WO2015114932A1 - 鋳物孔加工品の形成方法、鋳物のケーシング、及びスクリュ圧縮機のケーシング - Google Patents

鋳物孔加工品の形成方法、鋳物のケーシング、及びスクリュ圧縮機のケーシング Download PDF

Info

Publication number
WO2015114932A1
WO2015114932A1 PCT/JP2014/081463 JP2014081463W WO2015114932A1 WO 2015114932 A1 WO2015114932 A1 WO 2015114932A1 JP 2014081463 W JP2014081463 W JP 2014081463W WO 2015114932 A1 WO2015114932 A1 WO 2015114932A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
casting
drill
cast
casing
Prior art date
Application number
PCT/JP2014/081463
Other languages
English (en)
French (fr)
Inventor
利幸 宮武
智也 米津
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201480074575.6A priority Critical patent/CN105934298B/zh
Priority to KR1020167022817A priority patent/KR101862963B1/ko
Priority to US15/114,146 priority patent/US10352323B2/en
Publication of WO2015114932A1 publication Critical patent/WO2015114932A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/24Moulds for peculiarly-shaped castings for hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B35/00Methods for boring or drilling, or for working essentially requiring the use of boring or drilling machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B41/00Boring or drilling machines or devices specially adapted for particular work; Accessories specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/21Cast, i.e. In the form of a casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Definitions

