WO2015115213A1 - 非接触電圧計測装置 - Google Patents

非接触電圧計測装置 Download PDF

Info

Publication number
WO2015115213A1
WO2015115213A1 PCT/JP2015/051127 JP2015051127W WO2015115213A1 WO 2015115213 A1 WO2015115213 A1 WO 2015115213A1 JP 2015051127 W JP2015051127 W JP 2015051127W WO 2015115213 A1 WO2015115213 A1 WO 2015115213A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection probe
voltage
state
lead
tension
Prior art date
Application number
PCT/JP2015/051127
Other languages
English (en)
French (fr)
Inventor
真央 荻本
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US15/106,912 priority Critical patent/US9791475B2/en
Priority to KR1020167018250A priority patent/KR101780276B1/ko
Priority to CN201580003206.2A priority patent/CN105829897B/zh
Priority to EP15743271.7A priority patent/EP3101434B1/en
Publication of WO2015115213A1 publication Critical patent/WO2015115213A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • G01R15/06Voltage dividers having reactive components, e.g. capacitive transformer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/07Non contact-making probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/144Measuring arrangements for voltage not covered by other subgroups of G01R15/14
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices

Definitions

  • the present invention relates to a voltage measurement device, and more particularly to a non-contact voltage measurement device that measures a voltage applied to a lead without contacting the lead.
  • the non-contact voltage measuring device which measures the voltage (measurement object voltage) of alternating current which flows through the conducting wire covered with the insulation coating part, without contacting this conducting wire is known.
  • the voltage to be measured is measured as follows. First, a detection probe for detecting a voltage is brought close to the insulation coating of the conducting wire. When the insulation coating and the detection probe are in close proximity, a coupling capacitance is generated between the detection probe and the conducting wire. When an alternating current flows through the lead in a state where the coupling capacitance is generated between the detection probe and the lead, an induced voltage is generated in the detection probe. The voltage to be measured is derived using the voltage value of the induced voltage and the capacitance value of the coupling capacitance.
  • Patent Document 1 describes a non-contact voltage detection device including a detection probe covered with a flexible material. Since the detection probe has flexibility, the user can improve the adhesion between the electric wire and the detection probe and enlarge the contact area of the detection probe by winding the detection probe around the insulation coating of the electric wire. As a result, the coupling capacitance generated between the detection probe and the core wire in the electric wire is increased, and fluctuation (variation) of the coupling capacitance is suppressed. Therefore, the voltage to be measured is accurately measured using the coupling capacitance having a large absolute value and a small variation.
  • the present invention has been made in view of the above, and it is an object of the present invention to wrap a detection probe around an insulation coated wire without manual work to increase the coupling capacity generated between the detection probe and the wire. It is an object of the present invention to provide a non-contact voltage measuring device capable of accurately measuring a voltage to be measured applied to a lead.
  • the non-contact voltage measurement device concerning one mode of the present invention is provided with a detection probe which detects voltage in the state where it was wound around a lead, and between the above-mentioned detection probe and the above-mentioned lead Contactless voltage for measuring the voltage to be measured applied to the lead based on the induced voltage generated in the detection probe when the detection probe is brought close to the lead without contact so that the coupling capacitance is generated
  • the detection probe is in a first state extending in the longitudinal direction of the detection probe against a tension acting on the detection probe, and a second state wound in the direction in which the tension acts. It elastically deforms between.
  • the detection probe elastically deforms between the second state wound in the direction in which the tension acts and the first state stretched against the tension. Therefore, when the detection probe is elastically deformed from the first state to the second state in a state in which the detection probe contacts the lead in a direction in which the circumferential direction of the lead and the direction in which the tension acts are parallel, the tension works. By winding in the direction, wrap around the lead.
  • the manual operation of winding the detection probe around the lead is unnecessary to generate the coupling capacity between the detection probe and the lead. Therefore, the time and effort for this manual operation can be reduced. Furthermore, since the user does not touch the lead when attaching the contactless voltage detection device to the lead, the contactless voltage detection device can be safely attached to the lead without the possibility of an electric shock.
  • the detection probe is wound around the lead wire, the coupling capacitance generated between the detection probe and the lead wire is increased, so that the voltage to be measured applied to the lead wire can be measured more accurately.
  • the voltage to be measured applied to the lead is insulated by manually winding the detection probe around the lead, thereby increasing the coupling capacity generated between the detection probe and the lead. It can be measured accurately.
  • FIG. 1 It is a top view which shows roughly the external appearance of the non-contact voltage measurement sensor which concerns on one Embodiment of this invention, and is a figure which shows the detection probe of the curved state. It is a perspective view showing roughly the appearance of the non-contact voltage measurement sensor concerning one embodiment of the present invention. It is a figure which shows roughly the structure of the non-contact voltage measurement sensor which concerns on one Embodiment of this invention, and is a figure which shows the electric circuit with which this sensor was equipped. It is a figure which shows typically the copper leaf
  • 10 is another view showing the relationship between the coupling capacitance and the voltage to be measured, and a graph showing the relationship between the capacitance value of the coupling capacitance and the second derivative of the absolute value of the voltage to be measured. It is another top view which shows the external appearance of the non-contact voltage measurement sensor which concerns on one Embodiment of this invention, and is a figure which shows the detection probe of the state by which the curvature was eliminated. It is a figure which shows the example which the detection probe of the non-contact voltage measurement sensor which concerns on one Embodiment of this invention wraps around measurement object wiring.
  • FIG. 1 is a plan view schematically showing the appearance of the non-contact voltage measurement sensor 1.
  • FIG. 2 is a perspective view schematically showing the appearance of the non-contact voltage measurement sensor 1.
  • FIG. 3 is a figure which shows roughly the structure of the non-contact voltage measurement sensor 1, and is a figure which shows the electric circuit EC with which the non-contact voltage measurement sensor 1 was equipped.
  • the non-contact voltage measurement sensor 1 is abbreviated as a voltage sensor 1.
  • the voltage sensor 1 measures an alternating current voltage V L (measurement target voltage) of the angular frequency ⁇ flowing through the core wire (conductor wire) in the measurement target wire w shown in FIG. 3 without contacting the core wire.
  • V L alternating current voltage
  • the measurement target wire w is coated with insulation, and the core of the measurement target wire w is covered with an insulating material.
  • the voltage sensor 1 includes a detection probe 11 and a circuit board 15.
  • the detection probe 11 and the circuit board 15 are electrically connected by a connection line SL.
  • the detection probe 11 is disposed on the back surface of the substrate 16.
  • the circuit board 15 is disposed on the surface of the same board 16.
  • the substrate 16 is made of a flexible insulating member.
  • connection lines SL and the circuit board 15 are laminated with a sheet of polyimide so as not to be exposed (not shown).
  • the surface of the voltage sensor 1 is rectangular.
