WO2015118819A1 - 航法メッセージ認証型測位装置 - Google Patents

航法メッセージ認証型測位装置 Download PDF

Info

Publication number
WO2015118819A1
WO2015118819A1 PCT/JP2015/000251 JP2015000251W WO2015118819A1 WO 2015118819 A1 WO2015118819 A1 WO 2015118819A1 JP 2015000251 W JP2015000251 W JP 2015000251W WO 2015118819 A1 WO2015118819 A1 WO 2015118819A1
Authority
WO
WIPO (PCT)
Prior art keywords
navigation message
authentication
satellite
unit
positioning device
Prior art date
Application number
PCT/JP2015/000251
Other languages
English (en)
French (fr)
Inventor
正剛 隈部
貴久 山城
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201580006324.9A priority Critical patent/CN105940318B/zh
Priority to DE112015000695.8T priority patent/DE112015000695T5/de
Priority to SG11201606140TA priority patent/SG11201606140TA/en
Publication of WO2015118819A1 publication Critical patent/WO2015118819A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • G01S19/215Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service issues related to spoofing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/28Satellite selection

Definitions

  • the present disclosure relates to a navigation message authentication type positioning device that authenticates a navigation message received from an artificial satellite used in a satellite positioning system.
  • Patent Document 1 discloses a technique for authenticating whether a navigation message received by a receiver is a regular navigation message from an artificial satellite used in a satellite positioning system.
  • the receiver accesses the authentication center database, and acquires data used for authentication of the target artificial satellite from the satellite number and the satellite time included in the navigation message received from the artificial satellite. To do.
  • the receiver uses the data acquired from the authentication center to authenticate whether the received navigation message is a regular navigation message from an artificial satellite used in the satellite positioning system.
  • Patent Document 1 when there are a plurality of artificial satellites that can receive navigation messages by the own device, the navigation messages of all the artificial satellites are communicated with the authentication center to determine whether they are regular navigation messages. You need to authenticate. Usually, a navigation message can be received from a satellite exceeding the number required for positioning at one point. Therefore, if the navigation message is authenticated for all the satellites that have received the navigation message, there is a possibility that the processing load and authentication time required for communication and computation at the authentication center and the own device will become enormous.
  • the present disclosure has been made in view of the above-described conventional problems, and the purpose thereof is navigation message authentication that enables more accurate positioning while reducing the time and processing load required for authentication. It is to provide a type positioning device.
  • a navigation message authentication type positioning device authenticates a satellite receiver that receives a navigation message from an artificial satellite used in a satellite positioning system, and authentication information according to the navigation message received from the artificial satellite.
  • An authentication information acquisition unit acquired from the center, an authentication unit that authenticates that the navigation message received by the satellite receiver is authentic, using the authentication information acquired by the authentication information acquisition unit, and a satellite
  • a positioning unit that measures the position of a navigation message authentication type positioning device (self device) based on navigation messages received from a plurality of artificial satellites by a receiver.
  • the navigation message authentication type positioning device has an evaluation value specifying unit that specifies a signal quality evaluation value that can evaluate the signal quality of the navigation message received by the satellite receiver, and a signal quality evaluation that is specified by the evaluation value specifying unit.
  • a selection unit is provided that selects, based on the values, an artificial satellite that can be evaluated as having good signal quality of the transmitted navigation message among the artificial satellites that have received the navigation message by the satellite receiver.
  • the authentication information acquisition unit acquires only the authentication information according to the navigation message received from the satellite selected by the selection unit, and the authentication unit receives the navigation received from the satellite selected by the selection unit by the satellite receiver. The authenticity of the message is verified by using the authentication information acquired by the authentication information acquisition unit, and the positioning unit is based on the navigation message received from the artificial satellite selected by the selection unit. Measure the position of.
  • the information for authentication corresponding to the received navigation message is acquired or the received navigation is narrowed down to the satellite selected by the selection unit. You just need to authenticate the message. Therefore, for all the artificial satellites that could receive the navigation message with the satellite receiver, the authentication information is acquired more than when the authentication information corresponding to the received navigation message is acquired or the received navigation message is authenticated. Such time and processing load can be reduced.
  • the selecting unit selects an artificial satellite that can evaluate that the signal quality of the transmitted navigation message is good, and the navigation message received from the selected artificial satellite is selected. Since the positioning unit measures the position of its own device, the possibility of positioning using a navigation message with good signal quality increases. As a result, more accurate positioning can be performed while reducing the time and processing load required for authentication.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of the navigation message authentication system according to the first embodiment.
  • FIG. 2 is a block diagram showing an example of a schematic configuration of the authentication center.
  • FIG. 3 is a block diagram illustrating an example of a schematic configuration of the first in-vehicle device.
  • FIG. 4 is a flowchart illustrating an example of a flow of first authentication target satellite selection processing in the first in-vehicle device in the first embodiment.
  • FIG. 5 is a diagram showing an example of the selected satellite list, FIG.
  • FIG. 6 is a flowchart illustrating an example of the flow of authentication-related processing in the first in-vehicle device in the first embodiment.
  • FIG. 7 is a flowchart showing an example of a flow of positioning processing in the first in-vehicle device in the first embodiment.
  • FIG. 8 is a flowchart illustrating an example of the flow of NMA related information transmission processing in the first in-vehicle device in the first embodiment.
  • FIG. 9 is a diagram showing an example of NMA related information.
  • FIG. 10 is a block diagram illustrating an example of a schematic configuration of the second in-vehicle device.
  • FIG. 11 is a flowchart illustrating an example of a flow of second authentication target satellite selection processing in the second in-vehicle device in the first embodiment.
  • FIG. 12 is a flowchart illustrating an example of a flow of first authentication target satellite selection processing in the first in-vehicle device in the first modification.
  • FIG. 13 is a flowchart illustrating an example of a flow of first authentication target satellite selection processing in the first in-vehicle device in the second modification.
  • FIG. 14 is a flowchart illustrating an example of a flow of first authentication target satellite selection processing in the first in-vehicle device in the third modification.
  • the navigation message authentication system 1 in Embodiment 1 includes a monitor station 110, an authentication center 120, a master control station 130, a first in-vehicle device 200, and a second in-vehicle device 300.
  • a vehicle using the first in-vehicle device 200 is a vehicle A
  • a vehicle using the second in-vehicle device 300 is a vehicle B.
  • the first in-vehicle device 200 and the second in-vehicle device 300 correspond to the navigation message authentication type positioning device of the present disclosure.
  • the monitor station 110 receives GPS radio waves transmitted from GPS satellites 2a to 2f included in GPS, which is one of satellite positioning systems.
  • the GPS satellites 2a to 2f correspond to the artificial satellite of the present disclosure.
  • the GPS satellites 2a to 2f are expressed as GPS satellites 2 when not distinguished from each other.
  • navigation messages are included in GPS radio waves.
  • the monitor station 110 demodulates the received GPS radio wave, extracts a navigation message, and sends it to the authentication center 120.
  • GPS radio waves are received from a plurality of GPS satellites 2
  • a navigation message is extracted from each GPS radio wave and sent to the authentication center 120.
  • the navigation message includes ephemeris data and almanac data as is well known.
  • the almanac data includes orbit information about all the GPS satellites 2 in the orbit, not limited to the GPS satellite 2 that is the origin of the navigation message. From this orbit information and the origination time of the navigation message, all GPS satellites are included. 2 satellite positions can be calculated.
  • the ephemeris data includes orbit information about the GPS satellite 2 that is the origin of the navigation message. From this orbit information and the origination time of the navigation message, the ephemeris data has a higher accuracy of the GPS satellite 2 that is the origin of the navigation message. High satellite position can be calculated.
  • the authentication center 120 creates parity data from the navigation message and the H matrix that is the encryption key. Then, a signal including this parity data is sent to the master control station 130. Communication is also performed between the first in-vehicle device 200 and the second in-vehicle device 300. A detailed description of the authentication center 120 will be given later with reference to FIG.
  • the master control station 130 transmits the parity data received from the authentication center 120 to the quasi-zenith satellite (hereinafter, QZS satellite) 3.
  • the QZS satellite 3 broadcasts a navigation message including parity data toward the ground.
  • the first in-vehicle device 200 is a navigation message authentication type (NMA: Navigation Message Authentication) in-vehicle device.
  • the first vehicle-mounted device 200 communicates with the authentication center 120 and authenticates that the navigation message received from the GPS satellite 2 is a regular navigation message. Details of the authentication will be described later with reference to FIG.
  • the first in-vehicle device 200 performs a process of selecting in advance the GPS satellite 2 to be subjected to this authentication.
  • the first in-vehicle device 200 measures the current position of the own device using the navigation message received from the plurality of GPS satellites 2. Navigation messages received from at least three GPS satellites 2 are used for positioning the current position. Furthermore, the first vehicle-mounted device 200 transmits information about the GPS satellite 2 that is the source of the navigation message that has been authenticated (hereinafter, NMA-related information) to the outside by wireless communication.
  • NMA-related information information about the GPS satellite 2 that is the source of the navigation message that has been authenticated
  • the second in-vehicle device 300 is also a navigation message authentication type in-vehicle device similar to the first in-vehicle device 200. Similarly to the first in-vehicle device 200, the second in-vehicle device 300 performs the above-described authentication and positioning.
  • the second vehicle-mounted device 300 receives NMA-related information transmitted from the first vehicle-mounted device 200, and performs a process of selecting a GPS satellite 2 to be authenticated in advance using the NMA-related information. .
  • the detailed description of the second in-vehicle device 300 will be given later with reference to FIG.
  • the authentication center 120 includes a control unit 122, a data storage unit 124, and a communication unit 126.
  • the control unit 122 is a computer including a CPU, a ROM, a RAM, and the like, and controls the data storage unit 124 and the communication unit 126.
  • the CPU executes a program stored in the ROM while using the temporary storage function of the RAM, so that the RAND message generation unit 1221, the SEED value generation unit 1222, the H matrix calculation unit 1223, the parity calculation unit 1224, It functions as the signal processing unit 1225.
  • the functions of these units 1221 to 1225 may be the same as the functions disclosed in Patent Document 1.
  • the RAND message generator 1221 creates a RAND message from the navigation message acquired from the monitor station 110.
  • the bit string data of TOW (time of week) and the clock correction parameters TOC, AF0, and AF1 of the ephemeris data are arranged in order from the bit string of the navigation message.
  • TOW, TOC, AF0, and AF1 are data for specifying the signal transmission time.
  • an ASAFlag that is an anti-spoof flag and a PRN (Pseudo Random Noise) ID that is a satellite number are added.
  • RAND including TOW and PRN ID is data indicating which GPS satellite has transmitted when. Further, since TOW changes every 6 seconds and includes PRN ID, RAND is generated for every GPS satellite 2 received by monitor station 110 and every 6 seconds.
  • the SEED value generation unit 1222 generates a SEED value by generating a random number with the PC clock as an input.
  • the H matrix calculation unit 1223 uses the SEED value generated by the SEED value generation unit 1222 and calculates an H matrix corresponding to the SEED value on a one-to-one basis.
  • a known hash function may be used.
  • a parity check matrix for performing LDPC (Low Density Parity Check) encoding may be used.
  • a generator matrix determined from a parity check matrix may be used.
  • the parity calculator 1224 calculates parity data based on the RAND message generated by the RAND message generator 1221 and the H matrix calculated by the H matrix calculator 1223.
  • the signal processing unit 1225 inserts the parity data calculated by the parity calculation unit 1224 and the RAND message used for the calculation into the navigation message transmitted from the QZS satellite 3. Then, the inserted navigation message is sent to the master control station 130.
  • the signal processing unit 1225 associates the parity data calculated by the parity calculation unit 1224, the RAND message used for calculating the parity data, the H matrix, and the SEED value used for the calculation of the H matrix in accordance with the signal insertion. And stored in the data storage unit 124.
  • the signal processing unit 1225 inserts the RAND message and parity data into the navigation message that causes the QZS satellite 3 to transmit each time the RAND message generation unit 1221 generates the RAND message. Therefore, the RAND message generation unit 1221, the SEED value generation unit 1222, the H matrix calculation unit 1223, and the parity calculation unit 1224 also execute processing each time the RAND message generation unit 1221 generates a RAND message.
  • the H matrix selection unit 1226 receives the PRN received from the H matrix stored in the data storage unit 124 when the communication unit 126 receives the PRN ID, TOW, and public key transmitted from the first in-vehicle device 200.
  • the H matrix corresponding to ID and TOW is selected.
  • the selected H matrix is encrypted with the public key, and the encrypted H matrix is returned to the first in-vehicle device 200.
  • first in-vehicle device 200 The navigation message broadcast by the QZS satellite 3 is received by the receiving unit 211 included in the communication unit 210 of the first in-vehicle device 200.
  • the first in-vehicle device 200 includes a communication unit 210, a control unit 220, and a satellite receiver 230.
  • the communication unit 210 includes a reception unit 211 and a transmission unit 212.
  • the communication unit 210 has a narrow area communication function and a wide area communication function.
  • the narrow area communication function has a communication distance of several hundred meters, for example.
  • the wide-area communication function has a communication distance of several kilometers, for example, and can communicate with other communication devices in the communication area of the public communication network by communicating with the base station of the public communication network.
  • the narrow-area communication function performs so-called vehicle-to-vehicle communication with the communication unit 310 of the second in-vehicle device 300, and the wide-area communication function performs communication with the communication unit 126 of the authentication center 120.
  • the satellite receiver 230 receives radio waves transmitted from the GPS satellite 2 and the QZS satellite 3 at regular intervals.
  • the control unit 220 is a computer including a CPU, a ROM, a RAM, and the like, and controls the communication unit 210 and the satellite receiver 230. Further, the CPU executes the program stored in the ROM while using the temporary storage function of the RAM, so that the first authentication target satellite selection process shown in FIG. 4, the authentication related process shown in FIG. Various processes such as the positioning process shown and the NMA related information transmission process shown in FIG. 8 are executed.
  • the authentication related process is a process related to authentication that the signal received by the satellite receiver 230 is a regular navigation message received from the GPS satellite 2.
  • the first authentication target satellite selection process is a process of selecting a GPS satellite 2 to be subjected to the above authentication-related process from among the GPS satellites 2 that can receive the navigation message by the satellite receiver 230.
  • the positioning process is a process of positioning the current position of the own apparatus based on the navigation message received by the satellite receiver 230 from the plurality of GPS satellites 2 selected by the first authentication target satellite selection process.
