WO2015115808A1 - 경화체 - Google Patents

경화체 Download PDF

Info

Publication number
WO2015115808A1
WO2015115808A1 PCT/KR2015/000927 KR2015000927W WO2015115808A1 WO 2015115808 A1 WO2015115808 A1 WO 2015115808A1 KR 2015000927 W KR2015000927 W KR 2015000927W WO 2015115808 A1 WO2015115808 A1 WO 2015115808A1
Authority
WO
WIPO (PCT)
Prior art keywords
moles
formula
cured product
group
ratio
Prior art date
Application number
PCT/KR2015/000927
Other languages
English (en)
French (fr)
Inventor
고민진
김경미
정재호
최범규
김민균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/112,387 priority Critical patent/US9837329B2/en
Priority to JP2016548742A priority patent/JP6359110B2/ja
Priority to EP15742985.3A priority patent/EP3101052B1/en
Priority to CN201580006335.7A priority patent/CN105940040B/zh
Priority claimed from KR1020150013459A external-priority patent/KR101695529B1/ko
Publication of WO2015115808A1 publication Critical patent/WO2015115808A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/008Additives improving gas barrier properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • This application relates to a cured product and its use.
  • LEDs Light emitting diodes
  • LEDs are devices that are utilized in various fields such as light sources and lighting of display devices.
  • Patent Documents 1 to 3 propose techniques for improving the above problems.
  • the sealing material known to date is insufficient in gas barrier property, adhesiveness, etc., and lacks heat resistance, heat shock resistance, and crack resistance.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-274571
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-196151
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-226551
  • the present application provides a cured product and its use.
  • the cured product of the present application is a reactant of a mixture (curable composition) containing an aliphatic unsaturated bond functional polyorganosiloxane and a compound (crosslinking agent) containing a hydrogen atom bonded to a silicon atom, for example, hydrogen silica of the mixture. It may be a hydrosilylation reaction product.
  • This cured product is, for example, in the case represented by the normal (R 3 SiO 1/2) a (, unit M or less) so-called monofunctional siloxane units represented by the case, usually (R 2 SiO 2/2) So-called difunctional siloxane units (hereinafter referred to as D units), usually referred to as (RSiO 3/2 ), so-called trifunctional siloxane units (hereinafter referred to as T units) and usually referred to as (SiO 4/2 ) It may comprise one or more siloxane units selected from so-called tetrafunctional siloxane units (hereinafter referred to as Q units).
  • R is a functional group bonded to silicon (Si), and may be, for example, hydrogen, an alkoxy group, an epoxy group or a monovalent hydrocarbon group.
  • the cured product may include one or more units represented by the following Formula (1).
  • each R is independently hydrogen, an epoxy group, an alkoxy group, or a monovalent hydrocarbon group, and A is an alkylene group having 1 to 4 carbon atoms.
  • the term epoxy group may mean a cyclic ether having three ring constituent atoms or a monovalent moiety derived from a compound containing the cyclic ether.
  • the epoxy group include glycidyl group, epoxyalkyl group, glycidoxyalkyl group or alicyclic epoxy group.
  • the alicyclic epoxy group may mean a monovalent moiety derived from a compound containing an aliphatic hydrocarbon ring structure, wherein the two carbon atoms forming the aliphatic hydrocarbon ring also include an epoxy group.
  • an alicyclic epoxy group having 6 to 12 carbon atoms can be exemplified, for example, a 3,4-epoxycyclohexylethyl group or the like can be exemplified.
  • the term monovalent hydrocarbon group may refer to a compound consisting of carbon and hydrogen or a monovalent moiety derived from a derivative of such a compound.
  • the monovalent hydrocarbon group may contain 1 to 25 carbon atoms.
  • an alkyl group, an alkenyl group, an alkynyl group, etc. can be illustrated.
  • alkyl group or alkoxy group may mean an alkyl group or an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkyl group or alkoxy group may be linear, branched or cyclic.
  • the alkyl group or alkoxy group may be optionally substituted with one or more substituents.
  • alkenyl group may mean an alkenyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms.
  • the alkenyl group may be linear, branched, or cyclic, and may be optionally substituted with one or more substituents.
  • alkynyl group may mean an alkynyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms.
  • the alkynyl group may be linear, branched, or cyclic, and may be optionally substituted with one or more substituents.
  • aryl group is selected from a compound or a derivative thereof in which a benzene ring or two or more benzene rings are connected, or a structure containing a condensed or bonded structure sharing one or two or more carbon atoms It may mean a monovalent residue derived.
  • the range of the aryl group referred to herein may include a functional group commonly referred to as an aryl group as well as a so-called aralkyl group or an arylalkyl group.
  • the aryl group may be, for example, an aryl group having 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 12 carbon atoms.
  • aryl group examples include phenyl group, dichlorophenyl, chlorophenyl, phenylethyl group, phenylpropyl group, benzyl group, tolyl group, xylyl group or naphthyl group.
  • substituents that may be optionally substituted with an epoxy group, an alkoxy group or a monovalent hydrocarbon group include an epoxy group such as halogen, glycidyl group, epoxyalkyl group, glycidoxyalkyl group or alicyclic epoxy group such as chlorine or fluorine, and acryl.
  • a royl group, a methacryloyl group, an isocyanate group, a thiol group, or a monovalent hydrocarbon group may be exemplified, but is not limited thereto.
  • the unit of Chemical Formula 1 may be formed by a reaction between an aliphatic unsaturated bond and a hydrogen atom bonded to a silicon atom in the process of forming a cured product.
  • the ratio (C / Si) is a kind of material of the cured product.
  • the ratio and / or reaction conditions can be selected and adjusted.
  • By adjusting the ratio (C / Si) in the range as described above it is possible to form a cured body suitable for the intended use, in particular it may be possible to provide a cured body excellent in heat resistance, crack resistance and thermal shock resistance.
  • a specific method of controlling the ratio (C / Si) in the formation of the cured product will be described later.
  • A may be, in another example, an alkylene group having 1 to 3 carbon atoms, 1 to 2 carbon atoms, or 2 carbon atoms.
  • the unit of Formula (1) is a unit of the structure in which at least 2 silicon atoms (Si) contained in a hardening body are connected by the alkylene group represented by A.
  • the ratio (C / Si) of the number of moles of carbon atoms (C) and the number of moles of silicon (Si) of all silicon atoms in the formula (1) may be in the range of 0.15 to 0.55.
  • the ratio (C / Si) may be 0.2 or more in another example.
  • the ratio (C / Si) may be, for example, 0.5 or less, 0.45 or less, or 0.4 or less.
  • the ratio may be obtained by performing NMR analysis, for example, 29 Si-NMR analysis on the cured product.
  • NMR analysis is performed using a phenomenon in which a material containing an atomic nucleus ( 29 Si) having nuclear magnetic resonance and a magnetic moment absorbs electromagnetic waves of a specific frequency in a magnetic field.
  • the absorption depends on the kind of atomic nucleus, and even on the same atomic nucleus, depending on the chemical environment surrounding the atom (ex. The kind of atoms bonded to the atom). Therefore, the said ratio can be measured through the specific absorption spectrum which shows according to the kind of atomic nucleus or its chemical environment. Since a hardened
  • the cured product may include an aryl group, for example, an aryl group bonded to a silicon atom.
  • An aryl group can be contained in the range which the ratio (Ar / Si) of the number-of-moles (Si) of all the silicon atoms of a hardened
  • the ratio (Ar / Si) can be adjusted by controlling the number of moles of aryl groups and silicon atoms present in the polyorganosiloxane or crosslinking agent forming the cured product.
  • the ratio can also be measured by the NMR method described above.
  • the cured body may include one or more siloxane units selected from M, D, T, and Q units, as described above.
  • the cured body is represented by at least one T unit, for example, represented by Formula 2 below. It may include units.
  • R in formula (2) is hydrogen, an epoxy group, an alkoxy group or a monovalent hydrocarbon group.
  • the unit of formula (2) for example, the ratio (T / Si) of the number of moles (T) of the T unit and the number of moles (Si) of the total silicon atoms of the cured body is within the range of about 0.3 to about 0.6 or about 0.35 to 0.5 It may be included to belong. If T unit is included in this range, the hardened
  • the said ratio (T / Si) can be adjusted through adjustment of the ratio of the said T unit and silicon atom contained in the polyorganosiloxane and crosslinking agent which form hardened
  • the cured product may include one or more T units including silicon atoms bonded to aryl groups.
  • the T unit including the silicon atoms bonded to the aryl group has a ratio (T / Si) of the number of moles (T) of the T units and the number of moles (Si) of all the silicon atoms of the cured product to about 0.19 to about 0.6 Or in the range of about 0.3 to about 0.6.
  • the said ratio (T / Si) can be adjusted through adjustment of the ratio of the said T unit and silicon atom contained in the polyorganosiloxane and crosslinking agent which form hardened
  • the ratio can also be measured by the NMR method described above.
  • the cured product may include one or more D units in the above-described siloxane units.
  • the ratio (D / Si) of the number of moles (D) of the D units and the number of moles (Si) of all silicon atoms of the cured body is about 0.6 or less, 0.55 or less, 0.5 or less, 0.45 or less, or 0.4 or less
  • the ratio (D / Si) may be greater than 0, 0.01 or more, 0.05 or more, 0.1 or more, or 0.15 or more.
  • the ratio (D / Si) can be adjusted by controlling the ratio of the D unit and silicon atoms included in the polyorganosiloxane and the crosslinking agent forming the cured product. The ratio can also be measured by the NMR method described above.
  • the cured product may include one or more epoxy groups, for example epoxy groups bonded to silicon atoms.
  • An epoxy group can be contained in the range which the ratio (E / Si) of the number-of-moles (Si) of all the silicon atoms of a hardened
  • the ratio (E / Si) may be at least 0.001, at least 0.005, or at least 0.008 in another example. In another example, the ratio (E / Si) may be, for example, about 0.1 or less or about 0.05 or less.
  • the ratio can be controlled by controlling the ratio of the epoxy group and silicon atoms contained in the polyorganosiloxane and the crosslinking agent, which forms a cured product.
  • the cured product may include one or more alkenyl groups bonded to silicon atoms.
  • the cured product formed through the reaction between an aliphatic unsaturated bond such as an alkenyl group and a hydrogen atom bonded to a silicon atom is formed such that the aliphatic unsaturated bond, which is the reactive functional group, and the hydrogen atom bonded to the silicon atom are exhausted.
  • Alkenyl groups may be present.
  • the alkenyl group is, for example, about 0.15 or less, while the ratio (Ak / Si) of the number of moles (Ak) of the total alkenyl groups of the cured product and the number of moles (Si) of the total silicon atoms of the cured product exceeds 0, or 0.001 or more.
  • the ratio (Ak / Si) is adjusted so that the ratio of the alkenyl group which is an aliphatic unsaturated bond in the mixture forming the cured body is higher than the ratio of hydrogen atoms bonded to the silicon atoms reacting with it, or This can be achieved by adjusting the alkenyl group to remain.
  • the said ratio can also be measured by the NMR method mentioned above.
  • the alkenyl group may be included, for example, in M units.
  • the cured product may include units of the following Chemical Formula 3 as M units.
  • R 1 may be an alkenyl group
  • R 2 may be a monovalent hydrocarbon group, for example, an alkyl group.
  • the unit of Formula 3 is an M unit including at least one alkenyl group, and this unit is, for example, a ratio of the number of moles (V) of the M units to the number of moles (Si) of all silicon atoms of the cured product (V / Si). ) May be greater than 0, or greater than 0.001 and within the range of about 0.15 or less or about 0.1 or less. Through this, a hardened body of appropriate physical properties can be obtained.
  • the cured product can be obtained by reacting a mixture containing an aliphatic unsaturated bond functional polyorganosiloxane and a compound (crosslinking agent) containing a hydrogen atom bonded to a silicon atom, for example, hydrogen siliconization reaction.
  • a compound (crosslinking agent) containing a hydrogen atom bonded to a silicon atom for example, hydrogen siliconization reaction.
  • an alkylene group is generated by the reaction of the aliphatic unsaturated bond with the hydrogen atom, and the unit of Chemical Formula 1 may be generated.
  • the unit of Formula 1 and the ratio (C / Si) are basically controlled by controlling the ratio between the aliphatic unsaturated bonds contained in the polyorganosiloxane and the hydrogen atoms present in the crosslinking agent and the catalyst promoting the reaction between them. May be controlled.
