。その結果を以下の表1に示す。また、測定範囲について得られた2次元解析画像及び粒子の大きさのその数の分布を示すグラフを図1及び2に示す。図1はsCA(1)粒子であり、図2はsCA(2)粒子である。これらの結果から、超音波振動処理によって、炭酸アパタイト粒子の粒径が10nm以下にすることが可能であることが確認された。
Figure JPOXMLDOC01-appb-T000001
実施例1:5-フルオロウラシルの抗腫瘍効果の増強
 ヒト大腸癌細胞株(HCT116)を96ウェルプレートに均等に播種し(1×104細胞/ウェル)、一晩培養した。培養は、10%のウシ胎仔血清を添加したDMEM培地を用い、5%CO2、37℃の条件で行った。次いで、前記製造例の(1)でDMEM溶液38μlから調製される量に相当するsCA(1)粒子を100μlの細胞培養液に分散させ、各ウェルに添加して、5%CO2、37℃の条件で24時間培養を行った。その後、5-フルオロウラシルを各種濃度となるように添加し、5%CO2、37℃の条件で培養を行った。5-フルオロウラシル添加後、24、48及び72時間の時点で細胞数を計測し、IC50(癌細胞の50%が死滅する5-フルオロウラシル濃度)を求めた。また、比較のために、sCA粒子を添加しないこと以外は、同条件で試験を行い、IC50を求めた。
 得られた結果を表2に示す。この結果から、5-フルオロウラシルと炭酸アパタイト粒子を共存させた場合には、5-フルオロウラシル単独の場合に比して、IC50が低下していた。特に、5-フルオロウラシル添加後24時間では、5-フルオロウラシルと炭酸アパタイト粒子を共存させた場合のIC50は顕著に低くなっていた。この結果から、炭酸アパタイト粒子は、5-フルオロウラシルの抗腫瘍効果を増強することが明らかとなった。
Figure JPOXMLDOC01-appb-T000002
実施例2:5-フルオロウラシル、シスプラチン、オキサリプラチン、及びドセタキセルの抗腫瘍効果の増強
 ヒト大腸癌細胞株(HCT116)を24ウェルプレートに均等に播種し(1×104細胞/ウェル)、一晩培養した。培養は、10%のウシ胎仔血清を添加したDMEM培地を用い、5%CO2、37℃の条件で行った。次いで、前記製造例の(1)でDMEM溶液1mlから調製される量に相当するsCA(1)粒子を2mlの細胞培養液に分散させ、各ウェルに添加して、5%CO2、37℃の条件で24時間培養を行った。その後、5-フルオロウラシル、シスプラチン、オキサリプラチン又はドセタキセルを各種濃度となるように添加し、5%CO2、37℃の条件で培養を行った。各抗癌剤の添加後、48時間の時点で細胞数を計測し、IC50(癌細胞の50%が死滅する5-フルオロウラシル濃度)を求めた。また、比較のために、抗癌剤を添加しないこと以外は、同条件で試験を行い、IC50を求めた。
 得られた結果を表3に示す。この結果から、5-フルオロウラシル、シスプラチン、オキサリプラチン又はドセタキセルと共に、炭酸アパタイト粒子を共存させた場合には、これらの抗癌剤単独の場合に比して、IC50が低下していた。とりわけ、5-フルオロウラシル、オキサリプラチン、及びドセタキセルに対して、炭酸アパタイト粒子は抗腫瘍効果を顕著に増強できていた。即ち、この結果から、炭酸アパタイト粒子は、各種抗癌剤の抗腫瘍効果を増強する作用があることが明らかとなった。
Figure JPOXMLDOC01-appb-T000003
実施例3:ヒト結腸癌細胞に対する5-フルオロウラシルの抗腫瘍効果の増強
 ヒト結腸癌細胞株(SW480)を24ウェルプレートに均等に播種し(1×104細胞/ウェル)、一晩培養した。培養は、10%のウシ胎仔血清を添加したDMEM培地を用い、5%CO2、37℃の条件で行った。次いで、前記製造例の(1)でDMEM溶液1mlから調製される量に相当するsCA(1)粒子を2mlの細胞培養液に分散させ、各ウェルに添加して、5%CO2、37℃の条件で24時間培養を行った。その後、5-フルオロウラシルを0.1、0.25、0.5、1、2、及び10μg/mlとなるように添加し、5%CO2、37℃の条件で72時間培養を行い、培養後の生細胞数を計測した。また、比較のために、5-フルオロウラシル又はsCA粒子を添加しないこと以外は、同条件で試験を行い、培養後の生細胞数を計測した。5-フルオロウラシルを添加しなかった条件での72時間培養後の生細胞数を100%として細胞生存率を算出した。
 得られた結果を図3に示す。この結果からも、5-フルオロウラシルと炭酸アパタイト粒子を共存させた場合には、5-フルオロウラシル単独又は炭酸アパタイト粒子単独の場合に比して、細胞生存率が低くなっており、炭酸アパタイト粒子が5-フルオロウラシルの抗腫瘍効果を増強したことが確認された。
実施例4:ヒト大腸癌細胞に対する5-フルオロウラシルの抗腫瘍効果の増強
 ヒト結腸癌細胞株の代わりにヒト大腸癌細胞株(DLD-1)を使用したこと以外は、実施例3と同様の方法で試験を行い、細胞生存率を測定した。
 得られた結果を図4に示す。この結果からも、実施例3の場合と同様に、炭酸アパタイト粒子が5-フルオロウラシルの抗腫瘍効果を増強したことが確認された。
