WO2015124225A1 - Thermoelektrischer hochleistungsgenerator und verfahren zu dessen herstellung - Google Patents

Thermoelektrischer hochleistungsgenerator und verfahren zu dessen herstellung Download PDF

Info

Publication number
WO2015124225A1
WO2015124225A1 PCT/EP2014/075006 EP2014075006W WO2015124225A1 WO 2015124225 A1 WO2015124225 A1 WO 2015124225A1 EP 2014075006 W EP2014075006 W EP 2014075006W WO 2015124225 A1 WO2015124225 A1 WO 2015124225A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
filler
semiconducting
component
plastic carrier
Prior art date
Application number
PCT/EP2014/075006
Other languages
English (en)
French (fr)
Inventor
Robert Greiner
Steffen Lang
Bastian PLOCHMANN
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2015124225A1 publication Critical patent/WO2015124225A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape

Definitions

  • the invention relates to methods for the production of semiconducting, thermoelectric components, in particular for use in a thermoelectric generator, and relates to the correspondingly produced components.
  • thermocouple converts heat into electrical energy through thermoelectricity. In principle, it is a component of two different metals, which are connected at one end. A temperature difference generates an electrical voltage due to the heat flow. Thermocouples are called Thermoelectric Generators (TEGs) when they provide electrical energy.
  • TOGs Thermoelectric Generators
  • the present invention relates to an effective, economic see conversion of residual heat and heat loss in particular
  • thermoelectric generators for example from power plants, into electrical energy by means of thermoelectric generators, which have correspondingly suitable thermoelectric materials.
  • thermoelectric generators which have correspondingly suitable thermoelectric materials.
  • high heat energy is given as heat loss in the form of fluids (liquids or gases) directly to the environment and thus remains unused.
  • cooling equipment must be installed to dissipate the heat loss.
  • thermoelectric generators are known from thermoelectric materials such as bismuth telluride (Bi 2 Te 3 ), lead telluride (PbTe),
  • Silicon germanium (SiGe) etc. are rare, expensive and toxic and show in part only a low temperature stability up to 550 ° C (Bi 2 Te 3 ). The production of components is extremely complicated and it is limited to the simplest shape geometries.
  • thermoelectric fillers oxide ceramic particles with a proportion of about 50% by volume should be used in a plastic compound as thermoelectric fillers.
  • Such compounds can be processed with thermoplastic processing method to components for thermoelectric generators with complex structure.
  • These fillers are non-toxic, are available in large quantities and are inexpensive compared to the above-mentioned tellurides and the like.
  • these compounds still contain about 50% by volume of plastic, which has a negative impact on the electrical conductivity of the material, since plastics are electrical insulators. For a high efficiency of thermoelectric generators, a high electrical conductivity is needed.
  • thermoelectric generators TEG
  • a component should have a density and a property profile greater than 95% of a pure filler used.
  • a temperature range should be up to 1000 ° C or higher. TEGs for high electric power in the kilowatt or megawatt range are to be created.
  • the object is achieved by a method according to the main claim, corresponding manufactured components and a corresponding use.
  • thermoelectric generator a method for producing semiconducting, thermoelectric components, in particular for a use in a thermoelectric generator, proposed with the following steps:
  • thermoelectric material as
  • components according to the invention are produced and used for thermoelectric generators.
  • thermoelectric generator with at least one pair consisting of a p-semiconducting component and an n-semiconducting component, wherein a respective component has been produced by a method according to the invention, and the p- and n-semiconducting ones Components arranged in such a manner to each other and are electrically connected in series, that by means of
  • the powder melting of the filler filled plastic carrier material may be powder-strand-press-melt or powder-injection-melt. In English these processes are called "powder extrusion
  • thermoelectric material which is capable of sintering. Accordingly, the heat treatment of the brown portion may be sintered into a semiconducting ceramic thermoelectric component. According to a further advantageous embodiment, doping may be p-type or n-type doping of the at least one material for forming the p-type or n-type semiconductor properties of the component. According to a further advantageous embodiment, one or two plastic carrier materials can be used as a filler for introducing the semiconductive material.
  • thermoelectric material in particular from the group MgO, ZnO, SnO, SnO 2 , TiO 2 , Ti 2 0 3 , CuO, delabotsite and / or SiC. Since a pure sintered part is obtained at the end of the powder melting, the temperature range of the thermoelectric generators constructed therefrom is likewise correspondingly high, for example in the case of an employed oxide ceramic at up to 1000 ° C. or more.
  • thermoelectric materials According to a further advantageous embodiment, a provision of a mixture of at least two different sinterable, thermoelectric materials can be carried out.
  • the introduction of the semiconducting material as a filler into the at least one plastic carrier material can be followed by processing into a raw material or feedstock for the powder melting.
  • the processing into the raw material can be carried out by means of a twin-screw extruder with a granulating device.
  • a processing aid for processing the raw material, a processing aid, in particular a waxy supplement for a simple Wandlö- sen added.
  • the filler content when introducing the semiconductive material as a filler into the at least one plastic carrier material, may be between about 80 and 90% by weight.
  • the filler when introducing the semiconductive material as a filler into the at least one plastic carrier material, the filler may have two or three different particle sizes.
  • the shaping can be carried out to the green part by means of prototypes.
  • the primary molding can be extrusion, injection molding or transfer molding.