  • optical semiconductors such as LEDs, which are the main uses of the cured bodies, include various housing materials such as polyphthalamide (PPA), polycyclohexylene-dimethylene terephthalates (PCT), epoxy molding compound (EMC), and white silicone, Depending on the application, any one of the above housing materials is selected and used.
  • PPA polyphthalamide
  • PCT polycyclohexylene-dimethylene terephthalates
  • EMC epoxy molding compound
  • white silicone any one of the above housing materials is selected and used.
  • the hardening process in which the hardened body is formed is usually performed in a state in which a curable composition, that is, a mixture containing the polyorganosiloxane and a crosslinking agent is injected into the housing material, and according to the housing material, a lot of outgassing occurs during the hardening process. And out-gassing inhibits hardening to inhibit the reaction of the aliphatic unsaturated bonds and hydrogen atoms, thereby making it difficult to achieve the desired ratio (C / Si).
  • a curable composition that is, a mixture containing the polyorganosiloxane and a crosslinking agent
  • a housing having a low outgassing is selected, or a prebaking process is performed on a housing in which outgassing occurs, and then injection and curing of the curable composition are performed. It may be advantageous to proceed.
  • the curing reaction needs to proceed so that the ratio (C / Si, etc.) can be achieved.
  • aliphatic unsaturated bond functional polyorganosiloxane for example, a polyorganosiloxane having an average unit of the following formula (4) can be used.
  • P is an alkenyl group
  • Q is an epoxy group alkoxy group or monovalent hydrocarbon group
  • a and b are numbers such that a + b is 1 to 2.2 and a / (a + b) is 0.001 to 0.15. .
  • a + b may be at least 1.1, at least 1.2, at least 1.3, or at least 1.4. Also, in Formula 4, a + b may be 2.1 or less, 2.0 or less, or 1.9 or less.
  • a / (a + b) may be at least 0.005, at least 0.01, at least 0.03, or at least 0.06 in another example. Also, in Formula 4, a / (a + b) may be 0.4 or less, 0.3 or less, 0.25 or less, 0.2 or less, or 0.15 or less in another example.
  • the polyorganosiloxane having a specific average unit means that the polyorganosiloxane is not only a single component having the average unit but also a mixture of two or more components and taking the average of the composition of the mixture. It may also be included in the case displayed in the average unit.
  • the polyorganosiloxane having an average unit of Formula 4 may include at least one of linear polyorganosiloxane, partially cross-linked polyorganosiloxane, or cross-linked polyorganosiloxane.
  • linear polyorganosiloxane may mean a polyorganosiloxane including only M and D units as siloxane units, and the term partially crosslinked polyorganosiloxane includes T or Q units together with D units.
  • a polyorganosiloxane having a sufficiently long linear structure derived from D units, having a ratio of D units (D / (D + T + Q)) to total D, T and Q units of 0.7 or more and less than 1 Can be.
  • crosslinked polyorganosiloxane essentially includes T or Q units, and may mean a polyorganosiloxane having a ratio (D / (D + T + Q)) of 0 or more and less than 0.7.
  • one or two or more of Q may be an aryl group.
  • the aryl group of Q has a ratio (Ar / Si) of the number of moles (Ar) of the aryl group to the number of moles (Si) of all the silicon atoms contained in the polyorganosiloxane of 0.3 to 1.0 or 0.5 to 0.5. May be present in an amount such that 1.0.
  • At least one of Q in Formula 4 may be an epoxy group.
  • the epoxy group of Q in the formula (4), the ratio (E / Si) of the number of moles (E) of the epoxy group to the number of moles (Si) of the total silicon atoms contained in the polyorganosiloxane is about 0.2 or less, about 0.15 or less , About 0.1 or less, about 0.05 or less, or about 0.03 or less.
  • the polyorganosiloxane in the average unit of Formula 4 may have a weight average molecular weight (Mw) of, for example, about 1000 to 10,000, about 1500 to about 8,000, about 1500 to 6000, about 1500 to 4000, or about 1500 to 3000. have.
  • Mw weight average molecular weight
  • the term weight average molecular weight may refer to a conversion value for standard polystyrene measured by gel permeation chromatography (GPC). Unless otherwise specified, the term molecular weight may mean weight average molecular weight.
  • the molecular weight of the polyorganosiloxane of the average unit of the formula (4) can be adjusted within the above range to effectively maintain moldability or workability before curing or strength after curing.
  • the compound containing the hydrogen atom bonded to the silicon atom contained in the mixture may be, for example, a linear, partially crosslinked or crosslinked polyorganosiloxane having one or two or more hydrogen atoms.
  • the compound may have an average unit of Formula 5 below.
  • Q is an epoxy group, an alkoxy group or a monovalent hydrocarbon group
  • c and d are numbers such that c + d is 1 to 2.8 and c / (c + d) is 0.001 to 0.34.
  • c + d may be in the range of 1.5 to 2.8, about 2 to 2.8 or about 2.3 to 2.8 in another example. Also, in Formula 5, c / (c + d) may be in the range of about 0.005 to 0.34, about 0.01 to 0.34, about 0.05 to 0.34, about 0.1 to 0.34, or about 0.15 to 0.34.
  • Such a compound may be a curing agent capable of reacting with the aliphatic unsaturated bonds of the aliphatic unsaturated bond functional polyorganosiloxane described above to crosslink the mixture to form a cured product.
  • the hydrogen atom of the compound may react with the aliphatic unsaturated bond of the aliphatic unsaturated bond functional polyorganosiloxane to form a cured product.
  • One or two or more of Q in the average unit of formula (5) may be an aryl group.
  • the ratio (Ar / Si) of the number of moles (Ar) of the aryl group to the number of moles (Si) of all silicon atoms contained in the compound of the average unit of the formula (5) is, for example, 0.25 or more, 0.3
  • Q may be an aryl group in a range which may be in a range of about 0.3 to 1.0 or about 0.5 to 1.0.
  • Compounds of average units of formula (5) may be solid or liquid. If the compound is a liquid, the viscosity at 25 ° C. may fall within the range of 300 mPa ⁇ s or less or 300 mPa ⁇ s or less. By controlling the viscosity as described above, the processability of the mixture and the hardness characteristics of the cured product can be maintained excellently.
  • the compound may, for example, have a molecular weight of less than 1,000 or less than 800. By adjusting the molecular weight in the above range, the strength and the like of the cured product can be maintained in an appropriate range.
  • the lower limit of the molecular weight of the compound is not particularly limited, and may be, for example, 250.
  • the compound of the average unit of Formula 5 all kinds of compounds may be used as long as the above properties are satisfied.
  • the compound of formula 6 may be used as the compound.
  • each R is independently hydrogen, an epoxy group, or a monovalent hydrocarbon group, and n is a number in the range of 1 to 10.
  • R may be, for example, an aryl group or an alkyl group, and may be an aryl group and an alkyl group within a range satisfying the ratio (Ar / Si) of the aryl group of the compound of the average unit of Formula 5 described above.
  • N in Formula 6 may be, for example, 1 to 8, 1 to 6, 1 to 4, 1 to 3 or 1 to 2.
  • the proportion, viscosity or molecular weight of the aryl group of the compound of formula 6 may be within the above range.
  • the compound containing a hydrogen atom bonded to the silicon atom for example, the content of the compound of the average unit of formula (5) or the compound of formula (6) may be selected within the range such that the mixture is cured to have the above characteristics have.
  • the content of the compound is a ratio of the number of moles (H) of hydrogen atoms of the compound (H / Ak) to the number of moles (Ak) of aliphatic unsaturated bonds of the aliphatic unsaturated bond functional polyorganosiloxane is 0.5 to 3.0, 0.7 to 2 or 1.05 to 1.3 can be selected.
  • the mixture may further comprise a hydrosilylation catalyst.
  • Hydrosilylation catalysts can be used to accelerate the hydrogensilylation reaction.
  • any conventional component known in the art can be used. Examples of such a catalyst include platinum, palladium or rhodium-based catalysts.
  • a platinum-based catalyst may be used, and examples of such catalysts include chloroplatinic acid, platinum tetrachloride, olefin complexes of platinum, alkenyl siloxane complexes of platinum or carbonyl complexes of platinum, and the like. It is not limited.
  • the content of the hydrosilylation catalyst is not particularly limited as long as it is contained in a so-called catalytic amount, that is, an amount that can act as a catalyst. Typically, it may be used in an amount of 0.1 ppm to 200 ppm or 0.2 ppm to 100 ppm based on the atomic weight of platinum, palladium or rhodium.
  • the mixture may also further include an tackifier in view of further improvement of adhesion to various substrates.
  • the tackifier is a component capable of improving self adhesiveness, and in particular, can improve self adhesiveness to metals and organic resins.
  • an adhesive imparting agent 1 or more types chosen from the group which consists of alkenyl groups, such as a vinyl group, a (meth) acryloyloxy group, a hydrosilyl group (SiH group), an epoxy group, an alkoxy group, an alkoxy silyl group, a carbonyl group, and a phenyl group Or silanes having two or more functional groups; Or organic silicon compounds such as cyclic or linear siloxanes having 2 to 30 or 4 to 20 silicon atoms, and the like, but are not limited thereto.
  • one kind or two or more kinds of the above-mentioned adhesion imparting agents may be further mixed and used.
  • the adhesion imparting agent when included, for example, it may be included in a ratio of 0.1 parts by weight to 20 parts by weight with respect to 100 parts by weight of the solid content of the mixture, the content may be appropriately changed in consideration of the desired adhesive improvement effect.
  • the mixture is, if necessary, 2-methyl-3-butyn-2-ol, 2-phenyl-3-1-butyn-2ol, 3-methyl-3-penten-1-yne, 3,5-dimethyl- Reaction inhibitors such as 3-hexene-1-yne, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane or ethynylcyclohexane; Inorganic fillers such as silica, alumina, zirconia or titania; Carbon functional silanes having an epoxy group and / or an alkoxysilyl group, partial hydrolysis condensates or siloxane compounds thereof; Thixotropy-imparting agents, such as fumed silica which can be used together with polyether etc .; filler; Phosphor; Conductivity imparting agents such as metal powders such as silver, copper or aluminum, and various carbon materials; Additives, such as a color tone adjuster, such as
  • Conditions for curing the mixture to form a cured body are set such that the final cured body includes the above-described configuration.
  • the cured product may be formed by maintaining the mixture at a temperature of about 60 ° C. to 200 ° C. for 10 minutes to 5 hours.
  • the present application also relates to a semiconductor device, for example, an optical semiconductor device.
  • An exemplary semiconductor device may be encapsulated by an encapsulant including the cured product.
  • the semiconductor element encapsulated with the encapsulant include a diode, a transistor, a thyristor, a photocoupler, a CCD, a solid state image pickup element, an integrated IC, a hybrid IC, an LSI, a VLSI, a light emitting diode (LED), and the like.
  • the semiconductor device may be a light emitting diode.
  • the light emitting diode etc. which were formed by laminating
  • the semiconductor material may include GaAs, GaP, GaAlAs, GaAsP, AlGaInP, GaN, InN, AlN, InGaAlN, or SiC, but are not limited thereto.
  • the substrate sapphire, spinel, SiC, Si, ZnO, or GaN single crystal may be exemplified.
  • a buffer layer may be formed between a board
  • GaN or AlN may be used.
  • the method of laminating the semiconductor material on the substrate is not particularly limited, and for example, the MOCVD method, the HDVPE method, or the liquid phase growth method can be used.
  • the structure of the light emitting diode may be, for example, a monojunction having a MIS junction, a PN junction, a PIN junction, a heterojunction, a double heterojunction, or the like.
  • the light emitting diode may be formed in a single or multiple quantum well structure.
  • the emission wavelength of the light emitting diode can be, for example, 250 nm to 550 nm, 300 nm to 500 nm or 330 nm to 470 nm.
  • the emission wavelength may mean a main emission peak wavelength.
  • the light emitting diode may be encapsulated with the cured body, and thus the encapsulation process may be performed using the above-mentioned mixture. Encapsulation of the light emitting diode may be carried out only with the mixture, and in some cases, other encapsulation materials may be used in combination with the mixture.
  • 2 types of sealing materials together, after sealing using the said mixture, you may seal with the other sealing material, you may seal with the other sealing material first, and then seal the surrounding with the said mixture.
  • an epoxy resin, a silicone resin, an acrylic resin, a urea resin, an imide resin, glass, etc. are mentioned.
  • the mixture is pre-injected into a mold form die, a lead frame in which the light emitting diode is fixed is immersed therein, the method of curing the mixture, and a light emitting diode inserted therein.