実施例5:ヒト大腸癌細胞に対する塩酸ドキソルビシンの抗腫瘍効果の増強
 ヒト大腸癌細胞株(HCT116)を24ウェルプレートに均等に播種し(1×104細胞/ウェル)、一晩培養した。培養は、10%のウシ胎仔血清を添加したDMEM培地を用い、5%CO2、37℃の条件で行った。次いで、前記製造例の(1)でDMEM溶液1mlから調製される量に相当するsCA(1)粒子を2mlの細胞培養液に分散させたものをsCA(0.5)、前記製造例の(1)でDMEM溶液1mlから調製される量に相当するsCA(1)粒子を1mlの細胞培養液に分散させたものをsCA(1.0)、及び前記製造例の(1)でDMEM溶液1mlから調製される量に相当するsCA(1)粒子を0.5mlの細胞培養液に分散させたものをsCA(2.0)とし、各ウェルに250μlずつ添加して、5%CO2、37℃の条件で24時間培養を行った。その後、塩酸ドキソルビシン1000nmol/lの溶液を250μl添加し、5%CO2、37℃の条件で24時間培養を行った。次いで、培養後の細胞を回収し、FACSにて塩酸ドキソルビシンが発する蛍光を測定した。また、比較のために、sCA(1)粒子を添加しないこと以外は、同条件で試験を行った。
 得られた結果を図5に示す。この結果から、塩酸ドキソルビシンと炭酸アパタイト粒子を共存させた場合には、塩酸ドキソルビシン単独の場合に比して、細胞に取り込まれた塩酸ドキソルビシン量が増加しており、炭酸アパタイト粒子によって塩酸ドキソルビシンの細胞内への取り込みが促進されていることが明らかとなった。
実施例6:腫瘍モデルマウスにおける抗腫瘍効果の増強(1)
 7週齢のBALB/cAヌードマウス(日本クレア社製)の背部左右に、ヒト大腸癌細胞であるHCT116株を皮下注射し、固形腫瘍を有するモデルマウスを作製した。腫瘍が5~6mmの大きさに達した時点でマウスをランダムに、5-FU単独投与群と、5-FU及びsCA粒子投与群の2グループに分けた。腫瘍が5~6mmの大きさに達した時点を0日として、0日、2日、7日、8日、9日、及び10日に、表4に示す態様で薬物投与を行った。15日に、マウスから腫瘍を摘出し、ヘマトキシリン・エオシン染色(HE染色)した。
Figure JPOXMLDOC01-appb-T000004
 得られた結果を図6及び7に示す。この結果、5-フルオロウラシルと炭酸アパタイト粒子の双方を投与した場合には、5-フルオロウラシルを単独で投与した場合に比べて、腫瘍サイズが小さくなっており(図6)、更に、腫瘍組織中で死滅している癌細胞数が多くなっていた(図7)。
実施例7:腫瘍モデルマウスにおける抗腫瘍効果の増強(2)
 7週齢のBALB/cAヌードマウス(日本クレア社製)の背部左右に、ヒト大腸癌細胞であるHT29株(5×106個)を皮下注射し、マウス皮下固形腫瘍モデルを作製した。腫瘍の直径が約10mmになった時点で、マウスをランダムに、表5に示す2群に別けて薬物投与を行った。薬物投与から2時間後に、マウスから腫瘍を摘出し、IVIS Spectrumを用いた蛍光イメージングによって腫瘍に蓄積している塩酸ドキソルビシンの検出を行った。なお、ドキソルビシン(DOX)は、IVIS Spectrumによって蛍光波長が検出されることが確認されている(図8)。
Figure JPOXMLDOC01-appb-T000005
 得られた結果を図9に示す。図9に示されているように、塩酸ドキソルビシン単独投与群では、腫瘍において僅かにしかドキソルビシンが検出されなかったが、塩酸ドキソルビシン及びsCA粒子投与群では、ドキソルビシンが腫瘍に集積していた。即ち、本結果から、投与後2時間という短時間であっても、sCA粒子は塩酸ドキソルビシンを腫瘍に効率的に集積させ得ることが明らかとなった。
実施例8:腫瘍組織における間質液圧の低下
 7週齢のBALB/cAヌードマウス(日本クレア社製)の背部左右に、ヒト大腸癌細胞であるHT29株(5×106個)を皮下注射し、マウス皮下固形腫瘍モデルを作製した。腫瘍の直径が約10mmになった時点で、前記で調製したsCA(2)粒子(前記製造例の(2)においてバッファーA 50mlから調製される量に相当)を含む生理食塩水200μlを尾静脈投与した。sCA(2)粒子の投与2.5~4時間後に1.6Fr圧カテーテル付きの生体内圧カテーテル計測システム(transonic science, Inc)を用いて、腫瘍内の間質液圧を測定した(測定対象腫瘍数3つ、n=39)。また、コントロールとして、sCA(2)粒子の投与前の腫瘍内の間質液圧についても測定した(測定対象腫瘍数5つ、n=30)。
 得られた結果を表6に示す。この結果から、炭酸アパタイト粒子には、腫瘍内の間質液圧を低下させる作用があることが明らかとなった。この結果を踏まえると、前記実施例6及び7においてマウス皮下固形腫瘍モデルで認められた抗腫瘍効果の増強は、炭酸アパタイト粒子による腫瘍内の間質液圧の低減作用が寄与していることが示唆された。
Figure JPOXMLDOC01-appb-T000006

