WO2015121521A1 - Rueda omnidireccional, y móvil omnidireccional - Google Patents

Rueda omnidireccional, y móvil omnidireccional Download PDF

Info

Publication number
WO2015121521A1
WO2015121521A1 PCT/ES2015/070085 ES2015070085W WO2015121521A1 WO 2015121521 A1 WO2015121521 A1 WO 2015121521A1 ES 2015070085 W ES2015070085 W ES 2015070085W WO 2015121521 A1 WO2015121521 A1 WO 2015121521A1
Authority
WO
WIPO (PCT)
Prior art keywords
omnidirectional
wheel
support body
axis
polar
Prior art date
Application number
PCT/ES2015/070085
Other languages
English (en)
French (fr)
Inventor
Daniel CLOS COSTA
Jordi MARTINEZ MIRALLES
Original Assignee
Universitat Politècnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De Catalunya filed Critical Universitat Politècnica De Catalunya
Publication of WO2015121521A1 publication Critical patent/WO2015121521A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/14Ball-type wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B33/00Castors in general; Anti-clogging castors
    • B60B33/006Castors in general; Anti-clogging castors characterised by details of the swivel mechanism
    • B60B33/0063Castors in general; Anti-clogging castors characterised by details of the swivel mechanism no swivelling action, i.e. no real caster
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B33/00Castors in general; Anti-clogging castors
    • B60B33/08Ball castors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/50Improvement of
    • B60B2900/551Handling of obstacles or difficult terrains