  • a method of pouring the mixture in the formwork and curing can be used.
  • injecting a mixture injection by a dispenser, transfer molding, injection molding, etc. can be illustrated.
  • the mixture is dropped onto a light emitting diode, applied by stencil printing, screen printing or a mask, and cured, the mixture is injected by a dispenser or the like into a cup having a light emitting diode disposed at the bottom thereof, Curing method and the like can be used.
  • the mixture may also be used as a die-bonding material for fixing the light emitting diode to a lead terminal or package, a passivation film or a package substrate on the light emitting diode, as necessary.
  • the shape of the sealing material is not particularly limited, and can be formed, for example, in the form of a shell lens, a plate or a thin film.
  • a method for improving the performance for example, a method of providing a light reflection layer or a light collecting layer on the back surface of a light emitting diode, a method of forming a complementary coloring part at the bottom, and providing a layer on the light emitting diode that absorbs light having a wavelength shorter than the main emission peak
  • the method etc. are mentioned.
  • An optical semiconductor for example, a light emitting diode is, for example, a backlight of a liquid crystal display (LCD), a light source, a light source of various sensors, a printer, a copier, a vehicle instrument light source, a signal lamp, an indicator light, a display, and the like. It can be effectively applied to a device, a light source of a planar light emitting body, a display, a decoration or various lights.
  • LCD liquid crystal display
  • Exemplary cured bodies when applied to optical semiconductors such as LEDs, can minimize luminance deterioration even when the device is used for a long time, and can provide a device having excellent crack resistance and excellent long-term reliability.
  • cured material is excellent in workability, workability, adhesiveness, etc., and does not produce cloudiness, stickiness on the surface, etc.
  • cured material is excellent in high temperature heat resistance, gas barrier property, etc.
  • the cured product can be applied to, for example, an encapsulant or an adhesive material of a semiconductor element.
  • Vi, Ph, Me and Ep represent a vinyl group, a phenyl group, a methyl group and a 3-glycidoxypropyl group, respectively.
  • the ratio (C / Si) of the number of moles (C) of silicon atoms connected to the ethylene group and the number of moles of carbon atoms (Si) of all the silicon atoms (C / Si) connected by the ethylene group present in the cured product is known in the known 29 Si NMR method. Measured accordingly. 29 reference compound during the measurement of the Si NMR using a TMS (Tetramethylsilane dilute in CDCl 3) was dissolved in CDCl 3 and chemical shifts were measured (chemical shift).
  • PPA polyphthalamide
  • PCT polycyclohexylphthalamide
  • a mixture (curable composition) was prepared by combining the catalyst (Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane) in an amount. Subsequently, the prepared mixture was kept at 140 ° C. for 1 hour to prepare a cured product. Curing of the cured product was performed by dispensing the mixture into a PPA cup.
  • cured material contains the 3-glycidoxy propyl group couple
  • the cured product contains silicon atoms connected by an ethylene group, and the ratio (C / Si) of the number of moles (C) of carbon atoms and the number of moles (Si) of all silicon atoms in the ethylene group is about 0.23. Confirmed.
  • the ratio (Ar / Si) of the number of moles (Si) of all silicon atoms to the number of moles (Ar) of all the aryl groups present in the cured body was about 0.76, and the silicon atoms to the number of moles (T) of all T units in the cured body.
  • the number of moles of Si was about 0.43, the ratio of moles of silicon atoms (D / Si) to the number of moles (D) of the total D units was about 0.29, and the ratio of the moles of silicon (V) of the total vinyl groups in the cured body was about 0.29.
  • the ratio (V / Si) of the number of moles of atoms (Si) was zero.
  • a mixture (curable composition) was prepared by combining the catalyst (Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane) in an amount. Subsequently, after dispensing the mixture in a PPA cup as in Example 1, the mixture (curable composition) was maintained at 140 ° C. for 1 hour to prepare a cured product.
  • the catalyst Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane
  • the cured product includes a 3-glycidoxy propyl group bonded to a silicon atom, and the ratio (E / Si) of the number of moles (E) of the 3-glycidoxypropyl group to the total number of silicon atoms (Si) of the silicon atoms is It was confirmed that it is about 0.01.
  • cured material contains the silicon atom connected by the ethylene group, and the ratio (C / Si) of the number-of-moles (C) of the carbon atoms and the number-of-moles (Si) of all the silicon atoms in the said ethylene group was about 0.23.
  • the ratio (Ar / Si) of the number of moles (Si) of all silicon atoms to the number of moles (Ar) of all the aryl groups present in the cured product was about 0.74, and the ratio of silicon atoms to the number of moles (T) of all T units in the cured product
  • the number of moles (Si) was about 0.43
  • the ratio of moles of silicon atoms (D / Si) to the number of moles (D) of the total D units was about 0.27
  • the ratio (V / Si) of the number of moles (Si) of was 0.
  • a mixture (curable composition) was prepared by combining the catalyst (Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane) in an amount. Subsequently, after dispensing the mixture in a PPA cup as in Example 1, the mixture (curable composition) was maintained at 140 ° C. for 1 hour to prepare a cured product.
  • the catalyst Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane
  • the cured product includes a 3-glycidoxy propyl group bonded to a silicon atom, and the ratio (E / Si) of the number of moles (E) of the 3-glycidoxypropyl group to the total number of silicon atoms (Si) of the silicon atoms is It was confirmed that it is about 0.05.
  • cured material contains the silicon atom connected by the ethylene group, and the ratio (C / Si) of the number-of-moles (C) of the carbon atoms and the number-of-moles (Si) of all the silicon atoms in the said ethylene group was about 0.23.
  • the ratio (Ar / Si) of the number of moles (Si) of all silicon atoms to the number of moles (Ar) of all the aryl groups present in the cured product was about 0.73, and the silicon atoms to the number of moles (T) of all T units in the cured product.
  • the number of moles of Si was about 0.43, the ratio of moles of silicon atoms (D / Si) to the number of moles (D) of the total D units was about 0.29, and the ratio of the moles of silicon (V) of the total vinyl groups in the cured body was about 0.29.
  • the ratio (V / Si) of the number of moles of atoms (Si) was zero.
  • the cured product includes a 3-glycidoxy propyl group bonded to a silicon atom, and the ratio (E / Si) of the number of moles (E) of the 3-glycidoxypropyl group to the total number of silicon atoms (Si) of the silicon atoms is It was confirmed that it is about 0.1.
  • cured material contains the silicon atom connected by the ethylene group, and the ratio (C / Si) of the number-of-moles (C) of the carbon atoms and the number-of-moles (Si) of all the silicon atoms in the said ethylene group was about 0.23.
  • the ratio (Ar / Si) of the number of moles (Si) of all silicon atoms to the number of moles (Ar) of all the aryl groups present in the cured product was about 0.68, and the silicon atoms to the number of moles (T) of all T units in the cured product.
  • the number of moles of Si was about 0.43, the ratio of moles of silicon atoms (D / Si) to the number of moles (D) of the total D units was about 0.29, and the ratio of the moles of silicon (V) of the total vinyl groups in the cured body was about 0.29.
  • the ratio (V / Si) of the number of moles of atoms (Si) was zero.
  • a mixture (curable composition) was prepared by combining the catalyst (Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane) in an amount. Subsequently, after dispensing the mixture in a PPA cup as in Example 1, the mixture (curable composition) was maintained at 140 ° C. for 1 hour to prepare a cured product.
  • the catalyst Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane
  • cured material does not contain the epoxy group couple
  • cured material contains the silicon atom connected by the ethylene group, and the ratio (C / Si) of the number-of-moles (C) of the carbon atoms and the number-of-moles (Si) of all the silicon atoms in the said ethylene group was about 0.23.
  • the ratio (Ar / Si) of the number of moles (Si) of all silicon atoms to the number of moles (Ar) of all the aryl groups present in the cured product was about 0.79, and the ratio of silicon atoms to the number of moles (T) of all T units in the cured product
  • the number of moles (Si) was about 0.48, the ratio of the number of moles (Si) of silicon atoms (D / Si) to the number of moles (D) of the total D units was about 0.27, and the silicon to the number of moles (V) of all vinyl groups in the cured product.
  • the ratio (V / Si) of the number of moles of atoms (Si) was zero.
  • the cured product includes a 3-glycidoxy propyl group bonded to a silicon atom, and the ratio (E / Si) of the number of moles (E) of the 3-glycidoxypropyl group to the total number of silicon atoms (Si) of the silicon atoms is It was confirmed that it is about 0.17.
  • cured material contains the silicon atom connected by the ethylene group, and the ratio (C / Si) of the number-of-moles (C) of the carbon atoms and the number-of-moles (Si) of all the silicon atoms in the said ethylene group was about 0.20.
  • the ratio (Ar / Si) of the number of moles (Si) of all silicon atoms to the number of moles (Ar) of all the aryl groups present in the cured product was about 0.65, and the ratio of silicon atoms to the number of moles (T) of all T units in the cured product
  • the number of moles (Si) was about 0.43
  • the ratio of moles of silicon atoms (D / Si) to the number of moles (D) of the total D units was about 0.35
  • the ratio (V / Si) of the number of moles of atoms (Si) was zero.
  • a mixture (curable composition) was prepared by combining the catalyst (Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane) in an amount. Subsequently, after dispensing the mixture in a PPA cup as in Example 1, the mixture (curable composition) was maintained at 140 ° C. for 1 hour to prepare a cured product.
  • the catalyst Platinum (0) -1,3-divinyl-1,1,3,3-tetramethyldisiloxane
  • the cured product includes a 3-glycidoxy propyl group bonded to a silicon atom, and the ratio (E / Si) of the number of moles (E) of the 3-glycidoxypropyl group to the total number of silicon atoms (Si) of the silicon atoms is It was confirmed that it is about 0.17.
  • cured material contains the silicon atom connected by the ethylene group, and the ratio (C / Si) of the number-of-moles (C) of carbon atoms and the number-of-moles (Si) of all the silicon atoms in the said ethylene group was about 0.26.
  • the ratio (Ar / Si) of the number of moles (Si) of all silicon atoms to the number of moles (Ar) of all the aryl groups present in the cured product was about 0.51, and the silicon atoms to the number of moles (T) of all T units in the cured product.
  • the number of moles (Si) of was about 0.38
  • the ratio of moles of silicon atoms (D) to the number of moles (D) of the total D units was about 0.25
  • the number of moles (V) of all the vinyl groups in the cured product was zero.
  • the cured body does not include a 3-glycidoxy propyl group bonded to a silicon atom.
  • cured material contains the silicon atom connected by the ethylene group, and the ratio (C / Si) of the number-of-moles (C) of carbon atoms and the number-of-moles (Si) of all the silicon atoms in the said ethylene group was about 0.08.
  • the ratio (Ar / Si) of the number of moles (Si) of all silicon atoms to the number of moles (Ar) of all the aryl groups present in the cured product was about 0.68, and the silicon atoms to the number of moles (T) of all T units in the cured product.
  • the number of moles of Si was about 0.43, the ratio of moles of silicon atoms (D / Si) to the number of moles (D) of the total D units was about 0.29, and the ratio of the moles of silicon (V) of the total vinyl groups in the cured body was about 0.29.
  • the ratio (V / Si) of the number of moles of atoms (Si) was zero.
  • the catalyst (Platinum (0) -1,3-divinyl-1,1,3,3-) in an amount of 0.2 ppm of Pt (0)
  • a cured product was prepared in the same manner as in Comparative Example 4, except that a mixture containing tetramethyldisiloxane) was used.
  • the cured body does not include a 3-glycidoxy propyl group bonded to a silicon atom.
  • cured material contains the silicon atom connected by the ethylene group, and the ratio (C / Si) of the number-of-moles (C) of carbon atoms and the number-of-moles (Si) of all the silicon atoms in the said ethylene group was about 0.13.
  • the ratio (Ar / Si) of the number of moles (Si) of all silicon atoms to the number of moles (Ar) of all the aryl groups present in the cured product was about 0.68, and the silicon atoms to the number of moles (T) of all T units in the cured product.
  • the number of moles of Si was about 0.43, the ratio of moles of silicon atoms (D / Si) to the number of moles (D) of the total D units was about 0.29, and the ratio of the moles of silicon (V) of the total vinyl groups in the cured body was about 0.29.
  • the ratio (V / Si) of the number of moles of atoms (Si) was zero.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