  • the present invention relates to a method for forming a cast hole processed product, a casting casing, and a casing of a screw compressor.
  • a screw compressor main body casing is provided with a flow path (oil supply flow path) for supplying oil for the purpose of lubrication and cooling of bearings and gears.
  • a flow path oil supply flow path
  • the oil supply passage may be formed by a long hole having a length L / diameter D of 6 or more and a hole that is branched from the long hole and has a relatively short length. Long holes are drilled with a long drill, but machining with a long drill not only makes the tool special, but also has a long machining time, resulting in poor productivity.
  • the problem of the processing time can be solved by providing an oil supply passage (each hole) by casting.
  • changing all of the plurality of drill holes to casting may be difficult and impossible depending on the positions of the holes.
  • the above-mentioned core installation problem can be solved by additionally drilling a drill hole in a place where it is difficult to install the core in the casting.
  • the processing position of the drill hole with respect to the cast hole is relatively shifted from the design position.
  • non-uniformity occurs in the contact state with the workpiece in the circumferential direction of the drill, and the machining resistance of the drill differs in the radial direction of the drill (mainly a difference occurs in the radial reaction force against the drill).
  • Drill escape occurs. The longer the drill escapes, the easier the drill escapes. This escape causes damage to the drill and deteriorates the productivity. Therefore, a structure for preventing the drill escape from the workpiece is required.
  • Patent Document 1 As shown in FIG. 7A, by providing a rectangular groove 102 along the longitudinal direction of the first hole 101 in the first hole 101 of the transmission case 100, drill escape at the time of drilling is prevented. A structure is disclosed. However, it cannot cope with the case where the center of the second hole 103 formed by drilling passes through the center of the first hole 101 manufactured by casting.
  • the center of the second hole 103 is decentered with respect to the center of the first hole 101 to the range of the rectangular groove 102 outside the range of the first hole 101. By doing so, the casting becomes large, which is disadvantageous in terms of cost.
  • the core hole is manufactured using a core, but it is expected that the core will shift when pouring.
  • a protrusion 104 is formed.
  • the protrusion 104 may be damaged by the resistance of the liquid and flow downstream, which may cause clogging of the oil supply nozzle and damage precision parts such as bearings, leading to deterioration of quality. .
  • This invention makes it a subject to avoid the damage of a drill by the escape of the processing drill of a cast hole processed product, and to improve low-cost property and quality, without impairing productivity.
  • the present invention provides a method for forming a cast hole processed product in which a hole is drilled so as to communicate with a core hole, and the position of the hole drilled by the drill is determined.
  • a casting having a cast hole including a flat inner wall surface, the width of which is a second length H2 obtained by adding a first length H1, which is a manufacturing error range of the casting, to the diameter D of the drill is cast.
  • a method for forming a cast hole processed product comprising: a casting process; and a hole drilling process for drilling a through hole that communicates the inside of the cast hole and the outside of the casting through the flat inner wall surface by the drill. provide.
  • the hole drilling step is a step of drilling with a drill so as to communicate with an intermediate position in the axial direction of the core hole, and the position of the core hole in the casting step is shifted with respect to the casting.
  • the rotation axis is positioned on an extension line in a direction orthogonal to the virtual center line of the core hole when it is assumed that there is not, the inside of the core hole and the outside of the casting are passed through the flat inner wall surface.
  • This is a step of drilling through holes that communicate with each other.
  • a through hole is drilled with a depth at which the inside of the punched hole communicates with the outside of the casting at least six times the diameter D of the drill.
  • the length or width of one side of the flat inner wall surface formed in the cast hole is the second length obtained by adding the first length H1 of the casting manufacturing error range to the diameter D of the drill. Therefore, even if a manufacturing error occurs in the position of the cast hole, the through hole can be reliably provided through the flat inner wall surface. In other words, in the drilling process, drill escape due to different drilling resistance can be prevented, so that drill damage can be avoided, and holes that require long processing time for drilling are not required. Can be replaced with holes. Thereby, it can avoid that productivity is impaired.
  • the flat inner wall surface is formed in the casting manufacturing error range in consideration of the positional deviation of the cast hole, the through hole is formed so as to be located within the flat inner wall surface of the cast hole.
  • the third length L which is the axial length of the core hole
  • the third length L may be 6 times or more the diameter D of the drill. According to this method, since the punched hole is formed by punching, even a long hole that requires a long processing time by using a long drill can be formed without impairing productivity.
  • the cast hole is preferably formed using a core. According to this method, the cast hole can be easily formed in the casting.
  • the cast hole is preferably formed using a full mold casting method. According to this method, it is possible to eliminate the formation of a tapered portion on the wall surface of the cast hole. Therefore, it is possible to make a hole in the casting with the same cross-sectional shape. In addition, since a casting with high dimensional accuracy can be manufactured, the thickness of the casting can be suppressed, and the cost can be reduced to a minimum.
  • the core hole is formed using a core that penetrates the casting.
  • the first length H1 which is the manufacturing error range of the casting, may be set to a maximum of 4 mm, preferably 2 mm to 4 mm. According to this method, the shift of the core during pouring can be suppressed. Therefore, a relatively long punch hole (for example, a hole in which the third length L is 6 times or more the second length H2) can be easily formed in the casting.
  • the cast hole is preferably formed using a disappearing model that penetrates the casting in a full mold casting method.
  • the first length H1 which is the manufacturing error range of the casting, may be set to a maximum of 4 mm, preferably 1.5 mm to 3 mm. According to this method, it is possible to form a cast hole with a small positional deviation. Therefore, a relatively long punch hole (for example, a hole in which the third length L is 6 times or more the second length H2) can be easily formed in the casting.
  • the cast hole is easily formed in the same cross-sectional shape, the length of one side in the cross section of the cast hole can be minimized.
  • the casing of the screw compressor according to the present invention is a casing of a casting, and is arranged so as to be orthogonal to the rotation axis of the drill.
  • a cast hole including a flat inner wall surface having a second length H2 added to the first length H1, which is a range, and a hole formed by the drill and passing through the flat inner wall surface.
  • a through hole is provided in a direction that allows communication between the inside and the outside of the casting.
  • the through hole is processed by the drill, it is possible to avoid the formation of a protrusion on the flat inner wall surface of the cast hole. Therefore, it is possible to avoid the protrusion shape from being damaged and clogging the oil supply nozzle, and the damage to precision parts such as the bearing, and the deterioration of the quality of the apparatus can be avoided.
  • the present invention provides a casing of a casting that has been drilled so as to communicate with a cast hole, and is provided at a position where the drilling is performed with the drill.
  • a cast hole including a flat inner wall having a second length H2 having a width that is at least a first length H1 that is a manufacturing error range of a casting and a diameter D of the drill, and a hole formed by the drill.
  • a casting casing that is processed and includes a through hole that communicates the inside of the casting hole and the outside of the casting through the flat inner wall surface.
  • the through hole is provided so as to communicate with an intermediate position in the axial direction of the core hole and that the position of the core hole in the casting process is not displaced with respect to the casing of the casting Are drilled by a drill whose rotary shaft is positioned on an extension line in a direction perpendicular to the virtual center line of the core hole.
  • the depth at which the through hole communicates the inside of the cast hole and the outside of the casting is 6 times or more the diameter D of the drill.
  • the present invention is a casting casing in which a hole is drilled so as to communicate with an intermediate position in the axial direction of a casting hole, and a full mold casting method
  • the width of the position where the drilling is performed with the drill is at least the diameter D of the drill and is 1.5 mm to 3 mm as a manufacturing error range of the casting.
  • the flat inner wall surface having the second length H2 plus the length H1
  • a through hole that is drilled by the drill in a direction orthogonal to the imaginary center line of the cast hole and communicates the inside of the cast hole and the outside of the casting through the flat inner wall surface.
  • the through-hole has a depth that allows the inside of the punched hole and the outside of the casting to communicate with each other through the flat inner wall surface at least six times the diameter D of the drill.
  • the cast hole that penetrates the casting is formed, the positional deviation of the cast hole is suppressed. Since the through hole is machined by a drill on the flat inner wall surface of the cast hole, it is not necessary to add extra meat to the outer surface of the casting, and it is possible to avoid an increase in size of the casting, and the protrusion shape is damaged and lubrication is performed. It is possible to avoid clogging the nozzle and damaging precision parts such as bearings. Therefore, low cost and device quality can be improved. Moreover, since at least the cast hole which does not require processing time is provided, it can avoid that productivity is impaired.