  • the length of the short side (side extending in the vertical direction in FIG. 1) of the surface of the voltage sensor 1 is, for example, 10 mm to 20 mm. Although it is desirable that the actual length of the long side (side extending in the horizontal direction in FIG. 1) compared to the short side of the voltage sensor 1 be longer than the outer circumference of the measurement target wire w, Absent.
  • the detection probe 11 and the portion of the substrate 16 on which the detection probe 11 is disposed are curved in a concave shape in a cross section orthogonal to the long side of the surface of the voltage sensor 1.
  • the curve (groove) of the detection probe 11 is indicated by a symbol c.
  • the electric circuit EC includes capacitors C 1 and C 2 , a detection resistor R, a changeover switch 13, and an operational amplifier 14.
  • the detection probe 11 and the electric circuit EC are surrounded by the electric field shield 12.
  • the capacitance values of capacitors C 1 and C 2 are both known (47 pF, 470 pF, respectively).
  • the detection probe 11 is composed of a plate-like spring (copper plate spring) made of copper.
  • tension T is in the direction (direction indicated by the arrow) inclined with respect to the longitudinal direction (lateral direction in FIG. 1) of the detection probe 11. is working.
  • the detection probe 11 has a characteristic of being elastically deformed into a shape wound in a direction in which the tension T acts, by the tension T of the leaf spring.
  • the portion of the substrate 16 on which the detection probe 11 is disposed is also deformed together with the detection probe 11.
  • the detection probe 11 can be in two different states.
  • the detection probe 11 In the first state of the detection probe 11, as shown by a solid line in FIG. 2, the detection probe 11 has a curve c, and is in a state of being curved in the shape of a ridge.
  • the curvature c acts to suppress the winding of the detection probe 11 by increasing the second moment of area of the detection probe 11 in a cross section perpendicular to the longitudinal direction of the detection probe 11. Therefore, when in the first state, the detection probe 11 holds the state of extending in the longitudinal direction.
  • the second state of the detection probe 11 is a state in which the curve c is eliminated and wound in the direction of the tension T, as shown by a broken line in FIG.
  • the external force applied to the detection probe 11 may be a force applied by the user, or may be a reaction force received from the wire w when the detection probe 11 contacts the measurement target wire w.
  • the detection probe 11 is wound by the tension T in the direction in which the tension T acts.
  • the detection probe 11 shifts from the first state having the curvature c to the second state in which the curvature c is eliminated and wound in the direction of the tension T.
  • the curve c eliminated state in addition to the state in which the curve c is completely eliminated, the curve c is partially to the extent that the detection probe 11 can be wound by the tension T. It also includes the state that has been resolved.
  • the detection probe 11 transitions from the first state to the second state while in contact with the outer surface of the measurement target wire w, the detection probe 11 is wound around the measurement target wire w.
  • the detection probe 11 spirally wraps around the measurement target wire w (see FIG. 7).
  • the detection probe 11 wraps around the measurement target wire w in a ring shape.
  • a coupling capacitance C L (see FIG. 3) is generated between the detection probe 11 and the measurement target wire w.
  • the alternating voltage V L flowing through the core wire in the measurement target wire w causes electrostatic induction in the charge in the detection probe 11.
  • the detection probe 11 the voltage Vin (induced voltage) that depends on the voltage V L and the coupling capacitance C L is generated.
  • the voltage Vin is input to the electric circuit EC through the connection line SL.
  • the detection probe 11 in the second state can return to the first state by applying a pulling force from both ends so as to cancel the winding.
  • the detection probe 11 is configured to expand and contract by the pressure of air instead of the configuration that expands and contracts depending on the presence or absence of the curvature c (that is, it deforms between the first state and the second state). Good. In this configuration, the detection probe 11 holds the first state in which the detection probe 11 is stretched in the longitudinal direction by increasing the pressure of air in the detection probe 11 like a toy called “blowing back”. , By reducing the pressure of the air, to a second state.
  • the manufacturing method of the detection probe 11 is demonstrated. First, the user prepares a copper plate spring (copper plate spring) as a material of the detection probe 11.
  • FIG. 4 schematically shows a copper leaf spring CP having a tension T acting in the vertical direction of the surface.
  • the copper leaf spring CP has a characteristic of being wound in the direction of the tension T.
  • the original (natural) shape of the copper plate spring CP is a shape wound in the direction of the tension T.
  • the user cuts out a rectangular leaf spring FS having a long side not parallel to the direction of the tension T from the copper leaf spring CP.
  • the leaf spring FS is curved to be in the shape of a longitudinally extending wedge.
  • the detection probe 11 shown in FIGS. 1 and 2 is completed.
  • the detection probe 11 may be covered with an insulating member so that the voltage sensor 1 can measure the voltage V L of the portion where the core wire of the measurement target wire w is exposed.
  • the user can bring the detection probe 11 close to the core wire in a non-contact manner by bringing the insulating member covering the detection probe 11 into contact with the exposed core wire.
  • at least the electrodes of the detection probe 11 may be configured by a plate spring.
  • a stainless steel plate spring can be used as the material of the detection probe 11.
  • the stainless steel plate spring has a characteristic that the force to return to the original shape is stronger than a copper plate spring.
  • the detection probe 11 may not be plate-like, and a rod-like or wire-like detection probe is also included in the scope of the present invention.
  • the electric field shield 12 capacitively couples the detection probe 11 or the electric circuit EC with a voltage source other than the core wire of the measurement target wire w by blocking the electric field incident from the outside on the detection probe 11 or the electric circuit EC. To prevent. Although the electric field shield 12 covers only a part of the electric circuit EC in FIG. 3, the electric field shield 12 may cover the entire electric circuit EC.
  • a parasitic capacitance Cp is generated between the detection probe 11 and the electric field shield 12.
  • the electrostatic capacitance value of the parasitic capacitance Cp is determined by the positional relationship between the detection probe 11 and the electric field shield 12.
  • the parasitic capacitance Cp becomes a known value by being determined by calibration after the position of the detection probe 11 and the position of the electric field shield 12 are determined.
  • the changeover switch 13 includes (i) a state in which the electric circuit EC is (i) a capacitor C 1 connected in series between the coupling capacitance C L and the detection resistor R, (ii) a capacitor C 1 and a capacitor C 2 And (ii) connected in series between the coupling capacitance C L and the detection resistance R.
  • the voltage Vin input to the electric circuit EC includes a detection resistor R, is divided between the capacitor C 1.
  • the voltage V L is divided between the detection resistor R and the capacitors C 1 and C 2 .
  • Voltage Vout (Vout1 and Vout2 respectively) is detected at detection point DP set in electric circuit EC for each of electric circuit EC in (i) state and (ii) state. Ru. This yields two equations that include the coupling capacitance C L and the voltage V L as unknowns.
  • the detection point DP is set between the capacitors C 1 and C 2 and the detection resistor R. Therefore, the detection point DP is at the same potential as the opposite side of the detection resistor R across the reference potential point (GND). Hence, the voltage Vout is equal to the voltage division of the detection resistor R.
  • the coupling capacitance C L and the voltage V L are derived by modifying the above two equations so as to separate the coupling capacitance C L and the voltage V L. Since the derivation method is well known, detailed description of the derivation method is omitted here.