본 출원은, 경화체 및 그 용도에 관한 것이다. 상기 경화체는, 예를 들어, LED 등과 같은 광반도체에 적용될 경우에, 소자를 장시간 사용하여도 휘도 저하가 최소화되며, 내크렉 특성이 우수하여, 장기 신뢰성이 우수한 소자를 제공할 수 있다. 경화체는, 가공성, 작업성 및 접착성 등이 우수하고, 백탁 및 표면에서의 끈적임 등이 유발되지 않는다. 또한, 경화체는 고온 내열성 및 가스 배리어성 등이 우수하다. 경화체는, 예를 들면, 반도체 소자의 봉지재나 접착 소재로 적용될 수 있다.

Description

경화체
본 출원은, 경화체 및 그 용도에 관한 것이다.
LED(Light Emitting Diode)는 표시 장치의 광원이나 조명 등 다양한 분야에서 활용되고 있는 소자이다.
LED 봉지재로서, 접착성이 높고 역학적인 내구성이 우수한 에폭시 수지가 폭넓게 이용되고 있다. 그러나, 에폭시 수지는 청색 내지 자외선 영역의 광에 대한 투과율이 낮고, 또한 내열성과 내광성이 떨어지는 문제점이 있다. 이에 따라, 예를 들면, 특허문헌 1 내지 3 등에서는, 상기와 같은 문제점의 개량하기 위한 기술을 제안하고 있다. 그러나, 현재까지 알려진 봉지재는, 가스 배리어성이나 접착성 등이 충분하지 못하고, 내열성, 내열충격성과 균열 내성이 부족하다.
[선행기술문헌]
[특허문헌]
특허문헌 1: 일본특허공개 평11-274571호
특허문헌 2: 일본특허공개 제2001-196151호
특허문헌 3: 일본특허공개 제2002-226551호
본 출원은 경화체 및 그 용도를 제공한다.
본 출원의 경화체는, 지방족 불포화 결합 작용성 폴리오가노실록산과 규소 원자에 결합하고 있는 수소 원자를 포함하는 화합물(가교제)을 포함하는 혼합물(경화성 조성물)의 반응물, 예를 들면, 상기 혼합물의 수소규소화 반응물(hydrosilylation reaction product)일 수 있다.
이러한 경화체는, 예를 들면, 통상 (R3SiO1/2)로 표시되는 경우가 있는 소위 일관능성 실록산 단위(이하, M 단위), 통상 (R2SiO2/2)로 표시되는 경우가 있는 소위 이관능성 실록산 단위(이하, D 단위), 통상 (RSiO3/2)로 표시되는 경우가 있는 소위 삼관능성 실록산 단위(이하, T 단위) 및 통상 (SiO4/2)로 표시되는 경우가 있는 소위 사관능성 실록산 단위(이하, Q 단위)로부터 선택된 하나 이상의 실록산 단위를 포함할 수 있다. 상기 각 실록산 단위의 식에서 R은 규소(Si)에 결합되어 있는 관능기이고, 예를 들면, 수소, 알콕시기, 에폭시기 또는 1가 탄화수소기일 수 있다.
경화체는, 하기 화학식 1로 표시되는 단위를 하나 이상 포함할 수 있다.
[화학식 1]
(R2SiO1/2A1/2)
화학식 1에서 R은 각각 독립적으로 수소, 에폭시기, 알콕시기 또는 1가 탄화수소기이고, A는 탄소수 1 내지 4의 알킬렌기이다.
본 명세서에서 용어 에폭시기는, 특별히 달리 규정하지 않는 한, 3개의 고리 구성 원자를 가지는 고리형 에테르(cyclic ether) 또는 상기 고리형 에테르를 포함하는 화합물로부터 유도된 1가 잔기를 의미할 수 있다. 에폭시기로는 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등이 예시될 수 있다. 상기에서 지환식 에폭시기는, 지방족 탄화수소 고리 구조를 포함하고, 상기 지방족 탄화수소 고리를 형성하고 있는 2개의 탄소 원자가 또한 에폭시기를 형성하고 있는 구조를 포함하는 화합물로부터 유래되는 1가 잔기를 의미할 수 있다. 지환식 에폭시기로는, 6개 내지 12개의 탄소 원자를 가지는 지환식 에폭시기가 예시될 수 있고, 예를 들면, 3,4-에폭시시클로헥실에틸기 등이 예시될 수 있다.
본 명세서에서 용어 1가 탄화수소기는, 특별히 달리 규정하지 않는 한, 탄소와 수소로 이루어진 화합물 또는 그러한 화합물의 유도체로부터 유도되는 1가 잔기를 의미할 수 있다. 예를 들면, 1가 탄화수소기는, 1개 내지 25개의 탄소 원자를 포함할 수 있다. 1가 탄화수소기로는, 알킬기, 알케닐기 또는 알키닐기 등이 예시될 수 있다.
본 명세서에서 용어 알킬기 또는 알콕시기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기 또는 알콕시기를 의미할 수 있다. 상기 알킬기 또는 알콕시기는 직쇄형, 분지쇄형 또는 고리형일 수 있다. 또한, 상기 알킬기 또는 알콕시기는 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 명세서에서 용어 알케닐기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기를 의미할 수 있다. 상기 알케닐기는 직쇄형, 분지쇄형 또는 고리형일 수 있고, 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 명세서에서 용어 알키닐기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알키닐기를 의미할 수 있다. 상기 알키닐기는 직쇄형, 분지쇄형 또는 고리형일 수 있고, 임의적으로 하나 이상의 치환기로 치환되어 있을 수 있다.
본 명세서에서 용어 아릴기는, 특별히 달리 규정하지 않는 한, 벤젠 고리 또는 2개 이상의 벤젠 고리가 연결되어 있거나, 하나 또는 2개 이상의 탄소 원자를 공유하면서 축합 또는 결합된 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 잔기를 의미할 수 있다. 본 명세서에서 말하는 아릴기의 범위에는 통상적으로 아릴기로 호칭되는 관능기는 물론 소위 아르알킬기(aralkyl group) 또는 아릴알킬기 등도 포함될 수 있다. 아릴기는, 예를 들면, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 12의 아릴기일 수 있다. 아릴기로는, 페닐기, 디클로로페닐, 클로로페닐, 페닐에틸기, 페닐프로필기, 벤질기, 톨릴기, 크실릴기(xylyl group) 또는 나프틸기 등이 예시될 수 있다.
본 명세서에서 에폭시기, 알콕시기 또는 1가 탄화수소기에 임의적으로 치환되어 있을 수 있는 치환기로는, 염소 또는 불소 등의 할로겐, 글리시딜기, 에폭시알킬기, 글리시독시알킬기 또는 지환식 에폭시기 등의 에폭시기, 아크릴로일기, 메타크릴로일기, 이소시아네이트기, 티올기 또는 1가 탄화수소기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기 화학식 1의 단위는, 경화체의 형성 과정에서 지방족 불포화 결합과 규소 원자에 결합하고 있는 수소 원자간의 반응에 의해 형성될 수 있으며, 따라서 상기 비율(C/Si)은, 경화체의 재료의 종류, 그 비율 및/또는 반응 조건을 선택하여 조절할 수 있다. 상기와 같은 범위로 비율(C/Si)을 조절하여, 목적하는 용도에 적합한 경화체를 형성할 수 있으며, 특히 내열성, 균열 내성 및 내열충격성이 우수한 경화체의 제공이 가능할 수 있다. 경화체의 형성 과정에서 상기 비율(C/Si)을 조절하는 구체적인 방식은 후술한다.
화학식 1에서 A는 다른 예시에서 탄소수 1 내지 3, 탄소수 1 내지 2 또는 탄소수 2의 알킬렌기일 수 있다.
화학식 1의 단위는, 경화체에 포함되는 적어도 2개의 규소 원자(Si)가 A로 표시되는 알킬렌기에 의해 연결되어 있는 구조의 단위이다.
경화체에서 화학식 1의 A에 존재하는 탄소 원자의 몰수(C) 및 전체 규소 원자의 몰수(Si)의 비율(C/Si)은, 0.15 내지 0.55의 범위 내에 있을 수 있다. 상기 비율(C/Si)은, 다른 예시에서 0.2 이상일 수 있다. 또한, 다른 예시에서 상기 비율(C/Si)은, 예를 들면, 0.5 이하, 0.45 이하 또는 0.4 이하일 수 있다.
상기 비율은 경화체에 대하여 NMR 분석, 예를 들면, 29Si-NMR 분석을 수행하여 구할 수 있다. NMR 분석은 핵자기 공명(Nuclear Magnetic Resonance)과 자기 모멘트를 가지는 원자핵(29Si)이 포함된 물질이 자기장에서 특정 주파수의 전자파를 흡수하는 현상을 이용하여 수행된다. 상기 흡수는 원자핵의 종류에 따라서 다르고, 동일 원자핵인 경우에도 그 원자를 둘러싼 화학 환경(ex. 그 원자에 결합되어 있는 원자의 종류)에 따라 다르다. 따라서, 원자핵의 종류 또는 그 화학 환경에 따라서 나타나는 특유의 흡수 스펙트럼을 통해 상기 비율을 측정할 수 있다. 경화체는 통상 상온에서 고체이므로, 이 경우 고온 NMR 또는 고상 NMR 방식을 적용할 수 있다.
경화체는 아릴기, 예를 들면 규소 원자에 결합하고 있는 아릴기를 포함할 수 있다. 아릴기는, 예를 들면, 경화체의 전체 규소 원자의 몰수(Si)와 상기 아릴기의 몰수(Ar)의 비율(Ar/Si)이, 0.2 내지 1.2 또는 0.4 내지 1.0의 범위 내가 되는 범위 내로 포함될 수 있다. 이러한 범위에서 아릴기를 포함하여, 예를 들면, LED 등의 광반도체 소자에 적용되었을 때에 적절한 광추출 효율이 확보될 수 있고, 가스 투과 특성 등도 효율적으로 조절되는 경화체가 제공될 수 있다. 상기 비율(Ar/Si)은, 경화체를 형성하는 폴리오가노실록산이나 가교제 내에 존재하는 아릴기와 규소 원자의 몰수의 조절을 통해 조절할 수 있다. 상기 비율도 전술한 NMR 방식으로 측정할 수 있다.
경화체는 상기한 바와 같이, M, D, T 및 Q 단위로부터 선택된 하나 이상의 실록산 단위를 포함할 수 있는데, 하나의 예시에서 상기 경화체는 적어도 하나의 T 단위, 예를 들면, 하기 화학식 2로 표시되는 단위를 포함할 수 있다.
[화학식 2]
(RSiO3/2)
화학식 2에서 R은 수소, 에폭시기, 알콕시기 또는 1가 탄화수소기이다.
화학식 2의 단위는, 예를 들면, 상기 T 단위의 몰수(T)와 경화체의 전체 규소 원자의 몰수(Si)의 비율(T/Si)이 약 0.3 내지 약 0.6 또는 약 0.35 내지 0.5의 범위 내에 속하도록 포함될 수 있다. 이러한 범위에서 T 단위를 포함하면, 예를 들면, 기계적 강도나 가스 투과 특성 등 목적하는 용도에서 요구되는 특성이 우수한 경화체가 제공될 수 있다. 상기 비율(T/Si)은, 경화체를 형성하는 폴리오가노실록산과 가교제 등에 포함되는 상기 T 단위와 규소 원자의 비율의 조절을 통해 조절할 수 있다. 상기 비율도 전술한 NMR 방식으로 측정할 수 있다.
경화체는 아릴기가 결합된 규소 원자를 포함하는 T 단위를 하나 이상 포함할 수 있다. 예를 들어, 상기 아릴기가 결합된 규소 원자를 포함하는 T 단위는, 상기 T 단위의 몰수(T)와 경화체의 전체 규소 원자의 몰수(Si)의 비율(T/Si)이 약 0.19 내지 약 0.6 또는 약 0.3 내지 약 0.6의 범위 내가 될 수 있도록 포함될 수 있다. 이러한 범위에서 상기 T 단위를 포함하면, 예를 들면, LED 등의 광반도체 소자에 적용되었을 때에 적절한 광추출 효율이 확보될 수 있고, 가스 투과 특성 등도 효율적으로 조절되는 경화체가 제공될 수 있다. 상기 비율(T/Si)은, 경화체를 형성하는 폴리오가노실록산과 가교제 등에 포함되는 상기 T 단위와 규소 원자의 비율의 조절을 통해 조절할 수 있다. 상기 비율도 전술한 NMR 방식으로 측정할 수 있다.
경화체는 상기한 실록산 단위 중에서 D 단위를 하나 이상 포함할 수 있다. 예를 들어, 상기 D 단위는 상기 D 단위의 몰수(D)와 경화체의 전체 규소 원자의 몰수(Si)의 비율(D/Si)이 약 0.6 이하, 0.55 이하, 0.5 이하, 0.45 이하 또는 0.4 이하의 범위 내가 될 수 있도록 포함될 수 있다. 상기 비율(D/Si)은 다른 예시에서 0을 초과하거나, 0.01 이상, 0.05 이상, 0.1 이상 또는 0.15 이상일 수 있다. 이러한 범위에서 상기 D 단위를 포함하면, 예를 들면, 균열 내성, 내열성 및 내열충격성 등의 물성이 개선되는 이점이 있다. 상기 비율(D/Si)은, 경화체를 형성하는 폴리오가노실록산과 가교제 등에 포함되는 상기 D 단위와 규소 원자의 비율의 조절을 통해 조절할 수 있다. 상기 비율도 전술한 NMR 방식으로 측정할 수 있다.