Claims (15)

  1.  炭酸アパタイトを有効成分とする、抗癌剤の抗腫瘍効果の増強に使用される増強剤。
  2.  炭酸アパタイトが、平均粒径50nm以下のナノ粒子である、請求項1に記載の増強剤。
  3.  抗癌剤が、代謝拮抗剤、白金製剤、微小管作用薬、及び抗癌性抗生物質よりなる群から選択される少なくとも1種である、請求項1又は2に記載の増強剤。
  4.  抗癌剤が、5-フルオロウラシル、シスプラチン、オキサリプラチン、ドセタキセル、及び塩酸ドキソルビシンよりなる群から選択される少なくとも1種である、請求項1~3のいずれかに記載の増強剤。
  5.  更にアルブミンを含有する、請求項1~4のいずれかに記載の増強剤。
  6.  抗癌剤を含む第1製剤と、請求項1~5のいずれかに記載の増強剤を含む第2製剤とを含む、癌治療キット。
  7.  抗癌剤、及び請求項1~5のいずれかに記載の増強剤を含有する、癌治療剤(但し、炭酸アパタイト粒子中に抗癌剤が内包されている場合を除く)。
  8.  炭酸アパタイトを有効成分とする、腫瘍組織の間質液圧の低下に使用される間質液圧低下剤。
  9.  炭酸アパタイトを有効成分とする、薬剤の腫瘍組織への集積を促進させる集積促進剤。
  10.  癌患者に、有効量の炭酸アパタイト及び抗癌剤を投与する工程を含む、癌の治療方法。
  11.  癌患者に、有効量の炭酸アパタイトを投与する工程を含む、腫瘍組織の間質液圧の低下方法。
  12.  癌患者に、有効量の炭酸アパタイト及び薬剤を投与する工程を含む、薬剤の腫瘍組織への集積を促進させる方法。
  13.  炭酸アパタイトの、抗癌剤の抗腫瘍効果の増強に使用される増強剤の製造のための使用。
  14.  炭酸アパタイトの、腫瘍組織の間質液圧の低下に使用される間質液圧低下剤の製造のための使用。
  15.  炭酸アパタイトの、薬剤の腫瘍組織への集積を促進させる集積促進剤の製造のための使用。
PCT/JP2015/054843 2014-02-20 2015-02-20 抗癌剤の抗腫瘍効果の増強剤 WO2015125934A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016504196A JP6516723B2 (ja) 2014-02-20 2015-02-20 抗癌剤の抗腫瘍効果の増強剤
EP15751754.1A EP3108890B1 (en) 2014-02-20 2015-02-20 Enhancer of anti-tumor effect of anti-cancer agent
US15/119,862 US9889155B2 (en) 2014-02-20 2015-02-20 Enhancer of anti-tumor effect of anti-cancer agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014031060 2014-02-20
JP2014-031060 2014-02-20