  • the voltage V L is expressed by the following equation.
  • the current output to the AD converter (AD + in FIG. 3) is I 1 , the voltage is Vout1, and the electric circuit EC is in the (ii) state.
  • the current output to the converter is I 2 and the voltage is Vout 2 .
  • the capacitance value of the capacitor C 2 was sufficiently larger than the capacitance value of the capacitor C 1 (C 1 ⁇ C 2 ).
  • the operational amplifier 14 maintains the state in which the potential of the detection point DP and the potential of the electric field shield 12 are equal. Therefore, almost no leakage current flows in the parasitic capacitance Cp (electrostatic capacitance value: about 5 pF) generated between the detection point DP and the electric field shield 12. In other words, the operational amplifier 14 cuts the leakage current flowing through the parasitic capacitance Cp to a negligible level. As a result, the influence of the leakage current flowing through the parasitic capacitance Cp on the measured value of the voltage V L is suppressed.
  • FIG. 6 shows the detection probe 11 in a state in which the curvature c is eliminated and it is stretched in the longitudinal direction.
  • the user brings the detection probe 11 close to the measurement target wire w while pressing a part of the detection probe 11.
  • the user sets the length direction of the measurement target wire w and the longitudinal direction of the detection probe 11 so that the direction of the tension T acting on the detection probe 11 and the circumferential direction of the measurement target wire w become parallel.
  • the detection probe 11 is brought close to the wiring w to be measured.
  • FIG. 7 shows an example in which the detection probe 11 is spirally wound around the measurement target wire w.
  • the detection probe 11 can be wound around the wire w regardless of the diameter of the measurement wire w.
  • the coupling capacitance C L is expressed by the following equation.
  • the radius of the core wire (cylindrical shape) in the measurement target wire w is a
  • the thickness of the insulating coating is b
  • the length of the short side (see FIG. 6) of the detection probe 11 is L
  • vacuum Of the dielectric constant is ⁇ 0 .
  • the coupling capacitance C L generated between the core wire in the wiring w and the detection probe 11 increases as the number m of times the detection probe 11 is wound around the measurement target wiring w increases.
  • the absolute value of the coupling capacitance C L is four times. As described above, the larger the absolute value of the coupling capacitance C L , the smaller the error of the voltage V L.
  • the larger the coupling capacitance C L the larger the voltage Vout.
  • the larger the voltage Vout the smaller the proportion of the error in the detected value of the voltage Vout. Therefore, the large voltage Vout has a smaller fluctuation and a higher reliability. Therefore, the voltage V L can be derived with high accuracy using the large voltage Vout.
  • a non-contact voltage measurement device includes a detection probe that detects a voltage in a state of being wound around a lead, and a coupling capacitance is generated between the detection probe and the lead.
  • the detection probe In the noncontact voltage measuring device for measuring a voltage to be measured applied to the lead wire based on an induced voltage generated in the detection probe when the detection probe is brought close to the lead wire in a noncontact manner, the detection probe is In contrast to the tension acting on the detection probe, it elastically deforms between a first state extending in the longitudinal direction of the detection probe and a second state wound in the direction in which the tension acts.
  • the detection probe elastically deforms between the second state wound in the direction in which the tension acts and the first state stretched against the tension. Therefore, when the detection probe is elastically deformed from the first state to the second state in a state in which the detection probe contacts the lead in a direction in which the circumferential direction of the lead and the direction in which the tension acts are parallel, the tension works. By winding in the direction, wrap around the lead.
  • the manual operation of winding the detection probe around the lead is unnecessary to generate the coupling capacity between the detection probe and the lead. Therefore, the time and effort for this manual operation can be reduced. Furthermore, since the user does not touch the lead when attaching the contactless voltage detection device to the lead, the contactless voltage detection device can be safely attached to the lead without the possibility of an electric shock.
  • the detection probe is wound around the lead wire, the coupling capacitance generated between the detection probe and the lead wire is increased, so that the voltage to be measured applied to the lead wire can be measured more accurately.
  • the detection probe is formed of a plate spring, and in the first state, when an external force is applied, the plate spring is wound in the direction in which the tension acts.
  • the second state may be changed by turning.
  • the detection probe in the first state stretched against the tension changes to the second state by winding in a direction in which the tension of the leaf spring acts when an external force is applied. . Therefore, the detection probe is wound in a direction in which tension acts when an external force is applied in a state in which the detection probe contacts the conductor in a direction in which the circumferential direction of the conductor and the direction in which the tension acts are parallel. Wrap around the wire.
  • the detection probe wraps in a ring around the wire. Also, if the direction in which the leaf spring tension acts is oblique to the longitudinal direction of the detection probe, the detection probe spirally wraps around the conducting wire.
  • the manual operation of winding the detection probe around the lead is unnecessary. Therefore, the time and effort for this manual operation can be reduced. Furthermore, since the user does not touch the lead when attaching the contactless voltage detection device to the lead, the contactless voltage detection device can be safely attached to the lead without the possibility of an electric shock.
  • the direction in which the tension acts may be inclined with respect to the longitudinal direction of the detection probe.
  • the longitudinal direction of the detection probe when the circumferential direction of the conducting wire is parallel to the direction in which the tension acts, the longitudinal direction of the detection probe is not parallel to the circumferential direction and the longitudinal direction of the conducting wire.
  • the detection probe spirals around the lead due to the tension of the leaf spring. Wrap around.
  • the detection probe can be wound one or more turns in a spiral around the conducting wire. As the number of times the detection probe spirals around the lead increases, the binding capacity generated between the detection probe and the lead can be increased. As a result, the voltage to be measured can be determined with high accuracy.
  • the detection probe may have a curved shape of a ridge that extends in the longitudinal direction of the detection probe when in the first state.
  • the detection probe in the first state since the detection probe in the first state has a curve in the shape of a ridge extending in the longitudinal direction, the second moment of area in the cross section perpendicular to the extending direction of the curve is large. Therefore, the detection probe in the first state is difficult to wind in the longitudinal direction. Therefore, the detection probe can be maintained in the longitudinally stretched state.
  • the detection probe in the first state When an external force is applied to the detection probe in the first state, specifically, when the user presses a part of the detection probe, the curvature of the detection probe is eliminated. Then, as described above, the detection probe is deformed to the second state by the tension of the leaf spring and wound around the conducting wire.
  • the present invention can be used for a non-contact voltage measurement device that measures the voltage applied to a lead without contacting the lead.
  • Non-contact voltage measurement sensor (non-contact voltage measurement device) 11 Detection probe w Measurement target wiring (core wire; lead wire) Vin voltage (induced voltage) V L voltage (voltage to be measured) C L coupling capacity T tension