경화체는 에폭시기, 예를 들면 규소 원자에 결합하고 있는 에폭시기를 하나 이상 포함할 수 있다. 에폭시기는, 예를 들면, 경화체의 전체 규소 원자의 몰수(Si)와 상기 에폭시기의 몰수(E)의 비율(E/Si)이, 0.0001 내지 0.15의 범위 내가 되는 범위 내로 포함될 수 있다. 상기 비율(E/Si)은 다른 예시에서 0.001 이상, 0.005 이상 또는 0.008 이상일 수 있다. 다른 예시에서, 상기 비율(E/Si)은 예를 들면, 0.1 이하 또는 0.05 이하 정도일 수 있다. 이러한 범위에서 에폭시기를 포함하면, 우수한 접착성을 나타내어 각종 용도에 효율적으로 적용될 수 있는 경화체가 제공될 수 있다. 상기 비율은 경화체를 형성하는, 폴리오가노실록산과 가교제에 포함되는 에폭시기 및 규소 원자의 비율의 조절을 통해 조절할 수 있다.
경화체는 규소 원자에 결합하고 있는 알케닐기를 하나 이상 포함할 수 있다. 통상적으로 알케닐기와 같은 지방족 불포화 결합과 규소 원자에 결합한 수소 원자간의 반응을 통해 형성되는 경화체는, 상기 반응성 작용기인 지방족 불포화 결합과 규소 원자에 결합한 수소 원자가 모두 소진되도록 형성되나, 상기 경화체에서는 일정량의 알케닐기가 존재할 수 있다. 알케닐기는, 예를 들면, 경화체의 전체 알케닐기의 몰수(Ak)와 경화체의 전체 규소 원자의 몰수(Si)의 비율(Ak/Si)이 0을 초과하거나, 혹은 0.001 이상이면서, 약 0.15 이하 또는 약 0.1 이하의 범위 내에 속할 수 있도록 포함될 수 있다. 이를 통해 균열 내성, 내열성 및 내열충격성 등의 물성이 개선되는 이점이 있다. 상기 비율(Ak/Si)은, 경화체를 형성하는 혼합물 내에서 지방족 불포화 결합인 상기 알케닐기의 비율이 그와 반응하는 규소 원자에 결합된 수소 원자의 비율에 비하여 높도록 조절하거나, 혹은 경화 조건의 조절을 통해 알케닐기가 잔존하도록 함으로써 달성할 수 있다. 상기 비율도 전술한 NMR 방식에 의해 측정할 수 있다.
상기 알케닐기는, 예를 들면, M 단위에 포함되어 있을 수 있다. 예를 들면, 경화체는 M 단위로서, 하기 화학식 3의 단위를 포함할 수 있다.
[화학식 3]
(R1R2 2SiO1/2)
화학식 3에서 R1은 알케닐기이고, R2는 1가 탄화수소기, 예를 들면, 알킬기일 수 있다.
화학식 3의 단위는 적어도 하나의 알케닐기를 포함하는 M 단위이고, 이 단위는, 예를 들면, 상기 M 단위의 몰수(V)와 경화체의 전체 규소 원자의 몰수(Si)의 비율(V/Si)이 0을 초과하거나, 혹은 0.001 이상이면서, 약 0.15 이하 또는 약 0.1 이하의 범위 내에 속할 수 있도록 포함될 수 있다. 이를 통해 적절한 물성의 경화체를 얻을 수 있다.
경화체는, 지방족 불포화 결합 작용성 폴리오가노실록산과 규소 원자에 결합하고 있는 수소 원자를 포함하는 화합물(가교제)을 포함하는 혼합물을 반응, 예를 들면, 수소규소화 반응시켜 수득할 수 있다. 상기 반응 과정에서 상기 지방족 불포화 결합과 상기 수소 원자의 반응에 의해 알킬렌기가 생성되면서, 상기 화학식 1의 단위가 생성될 수 있다.
따라서, 기본적으로 상기 폴리오가노실록산에 포함되어 있는 지방족 불포화 결합과 상기 가교제에 존재하는 수소 원자간의 비율 및 그들간의 반응을 촉진시키는 촉매의 비율의 조절을 통해 화학식 1의 단위와 상기 비율(C/Si)의 조절이 가능할 수 있다.
다만, 본 발명자들은 단순히 상기 폴리오가노실록산에 포함되어 있는 지방족 불포화 결합과 상기 가교제에 존재하는 수소 원자간의 비율 및 그들간의 반응을 촉진시키는 촉매의 비율만의 조절을 통해서는 상기 비율의 제어가 곤란하고, 상기 반응의 환경도 고려되어야 한다는 것을 확인하였다. 예를 들면, 상기 경화체의 주요 용도인 LED 등과 같은 광반도체는 PPA(polyphthalamide), PCT(polycyclohexylene-dimethylene terephthalates), EMC(Epoxy Molding Compound) 및 백색 실리콘(white silicone) 등의 다양한 하우징 재료가 있고, 용도에 따라서 상기 하우징 재료 중 어느 하나가 선택되어 사용된다. 경화체가 형성되는 경화 과정은 통상 상기 하우징 재료상에 경화성 조성물, 즉 상기 폴리오가노실록산과 가교제를 포함하는 혼합물이 주입된 상태에서 수행되는데, 하우징 재료에 따라서는 상기 경화 과정에서 아웃 개싱(outgassing)이 많이 발생하고, 이러한 아웃 개싱이 경화를 저해하여 상기 지방족 불포화 결합 및 수소 원자의 반응을 저해하고, 그에 따라 목적하는 비율(C/Si)의 달성이 어려워질 수 있다.
따라서, 상기 비율(C/Si)의 달성을 위하여는 아웃 개싱이 적은 하우징을 선택하거나, 혹은 아웃 개싱이 발생하는 하우징에 대하여 선베이킹(prebaking) 공정을 진행한 후 경화성 조성물의 주입과 경화 공정을 진행하는 것이 유리할 수 있다.
상기 사항 외에도 경화성 조성물의 경화와 관련된 인자는 다양하고, 그러한 인자를 고려하여 상기 비율(C/Si 등)의 달성이 가능하도록 경화 반응이 진행될 필요가 있다.
상기에서 지방족 불포화 결합 작용성 폴리오가노실록산로는, 예를 들면, 하기 화학식 4의 평균 단위를 가지는 폴리오가노실록산을 사용할 수 있다.
[화학식 4]
PaQbSiO(4-a-b)/2
화학식 4에서 P는 알케닐기이고, Q는 에폭시기 알콕시기 또는 1가 탄화수소기이며, a 및 b는 a+b가 1 내지 2.2이고, a/(a+b)가 0.001 내지 0.15가 되도록 하는 수이다.
화학식 4에서 a+b는 다른 예시에서 1.1 이상, 1.2 이상, 1.3 이상 또는 1.4 이상일 수 있다. 또한, 화학식 4에서 a+b는 다른 예시에서 2.1 이하, 2.0 이하 또는 1.9 이하일 수 있다.
화학식 4에서 a/(a+b)는 다른 예시에서 0.005 이상, 0.01 이상, 0.03 이상 또는 0.06 이상일 수 있다. 또한, 화학식 4에서 a/(a+b)는 다른 예시에서 0.4 이하, 0.3 이하, 0.25 이하, 0.2 이하 또는 0.15 이하일 수 있다.
본 명세서에서 폴리오가노실록산이 특정한 평균 단위를 가진다는 것은, 그 폴리오가노실록산이 그 평균 단위를 가지는 단일의 성분인 경우는 물론 2개 이상의 성분의 혼합물이면서 그 혼합물의 조성의 평균을 취하면, 그 평균 단위로 표시되는 경우도 포함될 수 있다.
하나의 예시에서 화학식 4의 평균 단위를 가지는 폴리오가노실록산은, 선형 폴리오가노실록산, 부분 가교형 폴리오가노실록산 또는 가교형 폴리오가노실록산 중 적어도 하나를 포함할 수 있다.
본 명세서에서 용어 선형 폴리오가노실록산은, 실록산 단위로는 M 및 D 단위만을 포함하는 폴리오가노실록산을 의미할 수 있고, 용어 부분 가교형 폴리오가노실록산은, T 또는 Q 단위를 D 단위와 함께 포함하되, D 단위로부터 유래하는 선형 구조가 충분히 긴 구조로서, 전체 D, T 및 Q 단위에 대한 D 단위의 비율(D/(D+T+Q))이 0.7 이상이면서 1 미만인 폴리오가노실록산을 의미할 수 있다. 본 명세서에서 용어 가교형 폴리오가노실록산은, T 또는 Q 단위를 필수적으로 포함하되, 상기 비율(D/(D+T+Q))이 0 이상이면서, 0.7 미만인 폴리오가노실록산을 의미할 수 있다.
화학식 4에서 Q 중 하나 또는 2개 이상은 아릴기일 수 있다. 예를 들면, 화학식 4에서 Q의 아릴기는, 폴리오가노실록산에 포함되는 전체 규소 원자의 몰수(Si)에 대한 상기 아릴기의 몰수(Ar)의 비율(Ar/Si) 이 0.3 내지 1.0 또는 0.5 내지 1.0이 되도록 하는 양으로 존재할 수 있다.
화학식 4에서 Q 중 하나 이상은 에폭시기일 수 있다. 예를 들면, 화학식 4에서 Q의 에폭시기는, 폴리오가노실록산에 포함되는 전체 규소 원자의 몰수(Si)에 대한 상기 에폭시기의 몰수(E)의 비율(E/Si)이 약 0.2 이하, 약 0.15 이하, 약 0.1 이하, 약 0.05 이하 또는 약 0.03 이하가 되도록 하는 양으로 존재할 수 있다.
화학식 4의 평균 단위의 폴리오가노실록산은, 예를 들면, 약 1000 내지 10,000, 약 1500 내지 약 8,000, 약 1500 내지 6000, 약 1500 내지 4000 또는 약 1500 내지 3000의 중량평균분자량(Mw)을 가질 수 있다. 본 명세서에서 용어 중량평균분자량은 GPC(Gel Permeation Chromatograph)로 측정된 표준 폴리스티렌에 대한 환산 수치를 의미할 수 있다. 특별히 달리 규정하지 않는 한, 용어 분자량은 중량평균분자량을 의미할 수 있다. 화학식 4의 평균 단위의 폴리오가노실록산의 분자량을 상기 범위 내로 조절하여 경화 전의 성형성 내지는 작업성이나, 경화 후의 강도를 효과적으로 유지할 수 있다.
혼합물에 포함되는 규소 원자에 결합하고 있는 수소 원자를 포함하는 화합물은, 예를 들면, 상기 수소 원자를 1개 또는 2개 이상 가지는 선형, 부분 가교형 또는 가교형 폴리오가노실록산일 수 있다.
예를 들면, 상기 화합물은, 하기 화학식 5의 평균 단위를 가질 수 있다.
[화학식 5]
HcQdSiO(4-c-d)/2
화학식 5에서 Q는 에폭시기, 알콕시기 또는 1가 탄화수소기이며, c 및 d는 c+d가 1 내지 2.8이고, c/(c+d)가 0.001 내지 0.34가 되도록 하는 수이다.
화학식 5에서 c+d는 다른 예시에서 1.5 내지 2.8, 약 2 내지 2.8 또는 약 2.3 내지 2.8의 범위 내에 있을 수 있다. 또한, 화학식 5에서 c/(c+d)는 약 0.005 내지 0.34, 약 0.01 내지 0.34, 약 0.05 내지 0.34, 약 0.1 내지 0.34 또는 약 0.15 내지 0.34의 범위 내에 있을 수 있다.
이러한 화합물은, 전술한 지방족 불포화 결합 작용성 폴리오가노실록산의 지방족 불포화 결합과 반응하여 혼합물을 가교시켜 경화체를 형성할 수 있는 경화제일 수 있다. 예를 들면, 상기 화합물의 수소 원자는 상기 지방족 불포화 결합 작용성 폴리오가노실록산의 지방족 불포화 결합과 부가 반응하여, 경화체를 형성할 수 있다.
화학식 5의 평균 단위에서 Q 중 하나 또는 2개 이상은 아릴기일 수 있다. 예를 들면, 화학식 5의 평균 단위의 화합물에 포함되는 전체 규소 원자의 몰수(Si)에 대한, 상기 아릴기의 몰수(Ar)의 비율(Ar/Si)이, 예를 들면, 0.25 이상, 0.3 이상, 0.3 내지 1.0 또는 0.5 내지 1.0 정도의 범위 내에 속할 수 있는 범위에서 상기 Q가 아릴기일 수 있다.
화학식 5의 평균 단위의 화합물은 고체 또는 액체일 수 있다. 상기 화합물이 액체라면, 그 25℃에서의 점도가 300 mPaㆍs 이하 또는 300 mPaㆍs 이하의 범위 내에 속할 수 있다. 점도를 상기와 같이 제어함으로 해서, 혼합물의 가공성 및 경화물의 경도 특성 등의 우수하게 유지할 수 있다. 상기 화합물은, 예를 들면, 1,000 미만 또는 800 미만의 분자량을 가질 수 있다. 분자량을 상기 범위로 조절하여 경화물의 강도 등을 적정 범위로 유지할 수 있다. 상기 화합물의 분자량의 하한은 특별히 제한되지 않으며, 예를 들면, 250일 수 있다.
화학식 5의 평균 단위의 화합물로는 상기와 같은 특성을 만족하는 한 다양한 종류의 화합물을 모두 사용할 수 있다. 예를 들면, 상기 화합물로는, 하기 화학식 6의 화합물을 사용할 수 있다.
[화학식 6]
Figure PCTKR2015000927-appb-I000001
화학식 6에서 R은, 각각 독립적으로 수소, 에폭시기 또는 1가 탄화수소기이고, n은 1 내지 10의 범위 내의 수이다. 화학식 6에서 R은 예를 들면, 아릴기 또는 알킬기일 수 있고, 전술한 화학식 5의 평균 단위의 화합물의 아릴기의 비율(Ar/Si)을 만족하는 범위 내의 아릴기와 알킬기일 수 있다.
화학식 6에서 n은, 예를 들면, 1 내지 8, 1 내지 6, 1 내지 4, 1 내지 3 또는 1 내지 2일 수 있다.
화학식 6의 화합물의 아릴기의 비율, 점도 또는 분자량은 전술한 범위 내에 있을 수 있다.
규소 원자에 결합된 수소 원자를 포함하는 화합물, 예를 들면, 상기 화학식 5의 평균 단위의 화합물 또는 화학식 6의 화합물의 함량은, 혼합물이 경화되어 전술한 특성을 가지도록 하는 범위 내에서 선택될 수 있다. 예를 들면, 상기 화합물의 함량은, 상기 지방족 불포화 결합 작용성 폴리오가노실록산의 지방족 불포화 결합의 몰수(Ak)에 대한 상기 화합물의 수소 원자의 몰수(H)의 비율(H/Ak)이 0.5 내지 3.0, 0.7 내지 2 또는 1.05 내지 1.3이 되는 범위에서 선택될 수 있다.