Publications (1)

Publication Number Publication Date
WO2015125934A1 true WO2015125934A1 (ja) 2015-08-27

Family

ID=53878432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054843 WO2015125934A1 (ja) 2014-02-20 2015-02-20 抗癌剤の抗腫瘍効果の増強剤

Country Status (4)

Country Link
US (1) US9889155B2 (ja)
EP (1) EP3108890B1 (ja)
JP (1) JP6516723B2 (ja)
WO (1) WO2015125934A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169146A (ja) * 2019-04-04 2020-10-15 株式会社ナノビヨンド 高分子型抗がん剤の抗腫瘍効果の増強剤
WO2022071496A1 (ja) * 2020-09-30 2022-04-07 株式会社ナノビヨンド 炎症性疾患治療薬の薬効増強剤、及び造影剤の炎症部位への集積を促進させる集積促進剤

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018199121A1 (ja) 2017-04-24 2020-02-27 浩文 山本 炎症性腸疾患の予防又は治療剤
WO2019206677A1 (en) * 2018-04-23 2019-10-31 Seagles Ab Novel treatment approach by targeted delivery of bioactive molecules bio modulated ceramics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329557A (ja) * 1993-05-21 1994-11-29 Meiji Milk Prod Co Ltd 生理活性物質吸着用担体
JP5436650B1 (ja) * 2012-11-28 2014-03-05 浩文 山本 スーパーアパタイト超微細ナノ粒子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040180091A1 (en) * 2003-03-13 2004-09-16 Chang-Yi Lin Carbonated hydroxyapatite-based microspherical composites for biomedical uses
DE602005018222D1 (ja) 2004-06-10 2010-01-21 Nippon Kayaku Kk
JP5467259B2 (ja) 2008-03-13 2014-04-09 国立大学法人 千葉大学 シスプラチン効果増強剤及び抗癌剤キット
JP5578498B2 (ja) 2009-11-10 2014-08-27 国立大学法人 千葉大学 抗癌剤キット及び抗癌剤効果増強剤

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329557A (ja) * 1993-05-21 1994-11-29 Meiji Milk Prod Co Ltd 生理活性物質吸着用担体
JP5436650B1 (ja) * 2012-11-28 2014-03-05 浩文 山本 スーパーアパタイト超微細ナノ粒子

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
FAN, Y. ET AL.: "The reduction of tumor interstitial fluid pressure by liposomal imatinib and its effect on combination therapy with liposomal doxorubicin", BIOMATERIALS, vol. 34, no. 9, 2013, pages 2277 - 2288, XP055221084, ISSN: 0142-9612 *
HOSSAIN, S. ET AL.: "Fabrication and Intracellular Delivery of Doxorubicin/Carbonate Apatite Nanocomposites: Effect on Growth Retardation of Established Colon Tumor", PLOS ONE, vol. 8, no. 4, 2013, pages 1 - 11, XP002738960, ISSN: 1932-6203 *
HOSSAIN, S. ET AL.: "In vitro delivery of anti cancer drugs to cancer cells by using inorganic nanoparticles", THE JAPANESE SOCIETY FOR REGENERATIVE MEDICINE ZASSHI, vol. 6, 2007, pages 312, XP008184909 *
See also references of EP3108890A4 *
XIN W U ET AL.: "Hito Daichogan Hika Shuyo Model ni Okeru pH Kanjusei Tansan Apatite Nano Ryushi no Shuyo Shuseki Koka", DAI 71 KAI PROCEEDINGS OF THE JAPANESE CANCER ASSOCIATION, 2012, XP008184793 *
XIN WU ET AL.: "Mouse Daichogan Hika Shuyo Model ni Okeru Doxorubicin Naiho pH Kanjusei Tansan Apatite Nano Ryushi Seizai no Koshuyo Koka", DAI 16 KAI THE JAPANESE ASSOCIATION FOR MOLECULAR TARGET THERAPY OF CANCER GAKUJUSTU SHUKAI PROGRAM - SHOROKUSHU, 2012, pages W10 - 4, XP008184895 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169146A (ja) * 2019-04-04 2020-10-15 株式会社ナノビヨンド 高分子型抗がん剤の抗腫瘍効果の増強剤
WO2022071496A1 (ja) * 2020-09-30 2022-04-07 株式会社ナノビヨンド 炎症性疾患治療薬の薬効増強剤、及び造影剤の炎症部位への集積を促進させる集積促進剤