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

 非接触電圧計測センサ(1)において、検出プローブ(11)は、板バネで構成されており、外力が印加されることによって、上記板バネの張力が働く方向に巻回するように変形する。

Description

非接触電圧計測装置
 本発明は、電圧計測装置に関し、特に、導線に印加されている電圧を、該導線に接触せずに計測する非接触電圧計測装置に関する。
 従来、絶縁被覆部で被覆された導線を流れる交流の電圧(計測対象電圧)を、該導線に接触することなく計測する非接触電圧計測装置が知られている。
 非接触電圧計測装置では、以下のようにして、計測対象電圧が計測される。まず、導線の絶縁被覆部に対して、電圧を検出するための検出プローブが近付けられる。絶縁被覆部と検出プローブとが近接したとき、検出プローブと導線との間で結合容量が発生する。検出プローブと導線との間で結合容量が発生した状態で、導線を交流が流れると、検出プローブに誘起電圧が発生する。この誘起電圧の電圧値と、結合容量の静電容量値とを用いて、計測対象電圧が導出される。
 非接触電圧計測装置の一例として、特許文献1には、可撓性を有する素材で覆われた検出プローブを備えた非接触電圧検出装置が記載されている。検出プローブが可撓性を有するので、ユーザは、検出プローブを電線の絶縁被覆部に巻き付けることにより、電線と検出プローブとの密着性を向上させるとともに、それらの接触面積を拡大することができる。これにより、検出プローブと電線内の芯線との間で発生する結合容量が大きくなり、また結合容量の変動(ばらつき)が抑制される。従って、絶対値が大きくかつ変動が小さい結合容量を用いて、計測対象電圧が正確に計測される。
日本国公開特許公報「特開2012-163394号公報(2012年8月30日公開)」
 しかしながら、特許文献1に記載の非接触電圧検出装置では、ユーザは、検出プローブの位置や形状を調節しながら、検出プローブを絶縁被覆の周りに巻き付けるという手作業を行う必要がある。この手作業は、手間および時間がかかるという問題がある。また、ユーザが、非接触電圧検出装置の電圧計を電線ケーブルに取り付ける際、該ケーブルに触れることによって、感電する可能性があるという問題もある。
 本発明は上記に鑑みてなされたものであり、その目的は、絶縁被覆された導線に、検出プローブを手作業なしで巻き付けて、検出プローブと導線との間で発生する結合容量を増大させることにより、導線に印加される計測対象電圧を正確に計測することができる非接触電圧計測装置を提供することにある。
 上記の課題を解決するために、本発明の一態様に係る非接触電圧計測装置は、導線に巻き付けられた状態で電圧を検出する検出プローブを備えており、上記検出プローブと上記導線との間に結合容量が発生するように、上記検出プローブを上記導線に非接触で近接させたとき、上記検出プローブに生じる誘起電圧に基づいて、上記導線に印加される計測対象電圧を計測する非接触電圧計測装置において、上記検出プローブは、該検出プローブに働く張力に反して、該検出プローブの長手方向に延伸している第1の状態と、上記張力が働く方向に巻回している第2の状態との間で弾性変形する。
 上記の構成によれば、検出プローブは、張力が働く方向に巻回している第2の状態と、上記張力に反して延伸している第1の状態との間で弾性変形する。そのため、検出プローブは、導線の周方向と、張力の働く方向とが平行になるような向きで導線に接触した状態で、第1の状態から第2の状態に弾性変形した場合、張力が働く方向に巻回することによって、導線の周りに巻き付く。
 そのため、検出プローブと導線との間に結合容量を発生させるために、検出プローブを導線の周りに巻き付ける手作業が不要である。従って、この手作業に掛かる時間および手間を削減することができる。さらに、ユーザは、非接触電圧検出装置を導線に取り付ける際、該導線に触れないので、感電する可能性なしに、非接触電圧検出装置を導線に安全に取り付けることができる。
 さらに、検出プローブが導線の周りに巻き付くことによって、検出プローブと導線との間で発生する結合容量が増大するので、導線に印加される計測対象電圧をより精度よく計測することができる。
 本発明によれば、絶縁被覆された導線に、検出プローブを手作業なしで巻き付けて、検出プローブと導線との間で発生する結合容量を増大させることにより、導線に印加される計測対象電圧を正確に計測することができる。
本発明の一実施形態に係る非接触電圧計測センサの外観を概略的に示す平面図であり、湾曲した状態の検出プローブを示す図である。 本発明の一実施形態に係る非接触電圧計測センサの外観を概略的に示す斜視図である。 本発明の一実施形態に係る非接触電圧計測センサの構成を概略的に示す図であり、該センサが備えた電気回路を示す図である。 面の上下方向に働く張力を有する銅板バネを模式的に示す図である。 結合容量と計測対象電圧との関係を示す他の図であり、結合容量の静電容量値と、計測対象電圧の絶対値の2回微分との関係を表すグラフを示す図である。 本発明の一実施形態に係る非接触電圧計測センサの外観を示す他の平面図であり、湾曲が解消された状態の検出プローブを示す図である。 本発明の一実施形態に係る非接触電圧計測センサの検出プローブが計測対象配線の周りに巻き付いている例を示す図である。
 以下、本発明の実施の形態について、図1~図7を用いて、詳細に説明する。
 (非接触電圧計測センサ1の構成)
 図1~図3を用いて、非接触電圧計測センサ1(非接触電圧計測装置)の構成を説明する。図1は、非接触電圧計測センサ1の外観を概略的に示す平面図である。図2は、非接触電圧計測センサ1の外観を概略的に示す斜視図である。また、図3は、非接触電圧計測センサ1の構成を概略的に示す図であり、非接触電圧計測センサ1が備えた電気回路ECを示す図である。以下では、非接触電圧計測センサ1を電圧センサ1と略称する。
 電圧センサ1は、図3に示す計測対象配線w内の芯線(導線)を流れる角周波数ωの交流の電圧V(計測対象電圧)を、該芯線に接触せずに計測する。図示しないが、計測対象配線wは絶縁被覆されており、計測対象配線wの芯線の周りは、絶縁性物質で覆われている。
 図1に示すように、電圧センサ1は、検出プローブ11および回路基板15を備えている。検出プローブ11と回路基板15とは、接続線SLによって電気的に接続されている。検出プローブ11は、基板16の裏面上に配置されている。一方、回路基板15は、同じ基板16の表面上に配置されている。基板16は、可撓性のある絶縁部材で構成されている。
 回路基板15内には、電気回路ECが形成されている。接続線SLおよび回路基板15は、剥き出しにならないように、ポリイミドのシートでラミネートされている(図示せず)。
 図1に示すように、電圧センサ1の表面は矩形である。電圧センサ1の表面の短辺(図1における縦方向に延びる辺)の長さは、例えば10mm~20mmである。なお、電圧センサ1の短辺と比較した長辺(図1における横方向に延びる辺)の実際の長さは、計測対象配線wの外周よりも長いことが望ましいが、特に限定されるものではない。
 図2に示すように、検出プローブ11、および検出プローブ11が配置された基板16の部分は、電圧センサ1の表面の長辺に直交する断面において、凹の形状に湾曲している。図1および図2において、検出プローブ11の湾曲(溝)を符号cで示す。
 図3に示すように、電気回路ECは、コンデンサCおよびC、検出抵抗R、切り替えスイッチ13、およびオペアンプ14を含んでいる。検出プローブ11および電気回路ECは、電界シールド12によって周囲を覆われている。コンデンサCおよびCの静電容量値はどちらも既知(それぞれ、47pF、470pF)である。
 (1.検出プローブ11)
 検出プローブ11は、銅を材料とする板状のバネ(銅板バネ)で構成されている。
 図3に示すように、検出プローブ11が、計測対象配線wの芯線を覆う絶縁性物質に接触しているか、あるいは十分に近接しているとき、検出プローブ11と該芯線との間には、未知の静電容量値を有する結合容量Cが生じる。
 図1に示すように、検出プローブ11を構成する板バネの表面には、検出プローブ11の長手方向(図1における横方向)に対して傾斜した方向(矢印が示す方向)に、張力Tが働いている。
 図2に示すように、検出プローブ11は、板バネの張力Tによって、張力Tが働く方向に巻回した形状に弾性変形しようとする特性を有する。検出プローブ11が変形するとき、検出プローブ11が配置された基板16の部分も、検出プローブ11とともに変形する。
 検出プローブ11は、形状が異なる2通りの状態をとることができる。検出プローブ11の第1の状態は、図2に実線で示すように、検出プローブ11が湾曲cを有しており、樋の形状に湾曲した状態である。湾曲cは、検出プローブ11の長手方向に対して垂直な断面における検出プローブ11の断面二次モーメントを大きくすることによって、検出プローブ11が巻回することを抑制するように働く。そのため、検出プローブ11は、第1の状態であるとき、長手方向に延伸した状態を保持する。
 検出プローブ11の第2の状態は、図2に破線で示すように、湾曲cが解消して、張力Tの方向に巻回した状態である。電圧センサ1の表面側または裏面側から、第1の状態である検出プローブ11に対して外力が印加されたとき、湾曲cは解消する。なお、検出プローブ11に印加される外力は、ユーザが印加する力であってもよいし、検出プローブ11が計測対象配線wと接触したときに該配線wから受ける抗力であってもよい。湾曲cが解消したとき、検出プローブ11は、張力Tによって、張力Tが働く方向に巻回する。
 このようにして、検出プローブ11は、湾曲cを有する第1の状態から、湾曲cが解消し、張力Tの方向に巻回した第2の状態に移行する。
 ここで、「湾曲cが解消された」状態には、湾曲cが完全に解消された状態の他に、検出プローブ11が、張力Tによって巻回することができる程度に、湾曲cが部分的に解消された状態も含まれる。
 検出プローブ11は、計測対象配線wの外面と接触しながら、第1の状態から第2の状態に移行した場合、計測対象配線wに巻き付くように巻回する。例えば、図1に示すように、張力Tの働く方向が、検出プローブ11の長手方向に非平行である場合、検出プローブ11は、計測対象配線wに対して螺旋状に巻き付く(図7参照)。また、張力Tの働く方向が、検出プローブ11の長手方向に平行である場合、検出プローブ11は、計測対象配線wに対してリング状に巻き付く。
 検出プローブ11が計測対象配線wの周りに巻き付いたとき、検出プローブ11と計測対象配線wとの間で、結合容量C(図3参照)が発生する。このとき、計測対象配線w内の芯線を流れる交流の電圧Vは、検出プローブ11内の電荷に静電誘導を引き起こす。これにより、検出プローブ11には、電圧Vおよび結合容量Cに依存する電圧Vin(誘起電圧)が発生する。電圧Vinは、接続線SLを通じて、電気回路ECに入力される。
 なお、第2の状態にある検出プローブ11は、巻回を解消するように、両側端から引っ張る力を印加されることによって、第1の状態に戻ることができる。
 なお、検出プローブ11は、湾曲cの有無によって伸縮する(すなわち、第1の状態と第2の状態との間で変形する)構成の代わりに、空気の圧力によって伸縮する構成を備えていてもよい。この構成では、検出プローブ11は、「吹き戻し」と呼ばれる玩具のように、検出プローブ11内の空気の圧力を増大させることによって、検出プローブ11が長手方向に延伸した第1の状態を保持し、空気の圧力を減少させることによって、第2の状態に変形する。
 以下に、検出プローブ11の作製方法を説明する。はじめに、ユーザは、検出プローブ11の材料として、銅製の板バネ(銅板バネ)を準備する。
 図4に、表面の上下方向に働く張力Tを有する銅板バネCPを模式的に示す。銅板バネCPは、張力Tの方向に巻回しようとする特性を有する。言い換えれば、銅板バネCPの元の(自然な)形状は、張力Tの方向に巻回した形状である。ユーザは、図4に示すように、銅板バネCPから、張力Tの方向に非平行な長辺を有する矩形の板バネFSを切り出す。次に、板バネFSを、長手方向に延伸する樋の形状になるように湾曲させる。これで、図1および図2に示す検出プローブ11が完成する。
 なお、電圧センサ1が、計測対象配線wの芯線が露出した部分の電圧Vを計測することができるように、検出プローブ11は、絶縁部材で被覆されていてもよい。この構成では、ユーザは、検出プローブ11を被覆する絶縁部材を、露出した芯線に接触させることによって、検出プローブ11を芯線に非接触で近接させることができる。この構成では、少なくとも、検出プローブ11の電極が板バネで構成されていればよい。
 また、検出プローブ11の材料として、銅製の板バネの代わりにステンレス製の板バネを用いることもできる。ステンレス製の板バネは、銅製の板バネと比較して、元の形状に戻ろうとする力が強いという特性を有する。
 なお、検出プローブ11は板状でなくてもよく、棒状または針金状の検出プローブも本発明の範囲に含まれる。
 (2.電界シールド12)
 電界シールド12は、検出プローブ11または電気回路ECに外界から入射する電界を遮断することによって、検出プローブ11または電気回路ECと、計測対象配線wの芯線以外の電圧源とが容量結合することを防止する。なお、電界シールド12は、図3では電気回路ECの一部のみを覆っているが、電気回路EC全体を覆っていてもよい。
 図3に示すように、検出プローブ11と電界シールド12との間には、寄生容量Cpが生じる。寄生容量Cpの静電容量値は、検出プローブ11と電界シールド12との位置関係により定まる。寄生容量Cpは、検出プローブ11の位置および電界シールド12の位置が確定された後、キャリブレーションにより求められることで、既知の値になる。
 (3.切り替えスイッチ13)
 切り替えスイッチ13は、電気回路ECを、(i)コンデンサCが、結合容量Cと検出抵抗Rとの間に直列接続した(i)状態と、(ii)コンデンサCおよびコンデンサCが、結合容量Cと検出抵抗Rとの間に直列接続した(ii)状態と、の間で切り替える。
 電気回路ECが(i)状態であるとき、検出プローブ11と検出抵抗Rとの間のインピーダンスは、1/jωCである。一方、電気回路ECが(ii)状態であるとき、検出プローブ11と検出抵抗Rとの間のインピーダンスは、1/jωC´である。ここで、C´=C+Cである。
 電気回路ECが(i)状態であるとき、電気回路ECに入力される電圧Vinは、検出抵抗Rと、コンデンサCとの間で分圧される。一方、電気回路ECが(ii)状態であるとき、電圧Vは、検出抵抗Rと、コンデンサCおよびCとの間で分圧される。
 電気回路ECが(i)状態であるときと、(ii)状態であるときとの各々について、電気回路EC内に設定された検出点DPにおいて、電圧Vout(それぞれ、Vout1、Vout2)が検出される。これにより、結合容量Cおよび電圧Vを未知数として含む2つの式が得られる。
 なお、本実施形態では、検出点DPは、コンデンサCおよびCと、検出抵抗Rとの間に設定されている。従って、検出点DPは、基準電位点(GND)を挟んで、検出抵抗Rの反対側と同電位である。ゆえに、電圧Voutは、検出抵抗Rの分圧に等しい。
 結合容量Cおよび電圧Vは、上記2つの式を、結合容量Cおよび電圧Vを分離するように式変形することによって導出される。その導出方法は周知であるので、ここでは、その導出方法の詳細な説明を省略する。
 (補足)
 結合容量Cの絶対値が大きいほど、電圧Vの誤差は小さくなる。ここでは、その根拠を理論的に説明する。
 図3に示す電気回路ECにおいて、電圧Vは以下の数式で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、電気回路ECが(i)状態であるときにADコンバータ(図3のAD+)に出力される電流をI、電圧をVout1とし、電気回路ECが(ii)状態であるときにADコンバータに出力される電流をI、電圧をVout2とした。また、コンデンサCの静電容量値は、コンデンサCの静電容量値よりも十分大きい(C<<C)とした。
 式(2)を式(1)に代入すると、
Figure JPOXMLDOC01-appb-M000002
 ゆえに、
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 ゆえに、
Figure JPOXMLDOC01-appb-M000006
 従って、
