WO2015115728A1 - 방사성탄소 연대측정 용 시료전처리를 위한 전자동 환원장치 - Google Patents

방사성탄소 연대측정 용 시료전처리를 위한 전자동 환원장치 Download PDF

Info

Publication number
WO2015115728A1
WO2015115728A1 PCT/KR2014/011748 KR2014011748W WO2015115728A1 WO 2015115728 A1 WO2015115728 A1 WO 2015115728A1 KR 2014011748 W KR2014011748 W KR 2014011748W WO 2015115728 A1 WO2015115728 A1 WO 2015115728A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
liquid nitrogen
fully automatic
thermocouple
reducing device
Prior art date
Application number
PCT/KR2014/011748
Other languages
English (en)
French (fr)
Inventor
홍완
박중헌
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to JP2015560132A priority Critical patent/JP6069534B2/ja
Priority to US14/411,177 priority patent/US10337968B2/en
Publication of WO2015115728A1 publication Critical patent/WO2015115728A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4022Concentrating samples by thermal techniques; Phase changes
    • G01N2001/4033Concentrating samples by thermal techniques; Phase changes sample concentrated on a cold spot, e.g. condensation or distillation

Definitions

  • the present invention relates to a fully automatic reducing apparatus for sample preparation for radiocarbon dating, and more particularly, to prevent cooling of peripheral devices of the liquid nitrogen container by scattering of liquid nitrogen supplied to the liquid nitrogen container of the carbon dioxide collector.
  • the present invention relates to a fully automatic reducing device for sample preparation for radiocarbon dating, which prevents heating of a peripheral device through heat of a reactor when heating a reactor of a reduction reactor.
  • Radiocarbon dating used to date archaeological artifacts, is based on the principle that radioactive carbon decays at a constant rate after an organism dies.
  • sample pretreatment process In order to date a sample such as an artifact using accelerator mass spectrometry, one of radiocarbon dating methods, carbon must first be extracted from the sample. This is called a sample pretreatment process, and generally consists of a chemical pretreatment process, a vacuum combustion process, and a reduction process.
  • the chemical pretreatment process removes impurities from the sample to be analyzed to prevent errors caused by contaminants in the analysis process. It enhances the reliability of analysis by removing impurities contained in the sample through well-known washing process, chemical treatment and drying process. .
  • the vacuum combustion process refers to a process of obtaining carbon dioxide by burning a pretreated sample in a vacuum. Put the pretreated sample, CuO powder and silver wire into the quartz tube, seal it with a torch under vacuum, and put the sealed quartz tube into a Muffle furnace for 2 hours at about 850 °C. During combustion, high-purity oxygen is released from the copper oxide powder, which oxidizes the carbon in the raw material at high temperatures to produce carbon dioxide. Gifts also inhibit and precipitate the production of sulfur, a byproduct of combustion.
  • Carbon dioxide generated in the above process is passed through a cooling dryer mixed with a few dry ice and alcohol, and then extracted by solidifying only carbon dioxide using liquid nitrogen.
  • the reduction process refers to the process of extracting carbon powder graphite through the reaction of CO 2 + 2H 2 ⁇ C + 2H 2 O by heating a mixed gas mixed with carbon dioxide and hydrogen and an iron powder catalyst in an airtight container.
  • the graphitization process as described above was performed manually for each sample.
  • the vacuum combustion process puts the sample, copper oxide and silver into a vacuum tube, seals it with a torch in a vacuum state, and then burns it.
  • LN2 liquid nitrogen
  • alcohol (alcohol) trap and LN2 trap were breaking into the liquid nitrogen (LN2) / alcohol (alcohol) trap and LN2 trap in order to solidify only the pure carbon dioxide (CO 2 ) was collected in the carbon dioxide storage tank.
  • the vacuum combustion process and the reduction process are carried out in two stages for each sample, which is cumbersome, contaminated in the middle, and requires a lot of time.
  • a gas other than carbon dioxide is mixed by foreign substances mixed in the sample, it is difficult to identify and not easy to remove.
  • the sulfide gas is mixed, there is a problem that the reduction reaction itself rarely occurs.
  • the graphitization device as shown in Figure 1, the primary combustion element 11 and the combustion gas generated in the sample combustion unit 11 for burning a sample by using a gas chromatography method
  • An element analyzer 10 including a combustion gas separation unit 12 to be removed;
  • a carbon dioxide collector (30) for selecting and collecting only carbon dioxide from the combustion gas passing through the element analyzer (10);
  • a reduction reactor 40 for reducing carbon dioxide collected through the carbon dioxide collector 30 to graphite;
  • a controller 50 for controlling the operations of the element analyzer 10, the carbon dioxide collector 30, and the reduction reactor 40. It is configured to include.
  • the combustion gas of the organic material is first removed by using the gas chromatography function of the elemental analyzer (EA), and then the carbon dioxide is trapped to minimize the possibility of incorporation of impurities, and the graphitization process.
  • EA elemental analyzer
  • An object of the present invention is to provide a radiocarbon regimen having a scattering prevention sponge in a liquid nitrogen container for preventing the scattering of liquid nitrogen supplied to the liquid nitrogen container, and a screen for blocking heat exchange between the liquid nitrogen container and the peripheral device. It is to provide a fully automatic reducing device for sample preparation for measurement.
  • the present invention provides a fully automatic reducing apparatus for sample pretreatment for radiocarbon dating having a heat shield curtain for blocking heat exchange between a reaction furnace for heating carbon dioxide and a cooling tank for cooling carbon dioxide during a reduction reaction of carbon dioxide.
  • thermocouple can be safely introduced into the reactor in the horizontal direction, and the surface temperature of the measurement object provided in the reactor can be accurately measured under constant conditions at all times, and it is not a method of attaching a thermocouple by welding or bolting.
  • the present invention provides a fully automatic reducing apparatus including a thermocouple measuring apparatus using a pressurization that can be fixed simply and easily through a rotary detachable method and can measure the surface temperature of a measurement target according to the pressurization.
  • Fully automatic reduction apparatus of the present invention includes a carbon dioxide collector for selecting and collecting only carbon dioxide from the combustion gas to extract and graphitize the carbon in the organic sample, and a reduction reactor for reducing the carbon dioxide collected through the carbon dioxide collector to graphite
  • the carbon dioxide collector Carbon dioxide trap for solidifying the combustion gas; A liquid nitrogen container for cooling the carbon dioxide trap; A liquid nitrogen injection unit for injecting liquid nitrogen into the liquid nitrogen container; And a scattering preventing member provided on the liquid nitrogen container and disposed adjacent to the liquid nitrogen injection unit. It includes.
  • the scattering prevention member is made of a porous material for suppressing the scattering of the liquid nitrogen by absorbing and discharging the liquid nitrogen supplied from the liquid nitrogen injection unit, the void is a sponge of 1 ⁇ 4mm.
  • the shatterproof member is formed of a thread-shape woven by weaving several strands of yarn.
  • the carbon dioxide trap may further include a screen provided on the carbon dioxide trap to seal the open surface of the liquid nitrogen container when the carbon dioxide trap is accommodated in the liquid nitrogen container; It includes.
  • the carbon dioxide trap is provided with a plurality of spaced apart a predetermined distance
  • the screen is provided with a plurality of fitting so as to fit in each of the carbon dioxide trap
  • the center has a plate-shaped insertion hole having a diameter corresponding to the diameter of the carbon dioxide trap Is done.
  • the cooling gas discharge device is disposed directly above the scattering prevention member.
  • the reduction reactor may further include a reaction vessel in which a reduction reaction of carbon dioxide supplied from the carbon dioxide trap occurs; A reactor for supplying heat to the reaction vessel; A cooling tank cooling the carbon dioxide trap to remove water generated during the reduction reaction; A pressure controller for controlling the pressure inside the reduction reactor; And a heat shield curtain provided on the reaction vessel to block heat exchange between the reactor and the reaction vessel and the carbon dioxide trap, the cooling tank, and the pressure control unit. It includes.
  • the cooling gas discharge device is located in the region in which the liquid nitrogen container and the cooling tank are partitioned through the heat cut curtain so as to suck and discharge the cooling gas generated in the liquid nitrogen container or the cooling tank to the outside. do.
  • one end portion of the heat shield curtain is hinged to the reduction reactor so as to be opened and closed.
  • the fully automatic reducing device includes a thermocouple fixing device, the thermocouple fixing device, the hollow is formed so that the thermocouple is drawn in, is attached to the outer surface of the reactor, provided with a projection projecting outwardly facing Fixed member; A connector to which the thermocouple is connected in an inner space, and which is coupled to the fixing member in a rotational detachable manner so that the thermocouple is inserted into and fixed in the reactor; And an urging member having an elastic member urging the thermocouple in the pulling direction. It includes.
  • the connector may include a thermocouple fixing part formed of a metal having a high heat transfer rate, formed in a cylindrical shape having a hollow at one side thereof, and having a fastening groove formed on an outer surface thereof; And a rotating member formed in a cylindrical shape having a hollow to surround a predetermined portion of the thermocouple fixing portion, and having a protrusion formed therein to be coupled to the coupling groove of the thermocouple fixing portion. It includes.