Also Published As

Publication number Publication date
EP3108890A1 (en) 2016-12-28
US20170128487A1 (en) 2017-05-11
EP3108890A4 (en) 2018-03-21
JP6516723B2 (ja) 2019-05-22
EP3108890B1 (en) 2022-12-28
JPWO2015125934A1 (ja) 2017-03-30
US9889155B2 (en) 2018-02-13

Similar Documents

Publication Publication Date Title
Wang et al. Enhanced drug delivery using sonoactivatable liposomes with membrane-embedded porphyrins
Qiu et al. Celastrol nanoemulsion induces immunogenicity and downregulates PD-L1 to boost abscopal effect in melanoma therapy
JP2022009707A (ja) 固形腫瘍治療のための方法
Zheng et al. Oxygen and oxaliplatin-loaded nanoparticles combined with photo-sonodynamic inducing enhanced immunogenic cell death in syngeneic mouse models of ovarian cancer
CN108042810B (zh) 一种酸响应释氢纳米药物及其制备方法
AU2017245152B2 (en) A poly-oxygenated metal hydroxide comprising a clathrate that increases oxygen levels in mammalian tissues
Sun et al. Ultrasound microbubbles mediated sonosensitizer and antibody co-delivery for highly efficient synergistic therapy on HER2-positive gastric cancer
CN107921005A (zh) 利用纳米颗粒治疗肿瘤的组合物和方法
JP6516723B2 (ja) 抗癌剤の抗腫瘍効果の増強剤
CN109876008B (zh) 一种用于肿瘤治疗的药物及其制备方法和应用
JP2015155392A (ja) グルコースと炭酸アパタイトを使用した抗癌剤
Li et al. Colon cancer exosome-derived biomimetic nanoplatform for curcumin-mediated sonodynamic therapy and calcium overload
CN114558133B (zh) 一种同时递送声敏剂和靶向抗体的超声靶向微泡及其制备方法和应用
AU2016269146B2 (en) Nanoparticles for use as a therapeutic vaccine
JP2008100956A (ja) がん治療用組成物
JP2020169146A (ja) 高分子型抗がん剤の抗腫瘍効果の増強剤
CN110251672B (zh) 一种纳米诊疗剂及其制备方法与应用
CN106606783B (zh) 一种靶向共递释光敏剂与化疗药物的药物递释系统
Gowsalya et al. Engineered photonic near-infrared light activated photothermal theranostic nanovaccine induced targeted remodeling of tumor microenvironment
Zhang et al. A four-in-one pure nanomedicine for synergistic multi-target therapy against breast cancer
JP6443907B2 (ja) 造影剤の腫瘍への集積を促進するための集積促進剤
Feng et al. Manipulating calcium homeostasis with nanoplatforms for enhanced cancer therapy
KR102473102B1 (ko) 면역애주번트가 접합된 코어-쉘 구조의 나노입자 및 이의 용도
Pei et al. Bioactive metal-based nanomedicines for boosting anti-tumor immunity: Advance, challenge, and perspective
Yao et al. Folic Acid Decorated Nanostructured Lipid Carrier Loaded with Chlorin e6 for Osteosarcoma Therapy: In Vitro and In Vivo Performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504196

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015751754

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015751754

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15119862

Country of ref document: US