  • an isostatic pressing can be carried out under high pressure immediately after sintering.
  • the powder melting can be combined with a downstream "high isotatic pressure process" (HIP), whereby the sintered parts can be compressed again higher.
  • the green part can be formed into a profile, a hollow body, a pipe or a pipe with integrated connection function.
  • the shaping of the powder melting, in particular PEM and PIM is characterized by a high degree of design freedom and allows cost-effective production of complex thermoelectric components with high-quality material properties, such as the profiles, the hollow body, the pipes, the pipes with integrated connection function, as it For example, thread or housing may be.
  • connection functions can be provided by means of thread or housing.
  • the semiconducting, thermoelectric component may have a density and a property profile of> 95% of the pure filler used.
  • components produced according to the invention are used in a thermoelectric generator, wherein P- and n-semiconducting components are arranged relative to each other and electrically connected in series, that an electrical voltage can be generated by means of the Seebeck effect with a temperature difference.
  • Figure 1 shows an embodiment of an inventive
  • Figure 2 shows three embodiments of an inventive
  • FIG. 3 shows an exemplary embodiment of individual elements for a thermoelectric generator
  • Figure 4 shows the embodiment of Figure 3 in cross section.
  • FIG. 1 shows an exemplary embodiment of a method according to the invention.
  • a first step Sl provision is made of at least one thermoelectric material.
  • metal oxides which are already present as oxide ceramics.
  • Such materials may be magnesium oxide, zinc oxide, tin oxide, titanium dioxide or silicon carbide or the like.
  • sinterable mixtures of different materials can also be used.
  • a second step S2 involves doping the at least one material to form a semiconductor property.
  • these semiconducting materials are non-toxic and inexpensive thermoelectric materials for thermoelectric generators. Moreover, these are available in large quantities.
  • the semiconducting material is introduced as a filler into at least one plastic carrier material.
  • a so-called feedstock can be processed as raw material for a powder melting process using a suitable plastic carrier material.
  • the feedstock is composed of one or two plastic carrier materials and the filler, if necessary a processing aid is added.
  • the filler content is advantageously about 80-90% by weight, in particular between 50 and 65% by volume.
  • a bi- or trimodal particle distribution of the filler is usually used, ie two or three different particle sizes of the filler are used.
  • the processing of the feedstock is advantageously carried out on a twin-screw extruder with a granulation device.
  • a powder melting of the the filler filled plastic carrier material is particularly advantageous for the production of low-cost, highly efficient and complex components for thermoelectric generators.
  • PEM Powder Extrusion Molding
  • PIM Powder Injection Molding
  • thermoelectric components In this case, the shaping of the thermoelectric components by means of prototypes, as it can beispielseise extrusion, injection molding or transfer molding. In this way, a so-called green part is obtained. Subsequently, at a sixth step S6 in a debinding process, the
  • a heat-treating brown part can be made to the semiconductive thermoelectric component.
  • the heat treatment may in particular be sintering, wherein, depending on the filler used, a finished, compact thermoelectric component having a density and the property profile of> 95% of the pure filler used is produced.
  • FIG. 2 shows three exemplary embodiments of components according to the invention. Above a p-doped square hollow body is shown. In the middle of a hollow cylindrical n-doped hollow body 3 is shown. Below shows 2 shows the cylindrical hollow body 3, which has been transformed into half of a toroid.
  • the figure of merit of a thermoelectric material, ie the components 1 and 3 shown here, is calculated according to the following formula:
  • thermoelectric compound The larger the Seebeck coefficient and the electrical conductivity and the smaller the thermal conductivity, the higher the figure of merit.
  • the material properties such as electrical conductivity and thermal conductivity are highly dependent on the degree of filling.
  • the shaping by means of powder melting processes, in particular PEM and PIM is characterized by a high freedom of design and enables the cost-effective production of complex thermoelectric components with high-quality material properties, for example hollow body 1, pipe 3 or toroid etc.
  • the components according to FIG. 2 are exemplary embodiments provided with the following filler and the following compound.
  • Filler Tin dioxide (SnO 2) doped with 15 mole% antimony
  • FIG. 3 shows an embodiment of Emzelimplantation for a thermoelectric generator.
  • Reference numeral 1 denotes a p-type semiconductive thermoelectric device
  • thermoelectric generator which is shown in cross section.
  • Reference numeral 3 shows an n-type semiconductive thermoelectric device (pipe), which is also shown in cross section. Both components 1 and 3 are fixed between contacts, wherein the contacts have threads 7 such that the illustrated individual elements, which have been produced in particular by means of powder injection molding (PIM), can be linked to form a thermoelectric generator.
  • PIM powder injection molding
  • FIG. 4 shows a thermoelectric generator in which n- and p-semiconducting thermoelectric components 1 and 3 have been screwed together to form a thermoelectric generator.
  • O-rings 9 are additionally used.
  • the view according to FIG. 4 can be assumed as a cross section of the illustration according to FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung halbleitender, thermoelektrischer Bauteile, insbesondere für die Verwendung in einem thermoelektrischen Generator, wobei insbesondere ein Pulverschmelzverfahren des mit dem Füllstoff gefüllten Kunststoffträgermaterials verwendet wird, dass Prüfer-Strang-Press-Schmelzen (PEM) oder Pulver-Injektions-Schmelzen (PIM) ist. Auf diese Weise weisen die hergestellten Bauteile vorteilhafte Eigenschaften auf, die insbesondere für einen thermoelektrischen Hochleistungsgenerator vorteilhaft sind. Die vorzugsweise keramische halbleitende Formkörper werden gesintert.