Definitions

  • the present invention concerns an omnidirectional wheel, which is useful as a driving wheel for an omnidirectional mobile, an omnidirectional mobile being understood as a body capable of moving in any direction in relation to a support surface, either flat or three-dimensional .
  • the present invention also concerns an omnidirectional mobile that makes use of such an omnidirectional wheel.
  • JP 2007210576 A discloses an omnidirectional wheel comprising a support body fixed to a drive shaft that can be driven to rotate along with said support body around a wheel turning axis, and two bodies of rolling connected to the support body so that they can rotate freely and independently around a common free axis of rotation, perpendicular to said axis of wheel rotation.
  • the said two rolling bodies have respective semi-spherical rolling surfaces that partially surround the support body and have a common constant radius of curvature and a common geometric center located at an intersection of said free rotation axis with the rotation axis of wheel.
  • the two rolling bodies also have respective opposite circumferential edges separated by a circumferential space through which said motor shaft is installed.
  • said document JP 2007210576 A proposes an embodiment in which the two rolling bodies have respective truncated polar regions in which two respective polar rollers connected to the support body are installed so that they can rotate freely and independently around respective polar axis of rotation perpendicular to the axis of free rotation and comprised in a median plane perpendicular to the axis of rotation wheel and also includes said center geometric.
  • the mentioned two polar rollers have respective barrel-shaped surfaces, each of which has an arc-shaped generatrix having the common radius of curvature and the same geometric center as the hemispherical rolling surfaces.
  • JP 2007210576 A there is still a problem related to a lack of continuity in the hemispherical rolling surfaces in said circumferential space between the opposite circumferential edges of the respective rolling bodies, which is necessary for allow the motor shaft to pass, since this lack of continuity produces unwanted irregularities in the rolling when the wheel rotates around the axis of wheel rotation.
  • JP 2007210576 A proposes a solution to the aforementioned inconvenience of lack of continuity in the hemispherical rolling surfaces providing another embodiment in which the motor shaft is connected to the support body by means of a fork provided with two thin flat arms installed through of the circumferential space in positions adjacent to the opposite circumferential edges of the respective rolling bodies, and in which a third rolling body is installed between the two arms of the fork and connected to the support body so that they can rotate around the axis of free rotation, said third rolling body having a spherical rolling surface having the same radius of curvature and the same geometric center as the hemispherical rolling surfaces.
  • the present invention contributes to solving the above and other inconveniences by providing an omnidirectional wheel that essentially comprises a support body, two rolling bodies, two polar rollers and two intermediate rollers.
  • Said support body is configured in relation to a wheel rotation axis, and is provided with fixing means for fixing the wheel body to a coaxial motor shaft with said wheel rotation axis.
  • the motor shaft can be rotatably driven by a motor to rotate the support body around the wheel rotation axis.
  • the said two rolling bodies are connected to the support body so that they can rotate freely and independently with respect to the support body around a common free axis of rotation perpendicular to said wheel axis of rotation that has an intersection with the axis of rotation wheel
  • Said two rolling bodies have respective semi-spherical rolling surfaces that partially surround the support body. These hemispherical surfaces have a constant common radius of curvature and a common geometric center located at said intersection between the axis of free rotation and the axis of wheel rotation.
  • the two rolling bodies also have respective truncated polar regions and respective circumferential edges separated by an intermediate circumferential space through which said motor shaft is installed.
  • the two mentioned polar rollers are installed in said truncated polar regions of the respective rolling bodies and are connected to the support body so that they can rotate freely and independently around respective polar rotation axes perpendicular to the free rotation axis and located in a middle plane perpendicular to the axis of wheel rotation that also comprises the common geometric center.
  • Each of said polar rollers has a barrel-shaped surface that at its intersection with said middle plane defines an arc-shaped generatrix having said common radius of curvature and said common geometric center.
  • the two mentioned intermediate rollers are installed in said intermediate circumferential space in opposite positions with respect to the common geometric center and connected to the support body so that they can rotate freely and independently around respective intermediate rotation axes perpendicular to the polar and included rotation axes in said middle plane perpendicular to the axis of wheel rotation.
  • Each of said intermediate rollers has a barrel-shaped surface that at its intersection with said middle plane defines an arc-shaped generatrix having said common radius of curvature and said common geometric center.
  • the arrangement of the intermediate rollers makes it possible to provide an intermediate circumferential space wide enough to install through it a structural connection element connected to the support body so that it can freely rotate with respect to the support body around the wheel rotation axis.
  • said structural connection element being fixed to a structure of an omnidirectional mobile or to a structure that supports said omnidirectional mobile.
  • the present invention provides an omnidirectional mobile comprising a mobile platform provided with a lower surface, a plurality of omnidirectional wheels according to the first aspect of the present invention installed in a stationary structure on which it is supported by gravity said lower surface of the mobile platform, and a plurality of electronically controllable electric motors operatively connected to rotate the motor shaft of each of said omnidirectional wheels.
  • the omnidirectional wheel of the first aspect of the present invention is also useful in other types of omnidirectional mobiles, such as those with a vehicle structure in which a plurality of omnidirectional wheels arranged to roll on a support surface are installed, and a plurality of electronically controllable electric motors operatively connected to drive the motor shaft of each of said omnidirectional wheels in rotation.
  • Fig. 1 is a perspective view of an omnidirectional wheel of agreement embodiment of the first aspect of the present invention
  • Fig. 2 is a cross-sectional view of the omnidirectional wheel of Fig. 1 taken along a middle plane perpendicular to the wheel axis of rotation and containing the free axis of rotation
  • Fig. 3 is a cross-sectional view of the omnidirectional wheel of Fig. 1 taken along the same middle plane perpendicular to the wheel axis of rotation and containing the free axis of rotation, showing its components in explosion;
  • Fig. 1 is a perspective view of an omnidirectional wheel of agreement embodiment of the first aspect of the present invention
  • Fig. 2 is a cross-sectional view of the omnidirectional wheel of Fig. 1 taken along a middle plane perpendicular to the wheel axis of rotation and containing the free axis of rotation
  • Fig. 3 is a cross-sectional view of the omnidirectional wheel of Fig. 1 taken along the same middle plane perpendic
  • FIG. 4 is a perspective view of an omnidirectional mobile according to an embodiment of the second aspect of the present invention including the omnidirectional wheel of Fig. 1;
  • Fig. 5 is a perspective view of another omnidirectional mobile that includes the omnidirectional wheel of Fig. 1; and
  • Fig. 6 is a cross-sectional view of an omnidirectional wheel in accordance with another embodiment of the first aspect of the present invention with an additional structural connection element, taken along a plane containing the wheel turning axis and the axle. Free spin Detailed description of some embodiments
  • Figs. 1, 2 and 3 show an omnidirectional wheel 20 according to an embodiment of a first aspect of the present invention, which comprises a support body 1, two rolling bodies 3a, 3b, two polar rollers 6a, 6b, two rollers intermediates 8a, 8b, and other auxiliary elements necessary for assembly.
  • Said support body 1 is configured in relation to a wheel rotation axis E1 and has fixing means that allow the motor body 2 to be fixed in a coaxial position with said wheel rotation axis E1 to the support body 1.
  • said fixing means comprise a hole 21 coaxial with the wheel rotation axis E1 and a keyway 22 in said hole 21 to accommodate a key 23, although alternatively the fixing means could include a grooved hole or other element intended for the same purpose.
  • the two mentioned rolling bodies 3a, 3b are connected to the support body 1 so that they can rotate freely and independently around a common freewheel axis E2, perpendicular to said axis of wheel rotation E1.
  • the support body 1 has two circumferential ribs 31 a, 31 b concentric with said free-rotating axis E2 and formed on opposite sides of the wheel-turning axis E1, and each of said two rolling bodies 3a, 3b it has a plurality of elastic arms 32a, 32b, arranged mutually separated along a circumferential formation, and terminated in respective coupling elements 33a, 33b configured to engage under pressure, by deformation and elastic recovery of said elastic arms 32a, 32b, in said circumferential ribs 31 a, 31 b of the support body 1.
  • the rolling bodies 3a , 3b are coupled to their respective circumferential ribs 31 a, 31 b of the supporting body 1 (Fig. 2), the rolling bodies 3a , 3b are retained with respect to the base body 1 against axial movements in the direction of the free rotation axis E2 but can rotate freely and independently with respect to the base body 1 around the free rotation axis E2.
  • the two rolling bodies 3a, 3b have respective semi-spherical rolling surfaces 4a, 4b that partially surround the support body 1, respective openings 34a, 34b coaxial with the free spin axis E2 that provide truncated polar regions 10a, 10b to said semi-spherical rolling surfaces 4a, 4b, and respective circumferential edges 5a, 5b opposite coaxial with the free-spin axis E2, which, in an operative situation (Fig. 2) are separated by an intermediate circumferential space G through of which said drive shaft 2 is installed.
  • the said hemispherical surfaces 4a, 4b of both rolling bodies 3a, 3b have a constant common radius of curvature R and a common geometric center C located at an intersection of said free-rotating axis E2 with the wheel rotation axis E1.
  • the two aforementioned polar rollers 6a, 6b are respectively installed in said truncated polar regions 10a, 10b of the rolling bodies 3a, 3b and connected to the support body 1 so that they can rotate freely and independently around respective polar axis of rotation E3a , E3b perpendicular to the free axis of rotation E2 and comprised in a middle plane P (which is the plane of the drawing in Figs. 2 and 3) perpendicular to the axis of wheel rotation E1 and comprising the common geometric center C.
  • the support body 1 has a pair of polar forks 24a, 24b that support respective pins 25a, 25b inserted in axial holes formed in the polar rollers 6a, 6b in cooperation with friction bushings 26.
  • the two polar rollers 6a, 6b have respective roller-shaped rolling surfaces 7a, 7b which at their intersection with said median plane P define respective arc-shaped generatrices having the same common radius of curvature R and the same center common geometric C that the rolling surfaces 4a, 4b of the rolling bodies 3a, 3b.
  • the two mentioned intermediate rollers 8a, 8b are installed in said intermediate circumferential space G on opposite sides of the wheel rotation axis E1, and are connected to the support body 1 so that they can rotate freely and independently around respective intermediate rotation axes E4a, E4b perpendicular to the polar axes of rotation E3a, E3b and included in said middle plane P.
  • the support body 1 has a pair of intermediate forks 27a, 27b that support respective pins 28a, 28b inserted in holes axial formed in intermediate rollers 8a, 8b in cooperation with friction bushings 29.
  • the intermediate rollers 8a, 8b also have respective roller-shaped rolling surfaces 9a, 9b which at their intersection with the median plane P define respective arc-shaped generatrices having the same common radius of curvature R and the same center common geometric C that the rolling surfaces 4a, 4b of the rolling bodies 3a, 3b.
  • Fig. 4 shows an omnidirectional mobile 50 comprising a stationary structure 17, a plurality of omnidirectional wheels 20 as described above in relation to Figs. 1, 2 and 3, preferably in number of three, installed in said stationary structure 17, and a mobile platform 15 provided with a lower surface 16 supported by gravity on said omnidirectional wheels 20.
  • the drive shafts 2 of the omnidirectional wheels 20 are oriented in three directions oblique to each other and preferably parallel to the bottom surface 16 of the mobile platform 15.
  • three electric motors 18 are also mechanically connected to drive the drive shafts 2 of the three omnidirectional wheels 20.
  • the three engines electric 18 are independently controlled by control means to rotate the respective motor shafts 2 in selected directions of rotation and at selected speeds to advance and rotate the mobile platform 15 which constitutes the omnidirectional mobile 40 in any direction in relation to the stationary structure 17.
  • Fig. 5 shows an omnidirectional mobile 40 constituted by a vehicle comprising a mobile structure 12 on which three omnidirectional wheels 20 are installed as described above in relation to Figs. 1, 2 and 3.
  • the three omnidirectional wheels 20 are arranged to roll on a support surface (not shown).
  • the drive shafts 2 of the three omnidirectional wheels 20 are oriented in three directions oblique to each other and preferably parallel to the support surface.
  • three electric motors 13 are also connected mechanically to drive the drive shafts 2 of the three omnidirectional wheels 20.
  • the three electric motors 13 are independently controlled by control means to rotate the respective drive shafts 2 in selected directions of rotation and at selected speeds to advance and turn the vehicle which constitutes the omnidirectional mobile 40 in any direction on the support surface.
  • Fig. 6 shows an omnidirectional wheel 20 according to another embodiment of the first aspect of the present invention, which is analogous to that described above in relation to Figs. 1, 2 and 3 except that the support body 1 has a connection element for connecting to a distal end of a structural connection element 1 1 installed through the intermediate circumferential space G, where said structural connection element 1 1 has a proximal end fixed to a structure, such as for example the structure 17 that supports the mobile platform 15 of the omnidirectional mobile 50 of Fig. 4, although alternatively it could be fixed to the mobile structure 12 of the vehicle constituting the omnidirectional mobile 40 of Fig. 5 or any other structure.
  • Said connection element between the support body 1 and said structural connection element 1 1 allows a relative free rotation around the wheel rotation axis E1.
  • the structural connection element 11 has a coaxial tubular configuration with the wheel rotation axis E1, within which the motor shaft 2 is housed.
  • the support body 1 has a bearing-bearing sleeve 35 formed around the hole 21 into which the drive shaft 2 is inserted. On said bearing sleeve 35, bearings 36 are fitted in turn coupled to an inner surface of the structural connection element 11.
  • the drive shaft 2 has a perimeter shoulder 37 which is supports against the bearing sleeve 35 to position and retain the drive shaft 2 and the bearings 36 relative to the support body 1 in cooperation with a clamping screw 38 coupled to a threaded hole formed axially in the drive shaft 2 and passed through of a washer 39 in contact with the support body 1 on one side of the support body 1 opposite the bearing sleeve 35.
  • a clamping screw 38 coupled to a threaded hole formed axially in the drive shaft 2 and passed through of a washer 39 in contact with the support body 1 on one side of the support body 1 opposite the bearing sleeve 35.
  • the structure element The connection 11 has a flange 30 fixed to said structure 17 by means of fixing screws 41.

Abstract

La rueda omnidireccional (20) comprende un cuerpo de soporte (1) fijado a un árbol motor (2) coaxial con un eje de giro de rueda (E1), dos cuerpos de rodadura (3a, 3b) conectados giratoriamente al cuerpo de soporte (1) respecto a un eje de giro libre (E2) perpendicular al eje de giro de rueda (E1), los cuales tienen unas superficies de rodadura semiesféricas (4a, 4b), unas regiones polares truncadas (10a, 10b) donde están instalados dos rodillos polares (6a, 6b), y unos bordes circunferenciales (5a, 5b) separados por un espacio circunferencial intermedio (G) a través del cual pasa el árbol motor (2) y donde están instalados dos rodillos intermedios (8a, 8b). Los rodillos polares e intermedios tienen respectivos ejes en un plano perpendicular al eje de giro de rueda y superficies de rodadura cuyas directrices tienen el mismo radio (R) y el mismo centro (C) que las superficies de rodadura semiesféricas.

Description

RUEDA OMNIDIRECCIONAL, Y MÓVIL OMNIDIRECCIONAL
DESCRIPCIÓN
Campo de la técnica La presente invención concierne a una rueda omnidireccional, la cual es útil como rueda motriz para un móvil omnidireccional, entendiéndose como móvil omnidireccional un cuerpo capaz de moverse en cualquier dirección en relación con una superficie de soporte, ya sea plana o tridimensional. La presente invención también concierne a un móvil omnidireccional que hace uso de tal rueda omnidireccional. Antecedentes de la invención
El documento JP 2007210576 A, de Tadakuma, da a conocer una rueda omnidireccional que comprende un cuerpo de soporte fijado a un árbol motor que puede ser accionado para girar junto con dicho cuerpo de soporte alrededor de un eje de giro de rueda, y dos cuerpos de rodadura conectados al cuerpo de soporte de manera que pueden girar libre e independientemente alrededor de un eje de giro libre común, perpendicular a dicho eje de giro de rueda. Los mencionados dos cuerpos de rodadura tienen unas respectivas superficies de rodadura semiesféricas que rodean parcialmente el cuerpo de soporte y que tienen un radio de curvatura constante común y un centro geométrico común situado en una intersección de dicho eje de giro libre con el eje de giro de rueda. Los dos cuerpos de rodadura tienen además unos respectivos bordes circunferenciales opuestos separados por un espacio circunferencial a través del cual está instalado dicho árbol motor.
Pare evitar la imposibilidad de girar que tendría cualquiera de dichos dos cuerpos de rodadura cuando su superficie de rodadura semiesférica estuviera en contacto con una superficie de soporte en un punto correspondiente a su polo, es decir, con el mencionado eje de giro libre dispuesto en una posición perpendicular a un plano tangente a dicha superficie de soporte en el punto de contacto, y la rueda fuera empujada en cualquier dirección paralela a dicho plano tangente, el citado documento JP 2007210576 A propone una realización en la que los dos cuerpos de rodadura tienen unas respectivas regiones polares truncadas en las que están instalados dos respectivos rodillos polares conectados al cuerpo de soporte de manera que pueden girar libre e independientemente alrededor de respectivos ejes de giro polares perpendiculares al eje de giro libre y comprendidos en un plano medio perpendicular al eje de giro de rueda y que también comprende dicho centro geométrico. Los mencionados dos rodillos polares tienen unas respectivas superficies en forma de tonel, cada una de las cuales tiene una generatriz en forma de arco que tiene el radio de curvatura común y el mismo centro geométrico que las superficies de rodadura semiesféricas. No obstante, en esta realización del citado documento JP 2007210576 A aún persiste un inconveniente relacionado con una falta de continuidad en las superficies de rodadura semiesféricas en el mencionado espacio circunferencial entre los bordes circunferenciales opuestos de los respectivos cuerpos de rodadura, el cual es necesario para permitir el paso del árbol motor, puesto que esta falta de continuidad produce irregularidades indeseadas en la rodadura cuando la rueda gira alrededor del eje de giro de rueda.
Este mismo documento JP 2007210576 A propone una solución al mencionado inconveniente de falta de continuidad en las superficies de rodadura semiesféricas aportando otra realización en la que el árbol motor se conecta al cuerpo de soporte mediante una horquilla provista de dos brazos planos y delgados instalados a través del espacio circunferencial en posiciones adyacentes a los bordes circunferenciales opuestos de los respectivos cuerpos de rodadura, y en la que un tercer cuerpo de rodadura está instalado entre los dos brazos de la horquilla y conectado al cuerpo de soporte de manera que pueden girar alrededor del eje de giro libre, teniendo dicho tercer cuerpo de rodadura una superficie de rodadura esférica que tiene el mismo radio de curvatura y el mismo centro geométrico que las superficies de rodadura semiesféricas.
Sin embargo, en esta otra realización del citado documento JP 2007210576 A los brazos de la horquilla, aunque sean delgados, tendrán un grosor que hará necesaria la provisión de espacios circunferenciales entre los bordes circunferenciales opuestos de los tres respectivos cuerpos de rodadura y esto seguirá ocasionando una discontinuidad en las superficies de rodadura esféricas. Además, los mencionados espacios circunferenciales no permiten la instalación de un brazo de soporte independiente del árbol motor para soportar giratoriamente el cuerpo de soporte a una estructura de un móvil omnidireccional o a una estructura que soporta a un móvil omnidireccional.
Exposición de la invención A lo largo de esta descripción, los términos "esférico" y "semiesférico" se usan para designar superficies que tienen todos sus puntos equidistantes de un centro aunque no conformen una esfera o una sem ¡esfera completa. De acuerdo con un primer aspecto, la presente invención contribuye a solventar los anteriores y otros inconvenientes aportando una rueda omnidireccional que comprende en esencia un cuerpo de soporte, dos cuerpos de rodadura, dos rodillos polares y dos rodillos intermedios. El mencionado cuerpo de soporte está configurado en relación con un eje de giro de rueda, y está provisto de unos medios de fijación para fijar el cuerpo de rueda a un árbol motor coaxial con dicho eje de giro de rueda. El árbol motor puede ser accionado giratoriamente por un motor para hacer girar el cuerpo de soporte alrededor del eje de giro de rueda.
Los mencionados dos cuerpos de rodadura están conectados al cuerpo de soporte de manera que pueden girar libre e independientemente respecto al cuerpo de soporte alrededor de un eje de giro libre común perpendicular a dicho eje de giro de rueda que tiene una intersección con el eje de giro de rueda. Dichos dos cuerpos de rodadura tienen unas respectivas superficies de rodadura semiesféricas que rodean parcialmente el cuerpo de soporte. Estas superficies semiesféricas tienen un radio de curvatura común constante y un centro geométrico común situado en dicha intersección entre el eje de giro libre y el eje de giro de rueda. Los dos cuerpos de rodadura tienen además unas respectivas regiones polares truncadas y unos respectivos bordes circunferenciales separados por un espacio circunferencial intermedio a través del cual está instalado dicho árbol motor.
Los dos mencionados rodillos polares están instalados en dichas regiones polares truncadas de los respectivos cuerpos de rodadura y están conectados al cuerpo de soporte de manera que pueden girar libre e independientemente alrededor de respectivos ejes de giro polares perpendiculares al eje de giro libre y situados en un plano medio perpendicular al eje de giro de rueda que también comprende el centro geométrico común. Cada uno de dichos rodillos polares tiene una superficie en forma de tonel que en su intersección con dicho plano medio define una generatriz en forma de arco que tiene dicho radio de curvatura común y dicho centro geométrico común.
Los dos mencionados rodillos intermedios están instalados en dicho espacio circunferencial intermedio en posiciones opuestas respecto al centro geométrico común y conectados al cuerpo de soporte de manera que pueden girar libre e independientemente alrededor de respectivos ejes de giro intermedios perpendiculares a los ejes de giro polares y comprendidos en dicho plano medio perpendicular al eje de giro de rueda. Cada uno de dichos rodillos intermedios tiene una superficie en forma de tonel que en su intersección con dicho plano medio define una generatriz en forma de arco que tiene dicho radio de curvatura común y dicho centro geométrico común. Con esta disposición, la rueda presenta una virtual continuidad en las superficies de rodadura cuando gira sobre una superficie de soporte alrededor del eje de giro de rueda y cuando es empujada en cualquier dirección sobre dicha superficie de soporte.
Además, la disposición de los rodillos intermedios permite proveer un espacio circunferencial intermedio suficientemente ancho para instalar a través del mismo un elemento estructural de conexión conectado al cuerpo de soporte de manera que puede girar libremente respecto al cuerpo de soporte alrededor del eje de giro de rueda, estando dicho elemento estructural de conexión fijado a una estructura de un móvil omnidireccional o a una estructura que soporta a dicho móvil omnidireccional. Así, las cargas soportadas sobre el móvil omnidireccional son transmitidas desde la estructura al cuerpo de soporte de la rueda o desde el cuerpo de soporte de la rueda a la estructura por el mencionado elemento estructural de conexión, y el árbol motriz queda liberado de la transmisión de cargas.
De acuerdo con un segundo aspecto, la presente invención aporta un móvil omnidireccional que comprende una plataforma móvil provista de una superficie inferior, una pluralidad de ruedas omnidireccionales de acuerdo con el primer aspecto de la presente invención instaladas en una estructura estacionaria sobre las cuales está apoyada por gravedad dicha superficie inferior de la plataforma móvil, y una pluralidad de motores eléctricos controlables electrónicamente conectados operativamente para accionar en giro el árbol motor de cada una de dichas ruedas omnidireccionales.
No obstante, la rueda omnidireccional del primer aspecto de la presente invención también es útil en otros tipos de móviles omnidireccionales, como los que tienen una estructura de vehículo en la que están instaladas una pluralidad de ruedas omnidireccionales dispuestas para rodar sobre una superficie de soporte, y una pluralidad de motores eléctricos controlables electrónicamente conectados operativamente para accionar en giro el árbol motor de cada una de dichas ruedas omnidireccionales.
Breve descripción de los dibujos
Las anteriores y otras características y ventajas se comprenderán más plenamente a partir de la siguiente descripción detallada de unos ejemplos de realización con referencia a los dibujos que la acompañan, en los que: la Fig. 1 es una vista en perspectiva de una rueda omnidireccional de acuerdo realización del primer aspecto de la presente invención; la Fig. 2 es una vista en sección transversal de la rueda omnidireccional de la Fig. 1 tomada por un plano medio perpendicular al eje de giro de rueda y que contiene el eje de giro libre; la Fig. 3 es una vista en sección transversal de la rueda omnidireccional de la Fig. 1 tomada por el mismo plano medio perpendicular al eje de giro de rueda y que contiene el eje de giro libre, mostrando sus componentes en explosión; la Fig. 4 es una vista en perspectiva de un móvil omnidireccional de acuerdo con una realización del segundo aspecto de la presente invención incluyendo la rueda omnidireccional de la Fig. 1 ; la Fig. 5 es una vista en perspectiva de otro móvil omnidireccional que incluye la rueda omnidireccional de la Fig. 1 ; y la Fig. 6 es una vista en sección transversal de una rueda omnidireccional de acuerdo con otra realización del primer aspecto de la presente invención con un elemento estructural de conexión adicional, tomada por un plano que contiene al eje de giro de rueda y el eje de giro libre. Descripción detallada de unos ejemplos de realización
Las Figs. 1 , 2 y 3 muestran una rueda omnidireccional 20 de acuerdo con una realización de un primer aspecto de la presente invención, la cual comprende un cuerpo de soporte 1 , dos cuerpos de rodadura 3a, 3b, dos rodillos polares 6a, 6b, dos rodillos intermedios 8a, 8b, y otros elementos auxiliares necesarios para su montaje. El mencionado cuerpo de soporte 1 está configurado en relación con un eje de giro de rueda E1 y tiene unos medios de fijación que permiten fijar al cuerpo de soporte 1 un árbol motor 2 en una posición coaxial con dicho eje de giro de rueda E1 . En la realización mostrada, dichos medios de fijación comprenden un agujero 21 coaxial con el eje de giro de rueda E1 y una chavetera 22 en dicho agujero 21 para alojar una chaveta 23, aunque alternativamente los medios de fijación podrían incluir un agujero estriado u otro elemento destinado al mismo fin.
Los dos mencionados cuerpos de rodadura 3a, 3b están conectados al cuerpo de soporte 1 de manera que pueden girar libre e independientemente alrededor de un eje de giro libre E2 común, perpendicular a dicho eje de giro de rueda E1. Para ello, el cuerpo de soporte 1 tiene dos nervios circunferenciales 31 a, 31 b concéntricos con dicho eje de giro libre E2 y formados en lados opuestos del eje de giro de rueda E1 , y cada uno de dichos dos cuerpos de rodadura 3a, 3b tiene una pluralidad de brazos elásticos 32a, 32b, dispuestos mutuamente separados a lo largo de una formación circunferencial, y terminados en unos respectivos elementos de acoplamiento 33a, 33b configurados para acoplarse a presión, por deformación y recuperación elástica de dichos brazos elásticos 32a, 32b, en uno dichos nervios circunferenciales 31 a, 31 b del cuerpo de soporte 1. Cuando los elementos de acoplamiento 33a, 33b de los cuerpos de rodadura 3a, 3b están acoplados a sus respectivos nervios circunferenciales 31 a, 31 b del cuerpo de soporte 1 (Fig. 2), los cuerpos de rodadura 3a, 3b están retenidos respecto al cuerpo base 1 frente a movimientos axiales en la dirección del eje de giro libre E2 pero pueden girar libre e independientemente respecto al cuerpo base 1 alrededor del eje de giro libre E2.
Los dos cuerpos de rodadura 3a, 3b tienen unas respectivas superficies de rodadura semiesféricas 4a, 4b que rodean parcialmente el cuerpo de soporte 1 , unas respectivas aberturas 34a, 34b coaxiales con el eje de giro libre E2 que proporcionan unas regiones polares truncadas 10a, 10b a dichas superficies de rodadura semiesféricas 4a, 4b, y unos respectivos bordes circunferenciales 5a, 5b opuestos coaxiales con el eje de giro libre E2, los cuales, en una situación operativa (Fig. 2) están separados por un espacio circunferencial intermedio G a través del cual está instalado dicho árbol motor 2. Las mencionadas superficies semiesféricas 4a, 4b de ambos cuerpos de rodadura 3a, 3b tienen un radio de curvatura común R constante y un centro geométrico común C situado en una intersección de dicho eje de giro libre E2 con el eje de giro de rueda E1.
Los dos mencionados rodillos polares 6a, 6b están instalados respectivamente en dichas regiones polares truncadas 10a, 10b de los cuerpos de rodadura 3a, 3b y conectados al cuerpo de soporte 1 de manera que pueden girar libre e independientemente alrededor de respectivos ejes de giro polares E3a, E3b perpendiculares al eje de giro libre E2 y comprendidos en un plano medio P (que es el plano del dibujo en las Figs. 2 y 3) perpendicular al eje de giro de rueda E1 y que comprende el centro geométrico común C. Para ello, el cuerpo de soporte 1 tiene un par de horquillas polares 24a, 24b que soportan unos respectivos pasadores 25a, 25b insertados en unos agujeros axiales formados en los rodillos polares 6a, 6b en cooperación con unos casquillos de fricción 26.
Los dos rodillos polares 6a, 6b tienen unas respectivas superficies de rodadura en forma de tonel 7a, 7b que en su intersección con dicho plano medio P definen unas respectivas generatrices en forma de arco que tienen el mismo radio de curvatura común R y el mismo centro geométrico común C que las superficies de rodadura 4a, 4b de los cuerpos de rodadura 3a, 3b. Los dos mencionados rodillos intermedios 8a, 8b están instalados en dicho espacio circunferencial intermedio G en lados opuestos del eje de giro de rueda E1 , y están conectados al cuerpo de soporte 1 de manera que pueden girar libre e independientemente alrededor de respectivos ejes de giro intermedios E4a, E4b perpendiculares a los ejes de giro polares E3a, E3b y comprendidos en dicho plano medio P. Para ello, el cuerpo de soporte 1 tiene un par de horquillas intermedias 27a, 27b que soportan unos respectivos pasadores 28a, 28b insertados en unos agujeros axiales formados en los rodillos intermedios 8a, 8b en cooperación con unos casquillos de fricción 29.
Los rodillos intermedios 8a, 8b también tienen unas respectivas superficies de rodadura en forma de tonel 9a, 9b que en su intersección con el plano medio P definen unas respectivas generatrices en forma de arco que tienen el mismo radio de curvatura común R y el mismo centro geométrico común C que las superficies de rodadura 4a, 4b de los cuerpos de rodadura 3a, 3b.
La Fig. 4 muestra un móvil omnidireccional 50 que comprende una estructura estacionaria 17, una pluralidad de ruedas omnidireccionales 20 como la descrita más arriba en relación con las Figs. 1 , 2 y 3, preferiblemente en número de tres, instaladas en dicha estructura estacionaria 17, y una plataforma móvil 15 provista de una superficie inferior 16 apoyada por gravedad sobre dichas ruedas omnidireccionales 20. Los árboles motores 2 de las ruedas omnidireccionales 20 están orientados en tres direcciones oblicuas entre sí y preferiblemente paralelas a la superficie inferior 16 de la plataforma móvil 15. En la estructura estacionaria 17 están instalados asimismo tres motores eléctricos 18 conectados mecánicamente para accionar los árboles motores 2 de las tres ruedas omnidireccionales 20. Los tres motores eléctricos 18 están controlados independientemente por unos medios de control para hacer girar los respectivos árboles motores 2 en direcciones de giro seleccionadas y a velocidades seleccionadas para hacer avanzar y girar la plataforma móvil 15 que constituye el móvil omnidireccional 40 en cualquier dirección en relación con la estructura estacionaria 17.
La Fig. 5 muestra un móvil omnidireccional 40 constituido por un vehículo que comprende una estructura móvil 12 sobre la cual están instaladas tres ruedas omnidireccionales 20 como la descrita más arriba en relación con las Figs. 1 , 2 y 3. Las tres ruedas omnidireccionales 20 están dispuestas para rodar sobre una superficie de soporte (no mostrada). Los árboles motores 2 de las tres ruedas omnidireccionales 20 están orientados en tres direcciones oblicuas entre sí y preferiblemente paralelas a la superficie de soporte. En la estructura móvil 12 están instalados asimismo tres motores eléctricos 13 conectados mecánicamente para accionar los árboles motores 2 de las tres ruedas omnidireccionales 20. Los tres motores eléctricos 13 están controlados independientemente por unos medios de control para hacer girar los respectivos árboles motores 2 en direcciones de giro seleccionadas y a velocidades seleccionadas para hacer avanzar y girar el vehículo que constituye el móvil omnidireccional 40 en cualquier dirección sobre la superficie de soporte.
La Fig. 6 muestra una rueda omnidireccional 20 según otra realización del primer aspecto de la presente invención, la cual es en todo análoga a la descrita más arriba en relación con las Figs. 1 , 2 y 3 excepto en que el cuerpo de soporte 1 tiene un elemento de conexión para conectarse a un extremo distal de un elemento estructural de conexión 1 1 instalado a través del espacio circunferencial intermedio G, donde dicho elemento estructural de conexión 1 1 tiene un extremo proximal fijado a una estructura, tal como por ejemplo la estructura 17 que soporta la plataforma móvil 15 del móvil omnidireccional 50 de la Fig. 4, aunque alternativamente podría estar fijado a la estructura móvil 12 del vehículo que constituye el móvil omnidireccional 40 de la Fig. 5 o a cualquier otra estructura. El mencionado elemento de conexión entre el cuerpo de soporte 1 y dicho elemento estructural de conexión 1 1 permite un libre giro relativo alrededor del eje giro de rueda E1.
En la realización ilustrada, el elemento estructural de conexión 11 tiene una configuración tubular coaxial con el eje giro de rueda E1 , dentro de la cual se aloja el árbol motor 2. El cuerpo de soporte 1 tiene un manguito porta-cojinetes 35 formado alrededor del agujero 21 en el que se inserta el árbol motor 2. Sobre dicho manguito porta-cojinetes 35 están instalados unos rodamientos 36 acoplados a su vez a una superficie interior del elemento estructural de conexión 11. El árbol motor 2 tiene un resalte perimetral 37 que se apoya contra el manguito porta-cojinetes 35 para posicionar y retener el árbol motor 2 y los rodamientos 36 respecto al cuerpo de soporte 1 en cooperación con un tornillo de sujeción 38 acoplado a un agujero fileteado formado axialmente en el árbol motor 2 y pasado a través de una arandela 39 en contacto con el cuerpo de soporte 1 en un lado del cuerpo de soporte 1 opuesto al manguito porta-cojinetes 35. En el extremo proximal, el elemento estructural de conexión 11 tiene una brida 30 fijada a dicha estructura 17 mediante unos tornillos de fijación 41. El alcance de la presente invención está definido por las reivindicación adjuntas.

Claims

REIVINDICACIONES
1.- Rueda omnidireccional, comprendiendo: un cuerpo de soporte (1 ) configurado en relación con un eje de giro de rueda (E1), teniendo dicho cuerpo de soporte (1) unos medios de fijación para fijar un árbol motor (2) coaxial con dicho eje de giro de rueda (E1); dos cuerpos de rodadura (3a, 3b) conectados al cuerpo de soporte (1) de manera que pueden girar libre e independientemente alrededor de un eje de giro libre (E2) común, perpendicular a dicho eje de giro de rueda (E1), teniendo dichos dos cuerpos de rodadura (3a, 3b) unas respectivas superficies de rodadura semiesféricas (4a, 4b) que rodean parcialmente el cuerpo de soporte (1) y unos respectivos bordes circunferenciales (5a, 5b) separados por un espacio circunferencial intermedio (G) a través del cual se instala dicho árbol motor (2), y teniendo dichas superficies semiesféricas (4a, 4b) un radio de curvatura común (R) constante y un centro geométrico común (C) situado en una intersección de dicho eje de giro libre (E2) con el eje de giro de rueda (E1); y dos rodillos polares (6a, 6b) instalados en unas respectivas regiones polares truncadas (10a, 10b) de los cuerpos de rodadura (3a, 3b) y conectados al cuerpo de soporte (1) de manera que pueden girar libre e independientemente alrededor de respectivos ejes de giro polares (E3a, E3b) perpendiculares al eje de giro libre (E2) y comprendidos en un plano medio (P) perpendicular al eje de giro de rueda (E1) que también comprende dicho centro geométrico común (C), teniendo dichos rodillos polares (6a, 6b) unas respectivas superficies de rodadura en forma de tonel (7a, 7b) que en su intersección con dicho plano medio (P) definen unas respectivas generatrices en forma de arco que tienen dicho radio de curvatura común (R) y el centro geométrico común (C), caracterizada por que comprende además: dos rodillos intermedios (8a, 8b) instalados en posiciones opuestas en dicho espacio circunferencial intermedio (G) y conectados al cuerpo de soporte (1) de manera que pueden girar libre e independientemente alrededor de respectivos ejes de giro intermedios (E4a, E4b) perpendiculares a los ejes de giro polares (E3a, E3b) y comprendidos en dicho plano medio (P), teniendo dichos rodillos intermedios (8a, 8b) unas respectivas superficies de rodadura en forma de tonel (9a, 9b) que en su intersección con el plano medio (P) definen unas respectivas generatrices en forma de arco que tienen el radio de curvatura común (R) y el centro geométrico común (C).
2. - Rueda omnidireccional según la reivindicación 1 , caracterizada por que un elemento estructural de conexión (1 1) está conectado al cuerpo de soporte (1) de manera que puede girar libremente respecto al cuerpo de soporte (1) alrededor del eje giro de rueda (E1), estando dicho elemento estructural de conexión (1 1) instalado a través del espacio circunferencial intermedio (G) y fijado a una estructura (17).
3. - Móvil omnidireccional, comprendiendo una estructura en la que están instaladas al menos tres ruedas omnidireccionales y al menos tres motores eléctricos (13, 18) controlados independientemente, estado cada uno de dichos motores eléctricos (13, 18) conectado mecánicamente para accionar giratoriamente una de dichas ruedas omnidireccionales, caracterizado por que al menos una de las ruedas omnidireccionales es una rueda omnidireccional (20) de acuerdo con la reivindicación 1 o 2, y al menos uno de dichos motores eléctricos (13, 18) está conectado mecánicamente para accionar giratoriamente un árbol motor (2) fijado al cuerpo de soporte (1) de dicha rueda omnidireccional (20) de acuerdo con la reivindicación 1 o 2.
4.- Móvil omnidireccional según la reivindicación 3, caracterizado por que dicha estructura es una estructura estacionaria (17), y el móvil omnidireccional comprende además una plataforma móvil (15) provista de una superficie inferior (16) apoyada por gravedad sobre dichas ruedas omnidireccionales (20).
5.- Móvil omnidireccional según la reivindicación 3, caracterizado por que dicha estructura es una estructura móvil (12) y dichas ruedas omnidireccionales (20) están dispuestas para rodar sobre una superficie de soporte.
PCT/ES2015/070085 2014-02-14 2015-02-11 Rueda omnidireccional, y móvil omnidireccional WO2015121521A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201430197A ES2545834B1 (es) 2014-02-14 2014-02-14 Rueda omnidireccional y móvil omnidireccional
ESP201430197 2014-02-14

Publications (1)

Publication Number Publication Date
WO2015121521A1 true WO2015121521A1 (es) 2015-08-20

Family

ID=53799626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070085 WO2015121521A1 (es) 2014-02-14 2015-02-11 Rueda omnidireccional, y móvil omnidireccional

Country Status (2)

Country Link
ES (1) ES2545834B1 (es)
WO (1) WO2015121521A1 (es)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106427390A (zh) * 2016-10-13 2017-02-22 北京智能管家科技有限公司 全向轮、包括全向轮的机器人移动平台及移动机器人
CN107139646A (zh) * 2017-05-24 2017-09-08 孙绍华 一种球形的全向轮及使用该轮的车辆
WO2019019538A1 (zh) * 2017-07-27 2019-01-31 北京猎户星空科技有限公司 全向球轮
CN109624607A (zh) * 2018-11-09 2019-04-16 华中科技大学 一种球轮式全向移动平台
CN112223951A (zh) * 2020-10-20 2021-01-15 燕山大学 一种多路况可变形行走车轮
TWI761728B (zh) * 2019-11-21 2022-04-21 緯創資通股份有限公司 助行器及其全向輪
EP4328132A1 (en) * 2022-08-23 2024-02-28 Gulfstream Aerospace Corporation Reduced-friction roller and related assembly for a moveable control surface of an aircraft

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7906664A (nl) * 1979-09-06 1981-03-10 Hugo Karel Krop Bolvormig wiel.
JP2000211307A (ja) * 1999-01-22 2000-08-02 Nansin Co Ltd 回転式キャスタ
JP2007210576A (ja) * 2006-02-07 2007-08-23 Kenjiro Tadakuma 全方向移動体用球状車輪および全方向移動体
JP2008155652A (ja) * 2006-12-20 2008-07-10 Murata Mach Ltd 自走式搬送台車
WO2013164327A1 (fr) * 2012-04-30 2013-11-07 Aldebaran Robotics Roue sphérique et véhicule mettant en oeuvre la roue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7906664A (nl) * 1979-09-06 1981-03-10 Hugo Karel Krop Bolvormig wiel.
JP2000211307A (ja) * 1999-01-22 2000-08-02 Nansin Co Ltd 回転式キャスタ
JP2007210576A (ja) * 2006-02-07 2007-08-23 Kenjiro Tadakuma 全方向移動体用球状車輪および全方向移動体
JP2008155652A (ja) * 2006-12-20 2008-07-10 Murata Mach Ltd 自走式搬送台車
WO2013164327A1 (fr) * 2012-04-30 2013-11-07 Aldebaran Robotics Roue sphérique et véhicule mettant en oeuvre la roue

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106427390A (zh) * 2016-10-13 2017-02-22 北京智能管家科技有限公司 全向轮、包括全向轮的机器人移动平台及移动机器人
CN107139646A (zh) * 2017-05-24 2017-09-08 孙绍华 一种球形的全向轮及使用该轮的车辆
WO2019019538A1 (zh) * 2017-07-27 2019-01-31 北京猎户星空科技有限公司 全向球轮
CN109624607A (zh) * 2018-11-09 2019-04-16 华中科技大学 一种球轮式全向移动平台
TWI761728B (zh) * 2019-11-21 2022-04-21 緯創資通股份有限公司 助行器及其全向輪
CN112223951A (zh) * 2020-10-20 2021-01-15 燕山大学 一种多路况可变形行走车轮
EP4328132A1 (en) * 2022-08-23 2024-02-28 Gulfstream Aerospace Corporation Reduced-friction roller and related assembly for a moveable control surface of an aircraft

Also Published As

Publication number Publication date
ES2545834A1 (es) 2015-09-15
ES2545834B1 (es) 2016-06-23

Similar Documents

Publication Publication Date Title
WO2015121521A1 (es) Rueda omnidireccional, y móvil omnidireccional
ES2690074T3 (es) Chasis del vehículo articulado
ES2383735T3 (es) Unidad de transmisión de engranajes planetarios
JP6351725B2 (ja) 車両を移動させるための球状ホイールおよびそのホイールを使用する車両
JP2013545949A5 (ja) 円錐ころ軸受
JP2012184819A5 (es)
BR102016019958A2 (pt) Truck shaft assembly.
JP2018176990A5 (es)
RU2016138292A (ru) Конвейерное устройство и способ регулировки конвейерного устройства
CN106090190A (zh) 行星齿轮减速机
JP2018203041A (ja) 全方向移動車輪及びこれを具えた全方向移動車両
WO2017047506A1 (ja) 複列自動調心ころ軸受
ES2256486T3 (es) Procedimiento para formar un conjunto de rodamientos con rodillos con icos.
JP5994175B2 (ja) 回転体付車輪及び移動体
JP2016540940A (ja) 歯車装置軸用のころ軸受及び滑り軸受の組み合わせ
US11554459B2 (en) Electric sander motor
JP6102392B2 (ja) 圧延機用スピンドル装置
JP2017218014A (ja) 全方向車輪および全方向移動体
JP2012187991A (ja) 全方向移動車輪
JP2006349100A (ja) ロールの軸受け構造
KR101262485B1 (ko) 아이들러 기구
JP2014062590A (ja) 減速機
JP2019132321A (ja) 動力伝達装置
JP2018172015A (ja) 全方向駆動車輪および全方向移動体
KR101389177B1 (ko) 볼 타입 등속조인트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15749100

Country of ref document: EP

Kind code of ref document: A1