Figure JPOXMLDOC01-appb-M000007
 図5に、電圧Vの絶対値の2回微分d|V/dCと、結合容量Cとの関係をグラフに示す。同図に示すグラフから、結合容量Cの静電容量値が大きいほど、d|VL|/dCLの変動が小さいことが分かる。このことから、結合容量Cの静電容量値が大きいほど、Vの計測値の変動および誤差が小さいことが、理論的に導かれる。
 (4.オペアンプ14)
 オペアンプ14は、検出点DPの電位と電界シールド12の電位とが等しい状態を維持する。そのため、検出点DPと電界シールド12との間に発生する寄生容量Cp(静電容量値;5pF程度)には、漏れ電流がほとんど流れない。言い換えれば、オペアンプ14は、寄生容量Cpを流れる漏れ電流を、無視できる程度の大きさにまでカットする。これにより、寄生容量Cpを流れる漏れ電流が電圧Vの計測値に与える影響が抑制される。
 (非接触電圧計測センサ1による電圧計測方法)
 以下に、電圧センサ1による電圧計測方法を説明する。
 まず、ユーザは、検出プローブ11の一部を押すことによって湾曲cを解消させる。そして、ユーザは、検出プローブ11が巻回せず、長手方向に延伸した状態を維持するように、検出プローブ11の両側端を保持する。図6に、湾曲cが解消し、長手方向に延伸した状態の検出プローブ11を示す。
 次に、ユーザは、検出プローブ11の一部を押したまま、検出プローブ11を計測対象配線wに近づける。このとき、ユーザは、検出プローブ11に働く張力Tの方向と、計測対象配線wの周方向とが平行になるように、計測対象配線wの長さ方向と、検出プローブ11の長手方向とを交差させた状態で、検出プローブ11を計測対象配線wに近づける。
 検出プローブ11が計測対象配線wに対して十分に近づいたとき、ユーザは、検出プローブ11から手を離す。すると、検出プローブ11は、張力Tが働く方向に巻回することによって、自動的に、計測対象配線wの周りに螺旋状に巻き付く。図7に、検出プローブ11が計測対象配線wの周りに螺旋状に巻き付いている例を示す。
 なお、検出プローブ11は、計測対象配線wの直径の大きさによらず、その配線wに巻き付くことが可能である。
 検出プローブ11が計測対象配線wの周りにn回巻き付いている場合、結合容量Cは、以下の式で表記される。
Figure JPOXMLDOC01-appb-M000008
 ここで、計測対象配線w内の芯線(円筒形)の半径をa、絶縁被覆(中空円筒形)の厚さをb、検出プローブ11の短辺(図6参照)の長さをL、真空の誘電率をεとした。
 上記の数式から分かるように、検出プローブ11が計測対象配線wに巻き付いた回数mが多いほど、配線w内の芯線と検出プローブ11との間に発生する結合容量Cは大きくなる。例えば、検出プローブ11が計測対象配線wの周りに2回巻き付いている構成では、1/2回巻き付いている構成と比較して、結合容量Cの絶対値は4倍になる。前述したように、結合容量Cの絶対値が大きいほど、電圧Vの誤差は小さくなる。
 また、結合容量Cが大きいほど、電圧Voutも大きくなる。電圧Voutが大きいほど、電圧Voutの検出値に占める誤差の割合が小さいので、大きな電圧Voutは、変動が小さく、かつ信頼性が高い。そのため、大きな電圧Voutを用いて、電圧Vを高精度で導出することができる。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。
 〔まとめ〕
 本発明の一態様に係る非接触電圧計測装置は、導線に巻き付けられた状態で電圧を検出する検出プローブを備えており、上記検出プローブと上記導線との間に結合容量が発生するように、上記検出プローブを上記導線に非接触で近接させたとき、上記検出プローブに生じる誘起電圧に基づいて、上記導線に印加される計測対象電圧を計測する非接触電圧計測装置において、上記検出プローブは、該検出プローブに働く張力に反して、該検出プローブの長手方向に延伸している第1の状態と、上記張力が働く方向に巻回している第2の状態との間で弾性変形する。
 上記の構成によれば、検出プローブは、張力が働く方向に巻回している第2の状態と、上記張力に反して延伸している第1の状態との間で弾性変形する。そのため、検出プローブは、導線の周方向と、張力の働く方向とが平行になるような向きで導線に接触した状態で、第1の状態から第2の状態に弾性変形した場合、張力が働く方向に巻回することによって、導線の周りに巻き付く。
 そのため、検出プローブと導線との間に結合容量を発生させるために、検出プローブを導線の周りに巻き付ける手作業が不要である。従って、この手作業に掛かる時間および手間を削減することができる。さらに、ユーザは、非接触電圧検出装置を導線に取り付ける際、該導線に触れないので、感電する可能性なしに、非接触電圧検出装置を導線に安全に取り付けることができる。
 さらに、検出プローブが導線の周りに巻き付くことによって、検出プローブと導線との間で発生する結合容量が増大するので、導線に印加される計測対象電圧をより精度よく計測することができる。
 また、上記非接触電圧計測装置において、上記検出プローブは、板バネで構成されており、上記第1の状態であるときに、外力が印加されると、上記板バネの張力が働く方向に巻回することによって、上記第2の状態に変化してもよい。
 上記の構成によれば、張力に反して延伸した第1の状態の検出プローブは、外力が印加されたとき、板バネの張力が働く方向に巻回することによって、第2の状態に変化する。そのため、検出プローブは、導線の周方向と、張力の働く方向とが平行になるような向きで導線に接触した状態で、外力を印加された場合、張力が働く方向に巻回することによって、導線の周りに巻き付く。
 例えば、板バネの張力が働く方向が、検出プローブの長手方向に平行である場合、検出プローブは、導線の周りにリング状に巻き付く。また、板バネの張力が働く方向が、検出プローブの長手方向に対して斜めである場合、検出プローブは、導線の周りに螺旋状に巻き付く。
 そのため、前述のように、検出プローブを導線の周りに巻き付ける手作業が不要である。従って、この手作業に掛かる時間および手間を削減することができる。さらに、ユーザは、非接触電圧検出装置を導線に取り付ける際、該導線に触れないので、感電する可能性なしに、非接触電圧検出装置を導線に安全に取り付けることができる。
 また、上記非接触電圧計測装置において、上記張力が働く方向は、上記検出プローブの上記長手方向に対して傾斜していてもよい。
 上記の構成によれば、導線の周方向と、張力の働く方向とが平行であるとき、導線の周方向および長さ方向に対して、検出プローブの長手方向は非平行である。導線の長さ方向に対して検出プローブの長手方向が非平行である状態で、検出プローブの少なくとも一部が導線に接触したとき、検出プローブは、板バネの張力によって、導線の周りに螺旋状に巻き付く。
 そのため、検出プローブは、導線の周りに螺旋状に1周以上巻き付くことができる。検出プローブが導線の周りに螺旋状に巻き付く回数が増加するほど、検出プローブと導線との間に発生する結合容量を増大させることができる。その結果、計測対象電圧を高精度で求めることができる。
 また、上記非接触電圧計測装置において、上記検出プローブは、上記第1の状態であるとき、該検出プローブの上記長手方向に延伸する樋の形状の湾曲を有していてもよい。
 上記の構成によれば、第1の状態である検出プローブは、長手方向に延伸する樋の形状の湾曲を有するので、湾曲の延伸方向に対して垂直な断面における断面二次モーメントが大きい。そのため、第1の状態である検出プローブは、長手方向に巻回し難い。従って、検出プローブは、長手方向に延伸した状態を保持することができる。
 第1の状態である検出プローブに外力が印加されたとき、具体的には、ユーザが検出プローブの一部を押したとき、検出プローブの湾曲が解消される。すると、前述のように、検出プローブは、板バネの張力によって、第2の状態に変形し、導線の周りに巻き付く。
 本発明は、導線に印加されている電圧を、該導線に接触せずに計測する非接触電圧計測装置に利用することができる。
  1 非接触電圧計測センサ(非接触電圧計測装置)
 11 検出プローブ
  w 計測対象配線(の芯線;導線)
 Vin 電圧(誘起電圧)
 V 電圧(計測対象電圧)
 C 結合容量
 T 張力