Description

Beschreibung
Thermoelektrischer Hochleistungsgenerator und Verfahren zu dessen Herstellung
Die Erfindung betrifft Verfahren zur Herstellung halbleitender, thermoelektrischer Bauteile, insbesondere für eine Verwendung in einem thermoelektrischen Generator, und betrifft die entsprechend hergestellten Bauteile.
Ein Thermoelement wandelt durch Thermoelektrizität Wärme in elektrische Energie um. Im Prinzip ist es ein Bauteil aus zwei unterschiedlichen Metallen, die an einem Ende miteinander verbunden sind. Eine Temperaturdifferenz erzeugt durch den Wärmefluss eine elektrische Spannung. Thermoelemente heißen Thermoelektrische Generatoren (TEG) , wenn sie elektrische Energie bereitstellen.
Die vorliegende Erfindung betrifft eine effektive, ökonomi- sehe Umwandlung von Rest- und Verlustwärme insbesondere aus
Industrieanlagen, beispielsweise aus Kraftwerken, in elektrische Energie mittels thermoelektrischer Generatoren, die entsprechend geeignete thermoelektrische Materialien aufweisen. Herkömmlicher Weise wird bei vielen Kraftwerken, Müllverbren- nungsanlagen, Stahlwerken und dergleichen eine hohe Wärmeenergie als Verlustwärme in Form von Fluiden (Flüssigkeiten oder Gase) direkt an die Umgebung abgegeben und bleibt folglich ungenutzt. Oftmals müssen teure Kühleinrichtung installiert werden, um die Verlustwärme abzuführen.
Herkömmlicher Weise erfolgt eine Einspeisung von Abwärme in Fernwärmenetze, eine Teilnutzung als Raumheizung vor Ort, eine Wärmezuführung in latente Wärmespeicher, eine Umwandlung von Kleinwärmemengen in elektrische Energie mittels thermo- elektrischer Generatoren. Bekannt sind thermoelektrische Generatoren aus thermoelektrischen Materialien wie beispielsweise Bismuttellurid (Bi2Te3) , Bleitellurid (PbTe) ,
Siliziumgermanium (SiGe) usw. Diese Materialien sind selten, teuer und toxisch und zeigen teilweise eine nur geringe Temperaturstabilität bis maximal 550°C (Bi2Te3) . Die Herstellung von Bauteilen gestaltet sich äußerst aufwendig und man ist auf einfachste Formgeometrien beschränkt .
Die PCT/EP 2013/067601 offenbart, dass in einem Kunststoff- compound als thermoelektrische Füllstoffe Oxidkeramikpartikel mit einem Anteil von ca. 50 Vol.-% zu verwenden seien. Derartige Compounds lassen mit thermoplastischen Verarbeitungsver- fahren zu Bauteilen für thermoelektrische Generatoren mit komplexer Struktur verarbeiten. Diese Füllstoffe sind nicht toxisch, stehen in großer Menge zur Verfügung und sind im Vergleich zu den oben genannten Telluriden und dergleichen kostengünstig. Allerdings enthalten diese Compounds noch ca. 50 Vol. % Kunststoff, der vor allem die elektrische Leitfähigkeit des Materials negativ beeinflusst, da Kunststoffe elektrische Isolatoren sind. Für einen hohen Wirkungsgrad thermoelektrischer Generatoren wird eine hohe elektrische Leitfähigkeit benötigt.
Es ist Aufgabe der vorliegenden Erfindung für thermoelektrische Generatoren (TEG) in großen Mengen, kostengünstige, temperaturstabile, elektrisch leitende, nicht toxische Bauteile derart herzustellen, dass diese in komplexe Formen verarbei- tet werden können und einen großen Wirkungsgrad eines thermo- elektrischen Generators (TEG) ermöglichen. Ein Bauteil soll eine Dichte und ein Eigenschaftsprofil von größer als 95% eines verwendeten reinen Füllstoffs aufweisen. Ein Temperatureinsatzbereich soll bei bis zu 1000°C oder höher sein. Es sollen TEGs für hohe elektrisch Leistungen im Kilowatt oder Megawattbereich geschaffen werden können.
Die Aufgabe wird durch ein Verfahren gemäß dem Hauptanspruch, entsprechend hergestellter Bauteile und einer entsprechenden Verwendung gelöst.
Gemäß einem ersten Aspekt wird ein Verfahren zur Herstellung halbleitender, thermoelektrischer Bauteile, insbesondere für eine Verwendung in einem thermoelektrischen Generator, mit den folgenden Schritten vorgeschlagen:
- Bereitstellen mindestens eines thermoelektrischen Materi- als;
- Dotieren des mindestens einen Materials zur Ausbildung einer Halbleitereigenschaft;
- Einbringen des halbleitenden Materials als Füllstoff in mindestens ein Kunststoffmaterial ;