  • the rotating member has an insulating hole cut in the 'b' shape or oblique direction on the outer surface so as to be engaged with the projection of the fixing member.
  • the rotating member is rotated in the 'B' pattern to be attached and detached from the fixing member.
  • the fixing member the through-hole is formed so that the thermocouple is introduced through.
  • the automatic reduction device for sample preparation for radiocarbon dating according to the present invention has the effect of preventing the peripheral device from being cooled by liquid nitrogen by preventing the scattering of liquid nitrogen supplied to the liquid nitrogen container. .
  • the sealing member which is one of the peripheral devices, is cooled, the sealing force of the sealing member is prevented from being lowered.
  • thermocouple fixing device it is possible to accurately measure the surface temperature of the measurement target provided in the reactor by introducing the thermocouple safely in the horizontal direction through the above-described thermocouple fixing device.
  • FIG. 1 is a schematic block diagram of a conventional fully automatic reducing device
  • FIG. 2 is a schematic block diagram of a fully automatic reduction apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic perspective view of a carbon dioxide collector according to an embodiment of the present invention.
  • FIG. 4 is a partial perspective view of a carbon dioxide collector
  • FIG. 5 is a partial cross-sectional view of the carbon dioxide collector.
  • FIG. 6 is a schematic perspective view of a reduction reactor according to an embodiment of the present invention (when combined with a reactor)
  • FIG. 7 is another schematic perspective view of a reduction reactor (when separating reactor)
  • FIG 8 is another schematic perspective view of the reduction reactor (opening the heat shield curtain)
  • FIG. 9 is a partial cross-sectional view of a reduction reactor.
  • thermocouple fixing device 10 is a schematic perspective view of a thermocouple fixing device according to an embodiment of the present invention.
  • thermocouple holding device 11 is an exploded perspective view of a thermocouple holding device
  • thermocouple fixing device 12 is a flowchart illustrating a fastening process of the rotating member and the fixing member of the thermocouple fixing device by way of example.
  • thermocouple fixing device 110 fixing member
  • thermocouple fixing part 120 connector 122 thermocouple fixing part
  • thermocouple 210 thermocouple element wire
  • liquid nitrogen container 341 liquid nitrogen injection unit
  • reaction vessel 440 cooling tank
  • the above-mentioned conventional graphitization apparatus is provided with a liquid nitrogen container for collecting carbon dioxide by cooling a sample gas in a carbon dioxide collector, but the liquid nitrogen supplied to the liquid nitrogen container is supplied to the liquid nitrogen container because the temperature is lower than -200 ° C.
  • the liquid nitrogen supplied at high pressure is scattered in the liquid nitrogen container and the peripheral device of the liquid nitrogen container, for example, the sealing member for cooling is lost, the sealing force of the sealing member is lowered as the elastic force of the sealing member is lost. The phenomenon occurred.
  • the reduction reactor is equipped with a reactor for supplying the heat required for the reduction reaction of carbon dioxide and a cooling tank for cooling the carbon dioxide to remove the water generated during the reduction reaction of carbon dioxide, the reactor is heated to a high temperature and the cooling tank to a low temperature Due to the cooling, the heat exchange between the reactor and the cooling tank may cause a decrease in the heating efficiency of the reactor and the cooling efficiency of the cooling tank.
  • the fully automatic reduction apparatus according to an embodiment of the present invention has been conceived to improve the above phenomenon, and will be described in detail below with reference to the drawings for the fully automatic reduction apparatus according to an embodiment of the present invention as described above.
  • the automatic reduction apparatus includes a sample combustion unit 610 for burning the collected sample and a combustion gas separation unit 620 for removing impurities from the combustion gas generated in the sample combustion unit 610.
  • An elemental analyzer configured to include (Elemental Analyzer: EA, 600); A carbon dioxide collector (300) for collecting only carbon dioxide from the gas passing through the element analyzer (600); A reduction reactor 400 for reducing the carbon dioxide collected through the carbon dioxide collector 300 to graphite; And a control unit 500 for controlling the elemental analyzer 600, the carbon dioxide collector 300, and the reduction reactor 400, adjusting the reaction temperature and pressure, the mixing ratio of hydrogen gas, and recording the reaction process. It is configured to include.
  • the element analyzer 600 includes a sample combustion unit 610 and a combustion gas separation unit 620.
  • a sample combustion unit 610 a tin thin film (foil) is heated on a quartz tube heated to about 900 ° C. in which high-purity helium carrier gas flows. Along with the sample wrapped in), high-purity oxygen is blown to combust the sample to be used for carbon dating.
  • the temperature rises to 1500 ° C instantaneously due to violent exothermic reactions.
  • the combustion gas generated by the sample combustion unit 610 is supplied to the combustion gas separation unit 620 connected to the sample combustion unit 610 to primarily remove impurities contained in the combustion gas.
  • the combustion gas separation unit 620 primarily removes carbon dioxide from the combustion gas supplied from the sample combustion unit 610 by removing impurities contained in the combustion gas by using gas chromatography.
  • the carbon dioxide separated through the combustion gas separation unit 620 includes a trace amount of impurities such as nitrogen and hydrogen, including helium, which is a carrier gas, and oxygen injected for combustion, and the helium, oxygen, and other trace impurities
  • the carbon dioxide gas is transferred to the carbon dioxide collector 300.
  • the carbon dioxide collector 300 is connected to the element analyzer 600 to collect only carbon dioxide from carbon dioxide gas containing helium, oxygen, and other trace impurities supplied from the element analyzer 600.
  • Figure 3 is a schematic perspective view of a carbon dioxide collector 300 according to an embodiment of the present invention
  • Figure 4 is a partial perspective view of the carbon dioxide collector 300 according to an embodiment of the present invention
  • Figure 5 is a partial cross-sectional view of the carbon dioxide collector 300 according to an embodiment of the present invention.
  • the carbon dioxide collector 300 supplies a carbon dioxide trap 330 that solidifies carbon dioxide, a liquid nitrogen container 340 that cools the temperature of the carbon dioxide trap 330, and supplies the collected carbon dioxide to a reduction reactor. It consists of a first valve 310 and a second valve 320 for discharging trace impurities such as helium, oxygen and nitrogen, hydrogen separated from the carbon dioxide, the carbon dioxide supplied through the element analyzer 600 (see FIG. 2) After passing through the carbon dioxide trap 330 immersed in the liquid nitrogen container 340 to make a solid state, high purity carbon dioxide is obtained by removing helium, oxygen and other trace gases using a vaporization temperature difference.
  • trace impurities such as helium, oxygen and nitrogen, hydrogen separated from the carbon dioxide
  • the liquid nitrogen container 340 is made of quartz in the form of a double tube to insulate the liquid nitrogen filled in the inner circumference, and the inside of the double tube may be formed in a vacuum (V).
  • V vacuum
  • the liquid nitrogen container 340 is configured to be supplied to the liquid nitrogen container 340 through the liquid nitrogen injection unit 341 so that the liquid nitrogen of a certain level is accommodated.
  • the liquid nitrogen container 340 is configured to move up and down relative to the carbon dioxide trap 330. Accordingly, the liquid nitrogen container 340 may selectively accommodate or detach the carbon dioxide trap 330 therein.
  • the carbon dioxide trap 330 is accommodated in the liquid nitrogen container 340 by the lifting and lowering of the liquid nitrogen container 340, and the carbon dioxide trap 330 is the liquid nitrogen container 340 by the falling of the liquid nitrogen container 340. Deviates from).
  • the carbon dioxide trap 330 is accommodated in the cooling tank 440 (see FIGS. 8 and 9) is configured to remove the water generated during the reduction reaction.
  • the liquid nitrogen supplied from the liquid nitrogen injection unit 341 is supplied at a high pressure because it is a low temperature of about -200 ° C, and the automatic reduction apparatus of the present embodiment for preventing the scattering of the liquid nitrogen supplied at a high pressure has the following configuration.
  • Have The scattering prevention member 350 may be provided in the liquid nitrogen container 340.
  • Shatterproof member 350 may be applied to the porous material as a configuration for preventing the scattering of the high-pressure liquid nitrogen supplied from the liquid nitrogen injection unit 341, for example sponge or pores to form a plurality of yarns to form Bundled threads can be applied.
  • the porous material is discharged into the liquid nitrogen container 340 while absorbing the liquid nitrogen discharged from the liquid nitrogen injection unit 341 into the voids therein, so that the liquid nitrogen flows into the liquid nitrogen container 340 at a high pressure.
  • the pores of the porous material may be 1 ⁇ 4mm. If the air gap is less than 1mm, the supply of liquid nitrogen is not smooth, and if it exceeds 4mm, the scattering prevention effect of liquid nitrogen is lowered.
  • the screen 360 is provided to prevent cold air of the liquid nitrogen container 340 from being transferred to the upper end of the carbon dioxide trap 330.
  • the screen 360 may have a plate-shaped fitting hole in the center thereof, and the carbon dioxide trap 330 may be fitted into the fitting hole. Therefore, the diameter of the fitting hole is configured to be the same as the diameter of the carbon dioxide trap 330.
  • the screen 360 is configured to seal the open surface of the liquid nitrogen container 340 when the carbon dioxide trap 330 is received in the liquid nitrogen container 340.
  • the screen 360 may be provided in plurality so as to be fitted into the respective carbon dioxide traps 330.
  • the fitting holes to be fitted to the respective carbon dioxide traps 330 must be precisely processed, and thus, manufacturing is not easy, and the intervals of the fitting holes are accurately This is because if not processed, the fitting holes are fitted to the carbon dioxide trap 330, and the load of the screen 360 is applied, and the carbon dioxide trap 330 may be damaged.
  • the screen 360 may be a conventional rubber material, for example, a urethane material may be applied.
  • the screen 360 as described above seals the upper open surface of the liquid nitrogen container 340 when the carbon dioxide trap 330 is accommodated due to the rise of the liquid nitrogen container 340. Accordingly, there is an effect of preventing the liquid nitrogen inside the liquid nitrogen container 340 to flow out of the liquid nitrogen container 340.
  • the carbon dioxide collector 300 may be further provided with a cooling gas discharge device 370 for discharging the cooling gas generated from the liquid nitrogen container 340 to the outside.
  • Cooling gas discharge device 370 may be composed of a duct and a fan for the circulation of the conventional gas, through the cooling gas discharge device 370 to prevent the peripheral device of the liquid nitrogen container 340 is cooled by the cooling gas. do.
  • the duct of the cooling gas discharge device 370 may be disposed above the scattering prevention member 350 positioned in the liquid nitrogen injection unit 341. This is because scattering or outflow of liquid nitrogen may occur in the liquid nitrogen injection unit 341.
  • FIG. 6 is a schematic perspective view of a reduction reactor 400 when combining a reactor 410 according to an embodiment of the present invention
  • FIG. 7 schematically shows a reduction reactor 400 when separating a reactor 410.
  • a perspective view is shown
  • FIG. 8 is a schematic perspective view of the reduction reactor 400 when the thermal cutoff curtain 460 is opened.
  • 9 is a partial perspective view of the reduction reactor 400.
  • the reduction reactor 400 is connected to a reactor 410 for supplying heat required for the reaction, a reaction vessel 420 in which a carbon reduction reaction occurs, and a reaction vessel 420 to remove water generated during the reduction reaction.
  • Pressure control unit 450 to make the inside of the cooling tank 440 and the reduction reactor 400 to cool the temperature of the carbon dioxide trap 330, the carbon dioxide trap 330 to around -50 °C and to measure the pressure inside It consists of
  • the reactor 410 is provided with a thermocouple 200 for measuring the temperature of the reaction vessel 420 and a thermocouple fixing device 100 for fixing the thermocouple 200 and the thermocouple fixing device 100 will be described later. Let's do it.
  • the cooling tank 440 is configured to be able to descend relative to the carbon dioxide trap 330. Therefore, the cooling tank 440 may selectively accommodate or detach the carbon dioxide trap 330 therein as in the liquid nitrogen container 340 described above. For example, the carbon dioxide trap 330 is accommodated in the cooling tank 440 by the lifting and lowering of the cooling tank 440, and the carbon dioxide trap 330 is separated from the cooling tank 440 by the lowering of the cooling tank 440. .
  • the carbon dioxide trap 330 is accommodated in the liquid nitrogen container 340 when the carbon dioxide is collected, and the liquid nitrogen container 340 and the cooling tank 440 are switched during the reduction reaction so that the carbon dioxide trap 330 is the cooling tank 440. ) Can be accommodated.
  • Reactor 410 is to supply the heat required for the carbon reduction reaction, the body is formed with a receiving groove 411 that can accommodate the reaction vessel 420 in a metal material having excellent thermal conductivity, such as silver ingot, Specific portions of 410 are provided with hot wires (not shown).
  • a quartz tube is used as a space where a carbon reduction reaction occurs.
  • the heat shield curtain 460 may be provided to prevent heat generated from the reactor 410 from being transferred to the carbon dioxide trap 330, the cooling tank 440, and the pressure regulator 450.
  • the thermal insulation curtain 460 is disposed between the reactor 410 and the reaction vessel 420, the carbon dioxide trap 330, the cooling tank 440, and the pressure regulating unit 450, and the reaction vessel 420 penetrates. Through grooves may be formed as many as the number of reaction vessels 420.
  • the thermal cut curtain 460 may be coupled to the reduction reactor 400 through the hinge coupling means 461 so as to be open and close.
  • the thermal insulation curtain 460 is configured to be open and closed, and configured to facilitate maintenance of the carbon dioxide trap 330, the cooling tank 440, and the pressure regulator 450.
  • the above-described cooling gas discharge device 370 is disposed in the interior space of the heat shield curtain 460, so that the low temperature nitrogen gas flowing out of the liquid nitrogen container 340 does not flow out of the heat shield curtain 460. .
  • it is characterized in that it does not affect the high-temperature reaction vessel 420.
  • thermocouple fixing device 100 according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
  • thermocouple fixing device 100 is a perspective view of a thermocouple fixing device 100 according to an embodiment of the present invention
  • Figure 11 is an exploded perspective view of the thermocouple fixing device 100.
  • FIG. 12 is a flowchart illustrating a fastening process of the rotating member 123 and the fixing member 110 of the thermocouple fixing device 100 by way of example.
  • thermocouple fixing device 100 of the present invention includes a fixing member 110, a connector 120, and a pressing member 130.
  • the fixing member 110 is attached to the outer surface of the reactor 410 (see FIG. 8) described above, and is provided such that the protrusions 111 protruding outwardly face each other.
  • the connector 120 is connected to the fixing member 110 such that the thermocouple 200 is connected to the inner space, and the thermocouple 200 is inserted into the receiving groove 411 (see FIG. 9) of the reactor 410 in a horizontal direction and fixed thereto. Is fastened.
  • the connector 120 includes a thermocouple fixing part 122 and a rotating member 123.
  • thermocouple fixing part 122 is formed of a metal having a high heat transfer rate, and has one side formed in a cylindrical shape having a hollow, and a thermocouple 200 is connected to the inner center by welding.
  • thermocouple element 210 The other end is connected to the thermocouple element 210, and serves as a medium for transferring the heat transferred from the thermocouple 200 to the thermocouple element 210 and at the same time performs a function of fixing the thermocouple 200.
  • the thermocouple element 210 may be connected to a heat measuring device (not shown).
  • a fastening groove 122a may be formed on an outer surface of the thermocouple fixing part 122.
  • the fastening groove 122a is fastened to the protrusion 123a of the rotating member 123.
  • the rotating member 123 is formed in a cylindrical shape having a hollow so as to surround a portion of the thermocouple fixing part 122, and a protrusion part 123a which is fastened to the fastening groove 122a of the thermocouple fixing part 122 is formed therein. .
  • the outer surface of the rotating member 123 is formed with an insulating groove 121a to which the protrusion 111 of the fixing member 110 is inserted and fixed.
  • the insulating groove 121a is formed to have a 'b' direction on the outer surface of the rotating member 123, so that one of both ends of the insulating groove 121a is protruded, the other is the insulating groove ( It is formed to fix the protrusion 111 introduced into 121a).
  • the rotation member 123 is rotated and fastened after the protrusion 111 is inserted therein, and the rotation member 123 is rotated in a 'B' pattern to fix the fixing member 110. And detachable.
  • the pressing member 130 performs a function of pressing the thermocouple 200 in the horizontal direction, and more specifically, includes a support plate 131 and an elastic member 132.
  • the support plate 131 is formed in a ' ⁇ ' shape, the center of which protrudes, the protruding portion is introduced into the elastic member 132, the welding or fastening with one end of the elastic member 132 on the outer surface of the protruding portion Is coupled through the member.
  • the elastic member 132 may be a high elastic spring, one end of which is fixed to the outer surface of the protruding portion, and the other end of the elastic member 132 is coupled to the thermocouple fixing part 122 by a welding or fastening member.
  • thermocouple fixing device 100 accurately introduces the thermocouple 200 into the reaction chamber 410 in the horizontal direction so that the surface temperature of the reaction vessel 420 (see FIG. 8) provided in the reactor 410 can be accurately obtained. It can be measured.
  • thermocouple can be fixed simply and easily through a rotation detachment method, rather than the method of attaching to the reactor 410 through welding or bolts.
  • thermocouple by using a pressure member to provide a variable pressure to the thermocouple in contact with the surface of the object to be measured, it is possible to measure different temperatures at the surface of the object to be applied to the thermocouple to which the pressure is applied.
  • a pressure member with high elastic force it is possible to measure the surface temperature when the thermocouple is in contact with the measurement object with a relatively strong pressure
  • a pressure member with low elastic force the thermocouple is applied to the measurement object with a relatively weak pressure. The surface temperature at the time of contact can be measured.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