Claims (4)

  1.  導線に巻き付けられた状態で電圧を検出する検出プローブを備えており、上記検出プローブと上記導線との間に結合容量が発生するように、上記検出プローブを上記導線に非接触で近接させたとき、上記検出プローブに生じる誘起電圧に基づいて、上記導線に印加される計測対象電圧を計測する非接触電圧計測装置において、
     上記検出プローブは、該検出プローブに働く張力に反して、該検出プローブの長手方向に延伸している第1の状態と、上記張力が働く方向に巻回している第2の状態との間で弾性変形することを特徴とする非接触電圧計測装置。
  2.  上記検出プローブは、板バネで構成されており、上記第1の状態であるとき、外力が印加されると、上記板バネの張力が働く方向に巻回することによって、上記第2の状態に変形することを特徴とする請求項1に記載の非接触電圧計測装置。
  3.  上記張力が働く方向は、上記検出プローブの上記長手方向に対して傾斜していることを特徴とする請求項1または2に記載の非接触電圧計測装置。
  4.  上記検出プローブは、上記第1の状態であるとき、該検出プローブの上記長手方向に延伸する樋の形状の湾曲を有していることを特徴とする請求項1~3のいずれか1項に記載の非接触電圧計測装置。
PCT/JP2015/051127 2014-01-31 2015-01-16 非接触電圧計測装置 WO2015115213A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/106,912 US9791475B2 (en) 2014-01-31 2015-01-16 Non-contact voltage measuring apparatus
KR1020167018250A KR101780276B1 (ko) 2014-01-31 2015-01-16 비접촉 전압 계측 장치
CN201580003206.2A CN105829897B (zh) 2014-01-31 2015-01-16 非接触电压测量装置
EP15743271.7A EP3101434B1 (en) 2014-01-31 2015-01-16 Non-contact voltage measuring apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014017539A JP6349748B2 (ja) 2014-01-31 2014-01-31 非接触電圧計測装置
JP2014-017539 2014-01-31

