WO2015115452A1 - 焦点検出装置、焦点調節装置およびカメラ - Google Patents
焦点検出装置、焦点調節装置およびカメラ Download PDFInfo
- Publication number
- WO2015115452A1 WO2015115452A1 PCT/JP2015/052282 JP2015052282W WO2015115452A1 WO 2015115452 A1 WO2015115452 A1 WO 2015115452A1 JP 2015052282 W JP2015052282 W JP 2015052282W WO 2015115452 A1 WO2015115452 A1 WO 2015115452A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- focus detection
- optical system
- focus
- defocus amount
- light receiving
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/28—Systems for automatic generation of focusing signals
- G02B7/34—Systems for automatic generation of focusing signals using different areas in a pupil plane
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/67—Focus control based on electronic image sensor signals
- H04N23/672—Focus control based on electronic image sensor signals based on the phase difference signals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
- G02B3/0037—Arrays characterized by the distribution or form of lenses
- G02B3/0056—Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/09—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B13/00—Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
- G03B13/32—Means for focusing
- G03B13/34—Power focusing
- G03B13/36—Autofocus systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B19/00—Cameras
- G03B19/02—Still-picture cameras
- G03B19/12—Reflex cameras with single objective and a movable reflector or a partly-transmitting mirror
Definitions
- the present invention relates to a focus detection device, a focus adjustment device, and a camera.
- a so-called phase-difference detection focus that arranges a plurality of light receiving elements for each of the two-dimensionally arranged microlenses and detects the image shift amount of the subject image based on the light receiving outputs of the plurality of light receiving elements.
- a focus detection device that performs detection is known.
- Patent Document 1 describes a focus detection device that eliminates false focusing on a subject having a periodic pattern by generating at least three signal sequences and obtaining a plurality of image shift amounts.
- the conventional technique has a problem that the accuracy of focus detection is lowered when the imaging position of the subject image is far away from the planned focal plane.
- the focus detection apparatus includes a plurality of light receiving units provided for each microlens, an imaging unit that captures an image of light from a subject that has passed through the optical system, and an imaging unit.
- a focus detection unit that detects a focus state of the optical system based on a positional shift relative to the microlens of the image of the subject formed for each microlens.
- the focus detection unit includes output data of a plurality of light receiving units provided in the first microlens and a plurality of focus detection units provided in the second microlens.
- a positional shift with respect to the microlens from the difference from the output data of the received light receiving unit.
- a plurality of focus detection units are provided in the second microlens for output data of a plurality of light receiving units provided in the first microlens. It is preferable to determine the positional deviation with respect to the microlens from the difference at the shift amount that minimizes the difference obtained while changing the shift amount of the output data of the received light receiving unit.
- the focus detection device includes a plurality of light receiving units provided for each microlens, an imaging unit that captures an image of light from a subject that has passed through the optical system, and a plurality of micros A first subject image formed by a lens and captured by the imaging unit with light passing through the first pupil region of the optical system; and a second subject image captured by the imaging unit with light passing through the second pupil region of the optical system;
- the first focus detection unit that detects the focus state of the optical system from the shift of the optical system, and the relative position shift of the subject image formed for each microlens imaged by the imaging unit with respect to the microlens
- a second focus detection unit that detects a focus state of the system.
- the focus detection apparatus in the focus detection apparatus according to the fourth aspect, detection of the focus state of the optical system by the first focus detection unit and detection of the focus state of the optical system by the second focus detection unit. It is preferable to switch between.
- the detection of the focus state of the optical system by the second focus detection unit in the focus detection apparatus according to the fifth aspect, the detection of the focus state of the optical system by the second focus detection unit from the detection of the focus state of the optical system by the first focus detection unit. It is preferable to switch to.
- the first focus detection unit calculates the defocus amount of the optical system as the focus state of the optical system, and the defocus amount is predetermined.
- the first focus detection unit calculates the defocus amount of the optical system as the focus state of the optical system, and the defocus amount reliability is reliable.
- the first focus detection unit can calculate the second error when the defocus amount of the optical system cannot be calculated as the focus state of the optical system.
- the focus detection apparatus in the focus detection apparatus according to the fifth aspect, from the detection of the focus state of the optical system by the second focus detection unit, the detection of the focus state of the optical system by the first focus detection unit. It is preferable to switch to.
- the first focus detection unit calculates the defocus amount of the optical system as the focus state of the optical system, and the defocus amount is predetermined. When the value is equal to or smaller than the threshold value, it is preferable to switch to the detection of the focus state of the optical system by the first focus detection unit.
- the first focus detection unit calculates the defocus amount of the optical system as the focus state of the optical system, and the defocus amount reliability is reliable.
- the first focus detection unit can calculate the first focus detection when the defocus amount of the optical system can be calculated as the focus state of the optical system. It is preferable to switch to detection of the focus state of the optical system by the unit.
- the first focus detection unit detects the focus state of the optical system, and detects the focus state of the optical system by the second focus detection unit.
- the first focus detection unit and the second focus detection unit that are optical in the first state in which the focus state of the optical system can be achieved. It is preferable to detect the focus state of the system.
- the first focus detection unit and the second focus detection unit calculate the defocus amount of the optical system as the focus state of the optical system.
- both the defocus amount of the optical system calculated by the first focus detector and the defocus amount of the optical system calculated by the second focus detector are used as the defocus amount of the optical system. It is preferable.
- the defocus amount of the optical system calculated by the first focus detection unit and the focus of the optical system calculated by the second focus detection unit are used as the defocus amount of the optical system. It is preferable.
- the focus detection unit preferably calculates the defocus amount of the optical system as the focus state of the optical system.
- a focus adjustment apparatus includes the focus detection apparatus according to the eighteenth or nineteenth aspect, and a focus adjustment unit that performs focus adjustment of the optical system based on a defocus amount.
- the camera includes any one of the first to nineteenth focus detection apparatuses.
- a camera includes the focus adjustment apparatus according to the twentieth aspect.
- the focus detection device is arranged corresponding to each of the plurality of microlenses arranged so that the light beam transmitted through the imaging optical system enters, and the plurality of microlenses.
- a plurality of light receiving element groups each consisting of a plurality of light receiving elements, a first subject image by subject light passing through the first pupil region of the imaging optical system, and a second different from the first pupil region of the imaging optical system
- An image shift amount between the first subject image and the second subject image related to the same subject portion due to the subject light passing through the pupil region is calculated based on the light reception outputs output from the plurality of light receiving element groups, and from the image shift amount
- a second focus detector that calculates based on the image shift amount and detects a second defocus amount of the imaging optical system, a first defocus amount detected by the first focus detector, and a second focus detector And an output unit that outputs a third defocus amount based on the second defocus amount detected by.
- the output unit is configured such that the first defocus amount is equal to or less than a predetermined threshold value and the reliability of the first defocus amount is predetermined. When the threshold value is equal to or greater than the threshold value, it is preferable to output the first defocus amount as the third defocus amount, and otherwise output the second defocus amount as the third defocus amount.
- the output unit may output a weighted average of the first defocus amount and the second defocus amount as the third defocus amount.
- the focus adjustment apparatus is configured to adjust the focus of the imaging optical system based on the focus detection apparatus according to any one of the twenty-third to twenty-fifth aspects and the third defocus amount output by the output unit.
- a focus adjustment unit for performing according to a twenty-seventh aspect of the present invention includes the focus detection device according to any one of the twenty-third to twenty-fifth aspects.
- FIG. 2 is a perspective view of a focus detection device 104.
- FIG. It is a figure explaining the focus detection method by the 1st focus detection apparatus. It is a figure explaining the focus detection method by the 2nd focus detection apparatus.
- 4 is a flowchart of focus adjustment control executed by the body control apparatus 101. It is a flowchart of a defocus amount calculation process.
- FIG. 1 is a cross-sectional view showing an interchangeable lens type camera system to which the present invention is applied.
- the camera 1 includes a camera body 100 and an interchangeable lens 200 that can be attached to and detached from the camera body 100.
- the interchangeable lens 200 is provided with an imaging optical system 205 including a plurality of lenses 202, 203, and 204.
- a light beam from the subject passes through the imaging optical system 205 and enters the camera body 100.
- the imaging optical system 205 is illustrated as if it is composed of three lenses, but it may be composed of any number of lenses.
- the lens 203 included in the imaging optical system 205 is a focus lens that adjusts the focus position of the imaging optical system 205.
- the focus lens 203 is connected to the lens driving device 206 via a driving mechanism (not shown).
- the lens driving device 206 includes an actuator (not shown) such as a stepping motor, and drives the focus lens 203 in the direction D along the optical axis L of the imaging optical system 205.
- the camera body 100 includes an image sensor 102 such as a CCD or a CMOS that captures a subject image formed by the image forming optical system 205.
- the image sensor 102 is arranged so that the imaging surface coincides with the planned focal plane of the imaging optical system 205.
- a half mirror 103 is installed between the imaging optical system 205 and the imaging surface of the imaging element 102 in the camera body 100.
- the half mirror 103 is composed of, for example, a pellicle mirror, and transmits a part of subject light from the imaging optical system 205 to the image sensor 102 and reflects the rest to the upper part of the camera body 100. This reflected light is incident on the focus detection device 104 provided on the upper part of the camera body 100.
- the configuration of the focus detection device 104 will be described in detail later.
- the camera body 100 includes a body control device 101 including a microprocessor and its peripheral circuits.
- the body control apparatus 101 controls each part of the camera body 100 by reading and executing a predetermined control program stored in advance in a storage medium (not shown).
- the interchangeable lens 200 has a lens control device 201 composed of a microprocessor and its peripheral circuits.
- the lens control device 201 controls each part of the interchangeable lens 200 by reading and executing a predetermined control program stored in advance in a storage medium (not shown).
- the body control device 101 and the lens control device 201 may be configured by an electronic circuit that performs an operation corresponding to the control program.
- the body control device 101 and the lens control device 201 are configured to be able to communicate with each other via an electrical contact (not shown) provided around the lens mount.
- the body control device 101 transmits, for example, a drive command for the focus lens 203 to the lens control device 201 by data communication via this electrical contact.
- the focus detection device 104 detects the defocus amount of the imaging optical system 205. Thereafter, the body control device 101 transmits a drive command for driving the focus lens 203 by an amount corresponding to the defocus amount output from the focus detection device 104 to the lens control device 201. In response to this drive command, the lens control device 201 causes the lens drive device 206 to drive the focus lens 203. Thereby, a predetermined subject is focused.
- a predetermined focus adjustment operation for example, a half-press operation of a release switch (not shown)
- a monitor 110 constituted by a display element such as a liquid crystal is provided.
- the body control apparatus 101 uses the monitor 110 to reproduce, for example, captured still image data and moving image data, a setting menu for shooting parameters (aperture value, shutter speed, etc.) of the camera 1 and a through image display.
- An electronic viewfinder unit 108 having a display element such as a liquid crystal is installed on the upper part of the camera body 100.
- a photographer can visually recognize a subject image or the like displayed on the display element of the electronic viewfinder unit 108 through the eyepiece 106 from the viewfinder unit 107.
- the body control apparatus 101 causes the image sensor 102 to capture a subject image at predetermined intervals (for example, 1/60 second), and creates a through image based on the imaging signal. Display on the monitor 110 and the electronic viewfinder unit 108.
- the body control device 101 When a predetermined still image shooting operation is performed in the shooting mode (for example, a full-press operation of a release switch (not shown)), the body control device 101 performs shooting control. At this time, the body control device 101 controls a shutter (not shown) to cause the image sensor 102 to capture a subject image. Then, various image processing is applied to the image pickup signal output from the image pickup element 102 to generate still image data and store it in a storage medium (not shown) (for example, a memory card).
- a storage medium for example, a memory card
- FIG. 2 is a perspective view of the focus detection device 104.
- the focus detection device 104 includes a microlens array 11 and a light receiving element array 12 provided on the rear side of the microlens array 11.
- each microlens 13 has a focal length f and a diameter d.
- the pitch of the microlenses 13 in the microlens array 11 is d.
- the subject light reflected by the half mirror 103 passes through one of the micro lenses 13 and enters the light receiving surface of the light receiving element array 12.
- a large number of light-receiving element groups 14 on which light beams that have passed through the microlenses 13 enter are two-dimensionally arranged.
- One light receiving element group 14 is composed of a total of 25 light receiving elements arranged in 5 columns and 5 rows. That is, the light beam that has passed through one microlens 13 enters one of the light receiving element groups 14, and a plurality of light receiving elements constituting the light receiving element group 14 receive the light beams.
- the place where the microlens 13 does not exist on the surface of the microlens array 11 (the surface on which subject light is incident) is covered with a light shielding mask. Therefore, the light beam that has not passed through the microlens 13 does not enter the light receiving element array 12.
- the light receiving element array 12 is disposed at a position separated from the microlens array 11 by the focal length f of the microlens 13. That is, the distance from the apex of the microlens 13 to the light receiving surface of the light receiving element array 12 is equal to the focal length f. In FIG. 2, for the sake of convenience, the distance between the microlens array 11 and the light receiving element array 12 is shown larger than the actual distance.
- the focus detection device 104 is arranged so that the planned focal plane of the imaging optical system 205 (FIG. 1) and the apex of the microlens 13 on the imaging optical system 205 side substantially coincide.
- the imaging surface of the imaging element 102 (FIG. 1) and the microlens array 11 are in a conjugate positional relationship with respect to the exit pupil of the imaging optical system 205.
- FIG. 2 only a part of the microlens array 11 and the light receiving element array 12 is illustrated. Actually, a larger number of microlenses 13 and light receiving element groups 14 exist. Further, the number of light receiving elements included in one light receiving element group 14 may be more or less than 25, and the arrangement thereof may be different from that shown in FIG.
- the first focus detection device 301 and the second focus detection device 302 are connected to the light receiving element array 12.
- the first focus detection device 301 and the second focus detection device 302 detect the defocus amount of the imaging optical system 205 (FIG. 1) by different methods.
- the focus detection device 104 has an output device 303.
- the output device 303 determines the final defocus amount based on the defocus amount detected by each of the first focus detection device 301 and the second focus detection device 302, and outputs it to the body control device 101 (FIG. 1). To do.
- the focus detection methods of the first focus detection device 301 and the second focus detection device 302 will be described in order.
- the first focus detection device 301 is configured to determine a first subject image by subject light that has passed through the first pupil region of the imaging optical system 205 and a first pupil region of the imaging optical system 205.
- An image shift amount between the first subject image and the second subject image related to the same subject portion due to the subject light passing through different second pupil regions is calculated based on the light reception outputs output from the plurality of light receiving element groups 14, The defocus amount of the imaging optical system 205 is detected from the image shift amount.
- FIG. 3A is a diagram in which one row of light receiving element groups 14 used for focus detection is extracted from the many light receiving element groups 14 shown in FIG. In FIG. 3A, five light receiving element groups 14 are illustrated, but in practice, it is desirable to select more light receiving element groups 14.
- the light receiving element group 14 used in the description is treated with a different reference from the light receiving element groups 14a to 14e.
- FIG. 3B is a diagram schematically showing the relationship between the light receiving element groups 14a to 14e shown in FIG.
- the microlenses 13a to 13e are arranged so that the apexes thereof substantially coincide with the planned focal plane 17 of the imaging optical system 205.
- the microlens 13c projects the shape of the pair of light receiving elements 16lc and 16rc arranged behind the microlens 13c onto the exit pupil 20 that is a projection distance 18 away from the microlens 13c.
- the projection distance 18 is a distance determined according to the curvature and refractive index of the microlens 13c, the distance between the microlens 13c and the light receiving element array 12, and the like.
- the pair of distance measuring pupils 21 and 22 and the pair of light receiving elements 16lc and 16rc have a conjugate relationship via the micro lens 13c.
- each of the pair of light receiving elements 16lc and 16rc and the pair of distance measuring pupils 21 and 22 belonging to the light receiving element group 14c on the optical axis L are illustrated, but at a position away from the optical axis L. Also in a certain light receiving element group, each of the pair of light receiving elements receives a light beam coming from the pair of distance measuring pupils to each microlens.
- the light receiving element 16lc outputs a light receiving signal corresponding to the intensity of the image formed on the microlens 13c by the focus detection light beam 24 passing through the distance measuring pupil 22 and traveling toward the microlens 13c.
- the light receiving element 16rc outputs a light receiving signal corresponding to the intensity of the image formed on the micro lens 13c by the focus detection light beam 23 passing through the distance measuring pupil 21 and directed toward the micro lens 13c.
- the light receiving outputs of the pair of light receiving elements corresponding to the distance measuring pupil 21 and the distance measuring pupil 22 are obtained from each of the plurality of light receiving element groups 14a to 14e arranged linearly as shown in FIG.
- information on the intensity distribution of the pair of images formed on the light receiving element array 12 by the focus detection light fluxes passing through the distance measuring pupil 21 and the distance measuring pupil 22 can be obtained.
- the image shift amounts of a pair of images in a so-called pupil division type phase difference detection method are detected.
- a defocus amount that is a deviation of the current imaging plane with respect to the planned focal plane 17 is calculated.
- the first focus detection device 301 sets the value obtained by adding the light reception outputs of the three light receiving elements 16la at the center left end to the light receiving element group 14a as a (1). deep. Similarly, for each of the light receiving element groups 14b to 14e, the light receiving outputs of the three light receiving elements 16lb to 16le at the center left end are respectively added to be a (2) to a (5). Next, for each of the light receiving element groups 14a to 14e, the light receiving outputs of the three light receiving elements 16ra to 16re at the center right end are respectively added in the same manner to be b (1) to b (5).
- the pair of signal sequences a (i) and b (i) created in this way is information relating to the above-described intensity distribution of the pair of images.
- the first focus detection device 301 performs a correlation operation while shifting each signal sequence little by little between the pair of signal sequences a (i) and b (i), and calculates a correlation amount for each shift amount. Then, a deviation amount that minimizes the correlation amount (a deviation amount that maximizes the correlation) is obtained from the result.
- the first focus detection device 301 calculates the defocus amount of the subject image with respect to the planned focal plane 17 by multiplying the shift amount by a predetermined conversion coefficient.
- the light receiving element group 14 in a row selected for focus detection from among the many light receiving element groups 14 may be determined by an arbitrary method.
- the user may specify the position of the subject to be focused and select the light receiving element group 14 at that position, or may select the light receiving element group 14 at a predetermined position such as the center of the shooting screen. You may choose.
- the second focus detection device 302 is the same as the third subject image and the third subject image formed on the light receiving element group 14 by the first microlens among the plurality of microlenses 13.
- the image shift amount of the subject portion with respect to the fourth subject image formed on the light receiving element group 14 by the second microlens different from the first microlens among the plurality of microlenses 13 is set to the plurality of light receiving element groups 14.
- the defocus amount of the imaging optical system 205 is detected from the image shift amount.
- FIG. 4 is a diagram schematically showing the relationship between the imaging surface 19 and the light receiving element group 14 when the imaging surface 19 is far away from the planned focal plane.
- the image plane 19 is separated from the planned focal plane 17 (FIG. 3), that is, the apex of the microlens 13 to some extent, a subject image is formed by each microlens 13 in each light receiving element group 14.
- each subject image formed by each microlens 13 has a parallax corresponding to the position of the microlens 13.
- the subject light passing through the imaging optical system 205 and collected at the point P1 passes through the point P1 and enters the plurality of microlenses 13a to 13e.
- the subject light 30c toward the microlens 13c is incident on the light receiving element 16c in the light receiving element group 14c by the microlens 13c.
- the light receiving element 16c is located at the center of the light receiving element group 14c.
- the subject light 30b toward the left micro lens 13b is incident on the light receiving element 16b in the light receiving element group 14b by the micro lens 13b.
- the light receiving element 16b is located one left from the center of the light receiving element group 14b.
- the subject light 30a traveling from the microlens 13c toward the left microlens 13a is incident on the light receiving element 16a in the light receiving element group 14a by the microlens 13a.
- the light receiving element 16a is located two to the left of the center of the light receiving element group 14a.
- the subject light forming the point P1 is collected at a position in the light receiving element group 14 corresponding to the relative position of the microlens 13.
- the shift amount of the incident position in the light receiving element group 14 at this time that is, the shift amount of the subject image formed by the microlens 13 changes according to the position of the imaging plane 19. Specifically, when the imaging plane 19 approaches the planned focal plane 17, the image shift amount increases. When the imaging plane 19 moves away from the planned focal plane 17, the image shift amount decreases.
- the second focus detection device 302 calculates the defocus amount of the imaging optical system 205 using the above principle. For example, for a pair of adjacent light receiving element groups 14c and 14d, first, the light receiving element rows 16x and 16y (FIG. 3A) arranged in a row in the adjacent direction are selected. Here, the light reception outputs from the pair of light receiving element arrays 16x and 16y are defined as a pair of signal arrays c (i) and d (i). Then, a difference sequence e (i) of the pair of signal sequences c (i) and d (i) is generated by the following equation (1).
- the above equation (1) is an equation for calculating how much the signal sequences match when the signal sequences c and d are shifted by i in the adjacent direction.
- the second focus detection device 302 searches for the minimum value from the difference string e (i) generated while shifting i within a certain range (for example, ⁇ 5 to +5). Thereafter, the position where the difference between the signal sequences is minimized, that is, the image shift amount is calculated by a known interpolation method. If the image shift amount calculated in this way is x, the defocus amount Y can be calculated by the following equation (2).
- f the focal length of the microlens 13
- d the pitch of the microlens 13.
- Y fd / x (2)
- the comparison of the signal sequences does not necessarily have to be performed between the adjacent light receiving element groups 14.
- the signal sequences can be compared between the light receiving element groups 14 separated by one.
- the distance between the light receiving element groups 14 at this time is the baseline length. That is, by performing the above calculation between the light receiving element groups 14 that are separated from each other, it is possible to cope with a case where the amount of image shift is large. For example, first, the above calculation is performed between adjacent light receiving element groups 14, and when the defocus amount Y calculated thereby is low, the above calculation is performed again between the light receiving element groups 14 that are further apart.
- the second focus detection device 302 can also be configured.
- the first focus detection device 301 collects light reception signals little by little from the many microlenses 13 to generate a pair of signal sequences a (i) and b (i), whereas the second focus detection.
- the device 302 detects the defocus amount by directly comparing the images formed on the pair of light receiving element groups 14c and 14d. That is, the second focus detection device 302 calculates the microlens from the difference between the output data of the plurality of light receiving element groups 14c provided on the microlens 13c and the output data of the light receiving element array group 14d provided on the microlens 13d. 13 is obtained.
- the second focus detection device 302 calculates the difference between the shift amount that minimizes the difference obtained while changing the shift amount i of the output data of the light receiving element group 14d with respect to the output data of the light receiving element group 14c. A positional shift with respect to the microlens 13 is obtained.
- the focus detection accuracy is low, and the imaging is performed. If the surface 19 is away from the planned focal plane 17 by a certain distance or more, the focus detection accuracy increases. This is because the subject image formed on the light receiving element group 14 by the microlens 13 becomes blurred as the imaging plane 19 is closer to the planned focal plane 17.
- the output device 303 is based on the focus detection result by the first focus detection device 301 and the focus detection result by the second focus detection device 302, and the image plane 19 (FIG. 4) and the planned focal plane 17 (FIG. 3). Regardless of the distance, always outputs a highly accurate defocus amount. That is, the detection of the focus state of the imaging optical system 205 by the first focus detection device 301 and the detection of the focus state of the imaging optical system 205 by the second focus detection device 302 are switched.
- the output device 303 first causes the first focus detection device 301 to calculate the defocus amount. If the defocus amount calculated thereby is larger than a predetermined threshold value, or if the reliability of the defocus amount calculated thereby is less than a certain value, or the defocus amount is calculated thereby. If not, the second focus detection device 302 is made to calculate the defocus amount, and this defocus amount is output as the final defocus amount. That is, the detection is switched from the detection of the focus state of the imaging optical system 205 by the first focus detection device 301 to the detection of the focus state of the imaging optical system 205 by the second focus detection device 302.
- the first focus detection device 301 calculates a defocus amount that is equal to or lower than a predetermined threshold and has a certain level of reliability
- the defocus amount is output as a final defocus amount.
- the first focus detection device 301 uses the predetermined threshold in the current processing.
- the final defocus amount is switched to the one calculated by the first focus detection device 301. In other words, the focus state of the imaging optical system 205 by the second focus detection device 302 is switched to the detection of the focus state of the imaging optical system 205 by the first focus detection device 301.
- FIG. 5 is a flowchart of focus adjustment control executed by the body control device 101. The process shown in FIG. 5 is included in a control program that the body control apparatus 101 reads and executes from a memory (not shown).
- step S100 the body control apparatus 101 determines whether or not a predetermined focus adjustment operation (for example, a half-press operation of the release switch) has been performed by the user.
- the body control apparatus 101 repeatedly executes step S100 until the focus adjustment operation is performed, and when the focus adjustment operation is performed, the process proceeds to step S110.
- the body control device 101 performs accumulation control of the light receiving element array 12 in step S110, and reads the light reception output of each light receiving element group 14 in step S120.
- step S130 the body control apparatus 101 causes the focus detection apparatus 104 to calculate the defocus amount.
- step S160 it is determined whether or not the focus lens 203 needs to be driven, that is, whether or not the focus lens 203 is already in focus. If in focus, the processing in FIG. On the other hand, if not in focus, the process proceeds to step S150, and the driving amount of the focus lens 203 necessary for focusing is calculated from the calculated defocus amount.
- step S170 the body control apparatus 101 drives the focus lens 203 by the calculated drive amount. Specifically, the body control device 101 transmits a drive command to the lens control device 201 so as to drive the focus lens 203 by the lens drive amount calculated in step S150. The lens control device 201 causes the lens driving device 206 to drive the focus lens 203 in response to this drive command. Thereafter, body control device 101 advances the process to step S110.
- FIG. 6 is a flowchart of the defocus amount calculation process called from step S130 of FIG.
- the first focus detection device 301 calculates a defocus amount based on the light reception output read in step S120 of FIG.
- the output device 303 determines whether or not a defocus amount that is equal to or lower than a predetermined threshold value and has a certain level of reliability is calculated in step S200. When such a defocus amount is calculated, the output device 303 advances the process to step S240.
- step S240 the output device 303 outputs the defocus amount calculated in step S200 by the first focus detection device 301 to the body control device 101 as a final defocus amount.
- the output device 303 advances the process to step S220.
- step S220 the second focus detection device 302 calculates a defocus amount based on the light reception output read in step S120 of FIG.
- step S230 the output device 303 outputs the defocus amount calculated in step S220 by the second focus detection device 302 to the body control device 101 as a final defocus amount.
- the first focus detection device 301 includes a first subject image by subject light 23 that has passed through the first pupil region 21 of the imaging optical system 205 and a subject that has passed through the second pupil region 22 of the imaging optical system 205.
- the amount of image deviation from the second subject image due to the light 24 is calculated based on the received light output output from the plurality of light receiving element groups 14, and the defocus amount of the imaging optical system 205 is detected from the amount of image deviation.
- the second focus detection device 302 includes a third subject image formed on the light receiving element group 14 b by the first microlens 13 b of the plurality of microlenses 13 and the second microlens 13 c of the plurality of microlenses 13. Is used to calculate an image shift amount with respect to the fourth subject image formed on the light receiving element group 14c based on the light reception outputs output from the plurality of light receiving element groups 14, and from the image shift amount, the image forming optical system 205 is deconstructed. Detect focus amount.
- the output device 303 outputs a final defocus amount based on the defocus amount detected by the first focus detection device 301 and the defocus amount detected by the second focus detection device 302. Since it did in this way, focus detection can be performed accurately.
- the output device 303 detects the first focus when the defocus amount detected by the first focus detection device 301 is not more than a predetermined threshold and the reliability is not less than the predetermined threshold.
- the defocus amount detected by the device 301 is output as the final defocus amount.
- the defocus amount detected by the second focus detection device 302 is output as the final defocus amount. Since it did in this way, focus detection can be performed accurately.
- the five light receiving element groups 14a to 14e arranged in the horizontal direction are selected for focus detection.
- the light receiving element groups 14 arranged in a line in other directions may be selected.
- more or fewer than five light receiving element groups 14 may be selected, and it is not always necessary to select a continuous light receiving element group 14. For example, every other light receiving element group 14 arranged may be selected.
- the light receiving elements selected to create a pair of signal sequences may be selected from other than the three light receiving elements at the left and right ends as shown in FIG. Furthermore, pixel addition is not necessarily performed. That is, in FIG. 3A, values such as a (1) and a (2) are created by adding the light receiving outputs of the three light receiving elements, but the light receiving output of one light receiving element is a (1). ), A (2), and the like.
- the microlens array 11 and the light receiving element array 12 may be different from those shown in FIG.
- the arrangement of the microlens 13 and the light receiving element group 14 can be arranged by an arrangement method different from the arrangement shown in FIG. 2 such as a square arrangement.
- the shape of the microlens 13 may be a shape other than a circle (for example, a hexagon).
- the arrangement of the light receiving elements constituting the light receiving element group 14 may be other than a square array.
- the light receiving elements may be arranged so that the light receiving element group 14 has a shape close to a circle that matches the shape of the microlens 13, or the light receiving elements may be arranged in a horizontal row or a vertical row.
- the light shielding mask between the microlenses 13 can be omitted.
- the light receiving element group 14 does not have to be independent as shown in FIG. That is, in the light receiving element array 12, a large number of light receiving elements may be spread in a two-dimensional manner. In this case, a plurality of light receiving elements covered by one microlens 13 are handled as one light receiving element group 14.
- the present invention may be applied to a so-called single-lens reflex camera having a quick return mirror.
- a sub mirror is provided on the back of the quick return mirror, and the quick return mirror is configured so that part of the subject light incident on the quick return mirror passes through the quick return mirror and enters the sub mirror, and is reflected by the sub mirror.
- the subject light may be incident on the focus detection device 104.
- the imaging element 102 may be configured by the microlens array 11 and the light receiving element array 12 like the focus detection device 104, and both the focus detection and the still image capturing may be performed by the light receiving element array 12.
- the method by which the output device 303 determines the final defocus amount may be different from the above-described embodiment.
- the defocus amount calculated by the first focus detection device 301 hereinafter referred to as y 1
- the defocus amount calculated by the second focus detection device 302 hereinafter referred to as y 2
- the defocus amount Y weighted and averaged by the following equation (3) may be used as the final defocus amount.
- Y ty 1- (1-t) y 2 (3)
- the weight t in the above equation (3) can be obtained as follows, for example. Assuming that the closest distance of the imaging optical system 205 is y 0 and the focal length of the imaging optical system 205 is f 0 , the distance from infinity to the closest distance is compressed to the image plane distance h expressed by the following equation (4). ing.
- the image plane 19 to be obtained (FIG. 4) is within this image plane distance h. Therefore, the weight t can be obtained by the following equation (5).
- y h is a provisional defocus amount for determining the weight t.
- the defocus amount y 1 calculated by the first focus detection device 301 is calculated by the second focus detection device 302. Any one of the defocus amounts y 2 may be applied.
- the weighted average of the two defocus amounts may be obtained by the following equation (6) instead of the above equation (3).
- the defocus amount in the above equation (3) is replaced with the reciprocal of the defocus amount. Since the accuracy of the defocus amount is linear with respect to the reciprocal of the defocus amount, the weighted average can be calculated with higher accuracy in this way.
- the output device 303 can be configured to determine the final defocus amount by a method other than these. For example, instead of simply calculating a weighted average, it is possible to correct one defocus amount by the other defocus amount.
- the focus detection device 104 detect false focus.
- the defocus amount can be accurately calculated by the first focus detection device 301, it is considered that the second focus detection device 302 cannot calculate the defocus amount, and vice versa. To do. Therefore, for example, when a detection result indicating that one of the first focus detection device 301 and the second focus detection device 302 is focused is obtained, a defocus amount having a certain reliability is calculated from the other. In this case, it can be determined that the former detection result is false in-focus.
- the planned focal plane 17 substantially coincides with the apex of the microlens 13 in the first embodiment, but the present invention is not limited to such an embodiment. That is, the planned focal plane 17 may be set at a position away from the apex of the microlens 13.
- the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Automatic Focus Adjustment (AREA)
- Focusing (AREA)
- Studio Devices (AREA)
Abstract
焦点検出装置は、マイクロレンズ毎に複数設けられた受光部を有し、光学系を透過した被写体からの光による像を撮像する撮像部と、撮像部で撮像された、マイクロレンズ毎に形成された被写体の像のマイクロレンズに対する相対的な位置のずれにより、光学系の焦点状態を検出する焦点検出部と、を備える。
Description
本発明は、焦点検出装置、焦点調節装置およびカメラに関する。
二次元状に配列されたマイクロレンズの各々に対して複数の受光素子を配列し、それら複数の受光素子の受光出力に基づいて被写体像の像ずれ量を検出する、いわゆる位相差検出方式の焦点検出を行う焦点検出装置が知られている。例えば特許文献1には、少なくとも3つの信号列を生成して複数の像ずれ量を求めることによって、周期パターンをもつ被写体に対する偽合焦を排除する焦点検出装置が記載されている。
従来技術には、被写体像の結像位置と予定焦点面とが大きく離れている場合に焦点検出の精度が低下するという問題があった。
本発明の第1の態様によると、焦点検出装置は、マイクロレンズ毎に複数設けられた受光部を有し、光学系を透過した被写体からの光による像を撮像する撮像部と、撮像部で撮像された、マイクロレンズ毎に形成された被写体の像のマイクロレンズに対する相対的な位置のずれにより、光学系の焦点状態を検出する焦点検出部と、を備える。
本発明の第2の態様によると、第1の態様の焦点検出装置において、焦点検出部は、第1のマイクロレンズに複数設けられた受光部の出力データと、第2のマイクロレンズに複数設けられた受光部の出力データとの差分から、マイクロレンズに対する位置のずれを求めることが好ましい。
本発明の第3の態様によると、第2の態様の焦点検出装置において、焦点検出部は、第1のマイクロレンズに複数設けられた受光部の出力データに対する、第2のマイクロレンズに複数設けられた受光部の出力データのずらし量を変えながら求めた差分が最小となるずらし量での差分から、マイクロレンズに対する位置のずれを求めることが好ましい。
本発明の第4の態様によると、焦点検出装置は、マイクロレンズ毎に複数設けられた受光部を有し、光学系を透過した被写体からの光による像を撮像する撮像部と、複数のマイクロレンズにより形成され、光学系の第1瞳領域を通過した光を撮像部で撮像した第1被写体像と、光学系の第2瞳領域を通過した光を撮像部で撮像した第2被写体像とのずれから、光学系の焦点状態を検出する第1の焦点検出部と、撮像部で撮像された、マイクロレンズ毎に形成された被写体の像のマイクロレンズに対する相対的な位置のずれにより、光学系の焦点状態を検出する第2の焦点検出部と、を備える。
本発明の第5の態様によると、第4の態様の焦点検出装置において、第1の焦点検出部による光学系の焦点状態の検出と、第2の焦点検出部による光学系の焦点状態の検出とを切り替えることが好ましい。
本発明の第6の態様によると、第5の態様の焦点検出装置において、第1の焦点検出部による光学系の焦点状態の検出から、第2の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第7の態様によると、第6の態様の焦点検出装置において、第1の焦点検出部は光学系の焦点状態として光学系の焦点ずれ量を算出し、焦点ずれ量が所定のしきい値よりも大きい場合に、第2の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第8の態様によると、第6の態様の焦点検出装置において、第1の焦点検出部は光学系の焦点状態として光学系の焦点ずれ量を算出し、焦点ずれ量の信頼性が所定値よりも小さい場合に、第2の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第9の態様によると、第6の態様の焦点検出装置において、第1の焦点検出部は光学系の焦点状態として光学系の焦点ずれ量を算出できなかった場合に、第2の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第10の態様によると、第5の態様の焦点検出装置において、第2の焦点検出部による光学系の焦点状態の検出から、第1の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第11の態様によると、第10の態様の焦点検出装置において、第1の焦点検出部は光学系の焦点状態として光学系の焦点ずれ量を算出し、焦点ずれ量が所定のしきい値以下の場合に、第1の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第12の態様によると、第10の態様の焦点検出装置において、第1の焦点検出部は光学系の焦点状態として光学系の焦点ずれ量を算出し、焦点ずれ量の信頼性が所定値以上の場合に、第1の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第13の態様によると、第10の態様の焦点検出装置において、第1の焦点検出部は光学系の焦点状態として光学系の焦点ずれ量が算出できる場合に、第1の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第14の態様によると、第5の態様の焦点検出装置において、第1の焦点検出部は光学系の焦点状態の検出と、第2の焦点検出部による光学系の焦点状態の検出とを行うことが好ましい。
本発明の第15の態様によると、第14の態様の焦点検出装置において、第1の焦点検出部と第2の焦点検出部とのうちで光学系の焦点状態を最初にできた方で光学系の焦点状態の検出を行うことが好ましい。
本発明の第16の態様によると、第14の態様の焦点検出装置において、第1の焦点検出部と第2の焦点検出部とは、光学系の焦点状態として光学系の焦点ずれ量を算出し、第1の焦点検出部で算出した光学系の焦点ずれ量と、第2の焦点検出部で算出した光学系の焦点ずれ量との両方の焦点ずれ量を光学系の焦点ずれ量とすることが好ましい。
本発明の第17の態様によると、第16の態様の焦点検出装置において、第1の焦点検出部で算出した光学系の焦点ずれ量と、第2の焦点検出部で算出した光学系の焦点ずれ量との加重平均を光学系の焦点ずれ量とすることが好ましい。
本発明の第18の態様によると、第1または第2の態様の焦点検出装置において、焦点検出部は、光学系の焦点状態として光学系の焦点ずれ量を算出することが好ましい。
本発明の第19の態様によると、第4乃至17の何れかの態様の焦点検出装置において、第1の焦点検出部と第2の焦点検出部とは、光学系の焦点状態として光学系の焦点ずれ量を算出することが好ましい。
本発明の第20の態様によると、焦点調節装置は、第18または19の態様の焦点検出装置と、焦点ずれ量により光学系の焦点調節を行う焦点調節部と、を備える。
本発明の第21の態様によると、カメラは、第1乃至19の何れかの焦点検出装置を備える。
本発明の第22の態様によると、カメラは、第20の態様の焦点調節装置を備える。
本発明の第23の態様によると、焦点検出装置は、結像光学系を透過した光束が入射するよう配置された複数のマイクロレンズと、複数のマイクロレンズの各々に対応して配置された、各々が複数の受光素子から成る複数の受光素子群と、結像光学系の第1瞳領域を通過した被写体光による第1被写体像と、結像光学系の第1瞳領域とは異なる第2瞳領域を通過した被写体光による第1被写体像と同一の被写体部分に関する第2被写体像との像ずれ量を、複数の受光素子群から出力される受光出力に基づき演算し、その像ずれ量から結像光学系の第1デフォーカス量を検出する第1焦点検出部と、複数のマイクロレンズのうちの第1マイクロレンズにより受光素子群上に形成される第3被写体像と、第3被写体像と同一の被写体部分について複数のマイクロレンズのうちの第1マイクロレンズとは異なる第2マイクロレンズにより受光素子群上に形成される第4被写体像との像ずれ量を、複数の受光素子群から出力される受光出力に基づき演算し、その像ずれ量から結像光学系の第2デフォーカス量を検出する第2焦点検部と、第1焦点検出部により検出された第1デフォーカス量と、第2焦点検出部により検出された第2デフォーカス量とに基づく第3デフォーカス量を出力する出力部と、を備える。
本発明の第24の態様によると、第23の態様の焦点検出装置において、出力部は、第1デフォーカス量が所定のしきい値以下で且つ第1デフォーカス量の信頼性が所定のしきい値以上である場合には、第1デフォーカス量を第3デフォーカス量として出力し、それ以外の場合には第2デフォーカス量を第3デフォーカス量として出力することが好ましい。
本発明の第25の態様によると、第23の態様の焦点検出装置において、出力部は、第1デフォーカス量と第2デフォーカス量との加重平均を第3デフォーカス量として出力することが好ましい。
本発明の第26の態様によると、焦点調節装置は、第23乃至25の何れかの態様の焦点検出装置と、出力部により出力された第3デフォーカス量に基づき結像光学系の焦点調節を行う焦点調節部と、を備える。
本発明の第27の態様によると、カメラは、第23乃至25の何れかの態様の焦点検出装置を備える。
本発明の第2の態様によると、第1の態様の焦点検出装置において、焦点検出部は、第1のマイクロレンズに複数設けられた受光部の出力データと、第2のマイクロレンズに複数設けられた受光部の出力データとの差分から、マイクロレンズに対する位置のずれを求めることが好ましい。
本発明の第3の態様によると、第2の態様の焦点検出装置において、焦点検出部は、第1のマイクロレンズに複数設けられた受光部の出力データに対する、第2のマイクロレンズに複数設けられた受光部の出力データのずらし量を変えながら求めた差分が最小となるずらし量での差分から、マイクロレンズに対する位置のずれを求めることが好ましい。
本発明の第4の態様によると、焦点検出装置は、マイクロレンズ毎に複数設けられた受光部を有し、光学系を透過した被写体からの光による像を撮像する撮像部と、複数のマイクロレンズにより形成され、光学系の第1瞳領域を通過した光を撮像部で撮像した第1被写体像と、光学系の第2瞳領域を通過した光を撮像部で撮像した第2被写体像とのずれから、光学系の焦点状態を検出する第1の焦点検出部と、撮像部で撮像された、マイクロレンズ毎に形成された被写体の像のマイクロレンズに対する相対的な位置のずれにより、光学系の焦点状態を検出する第2の焦点検出部と、を備える。
本発明の第5の態様によると、第4の態様の焦点検出装置において、第1の焦点検出部による光学系の焦点状態の検出と、第2の焦点検出部による光学系の焦点状態の検出とを切り替えることが好ましい。
本発明の第6の態様によると、第5の態様の焦点検出装置において、第1の焦点検出部による光学系の焦点状態の検出から、第2の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第7の態様によると、第6の態様の焦点検出装置において、第1の焦点検出部は光学系の焦点状態として光学系の焦点ずれ量を算出し、焦点ずれ量が所定のしきい値よりも大きい場合に、第2の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第8の態様によると、第6の態様の焦点検出装置において、第1の焦点検出部は光学系の焦点状態として光学系の焦点ずれ量を算出し、焦点ずれ量の信頼性が所定値よりも小さい場合に、第2の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第9の態様によると、第6の態様の焦点検出装置において、第1の焦点検出部は光学系の焦点状態として光学系の焦点ずれ量を算出できなかった場合に、第2の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第10の態様によると、第5の態様の焦点検出装置において、第2の焦点検出部による光学系の焦点状態の検出から、第1の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第11の態様によると、第10の態様の焦点検出装置において、第1の焦点検出部は光学系の焦点状態として光学系の焦点ずれ量を算出し、焦点ずれ量が所定のしきい値以下の場合に、第1の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第12の態様によると、第10の態様の焦点検出装置において、第1の焦点検出部は光学系の焦点状態として光学系の焦点ずれ量を算出し、焦点ずれ量の信頼性が所定値以上の場合に、第1の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第13の態様によると、第10の態様の焦点検出装置において、第1の焦点検出部は光学系の焦点状態として光学系の焦点ずれ量が算出できる場合に、第1の焦点検出部による光学系の焦点状態の検出へ切り替えることが好ましい。
本発明の第14の態様によると、第5の態様の焦点検出装置において、第1の焦点検出部は光学系の焦点状態の検出と、第2の焦点検出部による光学系の焦点状態の検出とを行うことが好ましい。
本発明の第15の態様によると、第14の態様の焦点検出装置において、第1の焦点検出部と第2の焦点検出部とのうちで光学系の焦点状態を最初にできた方で光学系の焦点状態の検出を行うことが好ましい。
本発明の第16の態様によると、第14の態様の焦点検出装置において、第1の焦点検出部と第2の焦点検出部とは、光学系の焦点状態として光学系の焦点ずれ量を算出し、第1の焦点検出部で算出した光学系の焦点ずれ量と、第2の焦点検出部で算出した光学系の焦点ずれ量との両方の焦点ずれ量を光学系の焦点ずれ量とすることが好ましい。
本発明の第17の態様によると、第16の態様の焦点検出装置において、第1の焦点検出部で算出した光学系の焦点ずれ量と、第2の焦点検出部で算出した光学系の焦点ずれ量との加重平均を光学系の焦点ずれ量とすることが好ましい。
本発明の第18の態様によると、第1または第2の態様の焦点検出装置において、焦点検出部は、光学系の焦点状態として光学系の焦点ずれ量を算出することが好ましい。
本発明の第19の態様によると、第4乃至17の何れかの態様の焦点検出装置において、第1の焦点検出部と第2の焦点検出部とは、光学系の焦点状態として光学系の焦点ずれ量を算出することが好ましい。
本発明の第20の態様によると、焦点調節装置は、第18または19の態様の焦点検出装置と、焦点ずれ量により光学系の焦点調節を行う焦点調節部と、を備える。
本発明の第21の態様によると、カメラは、第1乃至19の何れかの焦点検出装置を備える。
本発明の第22の態様によると、カメラは、第20の態様の焦点調節装置を備える。
本発明の第23の態様によると、焦点検出装置は、結像光学系を透過した光束が入射するよう配置された複数のマイクロレンズと、複数のマイクロレンズの各々に対応して配置された、各々が複数の受光素子から成る複数の受光素子群と、結像光学系の第1瞳領域を通過した被写体光による第1被写体像と、結像光学系の第1瞳領域とは異なる第2瞳領域を通過した被写体光による第1被写体像と同一の被写体部分に関する第2被写体像との像ずれ量を、複数の受光素子群から出力される受光出力に基づき演算し、その像ずれ量から結像光学系の第1デフォーカス量を検出する第1焦点検出部と、複数のマイクロレンズのうちの第1マイクロレンズにより受光素子群上に形成される第3被写体像と、第3被写体像と同一の被写体部分について複数のマイクロレンズのうちの第1マイクロレンズとは異なる第2マイクロレンズにより受光素子群上に形成される第4被写体像との像ずれ量を、複数の受光素子群から出力される受光出力に基づき演算し、その像ずれ量から結像光学系の第2デフォーカス量を検出する第2焦点検部と、第1焦点検出部により検出された第1デフォーカス量と、第2焦点検出部により検出された第2デフォーカス量とに基づく第3デフォーカス量を出力する出力部と、を備える。
本発明の第24の態様によると、第23の態様の焦点検出装置において、出力部は、第1デフォーカス量が所定のしきい値以下で且つ第1デフォーカス量の信頼性が所定のしきい値以上である場合には、第1デフォーカス量を第3デフォーカス量として出力し、それ以外の場合には第2デフォーカス量を第3デフォーカス量として出力することが好ましい。
本発明の第25の態様によると、第23の態様の焦点検出装置において、出力部は、第1デフォーカス量と第2デフォーカス量との加重平均を第3デフォーカス量として出力することが好ましい。
本発明の第26の態様によると、焦点調節装置は、第23乃至25の何れかの態様の焦点検出装置と、出力部により出力された第3デフォーカス量に基づき結像光学系の焦点調節を行う焦点調節部と、を備える。
本発明の第27の態様によると、カメラは、第23乃至25の何れかの態様の焦点検出装置を備える。
(第1の実施の形態)
図1は、本発明を適用したレンズ交換式のカメラシステムを示す断面図である。カメラ1は、カメラボディ100と、カメラボディ100に着脱可能な交換レンズ200から構成される。
図1は、本発明を適用したレンズ交換式のカメラシステムを示す断面図である。カメラ1は、カメラボディ100と、カメラボディ100に着脱可能な交換レンズ200から構成される。
交換レンズ200には、複数のレンズ202、203、204から構成される結像光学系205が設けられている。被写体からの光束は、結像光学系205を通過して、カメラボディ100に入射する。なお、図1では結像光学系205を3つのレンズにより構成されるかのように図示しているが、いくつのレンズで構成されるようにしてもよい。
結像光学系205に含まれるレンズ203は、結像光学系205のピント位置を調節するフォーカスレンズである。フォーカスレンズ203は、不図示の駆動機構を介してレンズ駆動装置206に接続されている。レンズ駆動装置206は、ステッピングモータ等の不図示のアクチュエータを有し、フォーカスレンズ203を結像光学系205の光軸Lに沿った方向Dに駆動させる。
カメラボディ100は、結像光学系205により結像された被写体像を撮像する、CCDやCMOS等の撮像素子102を有している。撮像素子102は、撮像面が結像光学系205の予定焦点面と一致するように配置されている。カメラボディ100内の、結像光学系205と撮像素子102の撮像面との間には、ハーフミラー103が設置されている。ハーフミラー103は、例えばペリクルミラー等により構成され、結像光学系205からの被写体光の一部を撮像素子102に対して透過させ、残りをカメラボディ100の上部に反射させる。この反射光は、カメラボディ100の上部に設けられた焦点検出装置104に入射する。焦点検出装置104の構成については後に詳述する。
カメラボディ100は、マイクロプロセッサやその周辺回路から成るボディ制御装置101を備える。ボディ制御装置101は、不図示の記憶媒体に予め記憶されている所定の制御プログラムを読み込んで実行することにより、カメラボディ100の各部を制御する。交換レンズ200は同様に、マイクロプロセッサやその周辺回路から成るレンズ制御装置201を有している。レンズ制御装置201は、不図示の記憶媒体に予め記憶されている所定の制御プログラムを読み込んで実行することにより、交換レンズ200の各部を制御する。なお、ボディ制御装置101やレンズ制御装置201を、上記の制御プログラム相当の動作を行う電子回路により構成してもよい。
ボディ制御装置101とレンズ制御装置201は、レンズマウント周辺に設けられた不図示の電気接点を介して、相互に通信可能に構成されている。ボディ制御装置101はこの電気接点を介したデータ通信により、例えばフォーカスレンズ203の駆動指令等をレンズ制御装置201に送信する。なお、このデータ通信を、電気接点を介した電気信号の授受以外の方法(例えば無線通信や光通信等)により行ってもよい。
所定の焦点調節操作(例えば、不図示のレリーズスイッチの半押し操作)がなされると、焦点検出装置104は結像光学系205のデフォーカス量を検出する。その後、ボディ制御装置101は、焦点検出装置104から出力されたデフォーカス量に応じた量だけフォーカスレンズ203を駆動させるための駆動指令をレンズ制御装置201に送信する。レンズ制御装置201はこの駆動指令に応じて、レンズ駆動装置206にフォーカスレンズ203を駆動させる。これにより、所定の被写体にピントが合わせられる。
カメラ1の背面には、例えば液晶等の表示素子により構成されるモニター110が設けられている。ボディ制御装置101はこのモニター110を用いて、例えば撮影した静止画像データや動画像データの再生、カメラ1の撮影パラメータ(絞り値やシャッタースピード等)の設定メニューやスルー画の表示などを行う。
カメラボディ100の上部には、液晶等の表示素子を有する電子ビューファインダーユニット108が設置されている。撮影者はファインダー部107から接眼レンズ106を介して電子ビューファインダーユニット108の表示素子に表示される被写体像等を視認することができる。カメラ1が撮影モードに設定されている間、ボディ制御装置101は所定間隔(例えば60分の1秒)ごとに撮像素子102に被写体像を撮像させ、その撮像信号に基づいてスルー画を作成してモニター110や電子ビューファインダーユニット108に表示させる。
撮影モード時に所定の静止画撮影操作(例えば、不図示のレリーズスイッチの全押し操作)がなされると、ボディ制御装置101は撮影制御を行う。このときボディ制御装置101は、不図示のシャッター等を制御して撮像素子102に被写体像を撮像させる。そして、撮像素子102から出力される撮像信号に種々の画像処理を加え、静止画像データを生成して不図示の記憶媒体(例えばメモリカード等)に記憶する。
(焦点検出装置104の説明)
図2は、焦点検出装置104の斜視図である。焦点検出装置104は、マイクロレンズアレイ11と、マイクロレンズアレイ11の後側に設けられた受光素子アレイ12とから構成される。
図2は、焦点検出装置104の斜視図である。焦点検出装置104は、マイクロレンズアレイ11と、マイクロレンズアレイ11の後側に設けられた受光素子アレイ12とから構成される。
マイクロレンズアレイ11には、多数のマイクロレンズ13が二次元状に三角配列されている。ここで三角配列とは、奇数行と偶数行とでマイクロレンズ13の位相を半分ずつずらした配列のことである。以下の説明において、各々のマイクロレンズ13は焦点距離f、直径dを有するものとする。例えば、マイクロレンズアレイ11におけるマイクロレンズ13のピッチはdである。
ハーフミラー103により反射された被写体光は、いずれかのマイクロレンズ13を通過して受光素子アレイ12の受光面に入射する。受光素子アレイ12の受光面(マイクロレンズアレイ11側の面)には、マイクロレンズ13の各々を通過した光束が入射する受光素子群14が、二次元状に多数配列されている。1つの受光素子群14は、5列5行に配列された計25個の受光素子により構成される。つまり、ある1つのマイクロレンズ13を通過した光束は、いずれか1つの受光素子群14に入射し、その受光素子群14を構成する複数の受光素子がその光束を受光する。
マイクロレンズアレイ11の表面(被写体光が入射する面)の、マイクロレンズ13が存在しない場所は、遮光マスクにより被覆されている。従って、受光素子アレイ12には、マイクロレンズ13を通過していない光束が入射することはない。
受光素子アレイ12は、マイクロレンズアレイ11からマイクロレンズ13の焦点距離fだけ離れた位置に配置される。つまり、マイクロレンズ13の頂点から受光素子アレイ12の受光面までの距離は焦点距離fに等しい。図2では便宜上、マイクロレンズアレイ11と受光素子アレイ12との間隔を実際よりも大きく図示している。
焦点検出装置104は、結像光学系205(図1)の予定焦点面と、マイクロレンズ13の結像光学系205側の頂点とが略一致するように配置されている。換言すると、撮像素子102(図1)の撮像面とマイクロレンズアレイ11は、結像光学系205の射出瞳について共役な位置関係にある。
なお図2では、マイクロレンズアレイ11および受光素子アレイ12の一部のみを図示している。実際には、より多数のマイクロレンズ13および受光素子群14が存在している。また、1つの受光素子群14に含まれる受光素子の個数は、25個より多くても少なくてもよいし、その配列が図2に示したものと異なっていてもよい。
受光素子アレイ12には、第1焦点検出装置301と第2焦点検出装置302が接続されている。第1焦点検出装置301と第2焦点検出装置302は、それぞれ異なる方法により結像光学系205(図1)のデフォーカス量を検出する。焦点検出装置104は、出力装置303を有している。出力装置303は、第1焦点検出装置301と第2焦点検出装置302の各々により検出されたデフォーカス量に基づき、最終的なデフォーカス量を決定し、ボディ制御装置101(図1)に出力する。以下、第1焦点検出装置301と第2焦点検出装置302の焦点検出方法について順に説明する。
(第1焦点検出装置301の説明)
第1焦点検出装置301は、以下に詳述するように、結像光学系205の第1瞳領域を通過した被写体光による第1被写体像と、結像光学系205の第1瞳領域とは異なる第2瞳領域を通過した被写体光による第1被写体像と同一の被写体部分に関する第2被写体像との像ずれ量を、複数の受光素子群14から出力される受光出力に基づき演算し、その像ずれ量から結像光学系205のデフォーカス量を検出する。
第1焦点検出装置301は、以下に詳述するように、結像光学系205の第1瞳領域を通過した被写体光による第1被写体像と、結像光学系205の第1瞳領域とは異なる第2瞳領域を通過した被写体光による第1被写体像と同一の被写体部分に関する第2被写体像との像ずれ量を、複数の受光素子群14から出力される受光出力に基づき演算し、その像ずれ量から結像光学系205のデフォーカス量を検出する。
図3(a)は、図2に示した多数の受光素子群14から、焦点検出に用いる1列の受光素子群14を抜き出した図である。図3(a)では5つの受光素子群14を図示しているが、実際にはより多くの受光素子群14を選択することが望ましい。以下、ここで説明に用いる受光素子群14を、受光素子群14a~14eとそれぞれ異なる符号を付して扱う。
図3(b)は、図3(a)に示した受光素子群14a~14eの、測距瞳との関係を模式的に示した図である。マイクロレンズ13a~13eは、その頂点が結像光学系205の予定焦点面17と略一致するように配置されている。マイクロレンズ13cは、その背後に配置された一対の受光素子16lc、16rcの形状を、マイクロレンズ13cから投影距離18だけ離れた射出瞳20上に投影し、その投影形状は測距瞳21、22を形成する。投影距離18はマイクロレンズ13cの曲率、屈折率、マイクロレンズ13cと受光素子アレイ12の間の距離などに応じて決まる距離である。一対の測距瞳21、22と、一対の受光素子16lc、16rcは、マイクロレンズ13cを介して共役な関係となっている。
なお、以上の説明では便宜的に、光軸L上の受光素子群14cに属する一対の受光素子16lc、16rcと一対の測距瞳21、22を例示したが、光軸Lから離れた位置にある受光素子群においても、一対の受光素子はそれぞれ一対の測距瞳から各マイクロレンズに到来する光束を受光する。
受光素子16lcは、測距瞳22を通過しマイクロレンズ13cに向かう焦点検出光束24によりマイクロレンズ13c上に形成される像の強度に対応した受光信号を出力する。同様に、受光素子16rcは測距瞳21を通過しマイクロレンズ13cに向う焦点検出光束23によりマイクロレンズ13c上に形成される像の強度に対応した受光信号を出力する。
従って、図3(a)のように直線状に配置された複数個の受光素子群14a~14eの各々から、測距瞳21および測距瞳22に対応する一対の受光素子の受光出力を得ることにより、測距瞳21と測距瞳22を各々通過する焦点検出光束が受光素子アレイ12上に形成する一対の像の強度分布に関する情報が得られる。これらの情報に対して周知の像ずれ検出演算を行えば、いわゆる瞳分割型位相差検出方式での一対の像の像ずれ量が検出される。さらに、像ずれ量に対して、一対の測距瞳21、22の重心間隔に応じた変換演算を行うことにより、予定焦点面17に対する現在の結像面の偏差であるデフォーカス量が算出される。
像ずれ検出演算および変換演算を具体的に説明すると、第1焦点検出装置301はまず、受光素子群14aについて、中央左端の3つの受光素子16laの受光出力を加算した値をa(1)とおく。同様に、受光素子群14b~14eのそれぞれについて、中央左端の3つの受光素子16lb~16leの受光出力をそれぞれ加算し、a(2)~a(5)とおく。次に、受光素子群14a~14eのそれぞれについて、中央右端の3つの受光素子16ra~16reの受光出力をそれぞれ同様に加算し、b(1)~b(5)とおく。このようにして作成された一対の信号列a(i)とb(i)が、上述した一対の像の強度分布に関する情報である。第1焦点検出装置301は一対の信号列a(i)とb(i)との間で、各信号列を少しずつずらしながら相関演算を行い、ずれ量毎の相関量を算出する。そして、その結果から相関量が極小となるずれ量(相関が極大となるずれ量)を求める。第1焦点検出装置301は、そのずれ量に所定の変換係数を掛けることにより、被写体像の予定焦点面17に対するデフォーカス量を算出する。
なお、多数の受光素子群14の中から焦点検出のために選択する一列の受光素子群14は、任意の方法により決定してよい。例えば、ユーザにピントを合わせたい被写体の位置を指定させ、その位置にある受光素子群14を選択してもよいし、あるいは撮影画面の中央など、予め決めておいた位置の受光素子群14を選択してもよい。
(第2焦点検出装置302の説明)
第2焦点検出装置302は、以下に詳述するように、複数のマイクロレンズ13のうちの第1マイクロレンズにより受光素子群14上に形成される第3被写体像と、第3被写体像と同一の被写体部分について複数のマイクロレンズ13のうちの第1マイクロレンズとは異なる第2マイクロレンズにより受光素子群14上に形成される第4被写体像との像ずれ量を、複数の受光素子群14から出力される受光出力に基づき演算し、その像ずれ量から結像光学系205のデフォーカス量を検出する。
第2焦点検出装置302は、以下に詳述するように、複数のマイクロレンズ13のうちの第1マイクロレンズにより受光素子群14上に形成される第3被写体像と、第3被写体像と同一の被写体部分について複数のマイクロレンズ13のうちの第1マイクロレンズとは異なる第2マイクロレンズにより受光素子群14上に形成される第4被写体像との像ずれ量を、複数の受光素子群14から出力される受光出力に基づき演算し、その像ずれ量から結像光学系205のデフォーカス量を検出する。
図4は、結像面19が予定焦点面から大きく離れている場合の、結像面19と受光素子群14との関係を模式的に示した図である。結像面19が予定焦点面17(図3)、すなわちマイクロレンズ13の頂点からある程度離れている場合、各々の受光素子群14には、各々のマイクロレンズ13により被写体像が形成される。このとき、各々のマイクロレンズ13により形成される各々の被写体像は、マイクロレンズ13の位置に応じた視差を有している。
例えば図4において、結像面19上のある一点P1について考える。結像光学系205を通過し、点P1に集められた被写体光は、点P1を通過して複数のマイクロレンズ13a~13eに入射する。この被写体光のうち、マイクロレンズ13cに向かう被写体光30cは、マイクロレンズ13cにより受光素子群14c内の受光素子16cに入射する。受光素子16cは、受光素子群14cの中央に位置している。
これに対し、1つ左のマイクロレンズ13bに向かう被写体光30bは、マイクロレンズ13bにより受光素子群14b内の受光素子16bに入射する。受光素子16bは、受光素子群14bの中央から1つ左に位置している。マイクロレンズ13cから2つ左のマイクロレンズ13aに向かう被写体光30aは、マイクロレンズ13aにより受光素子群14a内の受光素子16aに入射する。受光素子16aは、受光素子群14aの中央から2つ左に位置している。
このように、点P1を形成する被写体光は、マイクロレンズ13の相対位置に応じた受光素子群14内の位置に集められる。このときの受光素子群14内における入射位置のずれ量、すなわちマイクロレンズ13により形成される被写体像の像ずれ量は、結像面19の位置に応じて変化する。具体的には、結像面19が予定焦点面17に近づくと、像ずれ量は大きくなり、結像面19が予定焦点面17から遠ざかると、像ずれ量は小さくなる。
第2焦点検出装置302は、以上の原理を利用して結像光学系205のデフォーカス量を演算する。例えば、隣接する一対の受光素子群14c、14dについて、まず隣接方向に一列に並ぶ受光素子列16x、16y(図3(a))を選択する。ここで、一対の受光素子列16x、16yからの受光出力を、一対の信号列c(i)とd(i)とする。そして、次式(1)により、一対の信号列c(i)、d(i)の差分列e(i)を生成する。
上式(1)は、信号列c、d同士を隣接方向にi個だけずらした場合に、信号列同士がどの程度一致するかを演算する式である。第2焦点検出装置302は、iを一定範囲(例えば-5~+5)でずらしながら生成した差分列e(i)から、最小値を探す。その後、周知の内挿法により、信号列同士の差が最小となる位置、すなわち像ずれ量を演算する。このようにして演算された像ずれ量をxとおくと、デフォーカス量Yは次式(2)により演算することができる。ここで、fはマイクロレンズ13の焦点距離であり、dはマイクロレンズ13のピッチである。
Y=fd/x ・・・(2)
Y=fd/x ・・・(2)
なお、信号列の比較は、必ずしも隣接する受光素子群14同士で行わなくてもよい。例えば、1つ離れた受光素子群14同士で信号列の比較を行うこともできる。このときの受光素子群14同士の距離が基線長となる。つまり、離れた受光素子群14同士で上述の演算を行うことにより、像ずれ量が大きい場合にも対応することが可能になる。例えば、まず隣接する受光素子群14同士で上述の演算を行い、これにより演算されたデフォーカス量Yの信頼性が低い場合にはより離れた受光素子群14同士で上述の演算をやり直すように、第2焦点検出装置302を構成することも可能である。
このように、第1焦点検出装置301が多数のマイクロレンズ13から受光信号を少しずつ集めて一対の信号列a(i)、b(i)を生成していたのに対し、第2焦点検出装置302は、一対の受光素子群14c、14d上に形成された像を直接比較することにより、デフォーカス量を検出する。即ち、第2焦点検出装置302は、マイクロレンズ13cに複数設けられた受光素子群14cの出力データと、マイクロレンズ13dに複数設けられた受光素子列群14dの出力データとの差分から、マイクロレンズ13に対する位置のずれを求める。具体的には、第2焦点検出装置302は、受光素子群14cの出力データに対する、受光素子群14dの出力データのずらし量iを変えながら求めた差分が最小となるずらし量での差分から、マイクロレンズ13に対する位置のずれを求める。
(出力装置303の説明)
上述した第1焦点検出装置301には、結像面19(図4)が予定焦点面17(図3)に近い場合には高精度の焦点検出が可能であるが、結像面19が予定焦点面17から離れると焦点検出の精度が低下するという特徴がある。これは、結像面19が予定焦点面17から離れると、位相差を検出するための一対の信号列a(i)、b(i)が平坦になり、相関演算により像ずれ量を演算することが困難になるためである。
上述した第1焦点検出装置301には、結像面19(図4)が予定焦点面17(図3)に近い場合には高精度の焦点検出が可能であるが、結像面19が予定焦点面17から離れると焦点検出の精度が低下するという特徴がある。これは、結像面19が予定焦点面17から離れると、位相差を検出するための一対の信号列a(i)、b(i)が平坦になり、相関演算により像ずれ量を演算することが困難になるためである。
他方、上述した第2焦点検出装置302には、これとは逆に、結像面19(図4)が予定焦点面17(図3)に近い場合には焦点検出の精度が低く、結像面19が予定焦点面17から一定以上離れると焦点検出の精度が高くなるという特徴がある。これは、結像面19が予定焦点面17に近いほど、マイクロレンズ13により受光素子群14上に形成される被写体像がぼけるためである。
このように、第1焦点検出装置301と第2焦点検出装置302には、相反する特性がある。そこで、出力装置303は、第1焦点検出装置301による焦点検出結果と、第2焦点検出装置302による焦点検出結果とに基づき、結像面19(図4)と予定焦点面17(図3)の距離に因らず、常に高精度なデフォーカス量を出力する。即ち、第1焦点検出装置301による結像光学系205の焦点状態の検出と、第2焦点検出装置302による結像光学系205の焦点状態の検出とが切り替えられる。
具体的には、出力装置303は、まず第1焦点検出装置301にデフォーカス量を演算させる。そして、これにより演算されたデフォーカス量が所定のしきい値より大きい場合、または、これにより演算されたデフォーカス量の信頼性が一定未満である場合、もしくは、これによりデフォーカス量を演算することができなかった場合には、第2焦点検出装置302にデフォーカス量を演算させ、このデフォーカス量を最終的なデフォーカス量として出力する。即ち、第1焦点検出装置301による結像光学系205の焦点状態の検出から、第2焦点検出装置302による結像光学系205の焦点状態の検出に切り替わる。他方、第1焦点検出装置301により、所定のしきい値以下で且つ一定以上の信頼性を有するデフォーカス量が演算された場合には、このデフォーカス量を最終的なデフォーカス量として出力する。なお、前回の処理で第2焦点検出装置302により演算されたデフォーカス量が最終的なデフォーカス量として出力されていた場合に、今回の処理で第1焦点検出装置301により、所定のしきい値以下で且つ一定以上の信頼性を有するデフォーカス量が演算されると、最終的なデフォーカス量は第1焦点検出装置301により演算されたものに切り替わる。換言すると、第2焦点検出装置302による結像光学系205の焦点状態の検出から、第1焦点検出装置301による結像光学系205の焦点状態の検出に切り替わる。
(焦点調節制御の説明)
図5は、ボディ制御装置101により実行される焦点調節制御のフローチャートである。図5に示す処理は、ボディ制御装置101が不図示のメモリから読み込んで実行する制御プログラムに含まれている。
図5は、ボディ制御装置101により実行される焦点調節制御のフローチャートである。図5に示す処理は、ボディ制御装置101が不図示のメモリから読み込んで実行する制御プログラムに含まれている。
まずステップS100においてボディ制御装置101が、ユーザにより所定の焦点調節操作(例えばレリーズスイッチの半押し操作)が為されたか否かを判定する。ボディ制御装置101は焦点調節操作が為されるまでステップS100を繰り返し実行し、焦点調節操作が為された場合にはステップS110に進む。ボディ制御装置101はステップS110で受光素子アレイ12の蓄積制御を行い、ステップS120で各受光素子群14の受光出力を読み出す。
ステップS130でボディ制御装置101は、焦点検出装置104にデフォーカス量を演算させる。そして、ステップS160でフォーカスレンズ203を駆動する必要があるか否か、すなわち既に合焦状態であるか否かを判定し、合焦状態であれば図6の処理を終了する。他方、合焦状態でなかった場合にはステップS150に進み、算出されたデフォーカス量から合焦に必要なフォーカスレンズ203の駆動量を演算する。そして、ステップS170でボディ制御装置101は、演算した駆動量だけフォーカスレンズ203を駆動させる。具体的には、ボディ制御装置101は、ステップS150において演算したレンズ駆動量だけフォーカスレンズ203を駆動するよう、レンズ制御装置201に駆動命令を送信する。レンズ制御装置201はこの駆動命令に応じて、レンズ駆動装置206にフォーカスレンズ203を駆動させる。その後、ボディ制御装置101は、処理をステップS110に進める。
図6は、図5のステップS130から呼び出される、デフォーカス量演算処理のフローチャートである。まずステップS200において、第1焦点検出装置301が、図5のステップS120で読み出された受光出力に基づき、デフォーカス量を演算する。ステップS210で出力装置303が、ステップS200において所定のしきい値以下で且つ一定以上の信頼性を有するデフォーカス量が演算されたか否かを判定する。そのようなデフォーカス量が演算された場合、出力装置303は処理をステップS240に進める。ステップS240で出力装置303は第1焦点検出装置301によりステップS200で演算されたデフォーカス量を最終的なデフォーカス量としてボディ制御装置101に出力する。他方、ステップS200において上述したようなデフォーカス量が演算されなかった場合、出力装置303は処理をステップS220に進める。
ステップS220では、第2焦点検出装置302が、図5のステップS120で読み出された受光出力に基づき、デフォーカス量を演算する。ステップS230で出力装置303は第2焦点検出装置302によりステップS220で演算されたデフォーカス量を最終的なデフォーカス量としてボディ制御装置101に出力する。
上述した第1の実施の形態によるカメラシステムによれば、次の作用効果が得られる。
(1)第1焦点検出装置301は、結像光学系205の第1瞳領域21を通過した被写体光23による第1被写体像と、結像光学系205の第2瞳領域22を通過した被写体光24による第2被写体像との像ずれ量を、複数の受光素子群14から出力される受光出力に基づき演算し、その像ずれ量から結像光学系205のデフォーカス量を検出する。第2焦点検出装置302は、複数のマイクロレンズ13のうちの第1マイクロレンズ13bにより受光素子群14b上に形成される第3被写体像と、複数のマイクロレンズ13のうちの第2マイクロレンズ13cにより受光素子群14c上に形成される第4被写体像との像ずれ量を、複数の受光素子群14から出力される受光出力に基づき演算し、その像ずれ量から結像光学系205のデフォーカス量を検出する。出力装置303は、第1焦点検出装置301により検出されたデフォーカス量と、第2焦点検出装置302により検出されたデフォーカス量とに基づき、最終的なデフォーカス量を出力する。このようにしたので、精度よく焦点検出を行うことができる。
(1)第1焦点検出装置301は、結像光学系205の第1瞳領域21を通過した被写体光23による第1被写体像と、結像光学系205の第2瞳領域22を通過した被写体光24による第2被写体像との像ずれ量を、複数の受光素子群14から出力される受光出力に基づき演算し、その像ずれ量から結像光学系205のデフォーカス量を検出する。第2焦点検出装置302は、複数のマイクロレンズ13のうちの第1マイクロレンズ13bにより受光素子群14b上に形成される第3被写体像と、複数のマイクロレンズ13のうちの第2マイクロレンズ13cにより受光素子群14c上に形成される第4被写体像との像ずれ量を、複数の受光素子群14から出力される受光出力に基づき演算し、その像ずれ量から結像光学系205のデフォーカス量を検出する。出力装置303は、第1焦点検出装置301により検出されたデフォーカス量と、第2焦点検出装置302により検出されたデフォーカス量とに基づき、最終的なデフォーカス量を出力する。このようにしたので、精度よく焦点検出を行うことができる。
(2)出力装置303は、第1焦点検出装置301により検出されたデフォーカス量が所定のしきい値以下で且つその信頼性が所定のしきい値以上である場合には、第1焦点検出装置301により検出されたデフォーカス量を最終的なデフォーカス量として出力し、それ以外の場合には第2焦点検出装置302により検出されたデフォーカス量を最終的なデフォーカス量として出力する。このようにしたので、精度よく焦点検出を行うことができる。
次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(変形例1)
図3では、横方向に並んだ5つの受光素子群14a~14eを焦点検出のために選択する様子を例示したが、これ以外の方向に一列に並んだ受光素子群14を選択してもよい。また、5つより多いまたは少ない受光素子群14を選択してもよいし、必ずしも連続する受光素子群14を選択しなくてもよい。例えば1つおきに配列されている受光素子群14を選択してもよい。
図3では、横方向に並んだ5つの受光素子群14a~14eを焦点検出のために選択する様子を例示したが、これ以外の方向に一列に並んだ受光素子群14を選択してもよい。また、5つより多いまたは少ない受光素子群14を選択してもよいし、必ずしも連続する受光素子群14を選択しなくてもよい。例えば1つおきに配列されている受光素子群14を選択してもよい。
また、焦点検出の際、一対の信号列を作成するために選択される受光素子を、図3(a)に示すような、左右両端の3つの受光素子以外から選択してもよい。更に、画素加算は必ずしも行わなくてよい。つまり、図3(a)ではa(1)、a(2)などの値を3つの受光素子の受光出力を合算することにより作成しているが、1つの受光素子の受光出力をa(1)、a(2)などとすることができる。
(変形例2)
マイクロレンズアレイ11および受光素子アレイ12を、図2に図示されているものと異ならせてもよい。例えば、マイクロレンズ13および受光素子群14の配列を、正方配列など図2に示した配列とは異なる配列方法により配列することができる。マイクロレンズ13の形状を円形以外(例えば六角形など)の形状とすることもできる。また、受光素子群14を構成する受光素子の配列は、正方配列以外であってもよい。例えば、受光素子群14がマイクロレンズ13の形状に合わせた円形に近い形状となるように受光素子を配列してもよいし、受光素子を横一列や縦一列などに配列してもよい。その他、マイクロレンズ13間の遮光マスクを省略することもできる。
マイクロレンズアレイ11および受光素子アレイ12を、図2に図示されているものと異ならせてもよい。例えば、マイクロレンズ13および受光素子群14の配列を、正方配列など図2に示した配列とは異なる配列方法により配列することができる。マイクロレンズ13の形状を円形以外(例えば六角形など)の形状とすることもできる。また、受光素子群14を構成する受光素子の配列は、正方配列以外であってもよい。例えば、受光素子群14がマイクロレンズ13の形状に合わせた円形に近い形状となるように受光素子を配列してもよいし、受光素子を横一列や縦一列などに配列してもよい。その他、マイクロレンズ13間の遮光マスクを省略することもできる。
また、受光素子群14は、図2に示したように、各々が独立していなくてもよい。つまり、受光素子アレイ12には、多数の受光素子が二次元状に敷き詰められていてもよい。この場合、1つのマイクロレンズ13により被覆される複数の受光素子を、1つの受光素子群14として扱う。
(変形例3)
本発明を、クイックリターンミラーを有するいわゆる一眼レフレックスカメラに適用してもよい。この場合、クイックリターンミラーの裏面にサブミラーを設け、クイックリターンミラーに入射した被写体光の一部がクイックリターンミラーを透過してサブミラーに入射するようにクイックリターンミラーを構成し、サブミラーにより反射された被写体光が焦点検出装置104に入射するようにすればよい。また、撮像素子102を焦点検出装置104のようにマイクロレンズアレイ11と受光素子アレイ12とで構成し、この受光素子アレイ12によって焦点検出と静止画の撮像の両方を行うようにしてもよい。
本発明を、クイックリターンミラーを有するいわゆる一眼レフレックスカメラに適用してもよい。この場合、クイックリターンミラーの裏面にサブミラーを設け、クイックリターンミラーに入射した被写体光の一部がクイックリターンミラーを透過してサブミラーに入射するようにクイックリターンミラーを構成し、サブミラーにより反射された被写体光が焦点検出装置104に入射するようにすればよい。また、撮像素子102を焦点検出装置104のようにマイクロレンズアレイ11と受光素子アレイ12とで構成し、この受光素子アレイ12によって焦点検出と静止画の撮像の両方を行うようにしてもよい。
(変形例4)
出力装置303が最終的なデフォーカス量を決定する方法は、上述の実施形態と異なっていてもよい。例えば、第1焦点検出装置301により演算されたデフォーカス量(以下、y1と表記する)と、第2焦点検出装置302により演算されたデフォーカス量(以下、y2と表記する)とを、次式(3)により加重平均したデフォーカス量Yを最終的なデフォーカス量としてもよい。
Y=ty1-(1-t)y2 ・・・(3)
出力装置303が最終的なデフォーカス量を決定する方法は、上述の実施形態と異なっていてもよい。例えば、第1焦点検出装置301により演算されたデフォーカス量(以下、y1と表記する)と、第2焦点検出装置302により演算されたデフォーカス量(以下、y2と表記する)とを、次式(3)により加重平均したデフォーカス量Yを最終的なデフォーカス量としてもよい。
Y=ty1-(1-t)y2 ・・・(3)
上式(3)における重みtは、例えば次のようにして求めることができる。結像光学系205の最至近距離をy0、結像光学系205の焦点距離をf0とすると、無限遠から最至近までは、次式(4)により表される像面距離hに圧縮されている。
求めるべき結像面19(図4)はこの像面距離hの中にある。従って、次式(5)のようにすれば、重みtを求めることができる。なお、次式(5)におけるyhは重みtを決定するための仮のデフォーカス量であり、第1焦点検出装置301により演算されたデフォーカス量y1、第2焦点検出装置302により演算されたデフォーカス量y2のいずれかを当てはめればよい。
2つのデフォーカス量の加重平均を、上式(3)の代わりに次式(6)により求めてもよい。次式(6)では、上式(3)のデフォーカス量をデフォーカス量の逆数に置き換えている。デフォーカス量の精度は、デフォーカス量の逆数に対してリニアであるため、このようにするとより精度よく加重平均を演算することができる。
出力装置303は、これら以外の方法により最終的なデフォーカス量を決定するように構成することもできる。例えば、単に加重平均を演算するのではなく、一方のデフォーカス量を他方のデフォーカス量により補正することも可能である。
更に、焦点検出装置104に、偽合焦の検出を行わせることも可能である。上述の通り、第1焦点検出装置301で精度よくデフォーカス量が演算できる状態のとき、第2焦点検出装置302はデフォーカス量を演算することができない状態であると考えられ、その逆も成立する。そこで、例えば、第1焦点検出装置301と第2焦点検出装置302の一方で合焦しているという検出結果が得られたときに、他方からも一定の信頼性を有するデフォーカス量が演算された場合、前者の検出結果は偽合焦であると判定することができる。
(変形例5)
図3に例示するように、第1の実施の形態においては予定焦点面17はマイクロレンズ13の頂点と略一致していたが、本発明はこのような実施形態に限定されない。すなわち、予定焦点面17をマイクロレンズ13の頂点から離れた位置に設定してもよい。
図3に例示するように、第1の実施の形態においては予定焦点面17はマイクロレンズ13の頂点と略一致していたが、本発明はこのような実施形態に限定されない。すなわち、予定焦点面17をマイクロレンズ13の頂点から離れた位置に設定してもよい。
本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
日本国特許出願2014年第13483号(2014年1月28日出願)
日本国特許出願2014年第13483号(2014年1月28日出願)
1…カメラ、100…カメラボディ、101…ボディ制御装置、102…撮像素子、103…ハーフミラー、104…焦点検出装置、106…接眼レンズ、108…電子ビューファインダーユニット、110…モニター、200…交換レンズ、201…レンズ制御装置、202、204…レンズ、203…フォーカスレンズ、205…結像光学系、206…レンズ駆動装置、301…第1焦点検出装置、302…第2焦点検出装置、303…出力装置
Claims (27)
- マイクロレンズ毎に複数設けられた受光部を有し、光学系を透過した被写体からの光による像を撮像する撮像部と、
前記撮像部で撮像された、前記マイクロレンズ毎に形成された前記被写体の像の前記マイクロレンズに対する相対的な位置のずれにより、前記光学系の焦点状態を検出する焦点検出部と、を備える焦点検出装置。 - 請求項1に記載の焦点検出装置において、
前記焦点検出部は、第1のマイクロレンズに複数設けられた受光部の出力データと、第2のマイクロレンズに複数設けられた受光部の出力データとの差分から、前記マイクロレンズに対する位置のずれを求める焦点検出装置。 - 請求項2の焦点検出装置において、
前記焦点検出部は、前記第1のマイクロレンズに複数設けられた受光部の出力データに対する、前記第2のマイクロレンズに複数設けられた受光部の出力データのずらし量を変えながら求めた前記差分が最小となる前記ずらし量での差分から、前記マイクロレンズに対する位置のずれを求める焦点検出装置。 - マイクロレンズ毎に複数設けられた受光部を有し、光学系を透過した被写体からの光による像を撮像する撮像部と、
複数の前記マイクロレンズにより形成され、前記光学系の第1瞳領域を通過した光を前記撮像部で撮像した第1被写体像と、前記光学系の第2瞳領域を通過した光を前記撮像部で撮像した第2被写体像とのずれから、前記光学系の焦点状態を検出する第1の焦点検出部と、
前記撮像部で撮像された、前記マイクロレンズ毎に形成された前記被写体の像の前記マイクロレンズに対する相対的な位置のずれにより、前記光学系の焦点状態を検出する第2の焦点検出部と、を備える焦点検出装置。 - 請求項4に記載の焦点検出装置において、
前記第1の焦点検出部による前記光学系の焦点状態の検出と、前記第2の焦点検出部による前記光学系の焦点状態の検出とを切り替える焦点検出装置。 - 請求項5に記載の焦点検出装置において、
前記第1の焦点検出部による前記光学系の焦点状態の検出から、前記第2の焦点検出部による前記光学系の焦点状態の検出へ切り替える焦点検出装置。 - 請求項6に記載の焦点検出装置において、
前記第1の焦点検出部は前記光学系の焦点状態として前記光学系の焦点ずれ量を算出し、前記焦点ずれ量が所定のしきい値よりも大きい場合に、前記第2の焦点検出部による前記光学系の焦点状態の検出へ切り替える焦点検出装置。 - 請求項6に記載の焦点検出装置において、
前記第1の焦点検出部は前記光学系の焦点状態として前記光学系の焦点ずれ量を算出し、前記焦点ずれ量の信頼性が所定値よりも小さい場合に、前記第2の焦点検出部による前記光学系の焦点状態の検出へ切り替える焦点検出装置。 - 請求項6に記載の焦点検出装置において、
前記第1の焦点検出部は前記光学系の焦点状態として前記光学系の焦点ずれ量を算出できなかった場合に、前記第2の焦点検出部による前記光学系の焦点状態の検出へ切り替える焦点検出装置。 - 請求項5に記載の焦点検出装置において、
前記第2の焦点検出部による前記光学系の焦点状態の検出から、前記第1の焦点検出部による前記光学系の焦点状態の検出へ切り替える焦点検出装置。 - 請求項10に記載の焦点検出装置において、
前記第1の焦点検出部は前記光学系の焦点状態として前記光学系の焦点ずれ量を算出し、前記焦点ずれ量が所定のしきい値以下の場合に、前記第1の焦点検出部による前記光学系の焦点状態の検出へ切り替える焦点検出装置。 - 請求項10に記載の焦点検出装置において、
前記第1の焦点検出部は前記光学系の焦点状態として前記光学系の焦点ずれ量を算出し、前記焦点ずれ量の信頼性が所定値以上の場合に、前記第1の焦点検出部による前記光学系の焦点状態の検出へ切り替える焦点検出装置。 - 請求項10に記載の焦点検出装置において、
前記第1の焦点検出部は前記光学系の焦点状態として前記光学系の焦点ずれ量が算出できる場合に、前記第1の焦点検出部による前記光学系の焦点状態の検出へ切り替える焦点検出装置。 - 請求項5に記載の焦点検出装置において、
前記第1の焦点検出部は前記光学系の焦点状態の検出と、前記第2の焦点検出部による前記光学系の焦点状態の検出とを行う焦点検出装置。 - 請求項14に記載の焦点検出装置において、
前記第1の焦点検出部と前記第2の焦点検出部とのうちで前記光学系の焦点状態を最初にできた方で前記光学系の焦点状態の検出を行う焦点検出装置。 - 請求項14に記載の焦点検出装置において、
前記第1の焦点検出部と前記第2の焦点検出部とは、前記光学系の焦点状態として前記光学系の焦点ずれ量を算出し、
前記第1の焦点検出部で算出した前記光学系の焦点ずれ量と、前記第2の焦点検出部で算出した前記光学系の焦点ずれ量との両方の焦点ずれ量を前記光学系の焦点ずれ量とする焦点検出装置。 - 請求項16に記載の焦点検出装置において、
前記第1の焦点検出部で算出した前記光学系の焦点ずれ量と、前記第2の焦点検出部で算出した前記光学系の焦点ずれ量との加重平均を前記光学系の焦点ずれ量とする焦点検出装置。 - 請求項1または2に記載の焦点検出装置において、
前記焦点検出部は、前記光学系の焦点状態として前記光学系の焦点ずれ量を算出する焦点検出装置。 - 請求項4乃至17の何れか一項に記載の焦点検出装置において、
前記第1の焦点検出部と前記第2の焦点検出部とは、前記光学系の焦点状態として前記光学系の焦点ずれ量を算出する焦点検出装置。 - 請求項18または19に記載の焦点検出装置と、
前記焦点ずれ量により前記光学系の焦点調節を行う焦点調節部と、を備える焦点調節装置。 - 請求項1乃至19の何れか一項に記載の焦点検出装置を備えるカメラ。
- 請求項20に記載の焦点調節装置を備えるカメラ。
- 結像光学系を透過した光束が入射するよう配置された複数のマイクロレンズと、
前記複数のマイクロレンズの各々に対応して配置された、各々が複数の受光素子から成る複数の受光素子群と、
前記結像光学系の第1瞳領域を通過した被写体光による第1被写体像と、前記結像光学系の前記第1瞳領域とは異なる第2瞳領域を通過した被写体光による前記第1被写体像と同一の被写体部分に関する第2被写体像との像ずれ量を、前記複数の受光素子群から出力される受光出力に基づき演算し、その像ずれ量から前記結像光学系の第1デフォーカス量を検出する第1焦点検出部と、
前記複数のマイクロレンズのうちの第1マイクロレンズにより前記受光素子群上に形成される第3被写体像と、前記第3被写体像と同一の被写体部分について前記複数のマイクロレンズのうちの前記第1マイクロレンズとは異なる第2マイクロレンズにより前記受光素子群上に形成される第4被写体像との像ずれ量を、前記複数の受光素子群から出力される受光出力に基づき演算し、その像ずれ量から前記結像光学系の第2デフォーカス量を検出する第2焦点検部と、
前記第1焦点検出部により検出された前記第1デフォーカス量と、前記第2焦点検出部により検出された前記第2デフォーカス量とに基づく第3デフォーカス量を出力する出力部と、
を備える焦点検出装置。 - 請求項23に記載の焦点検出装置において、
前記出力部は、前記第1デフォーカス量が所定のしきい値以下で且つ前記第1デフォーカス量の信頼性が所定のしきい値以上である場合には、前記第1デフォーカス量を前記第3デフォーカス量として出力し、それ以外の場合には前記第2デフォーカス量を前記第3デフォーカス量として出力する焦点検出装置。 - 請求項23に記載の焦点検出装置において、
前記出力部は、前記第1デフォーカス量と前記第2デフォーカス量との加重平均を前記第3デフォーカス量として出力する焦点検出装置。 - 請求項23~25のいずれか一項に記載の焦点検出装置と、
前記出力部により出力された前記第3デフォーカス量に基づき前記結像光学系の焦点調節を行う焦点調節部と、
を備える焦点調節装置。 - 請求項23~25のいずれか一項に記載の焦点検出装置を備えるカメラ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15743019.0A EP3101461A4 (en) | 2014-01-28 | 2015-01-28 | Focal point detection device, focal point adjustment device, and camera |
CN201580016875.3A CN106133577A (zh) | 2014-01-28 | 2015-01-28 | 焦点检测装置、焦点调节装置以及相机 |
US15/113,252 US10404904B2 (en) | 2014-01-28 | 2015-01-28 | Focus detection device, focus adjustment device, and camera |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-013483 | 2014-01-28 | ||
JP2014013483A JP6476547B2 (ja) | 2014-01-28 | 2014-01-28 | 焦点検出装置および撮像装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015115452A1 true WO2015115452A1 (ja) | 2015-08-06 |
Family
ID=53757025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/052282 WO2015115452A1 (ja) | 2014-01-28 | 2015-01-28 | 焦点検出装置、焦点調節装置およびカメラ |
Country Status (5)
Country | Link |
---|---|
US (1) | US10404904B2 (ja) |
EP (1) | EP3101461A4 (ja) |
JP (1) | JP6476547B2 (ja) |
CN (1) | CN106133577A (ja) |
WO (1) | WO2015115452A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017207695A (ja) * | 2016-05-20 | 2017-11-24 | 株式会社ニコン | 光学装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017142356A (ja) * | 2016-02-10 | 2017-08-17 | ソニー株式会社 | 撮像装置、および、撮像装置の制御方法 |
JP6900161B2 (ja) * | 2016-09-14 | 2021-07-07 | キヤノン株式会社 | 焦点調節装置及び撮像装置 |
CN110611775B (zh) * | 2019-09-27 | 2020-11-24 | 中国科学院长春光学精密机械与物理研究所 | 航空遥感器的斜距离焦补偿方法、系统及终端设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002122778A (ja) * | 2000-10-19 | 2002-04-26 | Fuji Electric Co Ltd | 自動焦点調節装置および電子的撮像装置 |
JP2003143459A (ja) * | 2001-11-02 | 2003-05-16 | Canon Inc | 複眼撮像系およびこれを備えた装置 |
JP2007233034A (ja) * | 2006-03-01 | 2007-09-13 | Nikon Corp | 撮像装置 |
JP2008304808A (ja) | 2007-06-11 | 2008-12-18 | Nikon Corp | 焦点検出装置および撮像装置 |
JP2009069577A (ja) * | 2007-09-14 | 2009-04-02 | Canon Inc | 撮像装置 |
JP2010224165A (ja) * | 2009-03-23 | 2010-10-07 | Olympus Corp | 撮像装置 |
JP2013061582A (ja) * | 2011-09-15 | 2013-04-04 | Nikon Corp | 焦点調節装置および撮像装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006129677A1 (ja) * | 2005-05-30 | 2006-12-07 | Nikon Corporation | 結像状態検出装置 |
JP4788481B2 (ja) * | 2005-05-30 | 2011-10-05 | 株式会社ニコン | 結像状態検出装置、カメラ、及び受光ユニット |
JP4826152B2 (ja) * | 2005-06-23 | 2011-11-30 | 株式会社ニコン | 画像合成方法及び撮像装置 |
US7751700B2 (en) * | 2006-03-01 | 2010-07-06 | Nikon Corporation | Focus adjustment device, imaging device and focus adjustment method |
JP2009151154A (ja) * | 2007-12-21 | 2009-07-09 | Nikon Corp | 受光素子、焦点検出装置および撮像装置 |
JP5446311B2 (ja) * | 2009-02-20 | 2014-03-19 | 株式会社ニコン | 撮像装置 |
JP5195506B2 (ja) * | 2009-02-24 | 2013-05-08 | 株式会社ニコン | 撮像装置および画像合成方法 |
JP4766133B2 (ja) * | 2009-03-11 | 2011-09-07 | 株式会社ニコン | 撮像装置 |
WO2013161944A1 (ja) * | 2012-04-25 | 2013-10-31 | 株式会社ニコン | 焦点検出装置、焦点調節装置およびカメラ |
-
2014
- 2014-01-28 JP JP2014013483A patent/JP6476547B2/ja active Active
-
2015
- 2015-01-28 US US15/113,252 patent/US10404904B2/en active Active
- 2015-01-28 WO PCT/JP2015/052282 patent/WO2015115452A1/ja active Application Filing
- 2015-01-28 EP EP15743019.0A patent/EP3101461A4/en not_active Withdrawn
- 2015-01-28 CN CN201580016875.3A patent/CN106133577A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002122778A (ja) * | 2000-10-19 | 2002-04-26 | Fuji Electric Co Ltd | 自動焦点調節装置および電子的撮像装置 |
JP2003143459A (ja) * | 2001-11-02 | 2003-05-16 | Canon Inc | 複眼撮像系およびこれを備えた装置 |
JP2007233034A (ja) * | 2006-03-01 | 2007-09-13 | Nikon Corp | 撮像装置 |
JP2008304808A (ja) | 2007-06-11 | 2008-12-18 | Nikon Corp | 焦点検出装置および撮像装置 |
JP2009069577A (ja) * | 2007-09-14 | 2009-04-02 | Canon Inc | 撮像装置 |
JP2010224165A (ja) * | 2009-03-23 | 2010-10-07 | Olympus Corp | 撮像装置 |
JP2013061582A (ja) * | 2011-09-15 | 2013-04-04 | Nikon Corp | 焦点調節装置および撮像装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3101461A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017207695A (ja) * | 2016-05-20 | 2017-11-24 | 株式会社ニコン | 光学装置 |
Also Published As
Publication number | Publication date |
---|---|
US20170104918A1 (en) | 2017-04-13 |
JP2015141285A (ja) | 2015-08-03 |
EP3101461A1 (en) | 2016-12-07 |
EP3101461A4 (en) | 2018-04-04 |
JP6476547B2 (ja) | 2019-03-06 |
CN106133577A (zh) | 2016-11-16 |
US10404904B2 (en) | 2019-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6593396B2 (ja) | 検出装置および撮像装置 | |
JP5388544B2 (ja) | 撮像装置およびそのフォーカス制御方法 | |
JP5191168B2 (ja) | 焦点検出装置および撮像装置 | |
JP4963569B2 (ja) | 撮像システム及びレンズユニット | |
US9681037B2 (en) | Imaging apparatus and its control method and program | |
JP5618712B2 (ja) | 自動焦点調節装置および撮像装置 | |
WO2015115452A1 (ja) | 焦点検出装置、焦点調節装置およびカメラ | |
JP5402298B2 (ja) | 焦点検出装置、および、カメラ | |
JP5963552B2 (ja) | 撮像装置 | |
JP6271911B2 (ja) | 撮像装置及びその制御方法、デフォーカス量算出方法 | |
JP7292123B2 (ja) | 撮像装置及びその制御方法、プログラム、記憶媒体 | |
JP2011007996A (ja) | 焦点検出装置 | |
JP5338112B2 (ja) | 相関演算装置、焦点検出装置および撮像装置 | |
JP2013218082A (ja) | 撮像装置及びその制御方法 | |
JP2018045105A (ja) | 撮像装置及びその制御方法、情報処理装置、及び情報処理方法 | |
JP2017223879A (ja) | 焦点検出装置、フォーカス制御装置、撮像装置、焦点検出方法および焦点検出プログラム | |
JP6257201B2 (ja) | 焦点検出装置、その制御方法、および制御プログラム、並びに撮像装置 | |
JP2013222016A (ja) | 焦点検出装置および撮像装置 | |
JP6508267B2 (ja) | 交換レンズ | |
JP2014102298A (ja) | 撮像装置および撮像装置の制御プログラムならびに撮像装置の制御方法 | |
JP2016114721A (ja) | 撮像装置および撮像装置の制御方法 | |
JP2009258231A (ja) | 相関演算方法、相関演算装置、焦点検出装置および撮像装置 | |
JP5478751B2 (ja) | 光電変換素子 | |
JP2014235184A (ja) | 焦点検出装置、焦点調節装置、および撮像装置 | |
JP5464285B2 (ja) | 焦点検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15743019 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015743019 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015743019 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15113252 Country of ref document: US |