본 발명은 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치에 관한 것으로, 더욱 상세하게는 이산화탄소포집기의 액체질소용기에 공급되는 액체질소의 비산에 의해 액체질소용기의 주변 장치가 냉각되는 것을 방지하고, 환원반응기의 반응로 가열 시 반응로의 열기를 통해 주변 장치가 가열되는 것을 방지한 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치에 관한 것이다.

Description

방사성탄소 연대측정 용 시료전처리를 위한 전자동 환원장치
본 발명은 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치에 관한 것으로, 더욱 상세하게는 이산화탄소포집기의 액체질소용기에 공급되는 액체질소의 비산에 의해 액체질소용기의 주변 장치가 냉각되는 것을 방지하고, 환원반응기의 반응로 가열 시 반응로의 열기를 통해 주변 장치가 가열되는 것을 방지한 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치에 관한 것이다.
고고학적 가치가 있는 유물들의 연대를 측정하는데 이용되는 방사성탄소연대측정법은 유기체가 죽은 후 체내의 방사성 탄소가 일정한 비율로 붕괴 되는 원리를 이용한 연대측정법을 말한다.
자연에는 12C, 13C, 14C 등 세 종류의 탄소 동위원소(carbon isotope)가 주로 존재한다. 이 중 대부분이 12C로 98.89%를 차지하고, 13C가 1.11%이며 14C는 극소량이 있을 뿐인데, 유기체가 광합성이나 호흡 등을 통해 탄소를 체내에 흡수해도 그 비율은 변함이 없다.
그러나 유기체가 죽고 나면 불안정한 방사성 탄소인 14C는 일정한 속도로 붕괴되어 14N로 변하게 된다. 이때 14C의 양이 절반으로 줄어들게 되는 반감기(half-life)를 겪게 되는데, 이 시간이 약 5,730년이라는 사실을 이용하여 유기체의 연대를 추정할 수 있게 된다.
방사성 탄소연대측정 방법의 하나인 가속기질량분석법을 이용하여 유물 등과 같은 시료의 연대를 측정하기 위해서는 먼저 시료로부터 탄소를 추출하여야 한다. 이를 시료전처리과정이라고 하며, 일반적으로 화학전처리과정, 진공연소과정 및 환원과정으로 이루어진다.
화학전처리과정은 분석할 시료로부터 불순물을 제거하여 분석과정에서 오염물로 인한 오류를 방지하기 위한 과정으로 공지의 세척과정과 화학처리 및 건조과정 등을 통하여 시료에 함유된 불순물을 제거하여 분석신뢰도를 높인다.
진공연소과정은 전처리된 시료를 진공 속에서 연소하여 이산화탄소를 얻는 과정을 말한다. 석영관에 전처리된 시료와 산화구리(CuO) 분말 및 은사(Ag wire)를 넣고 진공상태에서 토치를 사용하여 밀봉한 다음 밀봉된 석영관을 가열로(Muffle furnace)에 넣고 약 850℃에서 2시간 동안 연소시키면 산화구리 분말로부터 고순도 산소가 방출되며, 이 산소는 고온에서 원시료의 탄소를 산화시켜 이산화탄소를 생성한다. 또한 은사는 연소의 부산물인 황의 생성을 억제 및 침전시킨다.
상기와 같은 과정에서 발생한 이산화탄소는 몇 번의 드라이아이스와 알코올을 섞은 냉각건조기를 통과시킨 후 액화질소를 사용하여 이산화탄소만을 고화시켜 분리하여 추출한다.
환원과정은 이산화탄소와 수소를 섞은 혼합기체와 철가루 촉매를 밀폐된 용기에 넣고 가열하여 CO2+2H2→C+2H2O의 반응을 통해 탄소가루인 흑연을 추출하는 과정을 말한다.
종래에는 상기와 같은 흑연화 과정을 개개의 시료마다 수동으로 진행하였다. 즉, 진공연소과정은 시료와 산화구리 및 은사를 진공관에 넣고 진공상태에서 토치를 사용하여 밀봉한 다음 연소시키고, 흑연화과정은 연소된 석영관을 건조관(Dry line)의 주름관(flexible bellows)에 넣고 깬 후 액화질소(LN2)/알코올(alcohol) 트랩과 LN2 트랩을 차례로 통과시켜 순수한 이산화탄소(CO2)만 고형화하고, 이를 이산화탄소 저장탱크에 포집하였다.
그러나 종래와 같은 방법은, 개개의 시료마다 진공연소과정 및 환원과정을 두 단계로 각각 진행하기 때문에 번거로움이 있고 도중에 오염가능성이 있으며 작업에 많은 시간이 소요되었다. 또한 시료에 혼입된 이물질에 의해 이산화탄소 이외의 기체가 혼입되는 경우 확인이 어렵고 제거가 용이하지 않으며, 특히 황화가스가 혼입되는 경우에는 환원반응 자체가 거의 일어나지 않는 문제점이 있었다.
상기와 같은 문제점을 해결하기 위해 본 출원인은 “흑연화장치 및 이를 이용한 흑연화 방법” 에 대한 특허를 2010년 11월 29일에 등록받은 바 있다.(제10-0998227호)
상기 특허에 따르면, 흑연화장치는, 도 1에 도시된 바와 같이 시료를 연소하는 시료연소부(11)와 상기 시료연소부(11)에서 발생한 연소가스를 기체크로마토그래피법을 이용하여 불순물을 1차적으로 제거하는 연소가스분리부(12)를 포함하여 구성되는 원소분석기(10)와; 상기 원소분석기(10)를 통과한 연소가스에서 이산화탄소만을 선별하여 포집하는 이산화탄소포집기(30)와; 상기 이산화탄소포집기(30)를 통해 포집된 이산화탄소를 흑연으로 환원시키는 환원반응기(40); 및 상기 원소분석기(10), 이산화탄소포집기(30) 및 환원반응기(40)의 동작을 제어하는 제어부(50); 를 포함하여 구성된다.
상기와 같은 구성을 통해 유기물의 연소가스를 원소분석기(elemental analyzer: EA)의 기체크로마토그래피 기능을 이용하여 1차적으로 불순물을 제거한 다음 이산화탄소를 포집함으로써 불순물의 혼입 가능성을 최대한 억제하고, 흑연화과정의 반응조건을 최적화하여 이산화탄소가 흑연화되는 비율을 획기적으로 제고하여 동위원소 분별효과를 억제하고, 반응용기의 규격을 최적화하여 반응에 소요되는 시간을 현저히 단축하며, 최소량의 시료만으로 탄소연대측정에 필요한 충분한 흑연을 얻을 수 있는 효과를 기대할 수 있었다.
본 발명의 목적은, 액체질소용기에 공급되는 액체질소의 비산을 방지하기 위해 액체질소용기 내에 비산방지용 스펀지를 구비하고, 액체질소용기와 주변기기의 열교환을 차단하기 위한 스크린을 구비한, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치를 제공함에 있다.
또한, 이산화탄소의 환원 반응 시 이산화탄소를 가열하는 반응로와, 이산화탄소를 냉각하는 냉각조 사이의 열교환 차단을 위한 열차단커튼이 구비된 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치를 제공함에 있다.
아울러 반응로 내에 열전대를 수평방향으로 안전하게 인입하고, 반응로 내에 구비된 측정대상물의 표면온도를 항상 일정한 조건하에서 정확하게 측정할 수 있고, 또한, 기존에 용접 또는 볼트를 통해 열전대를 부착하던 방식이 아닌, 회전식 착탈 방식을 통해 간편하면서도 용이하게 열전대를 고정시킬 수 있고, 또한, 가압에 따른 측정 대상물의 표면 온도를 측정할 수 있는 가압을 이용한 열전대 측정 장치를 포함하는 전자동 환원장치를 제공함에 있다.
본 발명의 전자동 환원장치는, 유기시료 내의 탄소를 추출하여 흑연화하기 위해 연소가스에서 이산화탄소만을 선별하여 포집하는 이산화탄소포집기와, 상기 이산화탄소포집기를 통해 포집된 이산화탄소를 흑연으로 환원시키는 환원반응기를 포함하는 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치에 있어서, 상기 이산화탄소포집기는, 연소가스를 고화하는 이산화탄소트랩; 상기 이산화탄소트랩을 냉각하는 액체질소용기; 상기 액체질소용기에 액체질소를 주입하는 액체질소주입부; 및 상기 액체질소용기 상에 구비되며, 상기 액체질소주입부에 인접 배치되는 비산방지부재; 를 포함한다.
상기 비산방지부재는, 상기 액체질소주입부에서 공급된 액체질소를 흡수 후 배출함으로써 상기 액체질소의 비산을 억제하는 다공성 재질로 이루어지며, 공극이 1~ 4mm 의 스펀지이다.
다른 실시 예로 상기 비산방지부재는, 여러 가닥의 원사를 엮어서 뭉친 실타래 형상으로 이루어진다.
또한, 상기 이산화탄소포집기는, 상기 이산화탄소트랩이 상기 액체질소용기에 수용 시 상기 액체질소용기의 개방면을 밀폐하도록 상기 이산화탄소트랩에 구비된 스크린; 을 포함한다.
또한, 상기 이산화탄소트랩은 복수 개가 일정 거리 이격 구비되며, 상기 스크린은, 상기 이산화탄소트랩 각각에 끼움 결합되도록 복수개가 구비되되, 중앙에 상기 이산화탄소트랩의 직경에 대응되는 직경을 갖는 삽입홀이 형성된 판상으로 이루어진다.
또한, 상기 이산화탄소포집기는, 상기 액체질소용기에서 생성된 냉각가스를 흡입하여 외부로 배출하도록 상기 액체질소용기에 인접 배치되는 냉각가스 배출장치; 를 포함한다.
또한, 상기 냉각가스 배출장치는, 상기 비산방지부재의 직상측에 배치된다.
또한, 상기 환원반응기는, 상기 이산화탄소트랩으로부터 공급된 이산화탄소의 환원반응이 일어나는 반응용기; 상기 반응용기에 열을 공급하는 반응로; 상기 환원반응 시 발생하는 물을 제거하기 위해 상기 이산화탄소트랩을 냉각하는 냉각조; 상기 환원반응기 내부의 압력을 조절하기 위한 압력조절부; 및 상기 반응로 및 상기 반응용기와, 상기 이산화탄소트랩, 상기 냉각조 및 상기 압력조절부 사이의 열교환을 차단하도록 상기 반응용기 상에 구비되는 열차단커튼; 을 포함한다.
또한, 상기 냉각가스 배출장치는, 상기 액체질소용기 또는 상기 냉각조에서 생성된 냉각가스를 흡입하여 외부로 배출하도록 상기 열차단커튼을 통해 구획되는 상기 액체질소용기 및 상기 냉각조가 배치된 영역에 위치한다.
또한, 상기 열차단커튼은, 개폐 가능하도록 일단부가 상기 환원반응기에 힌지 결합된다.
또한, 상기 전자동 환원장치는, 열전대 고정장치를 포함하며, 상기 열전대 고정장치는, 열전대가 인입되도록 중공이 형성되고, 상기 반응로의 외측면에 부착되며, 외측 방향으로 돌출된 돌기가 대향되도록 구비된 고정부재; 내측 공간 내에 상기 열전대가 연결되고, 상기 열전대가 상기 반응로 내에 인입되어 고정되도록 상기 고정부재와 회전 착탈 방식으로 체결되는 커넥터; 및 상기 인입 방향으로 상기 열전대를 가압하는 탄성부재가 구비된 가압부재; 를 포함한다.
또한, 상기 커넥터는, 열 전달율이 높은 금속으로 형성되며, 일측이 개구된 중공을 갖는 원통형으로 형성되고, 외측면에 체결홈이 형성된 열전대 고정부; 및 상기 열전대 고정부의 일정부분을 감싸도록 중공을 갖는 원통형으로 형성되며, 내측에 상기 열전대 고정부의 체결홈과 체결되는 돌출부가 형성된 회전부재; 를 포함한다.
또한, 상기 회전부재는, 상기 고정부재의 돌기와 체결되도록, 외측면에 ‘ㄴ’ 자 형상 또는 사선 방향으로 절개된 절연홀을 구비한다.
또한, 상기 회전부재는, ‘ㄴ’ 자 패턴으로 회전하여 상기 고정부재와 착탈된다.
아울러, 상기 고정부재는, 상기 열전대가 인입되어 관통되도록 관통홀이 형성된다.
상기와 같은 구성에 의한 본 발명의 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치는, 액체질소용기에 공급되는 액체질소의 비산을 방지하여 액체질소로 인해 주변기기가 냉각되는 것을 방지한 효과가 있다. 특히, 주변기기 중 하나인 실링부재가 냉각됨에 따라 실링부재의 밀폐력이 저하되는 것을 방지한 효과가 있다.
또한, 환원반응기의 반응로와 냉각조의 열교환을 차단하여 반응로의 가열효율 및 냉각조의 냉각효율이 향상된 효과가 있다.
아울러 상술된 열전대 고정장치를 통해 반응로 내에 열전대를 수평방향으로 안전하게 인입하여 상기 반응로 내에 구비된 측정 대상물의 표면온도를 정확하게 측정할 수 있다.
도 1은 종래의 전자동 환원장치의 개략적인 블록도
도 2는 본 발명의 일실시 예에 따른 전자동 환원장치의 개략적인 블록도
도 3은 본 발명의 일실시 예에 따른 이산화탄소포집기의 개략적인 사시도
도 4는 이산화탄소포집기의 부분사시도
도 5는 이산화탄소포집기의 부분단면도
도 6은 본 발명의 일실시 예에 따른 환원반응기의 개략적인 사시도 (반응로 결합 시)
도 7은 환원반응기의 다른 개략적인 사시도 (반응로 분리 시)
도 8은 환원 반응기의 또 다른 개략적인 사시도 (열차단커튼 개방 시)
도 9는 환원반응기의 부분단면도
도 10은 본 발명의 일실시 예에 따른 열전대 고정장치의 개략적인 사시도
도 11은 열전대 고정장치의 분해사시도
도 12는 열전대 고정장치의 회전부재와 고정부재의 체결과정을 예시적으로 나타낸 순서도
<부호의 설명>
100 : 열전대 고정장치 110 : 고정부재
120 : 커넥터 122 : 열전대 고정부
121a : 절연홀 122a : 체결홈
123 : 회전부재 123a : 돌출부
130 : 가압부재 131 : 지지판
132 : 탄성부재
200 : 열전대 210 : 열전대 소선
300 : 이산화탄소포집기 310 : 제1 밸브
320 : 제2 밸브 330 : 이산화탄소트랩
340 : 액체질소용기 341 : 액체질소주입부
350 : 비산방지부재 360 : 스크린
370 : 냉각가스 배출장치
400 : 환원반응기 410 : 반응로
420 : 반응용기 440 : 냉각조
450 : 압력조절부 460 : 열차단커튼
500 : 제어부
600 : 원소분석기 610 : 시료연소부
620 : 연소가스분리부
상술된 종래의 흑연화장치는, 이산화탄소포집기에 시료가스를 냉각시켜 이산화탄소를 포집하기 위한 액체질소용기가 구비되는 데 액체질소용기에 공급되는 액체질소는 -200℃ 이하의 저온이기 때문에 액체질소용기에 공급 시 고압으로 공급되며, 고압으로 공급되는 액체질소는 액체질소용기 내에서 비산되어 액체질소용기의 주변기기 예를 들면 실링을 위한 실링부재를 냉각시켜 실링부재의 탄성력이 상실됨에 따라 실링부재의 밀폐력이 저하되는 현상이 발생하기도 하였다.
또한, 환원반응기에는 이산화탄소의 환원 반응에 필요한 열을 공급하는 반응로 및 이산화탄소의 환원 반응 시 발생하는 물을 제거하기 위해 이산화탄소를 냉각시키는 냉각조가 구비되는데, 반응로는 고온으로 가열되며 냉각조는 저온으로 냉각되기 때문에 반응로와 냉각조 상호간의 열교환으로 인해 반응로 가열 효율 및 냉각조의 냉각효율이 떨어지는 현상이 발생하기도 하였다.
따라서 본 발명의 일실시 예에 따른 전자동 환원장치는, 상기와 같은 현상을 개선하기 위해 착안되었으며, 이하 상기와 같은 본 발명의 일실시예에 따른 전자동 환원장치에 대하여 도면을 참조하여 상세히 설명한다.
도 2에는 본 발명의 일실시 예에 따른 전자동 환원장치의 개략적인 블록도가 도시되어 있다. 도시된 바와 같이 상기 전자동 환원장치는, 채취된 시료를 연소하는 시료연소부(610)와, 시료연소부(610)에서 발생한 연소가스에서 불순물을 1차적으로 제거하는 연소가스분리부(620)를 포함하여 구성되는 원소분석기(Elemental Analyzer : EA, 600)와; 원소분석기(600)를 통과한 가스에서 이산화탄소만을 포집하는 이산화탄소포집기(300)와; 이산화탄소포집기(300)를 통해 포집된 이산화탄소를 흑연으로 환원시키는 환원반응기(400); 및 원소분석기(600), 이산화탄소포집기(300) 및 환원반응기(400)를 제어하고, 반응온도와 압력, 수소가스의 혼합비를 조절하며, 반응과정을 기록하는 제어부(500); 를 포함하여 구성된다.
원소분석기(600)는 시료연소부(610)와 연소가스분리부(620)로 구성되며, 시료연소부(610)에서는 고순도 헬륨 캐리어가스가 흐르고 있는 900℃ 정도로 가열된 석영관에 주석 박막(foil)으로 감싼 시료와 함께 고순도 산소를 불어넣어 탄소연대측정에 사용될 시료를 연소시킨다. 시료 연소 시에는 격렬한 발열반응으로 인해 순간적으로 1500℃ 까지 온도가 상승한다. 시료연소부(610)에서 생성된 연소가스는 연소가스에 포함된 불순물을 1차적으로 제거하기 위하여 시료연소부(610)와 연결된 연소가스분리부(620)로 공급된다. 연소가스분리부(620)에서는 시료연소부(610)에서 공급된 연소가스를 기체크로마토그래피(gas chromatography)법을 이용하여 연소가스 내에 포함된 불순물을 제거하여 1차적으로 이산화탄소를 분리한다. 연소가스분리부(620)를 통하여 분리된 이산화탄소에는 캐리어 가스인 헬륨과 연소를 위해 주입된 산소를 포함하여 질소, 수소 등의 미량의 불순물이 포함되어 있으며, 이들 헬륨, 산소 및 기타 미량의 불순물을 포함한 이산화탄소 가스는 이산화탄소포집기(300)로 이송된다.
이산화탄소포집기(300)는 원소분석기(600)와 연결되어, 원소분석기(600)로부터 공급되는, 헬륨, 산소 및 기타 미량의 불순물이 포함된 이산화탄소가스로부터 이산화탄소만을 포집하기 위한 장치이다.
도 3에는 본 발명의 일실시 예에 따른 이산화탄소포집기(300)의 개략적인 사시도가 도시되어 있고, 도 4에는 본 발명의 일실시 예에 따른 이산화탄소포집기(300)의 부분사시도가 도시되어 있고, 도 5에는 본 발명의 일실시 예에 따른 이산화탄소포집기(300)의 부분단면도가 도시되어 있다.
도시된 바와 같이 이산화탄소포집기(300)는 이산화탄소를 고화하는 이산화탄소트랩(trap, 330)과, 이산화탄소트랩(330)의 온도를 냉각하는 액체질소용기(340)와, 포집된 이산화탄소를 환원반응기로 공급하는 제1 밸브(310) 및 이산화탄소로부터 분리된 헬륨, 산소 및 질소, 수소 등의 미량 불순물을 배출하는 제2 밸브(320)로 구성되며, 원소분석기(600, 도 2 참조)를 통과하여 공급된 이산화탄소를 액체질소용기(340)에 침지된 이산화탄소트랩(330)을 통과시켜 고체 상태로 만든 후, 기화온도차를 이용하여 헬륨, 산소 및 기타 미량의 잔류기체를 제거함으로써 고순도의 이산화탄소를 얻는다. 이때 기화된 헬륨, 산소 및 기타 잔류기체는 제2 밸브(320)를 통하여 외부로 배출한다. 이산화탄소포집기(300)에서 포집된 이산화탄소는 흑연화 반응을 위하여 제1 밸브(310)를 통하여 환원반응기(400)로 공급된다. 액체질소용기(340)는 내주에 충전되는 액체질소의 단열을 위해 이중관 형태의 석영(quartz)으로 이루어지며, 이중관의 내부는 진공(V)으로 형성될 수 있다. 액체질소용기(340)에 석영을 적용하는 이유는, -200℃ 이하의 온도를 갖는 액체질소를 저장하여도 변형 및 파손이 되지 않고, 성형이 용이하기 때문이다.
이때, 액체질소용기(340)에는 일정한 레벨의 액체질소가 수용되도록 액체질소주입부(341)를 통해 액체질소가 액체질소용기(340)에 공급되도록 구성된다. 액체질소용기(340)는 이산화탄소트랩(330)에 대하여 상대적으로 승하강 가능하도록 구성된다. 따라서 액체질소용기(340)는 선택적으로 이산화탄소트랩(330)을 내부에 수용 또는 이탈시킬 수 있다. 일예로 액체질소용기(340)의 승강에 의해 이산화탄소트랩(330)이 액체질소용기(340) 내부에 수용되며, 액체질소용기(340)의 하강에 의해 이산화탄소트랩(330)이 액체질소용기(340)에서 이탈된다.
또한, 후술되는 환원 반응 시에는, 이산화탄소트랩(330)이 냉각조(440, 도 8 및 도 9 참조)에 수용되도록 하여 환원반응 시 발생하는 물을 제거하도록 구성된다.
액체질소주입부(341)에서 공급되는 액체질소는 약 -200℃의 저온이기 때문에 고압으로 공급되며, 고압으로 공급되는 액체질소의 비산을 방지하기 위한 본실시 예의 전자동 환원 장치는 다음과 같은 구성을 갖는다. 액체질소용기(340)내에는 비산방지부재(350)가 구비될 수 있다. 비산방지부재(350)는 액체질소주입부(341)에서 공급되는 고압의 액체질소의 비산을 방지하기 위한 구성으로 다공성 소재가 적용될 수 있으며, 일예로 스펀지 또는 공극이 형성되도록 여러 가닥의 원사를 한데 뭉친 실타래가 적용될 수 있다.
다공성 소재는, 액체질소주입부(341)에서 배출된 액체질소를 그 내부의 공극으로 흡수하면서 액체질소용기(340)의 내부로 유출시키므로 액체질소가 액체질소용기(340)로 고압으로 유입될 때의 충격을 완화하여 액체질소가 액체질소용기(340) 밖으로 튀거나 비산되는 것을 효과적으로 억제할 수 있다.
상기 다공성 소재의 공극은 1~4mm 일 수 있다. 공극이 1mm 미만이면 액체질소의 공급이 원활하지 못하며, 4mm 를 초과할 경우 액체질소의 비산 방지 효과가 저하되기 때문이다.
또한, 액체질소용기(340)의 냉기가 이산화탄소트랩(330)의 상단으로 전달되는 것을 방지하기 위해 스크린(360)이 구비된다. 스크린(360)은 중앙에 끼움홀이 형성된 판상으로 상기 끼움홀에 이산화탄소트랩(330)이 끼워져 고정될 수 있다. 따라서 끼움홀의 직경은 이산화탄소트랩(330)의 직경과 동일하도록 구성된다. 스크린(360)은 이산화탄소트랩(330)이 액체질소용기(340)에 수용되었을 때, 액체질소용기(340)의 개방면을 밀폐하도록 구성된다. 스크린(360)은 이산화탄소트랩(330)이 복수 개 구비될 경우 각각의 이산화탄소트랩(330)에 각각 끼워지도록 복수 개 구비될 수 있다. 복수 개의 이산화탄소트랩(330)에 복수 개의 끼움홀을 가진 단수의 스크린을 적용할 경우 각각의 이산화탄소트랩(330)에 끼워지는 끼움홀을 정확하게 가공하여야 하기 때문에 제작이 용이하지 않고, 끼움홀의 간격이 정확하게 가공되지 않을 경우 끼움홀의 억지끼움 되어 이산화탄소트랩(330)에 스크린(360)의 하중이 가해지게 되고, 이산화탄소트랩(330)이 파손될 수 있기 때문이다. 스크린(360)은 통상의 고무 재질이 적용될 수 있으며, 일예로 우레탄 재질이 적용될 수 있다.
또한 단수의 스크린을 적용할 경우 스크린(360)의 열팽창으로 인하여 이산화탄소트랩(330)에 불필요한 하중을 가할 수도 있기 때문이다.
상기와 같은 스크린(360)은 액체질소용기(340)의 상승에 따른 이산화탄소트랩(330) 수용 시 액체질소용기(340)의 상부 개방면을 밀폐하게 된다. 이에 따라 액체질소용기(340) 내부의 액체질소가 액체질소용기(340) 외부로 유출되는 것을 방지하는 효과가 있다.
또한, 이산화탄소포집기(300)는 액체질소용기(340)에서 발생되는 냉각가스를 외부로 배출하기 위한 냉각가스 배출장치(370)가 추가 구비될 수 있다. 냉각가스 배출장치(370)는 통상의 가스의 순환을 위한 덕트와 팬으로 구성될 수 있으며, 냉각가스 배출장치(370)를 통해 액체질소용기(340)의 주변기기가 냉각가스로 인해 냉각되는 것을 방지한다. 특히 냉각가스 배출장치(370)의 덕트는 액체질소주입부(341)에 위치된 비산방지부재(350)의 상측에 배치될 수 있다. 이는, 액체질소주입부(341)에서 액체질소의 비산 또는 유출이 많이 일어날 수 있기 때문이다.
도 6에는 본 발명의 일실시 예에 따른 반응로(410) 결합 시 환원반응기(400)의 개략적인 사시도가 도시되어 있고, 도 7에는 반응로(410) 분리 시 환원반응기(400)의 개략적인 사시도가 도시되어 있고, 도 8에는 열차단커튼(460) 개방 시 환원 반응기(400)의 개략적인 사시도가 도시되어 있다. 또한 도 9에는 환원반응기(400)의 부분사시도가 도시되어 있다.
도시된 바와 같이 환원반응기(400)는 반응에 필요한 열을 공급하는 반응로(410), 탄소환원반응이 일어나는 반응용기(420), 반응용기(420)와 연결되어 환원반응 시 발생하는 물을 제거하는 이산화탄소트랩(330), 이산화탄소트랩(330)의 온도를 -50℃내외로 냉각하는 냉각조(440) 및 환원반응기(400) 내부를 진공상태로 만들고 내부의 압력을 측정하는 압력조절부(450)로 구성된다. 반응로(410) 상에는 반응용기(420)의 온도를 측정하기 위한 열전대(200) 및 이를 고정하는 열전대 고정장치(100)가 구비되며 열전대(200) 및 열전대 고정장치(100)에 관한 구성은 후술하기로 한다. 냉각조(440)는 이산화탄소트랩(330)에 대하여 상대적으로 승하강 가능하도록 구성된다. 따라서 냉각조(440)는 상술된 액체질소용기(340)와 마찬가지로 선택적으로 이산화탄소트랩(330)을 내부에 수용 또는 이탈시킬 수 있다. 일예로 냉각조(440)의 승강에 의해 이산화탄소트랩(330)이 냉각조(440) 내부에 수용되며, 냉각조(440)의 하강에 의해 이산화탄소트랩(330)이 냉각조(440)에서 이탈된다.
즉 이산화탄소포집 시에는 이산화탄소트랩(330)이 액체질소용기(340)에 수용되며, 환원반응 시에는 액체질소용기(340)와 냉각조(440)가 스위칭 되어 이산화탄소트랩(330)이 냉각조(440)에 수용될 수 있다.
반응로(410)는 탄소환원반응에 필요한 열을 공급하는 것으로, 몸체는 은괴 등과 같이 열전도율이 우수한 금속재질에 반응용기(420)가 수용될 수 있는 수용홈(411)이 형성되어 있으며, 반응로(410)의 특정부분에는 열선(미도시)이 구비되어있다. 반응용기(420)는 탄소환원반응이 일어나는 공간으로 석영(quartz)관이 사용된다.
이때 본 발명은 반응로(410)에서 발생되는 열이 이산화탄소트랩(330), 냉각조(440) 및 압력조절부(450)에 전달되는 것을 방지하기 위해 열차단커튼(460)이 구비될 수 있다. 열차단커튼(460)은 반응로(410) 및 반응용기(420)와, 이산화탄소트랩(330), 냉각조(440) 및 압력조절부(450) 사이에 배치되며, 반응용기(420)가 관통되도록 관통홈이 반응용기(420)의 수만큼 형성될 수 있다. 또한, 열차단커튼(460)은 개폐 가능하도록 힌지 결합수단(461)을 통해 환원반응기(400)에 결합될 수 있다. 열차단커튼(460)을 개폐식으로 구성하여, 이산화탄소트랩(330), 냉각조(440) 및 압력조절부(450)의 유지 관리가 용이하도록 구성하였다. 또한, 열차단커튼(460)의 내부공간에 상술된 냉각가스 배출장치(370)가 배치되어, 액체질소용기(340)로부터 유출되는 저온의 질소가스가 열차단커튼(460) 외부로 유출되지 않는다. 특히 고온의 반응용기(420)에 영향을 주지 않도록 함에 그 특징이 있다.
이하 도면을 참조하여 본 발명의 일실시 예에 따른 열전대 고정장치(100)를 보다 상세하게 설명하도록 한다.
도 10에는 본 발명의 일실시 예에 따른 열전대 고정장치(100)의 사시도가 도시되어 있고, 도 11에는 열전대 고정장치(100)의 분해사시도가 도시되어 있다. 또한, 도 12에는 열전대 고정장치(100)의 회전부재(123)와 고정부재(110)의 체결과정을 예시적으로 나타낸 순서도가 도시되어 있다.
도 10 및 도 11에 도시된 바와 같이 본 발명의 열전대 고정장치(100)는 고정부재(110), 커넥터(120) 및 가압부재(130)를 포함한다.
고정부재(110)는 상술된 반응로(410, 도 8 참조)의 외측면에 부착되며, 외측 방향으로 돌출된 돌기(111)가 대향되도록 구비된다.
커넥터(120)는 내측 공간 내에 열전대(200)가 연결되고, 열전대(200)가 반응로(410)의 수용홈(411, 도 9 참조)에 수평방향으로 인입되어 고정되도록 고정부재(110)에 체결된다.
보다 구체적으로, 커넥터(120)는 열전대 고정부(122) 및 회전부재(123)를 포함한다.
열전대 고정부(122)는 열 전달율이 높은 금속으로 형성되며, 일측면이 개구되어 중공을 갖는 원통형으로 형성되며, 내부 중앙에는 열전대(200)가 용접을 통해 연결된다.
타단에는 열전대 소선(210)과 연결되어, 열전대(200)로부터 전달되는 열을 열전대 소선(210)에 전달하는 매개체 역할을 수행함과 동시에 열전대(200)를 고정시키는 기능을 수행한다. 참고로 열전대 소선(210)은 열 측정 장치(미도시)와 연결될 수 있다.
또한, 열전대 고정부(122)의 외측면에는 체결홈(122a)이 형성될 수 있다. 체결홈(122a)은 회전부재(123)의 돌출부(123a)와 체결된다.
회전부재(123)는 열전대 고정부(122)의 일정부분을 감싸도록 중공을 갖는 원통형으로 형성되며, 내측에 열전대 고정부(122)의 체결홈(122a)과 체결되는 돌출부(123a)가 형성된다.
또한, 회전부재(123)의 외측면에는 고정부재(110)의 돌기(111)가 인입되어 고정되는 절연홈(121a)이 형성된다.
보다 구체적으로, 절연홈(121a)은 회전부재(123)의 외측면에 ‘ㄴ’ 방향을 갖도록 형성되어, 절연홈(121a)의 양끝단 중 하나는 돌출부가 인입되며, 다른 하나는 절연홈(121a)에 인입된 돌기(111)를 고정하도록 형성된다.
따라서 도 12의 (a)를 참조하면, 회전부재(123)는 돌기(111)를 인입한 후, 회전하여 체결되어, 회전부재(123)는 ‘ㄴ’ 자 패턴으로 회전하여 고정부재(110)와 착탈된다.
가압부재(130)는 상기 수평 방향으로 열전대(200)를 가압하는 기능을 수행하며, 보다 구체적으로 지지판(131) 및 탄성부재(132)를 포함한다.
지지판(131)은 중앙이 돌출된, ‘ㅗ’ 자형으로 형성되되, 돌출된 부분이 탄성부재(132) 내로 인입되며, 상기 돌출된 부분의 외측 표면에는 탄성부재(132)의 일단과 용접 또는 체결부재를 통해 결합된다.
탄성부재(132)는 고탄력 스프링일 수 있으며, 일단이 상기 돌출된 부분의 외측표면과 고정되며, 타단은 열전대 고정부(122)와 용접 또는 체결부재를 통해 결합된다.
따라서 본 발명의 열전대 고정장치(100)는 반응로(410) 내에 열전대(200)를 수평방향으로 안전하게 인입하여 반응로(410) 내에 구비된 반응용기(420, 도 8 참조)의 표면온도를 정확하게 측정할 수 있다.
또한, 기존에 용접 또는 볼트를 통해 반응로(410)에 부착하던 방식이 아닌, 회전 착탈 방식을 통해 간편하면서도 용이하게 열전대를 고정시킬 수 있다는 이점이 있다.
또한, 가압부재를 이용하여 측정 대상물의 표면에 닿는 열전대에 가변되는 가압을 제공함으로써 가압이 적용된 열전대에 측정 대상물의 표면에서의 서로 다른 온도를 측정할 수 있다. 즉 탄성력이 높은 가압부재를 적용하여 상대적으로 강한 압력으로 열전대가 측정 대상물에 맞닿았을 때의 표면온도를 측정할 수 있고, 탄성력이 낮은 가압부재를 적용하여 상대적으로 약한 압력으로 열전대가 측정 대상물에 맞닿았을 때의 표면온도를 측정할 수 있다.
본 발명의 상기한 실시 예에 한정하여 기술적 사상을 해석해서는 안 된다. 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당업자의 수준에서 다양한 변형 실시가 가능하다. 따라서 이러한 개량 및 변경은 당업자에게 자명한 것인 한 본 발명의 보호범위에 속하게 된다.

Claims (16)

  1. 유기시료 내의 탄소를 추출하여 흑연화하기 위해 연소가스에서 이산화탄소만을 선별하여 포집하는 이산화탄소포집기와, 상기 이산화탄소포집기를 통해 포집된 이산화탄소를 흑연으로 환원시키는 환원반응기를 포함하는 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치에 있어서,
    상기 이산화탄소포집기는,
    연소가스를 고화하는 이산화탄소트랩;
    상기 이산화탄소트랩을 냉각하는 액체질소용기;
    상기 액체질소용기에 액체질소를 주입하는 액체질소주입부; 및
    상기 액체질소용기 상에 구비되며, 상기 액체질소주입부에 인접 배치되는 비산방지부재;
    를 포함하는, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
  2. 제 1항에 있어서,
    상기 비산방지부재는,
    상기 액체질소주입부에서 공급된 액체질소를 흡수 후 배출함으로써 상기 액체질소의 비산을 억제하는 다공성 재질로 이루어지는, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
  3. 제 2항에 있어서,
    상기 비산방지부재는,
    공극이 1~ 4mm 의 스펀지인, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
  4. 제 2항에 있어서,
    상기 비산방지부재는,
    여러 가닥의 원사를 엮어서 뭉친 실타래 형상으로 이루어진, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
  5. 제 1항에 있어서,
    상기 이산화탄소포집기는,
    상기 이산화탄소트랩이 상기 액체질소용기에 수용 시 상기 액체질소용기의 개방면을 밀폐하도록 상기 이산화탄소트랩에 구비된 스크린;
    을 포함하는, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
  6. 제 5항에 있어서,
    상기 이산화탄소트랩은 복수 개가 일정 거리 이격 구비되며,
    상기 스크린은, 상기 이산화탄소트랩 각각에 끼움 결합되도록 복수개가 구비되되, 중앙에 상기 이산화탄소트랩의 직경에 대응되는 직경을 갖는 삽입홀이 형성된 판상으로 이루어진, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
  7. 제 1항에 있어서,
    상기 이산화탄소포집기는,
    상기 액체질소용기에서 생성된 냉각가스를 흡입하여 외부로 배출하도록 상기 액체질소용기에 인접 배치되는 냉각가스 배출장치;
    를 포함하는, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
  8. 제 7항에 있어서,
    상기 냉각가스 배출장치는,
    상기 비산방지부재의 직상측에 배치되는, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
  9. 제 1항에 있어서,
    상기 환원반응기는,
    상기 이산화탄소트랩으로부터 공급된 이산화탄소의 환원반응이 일어나는 반응용기;
    상기 반응용기에 열을 공급하는 반응로;
    상기 환원반응 시 발생하는 물을 제거하기 위해 상기 이산화탄소트랩을 냉각하는 냉각조;
    상기 환원반응기 내부의 압력을 조절하기 위한 압력조절부; 및
    상기 반응로 및 상기 반응용기와, 상기 이산화탄소트랩, 상기 냉각조 및 상기 압력조절부 사이의 열교환을 차단하도록 상기 반응용기 상에 구비되는 열차단커튼;
    을 포함하는, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
  10. 제 9항에 있어서,
    상기 냉각가스 배출장치는,
    상기 액체질소용기 또는 상기 냉각조에서 생성된 냉각가스를 흡입하여 외부로 배출하도록 상기 열차단커튼을 통해 구획되는 상기 액체질소용기 및 상기 냉각조가 배치된 영역에 위치하는, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
  11. 제 9항에 있어서,
    상기 열차단커튼은,
    개폐 가능하도록 일단부가 상기 환원반응기에 힌지 결합되는, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
  12. 제 9항에 있어서,
    상기 전자동 환원장치는,
    열전대 고정장치를 포함하며, 상기 열전대 고정장치는,
    열전대가 인입되도록 중공이 형성되고, 상기 반응로의 외측면에 부착되며, 외측 방향으로 돌출된 돌기가 대향되도록 구비된 고정부재;
    내측 공간 내에 상기 열전대가 연결되고, 상기 열전대가 상기 반응로 내에 인입되어 고정되도록 상기 고정부재와 회전 착탈 방식으로 체결되는 커넥터; 및
    상기 인입 방향으로 상기 열전대를 가압하는 탄성부재가 구비된 가압부재;
    를 포함하는, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
  13. 제 12항에 있어서,
    상기 커넥터는,
    열 전달율이 높은 금속으로 형성되며, 일측이 개구된 중공을 갖는 원통형으로 형성되고, 외측면에 체결홈이 형성된 열전대 고정부; 및
    상기 열전대 고정부의 일정부분을 감싸도록 중공을 갖는 원통형으로 형성되며, 내측에 상기 열전대 고정부의 체결홈과 체결되는 돌출부가 형성된 회전부재;
    를 포함하는, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
  14. 제 12항에 있어서,
    상기 회전부재는,
    상기 고정부재의 돌기와 체결되도록, 외측면에 ‘ㄴ’ 자 형상 또는 사선 방향으로 절개된 절연홀을 구비하는, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
  15. 제 12항에 있어서,
    상기 회전부재는,
    ‘ㄴ’ 자 패턴으로 회전하여 상기 고정부재와 착탈되는, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
  16. 제 12항에 있어서,
    상기 고정부재는,
    상기 열전대가 인입되어 관통되도록 관통홀이 형성되는, 방사성탄소 연대측정용 시료전처리를 위한 전자동 환원장치.
PCT/KR2014/011748 2014-01-29 2014-12-03 방사성탄소 연대측정 용 시료전처리를 위한 전자동 환원장치 WO2015115728A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015560132A JP6069534B2 (ja) 2014-01-29 2014-12-03 放射性炭素年代測定用試料前処理のための全自動還元装置
US14/411,177 US10337968B2 (en) 2014-01-29 2014-12-03 Automatic reduction apparatus for pre-treating sample for radiocarbon dating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140011072A KR101594852B1 (ko) 2014-01-29 2014-01-29 방사성탄소 연대측정 용 시료전처리를 위한 전자동 환원장치
KR10-2014-0011072 2014-01-29

Publications (1)

Publication Number Publication Date
WO2015115728A1 true WO2015115728A1 (ko) 2015-08-06

Family

ID=53757276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011748 WO2015115728A1 (ko) 2014-01-29 2014-12-03 방사성탄소 연대측정 용 시료전처리를 위한 전자동 환원장치

Country Status (4)

Country Link
US (1) US10337968B2 (ko)
JP (1) JP6069534B2 (ko)
KR (1) KR101594852B1 (ko)
WO (1) WO2015115728A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105842035A (zh) * 2016-06-07 2016-08-10 中国科学院地球环境研究所 一种适用于二氧化碳在线测量的气体处理系统
CN108303297A (zh) * 2018-01-23 2018-07-20 广西师范大学 一种氢法和锌法两用的14c样品制备系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019142944A1 (ja) * 2018-01-22 2021-02-25 積水メディカル株式会社 炭素同位体分析装置及び炭素同位体分析方法
CN108226274A (zh) * 2018-01-26 2018-06-29 中国科学院地球环境研究所 14c-ams快速在线分析仪
KR102185321B1 (ko) * 2019-11-27 2020-12-02 한국지질자원연구원 방사성탄소 연대측정 시료를 위한 aba법에 의한 전자동 화학전처리 장치
CN111521449B (zh) * 2020-05-13 2021-12-17 浙江大学 石墨化装置、采样制样系统以及采样制样方法
CN115200962B (zh) * 2022-09-19 2022-12-09 中国科学院地质与地球物理研究所 一种用于加速器质谱的石墨制样系统及制样方法
CN117825129B (zh) * 2024-03-04 2024-05-10 内蒙古工业大学 一种高温高压下测试同位素分馏的实验试件及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109452A (ja) * 1996-06-20 1998-01-13 Japan Radio Co Ltd 液体窒素補給管
JP2002236057A (ja) * 2001-02-07 2002-08-23 Yashima Sokki:Kk 熱電対温度センサ
KR200439208Y1 (ko) * 2006-10-25 2008-03-31 주식회사 온도기술센테크 스프링로드 타입 진공용 시즈 열전대 기기
KR100998227B1 (ko) * 2008-12-09 2010-12-03 한국지질자원연구원 흑연화장치 및 이를 이용한 흑연화 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082787A (en) * 1989-12-22 1992-01-21 Texaco Inc. Method of performing hydrous pyrolysis for studying the kinetic parameters of hydrocarbons generated from source material
US6578367B1 (en) * 2001-03-02 2003-06-17 Ta Instruments-Waters Llc Liquid nitrogen cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109452A (ja) * 1996-06-20 1998-01-13 Japan Radio Co Ltd 液体窒素補給管
JP2002236057A (ja) * 2001-02-07 2002-08-23 Yashima Sokki:Kk 熱電対温度センサ
KR200439208Y1 (ko) * 2006-10-25 2008-03-31 주식회사 온도기술센테크 스프링로드 타입 진공용 시즈 열전대 기기
KR100998227B1 (ko) * 2008-12-09 2010-12-03 한국지질자원연구원 흑연화장치 및 이를 이용한 흑연화 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105842035A (zh) * 2016-06-07 2016-08-10 中国科学院地球环境研究所 一种适用于二氧化碳在线测量的气体处理系统
CN105842035B (zh) * 2016-06-07 2023-08-29 中国科学院地球环境研究所 一种适用于二氧化碳在线测量的气体处理系统
CN108303297A (zh) * 2018-01-23 2018-07-20 广西师范大学 一种氢法和锌法两用的14c样品制备系统
CN108303297B (zh) * 2018-01-23 2023-11-03 广西师范大学 一种氢法和锌法两用的14c样品制备系统

Also Published As

Publication number Publication date
KR101594852B1 (ko) 2016-02-16
JP2016519755A (ja) 2016-07-07
US10337968B2 (en) 2019-07-02
KR20150090430A (ko) 2015-08-06
JP6069534B2 (ja) 2017-02-01
US20160327461A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
WO2015115728A1 (ko) 방사성탄소 연대측정 용 시료전처리를 위한 전자동 환원장치
WO2011081266A1 (ko) 전기로의 슬래그 배출 도어 장치
US4988374A (en) Method and apparatus for contaminant removal in manufacturing optical fibre
KR100998227B1 (ko) 흑연화장치 및 이를 이용한 흑연화 방법
US20180238785A1 (en) Molten salt environment creep testing extensometry system
WO2011136479A2 (ko) 태양전지용 고 생산성 다결정 실리콘 잉곳 제조 장치
WO2014126272A1 (ko) 슬라이딩 타입의 출탕 구조를 갖는 실리콘 용융 도가니를 구비하는 SiOx 나노 분말 제조 장치 및 이를 이용한 SiOx 나노 분말 제조 방법
WO2014115935A1 (en) Single-crystal ingot, apparatus and method for manufacturing the same
CN109671509B (zh) 一种高温气冷堆控制棒驱动机构检修装置及检修工艺方法
WO2017026562A1 (ko) 측면 배출게이트가 구비된 플라즈마 용융로
WO2015093706A1 (ko) 잉곳의 성장공정을 관찰하기 위한 뷰 포트 및 이를 포함하는 잉곳성장장치
WO2016148413A1 (ko) 수소함유수 제조 장치
KR910003345A (ko) 엘렉트로슬랙 재용융작업(electroslag remelting operation)에서의 반응요소의 산화를 감소시키기 위한 방법과 수단
KR100498139B1 (ko) 용융 모사 시험용 2-단 수직형 고온 환원로
ES2544618T3 (es) Aparato y procedimiento para la separación de tritio
CN218491482U (zh) 一种具有可拆卸转化管密封装置的转化炉
JP2575851B2 (ja) 熱処理装置
JP3603578B2 (ja) 単結晶引上げ装置の不活性ガス回収装置
WO2012030139A2 (en) Vacuum heat treatment apparatus
WO2016159564A1 (ko) Ams 방사성탄소 연대측정용 시료 전처리 장치 및 시스템
WO2017191905A1 (ko) 토양 오염 자동화 분석 장치
RU2205460C2 (ru) Установка для непрерывного спекания, объединенная с камерой для технического обслуживания с перчатками
CN220154187U (zh) 一种耐高温老化试验装置
WO2018052270A1 (ko) 보론 도핑장치의 배기라인 트랩 어셈블리
KR200291913Y1 (ko) 용융 모사 시험용 2-단 수직형 고온 환원로

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015560132

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14411177

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880500

Country of ref document: EP

Kind code of ref document: A1