혼합물은, 히드로실릴화 촉매를 추가로 포함할 수 있다. 히드로실릴화 촉매는, 수소규소화 반응을 촉진시키기 위해 사용될 수 있다. 히드로실릴화 촉매로는, 이 분야에서 공지된 통상의 성분을 모두 사용할 수 있다. 이와 같은 촉매의 예로는, 백금, 팔라듐 또는 로듐계 촉매 등을 들 수 있다. 촉매 효율 등을 고려하여, 백금계 촉매를 사용할 수 있고, 이러한 촉매의 예로는 염화 백금산, 사염화 백금, 백금의 올레핀 착체, 백금의 알케닐 실록산 착체 또는 백금의 카보닐 착체 등을 들 수 있으나, 이에 제한되는 것은 아니다.
히드로실릴화 촉매의 함량은, 소위 촉매량, 즉 촉매로서 작용할 수 있는 양으로 포함되는 한 특별히 제한되지 않는다. 통상적으로, 백금, 팔라듐 또는 로듐의 원자량을 기준으로 0.1 ppm 내지 200 ppm 또는 0.2 ppm 내지 100 ppm의 양으로 사용할 수 있다.
혼합물은 또한, 각종 기재에 대한 접착성의 추가적인 향상의 관점에서, 접착성 부여제를 추가로 포함할 수 있다. 접착성 부여제는 자기 접착성을 개선할 수 있는 성분으로서, 특히 금속 및 유기 수지에 대한 자기 접착성을 개선할 수 있다.
접착성 부여제로는, 비닐기 등의 알케닐기, (메타)아크릴로일옥시기, 히드로실릴기(SiH기), 에폭시기, 알콕시기, 알콕시실릴기, 카르보닐기 및 페닐기로 이루어진 군으로부터 선택되는 1종 이상 또는 2종 이상의 관능기를 가지는 실란; 또는 2 내지 30 또는 4 내지 20개의 규소 원자를 가지는 환상 또는 직쇄상 실록산 등의 유기 규소 화합물 등이 예시될 수 있지만, 이에 제한되는 것은 아니다. 본 출원에서는 상기와 같은 접착성 부여제의 일종 또는 이종 이상을 추가로 혼합하여 사용할 수 있다.
접착성 부여제가 포함될 경우, 예를 들면, 혼합물의 고형분 100 중량부 대비 0.1 중량부 내지 20 중량부의 비율로 포함될 수 있으나, 상기 함량은 목적하는 접착성 개선 효과 등을 고려하여 적절히 변경될 수 있다.
혼합물은, 필요에 따라서, 2-메틸-3-부틴-2-올, 2-페닐-3-1-부틴-2올, 3-메틸-3-펜텐-1-인, 3,5-디메틸-3-헥센-1-인, 1,3,5,7-테트라메틸-1,3,5,7-테트라헥세닐시클로테트라실록산 또는 에티닐시클로헥산 등의 반응 억제제; 실리카, 알루미나, 지르코니아 또는 티타니아 등의 무기 충전제; 에폭시기 및/또는 알콕시실릴기를 가지는 탄소 관능성 실란, 그의 부분 가수분해 축합물 또는 실록산 화합물; 폴리에테르 등과 병용될 수 있는 연무상 실리카 등의 요변성 부여제; 필러; 형광체; 은, 구리 또는 알루미늄 등의 금속 분말이나, 각종 카본 소재 등과 같은 도전성 부여제; 안료 또는 염료 등의 색조 조정제 등의 첨가제를 일종 또는 이종 이상을 추가로 포함할 수 있다.
혼합물을 경화시켜 경화체를 형성하는 조건은 최종 경화체가 전술한 구성을 포함하도록 설정된다. 예를 들면, 경화체는 상기 혼합물을 약 60℃ 내지 200℃의 온도에서 10분 내지 5시간 동안 유지시켜 형성할 수 있다.
본 출원은, 또한 반도체 소자, 예를 들면, 광반도체 소자에 관한 것이다. 예시적인 반도체 소자는, 상기 경화체를 포함하는 봉지재에 의해 봉지된 것일 수 있다. 봉지재로 봉지되는 반도체 소자로는, 다이오드, 트랜지스터, 사이리스터, 포토커플러, CCD, 고체상 화상 픽업 소자, 일체식 IC, 혼성 IC, LSI, VLSI 및 LED(Light Emitting Diode) 등이 예시될 수 있다. 하나의 예시에서 상기 반도체 소자는, 발광 다이오드일 수 있다.
발광 다이오드로는, 예를 들면, 기판 상에 반도체 재료를 적층하여 형성한 발광 다이오드 등이 예시될 수 있다. 상기 반도체 재료로는, GaAs, GaP, GaAlAs, GaAsP, AlGaInP, GaN, InN, AlN, InGaAlN 또는 SiC 등이 예시될 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 기판으로는, 사파이어, 스핀넬, SiC, Si, ZnO 또는 GaN 단결정 등이 예시될 수 있다.
발광 다이오드의 제조 시에는 필요에 따라서, 기판과 반도체 재료의 사이에 버퍼층을 형성할 수도 있다. 버퍼층으로서는, GaN 또는 AlN 등이 사용될 수 있다. 기판상으로의 반도체 재료의 적층 방법은, 특별히 제한되지 않으며, 예를 들면, MOCVD법, HDVPE법 또는 액상성장법 등을 사용할 수 있다. 또한, 발광 다이오드의 구조는, 예를 들면, MIS 접합, PN 접합, PIN 접합을 가지는 모노접합, 헤테로접합, 이중 헤테로 접합 등일 수 있다. 또한, 단일 또는 다중양자우물구조로 상기 발광 다이오드를 형성할 수 있다.
하나의 예시에서, 발광 다이오드의 발광 파장은, 예를 들면, 250 nm 내지 550 nm, 300 nm 내지 500 nm 또는 330 nm 내지 470 nm일 수 있다. 발광 파장은, 주발광 피크 파장을 의미할 수 있다. 발광 다이오드의 발광파장을 상기 범위로 설정함으로써, 보다 긴 수명으로, 에너지 효율이 높고, 색재현성이 높은 백색 발광 다이오드를 얻을 수 있다.
발광 다이오드는, 상기 경화체로 봉지될 수 있고, 따라서 상기 봉지 공정은 상기 언급한 혼합물을 사용하여 수행될 수 있다. 발광 다이오드의 봉지는 상기 혼합물만으로 수행될 수 있고, 경우에 따라서는 다른 봉지재가 상기 혼합물과 병용될 수 있다. 2종의 봉지재를 병용하는 경우, 상기 혼합물을 사용한 봉지 후에, 그 주위를 다른 봉지재로 봉지할 수도 있고, 다른 봉지재로 먼저 봉지한 후, 그 주위를 상기 혼합물로 봉지할 수도 있다. 다른 봉지재로는, 에폭시 수지, 실리콘 수지, 아크릴 수지, 우레아 수지, 이미드 수지 또는 유리 등을 들 수 있다.
혼합물로 발광 다이오드를 봉지하는 방법으로는, 예를 들면, 몰드형 거푸집에 상기 혼합물을 미리 주입하고, 거기에 발광 다이오드가 고정된 리드프레임 등을 침지시키고, 혼합물을 경화시키는 방법, 발광 다이오드를 삽입한 거푸집 중에 혼합물을 주입하고, 경화시키는 방법 등을 사용할 수 있다. 혼합물을 주입하는 방법으로는, 디스펜서에 의한 주입, 트랜스퍼 성형 또는 사출성형 등이 예시될 수 있다. 또한, 그 외의 봉지 방법으로서는, 혼합물을 발광 다이오드 상에 적하, 공판인쇄, 스크린 인쇄 또는 마스크를 매개로 도포하고, 경화시키는 방법, 저부에 발광 다이오드를 배치한 컵 등에 혼합물을 디스펜서 등에 의해 주입하고, 경화시키는 방법 등이 사용될 수 있다.
혼합물은, 필요에 따라서, 발광 다이오드를 리드 단자나 패키지에 고정하는 다이본드재나, 발광 다이오드 상의 부동화(passivation)막 또는 패키지 기판 등으로도 이용될 수 있다.
봉지재의 형상은 특별히 한정되지 않으며, 예를 들면, 포탄형의 렌즈 형상, 판상 또는 박막상 등으로 구성할 수 있다.
종래의 공지에 방법에 따라 발광 다이오드의 추가적인 성능 향상을 도모할 수 있다. 성능 향상의 방법으로서는, 예를 들면, 발광 다이오드 배면에 광의 반사층 또는 집광층을 설치하는 방법, 보색 착색부를 저부에 형성하는 방법, 주발광 피크보다 단파장의 광을 흡수하는 층을 발광 다이오드 상에 설치하는 방법, 발광 다이오드를 봉지한 후 추가로 경질 재료로 몰딩하는 방법, 발광 다이오드를 관통홀에 삽입하여 고정하는 방법, 발광 다이오드를 플립칩 접속 등에 의해서 리드 부재 등과 접속하여 기판 방향으로부터 광을 취출하는 방법 등을 들 수 있다.
광반도체, 예를 들면, 발광 다이오드는, 예를 들면, 액정표시장치(LCD; Liquid Crystal Display)의 백라이트, 조명, 각종 센서, 프린터, 복사기 등의 광원, 차량용 계기 광원, 신호등, 표시등, 표시장치, 면상발광체의 광원, 디스플레이, 장식 또는 각종 라이트 등에 효과적으로 적용될 수 있다.
예시적인 경화체는, 예를 들어, LED 등과 같은 광반도체에 적용될 경우에, 소자를 장시간 사용하여도 휘도 저하가 최소화되며, 내크렉 특성이 우수하여, 장기 신뢰성이 우수한 소자를 제공할 수 있다. 경화체는, 가공성, 작업성 및 접착성 등이 우수하고, 백탁 및 표면에서의 끈적임 등이 유발되지 않는다. 또한, 경화체는 고온 내열성 및 가스 배리어성 등이 우수하다. 경화체는, 예를 들면, 반도체 소자의 봉지재나 접착 소재로 적용될 수 있다.
이하 실시예 및 비교예를 통하여 상기 혼합물을 보다 상세히 설명하나, 상기 혼합물의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
이하에서 부호 Vi, Ph, Me 및 Ep는 각각 비닐기, 페닐기, 메틸기 및 3-글리시독시프로필기를 나타낸다.
실시예 및 비교예에서 제조된 경화체의 물성은 하기 방식으로 평가하였다.
1. 몰비율 평가 방식
경화체 내에 존재하는 에틸렌기에 의해 연결되어 있는 규소 원자와 상기 에틸렌기에 존재하는 탄소 원자의 몰수(C)와 전체 규소 원자의 몰수(Si)의 비율(C/Si) 등은 공지의 29Si NMR 방식에 따라 측정하였다. 29Si NMR의 측정 시의 reference compound는 CDCl3에 용해된 TMS(dilute Tetramethylsilane in CDCl3)를 사용하고, 화학적 이동(chemical shift)을 측정하였다.
2. 고온 장기 신뢰성
폴리프탈아미드(PPA) 또는 폴리시클로헥실프탈아미드(PCT)로 제조된 LED 패키지를 사용하여 소자 특성을 평가한다. 구체적으로 PPA 또는 PCT 컵 내에 제조된 혼합물을 디스펜싱하고, 각 실시예 또는 비교예에서 제시된 조건으로 경화시켜 표면 실장형 LED를 제조한다. 이어서 제조된 LED를 85℃에서 유지한 상태로 50 mA의 전류를 흘리면서 1000 시간 동안 동작시킨 후 동작 전의 초기 휘도 대비 동작 후의 휘도의 감소율을 측정하여 하기 기준에 따라 신뢰성을 평가한다.
<평가 기준>
A: 휘도 감소율이 5% 이하인 경우
B: 휘도 감소율이 5%를 초과하면서 10% 이하인 경우
C: 휘도 감소율이 10%를 초과하는 경우
3. 내열 충격성
LED 패키지를 -40℃에서 15분 동안 유지한 후 다시 100℃에서 15분 유지하는 것을 1 사이클로 하여 200 사이클을 반복한 후에 20개의 총 평가 패키지 수 대비 미점등 패키지의 수를 평가하여 내열 충격성을 평가하였다.
실시예 1.
하기 화학식 A의 평균 단위를 가지고, 중량평균분자량이 약 2300 정도인 지방족 불포화 결합 작용성 폴리오가노실록산 125.5 g 및 하기 화학식 B의 화합물 23.5 g을 배합하고, Pt(0)의 함량이 2 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하여 혼합물(경화성 조성물)을 제조하였다. 이어서, 제조된 혼합물을 140℃ 온도에서 1 시간 동안 유지하여 경화체를 제조하였다. 경화체의 경화는 PPA컵 내에 상기 혼합물을 디스펜싱하고 수행하였다. 경화체는 규소 원자에 결합되어 있는 3-글리시독시 프로필기를 포함하고 있으며, 상기 3-글리시독시프로필기의 몰수(E)와 전체 규소 원자의 몰수(Si)의 비율(E/Si)은 약 0.01임을 확인하였다. 또한, 상기 경화체는 에틸렌기에 의해 연결되어 있는 규소 원자를 포함하고 있으며, 상기 에틸렌기에 존재하는 탄소 원자의 몰수(C)와 전체 규소 원자의 몰수(Si)의 비율(C/Si)은 약 0.23임을 확인하였다. 또한, 경화체에 존재하는 전체 아릴기의 몰수(Ar) 대비 전체 규소 원자의 몰수(Si)의 비율(Ar/Si)은, 약 0.76이였고, 경화체 내의 전체 T 단위의 몰수(T) 대비 규소 원자의 몰수(Si)는 약 0.43이었으며, 전체 D 단위의 몰수(D) 대비 규소 원자의 몰수(Si)의 비율(D/Si)은 약 0.29였고, 경화체 내의 전체 비닐기의 몰수(V) 대비 규소 원자의 몰수(Si)의 비율(V/Si)은 0이였다.
[화학식 A]
(ViMe2SiO1/2)0.18(MeEpSiO2/2)0.02(MePhSiO2/2)0.27(PhSiO3/2)0.53
[화학식 B]
(HMe2SiO1/2)2(Ph2SiO2/2)
실시예 2