Publications (1)

Publication Number Publication Date
WO2015115213A1 true WO2015115213A1 (ja) 2015-08-06

Family

ID=53756790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051127 WO2015115213A1 (ja) 2014-01-31 2015-01-16 非接触電圧計測装置

Country Status (6)

Country Link
US (1) US9791475B2 (ja)
EP (1) EP3101434B1 (ja)
JP (1) JP6349748B2 (ja)
KR (1) KR101780276B1 (ja)
CN (1) CN105829897B (ja)
WO (1) WO2015115213A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790376B (zh) * 2018-05-09 2023-01-21 美商富克有限公司 用於非接觸式電壓測量裝置之多感測器組態

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020103031A1 (en) * 2018-11-21 2020-05-28 Huawei Technologies Co., Ltd. Probe, array probe, detector, and method
KR102379021B1 (ko) 2020-10-28 2022-03-24 한전케이디엔 주식회사 비접촉 전압 측정 장치 및 방법
CN113238089B (zh) * 2021-06-11 2022-07-01 广西电网有限责任公司电力科学研究院 非接触电压测量方法、装置、计算机设备和存储介质
CN113238093B (zh) * 2021-06-11 2022-07-05 广西电网有限责任公司电力科学研究院 非接触电压测量方法、装置、计算机设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149865A (ja) * 1984-12-24 1986-07-08 Hitachi Cable Ltd 電線の充電状況検知装置
JPH04311419A (ja) * 1991-04-10 1992-11-04 Toshiba Corp 結束バンドおよび結束バンドを用いた電線束線方法
JP2006037642A (ja) * 2004-07-29 2006-02-09 Kunimine Industries Co Ltd 管廻り用止水材
JP2009151131A (ja) * 2007-12-21 2009-07-09 Mitsubishi Chemicals Corp 柱状体への紙巻き方法及び紙巻き品
JP2012163394A (ja) 2011-02-04 2012-08-30 Hitachi Electric Systems Ltd 非接触電圧検出装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098194A (ja) 1995-04-05 2003-04-03 Nippon Telegr & Teleph Corp <Ntt> 非接触型電圧プローブ装置
US6166550A (en) * 1998-11-16 2000-12-26 Xerox Corporation Charge measuring instrument
JP2001050986A (ja) 1999-08-12 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> 非接触型電圧プローブ装置
JP3761470B2 (ja) * 2001-04-04 2006-03-29 北斗電子工業株式会社 非接触電圧計測方法及び装置並びに検出プローブ
JP4134528B2 (ja) * 2001-05-16 2008-08-20 株式会社日立製作所 被覆電力線用電圧測定装置
JP2005214689A (ja) * 2004-01-28 2005-08-11 Yokogawa Electric Corp 非接触電圧測定装置
JP2005214761A (ja) * 2004-01-29 2005-08-11 Yokogawa Electric Corp 非接触電圧測定装置
US7265533B2 (en) * 2004-06-15 2007-09-04 Power Measurement Ltd. Non-intrusive power monitor
KR101068037B1 (ko) * 2008-11-25 2011-09-28 (주)락싸 센서 회로
WO2011154029A1 (en) * 2010-06-07 2011-12-15 Abb Research Ltd High-voltage sensor with axially overlapping electrodes
GB201114258D0 (en) * 2011-08-18 2011-10-05 Ultra Electronics Ltd Method and apparatus for measurement of a DC voltage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149865A (ja) * 1984-12-24 1986-07-08 Hitachi Cable Ltd 電線の充電状況検知装置
JPH04311419A (ja) * 1991-04-10 1992-11-04 Toshiba Corp 結束バンドおよび結束バンドを用いた電線束線方法
JP2006037642A (ja) * 2004-07-29 2006-02-09 Kunimine Industries Co Ltd 管廻り用止水材
JP2009151131A (ja) * 2007-12-21 2009-07-09 Mitsubishi Chemicals Corp 柱状体への紙巻き方法及び紙巻き品
JP2012163394A (ja) 2011-02-04 2012-08-30 Hitachi Electric Systems Ltd 非接触電圧検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790376B (zh) * 2018-05-09 2023-01-21 美商富克有限公司 用於非接觸式電壓測量裝置之多感測器組態

Also Published As

Publication number Publication date
CN105829897B (zh) 2018-06-22
EP3101434A1 (en) 2016-12-07
US20170038413A1 (en) 2017-02-09
EP3101434A4 (en) 2017-10-11
JP6349748B2 (ja) 2018-07-04
KR20160096662A (ko) 2016-08-16
US9791475B2 (en) 2017-10-17
CN105829897A (zh) 2016-08-03
KR101780276B1 (ko) 2017-09-21
JP2015143670A (ja) 2015-08-06
EP3101434B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
WO2015115213A1 (ja) 非接触電圧計測装置
JP6459188B2 (ja) 非接触電圧計測装置
JP4611774B2 (ja) 非接触型電圧検出方法及び非接触型電圧検出装置
JP4995663B2 (ja) クランプ式センサ
JP2012163394A (ja) 非接触電圧検出装置
WO2015083618A1 (ja) 非接触電圧測定装置および非接触電圧測定方法
JP7062216B2 (ja) 超薄型高感度磁気センサ
JP2018132346A (ja) 電圧検出装置
WO2015178051A1 (ja) 電圧計測装置および電圧計測方法
US10976352B2 (en) Current sensor and measurement device
JP5031379B2 (ja) 電力測定装置
WO2016189864A1 (ja) プローブ及びそれを用いた電圧測定装置
JP2019174129A (ja) 絶縁型電圧測定装置
WO2015133212A1 (ja) 電圧測定装置および電圧測定方法
US7138808B2 (en) Movable apparatus, a measuring apparatus, a capacitive distance sensing apparatus, and a positioning device
JP2016090394A (ja) ひずみゲージ式変換器
WO2023090063A1 (ja) 電流センサおよび測定装置
US20230236226A1 (en) Voltage detection probe and electrode mounting tool
JP2005127784A (ja) 非接触電圧測定装置
JP4279299B2 (ja) 乗員検知装置
WO2019181771A1 (ja) 湿度検知装置
JP2021063787A (ja) センサ
JP5963486B2 (ja) 静電容量センサ、測定装置、および測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743271

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15106912

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167018250

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015743271

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015743271

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE