WO2015125767A1 - 機械部品の製造方法 - Google Patents

機械部品の製造方法 Download PDF

Info

Publication number
WO2015125767A1
WO2015125767A1 PCT/JP2015/054240 JP2015054240W WO2015125767A1 WO 2015125767 A1 WO2015125767 A1 WO 2015125767A1 JP 2015054240 W JP2015054240 W JP 2015054240W WO 2015125767 A1 WO2015125767 A1 WO 2015125767A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
manufacturing
nitrogen
steel member
film
Prior art date
Application number
PCT/JP2015/054240
Other languages
English (en)
French (fr)
Inventor
和寛 八木田
工 藤田
晃嗣 井手
Original Assignee
Ntn株式会社
和寛 八木田
工 藤田
晃嗣 井手
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 和寛 八木田, 工 藤田, 晃嗣 井手 filed Critical Ntn株式会社
Publication of WO2015125767A1 publication Critical patent/WO2015125767A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/62Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/10Hardening, e.g. carburizing, carbo-nitriding
    • F16C2223/14Hardening, e.g. carburizing, carbo-nitriding with nitriding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture

Definitions

  • the present invention relates to a method for manufacturing a machine part, and more particularly to a method for manufacturing a machine part having a nitrogen-enriched layer in a surface layer portion.
  • a nitrogen-enriched layer having a higher nitrogen concentration than the inside may be formed on the surface part of the machine parts by a method such as carbonitriding.
  • propane, butane or city gas and air are mixed at a high temperature of 1000 ° C. or higher to produce a carrier gas (endothermic modified gas; hereinafter referred to as RX gas), and a small amount of propane, An atmospheric gas to which butane and ammonia are added is often used.
  • RX gas endothermic modified gas
  • An atmospheric gas to which butane and ammonia are added is often used.
  • a nitrogen-enriched layer is formed in the surface layer part of a to-be-processed object by heating a to-be-processed object in this atmospheric gas.
  • the nitriding reaction is caused by undecomposed ammonia.
  • Patent Document 1 discloses a method that enables nitriding at a high temperature without using ammonia gas.
  • a pretreatment for forming a film containing vanadium (V) on the surface of the steel is performed before the nitriding treatment.
  • an oxide film is formed by heating the steel containing vanadium at high temperature in the atmosphere.
  • an object of the present invention is to provide a more energy-saving manufacturing method for machine parts including nitriding without using ammonia gas.
  • the method of manufacturing a mechanical component according to the present invention includes a step of preparing a member made of steel, a step of forming a film containing vanadium on the surface of the member by reacting the member with a treatment liquid, A step of forming a nitrogen-enriched layer on the surface by heating the member on which the film is formed in a heat treatment gas atmosphere containing nitrogen gas and not ammonia gas.
  • the method for manufacturing a machine part according to the present invention it is possible to provide a more energy-saving method for manufacturing a machine part including nitriding without using ammonia gas.
  • FIG. 3 is a flowchart schematically showing a method for manufacturing a mechanical component according to the first embodiment. It is the schematic for demonstrating the process (S20) in the manufacturing method of the machine component which concerns on Embodiment 1.
  • FIG. It is the schematic for demonstrating the process (S30) in the manufacturing method of the machine component which concerns on Embodiment 1.
  • FIG. 6 is a schematic diagram for explaining a method of manufacturing a mechanical component according to Embodiment 2.
  • FIG. It is a graph which shows nitrogen concentration distribution in the depth direction of a test piece.
  • a steel member preparation step is first performed as a step (S10).
  • a steel member molded into the general shape of the components (outer ring, inner ring, rolling element) of the rolling bearing is prepared.
  • AMS2315 Alospace Materials Standard; USA
  • steel material containing 0.1% by mass or more of vanadium or JIS standard SUJ2 is added with 0.1% by mass or more of vanadium.
  • the steel member is prepared by carrying out processing such as forging and turning.
  • an oxidation step is performed as a step (S20).
  • a processing container 3 filled with black dyeing solution 4 (processing solution) is prepared.
  • the steel member 90 prepared in the said process (S10) is immersed in the black dyeing liquid 4, after degreasing etc. are given.
  • the black dyeing liquid 4 includes, for example, sodium hydroxide (55 to 60% by weight), sodium nitrate (20 to 25% by weight), sodium nitrite (10 to 15% by weight), and sodium carbonate (1 to 5% by weight). ) And sodium chloride (1 to 5% by weight) as components.
  • the steel member 90 is oxidized and a triiron tetroxide (Fe 3 O 4 ) film is formed on the surface of the steel member 90.
  • the Fe 3 O 4 coating contains vanadium in the steel.
  • the steel member 90 is taken out from the processing container 3, and a water washing process is performed.
  • the steel member 90 is oxidized using the black dyeing solution 4 to form an oxide film (Fe 3 O 4 coating) containing vanadium on the surface of the steel member 90.
  • the “film containing vanadium” is not only an oxide film (Fe 3 O 4 film) formed by an oxidation process using the black dyeing liquid 4 but also a steel member 90 reacted by using a predetermined process liquid.
  • a vanadium-containing film that may be formed on the surface of the steel member 90 may also be included.
  • the blackening treatment of the steel member 90 is preferably performed at a temperature of less than 500 ° C, more preferably 150 ° C or less.
  • the black dyeing time is preferably 1 minute or more and 120 minutes or less, and more preferably 3 minutes or more and 40 minutes or less.
  • the thickness of the oxide film formed on the surface of the steel member 90 is preferably 0.1 ⁇ m or more and 3 ⁇ m or less, and more preferably 1 ⁇ m or more and 2 ⁇ m or less.
  • the oxide film may be formed on the entire surface of the steel member 90, but may be formed on a part of the surface of the steel member 90. That is, the oxide film is not limited to being formed on the entire surface of the steel member 90, and may be formed only in a region where a nitrogen-enriched layer is to be formed in the step (S30) described later.
  • a masking material (not shown) is disposed on a part of the surface of the steel member 90, and then the steel member 90 is immersed in the black dyeing solution 4. An oxidation treatment may be performed.
  • a carbonitriding step is performed as a step (S30).
  • the steel member 90 oxidized in the above step (S20) is carbonitrided.
  • a steel member 90 is installed on the holding portion 12 installed on the bottom wall of the heat treatment chamber 11 of the batch furnace 1.
  • propane (C 3 H 8 ) gas and air are mixed in a shift furnace, and the endothermic shift gas (RX gas) obtained by heating to a temperature of 1000 ° C. or higher in the presence of a catalyst is enriched.
  • Propane gas as gas is supplied into the heat treatment chamber 11 from the air inlet 13.
  • a heat treatment gas atmosphere adjusted to a desired carbon potential is formed in the heat treatment chamber 11.
  • the heat treatment gas atmosphere contains nitrogen gas in RX gas and does not contain ammonia gas.
  • “does not contain ammonia gas” means that it does not substantially contain ammonia gas, and does not exclude mixing of ammonia gas as an impurity.
  • temperature range temperatures higher than 750 °C 1000 ° C. or less steel member 90 is at a temperature range of not lower than the A 1 transformation point for example, is preferably heated to a temperature range of 850 ° C. or higher 950 ° C. or less. Thereby, carbon penetrates into the surface layer portion of the steel member 90.
  • an oxide film containing vanadium is formed on the surface of the steel member 90 and nitrogen gas is contained in the RX gas, nitrogen also enters the surface layer portion of the steel member 90.
  • the steel member 90 is carbonitrided, and a nitrogen-enriched layer is formed on the surface of the steel member 90.
  • a quench hardening process is implemented as process (S40).
  • the steel member 90 on which the nitrogen-enriched layer is formed in the step (S30) is hardened by hardening. More specifically, the steel members 90 which are carbonitrided at a temperature range of not lower than the A 1 transformation point is taken from the batch furnace 1, it is immersed in, for example, oil ⁇ . Thus, the steel member 90 is quench-hardened is cooled from a temperature range of not lower than the A 1 transformation point to a temperature range below M S point. As a result, the entire steel member 90 including the nitrogen-enriched layer is quenched and hardened, and high fatigue strength and wear resistance are imparted to the steel member 90.
  • a 1 transformation point means a point where the structure of the steel when heating the steel corresponds to the temperature to start the transformation from ferrite to austenite.
  • M s point (martensitic transformation point)” refers to a point corresponding to a temperature at which martensitization starts when the austenitized steel is cooled.
  • step (S50) a tempering step is performed as a step (S50).
  • the steel member 90 that has been quenched and hardened in the step (S40) is tempered. More specifically, in step (S50), steel members 90 which are quench hardening treatment in the step (S40) is heated to a temperature below the A 1 transformation point, tempering process carried out by the subsequently cooled Is done.
  • a finishing process is performed as a process (S60).
  • the steel member 90 obtained by carrying out the steps (S10) to (S50) is subjected to finishing, so that the components of the rolling bearing (outer ring, inner ring, rolling element) ) Is completed. More specifically, in the step (S60), the steel member 90 that has been tempered is subjected to polishing or the like to complete the bearing component. With the above process, the manufacturing method of the machine part according to the present embodiment is completed.
  • the method of manufacturing a mechanical component according to the present embodiment includes a step (S10) of preparing a member made of steel (steel member 90) and reacting the member with a treatment liquid (black dyeing liquid 4).
  • the vanadium-containing film is formed by oxidizing the member.
  • the film containing vanadium contains triiron tetroxide (Fe 3 O 4 ).
  • a steel part 90 having a film containing vanadium formed on the surface thereof is heated in an atmosphere containing nitrogen gas and no ammonia gas, and has a nitrogen-enriched layer (bearing part). Is manufactured.
  • the formation of the nitrogen-enriched layer does not proceed with undecomposed ammonia. Therefore, in the method for manufacturing a mechanical component, the heat treatment time can be shortened by performing the treatment for forming the nitrogen-enriched layer at a high temperature.
  • ammonia is not used in the above-described method of manufacturing a machine part, it is possible to suppress the consumption of parts used in the heat treatment furnace 11 and to reduce the maintenance cost of equipment.
  • an oxide film (Fe 3 O 4 coating) containing vanadium is formed on the surface of the steel member 90 by the oxidation treatment using the black dyeing solution 4 before the formation of the nitrogen-enriched layer. . Therefore, it is possible to save energy in the manufacturing process as compared with the case where an oxide film containing vanadium is formed on the surface of the steel member by high-temperature heating in the atmosphere.
  • the member made of steel containing 0.1% by mass or more of vanadium is prepared.
  • membrane containing vanadium can be easily formed in the surface of the said steel member 90 by oxidizing the steel member 90.
  • the vanadium-containing film (S20) in the step of forming the vanadium-containing film (S20), the vanadium is contained by reacting the member (steel member 90) at a temperature of less than 500 ° C. A film is formed. Thereby, energy saving can be achieved in the manufacturing process.
  • the heat treatment gas contains an endothermic modified gas (RX gas).
  • RX gas endothermic modified gas
  • the heat treatment gas may be a mixed gas of nitrogen gas and reducing gas. Accordingly, the nitrogen-enriched layer can be formed using the reducing heat treatment gas containing nitrogen which is inexpensive and easily available as a nitrogen supply source. As a result, the heat treatment cost can be reduced.
  • the reducing gas for example, hydrogen gas, methane gas, propane gas, butane gas, carbon monoxide gas, or the like can be employed.
  • the heat treatment gas may include nitrogen gas and have an oxygen partial pressure of 1 ⁇ 10 16 Pa or less.
  • the heat treatment gas may contain an oxygen partial pressure of 10 ⁇ 16 Pa or less by including the reducing gas.
  • the reducing gas hydrogen gas, methane gas, propane gas, butane gas, carbon monoxide gas, or the like can be employed.
  • a heat treatment gas containing nitrogen that is inexpensive and easily available as a nitrogen supply source and that suppresses the oxidizability to a low level. As a result, the heat treatment cost can be reduced.
  • the above method of manufacturing a mechanical part according to the present embodiment the by cooling the member nitrogen-enriched layer is formed (the steel member 90), the A 1 transformation point or more temperature M s point below the temperature A step (S40) of quenching and hardening the member is provided.
  • a component of a rolling bearing such as a race or a rolling element such as an outer ring or an inner ring is manufactured. Since the components constituting the rolling bearing are often required to have high fatigue strength and wear resistance, the above-described method for manufacturing a mechanical component is suitable for manufacturing the components of the rolling bearing.
  • the method of manufacturing a machine part according to the present invention is not limited to the case of manufacturing a component of a rolling bearing, and is similarly applied to the manufacture of other machine parts that require improvement in fatigue strength and wear resistance. Can do.
  • Embodiment 2 which is another embodiment of the present invention will be described.
  • the method for manufacturing a mechanical component according to the present embodiment is basically performed by the same process as the method for manufacturing a mechanical component according to the first embodiment, and has the same effect.
  • the carbonitriding process (S30) is performed using the batch furnace 1, whereas in the present embodiment, the above process is performed using the continuous furnace 2.
  • the continuous furnace 2 includes a nitriding furnace 22 and a quenching oil tank 23 connected to the nitriding furnace 22 and holding quenching oil.
  • the quenching oil bowl 23 is provided with a conveyor 26 for carrying out the object to be processed in the quenching oil bowl 23.
  • the carbonitriding step (S30) and the quench hardening step (S40) are performed using the continuous furnace 2.
  • the steel member 90 oxidized in the step (S20) is placed on the conveyor 25. Thereby, the steel member 90 is conveyed by the conveyor 25 along arrow (alpha).
  • the inside of the nitriding furnace 22 is adjusted to a heat treatment gas atmosphere such as RX gas to which enriched gas is added or a mixed gas of nitrogen gas and hydrogen gas.
  • the steel member 90 is heated to a temperature range of not lower than the A 1 transformation point in the nitriding furnace 22. Thereby, a nitrogen-enriched layer is formed on the surface layer portion of the steel member 90.
  • the steel member 90 on which the nitrogen-enriched layer has been formed is transported by the conveyor 25 and falls into the quenching oil tank 23 along the arrow ⁇ . Thereby, the steel member 90 is quenched and hardened by hardening. Then, the hardened and hardened steel member 90 is carried out of the hardened oil tank 23 by the conveyor 26.
  • the steps (S30) and (S40) using the continuous furnace 2 are completed by the above procedure. As described above, in the method for manufacturing a machine component according to the present embodiment, by using the continuous furnace 2, the steps (S30) and (S40) can be efficiently performed, and the production efficiency of the machine component can be improved.
  • a nitrogen-enriched layer by forming an oxide film containing vanadium on the surface of the steel by black dyeing treatment and heating the steel in a heat treatment gas atmosphere containing nitrogen gas but not ammonia gas.
  • An experiment to confirm was conducted.
  • a test piece made of steel having the component composition shown in Table 1 and a black dyeing solution having the component composition shown in Table 2 were prepared.
  • “SUJ2 + V1.94” means steel containing 1.94 mass% vanadium in addition to the component composition of JIS standard SUJ2.
  • the balance of the composition described in Table 1 is iron and impurities.
  • the test piece was immersed in a black dyeing solution and subjected to black dyeing treatment at a temperature of 130 ° C. for 5 minutes.
  • test piece was heated at a temperature of 950 ° C. for 14 hours in a heat treatment gas atmosphere containing 50% by volume of nitrogen gas and 50% by volume of hydrogen gas. Thereafter, the nitrogen concentration distribution in the depth direction of the test piece after the nitriding treatment was examined by EPMA (Electron Probe Micro Analyzer).
  • EPMA Electro Probe Micro Analyzer
  • FIG. 5 is a graph showing the results of the investigation, with the horizontal axis indicating the depth (mm) and the vertical axis indicating the nitrogen concentration (wt%, wt.%).
  • the horizontal axis indicating the depth (mm)
  • the vertical axis indicating the nitrogen concentration (wt%, wt.%).
  • the method for manufacturing a machine part according to the present invention can be particularly advantageously applied to a method for manufacturing a machine part that requires energy saving.

Abstract

 アンモニアガスを使用しない窒化処理を含み、より省エネルギーな機械部品の製造方法を提供する。機械部品の製造方法は、鋼部材(90)を準備する工程と、鋼部材(90)を黒染め液(4)を用いて酸化させることにより、鋼部材(90)の表面にバナジウムを含む膜を形成する工程と、上記バナジウムを含む膜が形成された鋼部材(90)を、窒素ガスを含みアンモニアガスを含まない熱処理ガス雰囲気中において加熱することにより、鋼部材(90)の上記表面に窒素富化層を形成する工程とを備えている。

Description

機械部品の製造方法
 本発明は機械部品の製造方法に関し、より特定的には、表層部に窒素富化層を有する機械部品の製造方法に関する。
 機械部品の疲労強度の向上や耐摩耗性の向上を目的として、浸炭窒化などの方法により機械部品の表層部に内部に比べて窒素濃度が高い窒素富化層が形成される場合がある。一般に浸炭窒化処理においては、プロパン、ブタンあるいは都市ガスと空気とを1000℃以上の高温で混合して搬送ガス(吸熱型変成ガス;以下、RXガスという)を作製し、これに少量のプロパン、ブタン、アンモニアを加えた雰囲気ガスが用いられる場合が多い。そして、この雰囲気ガス中において被処理物を加熱することにより、被処理物の表層部に窒素富化層が形成される。RXガスを搬送ガスとして用いた浸炭窒化処理では、窒化反応は未分解のアンモニアによって生じる。
 一般に、アンモニアガスの分解は高温になるほど進行する。そのため、未分解のアンモニアによる窒化処理は、900℃以上の温度域において実施されることは少ない。その結果、厚みの大きい窒化層が必要な製品を処理する場合でも、処理温度を高くして浸炭窒化時間を短縮することは困難であり、処理時間が長くなるという問題があった。またアンモニアガスを用いた浸炭窒化処理では、熱処理炉にアンモニアガスを導入するための設備を設置する必要があること、熱処理炉内において使用される部品(たとえば製品搬送用バスケット)の消耗が早いことなどに起因して、設備の維持管理コストが高くなるという問題もあった。
 これに対して、特開2012-237062号公報(特許文献1)には、アンモニアガスを使用せずに高温での窒化処理を可能とする方法が開示されている。この方法では、窒化処理前にバナジウム(V)を含む膜を鋼の表面に形成する前処理が実施され、当該前処理ではバナジウムを含む鋼を大気中で高温加熱することにより酸化膜が形成される。
特開2012-237062号公報
 上記特許文献1において提案されている方法では、前処理において製品を高温加熱する必要があり、省エネルギー化の観点からは必ずしも望ましいものではなかった。そこで、本発明の目的は、アンモニアガスを使用しない窒化処理を含み、より省エネルギーな機械部品の製造方法を提供することである。
 本発明に従った機械部品の製造方法は、鋼からなる部材を準備する工程と、上記部材を処理液を用いて反応させることにより、上記部材の表面にバナジウムを含む膜を形成する工程と、上記膜が形成された上記部材を、窒素ガスを含みアンモニアガスを含まない熱処理ガス雰囲気中において加熱することにより、上記表面に窒素富化層を形成する工程とを備えている。
 本発明に従った機械部品の製造方法によれば、アンモニアガスを使用しない窒化処理を含み、より省エネルギーな機械部品の製造方法を提供することができる。
実施の形態1に係る機械部品の製造方法を概略的に示すフローチャートである。 実施の形態1に係る機械部品の製造方法における工程(S20)を説明するための概略図である。 実施の形態1に係る機械部品の製造方法における工程(S30)を説明するための概略図である。 実施の形態2に係る機械部品の製造方法を説明するための概略図である。 試験片の深さ方向における窒素濃度分布を示すグラフである。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
 (実施の形態1)
 まず、本発明の一実施の形態である実施の形態1に係る機械部品の製造方法について説明する。図1を参照して、本実施の形態に係る機械部品の製造方法では、まず工程(S10)として鋼部材準備工程が実施される。この工程(S10)では、たとえば転がり軸受の構成部品(外輪、内輪、転動体)の概略形状に成型された鋼部材が準備される。より具体的には、たとえば0.1質量%以上のバナジウムを含有する鋼であるAMS2315(航空宇宙材料規格;米国)の鋼材やJIS規格SUJ2に0.1質量%以上のバナジウムを添加した成分組成を有する鋼材などが準備され、鍛造、旋削などの加工が実施されることにより上記鋼部材が準備される。
 次に、工程(S20)として酸化工程が実施される。この工程(S20)では、図2を参照して、まず黒染め液4(処理液)が満たされた処理容器3が準備される。そして、上記工程(S10)において準備された鋼部材90が脱脂などが施された後に黒染め液4中に浸漬される。黒染め液4は、たとえば水酸化ナトリウム(55~60重量%)と、硝酸ナトリウム(20~25重量%)と、亜硝酸ナトリウム(10~15重量%)と、炭酸ナトリウム(1~5重量%)と、塩化ナトリウム(1~5重量%)とを成分として含んでいる。これにより、鋼部材90が酸化されて当該鋼部材90の表面に四酸化三鉄(Fe)被膜が形成される。当該Fe被膜には鋼中のバナジウムが含まれる。そして、上記酸化処理が完了した後に鋼部材90が処理容器3から取り出され、水洗処理が施される。このように工程(S20)では、鋼部材90を黒染め液4を用いて酸化反応させることにより、当該鋼部材90の表面にバナジウムを含む酸化膜(Fe被膜)が形成される。なお「バナジウムを含む膜」は、黒染め液4を用いた酸化処理により形成される酸化膜(Fe被膜)だけでなく、所定の処理液を用いて鋼部材90を反応させることにより当該鋼部材90の表面に形成され得るバナジウム含有膜も含まれ得る。
 この工程(S20)では、鋼部材90の黒染め処理は500℃未満の温度で実施されることが好ましく、150℃以下の温度で実施されることがより好ましい。また黒染め処理の時間は1分以上120分以下であることが好ましく、3分以上40分以下であることがより好ましい。また、鋼部材90の表面に形成される酸化膜の厚みは、0.1μm以上3μm以下であることが好ましく、1μm以上2μm以下であることがより好ましい。
 この工程(S20)では、上記酸化膜が鋼部材90の表面全体に形成されてもよいが、鋼部材90の表面の一部に形成されてもよい。すなわち、上記酸化膜は、鋼部材90の表面全体に形成される場合に限られず、後述する工程(S30)において窒素富化層が形成されるべき領域にのみ形成されてもよい。なお上記酸化膜を部分的に形成するためには、たとえば鋼部材90の表面の一部にマスキング材(図示しない)などを配置した後、当該鋼部材90を黒染め液4中に浸漬して酸化処理を行ってもよい。
 次に、工程(S30)として浸炭窒化工程が実施される。この工程(S30)では、上記工程(S20)において酸化処理された鋼部材90が浸炭窒化処理される。より具体的には、図3を参照して、まずバッチ炉1の熱処理室11の底壁上に設置された保持部12の上に鋼部材90が設置される。次に、変成炉においてプロパン(C)ガスと空気とを混合し、触媒の存在下において1000℃以上の温度に加熱することにより得られた吸熱型変成ガス(RXガス)と、エンリッチガスとしてのプロパンガスとが給気口13から熱処理室11内に供給される。これにより、熱処理室11内において所望のカーボンポテンシャルに調整された熱処理ガス雰囲気が形成される。上記熱処理ガス雰囲気は、RXガス中の窒素ガスを含み、アンモニアガスを含まない。なお「アンモニアガスを含まない」とは、アンモニアガスを実質的に含まないことを意味し、不純物としてのアンモニアガスの混入を排除するものではない。そして、上記熱処理ガス雰囲気中において、鋼部材90がたとえばA変態点以上の温度域である750℃以上1000℃以下の温度域、好ましくは850℃以上950℃以下の温度域に加熱される。これにより、鋼部材90の表層部に炭素が侵入する。また鋼部材90の表面にはバナジウムを含む酸化膜が形成されており、かつRXガスには窒素ガスが含まれることから、鋼部材90の表層部には窒素も侵入する。その結果、鋼部材90は浸炭窒化処理され、鋼部材90の表面に窒素富化層が形成される。
 次に、工程(S40)として焼入硬化工程が実施される。この工程(S40)では、工程(S30)において窒素富化層が形成された鋼部材90が焼入硬化される。より具体的には、A変態点以上の温度域にて浸炭窒化された鋼部材90がバッチ炉1から取り出され、たとえば油漕内に浸漬される。これにより、鋼部材90がA変態点以上の温度域からM点以下の温度域にまで冷却されて焼入硬化される。これにより、窒素富化層を含む鋼部材90全体が焼入硬化され、鋼部材90に高い疲労強度および耐摩耗性が付与される。なお「A変態点」とは、鋼を加熱した場合に鋼の組織がフェライトからオーステナイトに変態を開始する温度に相当する点をいう。また「M点(マルテンサイト変態点)」とは、オーステナイト化した鋼が冷却される際に、マルテンサイト化を開始する温度に相当する点をいう。
 次に、工程(S50)として焼戻工程が実施される。この工程(S50)では、工程(S40)において焼入硬化処理された鋼部材90が焼戻処理される。より具体的には、工程(S50)では、工程(S40)において焼入硬化処理された鋼部材90が、A変態点以下の温度に加熱され、その後冷却されることにより焼戻処理が実施される。
 次に、工程(S60)として仕上げ加工工程が実施される。この工程(S60)では、工程(S10)~(S50)までが実施されて得られた鋼部材90に対して仕上げ加工が実施されることにより、転がり軸受の構成部品(外輪、内輪、転動体)が完成する。より具体的には、工程(S60)では、焼戻処理された鋼部材90に対して研磨処理などが実施されて上記軸受部品が完成する。以上のプロセスにより、本実施の形態に係る機械部品の製造方法は完了する。
 以下、本実施の形態に係る機械部品の製造方法における特徴的な構成および作用効果について説明する。本実施の形態に係る機械部品の製造方法は、鋼からなる部材(鋼部材90)を準備する工程(S10)と、上記部材を処理液(黒染め液4)を用いて反応させることにより、上記部材の表面にバナジウムを含む膜を形成する工程(S20)と、上記バナジウムを含む膜が形成された上記部材を、窒素ガスを含みアンモニアガスを含まない熱処理ガス雰囲気中において加熱することにより、上記部材の表面に窒素富化層を形成する工程(S30)とを備えている。上記バナジウムを含む膜を形成する工程(S20)では、上記部材を酸化することにより上記バナジウムを含む膜が形成される。上記バナジウムを含む膜は四酸化三鉄(Fe)を含んでいる。
 上記機械部品の製造方法では、表面にバナジウムを含む膜が形成された鋼部材90が、窒素ガスを含みアンモニアガスを含まない雰囲気中において加熱され、窒素富化層を有する機械部品(軸受部品)が製造される。上記機械部品の製造方法においては、窒素富化層の形成が未分解のアンモニアによって進行するものではない。そのため、上記機械部品の製造方法においては、窒素富化層を形成する処理を高温で実施することにより熱処理時間を短縮することができる。また、上記機械部品の製造方法ではアンモニアが使用されないため、熱処理炉11内において使用される部品の消耗を抑制し、設備の維持管理コストを低減することができる。さらに、上記機械部品の製造方法では、窒素富化層の形成前に黒染め液4を用いた酸化処理により鋼部材90の表面にバナジウムを含む酸化膜(Fe被膜)が形成される。そのため、大気中での高温加熱によって鋼部材の表面にバナジウムを含む酸化膜が形成される場合に比べて製造プロセスをより省エネルギー化することができる。
 上記本実施の形態に係る機械部品の製造方法において、上記部材(鋼部材90)を準備する工程(S10)では、0.1質量%以上のバナジウムを含む鋼からなる上記部材が準備される。これにより、鋼部材90を酸化処理することで当該鋼部材90の表面において容易にバナジウムを含む膜を形成することができる。
 上記本実施の形態に係る機械部品の製造方法において、上記バナジウムを含む膜を形成する工程(S20)では、500℃未満の温度で上記部材(鋼部材90)を反応させることにより上記バナジウムを含む膜が形成される。これにより、製造プロセスをより省エネルギー化することができる。
 上記本実施の形態に係る機械部品の製造方法において、上記熱処理ガスは吸熱型変性ガス(RXガス)を含んでいる。これにより、上記熱処理ガス雰囲気中におけるカーボンポテンシャルを容易に調整することができる。
 上記本実施の形態に係る機械部品の製造方法において、上記熱処理ガスは、窒素ガスおよび還元性ガスの混合ガスであってもよい。これにより、窒素供給源として安価かつ入手が容易な窒素を含む還元性の上記熱処理ガスを用いて窒素富化層を形成することができる。その結果、熱処理コストを低減することができる。なお還元性ガスとしては、たとえば水素ガス、メタンガス、プロパンガス、ブタンガス、一酸化炭素ガスなどを採用することができる。
 上記本実施の形態に係る機械部品の製造方法において、上記熱処理ガスは、窒素ガスを含み、酸素分圧が1×1016Pa以下となっていてもよい。上記熱処理ガスは、上記還元性ガスを含むことにより酸素分圧が10-16Pa以下となっていてもよい。還元性ガスとしては、水素ガス、メタンガス、プロパンガス、ブタンガス、一酸化炭素ガスなどを採用することができる。これにより、窒素供給源として安価かつ入手が容易な窒素を含み、かつ酸化性を低いレベルに抑制した熱処理ガスを用いることができる。その結果、熱処理コストを低減することができる。
 上記本実施の形態に係る機械部品の製造方法は、窒素富化層が形成された部材(鋼部材90)を、A変態点以上の温度からM点以下の温度に冷却することにより上記部材を焼入硬化する工程(S40)を備えている。これにより、窒素富化層が形成されるとともに焼入硬化された耐久性の高い機械部品を容易に製造することができる。
 上記本実施の形態に係る機械部品の製造方法では、たとえば外輪や内輪などの軌道輪あるいは転動体などの転がり軸受の構成部品が製造される。転がり軸受を構成する部品は、高い疲労強度や耐摩耗性を要求される場合が多いため、上記機械部品の製造方法は転がり軸受の構成部品の製造において好適である。なお、本発明の機械部品の製造方法は転がり軸受の構成部品を製造する場合に限定されず、疲労強度や耐摩耗性の向上が要求される他の機械部品の製造においても同様に適用することができる。
 (実施の形態2)
 次に、本発明の他の実施の形態である実施の形態2について説明する。本実施の形態に係る機械部品の製造方法は、基本的には上記実施の形態1に係る機械部品の製造方法と同様の工程により実施され、かつ同様の効果を奏する。しかし、上記実施の形態1ではバッチ炉1を用いて浸炭窒化工程(S30)が実施されるのに対し、本実施の形態では連続炉2を用いて上記工程が実施される。
 図4を参照して、連続炉2は、窒化処理炉22と、当該窒化処理炉22に接続され、焼入油を保持する焼入油漕23とを備えている。焼入油漕23には、焼入油漕23内の被処理物を搬出するコンベア26が設置されている。本実施の形態では、この連続炉2を用いて浸炭窒化工程(S30)および焼入硬化工程(S40)が実施される。
 まず工程(S30)では、工程(S20)において酸化処理された鋼部材90がコンベア25の上に載置される。これにより、鋼部材90はコンベア25により矢印αに沿って搬送される。窒化処理炉22内は、たとえばエンリッチガスが添加されたRXガスあるいは窒素ガスおよび水素ガスの混合ガスなどの熱処理ガス雰囲気に調整されている。そして、この窒化処理炉22内において鋼部材90がA変態点以上の温度域に加熱される。これにより、鋼部材90の表層部に窒素富化層が形成される。
 次に、窒素富化層が形成された鋼部材90は、コンベア25により搬送されることにより、矢印βに沿って焼入油漕23内に落下する。これにより、鋼部材90は急冷されて、焼入硬化される。そして、焼入硬化された鋼部材90は、コンベア26により、焼入油漕23から搬出される。以上の手順により、連続炉2を用いた工程(S30)および(S40)が完了する。このように、本実施の形態に係る機械部品の製造方法では、連続炉2を用いることにより工程(S30)および(S40)を効率よく実施し、機械部品の生産効率を向上させることができる。
 黒染め処理により鋼の表面にバナジウムを含む酸化膜を形成し、当該鋼を窒素ガスを含みアンモニアガスを含まない熱処理ガス雰囲気中において加熱することにより窒素富化層の形成が可能となることを確認する実験を行った。まず、表1に示す成分組成を有する鋼からなる試験片、および表2に示す成分組成を有する黒染め液をそれぞれ準備した。表1中、「SUJ2+V1.94」とはJIS規格SUJ2の成分組成に加えて1.94質量%のバナジウムを含む鋼を意味する。また、表1中に記載された組成の残部は鉄および不純物である。次に、試験片を黒染め液中に浸漬し、130℃の温度で5分間黒染め処理を行った。次に、窒素ガスが50体積%、水素ガスが50体積%の熱処理ガス雰囲気中において試験片を950℃の温度で14時間加熱した。その後、EPMA(Electron Probe Micro Analyzer)により、上記窒化処理後の試験片の深さ方向における窒素濃度分布を調査した。
 図5は上記調査結果を示すグラフであり、横軸が深さ(mm)を示し、縦軸が窒素濃度(重量%、wt.%)を示している。図5から明らかなように、窒化処理前に黒染め処理により試験片を酸化した場合でも、当該試験片の表層部に1重量%以上の濃度で窒素が侵入することが分かった。これにより、窒化処理前に高温加熱により鋼表面に酸化膜を形成する場合に限られず、省エネルギー化の観点から黒染め処理により鋼表面に酸化膜を形成した場合でも、同様にアンモニアガスを使用せずに窒素富化層を形成可能であることが分かった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の機械部品の製造方法は、省エネルギー化が要求される機械部品の製造方法において、特に有利に適用され得る。
 1 バッチ炉、2 連続炉、3 処理容器、4 黒染め液、11 熱処理室、12 保持部、13 給気口、14 排気口、22 窒化処理炉、23 焼入油漕、25,26 コンベア、90 鋼部材。

Claims (12)

  1.  鋼からなる部材を準備する工程と、
     前記部材を処理液を用いて反応させることにより、前記部材の表面にバナジウムを含む膜を形成する工程と、
     前記膜が形成された前記部材を、窒素ガスを含みアンモニアガスを含まない熱処理ガス雰囲気中において加熱することにより、前記表面に窒素富化層を形成する工程とを備える、機械部品の製造方法。
  2.  前記膜を形成する工程では、前記部材を酸化することにより前記膜が形成される、請求項1に記載の機械部品の製造方法。
  3.  前記膜は四酸化三鉄を含む、請求項2に記載の機械部品の製造方法。
  4.  前記部材を準備する工程では、0.1質量%以上のバナジウムを含む鋼からなる前記部材が準備される、請求項1~3のいずれか1項に記載の機械部品の製造方法。
  5.  前記膜を形成する工程では、500℃未満の温度で前記部材を反応させることにより前記膜が形成される、請求項1~4のいずれか1項に記載の機械部品の製造方法。
  6.  前記熱処理ガスは吸熱型変性ガスを含む、請求項1~5のいずれか1項に記載の機械部品の製造方法。
  7.  前記熱処理ガスは窒素ガスおよび還元性ガスの混合ガスである、請求項1~5のいずれか1項に記載の機械部品の製造方法。
  8.  前記熱処理ガスは、窒素ガスを含み、酸素分圧が1×1016Pa以下となっている、請求項1~5のいずれか1項に記載の機械部品の製造方法。
  9.  前記熱処理ガスは、還元性ガスを含むことにより酸素分圧が1×1016Pa以下となっている、請求項8に記載の機械部品の製造方法。
  10.  前記還元性ガスは水素ガスである、請求項9に記載の機械部品の製造方法。
  11.  前記窒素富化層が形成された前記部材を、A変態点以上の温度からM点以下の温度に冷却することにより前記部材を焼入硬化する工程をさらに備える、請求項1~10のいずれか1項に記載の機械部品の製造方法。
  12.  転がり軸受の構成部品が製造される、請求項1~11のいずれか1項に記載の機械部品の製造方法。
PCT/JP2015/054240 2014-02-19 2015-02-17 機械部品の製造方法 WO2015125767A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014029559A JP6374178B2 (ja) 2014-02-19 2014-02-19 機械部品の製造方法
JP2014-029559 2014-02-19

Publications (1)

Publication Number Publication Date
WO2015125767A1 true WO2015125767A1 (ja) 2015-08-27

Family

ID=53878269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054240 WO2015125767A1 (ja) 2014-02-19 2015-02-17 機械部品の製造方法

Country Status (2)

Country Link
JP (1) JP6374178B2 (ja)
WO (1) WO2015125767A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078592A1 (en) * 2015-11-02 2017-05-11 Applied Nano Surfaces Sweden Ab Solid lubricant-coated steel articles, method and apparatus for manufacturing thereof and quenching oil used in the manufacturing
CN114921747A (zh) * 2022-05-31 2022-08-19 青岛丰东热处理有限公司 钢件表面发黑的处理工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222571B (zh) * 2016-08-18 2017-11-17 山东金聚粉末冶金有限公司 天然气发动机气门座制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141497A (ja) * 1985-12-13 1987-06-24 Showa Alum Corp ヒ−ト・パイプの製造法
JPH10195678A (ja) * 1997-01-08 1998-07-28 Hitachi Ltd 防食被覆の形成方法
JP2010121177A (ja) * 2008-11-19 2010-06-03 Jfe Steel Corp 耐食性に優れた表面処理鋼材
JP2012237062A (ja) * 2011-04-26 2012-12-06 Ntn Corp 機械部品の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3944129B2 (ja) * 2003-07-07 2007-07-11 新日本製鐵株式会社 溶接性、耐食性及び塗料密着性に優れた容器用表面処理鋼板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141497A (ja) * 1985-12-13 1987-06-24 Showa Alum Corp ヒ−ト・パイプの製造法
JPH10195678A (ja) * 1997-01-08 1998-07-28 Hitachi Ltd 防食被覆の形成方法
JP2010121177A (ja) * 2008-11-19 2010-06-03 Jfe Steel Corp 耐食性に優れた表面処理鋼材
JP2012237062A (ja) * 2011-04-26 2012-12-06 Ntn Corp 機械部品の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078592A1 (en) * 2015-11-02 2017-05-11 Applied Nano Surfaces Sweden Ab Solid lubricant-coated steel articles, method and apparatus for manufacturing thereof and quenching oil used in the manufacturing
CN108474051A (zh) * 2015-11-02 2018-08-31 瑞典应用纳米表面公司 固体润滑剂涂布的钢制品、其制造方法和设备以及在制造中使用的淬火油
US10704111B2 (en) 2015-11-02 2020-07-07 Applied Nano Surfaces Sweden Ab Solid lubricant-coated steel articles, method and apparatus for manufacturing thereof and quenching oil used in the manufacturing
CN114921747A (zh) * 2022-05-31 2022-08-19 青岛丰东热处理有限公司 钢件表面发黑的处理工艺
CN114921747B (zh) * 2022-05-31 2024-01-26 青岛丰东热处理有限公司 钢件表面发黑的处理工艺

Also Published As

Publication number Publication date
JP6374178B2 (ja) 2018-08-15
JP2015151621A (ja) 2015-08-24

Similar Documents

Publication Publication Date Title
Gräfen et al. New developments in thermo-chemical diffusion processes
JP5927018B2 (ja) 機械部品の製造方法
JP6378189B2 (ja) 鋼部材の窒化処理方法
WO2015125767A1 (ja) 機械部品の製造方法
CN107245691B (zh) 金属材料复合热处理表面强化方法
JP6228403B2 (ja) 炭素鋼の表面硬化方法及び表面硬化構造
JP2008057039A (ja) 浸炭方法、鋼製品、および熱処理設備
JP5593717B2 (ja) 鋼材の熱処理方法
JP6071365B2 (ja) 機械部品の製造方法
JP2015232164A (ja) 転がり軸受の製造方法及び熱処理装置
JP2017066490A (ja) 窒化鋼部材の製造方法
JP5837282B2 (ja) 表面改質方法
KR101650318B1 (ko) 스테인리스강의 질화방법
US9738964B2 (en) Method for the nitro carburization of a deep-drawn part or a stamped-bent part made of austenitic stainless steel
JP2012072430A (ja) ガス軟窒化処理方法
KR102360964B1 (ko) 기어용 강의 복합 열처리 방법
JP2005200695A (ja) ガス浸炭方法
JP4858071B2 (ja) 鋼材の表面処理方法及び表面処理された鋼材
JP2006002194A (ja) 軸の製造方法
KR20160075220A (ko) 질소 고용 경화 방법
JP5317709B2 (ja) 焼入れ方法
JP6072530B2 (ja) 軟窒化処理方法
KR20050000627A (ko) 가스질화의 열처리 방법
KR20160022590A (ko) 금속 표면 개질 방법 및 이에 의하여 제조된 질화 처리된 비철 금속 복합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752617

Country of ref document: EP

Kind code of ref document: A1