하기 화학식 C의 평균 단위를 가지고, 중량평균분자량이 약 2550 정도인 지방족 불포화 결합 작용성 폴리오가노실록산 123.2 g 및 상기 화학식 B의 화합물 23.5 g을 배합하고, Pt(0)의 함량이 2 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하여 혼합물(경화성 조성물)을 제조하였다. 이어서, 실시예 1과 동일하게 PPA컵 내에 상기 혼합물을 디스펜싱한 후에 혼합물(경화성 조성물)을 140℃에서 1 시간 동안 유지하여 경화체를 제조하였다. 상기 경화체는 규소 원자에 결합되어 있는 3-글리시독시 프로필기를 포함하고 있으며, 상기 3-글리시독시프로필기의 몰수(E)와 전체 규소 원자의 몰수(Si)의 비율(E/Si)은 약 0.01임을 확인하였다. 경화체는 에틸렌기에 의해 연결되어 있는 규소 원자를 포함하고 있으며, 상기 에틸렌기에 존재하는 탄소 원자의 몰수(C)와 전체 규소 원자의 몰수(Si)의 비율(C/Si)은 약 0.23이였다. 또한, 경화체에 존재하는 전체 아릴기의 몰수(Ar) 대비 전체 규소 원자의 몰수(Si)의 비율(Ar/Si)은, 약 0.74였고, 경화체 내의 전체 T 단위의 몰수(T) 대비 규소 원자의 몰수(Si)는 약 0.43이었으며, 전체 D 단위의 몰수(D) 대비 규소 원자의 몰수(Si)의 비율(D/Si)은 약 0.27였고, 경화체 내의 전체 비닐기의 몰수(V) 대비 규소 원자의 몰수(Si)의 비율(V/Si)은 0이였다.
[화학식 C]
(ViMe2SiO1/2)0.18(MeEpSiO2/2)0.02(MePhSiO2/2)0.24(PhSiO3/2)0.53(SiO4/2)0.03
실시예 3.
하기 화학식 D의 평균 단위를 가지고, 중량평균분자량이 약 2300 정도인 지방족 불포화 결합 작용성 폴리오가노실록산 127.4 g 및 상기 화학식 B의 화합물 23.5 g을 배합하고, Pt(0)의 함량이 2 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하여 혼합물(경화성 조성물)을 제조하였다. 이어서, 실시예 1과 동일하게 PPA컵 내에 상기 혼합물을 디스펜싱한 후에 혼합물(경화성 조성물)을 140℃에서 1 시간 동안 유지하여 경화체를 제조하였다. 상기 경화체는 규소 원자에 결합되어 있는 3-글리시독시 프로필기를 포함하고 있으며, 상기 3-글리시독시프로필기의 몰수(E)와 전체 규소 원자의 몰수(Si)의 비율(E/Si)은 약 0.05임을 확인하였다. 경화체는 에틸렌기에 의해 연결되어 있는 규소 원자를 포함하고 있으며, 상기 에틸렌기에 존재하는 탄소 원자의 몰수(C)와 전체 규소 원자의 몰수(Si)의 비율(C/Si)은 약 0.23이였다. 또한, 경화체에 존재하는 전체 아릴기의 몰수(Ar) 대비 전체 규소 원자의 몰수(Si)의 비율(Ar/Si)은, 약 0.73이였고, 경화체 내의 전체 T 단위의 몰수(T) 대비 규소 원자의 몰수(Si)는 약 0.43이었으며, 전체 D 단위의 몰수(D) 대비 규소 원자의 몰수(Si)의 비율(D/Si)은 약 0.29였고, 경화체 내의 전체 비닐기의 몰수(V) 대비 규소 원자의 몰수(Si)의 비율(V/Si)은 0이였다.
[화학식 D]
(ViMe2SiO1/2)0.18(MeEpSiO2/2)0.07(MePhSiO2/2)0.22(PhSiO3/2)0.53
실시예 4.
하기 화학식 E의 평균 단위를 가지고, 중량평균분자량이 약 2100 정도인 지방족 불포화 결합 작용성 폴리오가노실록산 130.5 g 및 상기 화학식 B의 화합물 23.5 g을 배합하고, Pt(0)의 함량이 2 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하여 혼합물(경화성 조성물)을 제조하였다. 이어서, 제조된 혼합물을 PCT컵에 디스펜싱하고, 140℃ 온도에서 1 시간 정도 유지하여 경화체를 제조하였다. 상기에서 혼합물이 디스펜싱되는 PCT컵은, 혼합물의 디스펜싱 전에 160℃에서 약 30분 동안 prebaking한 PCT컵을 사용하였다. 상기 경화체는 규소 원자에 결합되어 있는 3-글리시독시 프로필기를 포함하고 있으며, 상기 3-글리시독시프로필기의 몰수(E)와 전체 규소 원자의 몰수(Si)의 비율(E/Si)은 약 0.1임을 확인하였다. 경화체는 에틸렌기에 의해 연결되어 있는 규소 원자를 포함하고 있으며, 상기 에틸렌기에 존재하는 탄소 원자의 몰수(C)와 전체 규소 원자의 몰수(Si)의 비율(C/Si)은 약 0.23이였다. 또한, 경화체에 존재하는 전체 아릴기의 몰수(Ar) 대비 전체 규소 원자의 몰수(Si)의 비율(Ar/Si)은, 약 0.68이였고, 경화체 내의 전체 T 단위의 몰수(T) 대비 규소 원자의 몰수(Si)는 약 0.43이었으며, 전체 D 단위의 몰수(D) 대비 규소 원자의 몰수(Si)의 비율(D/Si)은 약 0.29였고, 경화체 내의 전체 비닐기의 몰수(V) 대비 규소 원자의 몰수(Si)의 비율(V/Si)은 0이였다.
[화학식 E]
(ViMe2SiO1/2)0.18(MeEpSiO2/2)0.15(MePhSiO2/2)0.14(PhSiO3/2)0.53
비교예 1
하기 화학식 F의 평균 단위를 가지고, 중량평균분자량이 약 2300 정도인 지방족 불포화 결합 작용성 폴리오가노실록산 124.5 g 및 상기 화학식 B의 화합물 23.5 g을 배합하고, Pt(0)의 함량이 2 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하여 혼합물(경화성 조성물)을 제조하였다. 이어서, 실시예 1과 동일하게 PPA컵 내에 상기 혼합물을 디스펜싱한 후에 혼합물(경화성 조성물)을 140℃에서 1 시간 동안 유지하여 경화체를 제조하였다. 상기 경화체는 규소 원자에 결합되어 있는 에폭시기는 포함하지 않는다. 경화체는 에틸렌기에 의해 연결되어 있는 규소 원자를 포함하고 있으며, 상기 에틸렌기에 존재하는 탄소 원자의 몰수(C)와 전체 규소 원자의 몰수(Si)의 비율(C/Si)은 약 0.23이였다. 또한, 경화체에 존재하는 전체 아릴기의 몰수(Ar) 대비 전체 규소 원자의 몰수(Si)의 비율(Ar/Si)은, 약 0.79였고, 경화체 내의 전체 T 단위의 몰수(T) 대비 규소 원자의 몰수(Si)는 약 0.48이었으며, 전체 D 단위의 몰수(D) 대비 규소 원자의 몰수(Si)의 비율(D/Si)은 약 0.27이였고, 경화체 내의 전체 비닐기의 몰수(V) 대비 규소 원자의 몰수(Si)의 비율(V/Si)은 0이였다.
[화학식 F]
(ViMe2SiO1/2)0.18(MePhSiO2/2)0.25(PhSiO3/2)0.57
비교예 2
하기 화학식 G의 평균 단위를 가지는 지방족 불포화 결합 작용성 폴리오가노실록산 134.2 g 및 상기 화학식 B의 화합물 19.6 g을 배합하고, Pt(0)의 함량이 2 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하여 혼합물(경화성 조성물)을 제조하였다. 이어서, 실시예 1과 동일하게 PPA컵 내에 상기 혼합물을 디스펜싱한 후에 혼합물(경화성 조성물)을 140℃에서 1 시간 동안 유지하여 경화체를 제조하였다. 상기 경화체는 규소 원자에 결합되어 있는 3-글리시독시 프로필기를 포함하고 있으며, 상기 3-글리시독시프로필기의 몰수(E)와 전체 규소 원자의 몰수(Si)의 비율(E/Si)은 약 0.17임을 확인하였다. 경화체는 에틸렌기에 의해 연결되어 있는 규소 원자를 포함하고 있으며, 상기 에틸렌기에 존재하는 탄소 원자의 몰수(C)와 전체 규소 원자의 몰수(Si)의 비율(C/Si)은 약 0.20이였다. 또한, 경화체에 존재하는 전체 아릴기의 몰수(Ar) 대비 전체 규소 원자의 몰수(Si)의 비율(Ar/Si)은, 약 0.65였고, 경화체 내의 전체 T 단위의 몰수(T) 대비 규소 원자의 몰수(Si)는 약 0.43이었으며, 전체 D 단위의 몰수(D) 대비 규소 원자의 몰수(Si)의 비율(D/Si)은 약 0.35이였고, 경화체 내의 전체 비닐기의 몰수(V) 대비 규소 원자의 몰수(Si)의 비율(V/Si)은 0이였다.
[화학식 G]
(ViMe2SiO1/2)0.15(MeEpSiO2/2)0.21(MePhSiO2/2)0.14(PhSiO3/2)0.50
비교예 3
하기 화학식 H의 평균 단위를 가지고, 중량평균분자량이 약 2100 정도인 지방족 불포화 결합 작용성 폴리오가노실록산 130.5 g 및 상기 화학식 B의 화합물 26.1 g을 배합하고, Pt(0)의 함량이 2 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하여 혼합물(경화성 조성물)을 제조하였다. 이어서, 실시예 1과 동일하게 PPA컵 내에 상기 혼합물을 디스펜싱한 후에 혼합물(경화성 조성물)을 140℃에서 1 시간 동안 유지하여 경화체를 제조하였다. 상기 경화체는 규소 원자에 결합되어 있는 3-글리시독시 프로필기를 포함하고 있으며, 상기 3-글리시독시프로필기의 몰수(E)와 전체 규소 원자의 몰수(Si)의 비율(E/Si)은 약 0.17임을 확인하였다. 경화체는 에틸렌기에 의해 연결되어 있는 규소 원자를 포함하고 있으며, 상기 에틸렌기에 존재하는 탄소 원자의 몰수(C)와 전체 규소 원자의 몰수(Si)의 비율(C/Si)은 약 0.26이였다. 또한, 경화체에 존재하는 전체 아릴기의 몰수(Ar) 대비 전체 규소 원자의 몰수(Si)의 비율(Ar/Si)은, 약 0.51이였고, 경화체 내의 전체 T 단위의 몰수(T) 대비 규소 원자의 몰수(Si)는 약 0.38이었으며, 전체 D 단위의 몰수(D) 대비 규소 원자의 몰수(Si)의 비율(D/Si)은 약 0.25이였고, 경화체 내의 전체 비닐기의 몰수(V) 대비 규소 원자의 몰수(Si)의 비율(V/Si)은 0이였다.
[화학식 H]
(ViMe2SiO1/2)0.2(MeEpSiO2/2)0.22(MePhSiO2/2)0.1(PhSiO3/2)0.45(SiO4/2)0.03
비교예 4.
하기 화학식 I의 평균 단위를 가지고, 중량평균분자량이 약 2100 정도인 지방족 불포화 결합 작용성 폴리오가노실록산 130.5 g 및 상기 화학식 B의 화합물 23.5 g을 배합하고, Pt(0)의 함량이 2 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합하여 혼합물(경화성 조성물)을 제조하였다. 이어서, 제조된 혼합물을 PCT컵에 디스펜싱하고, 140℃ 온도에서 1 시간 정도 유지하여 경화체를 제조하였다. 상기에서 혼합물이 디스펜싱되는 PCT컵으로는, prebaking 처리를 하지 않은 PCT컵을 사용하였다. 상기 경화체는 규소 원자에 결합되어 있는 3-글리시독시 프로필기를 포함하지 않는다. 경화체는 에틸렌기에 의해 연결되어 있는 규소 원자를 포함하고 있으며, 상기 에틸렌기에 존재하는 탄소 원자의 몰수(C)와 전체 규소 원자의 몰수(Si)의 비율(C/Si)은 약 약 0.08이였다. 또한, 경화체에 존재하는 전체 아릴기의 몰수(Ar) 대비 전체 규소 원자의 몰수(Si)의 비율(Ar/Si)은, 약 0.68이였고, 경화체 내의 전체 T 단위의 몰수(T) 대비 규소 원자의 몰수(Si)는 약 0.43이었으며, 전체 D 단위의 몰수(D) 대비 규소 원자의 몰수(Si)의 비율(D/Si)은 약 0.29였고, 경화체 내의 전체 비닐기의 몰수(V) 대비 규소 원자의 몰수(Si)의 비율(V/Si)은 0이였다.
[화학식 I]
(ViMe2SiO1/2)0.18(MePhSiO2/2)0.14(PhSiO3/2)0.53
비교예 5.
실시예 4와 같은 방식으로 prebaking 처리한 PCT컵을 사용하고, Pt(0)의 함량이 0.2 ppm이 되는 양으로 촉매(Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane)를 배합한 혼합물을 사용한 것을 제외하면 비교예 4와 동일한 방식으로 경화체를 제조하였다. 상기 경화체는 규소 원자에 결합되어 있는 3-글리시독시 프로필기를 포함하지 않는다. 경화체는 에틸렌기에 의해 연결되어 있는 규소 원자를 포함하고 있으며, 상기 에틸렌기에 존재하는 탄소 원자의 몰수(C)와 전체 규소 원자의 몰수(Si)의 비율(C/Si)은 약 0.13이였다. 또한, 경화체에 존재하는 전체 아릴기의 몰수(Ar) 대비 전체 규소 원자의 몰수(Si)의 비율(Ar/Si)은, 약 0.68이였고, 경화체 내의 전체 T 단위의 몰수(T) 대비 규소 원자의 몰수(Si)는 약 0.43이었으며, 전체 D 단위의 몰수(D) 대비 규소 원자의 몰수(Si)의 비율(D/Si)은 약 0.29였고, 경화체 내의 전체 비닐기의 몰수(V) 대비 규소 원자의 몰수(Si)의 비율(V/Si)은 0이였다.
상기 실시예 및 비교예의 경화체에 대하여 물성을 측정한 결과를 하기 표 1에 정리하여 기재하였다.
표 1
고온신뢰성 내열충격특성
실시예1 A 0/20
실시예2 A 0/20
실시예3 A 0/20
실시예4 B 1/20
비교예1 C 5/20
비교예2 C 4/20
비교예3 C 4/20
비교예4 C 20/20
비교예5 C 20/20