- Pulverschmelzen des mit dem Füllstoff gefüllten Kunststoffträgermaterials ;
- Formgeben zu einem Grünteil;
- Austreiben des Kunststoffträgermaterials zum Erhalt eines Braunteils ;
- Wärmebehandlung des Braunteils zu einem halbleitenden, thermoelektrischen Bauteil.
Gemäß einem zweiten und dritten Aspekt werden erfindungsgemäße Bauteile erzeugt und für thermoelektrische Generatoren verwendet.
Gemäß einem weiteren Aspekt wird ein thermoelektrischer Generator mit mindestens einem aus einem p- halbleitenden Bauteil und einem n- halbleitenden Bauteil bestehenden Paar, bean- sprucht, wobei ein jeweiliges Bauteil nach einem erfindungsgemäßen Verfahren hergestellt worden ist, und die p- und n- halbleitenden Bauteile derart zueinander angeordnet und elektrisch in Serie geschaltet sind, dass mittels des
Seebeck-Effekts bei einer Temperaturdifferenz eine elektri- sehe Spannung generierbar ist.
Weitere vorteilhafte Ausgestaltungen werden in Verbindung mit den Unteransprüchen beansprucht . Gemäß einer Ausführungsform kann das Pulverschmelzen des mit dem Füllstoff gefüllten Kunststoffträgermaterials Pulver- Strang-Press-Schmelzen oder Pulver-Injektions-Schmelzen sein. Im Englischen heißen diese Verfahren "Powder Extrusion
Molding" (PEM) und "Powder Injection Molding" (PIM) .
Gemäß einer weiteren vorteilhaften Ausgestaltung kann ein Be- reitstellen mindestens eines thermoelektrischen Materials erfolgen, das sinterfähig ist. Entsprechend kann das Wärmebehandeln des Braunteils zu einem halbleitenden, keramischen, thermoelektrischen Bauteil sintern sein. Gemäß einer weiteren vorteilhaften Ausgestaltung kann das Dotieren p- oder n-Dotieren des mindestens einen Materials zur Ausbildung der p- oder n-Halbleitereigenschaften des Bauteils sein . Gemäß einer weiteren vorteilhaften Ausgestaltung können zum Einbringen des halbleitenden Materials als Füllstoff ein oder zwei Kunststoffträgermaterialien verwendet werden.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann als thermoelektrisches Material ein sinterfähiges Oxidkeramik- Metalloxid-Material verwendet werden, und zwar insbesondere aus der Gruppe MgO, ZnO, SnO, Sn02, Ti02, Ti203, CuO, Dela- fossite und/oder SiC. Da am Ende des Pulverschmelzens ein reines Sinterteil erhalten wird, liegt der Temperatureinsatz - bereich der daraus aufgebauten thermoelektrischen Generatoren ebenso entsprechend hoch, beispielsweise im Falle einer eingesetzten Oxidkeramik bei bis zu 1000°C oder größer.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann ein Be- reitstellen einer Mischung aus mindestens zwei verschiedenen sinterfähigen, thermoelektrischen Materialien ausgeführt werden .
Gemäß einer weiteren vorteilhaften Ausgestaltung kann dem Einbringen des halbleitenden Materials als Füllstoff in das mindestens eine Kunststoffträgermaterial ein Aufbereiten in ein Rohmaterial oder Feedstock für das Pulverschmelzen folgen . Gemäß einer weiteren vorteilhaften Ausgestaltung kann das Aufbereiten in das Rohmaterial mittels eines Doppelschneckenextruders mit einer Granulierungseinrichtung ausgeführt wer- den .
Gemäß einer weiteren vorteilhaften Ausgestaltung kann für das Aufbereiten das Rohmaterial eine Verarbeitungshilfe, insbesondere ein wachsartiger Zuschlag für ein einfaches Wandlö- sen, hinzugefügt werden.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann beim Einbringen des halbleitenden Materials als Füllstoff in das mindestens eine Kunststoffträgermaterial der Füllstoffanteil zwischen ca. 80 und 90 Gewichts-% sein.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann beim Einbringen des halbleitenden Materials als Füllstoff in das mindestens eine Kunststoffträgermaterial der Füllstoff zwei oder drei verschiedene Partikelgrößen aufweisen.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann das Formgeben zu dem Grünteil mittels Urformen ausgeführt werden. Gemäß einer weiteren vorteilhaften Ausgestaltung kann das Urformen Extrusion, Spritzgießen oder Spritzpressen sein.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann das Austreiben des Kunststoffträgermaterials mittels eines
Entbinderprozesses ausgeführt werden.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann unmittelbar nach dem Sintern ein isostatisches Pressen unter hohem Druck ausgeführt werden. Das Pulverschmelzen kann hier mit einem nachgeschalteten "High Isotatic Pressure-Process" (HIP) kombiniert werden, wobei die Sinterteile erneut höher verdichtet werden können. Gemäß einer weiteren vorteilhaften Ausgestaltung kann das Grünteil zu einem Profil, ein Hohlkörper, ein Rohr oder ein Rohr mit integrierter Verbindungsfunktion geformt werden. Die Formgebung über das Pulverschmelzen, insbesondere PEM und PIM, zeichnet sich durch eine hohe Designfreiheit aus und ermöglicht eine kostengünstige Herstellung komplexer thermo- elektrischer Bauteile mit hochwertigen Materialeigenschaften, beispielsweise die Profile, die Hohlkörper, die Rohre, die Rohre mit integrierter Verbindungsfunktion, wie es beispiels- weise Gewinde oder Gehäuse sein können.
Gemäß einer weiteren vorteilhaften Ausgestaltung können Verbindungsfunktionen mittels Gewinde oder Gehäuse bereitgestellt werden.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann das halbleitende, thermoelektrische Bauteil eine Dichte und ein Eigenschaftsprofil von > 95% des verwendeten reinen Füllstoffs aufweisen.
Gemäß einer weiteren vorteilhaften Ausgestaltung werden erfindungsgemäß erzeugte Bauteile in einem thermoelektrischen Generator verwendet, wobei P- und n-halbleitende Bauteile derart zueinander angeordnet und elektrisch in Serie geschal - tet werden, dass mittels des Seebeck-Effekts bei einer Temperaturdifferenz eine elektrische Spannung generierbar ist.
Die Erfindung wird anhand von Ausführungsbeispielen in Verbindung mit den Figuren näher beschrieben. Es zeigen:
Figur 1 ein Ausführungsbeispiel eines erfindungsgemäßen
Verfahrens ;
Figur 2 drei Ausführungsbeispiele eines erfindungsgemäßen
Bauteils ;
Figur 3 ein Ausführungsbeispiel von Einzelelementen für einen thermoelektrischen Generator; Figur 4 das Ausführungsbeispiel gemäß Figur 3 im Querschnitt . Figur 1 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Verfahrens. Mit einem ersten Schritt Sl erfolgt ein Bereitstellen mindestens eines thermoelektrischen Materials. Beispielsweise können Metalloxide verwendet werden, die bereits als Oxidkeramiken vorliegen. Derartige Materialien können Magnesiumoxid, Zinkoxid, Zinnoxid, Titandioxid oder Silicium- carbid oder dergleichen sein. Grundsätzlich können ebenso sinterfähige Mischungen verschiedener Materialien verwendet werden . Mit einem zweiten Schritt S2 erfolgt ein Dotieren des mindestens einen Materials zur Ausbildung einer Halbleitereigenschaft. Mittels einer p- oder n-Dotierung versehen, stellen diese halbleitende Materialien nicht toxische und kostengünstige thermoelektrische Materialien für thermoelektrische Ge- neratoren dar. Diese sind überdies in großer Menge verfügbar.
Mit einem dritten Schritt S3 erfolgt ein Einbringen des halbleitenden Materials als Füllstoff in mindestens ein Kunststoffträgermaterial . Mit einem geeigneten Kunststoffträgerma- terial kann nach den Regeln der Kunst ein sogenannter Feed- stock als Rohmaterial für einen Pulverschmelzprozess aufbereitet werden. Der Feedstock setzt sich ganz allgemein aus einem oder zwei Kunststoffträgermaterial ( ien) und dem Füllstoff zusammen, ggf. wird noch eine Verarbeitungshilfe hinzu- gegeben. Der Füllstoffanteil liegt vorteilhaft bei ca. 80-90 Gewichts-%, insbesondere zwischen 50 und 65 Volumen-%. Für einen optimalen Füllgrad und eine optimale Verarbeitung wird meistens eine bi- oder trimodale Partikelverteilung des Füllstoffs eingesetzt, d.h. dass zwei oder drei verschiedene Partikelgrößen des Füllstoffs verwendet werden. Die Aufbereitung des Feedstocks erfolgt vorteilhaft auf einem Doppel - Schneckenextruder mit einer Granulierungseinrichtung . Mit einem vierten Schritt S4 erfolgt ein Pulverschmelzen des mit dem Füllstoff gefüllten Kunststoffträgermaterials . Besonders vorteilhaft für eine Herstellung kostengünstiger, hoch effizienter und komplexer Bauteile für thermoelektrische Generatoren ist die Verwendung eines Pulver-Strang-Press-Schmelzens oder Pulver-Injektions-Schmelzens zur Bauteilherstellung vorgeschlagen. PEM steht für Powder Extrusion Molding und PIM steht für Powder Injection Molding. Insbesondere sind diese beiden Pulverschmelzverfahren besonders vorteilhaft. Mit einem fünften Schritt S5 erfolgt ein Formgeben zu einem
Grünteil. Dabei erfolgt die Formgebung der thermoelektrischen Bauteile mittels Urformen, wie es beispielseise Extrusion, Spritzgießen oder Spritzpressen sein können. Auf diese Weise wird ein sogenanntes Grünteil erhalten. Anschließend wird mit einem sechsten Schritt S6 in einem Entbinderprozess das
Kunststoffträgermaterial ausgetrieben, so dass ein sogenanntes Braunteil erhalten wird. Mit einem siebten Schritt S7 kann ein wärmebehandelndes Braunteil zu dem halbleitenden thermoelektrischen Bauteil erfolgen. Das Wärmebehandeln kann insbesondere ein Sintern sein, wobei abhängig vom eingesetz- ten Füllstoff ein fertiges, kompaktes thermoelektrisches Bauteil mit einer Dichte und dem Eigenschaftsprofil von > 95% des eingesetzten reinen Füllstoffs entsteht.
Figur 2 zeigt drei Ausführungsbeispiele erfindungsgemäßer Bauteile. Oben ist ein p-dotierter eckiger Hohlkörper dargestellt. In der Mitte ist ein hohlzylindrischer n-dotierter Hohlkörper 3 dargestellt. Unten zeigt Figur 2 den zylindrischen Hohlkörper 3, der in die Hälfte eines Toroids umgeformt wurde. Die Gütezahl eines thermoelektrischen Materials, also der hier dargestellten Bauteile 1 und 3, berechnet sich nach folgender Formel :
(1) Gütezahl Z= S2.a/Ä S Seebeckkoeffizient σ
δ elektrische Leitfähigkeit
λ Wärmeleitfähigkeit Je größer der Seebeckkoeffizient und die elektrische Leitfähigkeit sind und je kleiner die Wärmeleitfähigkeit, desto höher ist die Gütezahl. In einem KunststoffCompound sind die Materialeigenschaften wie elektrische Leitfähigkeit und Wärmeleitfähigkeit stark vom Füllgrad abhängig. Je höher der Füllgrad, desto besser werden δ und Λ, wobei der Einfluss auf δ wesentlich größer ist als auf Λ, das heißt ein thermoelektrisches Compound wird immer eine schlechtere Gütezahl aufweisen als der reine ther- moelektrische Füllstoff. Die Formgebung über Pulverschmelz - verfahren, insbesondere PEM und PIM zeichnet sich durch eine hohe Designfreiheit aus und ermöglicht die kostengünstige Herstellung komplexer thermoelektrischer Bauteile mit hoch- wertigen Materialeigenschaften, beispielsweise Hohlkörper 1, Rohr 3 oder Toroid usw. Die Bauteile gemäß Figur 2 sind als Ausführungsbeispiel mit folgendem Füllstoff und folgendem Compound bereitgestellt. Füllstoff: Zinndioxid (Sn02) dotiert mit 15 Mol-% Antimon
Figure imgf000011_0001
Compound: 50 Vol-% Polypropylen/50 Vol.-% Füllstoff
Figure imgf000011_0002
Für hochgefüllte Compounds wie im vorliegenden Fall, kann für Compound und reinem Füllstoff der gleiche Seebeckkoeffizient angenommen werden. Nach Gleichung (1) ist für die Gütezahl Z dann nur das Verhältnis von elektrischer Leitfähigkeit zu thermischer Leitfähigkeit ausschlaggebend. Damit ergibt sich nach Gleichung (1) für den reinen thermoelektrischen Füllstoff einen um den Faktor 10 bessere Gütezahl verglichen mit dem Compound. Figur 3 zeigt ein Ausführungsbeispiel für Emzelelemente für einen thermoelektrischen Generator. Bezugszeichen 1 kennzeichnet ein p-halbleitendes thermoelektrisches Bauteil
(Rohr), das im Querschnitt gezeigt ist. Bezugszeichen 3 zeigt ein n-halbleitendes thermoelektrisches Bauteil (Rohr) , das ebenso im Querschnitt gezeigt ist. Beide Bauteile 1 und 3 sind zwischen Kontaktierungen fixiert, wobei die Kontaktierungen Gewinde 7 derart aufweisen, dass die dargestellten Einzelelemente, die insbesondere mittels Powder Injection Moldings hergestellt worden sind (PIM) , zu einem thermoelektrischen Generator verknüpft werden können.
Figur 4 zeigt einen thermoelektrischen Generator, bei denen n- und p-halbleitende thermoelektrische Bauteile 1 und 3 zu einem thermoelektrischen Generator miteinander verschraubt worden sind. Zur gegenseitigen Isolierung werden zusätzlich O-Ringe 9 verwendet. Die Ansicht gemäß Figur 4 kann als ein Querschnitt der Darstellung gemäß Figur 3 angenommen werden.

Claims

Patentansprüche
1. Verfahren zur Herstellung halbleitender, thermoelektri - scher Bauteile (1; 3), insbesondere für eine Verwendung in einem thermoelektrischen Generator, mit den folgenden Schritten :
- A) Bereitstellen mindestens eines thermo-elektrischen Materials;
- B) Dotieren des mindestens einen Materials zur Ausbildung einer Halbleitereigenschaft;
- C) Einbringen des halbleitenden Materials als Füllstoff in mindestens ein Kunststoffträgermaterial ;
- D) Pulverschmelzen des mit dem Füllstoff gefüllten Kunst- Stoffträgermaterials ;
- E) Formgeben zu einem Grünteil;
- F) Austreiben des Kunststoffträgermaterials zum Erhalt eines Braunteils ;
- G) Wärmebehandeln des Braunteils zu einem halbleitenden, thermoelektrischen Bauteil (1; 3) .
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
D) Pulverschmelzen des mit dem Füllstoff gefüllten Kunststoff- trägermaterials Pulver-Strangpress-Schmelzen oder Pulver- Injektions-Schmelzen ist.
3. Verfahren nach Anspruch 1 oder 2 ,
gekennzeichnet durch
A) Bereitstellen mindestens eines thermo-elektrischen Materials, das sinterfähig ist;
G) mittels Sintern ausgeführtes Wärmebehandeln des Braunteils zu einem halbleitenden, keramischen, thermoelektrischen Bauteil (1; 3) .
4. Verfahren nach Anspruch 1, 2 oder 3,
gekennzeichnet durch B) P- oder n-Dotieren des mindestens einen Materials zur Ausbildung der p- oder n-Halbleitereigenschaft des Bauteils (1; 3) .
5. Verfahren nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch
C) Einbringen des halbleitenden Materials als Füllstoff in ein Kunststoffträgermaterial oder zwei Kunststoffträgermateria- lien .
6. Verfahren nach einem der vorhergehenden Ansprüche 3 bis 5, gekennzeichnet durch
A) Bereitstellen des mindestens einen sinterfähigen, thermo- elektrischen Materials als Oxidkeramik-Metalloxid€ aus der Gruppe MgO, ZnO, SnO, Sn02, Ti02, Ti203, CuO, Delafossite und/oder SiC.
7. Verfahren nach einem der vorhergehenden Ansprüche 3 bis 6, gekennzeichnet durch
A) Bereitstellen einer Mischung aus mindestens zwei verschiedenen sinterfähigen, thermoelektrischen Materialien.
8. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch
C) Einbringen des halbleitenden Materials als Füllstoff in das mindestens eine Kunststoffträgermaterial und Aufbereiten in ein Rohmaterial oder Feedstock für das D) Pulverschmelzen .
9. Verfahren nach Anspruch 8,
dadurch gekennzeichnet, dass
C) das Aufbereiten in das Rohmaterial mittels eines Doppelschneckenextruders mit einer Granulierungseinrichtung ausgeführt wird.
10. Verfahren nach Anspruch 8 oder 9,
dadurch gekennzeichnet, dass C) für das Aufbereiten in das Rohmaterial eine Verarbeitungs- hilfe, beispielsweise ein wachsartiger Zuschlag für ein einfaches Wandlösen, hinzugefügt wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
C) beim Einbringen des halbleitenden Materials als Füllstoff in das mindestens eine Kunststofftragermaterial der Füll- stoffanteil zwischen circa 50 und 65 Volumen-% ist.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
C) beim Einbringen des halbleitenden Materials als Füllstoff in das mindestens eine Kunststofftragermaterial der Füllstoff zwei oder drei verschiedene Partikelgrößen aufweist.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
E) Formgeben zu dem Grünteil mittels Urformen.
14. Verfahren nach Anspruch 13,
dadurch gekennzeichnet, dass
E) Formgeben zu dem Grünteil mittels Extrusion, Spritzgießen oder Spritzpressen.
15. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch
F) Austreiben des Kunststoffträgermaterials mittels eines Entbinderprozesses .
16. Verfahren nach einem der vorhergehenden Ansprüche 3 bis 15,
gekennzeichnet durch
unmittelbar nach dem G) Sintern ein isostatisches Pressen un- ter hohem Druck ausgeführt wird.
17. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch E) Formgeben zu einem Grünteil, das ein Profil, ein Hohlkörper, ein Rohr oder ein Rohr mit integrierter Verbindungsfunk- tion ist.
18. Verfahren nach Anspruch 17,
dadurch gekennzeichnet, dass die Verbindungsfunktion mittels eines Gewindes oder Gehäuses bereitgestellt ist.
19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das halbleitende, thermoelektri- sche Bauteil eine Dichte und ein Eigenschaftsprofil von größer 95 Massen-% des verwendeten reinen Füllstoffs aufweist.
20. Bauteil (1; 3), das halbleitend und thermoelektrisch ist, dadurch gekennzeichnet, dass es nach einem Verfahren gemäß einem der vorhergehenden Ansprüche hergestellt worden ist.
21. Verwendung mindestens eines aus einem p- halbleitenden Bauteil (1) und einem n- halbleitenden Bauteil (3) bestehen- den Paares für einen Thermoelektrischen Generator, wobei ein jeweiliges Bauteil (1; 3) nach einem Verfahren gemäß einem der Ansprüche 1 bis 19 hergestellt worden ist,
dadurch gekennzeichnet, dass die p- und n- halbleitende Bauteile (1, 3) derart zueinander angeordnet und elektrisch in Serie geschaltet werden, dass mittels des Seebeck-Effekts bei einer Temperaturdifferenz eine elektrische Spannung
generierbar ist.
22. Thermoelektrischen Generator mit mindestens einem aus ei- nem p- halbleitenden Bauteil (1) und einem n- halbleitenden
Bauteil (3) bestehenden Paar, wobei ein jeweiliges Bauteil (1; 3) nach einem Verfahren gemäß einem der Ansprüche 1 bis 19 hergestellt worden ist,
dadurch gekennzeichnet, dass die p- und n- halbleitende Bau- teile (1, 3) derart zueinander angeordnet und elektrisch in Serie geschaltet sind, dass mittels des Seebeck-Effekts bei einer Temperaturdifferenz eine elektrische Spannung
generierbar ist.
PCT/EP2014/075006 2014-02-24 2014-11-19 Thermoelektrischer hochleistungsgenerator und verfahren zu dessen herstellung WO2015124225A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014203264.4 2014-02-24
DE102014203264.4A DE102014203264A1 (de) 2014-02-24 2014-02-24 Thermoelektrischer Hochleistungsgenerator und Verfahren zu dessen Herstellung

Publications (1)

Publication Number Publication Date
WO2015124225A1 true WO2015124225A1 (de) 2015-08-27

Family

ID=51947349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/075006 WO2015124225A1 (de) 2014-02-24 2014-11-19 Thermoelektrischer hochleistungsgenerator und verfahren zu dessen herstellung

Country Status (2)

Country Link
DE (1) DE102014203264A1 (de)
WO (1) WO2015124225A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297461A (ja) * 1988-10-03 1990-04-10 Nishimura Togyo Kk チタン酸バリウム系半導体セラミックス成形体の製造方法
US20120090657A1 (en) * 2009-06-15 2012-04-19 Soonil Lee Reduced low symmetry ferroelectric thermoelectric systems, methods and materials
EP2503610A1 (de) * 2011-03-22 2012-09-26 Technical University of Denmark Struktur, die zur Herstellung eines Thermogenerators, Thermogenerator, der diese Struktur umfasst, und Verfahren zu dessen Herstellung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9756021B2 (en) 2011-11-11 2017-09-05 Soprano Design Limited Secure messaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297461A (ja) * 1988-10-03 1990-04-10 Nishimura Togyo Kk チタン酸バリウム系半導体セラミックス成形体の製造方法
US20120090657A1 (en) * 2009-06-15 2012-04-19 Soonil Lee Reduced low symmetry ferroelectric thermoelectric systems, methods and materials
EP2503610A1 (de) * 2011-03-22 2012-09-26 Technical University of Denmark Struktur, die zur Herstellung eines Thermogenerators, Thermogenerator, der diese Struktur umfasst, und Verfahren zu dessen Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG C M ET AL: "Relationship between the evolutions of the microstructure and semiconductor properties of yttrium-doped barium titanate ceramics;Relationship between the evolutions of the microstructure and semiconductor properties of yttrium-doped barium titanate ceramics", JOURNAL OF PHYSICS D: APPLIED PHYSICS, INSTITUTE OF PHYSICS PUBLISHING LTD, GB, vol. 44, no. 34, 11 August 2011 (2011-08-11), pages 345403, XP020208212, ISSN: 0022-3727, DOI: 10.1088/0022-3727/44/34/345403 *

Also Published As

Publication number Publication date
DE102014203264A1 (de) 2015-08-27

Similar Documents

Publication Publication Date Title
DE102006057750B4 (de) Thermoelektrisches Material und thermoelektrische Umwandlungsvorrichtung unter Verwendung desselben
EP2227834B1 (de) Extrusionsverfahren zur herstellung verbesserter thermoelektrischer materialien
EP2411324A2 (de) Selbstorganisierende thermoelektrische materialien
DE102013103896B4 (de) Verfahren zum Herstellen eines thermoelektrischen Gegenstands für eine thermoelektrische Umwandlungsvorrichtung
DE102007014499A1 (de) Mit Zinn-Antimon-Telluriden dotierte Pb-Te-Verbindungen für thermoelektrische Generatoren oder Peltier-Anordnungen
DE102014106313B4 (de) Isolator für Zündkerze und Zündkerze
EP1999066A2 (de) Dotierte bleitelluride fuer thermoelektrische anwendungen
EP2460195A2 (de) Verfahren zur herstellung thermoelektrischer halbleitermaterialien und schenkel
DE102012205087A1 (de) Pulvermetallurgische Herstellung eines thermoelektrischen Bauelements
DE102012205098B4 (de) Thermoelektrische Bauelemente auf Basis trocken verpresster Pulvervorstufen
DE102017201848A1 (de) Leitfähiges Polymerkomposit
CH426962A (de) Thermoelektrischer Wandler und Verfahren zu seiner Herstellung
DE102011085828A1 (de) THERMOELEKTRISCHES MATERIAL AUS EINER VERBINDUNG AUF Mg2Si-BASIS UND HERSTELLUNGSVERFAHREN DAFÜR
DE102014114830A1 (de) Verfahren zum Herstellen eines thermoelektischen Gegenstands für eine thermoelektrische Umwandlungsvorrichtung
AT508979A1 (de) Verfahren zum herstellen eines thermoelektrischen elementes
WO2015124225A1 (de) Thermoelektrischer hochleistungsgenerator und verfahren zu dessen herstellung
DE112019006220T5 (de) Herstellungsverfahren für thermoelektrisches material
JP5175571B2 (ja) 熱電変換素子の製造方法
DE102018107411B4 (de) Thermoelektrisches umwandlungsmaterial und herstellungsverfahren hierfür
WO2010097228A2 (de) Verfahren zur herstellung eines halbleiters sowie halbleiter und elektrisches element
DE102018117553B4 (de) Legierung, gesinterter Gegenstand, thermoelektrisches Modul und Verfahren zum Herstellen eines gesinterten Gegenstands
WO2007104603A2 (de) Blei-germanium-telluride fuer thermoelektrische anwendungen
WO2008028852A2 (de) Dotierte bi-te-verbindungen für thermoelektrische generatoren und peltier-anordnungen
DE102014110065A1 (de) Material für ein thermoelektrisches Element und Verfahren zur Herstellung eines Materials für ein thermoelektrisches Element
JP5269676B2 (ja) 熱電変換素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14802400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14802400

Country of ref document: EP

Kind code of ref document: A1