  • the third length L which is the axial length of the core hole
  • the third length L may be 6 times or more the diameter D of the drill. According to this configuration, since the punched hole is formed by punching, even a long hole that requires a long processing time by using a long drill in drilling is compressed without impairing productivity. It can be provided in the casing of the machine.
  • the present invention it is possible to avoid the damage of the drill due to the escape of the machining drill of the cast hole processed product, and to improve the low cost and the quality without impairing the productivity.
  • FIG. 3 is a plan view showing a core mold of the first embodiment. Sectional drawing which shows the processing state of the cast hole processed goods which do not have a manufacturing error which concerns on 2nd Embodiment. Sectional drawing which shows the modification of this invention.
  • mold used for the modification of this invention Sectional drawing which shows the modification of this invention.
  • (First embodiment) 1A and 1B show a part of the casing 10 of the screw compressor according to the first embodiment.
  • the casing 10 has a shape that can accommodate a pair of male and female screw rotors, a bearing that supports the rotor shaft of the screw rotor, a gear that is provided at an end of the rotor shaft, and that transmits a driving force between the rotors.
  • the casing 10 is provided with an oil supply passage 11 for supplying oil for the purpose of lubrication and cooling of bearings and gears. Note that the posture of the casing 10 shown in FIGS. 1A and 1B is different from the posture (FIG. 2A, FIG. 2B, FIG. 5, FIG.
  • the oil supply passage 11 is constituted by a cast hole 12, a processing hole (through hole) 13, and a processing hole 14.
  • the casting hole 12 is formed so as to penetrate from one end of the casing 10 to the other end.
  • the cast hole 12 is formed by casting when the casing 10 is cast and formed by a core installed in the mold so as to penetrate the casting.
  • the cast hole 12 is formed by casting using a core formed by a core mold 20 as shown in FIG.
  • the casting hole 12 is defined by a flat surface portion 15 and a curved surface portion 16.
  • the curved surface portion 16 connected to the flat surface portion 15 has a shape provided to prevent sand seizure and skipping.
  • the cross-sectional shape of the flow path formed by the cast hole 12 is substantially square.
  • a flat inner wall surface 15 a that is one flat portion 15 is arranged so as to be orthogonal to the axis of the rotation axis P of the drill 17.
  • the diameter of the drill 17 is D.
  • a standard through-hole 18 is set in the flat inner wall surface 15a at a position where the casing 10 is penetrated by a manufacturing error (error due to casting) in the casing 10.
  • a positional deviation allowable portion 19 is set on each of the flat inner wall surface 15a on the upper side and the lower side of the standard penetration portion 18 at the time of machining in the hole machining step.
  • the misalignment allowing portion 19 is an area in which the machining resistance of the drill 17 is not increased even when the manufacturing error of the casting, that is, the misalignment of the core hole 12 due to the misalignment of the core occurs.
  • the drill 17 has a misalignment of the cast hole in the casting process (an error associated with casting) so as to perform the hole machining through the flat inner wall surface 15a.
  • the rotation axis is positioned on the extension line in the direction orthogonal to the virtual center line (designed center line) P0 of the cast hole when it is assumed that there is no.
  • the width of the position where the drilling is performed is a second length H2 obtained by adding the first length H1 of the casting manufacturing error range to the diameter D of the drill 17.
  • the first length H1 is the sum of the length 0.5H1 of the upper manufacturing error range and the length 0.5H1 of the lower manufacturing error range.
  • the processed hole 13 is formed by drilling at a depth of 6 times or more of the drill diameter D so as to penetrate the cast hole 12.
  • the axis of the cast hole 12 and the axis of the processing hole 13 are substantially orthogonal. That is, the axis of the punched hole 12 and the axis of the processed hole 13 are located within a range of deviation ( ⁇ 0.5H1 or less) allowed as a manufacturing error with respect to the orthogonal state and intersect in a substantially perpendicular direction. ing.
  • the processing hole 14 is formed by drilling so as to communicate with the processing hole 13.
  • the axis of the machining hole 13 and the axis of the machining hole 14 are substantially orthogonal.
  • the shafts of the punched hole 12, the processed hole 13, and the processed hole 14 are located on substantially the same plane.
  • This forming method includes a casting process and a hole drilling process subsequent to the casting process.
  • the casting process is a conventionally known process in which molten metal is poured into a mold in which a core is disposed and cast.
  • a casting having a cast hole 12 including a flat inner wall surface 15a that is arranged so as to be orthogonal to the rotation axis P of the drill 17 and that has a second length H2 in the vertical direction as one side is cast. Is done.
  • the hole machining step is a step of drilling the through hole 13 that communicates the inside of the cast hole 12 and the outside of the casing 10 with the drill 17 through the flat inner wall surface 15 a of the casing 10.
  • the rotational axis P of the drill 17 does not cause misalignment of the punched hole in the casting process (error due to casting) with respect to the casing 10 set in the hole drilling device.
  • FIG. 2A and FIG. 2B show a state in which the drill hole 17 of the casing 10 is drilled by the drill 17.
  • the drill 17 penetrates only the standard through-hole 18 of the flat inner wall surface 15a.
  • the drill 17 penetrates the standard through portion 18 and the positional displacement allowable portion 19. . Since the casing 10 is provided with the misalignment allowing portion 19 outside the standard penetrating portion 18, the drill 17 is penetrated in a range including the standard penetrating portion 18 and the misalignment allowing portion 19.
  • a flat inner wall surface 15a having one side as a second length H2 obtained by adding the first length H1 within the casting manufacturing error range to the diameter D of the drill 17 is formed in the core hole 12. Therefore, even if a manufacturing error occurs at the position of the cast hole 12, the through hole 13 can be reliably provided in the cast hole 12 through the flat inner wall surface 15a.
  • the drill 17 in the hole drilling process, by piercing the drill 17 through the flat inner wall surface 15a, the drill 17 can be prevented from escaping due to different machining resistance of the drill 17, so that damage to the drill 17 can be avoided. Since the hole that requires a long processing time for drilling is formed as the punched hole 12 that does not require the processing time, it can be avoided that productivity is impaired.
  • the through hole 13 can be formed in the center of the core hole 12. Therefore, it is not necessary to add extra meat to the outer surface of the casting, and an increase in the size of the casting can be avoided. Therefore, low cost can be improved.
  • the core hole 12 is formed using a core, the core hole 12 can be easily formed in the casting.
  • the axial length (third length) of the punched hole 12 is L
  • the length L / the diameter D of the drill 17 can be formed to be 6 or more. Even if it is a long hole which requires a long processing time by using it, productivity will not be impaired.
  • the core hole 12 may be formed using a core that penetrates the casting. Thereby, the manufacturing error of the casting can be further reduced, for example, the first length H1 can be set to about 4 mm or less ( ⁇ 2 mm or less).
  • the casing 10 of the screw compressor according to the second embodiment is formed using a full mold casting method.
  • the full mold casting method is, for example, the lost wax method or the disappearance model casting method.
  • the lost wax method is a casting method that utilizes the melting of a model made of wax, and is a casting method in which molten metal is poured into a mold having a space in which the wax model is faithfully transferred.
  • a disappearance model made of foamed synthetic resin such as expanded polystyrene is embedded in the molding sand to form a mold, and molten metal is injected into the disappearance model to burn and vaporize the model.
  • This is a method of casting a casting by replacing the disappearance model with molten metal.
  • FIG. 4 shows a state in which a drill 17 is drilled into the cast hole 12 of the casing 10 of the second embodiment.
  • the forming method of the cast hole 12 is different from that of the first embodiment, and the shape of the cast hole 12 is the same as that of the first embodiment.
  • the point that the standard penetration portion 18 and the positional deviation allowing portion 19 are provided on the flat inner wall surface 15a is the same as in the first embodiment, and the effects obtained thereby are also the same. Description is omitted.
  • the casting error can be made smaller than in the case of using the core that penetrates the casting, Since the deviation of the cast hole 12 is small, the length of one side of the cast hole 12 can be minimized, for example, the first length H1 can be about 3 mm or less ( ⁇ 1.5 mm or less). .
  • the main mold may have a shape for forming the cast hole.
  • such a tapered portion is required. The need to form can be eliminated. Accordingly, it is possible to make a relatively long non-through hole with the same cross-sectional shape.
  • the formation method of the cast hole processed product of the present invention is not limited to the above-described embodiment, and various modifications are possible.
  • the width of the position where the drilling is performed by the drill 17 is a second in which a maximum length of 4 mm is added to the diameter D of the drill 17 as the first length H1 that is a manufacturing error range of the casting. It is good also as what casts the casting which has a casting hole containing the flat inner wall surface 15a of length H2.
  • the shape of the opening of the oil supply passage 11 may be any shape as long as it has a flat inner wall surface 15a. As shown in FIG. 5A, the shape of the opening of the cast hole 12 may be a vertically long hexagon.
  • the oil supply passage 11 having an opening of a hexagonal shape is formed by using a core removal mold 20 shown in FIG. 5B.
  • the shape of the opening of the cast hole 12 may be an ellipse composed of two equal-sized semicircular portions and two straight portions that smoothly connect them.
  • the oil supply passage 11 having an elliptical opening shape is formed by using a core removing die 20 shown in FIG. 6B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Drilling And Boring (AREA)

Abstract

鋳抜き孔(12)に連通するようにドリル(17)で孔加工を施す鋳物孔加工品の形成方法は、鋳造工程と、孔加工工程とを備える。鋳造工程では、ドリル(17)で孔加工が施される位置の幅が、ドリル(17)の直径(D)に、鋳物(10)の製造誤差範囲である第1の長さ(H1)を加えた第2の長さ(H2)である、平坦な内壁面(15a)を含む鋳抜き孔(12)を有する鋳物(10)を鋳造する。孔加工工程では、ドリル(17)によって平坦な内壁面(15a)を通して鋳抜き孔(12)の内部と鋳物(10)の外部とを連通する貫通孔(13)の孔加工を施す。

Description

鋳物孔加工品の形成方法、鋳物のケーシング、及びスクリュ圧縮機のケーシング
 本発明は、鋳物孔加工品の形成方法、鋳物のケーシング、及びスクリュ圧縮機のケーシングに関する。
 一般的に、スクリュ圧縮機本体ケーシングには、軸受や歯車などの潤滑や冷却を目的として給油を行うための流路(給油流路)が設けられている。給油を必要とする箇所は数か所あるが、配管削減のために1カ所から給油することで、給油が必要な箇所すべてに油を供給できるよう、複数のドリル孔を接続して給油流路を形成することがある。その際、給油流路は、長さL/径Dが6以上の長い孔と、それと枝分かれしており比較的に長さが短い孔とで形成する場合がある。長い孔はロングドリルで穿設されるが、ロングドリルでの加工は、工具が特殊になるばかりでなく、加工時間も長いため生産性が悪い。
 前記加工時間の問題は鋳抜きによって給油流路(各々の孔)を設けることで解決できる。しかし、複数のドリル孔の全てを鋳抜きに変えることは、孔の位置によっては中子の設置が困難で不可能な場合がある。
 前記中子の設置の問題は、鋳物における中子の設置が困難な場所にドリル孔を追加工することで解決できる。しかし、鋳込み精度に起因して鋳抜き穴がずれた場合、その鋳抜き穴に対するドリル孔の加工位置が設計上の位置から相対的にずれることが考えられる。このような場合、ドリルの周方向で加工物との接触状態に不均一が生じ、ドリルの加工抵抗がドリルの径方向で異なる(主にドリルに対する径方向の反力に差が生じる)ことによってドリルの逃げが発生する。ドリルの逃げはドリルが長いほど発生しやすく、この逃げにより、ドリルが損傷し、生産性が悪化するため、加工対象物にドリルの逃げを防止する構造が必要となる。
 特許文献1には、図7Aに示すように、変速機ケース100の第1孔101に第1孔101長手方向に沿う矩形凹溝102を設けることにより、ドリル孔加工時のドリル逃げを防止する構造が開示されている。しかしながら、ドリル加工により穿設する第2孔103の中心が、鋳抜きで製作された第1孔101の中心を貫通するような場合には対応できない。
 また、図7Bに示すように、本技術を適用する場所によっては、第1孔101中心に対して第2孔103中心を第1孔101の範囲外にある矩形凹溝102の範囲内まで偏心させることで、鋳物が大きくなりコスト面で不利になる。
 通常、鋳抜き穴は中子を用いて製作するが、注湯時に中子がずれることは十分予想される。図7C及び図7Dに示すように、鋳抜き穴である第1孔101がずれた場合、突起104が形成される。孔に油などの液体が流れる場合、突起104が液体の抵抗により破損し、下流側へ流れることにより、給油ノズルの目詰まりや軸受などの精密部品を損傷し、品質の低下につながる恐れもある。
特開2012-11477号公報
 本発明は、鋳物孔加工品の加工ドリルの逃げによるドリルの損傷を回避し、生産性を損なうことなく、低コスト性及び品質を向上させることを課題とする。
 前記課題を解決するための手段として、本発明は、鋳抜き孔に連通するようにドリルで孔加工を施す鋳物孔加工品の形成方法であって、前記ドリルで孔加工が施される位置の幅が、前記ドリルの直径Dに、鋳物の製造誤差範囲である第1の長さH1を加えた第2の長さH2である、平坦な内壁面を含む鋳抜き孔を有する鋳物を鋳造する鋳造工程と、前記ドリルによって前記平坦な内壁面を通して前記鋳抜き孔の内部と前記鋳物の外部とを連通する貫通孔の孔加工を施す孔加工工程とを備える、鋳物孔加工品の形成方法を提供する。
 前記孔加工工程は、鋳抜き孔の軸方向における途中位置に連通するようにドリルで孔加工を施す工程であり、且つ、前記鋳物に対して、鋳造工程における鋳抜き孔の位置ずれが生じていないと仮定した場合の当該鋳抜き孔の仮想中心線と直交する向きの延長線上に回転軸が位置決めされたドリルによって、前記平坦な内壁面を通して前記鋳抜き孔の内部と前記鋳物の外部とを連通する貫通孔の孔加工を施す工程である。前記孔加工工程において、前記鋳抜き孔の内部と前記鋳物の外部とを連通する深さが前記ドリルの直径Dの6倍以上の貫通孔の孔加工を施す。
 この方法によれば、鋳抜き孔に形成される平坦な内壁面の一辺の長さあるいは幅が、ドリルの直径Dに鋳物の製造誤差範囲の第1の長さH1を加えた第2の長さH2以上となるので、鋳抜き孔の位置に製造誤差が生じた場合であっても、鋳抜き孔に平坦な内壁面を通して確実に貫通孔を設けることができる。すなわち、孔加工工程において、ドリルの加工抵抗が異なることによるドリルの逃げを防止できるので、ドリルの損傷を回避でき、ドリル加工に長い加工時間を必要とする孔を加工時間を必要としない鋳抜き孔に置換できる。これにより、生産性が損なわれることを回避できる。また、鋳抜き孔の位置ずれを考慮した鋳造の製造誤差範囲に平坦な内壁面を形成しているので、鋳抜き孔の平坦な内壁面の範囲内に位置するように貫通孔を穿設することができる。そのため、鋳物外面に余分な肉を付ける必要がなく鋳物の大型化を回避できる。したがって、低コスト性を向上させることができる。また、鋳抜き孔の平坦な内壁面に対してドリル加工を行うことができるので、平坦な内壁面に突起形状が形成されることを回避できる。したがって、突起形状が破損して給油ノズルを詰まらせること、及び軸受等の精密部品を損傷すること等を回避でき、装置の品質の低下を回避できる。以上より、鋳物孔加工品の加工ドリルの逃げによるドリルの損傷を回避し、生産性を損なうことなく、低コスト性、及び品質を向上させることができる。
 なお、前記平坦な内壁面の範囲内で前記鋳抜き孔の内部と前記鋳物の外部とを連通する深さが前記ドリルの直径Dの6倍以上の貫通孔の孔加工を施す孔加工工程とを備えているので、前記ドリルの逃げを抑制することができる。したがって、貫通孔が鋳抜き孔を貫通するように設けられ、その貫通孔の先端側でその貫通孔に対して別途貫通するドリル孔(別の貫通孔)を連通させる場合においては、貫通孔同士の位置ずれを抑制することもできる。
 前記鋳抜き孔の軸方向の長さである第3の長さをLとした場合、前記第3の長さLは前記ドリルの直径Dの6倍以上であってもよい。この方法によれば、鋳抜きにより鋳抜き孔を形成するので、ドリル加工ではロングドリルを用いることで長い加工時間が必要となるような長い孔であっても生産性を損なうことなく形成できる。
 前記鋳抜き孔は中子を用いて形成されることが好ましい。この方法によれば、鋳物に鋳抜き孔を容易に形成できる。
 前記鋳抜き孔はフルモールド鋳造法を用いて形成されることが好ましい。この方法によれば、鋳抜き孔の壁面にテーパ部分が形成されることを排除できる。したがって、鋳物に同一断面形状で鋳抜き穴を作ることができる。また、寸法精度の良い鋳物を製作できるため、鋳物の肉厚も抑えることができ、最小限のコストに抑えることができる。
 前記鋳抜き孔は前記鋳物を貫通させる中子を用いて形成されることが好ましい。その際、前記鋳物の製造誤差範囲である第1の長さH1は最大4mm、好ましくは2mm~4mmに設定すればよい。この方法によれば、注湯時の中子のずれを抑制することができる。そのため、鋳物に比較的長い鋳抜き孔(例えば、第3の長さLが第2の長さH2の6倍以上となるような孔)を容易に形成できる。
 前記鋳抜き孔はフルモールド鋳造法において前記鋳物を貫通させる消失模型を用いて形成されることが好ましい。その際、前記鋳物の製造誤差範囲である第1の長さH1は最大4mm、好ましくは1.5mm~3mmに設定すればよい。この方法によれば、位置ずれの小さい鋳抜き孔を形成することができる。そのため、鋳物に比較的に長い鋳抜き孔(例えば、第3の長さLが第2の長さH2の6倍以上となるような孔)を容易に形成できる。また、鋳抜き孔を同一断面形状に形成し易いため、鋳抜き孔の断面における一辺の長さを最小限に抑えることができる。
 前記課題を解決するための手段として、本発明のスクリュ圧縮機のケーシングは、鋳物のケーシングであって、ドリルの回転軸に直交するように配置され前記ドリルの直径Dに、前記鋳物の製造誤差範囲である第1の長さH1を加えた第2の長さH2を一辺とする平坦な内壁面を含む鋳抜き孔と、前記ドリルによって加工され、前記平坦な内壁面を通して前記鋳抜き孔の内部と前記鋳物の外部とを連通する方向の貫通孔とを備えるようにした。
 ドリルによって貫通孔が加工されているので、鋳抜き穴の平坦な内壁面に突起形状が形成されることを回避できる。したがって、突起形状が破損して給油ノズルを詰まらせること、及び軸受等の精密部品を損傷すること等を回避でき、装置の品質の低下を回避できる。
 前記課題を解決するための別の手段として、本発明は、鋳抜き孔に連通するようにドリルで孔加工が施された鋳物のケーシングであって、前記ドリルで孔加工が施される位置の幅が、少なくとも前記ドリルの直径Dに鋳物の製造誤差範囲である第1の長さH1を加えた第2の長さH2を有する平坦な内壁面を含む、鋳抜き孔と、前記ドリルによって孔加工され、前記平坦な内壁面を通して前記鋳抜き孔の内部と前記鋳物の外部とを連通する貫通孔とを備える、鋳物のケーシングを提供する。前記貫通孔は、前記鋳抜き孔の軸方向における途中位置に連通するように設けられ、かつ前記鋳物のケーシングに対して、鋳造工程における前記鋳抜き孔の位置ずれが生じていないと仮定した場合の当該鋳抜き孔の仮想中心線と直交する向きの延長線上に回転軸が位置決めされたドリルによって孔加工されている。前記貫通孔が前記鋳抜き孔の内部と前記鋳物の外部とを連通する深さは、前記ドリルの直径Dの6倍以上である。
 前記課題を解決するための更に別の手段として、本発明は、鋳抜き孔の軸方向における途中位置に連通するようにドリルで孔加工が施された鋳物のケーシングであって、フルモールド鋳造法において前記鋳物を貫通させる消失模型を用いて形成され、前記ドリルで孔加工が施される位置の幅が、少なくとも前記ドリルの直径Dに、鋳物の製造誤差範囲として1.5mm~3mmの第1の長さH1を加えた第2の長さH2を有する平坦な内壁面を含む、鋳抜き孔と、前記鋳物のケーシングに対して、鋳造工程における鋳抜き孔の位置ずれが生じていないと仮定した場合の当該鋳抜き孔の仮想中心線と直交する向きに前記ドリルによって孔加工され、前記平坦な内壁面を通して前記鋳抜き孔の内部と前記鋳物の外部とを連通する貫通孔とを備えることを特徴とするスクリュ圧縮機のケーシングを提供する。前記貫通孔は、前記平坦な内壁面を通して前記鋳抜き孔の内部と前記鋳物の外部とを連通する深さが前記ドリルの直径Dの6倍以上である。
 これらの構成によれば、鋳物を貫通するような鋳抜き孔を形成しているので鋳抜き孔の位置ずれが抑制されている。その鋳抜き孔の平坦な内壁面に対してドリルによって貫通孔が加工されているので、鋳物外面に余分な肉を付ける必要がなく鋳物の大型化を回避できるとともに、突起形状が破損して給油ノズルを詰まらせること、及び軸受等の精密部品を損傷すること等を回避できる。したがって、低コスト性と装置の品質を向上させることができる。また、加工時間を必要としない鋳抜き孔を少なくとも備えているので、生産性が損なわれることを回避できる。なお、貫通孔が鋳抜き孔を貫通するように設けられ、その貫通孔の先端側でその貫通孔に対して別途貫通するドリル孔(別の貫通孔)を連通させる場合においては、貫通孔同士の位置ずれを抑制することもできる。
 前記鋳抜き孔の軸方向の長さである第3の長さをLとした場合、前記第3の長さLは前記ドリルの直径Dの6倍以上であってもよい。この構成によれば、鋳抜きにより鋳抜き孔を形成しているので、ドリル加工ではロングドリルを用いることで長い加工時間が必要となるような長い孔であっても生産性を損なうことなく圧縮機のケーシングに設けることができる。
 なお、前記平坦な内壁面の範囲内で前記鋳抜き孔の内部と前記鋳物の外部とを連通する深さが前記ドリルの直径Dの6倍以上の貫通孔の孔加工を施す孔加工工程とを備えているので、前記ドリルの逃げを抑制することができる。したがって、貫通孔が鋳抜き孔を貫通するように設けられ、その貫通孔の先端側でその貫通孔に対して別途貫通するドリル孔(別の貫通孔)を連通させる場合においては、貫通孔同士の位置ずれを抑制することもできる。
 本発明によれば、鋳物孔加工品の加工ドリルの逃げによるドリルの損傷を回避し、生産性を損なうことなく、低コスト性及び品質を向上させることができる。
本発明の鋳物孔加工品の形成方法が適用されたスクリュ圧縮機のケーシングの一部を示す部分正面図。 本発明の鋳物孔加工品の形成方法が適用されたスクリュ圧縮機のケーシングの一部を示す部分側面図。 第1実施形態に係る製造誤差を有さない鋳物孔加工品の加工状態を示す断面図。 第1実施形態に係る製造誤差を有する鋳物孔加工品の加工状態を示す断面図。 第1実施形態の中子取り型を示す平面図。 第2実施形態に係る製造誤差を有さない鋳物孔加工品の加工状態を示す断面図。 本発明の変形例を示す断面図。 本発明の変形例に用いられる中子取り型を示す平面図。 本発明の変形例を示す断面図。 本発明の変形例に用いられる中子取り型を示す平面図。 従来のドリル逃げ防止構造を示す断面図。 第1孔の中心に対して偏心した第2孔を有する大型化した鋳物の一部を示す図。 突起形状の形成位置を示す図。 突起形状の形成位置を示す図。
 以下、本発明の鋳物孔加工品の形成方法を実施するためのスクリュ圧縮機のケーシング(鋳物)について、図面を参照しながら説明する。なお、説明においては、便宜上、紙面における上下を上側及び下側と呼び、左右を横と呼んでいる。
(第1実施形態)
 図1A及び図1Bは第1実施形態に係るスクリュ圧縮機のケーシング10の一部を示す。ケーシング10は、雌雄一対のスクリュロータ、スクリュロータのロータ軸を支持する軸受、ロータ軸の端部に設けられロータ間で駆動力を伝達するための歯車等を収容可能な形状を有している。ケーシング10は、軸受や歯車等の潤滑や冷却を目的として給油するための給油流路11を備えている。なお、図1A及び図1Bに示すケーシング10の姿勢は、後述する孔加工工程の加工時の姿勢(図2A、図2B、図4、図5A、図6A)とは異なる。
 給油流路11は、鋳抜き孔12、加工孔(貫通孔)13、及び加工孔14によって構成されている。
 図1Bに示すように、鋳抜き孔12は、ケーシング10の一端から他端へ貫通するように形成されている。鋳抜き孔12は、鋳物を貫通するように鋳型に設置された中子によりケーシング10を鋳造成形するときに鋳抜くことで成形される。鋳抜き孔12は、図3に示すような中子取り型20で形成した中子を用いて鋳造することで形成される。図2Aに示すように、鋳抜き孔12は、平面部15と曲面部16により画定されている。平面部15に接続する曲面部16は、砂の焼付きやとばされを防止するために設けられた形状である。鋳抜き孔12により形成される流路の断面形状は略正方形である。1つの平面部15である平坦な内壁面15aは、ドリル17の回転軸Pの軸心に直交するように配置されている。ドリル17の直径はDである。図2Aに示すように、平坦な内壁面15aには、ケーシング10に製造誤差(鋳造成形に伴う誤差)が生じていない状態でドリル17により貫通される位置に標準貫通部18が設定されている。また、図2Bに示ように、平坦な内壁面15aには、孔加工工程での加工時の標準貫通部18の上側及び下側に、それぞれ位置ずれ許容部19が設定されている。位置ずれ許容部19は、鋳物の製造誤差、すなわち中子の位置ずれに起因する鋳抜き孔12の位置ずれが生じた場合でも、ドリル17の加工抵抗を増加させない領域である。なお、図2Aおよび図2Bの何れの場合も、ドリル17は、平坦な内壁面15aを通す孔加工を施すように、鋳造工程における鋳抜き孔の位置ずれ(鋳造成形に伴う誤差)が生じていないと仮定した場合の鋳抜き孔の仮想中心線(設計上の中心線)P0と直交する向きの延長線上に回転軸が位置決めされている。図2Aおよび図2Bに示すように、ケーシング10の平坦な内壁面15aをドリル17の回転軸に直交するように配置したときに、平坦な内壁面15aの上下方向の一辺の長さ、すなわちドリルで孔加工が施される位置の幅は、ドリル17の直径Dに鋳物の製造誤差範囲の第1の長さH1を加えた第2の長さH2である。第1の長さH1は、上側の製造誤差範囲の長さ0.5H1、及び下側の製造誤差範囲の長さ0.5H1の合計である。
 加工孔13は、鋳抜き孔12を貫通するようにドリル直径Dの6倍以上の深さでドリル加工され形成されている。鋳抜き孔12の軸と加工孔13の軸とは略直交している。すなわち、鋳抜き孔12の軸と加工孔13の軸とは、直交する状態に対して製造誤差として許容されるズレ(±0.5H1以下)の範囲内に位置して略直角方向に交差している。加工孔14は、加工孔13に連通するようにドリル加工され形成されている。加工孔13の軸と加工孔14の軸とは略直交している。鋳抜き孔12、加工孔13、及び加工孔14の各軸は、略同一平面上に位置している。
 本発明の鋳物孔加工品の形成方法を説明する。この形成方法は、鋳造工程と、鋳造工程の後に続く孔加工工程とを備える。
 鋳造工程は、中子を配置した鋳型に溶融金属を流し込んで鋳造する従来公知の工程である。本実施形態の鋳造工程により、ドリル17の回転軸Pに直交するように配置され上下方向の第2の長さH2を一辺とする平坦な内壁面15aを含む鋳抜き孔12を有する鋳物が鋳造される。
 孔加工工程は、ドリル17により、ケーシング10の平坦な内壁面15aを通して鋳抜き孔12の内部とケーシング10の外部とを連通する貫通孔13の孔加工を施す工程である。孔加工工程では、孔加工装置にセットされたケーシング10に対して、ドリル17の回転軸Pが、鋳造工程における鋳抜き孔の位置ずれ(鋳造成形に伴う誤差)が生じていないと仮定した場合の当該鋳抜き孔の仮想中心線P0と直交する向きの延長線上に位置決めされる。つまり、ドリル17の先端を予め鋳抜き孔の設計上の中心線である仮想中心線P0の方向に設定された点に向かって前進することより、平坦な内壁面15aを通す孔加工を施す。
 図2A及び図2Bは、ケーシング10の鋳抜き孔12にドリル17によってドリル加工する状態を示す。図2Aに示すように、鋳物の製造誤差、すなわちケーシング10に鋳抜き孔12の上下方向の位置ずれが生じていない場合、ドリル17は平坦な内壁面15aの標準貫通部18のみを貫通する。図2Bに示すように、鋳物の製造誤差、すなわちケーシング10に鋳抜き孔12の上下方向の位置ずれGが生じている場合、ドリル17は標準貫通部18、及び位置ずれ許容部19を貫通する。ケーシング10には、標準貫通部18の外側に位置ずれ許容部19を設けているので、標準貫通部18、及び位置ずれ許容部19を含む範囲にドリル17が貫通される。
 この方法によれば、鋳抜き孔12に、ドリル17の直径Dに鋳物の製造誤差範囲の第1の長さH1を加えた第2の長さH2を一辺とする平坦な内壁面15aを形成しているので、鋳抜き孔12の位置に製造誤差が生じた場合であっても、鋳抜き孔12に平坦な内壁面15aを通して確実に貫通孔13を設けることができる。
 すなわち、孔加工工程において、ドリル17を平坦な内壁面15aに貫通させることにより、ドリル17の加工抵抗が異なることによるドリル17の逃げを防止できるので、ドリル17の損傷を回避できる。ドリル加工に長い加工時間を必要とする孔を加工時間を必要としない鋳抜き孔12として形成しているので、生産性が損なわれることを回避できる。
 また、鋳抜き孔12の位置ずれを考慮した製造誤差範囲に平坦な内壁面15aを形成しているので、鋳抜き孔12の中心に対して貫通孔13を穿設することができる。そのため、鋳物外面に余分な肉を付ける必要がなく鋳物の大型化を回避できる。したがって、低コスト性を向上させることができる。
 また、鋳抜き孔12の平坦な内壁面15aに対してドリル加工を行うことができるので、平坦な内壁面15aに突起形状が形成されることを回避できる。したがって、突起形状が破損して給油ノズルを詰まらせること、及び軸受等の精密部品を損傷すること等を回避でき、装置の品質の低下を回避できる。
 以上より、鋳物孔加工品の加工ドリルの逃げによるドリルの損傷を回避し、生産性を損なうことなく、低コスト性及び品質を向上させることができる。
 鋳抜き孔12は中子を用いて形成されているので、鋳物に鋳抜き孔12を容易に形成できる。また、鋳抜き孔12の軸方向の長さ(第3の長さ)をLとした場合、長さL/ドリル17の直径Dが6以上に形成できるので、ドリル加工によればロングドリルを用いることで長い加工時間が必要となるような長い孔であっても生産性を損なうことがない。この際、鋳抜き孔12は鋳物を貫通する中子を用いて形成されていてよい。これにより、鋳物の製造誤差をより小さくすること、例えば、第1の長さH1を4mm以下(±2mm以下)程度とすることができる。
(第2実施形態)
 第2実施形態に係るスクリュ圧縮機のケーシング10は、フルモールド鋳造法を用いて形成されている。フルモールド鋳造法は、例えば、ロストワックス法や消失模型鋳造法である。
 ロストワックス法は、ワックス(ろう)で形成された模型が溶けることを利用した鋳造法であって、ワックス模型を忠実に転写した空間を有する鋳型に溶融金属を流し込む鋳造法である。
 消失模型鋳造法は、発泡ポリスチレン等の発泡合成樹脂で製作した消失模型を鋳物砂中に埋設して鋳型を構成し、溶融金属をその消失模型に注入して該模型を燃焼気化させることにより、消失模型を溶融金属で置換して鋳物を鋳造する方法である。
 図4は、第2実施形態のケーシング10の鋳抜き孔12にドリル17によってドリル加工する状態を示す。この例では、鋳抜き孔12の形成方法が第1実施形態とは異なるだけであり、鋳抜き孔12の形状は第1実施形態と同様である。本実施形態においても、平坦な内壁面15aに標準貫通部18、及び位置ずれ許容部19が設けられている点は第1実施形態と同様であり、それによって得られる効果も同様であるので、説明は省略する。
 この方法によれば、中子を設置する方法と比べて寸法精度の良い鋳物を製作できるため、鋳物の肉厚も抑えることができ、最小限のコストに抑えることができる。さらに、鋳抜き孔12は鋳物を貫通する消失模型を用いて形成する方法によれば、鋳物を貫通する中子を用いて形成する場合と比べて、鋳物の誤差をより小さくすることができ、鋳抜き孔12のずれも小さいため、鋳抜き孔12の一辺の長さを最小限に抑えること、例えば、第1の長さH1を3mm以下(±1.5mm以下)程度とすることができる。また、鋳物を貫通しない鋳抜き穴とする場合、木型や金型を用いて鋳型を製作する従来公知の工程では、鋳抜き穴を形成するための形状を主型に持たせることもある。この場合、鋳物砂などから木型や金型等を容易に抜き取るため、鋳抜き穴の軸方向に沿ってテーパ部分を形成する必要があるが、フルモールド鋳造法によればそのようなテーパ部分を形成する必要性を排除できる。したがって、同一断面形状で比較的に長い非貫通状の鋳抜き穴を作ることができる。
 なお、本発明の鋳物孔加工品の形成方法は、前記実施形態に限定されるものではなく、種々の変更が可能である。例えば、本発明の鋳造工程は、ドリル17で孔加工が施される位置の幅がドリル17の直径Dに、鋳物の製造誤差範囲である第1の長さH1として最大4mmを加えた第2の長さH2の平坦な内壁面15aを含む鋳抜き孔を有する鋳物を鋳造するものとしてもよい。また、給油流路11の開口の形状は、平坦な内壁面15aを有する形状であれば、いかなる形状であってもよい。図5Aに示すように、鋳抜き孔12の開口の形状は、縦長6角形であってもよい。開口形状が縦長6角形の給油流路11は、図5Bに示す中子取り型20を用いて形成される。また、図6Aに示すように、鋳抜き孔12の開口の形状は、等サイズの2つの半円部とこれらをなめらかに結ぶ2本の直線部とからなる長円であってもよい。開口形状が長円の給油流路11は、図6Bに示す中子取り型20を用いて形成される。
 10 スクリュ圧縮機のケーシング
 11 給油流路
 12 鋳抜き孔
 13 加工孔(貫通孔)
 14 加工孔
 15 平面部
 15a 平坦な内壁面(平面部)
 16 曲面部
 17 ドリル
 18 標準貫通部
 19 位置ずれ許容部
 P 回転軸
 P0 鋳抜き孔の仮想中心線
 20 中子取り型

Claims (13)

  1.  鋳抜き孔に連通するようにドリルで孔加工を施す鋳物孔加工品の形成方法であって、
     前記ドリルで孔加工が施される位置の幅が、前記ドリルの直径Dに、鋳物の製造誤差範囲である第1の長さH1を加えた第2の長さH2である、平坦な内壁面を含む鋳抜き孔を有する鋳物を鋳造する鋳造工程と、
     前記ドリルによって前記平坦な内壁面を通して前記鋳抜き孔の内部と前記鋳物の外部とを連通する貫通孔の孔加工を施す孔加工工程と
     を備える、鋳物孔加工品の形成方法。
  2.  前記孔加工工程は、鋳抜き孔の軸方向における途中位置に連通するようにドリルで孔加工を施す工程であり、且つ、前記鋳物に対して、鋳造工程における鋳抜き孔の位置ずれが生じていないと仮定した場合の当該鋳抜き孔の仮想中心線と直交する向きの延長線上に回転軸が位置決めされたドリルによって、前記平坦な内壁面を通して前記鋳抜き孔の内部と前記鋳物の外部とを連通する貫通孔の孔加工を施す工程である、請求項1に記載の鋳物孔加工品の形成方法。
  3.  前記孔加工工程において、前記鋳抜き孔の内部と前記鋳物の外部とを連通する深さが前記ドリルの直径Dの6倍以上の貫通孔の孔加工を施す、請求項2に記載の鋳物孔加工品の形成方法。
  4.  前記鋳抜き孔は中子を用いて形成されることを特徴とする請求項1に記載の鋳物孔加工品の形成方法。
  5.  前記鋳抜き孔はフルモールド鋳造法を用いて形成されることを特徴とする請求項1に記載の鋳物孔加工品の形成方法。
  6.  前記鋳抜き孔は前記鋳物を貫通する中子を用いて形成されることを特徴とする請求項4に記載の鋳物孔加工品の形成方法。
  7.  前記鋳抜き孔はフルモールド鋳造法において前記鋳物を貫通させる消失模型を用いて形成されることを特徴とする請求項5に記載の鋳物孔加工品の形成方法。
  8.  前記鋳物の製造誤差範囲である第1の長さH1は最大4mmに設定されることを特徴とする請求項6に記載の鋳物孔加工品の形成方法。
  9.  鋳抜き孔に連通するようにドリルで孔加工が施された鋳物のケーシングであって、
     前記ドリルで孔加工が施される位置の幅が、少なくとも前記ドリルの直径Dに鋳物の製造誤差範囲である第1の長さH1を加えた第2の長さH2を有する平坦な内壁面を含む、鋳抜き孔と、
     前記ドリルによって孔加工され、前記平坦な内壁面を通して前記鋳抜き孔の内部と前記鋳物の外部とを連通する貫通孔と
     を備える、鋳物のケーシング。
  10.  前記貫通孔は、前記鋳抜き孔の軸方向における途中位置に連通するように設けられ、かつ前記鋳物のケーシングに対して、鋳造工程における前記鋳抜き孔の位置ずれが生じていないと仮定した場合の当該鋳抜き孔の仮想中心線と直交する向きの延長線上に回転軸が位置決めされたドリルによって孔加工されている、請求項9に記載の鋳物のケーシング。
  11.  前記貫通孔が前記鋳抜き孔の内部と前記鋳物の外部とを連通する深さは、前記ドリルの直径Dの6倍以上である、請求項10に記載の鋳物のケーシング。
  12.  鋳抜き孔の軸方向における途中位置に連通するようにドリルで孔加工が施された鋳物のケーシングであって、
     フルモールド鋳造法において前記鋳物を貫通させる消失模型を用いて形成され、前記ドリルで孔加工が施される位置の幅が、少なくとも前記ドリルの直径Dに、鋳物の製造誤差範囲として1.5mm~3mmの第1の長さH1を加えた第2の長さH2を有する平坦な内壁面を含む、鋳抜き孔と、
     前記鋳物のケーシングに対して、鋳造工程における鋳抜き孔の位置ずれが生じていないと仮定した場合の当該鋳抜き孔の仮想中心線と直交する向きに前記ドリルによって孔加工され、前記平坦な内壁面を通して前記鋳抜き孔の内部と前記鋳物の外部とを連通する貫通孔と
     を備えることを特徴とするスクリュ圧縮機のケーシング。
  13.  前記貫通孔は、前記平坦な内壁面を通して前記鋳抜き孔の内部と前記鋳物の外部とを連通する深さが前記ドリルの直径Dの6倍以上である、請求項12に記載のスクリュ圧縮機のケーシング。
PCT/JP2014/081463 2014-01-30 2014-11-27 鋳物孔加工品の形成方法、鋳物のケーシング、及びスクリュ圧縮機のケーシング WO2015114932A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480074575.6A CN105934298B (zh) 2014-01-30 2014-11-27 铸造物孔加工件的形成方法、铸造物的壳体及螺旋压缩机的壳体
KR1020167022817A KR101862963B1 (ko) 2014-01-30 2014-11-27 주물 구멍 가공품의 형성 방법, 주물의 케이싱, 및 스크루 압축기의 케이싱
US15/114,146 US10352323B2 (en) 2014-01-30 2014-11-27 Method for forming hole-processed cast, cast casing, and screw compressor casing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014015951A JP6279915B2 (ja) 2014-01-30 2014-01-30 鋳物孔加工品の形成方法及びスクリュ圧縮機のケーシング
JP2014-015951 2014-01-30

Publications (1)

Publication Number Publication Date
WO2015114932A1 true WO2015114932A1 (ja) 2015-08-06

Family

ID=53756526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081463 WO2015114932A1 (ja) 2014-01-30 2014-11-27 鋳物孔加工品の形成方法、鋳物のケーシング、及びスクリュ圧縮機のケーシング

Country Status (6)

Country Link
US (1) US10352323B2 (ja)
JP (1) JP6279915B2 (ja)
KR (1) KR101862963B1 (ja)
CN (1) CN105934298B (ja)
TW (1) TWI566862B (ja)
WO (1) WO2015114932A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109848371B (zh) * 2018-11-29 2021-04-02 奥夫尔科精铸机械(昆山)有限公司 一种压缩机机壳的成型方法及压缩机
CN112719352B (zh) * 2020-12-24 2022-11-22 常德靖通机械有限公司 一种烟草机械使用的凹槽变向加工专用工具
CN114193089A (zh) * 2021-11-25 2022-03-18 安徽尚豪齿轮科技有限公司 一种罗拉车下送料组件安装座的加工工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111083A (en) * 1976-03-13 1977-09-17 Honda Eng Kk Method of processing casting hole
JPS56131819A (en) * 1980-03-14 1981-10-15 Kubota Ltd Manufacture of engine crankshaft
JP2009243404A (ja) * 2008-03-31 2009-10-22 Toyota Industries Corp スクロール型圧縮機の固定スクロールにおける吐出ポート形成方法及びスクロール型圧縮機
JP2012011477A (ja) * 2010-06-30 2012-01-19 Hino Motors Ltd ドリル孔加工時のドリル逃げ防止構造

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263004A (ja) 1985-09-13 1987-03-19 Toyota Motor Corp 交差穴加工におけるバリ除去方法
JPS6261955U (ja) 1985-10-09 1987-04-17
JP3045711B2 (ja) 1998-11-10 2000-05-29 株式会社木村鋳造所 フルモールド鋳造法
DE10301367A1 (de) * 2003-01-16 2004-07-29 Mahle Gmbh Verfahren zum Einbringen von Shakerbohrungen in den Kühlkanal eines einteiligen Kolbens
US7690482B2 (en) * 2005-02-07 2010-04-06 Carrier Corporation Screw compressor lubrication
CN101208176A (zh) * 2005-06-22 2008-06-25 玛斯股份有限公司 一种用于机械加工、尤其是用于对轻质合金轮钻孔和车削的方法,以及根据该方法运行的机械加工设备
US7325587B2 (en) * 2005-08-30 2008-02-05 United Technologies Corporation Method for casting cooling holes
JP5103305B2 (ja) 2008-07-07 2012-12-19 日立オートモティブシステムズ株式会社 ポンプ装置
CN101850396B (zh) * 2009-04-01 2012-04-18 中国科学院金属研究所 具有内凸微结构的金属薄壳件两道次冲锻成形方法
CN101758360B (zh) * 2009-12-11 2012-09-12 沪东重机有限公司 船用柴油机机座上主轴承孔的返修加工方法
CN102554304A (zh) * 2012-02-17 2012-07-11 齐齐哈尔二机床(集团)有限责任公司 铣头体45°相交轴孔的加工方法
CN102717113A (zh) * 2012-05-25 2012-10-10 徐州中矿金海泵业有限公司 一种铸管管模排气孔的加工工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111083A (en) * 1976-03-13 1977-09-17 Honda Eng Kk Method of processing casting hole
JPS56131819A (en) * 1980-03-14 1981-10-15 Kubota Ltd Manufacture of engine crankshaft
JP2009243404A (ja) * 2008-03-31 2009-10-22 Toyota Industries Corp スクロール型圧縮機の固定スクロールにおける吐出ポート形成方法及びスクロール型圧縮機
JP2012011477A (ja) * 2010-06-30 2012-01-19 Hino Motors Ltd ドリル孔加工時のドリル逃げ防止構造

Also Published As

Publication number Publication date
JP2015139870A (ja) 2015-08-03
CN105934298A (zh) 2016-09-07
US10352323B2 (en) 2019-07-16
CN105934298B (zh) 2017-12-01
TWI566862B (zh) 2017-01-21
TW201544217A (zh) 2015-12-01
US20170002813A1 (en) 2017-01-05
JP6279915B2 (ja) 2018-02-14
KR20160113638A (ko) 2016-09-30
KR101862963B1 (ko) 2018-05-30

Similar Documents

Publication Publication Date Title
JP3969345B2 (ja) 回転軸支持装置および差動装置
WO2015114932A1 (ja) 鋳物孔加工品の形成方法、鋳物のケーシング、及びスクリュ圧縮機のケーシング
JP4926793B2 (ja) トランスミッションの潤滑構造
EP2562437B1 (en) Method of lubricating an angular contact ball bearing and ball bearing cage
KR20110095424A (ko) 스러스트 베어링용 급유 노즐
KR101991406B1 (ko) 커넥팅 로드 베어링, 및 베어링 장치
Chaudhari et al. The effects of pilot hole geometry on tool-work engagement efficacy in deep hole drilling
JP2008019948A (ja) 軸受ユニット
US20130016934A1 (en) Sliding bearing shell
KR20180054689A (ko) 변속기용 윤활 장치, 및 이와 같은 윤활 장치를 갖춘 변속기
WO2012126689A1 (de) Lageranordnung, strömungsmaschine sowie verfahren
JP3821902B2 (ja) 軸受装置
JP6299404B2 (ja) シャーバルブおよびトルクリミッタ
JP2012021624A (ja) 自動調心ころ軸受及び給油構造付自動調心ころ軸受
JP6239074B2 (ja) 軸受装置およびポンプならびに軸受装置の組立方法および排油溝位置調整方法
KR101182118B1 (ko) 주조용 롤
JP2005291248A (ja) リニアスライダー及びその製造方法
CN203585092U (zh) 轴承套、轴箱箱体及轴箱
JP6022185B2 (ja) 軸受装置およびポンプならびに軸受装置の組立方法および排油溝位置調整方法
JP5043798B2 (ja) すべり軸受および軸受装置
JP5244762B2 (ja) スラスト軸受
JP2008038999A (ja) 軸受ユニット
CN105058000A (zh) 齿轮箱箱盖的加工方法
JP2022052501A (ja) 回転電機用のロータの製造方法
EP3353437B1 (en) Method for uniforming temperature in a shaft supported by a fluid bearing, bearing system and turbomachine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881009

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15114146

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167022817

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14881009

Country of ref document: EP

Kind code of ref document: A1