  • the NMA related information transmission process includes identification information that can identify the GPS satellite 2 selected by the first authentication target satellite selection process, and authentication information that indicates whether or not authentication has been established for the navigation message from the GPS satellite 2. This is a process for transmitting NMA related information.
  • the 1st authentication object satellite selection process in the control part 220 of the 1st vehicle equipment 200 is demonstrated using the flowchart shown in FIG.
  • the flowchart in FIG. 4 may be configured to start when a navigation message received from the GPS satellite 2 by the satellite receiver 230 is output from the satellite receiver 230.
  • the navigation message of the plurality of GPS satellites 2 is received by the satellite receiver 230 within one cycle of the output sequentially performed from the satellite receiver 230 to the control unit 220, and the plurality of navigation messages are output. It will be.
  • the navigation messages of all the GPS satellites 2 that can be observed at the current position of the first in-vehicle device 200 are received by the satellite receiver 230 within the above-described one cycle, and the plurality of navigation messages are output to the control unit 220.
  • the following description will be given by taking the case of the case as an example.
  • step S1 navigation messages of all GPS satellites 2 output from the satellite receiver 230 and observable at the current position are acquired.
  • all GPS satellites 2 that can be observed at the current position are simply referred to as all observed GPS satellites 2.
  • step S2 processing for subsequent steps S3 to S7 (hereinafter referred to as selection-related processing) is started for all observed GPS satellites 2.
  • the selection-related processing is repeated from the first GPS satellite 2 to the i-th GPS satellite 2 in order.
  • the order of all observation GPS satellites 2 may be in the order of the PRN ID, may be based on other criteria, or may be determined randomly.
  • step S3 the signal-to-noise ratio (hereinafter referred to as SN ratio) of the navigation message acquired from the x-th GPS satellite 2 in S1 is specified.
  • the configuration may be such that the value detected by the S / N ratio detection circuit of the satellite receiver 230 is specified as the S / N ratio of the navigation message acquired in S1.
  • the signal-to-noise ratio is a logarithmic representation of the ratio of noise to signal. The larger the value, the better the signal quality. Therefore, the SN ratio corresponds to the signal quality evaluation value of the present disclosure, and S3 corresponds to the evaluation value specifying unit of the present disclosure.
  • step S4 it is determined whether or not the SN ratio specified in S3 is equal to or greater than a threshold value.
  • the threshold mentioned here may be any signal-to-noise ratio that can be said to have good signal quality to the extent that the possibility of giving an error to the positioning result is small, and can be arbitrarily set. If it is determined that the SN ratio specified in S3 is equal to or greater than the threshold (YES in S4), the process proceeds to step S5. On the other hand, when it determines with less than a threshold value (it is NO at S4), it moves to step S6.
  • step S5 the GPS satellite 2 for which the S / N ratio specified in S3 is determined to be equal to or greater than the threshold is selected as the GPS satellite 2 to be subjected to authentication-related processing, and the process proceeds to S6. Therefore, S5 corresponds to the selection unit of the present disclosure.
  • a list of the GPS satellites 2 selected in S5 (hereinafter, a selected satellite list) is created. Then, the data is stored in the memory of the control unit 220, and the process of FIG. The selected satellite list stored in the memory is sequentially updated each time the first authentication target satellite selection process is newly performed.
  • the selected satellite list may be a list in which the PRN IDs of all the GPS satellites 2 selected in S5 are listed. Further, it is preferable that the SN ratio (that is, the signal quality evaluation value) specified in S3 for the GPS satellite 2 selected in S5 is also stored in the memory in association with the PRNPRID of the GPS satellite 2.
  • the selected satellite list may have a configuration in which the SN ratio as the signal quality evaluation value and the PRN ID of the GPS satellite 2 are associated with each other as shown in FIG.
  • the GPS satellites 2a to 2f are all observed GPS satellites 2, and a GPS satellite 2a having a PRN ID of 1 and a PRN ID of 5 by the first authentication target satellite selection process.
  • the satellite 2b, the GPS satellite 2c having a PRN ID of 10 and the GPS satellite 2e having a PRN ID of 24 are selected.
  • authentication-related processing in the control unit 220 of the first in-vehicle device 200 will be described using the flowchart shown in FIG.
  • the flowchart in FIG. 6 may be configured to start when the GPS satellite 2 to be subjected to authentication-related processing is selected by the first authentication target satellite selection processing shown in FIG.
  • the satellite receiver 230 mistakenly transmits a signal from a repeater that duplicates a signal from the GPS satellite 2 or a simulator that can artificially generate a signal from the GPS satellite 2 as a navigation message included in the GPS radio wave. It may be received.
  • the navigation message received from the QZS satellite 3 is acquired from the receiving unit 211.
  • the PRN ID and TOW are extracted from the navigation message acquired in S21.
  • the PRN ID and TOW extracted in S23 are transmitted from the transmission unit 212 to the authentication center 120 together with the public key.
  • the authentication center 120 encrypts the H matrix determined by the PRN ID and TOW with the public key and transmits the encrypted H matrix to the first in-vehicle device 200.
  • the H matrix determined by the PRN ID and TOW transmitted from the first in-vehicle device 200 to the authentication center 120 corresponds to the authentication information of the present disclosure.
  • S25 the H matrix transmitted from the authentication center 120 is acquired from the receiving unit 211. Therefore, this S25 corresponds to the authentication information acquisition unit of the present disclosure.
  • S26 the encrypted H matrix acquired in S25 is decrypted with the secret key.
  • a RAND message is created from the navigation message containing the same PRN ID as the PRN ID transmitted in S24 among the navigation messages included in the GPS radio wave received from the GPS satellite 2.
  • comparison parity data is created based on the RAND message created in S27 and the H matrix decoded in S26.
  • S29 it is determined whether or not the comparison parity data created in S28 matches the parity data extracted in S23.
  • the H matrix decrypted in S26 is the same as the H matrix used by the authentication center 120 to create parity data.
  • the parity calculation unit 1224 of the authentication center 120 calculates parity data based on the H matrix and the RAND message.
  • the flowchart of FIG. 7 may be configured to start when the GPS satellite 2 to be subjected to authentication-related processing is selected by the first authentication target satellite selection processing shown in FIG.
  • the number of GPS satellites 2 necessary for positioning is selected from the GPS satellites 2 selected by the first authentication target satellite selection process shown in FIG.
  • the number required for positioning may be four or three. Further, when selecting the number of GPS satellites 2 necessary for positioning, they may be selected in the order of PRN ID in the selected satellite list (see FIG. 5), or the SN ratio as the signal quality evaluation value is large. You may choose in order from thing. In the case where the selection is made in order from the one with the best signal quality evaluation value, this S41 also corresponds to the selection unit of the present disclosure.
  • the positioning may be performed using only the navigation message that has been authenticated in the authentication-related process, or the positioning may be performed before the authentication-related process is executed. If the configuration is such that positioning is performed before executing the authentication-related processing described above, if the navigation message used for positioning includes those that have not been authenticated, positioning is performed using only those that have been authenticated. The configuration may be such that the operation is repeated, the positioning result is not used, or the reliability of the positioning result is shown to be low.
  • NMA related information transmission processing in the control unit 220 of the first in-vehicle device 200 will be described using the flowchart shown in FIG.
  • the NMA related information transmission process shown in FIG. 8 and the authentication related process shown in FIG. 6 are performed in parallel, and the authentication in the authentication related process is completed for all GPS satellites 2 selected by the first authentication target satellite selection process. Even if not, it is assumed that the flowchart of FIG. 8 is started. Moreover, what is necessary is just to set it as the structure which starts the flowchart of FIG. 8, for example with a fixed period.
  • NMA-related information transmission process shown in the flowchart of FIG. 8, whether or not authentication has been established for the identification information that can identify the GPS satellite 2 selected by the first authentication target satellite selection process and the navigation message from the GPS satellite 2.
  • NMA-related information including authentication information indicating that is transmitted.
  • the NMA related information transmitted from the first in-vehicle device 200 is used in the second in-vehicle device 300 to select the GPS satellite 2 that is to be subjected to authentication-related processing.
  • the NMA-related information including the PRN ID of each GPS satellite 2 included in the selected satellite list and information on whether or not the authentication of each GPS satellite 2 determined in S51 has been established (hereinafter referred to as authentication information).
  • the information is transmitted by the narrow area communication function of the transmission unit 212, and the process ends. Therefore, the PRN ID corresponds to the identification information of the present disclosure, and the transmission unit 212 corresponds to the transmission unit of the present disclosure.
  • the NMA related information is configured such that the PRN ID of the GPS satellite 2 is associated with information indicating whether or not the authentication of the GPS satellite 2 indicated by the PRN ID is established. That's fine.
  • the information indicating whether or not the authentication of the GPS satellite 2 is established is authentication establishment (“establishment” in the figure), authentication is not established or has not been authenticated (FIG. 9). What is necessary is just to set it as the binary flag showing two states of "not yet” in the inside.
  • information representing three states of authentication establishment, authentication failure, and unauthentication may be used.
  • the NMA related information transmitted from the transmission unit 212 will be described below on the assumption that it is received by the second in-vehicle device 300 in the present embodiment.
  • the second in-vehicle device 300 includes a communication unit 310, a control unit 320, and a satellite receiver 330.
  • the communication unit 310 performs wireless communication with the communication unit 210 included in the first in-vehicle device 200.
  • the communication unit 310 includes a reception unit 311 and a transmission unit 312. Similar to the communication unit 210 described above, the communication unit 310 has a narrow area communication function and a wide area communication function. Similarly to the satellite receiver 230, the satellite receiver 330 receives radio waves transmitted from the GPS satellite 2 and the QZS satellite 3 at a constant period.
  • the control unit 320 is a computer including a CPU, a ROM, a RAM, and the like, and controls the communication unit 310 and the satellite receiver 330. Further, the CPU executes the program stored in the ROM while using the temporary storage function of the RAM, whereby the second authentication target satellite selection process shown in FIG. 11 and the authentication related process similar to that shown in FIG. And various processes such as a positioning process similar to that shown in FIG. 6 and an NMA related information transmission process similar to that shown in FIG.
  • the second authentication target satellite selection process uses the NMA related information received from the first in-vehicle device 200 to perform the authentication related process from the GPS satellites 2 that can receive the navigation message by the satellite receiver 330. This is a process of selecting a target GPS satellite 2.
  • control unit 320 acquires NMA related information received by the receiving unit 311 from the first in-vehicle device 200 and stores it in the memory. Therefore, the reception unit 311 corresponds to the reception unit of the present disclosure.
  • the NMA related information stored in the memory is handled, for example, for each first in-vehicle device 200 as a transmission source, and when new NMA-related information is received from the same first in-vehicle device 200, the new related information is updated. And it is sufficient.
  • authentication object satellite selection process in the control part 320 of the 2nd vehicle equipment 300 is demonstrated using the flowchart shown in FIG.
  • the navigation message received by the satellite receiver 330 from the GPS satellite 2 is output from the satellite receiver 330 in a state where the NMA related information received from the first in-vehicle device 200 has been stored in the memory. It may be configured to start in some cases.
  • the PRN ID of the GPS satellite 2 for which the navigation message authentication has been established is extracted from the NMA related information received from the first in-vehicle device 200.
  • a configuration may be adopted in which a PRN ID associated with authentication information indicating the establishment of authentication is extracted from NMA-related information.
  • PRN [1] the PRN ID of the first GPS satellite 2 for which authentication has been established.
  • PRN [k] the PRN ID of the GPS satellite 2 is extracted.
  • S63 the subsequent processing of S64 to S72 (hereinafter referred to as selection-related processing) is started for all observed GPS satellites 2.
  • the number of all observed GPS satellites 2 is i, and in order from the first GPS satellite 2 of all the observed GPS satellites 2, i
  • the selection-related processing is repeated up to the second GPS satellite 2.
  • S64 the SN ratio of the navigation message acquired in S61 from the xth GPS satellite 2 is specified in the same manner as in S3 described above. Therefore, S64 also corresponds to the evaluation value specifying unit of the present disclosure.
  • S65 similarly to S4 described above, it is determined whether or not the SN ratio specified in S64 is equal to or greater than a threshold value. If it is determined that the SN ratio specified in S64 is equal to or greater than the threshold (YES in S65), the process proceeds to S66. On the other hand, when it determines with less than a threshold value (it is NO at S65), it moves to S71.
  • a process of determining whether there is a PRN ID of the GPS satellite 2 that is the current target of the selection-related process (hereinafter referred to as an appropriate determination process) is started.
  • the corresponding determination process is repeated from PRN [1] to PRN [k] in order.
  • S68 it is determined that the S / N ratio specified in S64 is equal to or greater than the threshold value, and the GPS satellite 2 determined in S67 that the navigation message authentication has been established in the first in-vehicle device 200 is to be subjected to authentication-related processing.
  • the GPS satellite 2 is selected, and the process proceeds to S71. Therefore, S68 corresponds to the selection unit of the present disclosure.
  • the PRN ID of the GPS satellite 2 for which the y + 1th authentication has been established is set as a new target for the determination process, and the process returns to S67 and is repeated.
  • the x + 1-th GPS satellite 2 is set as a new selection-related process target, and the process returns to S64 and is repeated.
  • the GPS satellite 2 that has been authenticated by the first in-vehicle device 200 is preferentially selected, the GPS satellite 2 that has been authenticated by the first in-vehicle device 200 is narrowed down. It is not limited to the configuration in which the selection is performed. For example, even if the GPS satellite 2 is unauthenticated by the first in-vehicle device 200, it is selected if the SN ratio is equal to or greater than the threshold value. It may be configured to be used automatically. Even in this case, if the authentication information of the NMA-related information is information that can distinguish between unauthenticated and unauthenticated, the authentication has not been established even if the SN ratio is equal to or greater than the threshold value.
  • the GPS satellite 2 is preferably not selected.
  • the second vehicle-mounted device 300 performs the same authentication-related processing as shown in FIG. 5 on the navigation message of the GPS satellite 2 selected in the second authentication target satellite selection processing, or the same positioning as shown in FIG. Process. Further, in the second in-vehicle device 300, the NMA-related information about the GPS satellite 2 that is the source of the navigation message that has been authenticated by the second in-vehicle device 300 is obtained by the same NMA-related information transmission processing as shown in FIG. It is good also as a structure which transmits outside by radio
  • the first in-vehicle device 200 receives the GPS satellites 2 that have been selected by the first authentication target satellite selection process from among the GPS satellites 2 that have received the navigation message by the satellite receiver 230. Performs authentication-related processing for navigation messages. Therefore, the time required for authentication and the processing load on the first in-vehicle device 200 and the authentication center 120 can be reduced as compared with the case where the authentication-related processing is performed for all the GPS satellites 2 that have received the navigation message by the satellite receiver 230.
  • the GPS satellite 2 having a signal-to-noise ratio that can be said to be good in the signal quality of the navigation message is selected, so that the navigation message received from the selected GPS satellite 2 is selected.
  • the positioning process positioning can be performed using a navigation message with good signal quality.
  • the first vehicle-mounted device 200 can perform positioning with higher accuracy while reducing the time and processing load required for authentication.
  • the second in-vehicle device 300 also performs authentication by focusing on the GPS satellites 2 selected in the second authentication target satellite selection process from among the GPS satellites 2 that have received the navigation message by the satellite receiver 330. Since the related processing is performed, the time required for authentication and the processing load on the second in-vehicle device 300 and the authentication center 120 can be reduced.
  • the GPS satellite 2 that has been authenticated by the first in-vehicle device 200 is preferentially selected on the basis of the NMA-related information transmitted from the first in-vehicle device 200.
  • the device 300 can also preferentially select the GPS satellite 2 having a high probability of being authenticated. As a result, the possibility that the second in-vehicle device 300 can select the GPS satellite 2 for which authentication is not established is increased, and it is possible to reduce time and effort for performing unnecessary authentication.
  • the GPS satellite 2 having a signal-to-noise ratio that can be said to be good in the signal quality of the navigation message is selected. Therefore, based on the navigation message received from the selected GPS satellite 2 By performing the positioning process, it is possible to perform positioning with higher accuracy.
  • the GPS satellite 2 selected in the first authentication target satellite selection process in the first in-vehicle device 200 is a GPS satellite 2 that has a high possibility of good signal quality.
  • the GPS satellite 2 is located in the vicinity of the first in-vehicle device 200. It is highly possible that the same is true for the in-vehicle device 300. This is because there is a high possibility that the situation in which both parties are placed is similar.
  • the second in-vehicle device 300 since the NMA related information is received from the first in-vehicle device 200 by inter-vehicle communication, the distance between the second in-vehicle device 300 that receives the NMA-related information and the first in-vehicle device 200 that is the transmission source. Is relatively close. Therefore, the second in-vehicle device preferentially selects the GPS satellite 2 that has been authenticated by the first in-vehicle device 200 based on the NMA-related information, so that the GPS satellite 2 having a good navigation message signal quality is selected. It becomes possible to select with priority. As a result, the second in-vehicle device 300 can perform positioning with higher accuracy while further reducing the time and processing load required for authentication.
  • the second in-vehicle device 300 corresponds to a navigation message authentication type positioning device
  • the first in-vehicle device 200 corresponds to another navigation message authentication type positioning device.
  • Embodiment 1 demonstrated the structure which selects all the GPS satellites 2 by which SN ratio was determined to be more than a threshold value in the 1st authentication object satellite selection process in the 1st vehicle equipment 200, it does not necessarily restrict to this.
  • a configuration in which a predetermined plurality of GPS satellites 2 are selected in order from the GPS satellite 2 that can be evaluated as having better signal quality of the transmitted navigation message (hereinafter, modified example 1) may be employed.
  • the navigation message authentication system 1 in the first modification is the same as the navigation message authentication system 1 in the first embodiment except that a part of the first authentication target satellite selection process is different.
  • S81 to S87 is the same as S1 to S7 described above. Therefore, S83 also corresponds to the evaluation value specifying unit of the present disclosure, and S85 also corresponds to the selection unit of the present disclosure.
  • S88 all the GPS satellites 2 selected in S85 are further selected so as to narrow down to a predetermined number in order from the largest SN ratio included in the selected satellite list stored in the memory of the control unit 220. Therefore, S88 also corresponds to the selection unit of the present disclosure.
  • the predetermined number may be the number of GPS satellites 2 necessary for the positioning process, for example, four.
  • the selected satellite list of the GPS satellite 2 selected in S88 is created and stored in the memory of the control unit 220, and the process of FIG.
  • the selected satellite list stored in the memory is sequentially updated each time the first authentication target satellite selection process is newly performed.
  • the first vehicle-mounted device 200 can perform positioning with higher accuracy while reducing the time and processing load required for authentication. Further, according to the first modification, the selection is made by narrowing down to a predetermined number of GPS satellites 2 in the order in which a larger S / N ratio was obtained, so that positioning can be performed using a navigation message with particularly good signal quality. As a result, the first vehicle-mounted device 200 can perform positioning with higher accuracy while further reducing the time and processing load required for authentication.
  • ⁇ Modification 2> In the first authentication target satellite selection process in the first vehicle-mounted device 200, the configuration for selecting the GPS satellite 2 whose SN ratio is determined to be equal to or greater than the threshold has been described, but the configuration is not necessarily limited thereto. For example, a configuration in which the GPS satellite 2 is selected using the elevation angle of the GPS satellite 2 as a selection condition (hereinafter, modified example 2) may be employed.
  • the navigation message authentication system 1 according to the second modification is the same as the navigation message authentication system 1 according to the first embodiment except that a part of the first authentication target satellite selection process is different.
  • the satellite position of the xth GPS satellite 2 is calculated from the orbit information included in the navigation message acquired in S1 from the xth GPS satellite 2 and the transmission time of the navigation message. Then, the elevation angle of the xth GPS satellite 2 is specified from the calculated satellite position and the current position of the first in-vehicle device 200.
  • the orbit information may be ephemeris data or almanac data, but ephemeris data is preferable from the viewpoint of accuracy.
  • ephemeris data is preferable from the viewpoint of accuracy.
  • it is just to set it as the structure which uses the value obtained by the last positioning, if the movement distance from the last positioning is less than predetermined distance (for example, 100 m) as the present position of the 1st vehicle equipment 200.
  • predetermined distance for example, 100 m
  • the elevation angle is an angle formed by a straight line connecting the GPS satellite 2 and the current position of the first vehicle-mounted device 200 with respect to the ground plane with the current position as a reference, and it is known that the measurement error increases as the elevation angle decreases. ing. In other words, a larger elevation angle indicates that a navigation message with better signal quality can be obtained. Therefore, the elevation angle corresponds to the signal quality evaluation value of the present disclosure, and S3a corresponds to the evaluation value specifying unit of the present disclosure.
  • the threshold value referred to here may be an elevation angle that can be said to provide a signal quality excellent enough to say that the possibility of giving an error to the positioning result is small, and is a value that can be arbitrarily set.
  • the elevation angle specified by S3a being more than a threshold value (it is YES at S4a)
  • it moves to S5.
  • it determines with less than a threshold value it moves to S6.
  • the GPS satellite 2 in which the elevation angle specified in S3a is determined to be greater than or equal to the threshold is selected as the GPS satellite 2 to be subjected to authentication-related processing, and the process proceeds to S6.
  • the selected satellite list in which the PRN IDs of all the GPS satellites 2 selected in S5 and the elevation angles (that is, signal quality evaluation values) specified in S3a are linked is stored in the memory. It will be.
  • ⁇ Modification 3> In the first authentication target satellite selection process in the first vehicle-mounted device 200, the configuration for selecting the GPS satellite 2 whose SN ratio is determined to be equal to or greater than the threshold has been described, but the configuration is not necessarily limited thereto.
  • a configuration hereinafter, modified example 3 may be employed in which the GPS satellite 2 is selected using a difference between a geometric distance between the GPS satellite 2 and the first in-vehicle device 200 and a pseudo distance as a selection condition.
  • the navigation message authentication system 1 according to the third modification is the same as the navigation message authentication system 1 according to the first embodiment except that a part of the first authentication target satellite selection process is different.
  • the satellite position of the xth GPS satellite 2 is calculated from the orbit information included in the navigation message acquired in S1 from the xth GPS satellite 2 and the transmission time of the navigation message. Then, the geometric distance between the xth GPS satellite 2 and the first in-vehicle device 200 is calculated from the calculated satellite position and the current position of the first in-vehicle device 200.
  • the orbit information may be ephemeris data or almanac data, but ephemeris data is preferable from the viewpoint of accuracy.
  • ephemeris data is preferable from the viewpoint of accuracy.
  • it is just to set it as the structure which uses the value obtained by the last positioning, if the movement distance from the last positioning is less than predetermined distance (for example, 100 m) as the present position of the 1st vehicle equipment 200.
  • predetermined distance for example, 100 m
  • a pseudo distance determined from the transmission time included in the navigation message acquired in S1 from the xth GPS satellite 2 and the reception time when the navigation message is received by the first in-vehicle device 200 is calculated.
  • the pseudorange is calculated by adding the speed of light to the propagation time determined from the transmission time from the GPS satellite 2 and the reception time at the first in-vehicle device 200, and the GPS satellite 2 and the first in-vehicle device 200. And the distance.
  • the difference (henceforth, distance difference) of the geometrical distance between the xth GPS satellite 2 and the 1st vehicle equipment 200 and a pseudorange is specified. Since the pseudo distance is a distance determined from the propagation time, a difference from the geometric distance occurs due to the influence of multipath. When multipath occurs, the signal quality deteriorates. Therefore, it can be said that the smaller the distance difference is, the better the signal quality is. Therefore, the distance difference corresponds to the signal quality evaluation value of the present disclosure, and S3b corresponds to the evaluation value specifying unit of the present disclosure.
  • S4b it is determined whether or not the distance difference specified in S3b is equal to or less than a threshold value.
  • the threshold mentioned here may be a distance difference that can be said to provide a signal quality that is good enough to say that the possibility of giving an error to the positioning result is small, and is a value that can be arbitrarily set.
  • S5 a threshold value
  • S6 a threshold value
  • the GPS satellite 2 for which the distance difference specified in S3b is determined to be equal to or smaller than the threshold is selected as the GPS satellite 2 to be subjected to authentication-related processing, and the process proceeds to S6. Further, in S8 in Modification 3, a selected satellite list in which the PRN IDs of all the GPS satellites 2 selected in S5 and the distance difference (that is, the signal quality evaluation value) specified in S3b are linked is stored in the memory. Will do.
  • the GPS satellite 2 may be selected by combining a plurality of these conditions.
  • the selected satellite list includes the PRN IDs of all the GPS satellites 2 selected in S5, the SN ratio, the elevation angle, the geometric distance, and the pseudorange for the GPS satellite 2. The distance difference can be linked.
  • Modification 5 It should be noted that the configuration of Modification 1 that selects a predetermined plurality of GPS satellites 2 in order from the GPS satellite 2 that can be evaluated as having better signal quality of the transmitted navigation message and the configurations of Modifications 2 to 4 are combined. It is good also as a structure.
  • one of the signal quality evaluation values such as the SN ratio, the elevation angle, and the distance difference between the geometric distance and the pseudo distance has the highest priority.
  • the GPS satellites 2 may be ranked, and a predetermined upper number of GPS satellites 2 may be selected.
  • a function for weighting signal quality evaluation values such as a signal-to-noise ratio, an elevation angle, a distance difference between a geometric distance and a pseudo distance, and evaluating a signal quality comprehensively from each parameter may be used. That is, a function in which the output value increases as the SN ratio increases, the elevation angle increases, the distance difference decreases as the SN ratio, the elevation angle, and the distance difference between the geometric distance and the pseudo distance are variables. It is good also as a structure which selects the high-order predetermined number GPS satellite 2 with a large output value.
  • ⁇ Modification 6> The configurations of the first to fifth modifications may be applied to the second authentication target satellite selection process in the second in-vehicle device 300.
  • the first in-vehicle device 200 is configured to transmit the NMA related information to the second in-vehicle device 300 by inter-vehicle communication, but is not necessarily limited thereto.
  • it is good also as a structure which transmits NMA relevant information from the 1st vehicle equipment 200 to the 2nd vehicle equipment 300 by road-to-vehicle communication by relaying a roadside machine.
  • NMA related information may be transmitted from the first in-vehicle device 200 to the second in-vehicle device 300 using a public communication line network.
  • ⁇ Modification 8> In the above-described embodiment, an example in which only the navigation message received from the GPS satellite 2 is used for positioning has been described. However, the navigation message received from the QZS satellite 3 may be used for positioning. In this case, the navigation message received from the QZS satellite 3 may be authenticated in the same manner as the GPS satellite 2.
  • an RAND message is generated from the navigation message received by the monitor station 110 from the QZS satellite 3, and the parity data is created by the authentication center 120 based on the RAND message. Then, the created parity data is sent to the master control station 130, and the parity data is transmitted from the master control station 130 to the QZS satellite 3.
  • the QZS satellite 3 broadcasts a navigation message including the parity data toward the ground.
  • the first in-vehicle device 200 and the second in-vehicle device 300 in the second and subsequent embodiments create a RAND message from the navigation message received from the QZS satellite 3, and compare parity data from this RAND message and the H matrix acquired from the authentication center 120. Create Then, a configuration in which authentication is performed by comparing the created comparison parity data with the parity data received from the QZS satellite 3 may be adopted.
  • the first in-vehicle device 200 and the second in-vehicle device 300 used in the vehicle have been described as examples.
  • the present invention is not necessarily limited thereto.
  • a navigation message receiver similar to the first in-vehicle device 200 and the second in-vehicle device 300 may be applied to a portable terminal or the like carried by the user.
  • the authentication according to the received navigation message is narrowed down to the satellite selected by the selection unit among the satellites that have been able to receive the navigation message by the satellite receiver. It is only necessary to acquire information for use or to authenticate the received navigation message. Therefore, for all the artificial satellites that could receive the navigation message with the satellite receiver, the authentication information is acquired more than when the authentication information corresponding to the received navigation message is acquired or the received navigation message is authenticated. Such time and processing load can be reduced.
  • the selecting unit selects an artificial satellite that can evaluate that the signal quality of the transmitted navigation message is good, and the navigation message received from the selected artificial satellite is selected. Since the position of the navigation message authentication type positioning device is originally measured by the positioning unit, the possibility of positioning using a navigation message with good signal quality increases. As a result, more accurate positioning can be performed while reducing the time and processing load required for authentication.
  • each step is expressed as, for example, S1. Further, each step can be divided into a plurality of sub-steps, while a plurality of steps can be combined into one step. Further, each step configured in this way can be referred to as a device, module, or means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

 航法メッセージ認証型測位装置(200、300)は、衛星受信機(230、330)と、認証用情報取得部(S25)と、認証部(S29~S31)と、測位部(S42)とを備える。航法メッセージ認証型測位装置(200、300)は、信号品質評価値を特定する評価値特定部(S3、S3a、S3b、S64、S83)と、人工衛星を選択する選択部(S5、S41、S68、S85、S88)とを備える。認証用情報取得部(S25)は、認証用情報を取得する。認証部(S29~S31)は、認証を行う。測位部(S42)は、航法メッセージ認証型測位装置(200、300)の位置を測位する。

Description

航法メッセージ認証型測位装置 関連出願の相互参照
 本出願は、2014年2月6日に出願された日本国特許出願2014-21633号に基づくものであり、ここにその記載内容を参照により援用する。
 本開示は、衛星測位システムで用いられる人工衛星から受信する航法メッセージの認証を行う航法メッセージ認証型測位装置に関するものである。
 従来、衛星測位システムで用いられる人工衛星から発信される航法メッセージを受信機によって受信し、位置を測位する技術が知られている。
 しかしながら、近年では、人工衛星からの信号を複製するリピータや、人工衛星からの信号を擬似的に生成可能なシミュレータ等の開発により、悪意の行為者が位置情報の改竄やなりすましを行う虞がある。
 これに対して、特許文献1には、受信機が受信した航法メッセージが、衛星測位システムで用いられる人工衛星からの正規の航法メッセージであるかの認証を行う技術が開示されている。特許文献1に開示の技術では、受信機は、認証センタのデータベースにアクセスし、人工衛星から受信した航法メッセージに含まれる衛星番号と衛星時刻から、対象とする人工衛星の認証に用いるデータを取得する。そして、受信機は、認証センタから取得したデータを用いて、受信した航法メッセージが、衛星測位システムで用いられる人工衛星からの正規の航法メッセージであるかの認証を行う。
 本願発明者らは、以下を見出した。
 特許文献1に開示の技術では、自装置で航法メッセージを受信できる人工衛星が複数ある場合に、その全ての人工衛星の航法メッセージについて、認証センタと通信を行って正規の航法メッセージであるかの認証を行う必要がある。通常、1つの地点において、測位に必要な数を超える人工衛星から航法メッセージが受信できる。よって、航法メッセージを受信できた全ての人工衛星について航法メッセージの認証を行うと、認証センタや自装置での通信や演算の処理負荷や認証にかかる時間が膨大になってしまう虞がある。
日本国公開特許公報2013-130395号
 本開示は、上記従来の問題点に鑑みなされたものであって、その目的は、認証にかかる時間や処理負荷を低減しながらも、より精度の高い測位を行うことを可能にする航法メッセージ認証型測位装置を提供することにある。
 本開示の一例に係る航法メッセージ認証型測位装置は、衛星測位システムで用いられる人工衛星からの航法メッセージを受信する衛星受信機と、人工衛星から受信した航法メッセージに応じた認証用情報を、認証センタから取得する認証用情報取得部と、認証用情報取得部で取得した認証用情報を用いて、衛星受信機で受信した航法メッセージが正規のものであることの認証を行う認証部と、衛星受信機で複数の人工衛星から受信した航法メッセージをもとに航法メッセージ認証型測位装置(自装置)の位置を測位する測位部とを備える。航法メッセージ認証型測位装置は、衛星受信機が受信した航法メッセージについて、その航法メッセージの信号品質を評価できる信号品質評価値を特定する評価値特定部と、評価値特定部で特定した信号品質評価値をもとに、衛星受信機で航法メッセージを受信できた人工衛星のうち、発信された航法メッセージの信号品質が良好と評価できる人工衛星を選択する選択部とを備える。認証用情報取得部は、選択部で選択した人工衛星から受信した航法メッセージに応じた認証用情報に絞って取得し、認証部は、選択部で選択した人工衛星から衛星受信機で受信した航法メッセージが正規のものであることを、認証用情報取得部で取得した認証用情報を用いて認証を行い、測位部は、選択部で選択した人工衛星から受信した航法メッセージをもとに自装置の位置を測位する。
 これによれば、衛星受信機で航法メッセージを受信できた人工衛星のうち、選択部で選択した人工衛星に絞って、受信した航法メッセージに応じた認証用情報の取得を行ったり、受信した航法メッセージの認証を行ったりすればよくなる。よって、衛星受信機で航法メッセージを受信できた人工衛星の全てについて、受信した航法メッセージに応じた認証用情報の取得を行ったり、受信した航法メッセージの認証を行ったりする場合よりも、認証にかかる時間や処理負荷を低減できる。
 また、評価値特定部で特定した信号品質評価値をもとに、発信された航法メッセージの信号品質が良好と評価できる人工衛星を選択部で選択し、選択した人工衛星から受信した航法メッセージをもとに測位部で自装置の位置を測位するので、信号品質が良好な航法メッセージを用いて測位できる可能性が高まる。その結果、認証にかかる時間や処理負荷を低減しながらも、より精度の高い測位を行うことが可能になる。
 本開示についての上記および他の目的、特徴や利点は、添付の図面を参照した下記の詳細な説明から、より明確になる。添付図面において
図1は、実施形態1における航法メッセージ認証システムの概略的な構成の一例を示す図であり、 図2は、認証センタの概略的な構成の一例を示すブロック図であり、 図3は、第1車載機の概略的な構成の一例を示すブロック図であり、 図4は、実施形態1における第1車載機での第1認証対象衛星選択処理の流れの一例を示すフローチャートであり、 図5は、選択済衛星リストの一例を示す図であり、 図6は、実施形態1における第1車載機での認証関連処理の流れの一例を示すフローチャートであり、 図7は、実施形態1における第1車載機での測位処理の流れの一例を示すフローチャートであり、 図8は、実施形態1における第1車載機でのNMA関連情報送信処理の流れの一例を示すフローチャートであり、 図9は、NMA関連情報の一例を示す図であり、 図10は、第2車載機の概略的な構成の一例を示すブロック図であり、 図11は、実施形態1における第2車載機での第2認証対象衛星選択処理の流れの一例を示すフローチャートであり、 図12は、変形例1における第1車載機での第1認証対象衛星選択処理の流れの一例を示すフローチャートであり、 図13は、変形例2における第1車載機での第1認証対象衛星選択処理の流れの一例を示すフローチャートであり、 図14は、変形例3における第1車載機での第1認証対象衛星選択処理の流れの一例を示すフローチャートである。
 以下、本開示の実施形態について図面を用いて説明する。
 (実施形態1)
 図1に示すように、実施形態1における航法メッセージ認証システム1は、モニタステーション110、認証センタ120、マスタコントロールステーション130、第1車載機200、及び第2車載機300を含む。第1車載機200を用いる車両を車両A、第2車載機300を用いる車両を車両Bとする。第1車載機200及び第2車載機300が本開示の航法メッセージ認証型測位装置に相当する。
 <航法メッセージ認証システム1の概略構成>
 モニタステーション110は、衛星測位システムの一つであるGPSが備えるGPS衛星2a~2fが発信するGPS電波を受信する。GPS衛星2a~2fが本開示の人工衛星に相当する。以降では、GPS衛星2a~2fの個々を区別しない場合にはGPS衛星2と表現する。周知のように、GPS電波には航法メッセージが含まれている。モニタステーション110は、受信したGPS電波を復調して航法メッセージを抽出し、認証センタ120へ送る。複数のGPS衛星2からGPS電波を受信した場合には、それぞれのGPS電波から航法メッセージを抽出して、認証センタ120へ送る。
 航法メッセージには、周知のようにエフェメリスデータやアルマナックデータが含まれる。アルマナックデータには、航法メッセージの発信元のGPS衛星2に限らない、軌道上の全てのGPS衛星2についての軌道情報が含まれ、この軌道情報と航法メッセージの発信時刻とから、全てのGPS衛星2の衛星位置が算出できる。また、エフェメリスデータには、航法メッセージの発信元のGPS衛星2についての軌道情報が含まれ、この軌道情報と航法メッセージの発信時刻とから、この航法メッセージの発信元のGPS衛星2のより精度の高い衛星位置が算出できる。
 認証センタ120は、航法メッセージと暗号キーであるHマトリクスとからパリティデータを作成する。そして、このパリティデータを含む信号をマスタコントロールステーション130に送る。また、第1車載機200や第2車載機300との間で通信も行う。この認証センタ120の詳細な説明は図2を用いて後に行う。
 マスタコントロールステーション130は、認証センタ120から受信したパリティデータを準天頂衛星(以下、QZS衛星)3に送信する。QZS衛星3は、パリティデータを含んだ航法メッセージを地上に向けて放送する。
 第1車載機200は、航法メッセージ認証型(NMA:Navigation Message Authentication)車載機である。第1車載機200は、認証センタ120と通信を行い、GPS衛星2から受信した航法メッセージが正規の航法メッセージであることの認証を行う。認証の詳細な説明については、図6を用いて後に行う。また、第1車載機200は、この認証を行う対象とするGPS衛星2を予め選択する処理を行う。
 他にも、第1車載機200は、複数のGPS衛星2から受信した航法メッセージを用いて自機器の現在位置を測位する。現在位置の測位には、最低でも3つのGPS衛星2から受信した航法メッセージを用いる。さらに、第1車載機200は、認証が成立した航法メッセージの発信元のGPS衛星2についての情報(以下、NMA関連情報)を、無線通信によって外部に送信する。第1車載機200の詳細な説明は、図3を用いて後に行う。
 第2車載機300も第1車載機200と同様に、航法メッセージ認証型車載機である。第2車載機300でも、第1車載機200と同様に、前述の認証や測位を行う。また、第2車載機300では、第1車載機200から送信されるNMA関連情報を受信し、このNMA関連情報も利用して、認証を行う対象とするGPS衛星2を予め選択する処理を行う。第2車載機300の詳細な説明は、図10を用いて後に行う。
 <認証センタ120の詳細構成>
 図2に示すように、認証センタ120は、制御部122、データ記憶部124、通信部126を備える。
 制御部122は、CPU、ROM、RAM等を備えたコンピュータであり、データ記憶部124、通信部126を制御する。また、CPUが、RAMの一時記憶機能を利用しつつROMに記憶されているプログラムを実行することで、RANDメッセージ生成部1221、SEED値生成部1222、Hマトリクス計算部1223、パリティ計算部1224、信号加工部1225として機能する。なお、これら、各部1221~1225の機能は、特許文献1に開示されている機能と同じでよい。
 RANDメッセージ生成部1221は、モニタステーション110から取得する航法メッセージから、RANDメッセージを作成する。RANDメッセージは、航法メッセージのビット列の中から、TOW(time of week)のビット列のデータとエフェメリスデータのうちのクロック補正パラメータであるTOC、AF0、AF1とが順番に並んでいる。TOW、TOC、AF0、AF1が信号の発信時刻を特定するデータである。さらに、その後に、アンチスプーフフラグであるAS Flag、衛星番号であるPRN(Pseudo Random Noise)IDが追加されている。
 TOWとPRN IDを含んでいるRANDは、どのGPS衛星がいつ発信したかを示すデータであると言える。また、TOWが6秒ごとに変化し、また、PRN IDを含んでいるので、モニタステーション110が受信したGPS衛星2ごと、かつ、6秒ごとにRANDを生成することになる。
 SEED値生成部1222は、PCクロックを入力として乱数を発生させることで、SEED値を生成する。
 Hマトリクス計算部1223は、SEED値生成部1222が生成したSEED値を使い、このSEED値に一対一に対応するHマトリクスを計算する。Hマトリクスとしては、周知のハッシュ関数を用いればよく、例えばLDPC(Low Density Parity Check)符号化を行うためのパリティ検査行列を用いればよい。さらに、パリティ検査行列から決定される生成行列を用いてもよい。
 パリティ計算部1224は、RANDメッセージ生成部1221が生成したRANDメッセージと、Hマトリクス計算部1223が計算したHマトリクスに基づいて、パリティデータを計算する。
 信号加工部1225は、パリティ計算部1224が計算したパリティデータ、及びその計算に使用したRANDメッセージを、QZS衛星3から発信させる航法メッセージに挿入する。そして、挿入済みの航法メッセージをマスタコントロールステーション130に送る。
 さらに、信号加工部1225は、信号の挿入に合せて、パリティ計算部1224が計算したパリティデータ、パリティデータの計算に用いたRANDメッセージ、Hマトリクス、Hマトリクスの計算に用いたSEED値を対応付けて、データ記憶部124に記憶する。
 この信号加工部1225は、RANDメッセージ生成部1221がRANDメッセージを生成するごとに、RANDメッセージとパリティデータをQZS衛星3に送信させる航法メッセージに挿入する。よって、RANDメッセージ生成部1221、SEED値生成部1222、Hマトリクス計算部1223、パリティ計算部1224も、RANDメッセージ生成部1221がRANDメッセージを生成するごとに、処理を実行する。
 Hマトリクス選択部1226は、第1車載機200から送信されてきたPRN ID、TOW、公開キーを通信部126で受信した場合に、データ記憶部124に記憶されているHマトリクスから、受信したPRN ID、TOWに対応するHマトリクスを選択する。そして、選択したHマトリクスを公開鍵で暗号化し、暗号化したHマトリクスを第1車載機200へ返信する。
 <第1車載機200の詳細構成>
 QZS衛星3が放送した航法メッセージは、第1車載機200の通信部210が備える受信部211に受信される。図3に示すように、この第1車載機200は、通信部210、制御部220、衛星受信機230を備える。
 通信部210は、受信部211と送信部212とを備える。通信部210は、狭域通信機能と広域通信機能を備えている。狭域通信機能は、例えば、通信距離が数百メートルである。広域通信機能は、例えば、通信距離が数キロメートルであり、公衆通信回線網の基地局と通信を行うことにより、公衆通信回線網の通信圏内にある他の通信機器と通信することができる。狭域通信機能により、第2車載機300の通信部310といわゆる車車間通信を行い、広域通信機能により、認証センタ120の通信部126との間で通信を行う。
 衛星受信機230は、GPS衛星2、QZS衛星3が発信する電波を一定周期で受信する。
 制御部220は、CPU、ROM、RAM等を備えたコンピュータであり、通信部210、衛星受信機230を制御する。また、CPUが、RAMの一時記憶機能を利用しつつROMに記憶されているプログラムを実行することで、図4に示す第1認証対象衛星選択処理や図6に示す認証関連処理や図7に示す測位処理や図8に示すNMA関連情報送信処理等の各種処理を実行する。
 概略として、認証関連処理は、衛星受信機230で受信した信号がGPS衛星2から受信した正規の航法メッセージであることの認証に関連する処理である。第1認証対象衛星選択処理は、衛星受信機230で航法メッセージを受信できるGPS衛星2のうちから、上述の認証関連処理を行う対象とするGPS衛星2を選択する処理である。測位処理は、第1認証対象衛星選択処理によって選択された複数のGPS衛星2から衛星受信機230で受信する航法メッセージをもとに自装置の現在位置を測位する処理である。NMA関連情報送信処理は、第1認証対象衛星選択処理によって選択されたGPS衛星2を識別できる識別情報と、そのGPS衛星2からの航法メッセージについて認証が成立済みか否かを示す認証情報とを含むNMA関連情報を送信する処理である。
 <第1認証対象衛星選択処理>
 ここで、第1車載機200の制御部220での第1認証対象衛星選択処理について、図4に示すフローチャートを用いて説明を行う。図4のフローチャートは、GPS衛星2から衛星受信機230で受信した航法メッセージが、衛星受信機230から出力された場合に開始する構成とすればよい。
 衛星受信機230では、衛星受信機230から制御部220へ逐次行われる出力の1周期内に、複数のGPS衛星2の航法メッセージを衛星受信機230で受信し、その複数の航法メッセージを出力することになる。ここでは、第1車載機200の現在位置において観測可能な全てのGPS衛星2の航法メッセージを、上述の1周期内に衛星受信機230で受信し、その複数の航法メッセージが制御部220へ出力される場合を例に挙げて以降の説明を行う。
 まず、ステップS1では、衛星受信機230から出力されてくる、現在位置において観測可能な全てのGPS衛星2の航法メッセージを取得する。以降では、現在位置において観測可能な全てのGPS衛星2を、単に全観測GPS衛星2と呼ぶ。
 ステップS2では、全観測GPS衛星2について、以降のステップS3~ステップS7の処理(以下、選択関連処理)を開始する。ここでは、全観測GPS衛星2の数がi個だったものとして、1番目のGPS衛星2から順番に、i番目のGPS衛星2まで選択関連処理を繰り返す。S2では、現在の順番がx=1であるものとして選択関連処理を開始する。全観測GPS衛星2の順番の付け方は、PRN IDの大きさ順でもよいし、他の基準によるものであってもよいし、ランダムに決定されるものであってもよい。
 ステップS3では、x番目のGPS衛星2からS1で取得した航法メッセージの信号対雑音比(以下、SN比)を特定する。一例としては、衛星受信機230が有するSN比検出回路で検出した値を、S1で取得した航法メッセージのSN比と特定する構成とすればよい。周知の通り、SN比は、信号に対するノイズの比を対数で表したものであって、値が大きいほど信号品質が良好であることを示す。よって、SN比が本開示の信号品質評価値に相当し、S3が本開示の評価値特定部に相当する。
 ステップS4では、S3で特定したSN比が閾値以上か否かを判定する。ここで言うところの閾値とは、測位結果に誤差を与える可能性が小さいと言える程度に信号品質が良好と言えるSN比であればよく、任意に設定可能な値である。そして、S3で特定したSN比が閾値以上と判定した場合(S4でYES)には、ステップS5に移る。一方、閾値未満と判定した場合(S4でNO)には、ステップS6に移る。
 ステップS5では、S3で特定したSN比が閾値以上と判定されたGPS衛星2を、認証関連処理を行う対象とするGPS衛星2として選択し、S6に移る。よって、S5が本開示の選択部に相当する。
 S6では、全観測GPS衛星2について選択関連処理が完了した場合、すなわち、x=iとなった場合(S6でYES)には、S8に移る。一方、x=iとなっていない場合(S6でNO)には、S7に移る。
 S7では、x+1番目のGPS衛星2を新たな選択関連処理の対象とし、S4に戻って処理を繰り返す。
 全観測GPS衛星2について選択関連処理が完了した場合(つまり、x=iとなった場合)のS8では、S5で選択されたGPS衛星2のリスト(以下、選択済衛星リスト)を作成して、制御部220のメモリに保存し、図4の処理を終了する。メモリに保存される選択済衛星リストは、新たに第1認証対象衛星選択処理が行われるごとに、逐次更新されてゆく。
 例えば選択済衛星リストは、S5で選択された全てのGPS衛星2のPRN IDが羅列されたリストとすればよい。また、S5で選択されたGPS衛星2についての、S3で特定したSN比(つまり、信号品質評価値)も、そのGPS衛星2のPRN IDと紐付けてメモリに保存することが好ましい。
 一例として、選択済衛星リストには、図5に示すように、信号品質評価値としてのSN比と、GPS衛星2のPRN IDとが対応付けられている構成とすればよい。図5に示す例では、GPS衛星2a~GPS衛星2fが全観測GPS衛星2であって、第1認証対象衛星選択処理によって、PRN IDが1であるGPS衛星2a、PRN IDが5であるGPS衛星2b、PRN IDが10であるGPS衛星2c、PRN IDが24であるGPS衛星2eが選択されたものとする。
 <認証関連処理>
 続いて、第1車載機200の制御部220での認証関連処理について、図6に示すフローチャートを用いて説明を行う。図6のフローチャートは、図4に示す第1認証対象衛星選択処理によって、認証関連処理を行う対象とするGPS衛星2が選択されたときに開始する構成とすればよい。
 ここで、衛星受信機230は、GPS衛星2からの信号を複製するリピータや、GPS衛星2からの信号を擬似的に生成可能なシミュレータからの信号を、GPS電波に含まれる航法メッセージと誤って受信している場合もあるものとする。
 まず、S21では、図4に示す第1認証対象衛星選択処理によって選択されたGPS衛星2から受信したGPS電波に含まれる航法メッセージを、衛星受信機230から取得する。
 S22では、QZS衛星3から受信した航法メッセージを、受信部211から取得する。S23では、S21で取得した航法メッセージから、PRN ID、TOWを抽出する。
 S24では、S23で抽出したPRN IDとTOWを公開鍵とともに、送信部212から認証センタ120へ送信する。前述したように、認証センタ120は、このPRN IDとTOWとにより定まるHマトリクスを、公開鍵により暗号化して第1車載機200へ送信する。第1車載機200から認証センタ120に送信したPRN IDとTOWとにより定まるHマトリクスが、本開示の認証用情報に相当する。
 S25では、認証センタ120から送信されたHマトリクスを受信部211から取得する。よって、このS25が本開示の認証用情報取得部に相当する。S26では、S25で取得した、暗号化されたHマトリクスを秘密鍵で復号する。
 S27では、GPS衛星2から受信したGPS電波に含まれる航法メッセージのうち、S24で送信したPRN IDと同じPRN IDを含んでいる航法メッセージから、RANDメッセージを作成する。
 S28では、S27で作成したRANDメッセージと、S26で復号したHマトリクスとに基づいて、比較パリティデータを作成する。S29では、S28で作成した比較パリティデータと、S23で抽出したパリティデータとが一致するか否かを判断する。
 S26で復号したHマトリクスは、認証センタ120がパリティデータの作成に使用したHマトリクスと同じである。そして、認証センタ120のパリティ計算部1224は、このHマトリクスとRANDメッセージとに基づいてパリティデータを計算している。
 よって、S28で作成した比較パリティデータが、S23で抽出したパリティデータと一致する場合、S27で作成したRANDメッセージが、認証センタ120が作成したRANDメッセージと同じであると考えることができる。
 そこで、S28で作成した比較パリティデータと、S23で抽出したパリティデータとが一致する場合(S29でYES)には、S30に進み、認証成立とする。一方、2つのパリティデータが一致しない場合(S29でNO)には、S31に進み、認証不成立とする。よって、このS29~S31が本開示の認証部に相当する。S30、S31の後は、S32に進む。
 S32では、図4に示す第1認証対象衛星選択処理によって選択された全てのGPS衛星2の航法メッセージについて、認証成立か不成立かの判断が完了した場合(S32でYES)には、図6の処理を終了する。一方、1つでも認証成立か不成立かの判断が完了していない場合(S32でNO)には、S22に戻って処理を繰り返す。
 なお、第1認証対象衛星選択処理によって選択された全てのGPS衛星2の航法メッセージについて、認証を行う必要はなく、後述する測位処理に必要な分のGPS衛星2に絞ったり、後述する測位処理に必要な分のGPS衛星2の少なくとも1つについて行う構成としたりしてもよい。
 <測位処理>
 続いて、第1車載機200の制御部220での測位処理について、図7に示すフローチャートを用いて説明を行う。図7のフローチャートは、図4に示す第1認証対象衛星選択処理によって、認証関連処理を行う対象とするGPS衛星2が選択されたときに開始する構成とすればよい。
 S41では、図4に示す第1認証対象衛星選択処理によって選択されたGPS衛星2から、測位に必要な数のGPS衛星2を選択する。測位に必要な数は4としてもよいし、3としてもよい。また、測位に必要な数のGPS衛星2を選択する場合には、選択済衛星リスト(図5参照)のPRN ID順に選択してもよいし、前述の信号品質評価値としてのSN比が大きいものから順に選択してもよい。信号品質評価値の良好なものから順に選択する構成とする場合には、このS41も本開示の選択部に相当する。
 S42では、S41で選択したGPS衛星2から受信した航法メッセージを用いて、周知の方法によって第1車載機200の現在位置を算出し、図7の処理を終了する。よって、このS42が本開示の測位部に相当する。
 なお、測位処理では、前述の認証関連処理で認証が成立した航法メッセージのみを用いて測位を行う構成としてもよいし、前述の認証関連処理を実行する前に測位を行う構成としてもよい。前述の認証関連処理を実行する前に測位を行う構成とした場合には、測位に用いた航法メッセージについて認証が不成立のものが含まれていた場合に、認証が成立したもののみを用いて測位をやり直したり、測位結果を用いないようにしたり、測位結果の信頼度が低いこと示した上で用いたりする構成とすればよい。
 <NMA関連情報送信処理>
 続いて、第1車載機200の制御部220でのNMA関連情報送信処理について、図8に示すフローチャートを用いて説明を行う。図8で示すNMA関連情報送信処理と、図6で示す認証関連処理とは並行に行われ、認証関連処理における認証が、第1認証対象衛星選択処理によって選択された全てのGPS衛星2について完了していない場合でも、図8のフローチャートが開始されるものとする。また、図8のフローチャートは、例えば一定の周期で開始する構成とすればよい。
 図8のフローチャートで示すNMA関連情報送信処理では、第1認証対象衛星選択処理によって選択されたGPS衛星2を識別できる識別情報と、そのGPS衛星2からの航法メッセージについて認証が成立済みか否かを示す認証情報とを含むNMA関連情報を送信する。第1車載機200から送信するNMA関連情報は、第2車載機300において、認証関連処理を行う対象とするGPS衛星2を選択するのに用いられる。
 まず、S51では、図4で示す第1認証対象衛星選択処理で作成した選択済衛星リストに含まれる各GPS衛星2について、図6で示す認証関連処理で認証が成立しているか否かを判定する。
 S52では、選択済衛星リストに含まれる各GPS衛星2のPRN IDと、S51で判定した各GPS衛星2の認証が成立しているか否かについての情報(以下、認証情報)とを含むNMA関連情報を、送信部212の狭域通信機能によって送信させ、処理を終了する。よって、PRN IDが本開示の識別情報に相当し、送信部212が本開示の送信部に相当する。
 ここで、図9を用いて、NMA関連情報の一例について説明を行う。NMA関連情報は、図9に示すように、GPS衛星2のPRN IDと、そのPRN IDが示すGPS衛星2の認証が成立しているか否かを示す情報とが対応付けられている構成とすればよい。GPS衛星2の認証が成立しているか否かを示す情報は、例えば、図9に示すように、認証成立であるか(図中の「成立」)、認証不成立若しくは未認証であるか(図中の「未」)の2つの状態を表す2値のフラグとすればよい。他にも、認証成立と認証不成立と未認証との3つの状態を表す情報としてもよい。
 送信部212から送信されたNMA関連情報は、本実施形態では第2車載機300で受信されるものとして以降の説明を行う。
 <第2車載機300の詳細構成>
 続いて、図10を用いて、NMA関連情報を受信する側の第2車載機300についての説明を行う。第2車載機300は、図10に示すように、通信部310、制御部320、衛星受信機330を備える。通信部310は、第1車載機200が備える通信部210と無線通信を行う。
 通信部310は、受信部311と送信部312とを備える。通信部310は、前述した通信部210と同様に、狭域通信機能及び広域通信機能を備えている。衛星受信機330は、衛星受信機230と同様に、GPS衛星2、QZS衛星3が発信する電波を一定周期で受信する。
 制御部320は、CPU、ROM、RAM等を備えたコンピュータであり、通信部310、衛星受信機330を制御する。また、CPUが、RAMの一時記憶機能を利用しつつROMに記憶されているプログラムを実行することで、図11に示す第2認証対象衛星選択処理や図5に示すのと同様な認証関連処理や図6に示すのと同様な測位処理や図7に示すのと同様なNMA関連情報送信処理等の各種処理を実行する。
 概略として、第2認証対象衛星選択処理は、第1車載機200から受信するNMA関連情報も利用して、衛星受信機330で航法メッセージを受信できるGPS衛星2のうちから、認証関連処理を行う対象とするGPS衛星2を選択する処理である。
 また、制御部320は、第1車載機200から受信部311で受信したNMA関連情報を取得し、メモリに保存する。よって、受信部311が本開示の受信部に相当する。メモリに保存するNMA関連情報は、例えば送信元の第1車載機200ごとに扱い、同じ第1車載機200から新たなNMA関連情報を受信した場合には、この新たな関連情報に更新する構成とすればよい。
 <第2認証対象衛星選択処理>
 ここで、第2車載機300の制御部320での第2認証対象衛星選択処理について、図11に示すフローチャートを用いて説明を行う。図11のフローチャートは、第1車載機200から受信したNMA関連情報をメモリに保存済みである状態において、GPS衛星2から衛星受信機330で受信した航法メッセージが、衛星受信機330から出力された場合に開始する構成とすればよい。
 まず、S61では、衛星受信機330から出力されてくる、現在位置において観測可能な全てのGPS衛星2(つまり、全観測GPS衛星2)の航法メッセージを取得する。
 S62では、第1車載機200から受信したNMA関連情報から、航法メッセージの認証が成立済みのGPS衛星2のPRN IDを抽出する。一例としては、NMA関連情報から、認証成立を示す認証情報と対応付けられたPRN IDを抽出する構成とすればよい。ここでは、認証が成立済みのGPS衛星2の数がk個だったものとして、1番目の認証成立済のGPS衛星2のPRN ID(以下、PRN[1])からk番目の認証成立済のGPS衛星2のPRN ID(以下、PRN[k])までを抽出する。
 S63では、全観測GPS衛星2について、以降のS64~S72の処理(以下、選択関連処理)を開始する。ここでは、第1認証対象衛星選択処理のS2と同様に、全観測GPS衛星2の数がi個だったものとして、全観測GPS衛星2のうちの1番目のGPS衛星2から順番に、i番目のGPS衛星2まで選択関連処理を繰り返す。S63では、全観測GPS衛星2のうちでの現在の順番がx=1として選択関連処理を開始する。
 S64では、前述のS3と同様にして、x番目のGPS衛星2からS61で取得した航法メッセージのSN比を特定する。よって、S64も本開示の評価値特定部に相当する。
 S65では、前述のS4と同様にして、S64で特定したSN比が閾値以上か否かを判定する。そして、S64で特定したSN比が閾値以上と判定した場合(S65でYES)には、S66に移る。一方、閾値未満と判定した場合(S65でNO)には、S71に移る。
 S66では、S62で抽出した全PRN IDについて、選択関連処理の現在の対象としているGPS衛星2のPRN IDに該当するものがあるか判定する処理(以下、該当判定処理)を開始する。ここでは、PRN[1]から順番にPRN[k]まで該当判定処理を繰り返す。S66では、認証成立済のGPS衛星2のPRN IDの現在の順番がy=1であるものとして該当判定処理を開始する。
 S67では、現在の順番における認証成立済のGPS衛星2のPRN IDと、選択関連処理の現在の対象としているGPS衛星2のPRN IDとが一致すると判定した場合(図11でPRN[y]=xがYES)には、S68に移る。一方、一致しないと判定した場合(図11でPRN[y]=xがNO)には、S69に移る。
 S67で一致すると判定される場合とは、選択関連処理の現在の対象としているGPS衛星2について、第1車載機200で航法メッセージの認証が成立済みであると判定される場合と言い換えることができる。
 S68では、S64で特定したSN比が閾値以上と判定され、且つ、第1車載機200で航法メッセージの認証が成立済みとS67において判定されたGPS衛星2を、認証関連処理を行う対象とするGPS衛星2として選択し、S71に移る。よって、S68が本開示の選択部に相当する。
 S69では、S62で抽出した全PRN IDについて選択関連処理が完了した場合、すなわち、y=kとなった場合(S69でYES)には、S71に移る。一方、y=kとなっていない場合(S69でNO)には、S70に移る。
 S70では、y+1番目の認証成立済のGPS衛星2のPRN IDを新たな該当判定処理の対象とし、S67に戻って処理を繰り返す。
 S71では、全観測GPS衛星2について選択関連処理が完了した場合、すなわち、x=iとなった場合(S71でYES)には、S73に移る。一方、x=iとなっていない場合(S71でNO)には、S72に移る。
 S72では、x+1番目のGPS衛星2を新たな選択関連処理の対象とし、S64に戻って処理を繰り返す。
 全観測GPS衛星2について選択関連処理が完了した場合(つまり、x=iとなった場合)のS73では、前述のS8と同様にして、S68で選択された全てのGPS衛星2の選択済衛星リストを作成して、制御部220のメモリに保存し、図11の処理を終了する。メモリに保存される選択済衛星リストは、新たに第2認証対象衛星選択処理が行われるごとに、逐次更新されてゆく。
 なお、第2認証対象衛星選択処理では、第1車載機200で認証成立済のGPS衛星2を優先して選択する構成であれば、第1車載機200で認証成立済のGPS衛星2に絞って選択を行う構成に限らない。例えば、第1車載機200で未認証のGPS衛星2であっても、SN比が閾値以上なら選択し、測位処理では、第1車載機200で認証成立済のGPS衛星2の航法メッセージを優先的に用いる構成とすればよい。また、この場合であっても、NMA関連情報のうちの認証情報が、未認証と認証不成立とを区別可能な情報である場合には、SN比が閾値以上であっても、認証不成立であったGPS衛星2は選択しないようにすることが好ましい。
 第2車載機300では、第2認証対象衛星選択処理で選択されたGPS衛星2の航法メッセージについて、図5に示すのと同様な認証関連処理を行ったり、図6に示すのと同様な測位処理を行ったりする。また、第2車載機300では、図7に示すのと同様なNMA関連情報送信処理により、第2車載機300で認証が成立した航法メッセージの発信元のGPS衛星2についてのNMA関連情報を、無線通信によって外部に送信する構成としてもよい。
 <実施形態1のまとめ>
 実施形態1によれば、第1車載機200は、衛星受信機230で航法メッセージを受信できたGPS衛星2のうち、第1認証対象衛星選択処理で選択したGPS衛星2に絞って、受信した航法メッセージについての認証関連処理を行う。よって、衛星受信機230で航法メッセージを受信できたGPS衛星2の全てについて認証関連処理を行う場合よりも、認証にかかる時間や第1車載機200及び認証センタ120での処理負荷を低減できる。
 また、第1認証対象衛星選択処理では、航法メッセージの信号品質が良好と言える程度のSN比が得られたGPS衛星2を選択するので、選択したGPS衛星2から受信した航法メッセージをもとに測位処理を行うことによって、信号品質が良好な航法メッセージを用いて測位できる。その結果、第1車載機200において、認証にかかる時間や処理負荷を低減しながらも、より精度の高い測位を行うことが可能になる。
 さらに、実施形態1によれば、第2車載機300でも、衛星受信機330で航法メッセージを受信できたGPS衛星2のうち、第2認証対象衛星選択処理で選択したGPS衛星2に絞って認証関連処理を行うので、認証にかかる時間や第2車載機300及び認証センタ120での処理負荷を低減できる。
 第2認証対象衛星選択処理では、第1車載機200から送信されるNMA関連情報をもとに、第1車載機200で認証が成立したGPS衛星2を優先して選択するので、第2車載機300でも認証が成立する確度の高いGPS衛星2を優先して選択することが可能になる。その結果、第2車載機300で認証が不成立となるGPS衛星2を選択しないようにできる可能性が高まり、無駄な認証を行う手間を減らすことが可能になる。
 さらに、第2認証対象衛星選択処理でも、航法メッセージの信号品質が良好と言える程度のSN比が得られたGPS衛星2を選択するので、選択したGPS衛星2から受信した航法メッセージをもとに測位処理を行うことによって、より精度の高い測位を行うことが可能になる。
 また、第1車載機200での第1認証対象衛星選択処理で選択されたGPS衛星2は、信号品質が良好な可能性が高いGPS衛星2だが、第1車載機200の近辺に位置する第2車載機300にとっても同様である可能性が高い。これは、両者のおかれる状況が似ている可能性が高いためである。
 実施形態1の構成によれば、NMA関連情報は車車間通信によって第1車載機200から受信するので、NMA関連情報を受信する第2車載機300と送信元の第1車載機200との距離は比較的近いと言える。従って、第2車載機は、NMA関連情報をもとに、第1車載機200で認証が成立したGPS衛星2を優先して選択することで、航法メッセージの信号品質が良好なGPS衛星2を優先して選択することが可能になる。その結果、第2車載機300では、認証にかかる時間や処理負荷をより低減しながら、さらに精度の高い測位を行うことが可能になる。
 本実施形態において、第2車載機300は航法メッセージ認証型測位装置に相当し、第1車載機200は他の航法メッセージ認証型測位装置に相当する。
 <変形例1>
 実施形態1では、第1車載機200での第1認証対象衛星選択処理において、SN比が閾値以上と判定されたGPS衛星2を全て選択する構成について説明したが、必ずしもこれに限らない。例えば、発信された航法メッセージの信号品質がより良好と評価できるGPS衛星2から順に所定の複数個のGPS衛星2を選択する構成(以下、変形例1)としてもよい。
 ここで、変形例1における航法メッセージ認証システム1について、図面を用いて説明を行う。なお、説明の便宜上、前述の実施形態の説明に用いた図に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 変形例1における航法メッセージ認証システム1は、第1認証対象衛星選択処理の一部が異なる点を除けば、実施形態1における航法メッセージ認証システム1と同様である。
 <変形例1における第1認証対象衛星選択処理>
 ここで、変形例1における第1車載機200の制御部220での第1認証対象衛星選択処理について、図12に示すフローチャートを用いて説明を行う。図12のフローチャートも、図4のフローチャートと同様に、GPS衛星2から衛星受信機230で受信した航法メッセージが、衛星受信機230から出力された場合に開始する構成とすればよい。
 まず、S81~S87までの処理は、前述のS1~S7と同様である。よって、S83も本開示の評価値特定部に相当し、S85も本開示の選択部に相当する。
 S88では、S85で選択された全てのGPS衛星2について、制御部220のメモリに保存されている選択済衛星リストに含まれるSN比が大きいものから順に所定数に絞るようにさらに選択を行う。よって、S88も本開示の選択部に相当する。所定数は、測位処理に必要なGPS衛星2の数とすればよく、例えば4とすればよい。
 S89では、S88で選択されたGPS衛星2の選択済衛星リストを作成して、制御部220のメモリに保存し、図12の処理を終了する。メモリに保存される選択済衛星リストは、新たに第1認証対象衛星選択処理が行われるごとに、逐次更新されてゆく。
 <変形例1のまとめ>
 変形例1によっても、実施形態1と同様に、第1車載機200において、認証にかかる時間や処理負荷を低減しながらも、より精度の高い測位を行うことが可能になる。また、変形例1によれば、より大きいSN比が得られた順に所定数のGPS衛星2に絞り込んで選択するので、信号品質が特に良好な航法メッセージを用いて測位できる。その結果、第1車載機200において、認証にかかる時間や処理負荷をさらに低減しながら、さらに精度の高い測位を行うことが可能になる。
 <変形例2>
 第1車載機200での第1認証対象衛星選択処理において、SN比が閾値以上と判定されたGPS衛星2を選択する構成について説明したが、必ずしもこれに限らない。例えば、GPS衛星2の仰角を選択の条件としてGPS衛星2を選択する構成(以下、変形例2)としてもよい。
 ここで、変形例2における航法メッセージ認証システム1について、図面を用いて説明を行う。なお、説明の便宜上、前述の実施形態の説明に用いた図に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 変形例2における航法メッセージ認証システム1は、第1認証対象衛星選択処理の一部が異なる点を除けば、実施形態1における航法メッセージ認証システム1と同様である。
 <変形例2における第1認証対象衛星選択処理>
 ここで、変形例2における第1車載機200の制御部220での第1認証対象衛星選択処理について、図13に示すフローチャートを用いて説明を行う。図13のフローチャートは、図4のフローチャートからS3、S4の処理のみを入れ替えたものであって、S3、S4の処理と入れ替えたS3a、S4aの処理の部分を抜き出して示している。
 まず、S2に続くS3aでは、x番目のGPS衛星2からS1で取得した航法メッセージに含まれる軌道情報とその航法メッセージの発信時刻とからx番目のGPS衛星2の衛星位置を算出する。そして、算出した衛星位置と第1車載機200の現在位置とから、x番目のGPS衛星2の仰角を特定する。
 軌道情報は、エフェメリスデータでもアルマナックデータであってもよいが、精度の観点からはエフェメリスデータが好ましい。また、第1車載機200の現在位置は、前回の測位からの移動距離が所定距離(例えば100m)未満であれば、前回の測位で得られた値を用いる構成とすればよい。他にも、前回の測位で得られた位置を基点として自律航法によって推定した位置を用いる構成としてもよい。
 仰角は、GPS衛星2と第1車載機200の現在位置とを結ぶ直線が、現在位置を基準とする地平面に対してなす角度であり、仰角が小さいほど測定誤差が大きくなることが知られている。言い換えれば、仰角が大きいほど信号品質が良好な航法メッセージが得られることを示す。よって、仰角が本開示の信号品質評価値に相当し、S3aが本開示の評価値特定部に相当する。
 S4aでは、S3aで特定した仰角が閾値以上か否かを判定する。ここで言うところの閾値とは、測位結果に誤差を与える可能性が小さいと言える程度に良好な信号品質が得られると言える仰角であればよく、任意に設定可能な値である。そして、S3aで特定した仰角が閾値以上と判定した場合(S4aでYES)には、S5に移る。一方、閾値未満と判定した場合(S4aでNO)には、S6に移る。
 変形例2におけるS5では、S3aで特定した仰角が閾値以上と判定されたGPS衛星2を、認証関連処理を行う対象とするGPS衛星2として選択し、S6に移ることになる。また、変形例2におけるS8では、S5で選択された全てのGPS衛星2のPRN IDとS3aで特定した仰角(つまり、信号品質評価値)とを紐付けた選択済衛星リストをメモリに保存することになる。
 <変形例2のまとめ>
 変形例2によっても、第1認証対象衛星選択処理では、得られる航法メッセージの信号品質が良好と言える程度の仰角であるGPS衛星2を選択するので、選択したGPS衛星2から受信した航法メッセージをもとに測位処理を行うことによって、信号品質が良好な航法メッセージを用いて測位できる。
 <変形例3>
 第1車載機200での第1認証対象衛星選択処理において、SN比が閾値以上と判定されたGPS衛星2を選択する構成について説明したが、必ずしもこれに限らない。例えば、GPS衛星2と第1車載機200との幾何距離(Geometric Distance)と擬似距離との差を選択の条件としてGPS衛星2を選択する構成(以下、変形例3)としてもよい。
 ここで、変形例3における航法メッセージ認証システム1について、図面を用いて説明を行う。なお、説明の便宜上、前述の実施形態の説明に用いた図に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 変形例3における航法メッセージ認証システム1は、第1認証対象衛星選択処理の一部が異なる点を除けば、実施形態1における航法メッセージ認証システム1と同様である。
 <変形例3における第1認証対象衛星選択処理>
 ここで、変形例2における第1車載機200の制御部220での第1認証対象衛星選択処理について、図14に示すフローチャートを用いて説明を行う。図14のフローチャートは、図4のフローチャートからS3、S4の処理のみを入れ替えたものであって、S3、S4の処理と入れ替えたS3b、S4bの処理の部分を抜き出して示している。
 まず、S2に続くS3bでは、x番目のGPS衛星2からS1で取得した航法メッセージに含まれる軌道情報とその航法メッセージの発信時刻とからx番目のGPS衛星2の衛星位置を算出する。そして、算出した衛星位置と第1車載機200の現在位置とから、x番目のGPS衛星2と第1車載機200との幾何距離を算出する。
 軌道情報は、エフェメリスデータでもアルマナックデータであってもよいが、精度の観点からはエフェメリスデータが好ましい。また、第1車載機200の現在位置は、前回の測位からの移動距離が所定距離(例えば100m)未満であれば、前回の測位で得られた値を用いる構成とすればよい。他にも、前回の測位で得られた位置を基点として自律航法によって推定した位置を用いる構成としてもよい。
 また、S3bでは、x番目のGPS衛星2からS1で取得した航法メッセージに含まれる発信時刻と、その航法メッセージを第1車載機200で受信した受信時刻とから定まる擬似距離を算出する。言うまでもないが、擬似距離とは、GPS衛星2からの発信時刻と第1車載機200での受信時刻とから決まる伝搬時間に光速を積算して算出される、GPS衛星2と第1車載機200との距離である。
 そして、S3bでは、x番目のGPS衛星2と第1車載機200との間の幾何距離と擬似距離との差(以下、距離差分)を特定する。擬似距離は伝搬時間から定まる距離であるので、マルチパスの影響によって幾何距離との差が生じる。マルチパスが生じると、信号品質が低下するので、上述の距離差分が小さいほど、信号品質が良好だと言える。よって、距離差分が本開示の信号品質評価値に相当し、S3bが本開示の評価値特定部に相当する。
 S4bでは、S3bで特定した距離差分が閾値以下か否かを判定する。ここで言うところの閾値とは、測位結果に誤差を与える可能性が小さいと言える程度に良好な信号品質が得られると言える距離差分であればよく、任意に設定可能な値である。そして、S3bで特定した距離差分が閾値以下と判定した場合(S4bでYES)には、S5に移る。一方、閾値より大きいと判定した場合(S4bでNO)には、S6に移る。
 変形例3におけるS5では、S3bで特定した距離差分が閾値以下と判定されたGPS衛星2を、認証関連処理を行う対象とするGPS衛星2として選択し、S6に移ることになる。また、変形例3におけるS8では、S5で選択された全てのGPS衛星2のPRN IDとS3bで特定した距離差分(つまり、信号品質評価値)とを紐付けた選択済衛星リストをメモリに保存することになる。
 <変形例3のまとめ>
 変形例3によっても、第1認証対象衛星選択処理では、得られる航法メッセージの信号品質が良好と言える程度の距離差分となるGPS衛星2を選択するので、選択したGPS衛星2から受信した航法メッセージをもとに測位処理を行うことによって、信号品質が良好な航法メッセージを用いて測位できる。
 <変形例4>
 変形例2や変形例3では、SN比に替えて、仰角や幾何距離と擬似距離との距離差分を、GPS衛星2を選択するための条件として用いる構成を示したが、必ずしもこれに限らない。例えば、これらの条件を複数組み合わせてGPS衛星2を選択する構成としてもよい。例えば、全ての条件を組み合わせる場合、選択済衛星リストには、S5で選択された全てのGPS衛星2のPRN IDと、そのGPS衛星2についてのSN比、仰角、及び幾何距離と擬似距離との距離差分とを紐付けられることになる。
 <変形例5>
 なお、発信された航法メッセージの信号品質がより良好と評価できるGPS衛星2から順に所定の複数個のGPS衛星2を選択する変形例1の構成と、変形例2~4の構成とを組み合わせた構成としてもよい。
 例えば、変形例1と変形例4とを組み合わせる場合には、SN比、仰角、幾何距離と擬似距離との距離差分といった信号品質評価値のうちの、いずれかの信号品質評価値を最優先してGPS衛星2の順位付けをして、上位の所定数のGPS衛星2を選択する構成とすればよい。
 他にも、SN比、仰角、幾何距離と擬似距離との距離差分といった信号品質評価値にそれぞれ重み付けを施し、各パラメータから総合的に信号品質を評価する関数などを用いてもよい。すなわち、SN比、仰角、幾何距離と擬似距離との距離差分を変数として、SN比が大きいほど、仰角が大きいほど、距離差分が小さいほど、出力値が大きくなる関数を設計して、当該関数の出力値が大きい上位の所定数のGPS衛星2を選択する構成としてもよい。
 <変形例6>
 変形例1~5の構成は、第2車載機300での第2認証対象衛星選択処理に適用する構成としてもよい。
 <変形例7>
 前述の実施形態では、第1車載機200は、車車間通信によってNMA関連情報を第2車載機300に送信する構成を示したが、必ずしもこれに限らない。例えば、路側機を中継することで、路車間通信によってNMA関連情報を第1車載機200から第2車載機300に送信する構成としてもよい。他にも、公衆通信回線網を利用して、NMA関連情報を第1車載機200から第2車載機300に送信する構成としてもよい。
 <変形例8>
 前述の実施形態では、GPS衛星2から受信した航法メッセージのみを測位に用いた場合の例を挙げて説明を行ったが、QZS衛星3から受信した航法メッセージを測位に用いる構成としてもよい。この場合、QZS衛星3から受信した航法メッセージの認証についても、GPS衛星2の場合と同様にして行う構成とすればよい。
 変形例8の一例としては、QZS衛星3からモニタステーション110で受信した航法メッセージからRANDメッセージを生成し、このRANDメッセージをもとに認証センタ120でパリティデータを作成する。そして、作成したパリティデータをマスタコントロールステーション130に送り、そのパリティデータをマスタコントロールステーション130からQZS衛星3に送信する。QZS衛星3は、そのパリティデータを含んだ航法メッセージを地上に向けて放送する。
 第1車載機200や実施形態2以降の第2車載機300は、QZS衛星3から受信した航法メッセージからRANDメッセージを作成し、このRANDメッセージと認証センタ120から取得するHマトリクスとから比較パリティデータを作成する。そして、作成した比較パリティデータと、QZS衛星3から受信したパリティデータとを比較することで認証を行う構成とすればよい。
 <変形例9>
 前述の実施形態で説明した航法メッセージ認証型の認証方法はあくまで一例であり、認証機関へのアクセスが必要な認証方法であれば、他の認証方法を用いる構成としてもよい。
 <変形例10>
 前述の実施形態では、車両で用いられる第1車載機200及び第2車載機300を例に挙げて説明を行ったが、必ずしもこれに限らない。例えば、第1車載機200や第2車載機300と同様の航法メッセージ受信装置を、ユーザに携帯される携帯端末等に適用する構成としてもよい。
 本開示の一例に係る航法メッセージ認証型測位装置によれば、衛星受信機で航法メッセージを受信できた人工衛星のうち、選択部で選択した人工衛星に絞って、受信した航法メッセージに応じた認証用情報の取得を行ったり、受信した航法メッセージの認証を行ったりすればよくなる。よって、衛星受信機で航法メッセージを受信できた人工衛星の全てについて、受信した航法メッセージに応じた認証用情報の取得を行ったり、受信した航法メッセージの認証を行ったりする場合よりも、認証にかかる時間や処理負荷を低減できる。
 また、評価値特定部で特定した信号品質評価値をもとに、発信された航法メッセージの信号品質が良好と評価できる人工衛星を選択部で選択し、選択した人工衛星から受信した航法メッセージをもとに測位部で航法メッセージ認証型測位装置の位置を測位するので、信号品質が良好な航法メッセージを用いて測位できる可能性が高まる。その結果、認証にかかる時間や処理負荷を低減しながらも、より精度の高い測位を行うことが可能になる。
 この出願に記載されるフローチャート、あるいは、フローチャートの処理は、複数のステップ(あるいはセクションと言及される)から構成され、各ステップは、たとえば、S1と表現される。さらに、各ステップは、複数のサブステップに分割されることができる、一方、複数のステップが合わさって一つのステップにすることも可能である。さらに、このように構成される各ステップは、デバイス、モジュール、ミーンズとして言及されることができる。
 なお、本開示は、上述した各実施形態に限定されるものではなく、本開示に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。

Claims (7)

  1.  衛星測位システムで用いられる人工衛星からの航法メッセージを受信する衛星受信機(230、330)と、
     前記人工衛星から受信した航法メッセージに応じた認証用情報を、認証センタから取得する認証用情報取得部(S25)と、
     前記認証用情報取得部(S25)で取得した前記認証用情報を用いて、前記衛星受信機(230、330)で受信した前記航法メッセージが正規のものであることの認証を行う認証部(S29~S31)と、
     前記衛星受信機(230、330)で複数の前記人工衛星から受信した前記航法メッセージをもとに航法メッセージ認証型測位装置の位置を測位する測位部(S42)とを備える航法メッセージ認証型測位装置(200、300)であって、
     前記衛星受信機(230、330)が受信した前記航法メッセージについて、前記航法メッセージの信号品質を評価できる信号品質評価値を特定する評価値特定部(S3、S3a、S3b、S64、S83)と、
     前記評価値特定部(S3、S3a、S3b、S64、S83)で特定した前記信号品質評価値をもとに、前記衛星受信機(230、330)で前記航法メッセージを受信できた前記人工衛星のうち、発信された前記航法メッセージの信号品質が良好と評価できる人工衛星を選択する選択部(S5、S41、S68、S85、S88)とを備え、
     前記認証用情報取得部(S25)は、前記選択部(S5、S41、S68、S85、S88)で選択した前記人工衛星から受信した前記航法メッセージに応じた前記認証用情報に絞って取得し、
     前記認証部(S29~S31)は、前記選択部(S5、S41、S68、S85、S88)で選択した前記人工衛星から前記衛星受信機(230、330)で受信した前記航法メッセージが正規のものであることを、前記認証用情報取得部(S25)で取得した前記認証用情報を用いて認証を行い、
     前記測位部(S42)は、前記選択部(S5、S41、S68、S85、S88)で選択した前記人工衛星から受信した前記航法メッセージをもとに航法メッセージ認証型測位装置(200、300)の位置を測位する航法メッセージ認証型測位装置。
  2.  請求項1において、
     前記選択部(S85、S88)は、前記評価値特定部(S83)で特定した前記信号品質評価値をもとに、前記衛星受信機(230、330)で前記航法メッセージを受信できた前記人工衛星のうち、発信された前記航法メッセージの信号品質がより良好と評価できる人工衛星から順に所定の複数個の人工衛星を選択する航法メッセージ認証型測位装置。
  3.  請求項1又は2において、
     前記評価値特定部(S3、S83)は、前記衛星受信機(230、330)が受信した前記航法メッセージの信号対雑音比を、前記信号品質評価値として特定する航法メッセージ認証型測位装置。
  4.  請求項1~3のいずれか1項において、
     前記評価値特定部(S3a)は、前記衛星受信機(230、330)が受信した前記航法メッセージに含まれる前記人工衛星の軌道情報を用いて求められる、前記人工衛星の仰角を、前記信号品質評価値として特定する航法メッセージ認証型測位装置。
  5.  請求項1~4のいずれか1項において、
     前記評価値特定部(S3b)は、前記衛星受信機(230、330)が受信した前記航法メッセージに含まれる前記人工衛星の軌道情報を用いて求められる、前記人工衛星と航法メッセージ認証型測位装置(200、300)との幾何距離と、前記衛星受信機(230、330)が受信した前記航法メッセージの伝搬時間から定まる、前記人工衛星と航法メッセージ認証型測位装置(200、300)との擬似距離との差を、前記信号品質評価値として特定する航法メッセージ認証型測位装置。
  6.  請求項1~5のいずれか1項において、
     前記選択部(S5、S41)で選択した前記人工衛星を識別できる識別情報と、前記選択部(S5、S41)で選択した前記人工衛星についての、前記認証部(S29~S31)で認証が成立済みか否かを示す認証情報とを含む情報を、航法メッセージ認証型測位装置(200)の外部に送信する送信部(212)を備える航法メッセージ認証型測位装置。
  7.  請求項1~6のいずれか1項において、
     航法メッセージ認証型測位装置(300)とは異なる、他の航法メッセージ認証型測位装置(200)から送信されてくる、前記他の航法メッセージ認証型測位装置(200)の前記選択部(S5、S41)で選択した前記人工衛星を識別できる識別情報と、前記選択部(S5、S41)で選択した前記人工衛星についての、前記他の航法メッセージ認証型測位装置(200)の前記認証部(S29~S31)で認証が成立済みか否かを示す認証情報とを含む情報を受信する受信部(311)と、
     前記航法メッセージ認証型測位装置(300)の前記選択部(S68)は、前記受信部(311)で受信した前記識別情報と前記認証情報とをもとに、前記他の航法メッセージ認証型測位装置(200)において前記航法メッセージの認証が成立済みの前記人工衛星を優先的に選択する航法メッセージ認証型測位装置。
PCT/JP2015/000251 2014-02-06 2015-01-21 航法メッセージ認証型測位装置 WO2015118819A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580006324.9A CN105940318B (zh) 2014-02-06 2015-01-21 导航消息认证型位置测定装置
DE112015000695.8T DE112015000695T5 (de) 2014-02-06 2015-01-21 Ortungsvorrichtung vom Navigationsnachrichtenauthentifizierungstyp
SG11201606140TA SG11201606140TA (en) 2014-02-06 2015-01-21 Navigation message authentication type positioning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-021633 2014-02-06
JP2014021633A JP2015148521A (ja) 2014-02-06 2014-02-06 航法メッセージ認証型測位装置

Publications (1)

Publication Number Publication Date
WO2015118819A1 true WO2015118819A1 (ja) 2015-08-13

Family

ID=53777634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000251 WO2015118819A1 (ja) 2014-02-06 2015-01-21 航法メッセージ認証型測位装置

Country Status (5)

Country Link
JP (1) JP2015148521A (ja)
CN (1) CN105940318B (ja)
DE (1) DE112015000695T5 (ja)
SG (1) SG11201606140TA (ja)
WO (1) WO2015118819A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017174360A1 (de) * 2016-04-07 2017-10-12 Volkswagen Aktiengesellschaft Navigationsverfahren, navigationseinrichtung und navigationssystem
CN108562920A (zh) * 2017-12-28 2018-09-21 上海司南卫星导航技术股份有限公司 一种快速评估gnss观测数据质量的方法、gnss装置以及计算机可读介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6504046B2 (ja) * 2015-12-24 2019-04-24 株式会社デンソー 測位装置及び測位結果利用システム
US10732288B2 (en) * 2017-06-27 2020-08-04 Here Global B.V. Enhanced use of satellite navigation system related data
US10694382B2 (en) 2017-06-27 2020-06-23 Here Global B.V. Authentication of satellite navigation system receiver
US10698115B2 (en) 2017-06-27 2020-06-30 Here Global B.V. Supporting an extended use of assistance data for Galileo
CN107884788B (zh) * 2017-10-26 2021-06-08 慧众行知科技(北京)有限公司 一种定位卫星筛选方法及系统
JP6908865B2 (ja) * 2018-07-13 2021-07-28 日本電信電話株式会社 航法衛星システム受信装置、その航法衛星信号処理方法及びプログラム
WO2022107254A1 (ja) * 2020-11-18 2022-05-27 日本電信電話株式会社 衛星信号受信装置、衛星信号処理方法、及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127923A (ja) * 2010-12-17 2012-07-05 Komatsu Ltd 測位装置、及び測位方法
US20130127664A1 (en) * 2011-11-18 2013-05-23 Qualcomm Incorporated SPS Authentication
JP2013130395A (ja) * 2011-12-20 2013-07-04 Hitachi Information & Control Solutions Ltd 位置情報認証システムおよび位置情報認証方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228232A (ja) * 2000-02-21 2001-08-24 Matsushita Electric Ind Co Ltd Gps受信機
JP2004085222A (ja) * 2002-08-23 2004-03-18 Pioneer Electronic Corp 移動体の測位装置、測位方法及びコンピュータプログラム
JP4644018B2 (ja) * 2005-03-31 2011-03-02 株式会社日立製作所 位置認証方法、移動体端末および制御局
JP2011017555A (ja) * 2009-07-07 2011-01-27 Sony Corp 通信装置、通信方法、プログラムおよび通信システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127923A (ja) * 2010-12-17 2012-07-05 Komatsu Ltd 測位装置、及び測位方法
US20130127664A1 (en) * 2011-11-18 2013-05-23 Qualcomm Incorporated SPS Authentication
JP2013130395A (ja) * 2011-12-20 2013-07-04 Hitachi Information & Control Solutions Ltd 位置情報認証システムおよび位置情報認証方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017174360A1 (de) * 2016-04-07 2017-10-12 Volkswagen Aktiengesellschaft Navigationsverfahren, navigationseinrichtung und navigationssystem
US10908300B2 (en) 2016-04-07 2021-02-02 Volkswagen Aktiengesellschaft Navigation method, navigation device and navigation system
CN108562920A (zh) * 2017-12-28 2018-09-21 上海司南卫星导航技术股份有限公司 一种快速评估gnss观测数据质量的方法、gnss装置以及计算机可读介质
CN108562920B (zh) * 2017-12-28 2021-12-31 上海司南卫星导航技术股份有限公司 一种快速评估gnss观测数据质量的方法、gnss装置以及计算机可读介质

Also Published As

Publication number Publication date
CN105940318B (zh) 2017-12-19
DE112015000695T5 (de) 2016-10-20
SG11201606140TA (en) 2016-09-29
CN105940318A (zh) 2016-09-14
JP2015148521A (ja) 2015-08-20

Similar Documents

Publication Publication Date Title
WO2015118819A1 (ja) 航法メッセージ認証型測位装置
US9883479B2 (en) Generating and publishing validated location information
JP2014510422A5 (ja)
RU2013127396A (ru) Аутентификация радиоприемника спутниковой связи на основе сфокусированного луча
JP2013130395A (ja) 位置情報認証システムおよび位置情報認証方法
CN110166942B (zh) 一种导航方法、服务器及用户终端
TWI525332B (zh) A location information authentication system, a positioning terminal, and a location information acquisition device
CN103916435A (zh) 判断信息真实性的方法和装置
JP6427889B2 (ja) 航法メッセージ認証システム、受信端末、及び認証処理装置
CN109348477B (zh) 基于服务网络的无线物联网物理层认证方法
CN108966232B (zh) 基于服务网络的无线物联网物理层混合认证方法及系统
JP6257504B2 (ja) 移動端末装置及び情報処理システム及び情報処理方法及びプログラム
CN117055071B (zh) 一种基于多源信息的卫星导航欺骗干扰检测系统及其检测方法
US10864888B2 (en) Systems and methods for activating vehicle functions
JP2019054387A (ja) 車車間通信アプリメッセージの伝搬遅延測定システム及び伝搬遅延測定方法
KR102213953B1 (ko) 위성신호 생성장치 및 위성신호 생성 방법
WO2015118805A1 (ja) 測位端末
US20220406174A1 (en) Systems and methods for providing anonymous vehicle-to-vehicle communications associated with traffic incidents
JP6252245B2 (ja) 航法メッセージ受信装置及び簡易認証システム
JP6269123B2 (ja) 測位機能付き装置、測位結果受信装置、及び測位結果利用システム
JP6252246B2 (ja) 航法メッセージ受信装置
JP6252247B2 (ja) 航法メッセージ受信装置
JP6379503B2 (ja) 航法メッセージ認証型測位装置
CN114422113B (zh) 获得邻近度的方法和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746804

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015000695

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746804

Country of ref document: EP

Kind code of ref document: A1