Claims (19)

  1. 지방족 불포화 결합 작용성 폴리오가노실록산 및 규소 원자에 결합하고 있는 수소 원자를 가지는 화합물을 포함하는 혼합물의 반응물이며, 규소 원자에 결합되어 있는 에폭시기를 포함하고, 상기 에폭시기의 몰수(E) 및 전체 규소 원자의 몰수(Si)의 비율(E/Si)이 0.001 내지 0.15의 범위 내인 경화체.
  2. 제 1 항에 있어서, 에폭시기의 몰수(E) 및 전체 규소 원자의 몰수(Si)의 비율(E/Si)이 0.001 내지 0.1의 범위 내인 경화체.
  3. 제 1 항에 있어서, 에폭시기의 몰수(E) 및 전체 규소 원자의 몰수(Si)의 비율(E/Si)이 0.001 내지 0.05의 범위 내인 경화체.
  4. 제 1 항에 있어서, 하기 화학식 1의 단위를 포함하고, 하기 화학식 1의 A에 존재하는 탄소 원자의 몰수(C) 및 전체 규소 원자의 몰수(Si)의 비율(C/Si)이 0.15 내지 0.55의 범위 내인 경화체:
    [화학식 1]
    (R2SiO1/2A1/2)
    화학식 1에서 R은 각각 독립적으로 수소, 에폭시기, 알콕시기 또는 1가 탄화수소기이고, A는 탄소수 1 내지 4의 알킬렌기이다.
  5. 제 4 항에 있어서, 화학식 1의 A에 존재하는 탄소 원자의 몰수(C) 및 전체 규소 원자의 몰수(Si)의 비율(C/Si)이 0.15 내지 0.5의 범위 내인 경화체.
  6. 제 4 항에 있어서, 화학식 1의 A에 존재하는 탄소 원자의 몰수(C) 및 전체 규소 원자의 몰수(Si)의 비율(C/Si)이 0.15 내지 0.45의 범위 내인 경화체.
  7. 제 1 항에 있어서, 규소 원자에 결합하고 있는 아릴기를 포함하고, 상기 아릴기의 몰수(Ar) 및 전체 규소 원자의 몰수(Si)의 비율(Ar/Si)이 0.2 내지 1.2의 범위 내인 경화체.
  8. 제 1 항에 있어서, 아릴기가 결합되어 있는 삼관능성 실록산 단위를 포함하고, 상기 삼관능성 실록산 단위의 몰수(T) 및 전체 규소 원자의 몰수(Si)의 비율(T/Si)이 0.3 내지 0.6의 범위 내인 경화체.
  9. 제 1 항에 있어서, 이관능성 실록산 단위를 포함하고, 상기 이관능성 실록산 단위의 몰수(D) 및 전체 규소 원자의 몰수(Si)의 비율(D/Si)이 0.6 이하인 경화체.
  10. 제 1 항에 있어서, 하기 화학식 3의 실록산 단위를 포함하는 경화체:
    [화학식 3]
    (R1R2 2SiO1/2)
    화학식 3에서 R1은 알케닐기이고, R2는 1가 탄화수소기이다.
  11. 제 10 항에 있어서, 화학식 2의 실록산 단위의 몰수(V) 및 전체 규소 원자의 몰수(Si)의 비율(V/Si)이 내지 0.1 이하인 경화체
  12. 제 1 항에 있어서, 지방족 불포화 결합 작용성 폴리오가노실록산은 하기 화학식 4의 평균 단위를 나타내는 경화체:
    [화학식 4]
    PaQbSiO(4-a-b)/2
    화학식 4에서 P는 알케닐기이고, Q는 에폭시기, 알콕시기 또는 1가 탄화수소기이며, a 및 b는 a+b가 1 내지 2.2의 범위 내이고, a/(a+b)가 0.001 내지 0.15의 범위 내가 되도록 하는 수이다.
  13. 제 1 항에 있어서, 규소 원자에 결합하고 있는 수소 원자를 가지는 화합물은 하기 화학식 5의 평균 단위를 나타내는 경화체:
    [화학식 5]
    HcQdSiO(4-c-d)/2
    화학식 5에서 Q는 에폭시기, 알콕시기 또는 1가 탄화수소기이며, c 및 d는 c+d가 1 내지 2.8의 범위 내이고, c/(c+d)가 0.001 내지 0.34의 범위 내가 되도록 하는 수이다.
  14. 제 1 항에 있어서, 규소 원자에 결합하고 있는 수소 원자를 가지는 화합물은 하기 화학식 6의 화합물인 경화체:
    [화학식 6]
    Figure PCTKR2015000927-appb-I000002
    화학식 6에서 R은, 각각 독립적으로 수소, 에폭시기 또는 1가 탄화수소기이되, R 중 하나 이상은 아릴기이고, n은 1 내지 2의 수이다.
  15. 제 1 항에 있어서, 혼합물 내에서 지방족 불포화 결합 작용성 폴리오가노실록산의 지방족 불포화 결합의 몰수(Ak) 및 규소 원자에 결합하고 있는 수소 원자를 가지는 화합물의 수소 원자의 몰수(H)의 비율(H/Ak)이 1.05 내지 1.3의 범위 내인 경화체.
  16. 제 1 항의 경화체를 포함하는 봉지재로 봉지된 반도체 소자.
  17. 제 1 항의 경화체를 포함하는 봉지재로 봉지된 광반도체 소자.
  18. 제 17 항의 광반도체 소자를 포함하는 액정표시장치.
  19. 제 17 항의 광반도체 소자를 포함하는 조명.
PCT/KR2015/000927 2014-01-28 2015-01-28 경화체 WO2015115808A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/112,387 US9837329B2 (en) 2014-01-28 2015-01-28 Cured product
JP2016548742A JP6359110B2 (ja) 2014-01-28 2015-01-28 硬化体
EP15742985.3A EP3101052B1 (en) 2014-01-28 2015-01-28 Cured product
CN201580006335.7A CN105940040B (zh) 2014-01-28 2015-01-28 固化产物

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20140010012 2014-01-28
KR10-2014-0010015 2014-01-28
KR20140010014 2014-01-28
KR10-2014-0010013 2014-01-28
KR10-2014-0010014 2014-01-28
KR20140010013 2014-01-28
KR10-2014-0010012 2014-01-28
KR20140010015 2014-01-28
KR1020150013459A KR101695529B1 (ko) 2014-01-28 2015-01-28 경화체
KR10-2015-0013459 2015-01-28

Publications (1)

Publication Number Publication Date
WO2015115808A1 true WO2015115808A1 (ko) 2015-08-06

Family

ID=53757333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000927 WO2015115808A1 (ko) 2014-01-28 2015-01-28 경화체

Country Status (1)

Country Link
WO (1) WO2015115808A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069929A (ja) * 1992-03-06 1994-01-18 Minnesota Mining & Mfg Co <3M> オルガノシリコーン組成物
JPH11274571A (ja) 1998-01-26 1999-10-08 Nichia Chem Ind Ltd 半導体発光装置
JP2001196151A (ja) 2000-01-12 2001-07-19 Takazono Sangyo Kk 発熱体装置及び発熱体温度制御方法
JP2002226551A (ja) 2001-01-31 2002-08-14 Matsushita Electric Ind Co Ltd 発光ダイオード
KR20100031076A (ko) * 2008-09-11 2010-03-19 신에쓰 가가꾸 고교 가부시끼가이샤 경화성 실리콘 수지 조성물, 그의 경화물 및 상기 조성물로 이루어지는 차광성 실리콘 접착 시트
KR20110053470A (ko) * 2008-09-05 2011-05-23 다우 코닝 도레이 캄파니 리미티드 경화성 오가노폴리실록산 조성물, 광반도체 소자 봉지제 및 광반도체 장치
KR20110087244A (ko) * 2010-01-25 2011-08-02 주식회사 엘지화학 경화성 조성물
KR20130058645A (ko) * 2011-11-25 2013-06-04 주식회사 엘지화학 경화성 조성물

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069929A (ja) * 1992-03-06 1994-01-18 Minnesota Mining & Mfg Co <3M> オルガノシリコーン組成物
JPH11274571A (ja) 1998-01-26 1999-10-08 Nichia Chem Ind Ltd 半導体発光装置
JP2001196151A (ja) 2000-01-12 2001-07-19 Takazono Sangyo Kk 発熱体装置及び発熱体温度制御方法
JP2002226551A (ja) 2001-01-31 2002-08-14 Matsushita Electric Ind Co Ltd 発光ダイオード
KR20110053470A (ko) * 2008-09-05 2011-05-23 다우 코닝 도레이 캄파니 리미티드 경화성 오가노폴리실록산 조성물, 광반도체 소자 봉지제 및 광반도체 장치
KR20100031076A (ko) * 2008-09-11 2010-03-19 신에쓰 가가꾸 고교 가부시끼가이샤 경화성 실리콘 수지 조성물, 그의 경화물 및 상기 조성물로 이루어지는 차광성 실리콘 접착 시트
KR20110087244A (ko) * 2010-01-25 2011-08-02 주식회사 엘지화학 경화성 조성물
KR20130058645A (ko) * 2011-11-25 2013-06-04 주식회사 엘지화학 경화성 조성물

Similar Documents

Publication Publication Date Title
WO2011090362A2 (ko) 실리콘 수지
WO2011090364A2 (ko) 경화성 조성물
KR101152867B1 (ko) 경화성 조성물
WO2013077702A1 (ko) 경화성 조성물
WO2012093907A2 (ko) 경화성 조성물
WO2013015591A2 (ko) 경화성 조성물
WO2013077699A1 (ko) 경화성 조성물
WO2014084639A1 (ko) 발광 다이오드
KR101560042B1 (ko) 경화성 조성물
WO2014017888A1 (ko) 경화성 조성물
WO2012093910A2 (ko) 경화성 조성물
WO2013077703A1 (ko) 경화성 조성물
KR101204116B1 (ko) 경화성 조성물
WO2012093909A2 (ko) 경화성 조성물
WO2014163442A1 (ko) 경화성 조성물
KR20150089972A (ko) 경화체
KR20130058644A (ko) 경화성 조성물
KR101560047B1 (ko) 경화성 조성물
WO2012093908A2 (ko) 경화성 조성물
WO2014017887A1 (ko) 경화성 조성물
WO2014163441A1 (ko) 경화성 조성물
WO2014017886A1 (ko) 경화성 조성물
WO2014163440A1 (ko) 경화성 조성물
WO2014163439A1 (ko) 경화성 조성물
WO2012150850A2 (ko) 경화성 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742985

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015742985

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15112387

Country of ref document: US

Ref document number: 2015742985

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016548742

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE