WO2015114822A1 - 圧力リングおよび圧力リング用母材 - Google Patents

圧力リングおよび圧力リング用母材 Download PDF

Info

Publication number
WO2015114822A1
WO2015114822A1 PCT/JP2014/052344 JP2014052344W WO2015114822A1 WO 2015114822 A1 WO2015114822 A1 WO 2015114822A1 JP 2014052344 W JP2014052344 W JP 2014052344W WO 2015114822 A1 WO2015114822 A1 WO 2015114822A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure ring
coating
amorphous carbon
main body
range
Prior art date
Application number
PCT/JP2014/052344
Other languages
English (en)
French (fr)
Inventor
丸山 弘晃
敦 中澤
佐藤 智之
Original Assignee
Tpr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tpr株式会社 filed Critical Tpr株式会社
Priority to JP2015553939A priority Critical patent/JP5890946B2/ja
Priority to PCT/JP2014/052344 priority patent/WO2015114822A1/ja
Publication of WO2015114822A1 publication Critical patent/WO2015114822A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F5/00Piston rings, e.g. associated with piston crown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a pressure ring and a base material for the pressure ring.
  • a pressure ring which is a kind of piston ring for an internal combustion engine is mainly required to have an airtight action, a heat transfer function and durability.
  • Various types of pressure rings have been proposed.
  • Patent Document 1 discloses an austenitic stainless steel that is used as a counterpart material for an aluminum alloy cylinder liner and has a linear expansion coefficient of 15 ⁇ 10 ⁇ 6 / ° C. or more for the purpose of suppressing the generation of blow-by gas.
  • a pressure ring used as a base material for a pressure ring has been proposed.
  • Patent Document 2 discloses that a pressure ring that can be used in an environment with a high thermal load of an internal combustion engine with a high compression ratio and that has excellent thermal conductivity and the like is provided in terms of mass%. : 0.45 to 0.55, Si: 0.15 to 0.35, Mn: 0.65 to 0.95, Cr: 0.8 to 1.10, V: 0.15 to 0.25 And a pressure ring in which spheroidized cementite is dispersed in a tempered martensite matrix. Further, when the piston is made of aluminum, the aluminum softens as the temperature of the combustion chamber rises, and the pressure ring is struck and slid in the ring groove of the piston, and the ring groove is likely to be worn. From this point, it is required to lower the ring groove temperature by using a pressure ring having high heat conduction. On the other hand, in the pressure ring described in Patent Document 2, the thermal conductivity can be set to 35 W / m ⁇ K or more.
  • JP 2011-247310 A (Claims 1 and 3, paragraphs 0003 and 0008, etc.)
  • the internal combustion engine has been made of a structure in which an aluminum alloy is used for the cylinder block and a cast iron cylinder liner is cast in the cylinder bore to reduce the weight.
  • an aluminum alloy piston is used in combination with such an aluminum alloy cylinder block.
  • blow-by gas is a gas that leaks through the gap between the piston and the cylinder inner wall, and is provided in the gap between the pressure rings existing on the gas leakage path or on the outer peripheral surface of the pressure ring and the piston. It leaks through a gap formed between the ring groove.
  • JIS G3561 (equivalent to SAE 9254)
  • SWOSC-V is the mainstream of the pressure ring base material used in ordinary internal combustion engines, and a coating with high wear resistance is applied to the outer peripheral surface of the pressure ring. ing.
  • martensitic stainless steel JIS SUS420J2, SUS440B, etc.
  • the linear expansion coefficient of the cylinder block made of aluminum alloy is about 15 ⁇ 10 ⁇ 6 / ° C.
  • the linear expansion coefficient of the constituent material is at a level of 11 ⁇ 10 ⁇ 6 / ° C. or higher and 13.5 ⁇ 10 ⁇ 6 / ° C. or lower.
  • a pressure ring having a higher linear expansion coefficient than a pressure ring using a base material equivalent to SWOSC-V of G3561 for example, a pressure ring using an austenitic stainless steel having a linear expansion coefficient of 15 ⁇ 10 ⁇ 6 / ° C. or more as exemplified in Patent Document 1 as a base material for the pressure ring. It is possible to use it.
  • the present invention has been made in view of the above circumstances.
  • an internal combustion engine including at least an aluminum alloy cylinder block and an aluminum alloy piston
  • the amount of blow-by gas is small from the initial use of the internal combustion engine, and the internal combustion engine is long. It is an object of the present invention to provide a pressure ring that can suppress an increase in the amount of blow-by gas over time even when used over a period of time, and a base material for a pressure ring that is used therefor.
  • the pressure ring of the present invention is used in an internal combustion engine having at least an aluminum alloy cylinder block and an aluminum alloy piston, and is a ring-shaped pressure ring main body having a joint and a hard covering the outer peripheral surface of the pressure ring main body.
  • a material having a mean thermal expansion coefficient in the range of room temperature to 200 ° C. is 13.0 ⁇ 10 ⁇ 6 / ° C.
  • the material constituting the pressure ring main body has a thermal conductivity of 30.0 W / It is a carbon steel with a martensite composition of m ⁇ K or more, and the hard coating is a hard coating selected from a nitride coating and an amorphous carbon coating, and is applied to the upper surface side portion and the lower surface side portion of the pressure ring main body portion. Is characterized in that a nitride layer having a Vickers hardness HV in the range of 700 to 900 is formed.
  • the nitride coating has any film composition selected from CrN-based and TiAlN-based, and the surface has a Vickers hardness HV in the range of 800 to 2500. It is preferable to have hardness.
  • the amorphous carbon coating has a surface hardness in the range of 1200 to 3200 in terms of Vickers hardness HV, and has a hydrogen concentration of 0.3 at% or less
  • the first amorphous carbon layer and the second amorphous carbon layer having different film quality from the first amorphous carbon layer are alternately laminated in order from the side where the pressure ring main body portion of the amorphous carbon coating is located. It is preferable.
  • a Ti film, a Cr film, a Si film and a V film having a thickness of 0.1 ⁇ m or more and 1.0 ⁇ m or less between the amorphous carbon film and the pressure ring body. It is preferable that an adhesive layer selected from coatings is provided.
  • the thickness of the nitride layer provided on the upper surface side portion and the lower surface side portion of the pressure ring main body is preferably in the range of 10 ⁇ m or more and 50 ⁇ m or less.
  • the pressure ring base material of the present invention has a thermal conductivity of 30 W / m ⁇ K or more, Cr of 0.9 mass% to 1.9 mass%, and V of 0.05 mass% to 0.4 mass. %, And a martensitic carbon steel having an average linear expansion coefficient of 13.2 ⁇ 10 ⁇ 6 / ° C. or more in the range of room temperature to 200 ° C.
  • the amount of blow-by gas is small from the initial use of the internal combustion engine, and the internal combustion engine is used for a long period of time. It is possible to provide a pressure ring capable of suppressing an increase in the amount of blow-by gas over time and a base material for a pressure ring used therefor.
  • FIG. 2A is a diagram showing an example of the cross-sectional structure of the pressure ring shown in FIG. 1
  • FIG. 2B is a diagram showing another example of the cross-sectional structure of the pressure ring shown in FIG.
  • FIG. 2C is a view showing another example of the cross-sectional structure of the pressure ring shown in FIG.
  • It is a schematic schematic diagram (top view) for demonstrating the measuring method of an average linear expansion coefficient.
  • the pressure ring of the present embodiment is used for an internal combustion engine including at least an aluminum alloy cylinder block and an aluminum alloy piston.
  • the aluminum alloy cylinder block of the internal combustion engine has a structure in which a cast iron cylinder liner is cast in the cylinder bore.
  • the pressure ring of this embodiment is provided with the ring-shaped pressure ring main-body part which has a joint, and the hard film which coat
  • the material constituting the pressure ring main body is carbon steel having a martensite composition with a thermal conductivity of 30.0 W / m ⁇ K or higher, and a hard coating.
  • a hard film selected from a nitride film and an amorphous carbon film and the upper surface portion and the lower surface portion of the pressure ring main body portion are nitrided with a Vickers hardness HV in the range of 700 to 900. A layer is formed.
  • the average linear expansion coefficient is 13.0 ⁇ 10 ⁇ 6 / ° C. or more. Therefore, the pressure ring abutment clearance follows the cylinder bore against the thermal expansion of the aluminum alloy cylinder block. Is easily suppressed. For this reason, an increase in the amount of blow-by gas at the initial use of the internal combustion engine can be suppressed. Furthermore, the pressure ring of this embodiment includes a pressure ring using martensitic stainless steel (linear expansion coefficient: less than 13.0 ⁇ 10 ⁇ 6 / ° C.) that has been widely used as a base material for pressure rings.
  • the conventional pressure ring Compared to the thermal expansion of an aluminum alloy cylinder block (linear expansion coefficient: 15 ⁇ 10 ⁇ 6 / ° C to 21 ⁇ 10 ⁇ 6 / ° C), the conventional pressure ring Compared with, it is possible to suppress an increase in blow-by gas amount. This also applies to the case where the pressure ring according to the present embodiment is used in an internal combustion engine made of an aluminum alloy having a high compression ratio or a supercharger and having a high output and a high thermal load.
  • the average linear expansion coefficient of the pressure ring means a linear expansion coefficient measured in a state of the pressure ring that is ready for use in the internal combustion engine. Details of the method of measuring the average linear expansion coefficient will be described later.
  • the average linear expansion coefficient of the pressure ring is preferably as close as possible to the linear expansion coefficient of the aluminum alloy constituting the internal combustion engine, but a pressure ring base material capable of ensuring a good balance of other characteristics other than the average linear expansion coefficient is also provided. from the viewpoint of available, preferably in the range of 13.0 ⁇ 10 -6 /°C ⁇ 14.0/10 -6 / °C , 13.2 ⁇ 10 -6 /°C ⁇ 13.6 ⁇ 10 -6 More preferably within the range of / ° C.
  • the pressure ring attached to the ring groove provided on the outer peripheral surface of the aluminum alloy piston is used for a long period of time, the pressure due to the contact between the side surface (upper surface and lower surface) of the pressure ring and the ring groove The wear of the side surface of the ring and / or the ring groove proceeds. Accordingly, the amount of blow-by gas increases as the clearance between the side surface of the pressure ring and the ring groove increases with time. For this reason, the side surface of the pressure ring needs to have an appropriate hardness capable of minimizing the total wear amount of the wear amount of the pressure ring itself and the wear amount of the ring groove surface which is the counterpart member.
  • a nitride layer having a Vickers hardness HV in the range of 700 to 900 is formed on the upper surface side portion and the lower surface side portion of the pressure ring main body. For this reason, even when the internal combustion engine is used for a long time, the total wear amount of the wear amount of the side surface of the pressure ring and the wear amount of the ring groove surface provided on the outer peripheral surface of the aluminum alloy piston is minimized. Is easy. For this reason, the increase in blow-by gas amount over time can be suppressed.
  • the Vickers hardness HV is less than 700, the wear on the side surface of the pressure ring becomes remarkable, so the total wear amount increases.
  • the Vickers hardness HV is preferably in the range of 750 to 900, more preferably in the range of 795 to 850.
  • the nitrided layer can be formed by appropriately using a known nitriding method for nitriding a metal surface, but it is preferably formed by using a gas nitriding treatment or a salt bath nitriding treatment in terms of cost.
  • the nitriding conditions can be appropriately selected so that the Vickers hardness HV is in the range of 700 to 900.
  • the thermal conductivity of the material (pressure ring base material) constituting the pressure ring main body is 30.0 W / m ⁇ K or more.
  • the surface hardness of the pressure ring side surface is an appropriate value (Vickers hardness HV) so that not only the pressure ring side surface but also the ring groove is not significantly worn. 700 to 900). Therefore, even if the pressure ring of the present embodiment is used in an internal combustion engine with a high compression ratio or a supercharger that has a higher combustion temperature and a higher output and higher heat load, wear of the ring groove becomes more prominent. As a result, the increase in blow-by gas amount over time can be suppressed.
  • the thermal conductivity of the pressure ring base material is not particularly limited as long as it is 30.0 W / m ⁇ K or more, but an average linear expansion coefficient of 13.0 ⁇ 10 ⁇ 6 / ° C. or more can be realized.
  • a pressure ring base material in which a nitride layer having an appropriate hardness (Vickers hardness HV 700 to 900) can be formed on the side surface of the pressure ring 30.0 W / m ⁇ K to 34.0 W / m ⁇ K is preferable, and 31.5 W / m ⁇ K to 32.4 W / m ⁇ K is more preferable.
  • the amount of blow-by gas also increases over time due to an increase in the joint clearance of the pressure ring with the progress of wear on the outer peripheral sliding surface of the pressure ring.
  • the outer peripheral surface of the pressure ring main body is covered with a hard coating.
  • the hard film a nitride film or an amorphous carbon film is used because it has excellent wear resistance and scuff resistance on the outer peripheral sliding surface (that is, the hard film surface).
  • linear expansion characteristics of these hard coatings tend to be slightly lower than the lower limit (13.2 ⁇ 10 ⁇ 6 / ° C.) of the average linear expansion coefficient of the pressure ring base material constituting the pressure ring main body.
  • the lower limit (13.2 ⁇ 10 ⁇ 6 / ° C.) of the average linear expansion coefficient of the pressure ring base material constituting the pressure ring main body since it has characteristics close to this, it is advantageous in that there is no fear that the average linear expansion coefficient of the pressure ring of this embodiment will be significantly reduced.
  • the amount of blow-by gas is small from the initial use of the internal combustion engine, and the internal combustion engine is Even if it is used for a long period of time, an increase in the amount of blow-by gas over time can be suppressed.
  • an increase in blow-by gas amount over time can be suppressed.
  • FIG. 1 is an external view of the pressure ring of the present embodiment, and is a view of the pressure ring as viewed from the upper surface or the lower surface.
  • a pressure ring 10 shown in FIG. 1 has a ring shape having a joint 12. In FIG. 1, the description of the hard coating is omitted.
  • FIG. 2 is a schematic end view showing an example of a cross-sectional structure of the pressure ring. Specifically, FIG. 2 is a view showing a cross-sectional structure between A1 and A2 in FIG. 2A, 2B, and 2C, the pressure ring 10 includes a pressure ring body 20 and a hard coating 30 that covers the outer peripheral surface 22 of the pressure ring body 20.
  • the nitride layer 40 is necessarily formed on the upper surface portion 24U and the lower surface portion 24B of the pressure ring body 20.
  • the nitride layer 40 may also be formed on the inner peripheral surface side portion 24L of the pressure ring main body 20 as shown in FIGS. 2 (A), 2 (B), and 2 (C).
  • the pressure ring main body 20 may also be formed on the outer peripheral surface side portion 24R.
  • the nitride film can be formed, for example, by a known PVD (Physical Vapor Deposition) method such as an arc ion plating method or a sputtering method.
  • the film composition of the nitride coating is preferably selected from CrN or TiAlN. These nitride films may contain oxygen or carbon.
  • the surface hardness of the nitride coating is preferably in the range of 800 to 2500, more preferably in the range of 1000 to 2100, in terms of Vickers hardness HV. By setting the Vickers hardness HV to 800 or more, it becomes easy to ensure wear resistance.
  • the thickness of the nitride coating is preferably in the range of 0.01 mm or more and 0.04 mm or less. By making the thickness of the nitride coating 0.01 mm or more, it becomes easy to ensure wear resistance. Moreover, by making the thickness of the nitride film 0.04 mm or less, it becomes easy to suppress the cost by suppressing the increase in the film formation time. In addition, it becomes easy to prevent a decrease in the average linear expansion coefficient of the pressure ring accompanying an increase in the thickness of the nitride film.
  • the amorphous carbon film is formed by a known PVD method such as an arc ion plating method or a sputtering method.
  • a film can be formed.
  • the hydrogen concentration of the amorphous carbon film is preferably a concentration that can be said to be substantially free of hydrogen in the film, that is, 0.3 at% or less.
  • Such a hydrogen concentration is realized by forming a film with an intentional hydrogen supply zero such as flowing hydrogen gas or methane gas into the film forming chamber when forming an amorphous carbon film. Can do.
  • the hydrogen concentration contained in the amorphous carbon film 0.3at% or less By making the hydrogen concentration contained in the amorphous carbon film 0.3at% or less, it becomes easy to ensure heat resistance, low friction and wear resistance, and hydrogen is intentionally supplied during film formation. Compared with the amorphous carbon coating produced in (i.e., the amorphous carbon coating having a hydrogen concentration exceeding 0.3 at%), excellent sliding characteristics can be secured. In order to further improve heat resistance, low friction properties, and wear resistance, the hydrogen concentration is more preferably 0.1 at% or less.
  • the thickness of the amorphous carbon film is preferably in the range of 3 ⁇ m to 15 ⁇ m. By setting the thickness of the amorphous carbon coating to 3 ⁇ m or more, it becomes easy to ensure wear resistance. By setting the thickness of the amorphous carbon coating to 15 ⁇ m or less, it becomes easy to suppress the cost by suppressing an increase in film formation time. In addition, it becomes easy to prevent a decrease in the average linear expansion coefficient of the pressure ring accompanying an increase in the thickness of the nitride film.
  • the surface hardness of the amorphous carbon coating is preferably in the range of 1200 to 3200, more preferably in the range of 1500 to 2500 in terms of Vickers hardness HV. By setting the Vickers hardness HV to 1200 or more, it becomes easy to ensure wear resistance. By setting the Vickers hardness HV to 3200 or less, it becomes easy to suppress cracks, chips and peeling.
  • the amorphous carbon film may have a laminated structure in which two or more layers having different film qualities (film composition and / or film structure) are laminated.
  • a laminated structure in order from the side where the pressure ring main body portion of the amorphous carbon coating is located, the first amorphous carbon layer and the second amorphous carbon layer having different film quality from the first amorphous carbon layer are preferably laminated alternately.
  • one of the relatively harder layers is superior in wear resistance but lacks flexibility of the layer. Therefore, if the amorphous carbon coating is composed only of the hard layer, it will be cracked or chipped. , Peeling easily occurs.
  • the relatively softer other layer soft layer
  • the bonding force between the hard layers is improved and an amorphous structure having a laminated structure is provided. It becomes easy to suppress cracking, chipping and peeling of the entire carbon film.
  • the layer formed initially on the outer peripheral surface of the pressure ring body is a soft layer. Thereby, peeling with a pressure ring main-body part and the amorphous carbon film which has a laminated structure can be suppressed more.
  • the hard layer is considered to be composed of a ta-C film having a tetrahedral amorphous carbon structure or a film having a film quality close to this
  • the soft layer is an a- having an amorphous carbon structure that is softer than the ta-C film. It is thought that it consists of a C film or a film having a film quality close to this.
  • the film forming method, the film forming conditions, or the film forming apparatus may be different from each other when forming each amorphous carbon layer.
  • the thickness of the soft layer and the hard layer is not particularly limited, but the thickness of the hard layer is preferably larger than the thickness of the soft layer. This makes it extremely easy to further improve the wear resistance of the amorphous carbon film having a laminated structure while suppressing cracks, chips and peeling.
  • the thickness of the soft layer is preferably in the range of 5 nm to 80 nm and more preferably in the range of 8 nm to 50 nm per layer. By setting the thickness of the soft layer per layer to 5 nm or more, the bonding force between the hard layers can be more reliably ensured. Moreover, the fall of abrasion resistance resulting from a soft layer can be suppressed more reliably by making thickness into 80 nm or less.
  • the thickness of the hard layer is preferably in the range of 100 nm or more and 920 nm or less per layer, and more preferably in the range of 200 nm or more and 600 nm or less.
  • the thickness of the hard layer per layer is preferably in the range of 100 nm or more and 920 nm or less per layer, and more preferably in the range of 200 nm or more and 600 nm or less.
  • a Ti coating, a Cr coating, An adhesive layer selected from any one of a Si coating and a V coating may be provided.
  • the thickness of these adhesive layers is preferably 0.1 ⁇ m or more and 1.0 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the thickness of the nitride layer (side surface nitride layer) formed on the upper surface portion and the lower surface portion of the pressure ring main body is preferably in the range of 10 ⁇ m to 50 ⁇ m, and in the range of 20 ⁇ m to 40 ⁇ m. It is more preferable.
  • By setting the thickness of the side surface nitrided layer to 10 ⁇ m or more it becomes easy to ensure the wear resistance of the upper surface and the lower surface of the pressure ring more reliably.
  • the thickness of the side surface nitrided layer to 50 ⁇ m or less, it is possible to suppress a significant increase in the time required for the nitriding treatment when forming the nitrided layer.
  • a nitride layer (outer peripheral surface nitrided layer) may be provided also on the outer peripheral surface portion by nitriding the outer peripheral surface portion of the pressure ring main body portion.
  • the composition and physical properties thereof are particularly limited as long as the following (1) to (3) are satisfied. is not.
  • a nitrided layer is formed or a hard film is provided to obtain a completed pressure ring. It can be 0 ⁇ 10 ⁇ 6 / ° C. or higher.
  • nitriding is performed on the base material for the pressure ring, it is possible to form a nitrided layer having a surface hardness in the range of 700 to 900 in terms of Vickers hardness HV.
  • (A) Thermal conductivity is 30 W / m ⁇ K or more
  • (b) Cr is 0.9 mass% or more and 1.9 mass% or less
  • V is 0.05 mass% or more and 0.4 mass% or less.
  • the carbon steel has a martensite composition including (c) an average linear expansion coefficient in the range from room temperature to 200 ° C. being 13.2 ⁇ 10 ⁇ 6 / ° C. or higher.
  • the average linear expansion coefficient of the base material for the pressure ring means a value measured in a state of a test piece obtained by processing a wire-like base material for the pressure ring into an annular shape similar to the pressure ring.
  • the test piece used in this measurement is simply a wire-shaped pressure ring base material processed into an annular shape, and various surface treatments such as formation of a nitride layer necessary to complete the pressure ring, It is a member in a state where various hard coatings are not formed. Details of the method of measuring the average linear expansion coefficient will be described later.
  • those widely used as a base material for pressure rings include martensitic stainless steel containing a large amount of Cr at a ratio of about 10% by mass or more, and steel materials equivalent to JIS G3651 SWOSC-V. Is mentioned.
  • the present inventors have also studied these steel materials, but for each steel material, as shown in the above (1) to (3), while ensuring a relatively high thermal conductivity and average linear expansion coefficient.
  • a nitride layer is formed on the side surface of the pressure ring main body, it is impossible to obtain an appropriate hardness that suppresses wear on the side surface of the pressure ring but does not cause significant wear on the ring groove as the counterpart member.
  • the average linear expansion coefficient of the base material for the pressure ring of the present embodiment is 13.2 ⁇ 10 ⁇ 6 / ° C. or more. Therefore, the present embodiment is performed using the base material for the pressure ring of the present embodiment.
  • a pressure ring of the form is manufactured, it is very easy to adjust the average linear expansion coefficient of the pressure ring to 13.0 ⁇ 10 ⁇ 6 / ° C. or more.
  • the Vickers hardness of the nitrided layer is greatly influenced by the contents of Cr and V contained in carbon steel having a martensite composition.
  • the base material for pressure rings of this embodiment contains Cr in a range of 0.9 mass% to 1.9 mass% and V in a range of 0.05 mass% to 0.4 mass%.
  • a nitride layer having an appropriate surface hardness (Vickers hardness of 700 to 900 in HV) that can suppress significant wear on the side surface of the pressure ring or the ring groove, which directly leads to an increase in the amount of blowby gas over time, can be easily obtained. Can be formed. Further, if the content of these elements is too large, the thermal conductivity and / or the linear expansion coefficient are lowered, so that it is difficult to realize the physical property values shown in the above (a) and (c).
  • composition A a composition of the carbon steel having the martensite composition satisfying the above (a) to (c)
  • composition A a composition of the carbon steel having the martensite composition satisfying the above (a) to (c)
  • composition A a composition of the carbon steel having the martensite composition satisfying the above (a) to (c)
  • a part of C contained in the carbon steel having the above composition is dissolved in the matrix, contributing to improvement of hardness and fatigue strength, and another part of the steel generates carbides and wear resistance. It is an element that contributes to improvement.
  • the C content is 0.55% by mass or more, it is easy to ensure wear resistance, and when it is 0.65% by mass or less, it is easy to ensure cold workability.
  • Si is an element having an effect of increasing the strength at high temperature. Here, it becomes easy to ensure an appropriate strength by setting the Si content to 1.8% by mass or more. Also, by making the Si content 2.4% by mass or less, it is possible to more reliably prevent the cold workability and toughness from being deteriorated, and more reliably avoid the loss of hot workability and thermal conductivity.
  • heat sagability can also be improved by making said Si content into 1.8 mass% or more.
  • Mn is an element added for decarburization at the time of melting of steel and S fixation in the steel.
  • decarburization and S fixation can be more reliably performed by setting Mn content to 0.3 mass% or more.
  • the fall of cold workability can be prevented more reliably by making Mn content 1.0 mass% or less.
  • Cr is an element that contributes to improving the wear resistance of the nitrided layer because it combines with C to form carbides and has the effect of increasing the hardness of the nitrided layer formed during nitriding.
  • the Cr content 0.9% by mass or more, it becomes easy to improve the wear resistance of the nitrided layer.
  • the fall of thermal conductivity and a linear expansion coefficient can be suppressed by making Cr content into 1.9 mass% or less.
  • Cr content shall be 1.2 mass% or more and 1.9 mass% or less.
  • V also combines with C to form carbides and has the effect of increasing the hardness of the nitrided layer formed during nitriding, and is therefore an element that contributes to improving the wear resistance of the nitrided layer.
  • V content 0.05% by mass or more, it becomes easy to improve the wear resistance of the nitrided layer.
  • V content 0.4 mass% or less the fall of a linear expansion coefficient and the deterioration of hot workability and cold workability can be suppressed.
  • V content exceeds 0.4 mass%, it exists in the tendency for the effect which improves abrasion resistance to be saturated.
  • Ni may be contained within a range of 0.1% by mass to 0.4% by mass.
  • nitride layer is formed on a base material for a pressure ring (hereinafter sometimes referred to as “base material”) processed into a predetermined shape as necessary, or a hard coating is formed.
  • base material a base material for a pressure ring
  • An evaluation sample was prepared.
  • the nitriding conditions and the hard coating conditions at this time are as follows.
  • nitriding conditions at this time are a processing temperature: 400 ° C. to 500 ° C., a processing time: 6 hours to 12 hours, and an atmosphere gas: a mixed gas containing NH 3 and N 2.
  • a processing temperature 400 ° C. to 500 ° C.
  • a processing time 6 hours to 12 hours
  • an atmosphere gas a mixed gas containing NH 3 and N 2.
  • amorphous carbonized film laminated DLC film
  • the inside of the apparatus was evacuated and depressurized while the base was set in the filtered arc ion plating apparatus, and then the base was heated. Thereafter, ion bombardment was performed with argon ions while a bias voltage was applied to the substrate in the range of ⁇ 50 to ⁇ 300V. Next, after setting the bias voltage within a range of ⁇ 50 to ⁇ 300 V, a Ti film was formed on the substrate as an adhesive layer.
  • the first amorphous carbon layer and the second amorphous carbon layer were alternately formed and laminated on the Ti film.
  • the first amorphous carbon layer is formed in an argon gas atmosphere using a carbon target in a state where a bias voltage is applied to the substrate within a range of ⁇ 50 to ⁇ 300 V using a sputtering apparatus. Filmed.
  • the second amorphous carbon layer was formed using a carbon target in a state where a bias voltage was applied to the substrate within a range of ⁇ 50 to ⁇ 300 V using a filtered arc ion plating apparatus. .
  • a gas containing hydrogen is introduced into the deposition chamber so that hydrogen is not taken into the film. Carried out without.
  • the thickness of the first amorphous carbon layer was 8 nm
  • the thickness of the second amorphous carbon layer was 400 nm.
  • one layer of the first amorphous carbon layer and one layer of the second amorphous carbon layer are made into one set of two layers, and this set is repeatedly laminated in units of two layers, and is formed until a predetermined thickness is reached. .
  • a single layer film sample 1 formed to a thickness (2 ⁇ m) consisting only of the first amorphous carbon layer and a single layer film sample 2 formed to a thickness (2 ⁇ m) consisting only of the second amorphous carbon layer. And a simple abrasion resistance test was conducted. The single layer film sample 1 was more easily worn than the single layer film sample 2, but there were fewer peelings, cracks, chips, and the like.
  • the amorphous carbon coatings formed were subjected to hydrogen analysis by an elastic recoil detection method (ERDA), and the hydrogen concentration in the coatings was measured, and all were 0.035 at%.
  • ERDA elastic recoil detection method
  • PVD (CrN) coating or PVD (TiAl) N coating PVD (CrN) coating or PVD (TiAl) N coating
  • the inside of the apparatus was evacuated and depressurized while the base material was set in the arc ion plating apparatus, and the base material was heated.
  • a metal target (Cr target or TiAl target) corresponding to the film composition of the nitride film to be formed is used with a bias voltage applied to the substrate in the range of ⁇ 500 to ⁇ 1000 V. Ion bombardment was performed.
  • the bias voltage was changed within the range of 0 to ⁇ 200 V, and a film was formed with a process gas introduced into the apparatus, and a nitride film having a predetermined thickness and film composition was obtained.
  • As the process gas with N 2 gas.
  • the average linear expansion coefficient of the pressure ring is that a ring gauge 60 is arranged on the hot plate 50, and a pressure ring 70 as a measurement sample is disposed on the inner peripheral side of the ring gauge 60.
  • the ring gauge 60 and the pressure ring 70 were heated in a state in which was placed, and the average linear expansion coefficient was determined from the relationship between the temperature at this time and the gap G of the joint 72 of the pressure ring 70.
  • the sample in a state in which the base material for the pressure ring is simply processed into a dimensional shape having a joint similar to the pressure ring. was used.
  • the gap G of the abutment 72 was measured with a hot plate having a ring gauge and a pressure ring installed on the stage (XY table) of the optical microscope.
  • the temperature was monitored using a thermocouple and a temperature recorder.
  • Thermocouples are heat resistant tapes at positions about 90 degrees in the circumferential direction (positions A1 to A4 and B1 to B4 in FIG. 3) with respect to the upper surface of each pressure ring and ring gauge.
  • the other end of the thermocouple was connected to a temperature recorder.
  • ⁇ Hot plate AS ONE hot plate, model number ND-1 (heater capacity: 670 W, maximum temperature: 350 ° C., microcomputer PID control system)
  • ⁇ Ring gauge The ring gauge was cut out from a commercially available alumina material into an outer diameter of 150 mm, an inner diameter of 86 mm, and a thickness of 15 mm.
  • the ring gauge material has a purity of 99.5%, a density of 3.9 g / cm 3 , a hardness of 15.7 GPa, a linear expansion coefficient of 8.7 ⁇ 10 ⁇ 6 / ° C. (25 ° C.
  • Measurement sample pressure ring and base material for pressure ring:
  • the dimensions of the pressure ring used for the measurement are an engine cylinder bore diameter of ⁇ 86 mm, a dimension in the bore axis direction (pressure ring width) of 1.2 mm, and a dimension in the bore diameter direction (pressure ring thickness) of 2.9 mm.
  • the pressure ring was formed by forming a predetermined nitride layer or a hard film on the base material for the pressure ring processed into a ring shape.
  • thermocouple K thermocouple / optical microscope: A measurement microscope (model number MF-A1010C) manufactured by Mitutoyo Corporation was used, and the minimum display amount was 0.001 mm for measurement.
  • Temperature recording device A temperature recording device (midi LOGGER, model number GL220) manufactured by Graphtec was used.
  • the gap G of the joint 72 at each temperature necessary for obtaining the average linear expansion coefficient was measured by the following procedures (1) to (7).
  • (1) Place a ring gauge on a measurement table of a three-dimensional coordinate measuring machine manufactured by Tokyo Seimitsu in a constant temperature room at a room temperature of 20 ° C. (T 20 ), and 45 in the circumferential direction of the inner peripheral surface of the ring gauge through a measurement probe. detecting the coordinates of the ring gauge circumference each time, the average diameter which is processing from these eight points coordinates a ring gauge inner diameter GD 20.
  • (2) A K thermocouple is fixed to a predetermined position of the ring gauge and the pressure ring with heat-resistant tape.
  • the inner diameter of the ring gauge at room temperature 20 ° C. is GD 20 , and the linear expansion coefficient ( ⁇ G) is 8.7 ⁇ 10 ⁇ 6 / ° C.
  • the inner circumference (GL 25 ) of the ring gauge at room temperature (25 ° C.) was determined based on the following equation.
  • GL 25 GD 20 ⁇ ⁇ + (GD 20 ⁇ ⁇ ) ⁇ (T 25 ⁇ T 20 ) ⁇ ⁇ G
  • the inner circumference (GL 150 ) of the ring gauge at high temperature (150 ° C.) was determined based on the following equation.
  • GL 150 GD 20 ⁇ ⁇ + (GD 20 ⁇ ⁇ ) ⁇ (T 150 ⁇ T 20 ) ⁇ ⁇ G
  • the circumference (RL 150 ) of the pressure ring outer periphery sliding surface at high temperature (150 ° C.) was obtained based on the following equation.
  • RL 150 GL 150 -s1 150
  • the amount of change in the circumference ( ⁇ RL 150 ) of the outer peripheral sliding surface of the pressure ring at high temperature (150 ° C.) was determined based on the following equation.
  • ⁇ RL 150 RL 150 -RL 25 (VII)
  • the inner circumference (GL 200 ) of the ring gauge at high temperature (200 ° C.) was determined based on the following equation.
  • GL 200 GD 20 ⁇ ⁇ + (GD 20 ⁇ ⁇ ) ⁇ (T 200 ⁇ T 20 ) ⁇ ⁇ G
  • the circumference (RL 200 ) of the pressure ring outer periphery sliding surface at high temperature (200 ° C.) was obtained based on the following equation.
  • RL 200 GL 200 -s1 200 (X)
  • the circumferential length change amount ( ⁇ RL 200 ) of the pressure ring outer peripheral sliding surface at high temperature (200 ° C.) was obtained based on the following equation.
  • ⁇ RL 200 RL 200 -RL 25 (XI)
  • the average linear expansion coefficient ( ⁇ R 200 ) at high temperature (200 ° C.) was determined based on the following formula.
  • ⁇ R 200 ( ⁇ RL 200 / RL 25 ) / (T 200 -T 25 )
  • the wear resistance of the outer peripheral sliding surface of the pressure ring was evaluated using a pin-on-plate reciprocating friction tester shown in FIG.
  • a load P is applied to the upper test piece 100, which is subjected to surface treatment (deposition of a hard film or formation of a nitrided layer by nitriding) on the tip of the pin as necessary.
  • the lower test piece 110 is pressed against the plate-shaped lower test piece 110, and the lower test piece 110 is reciprocated so that both slide.
  • the lower test piece 110 is fixed to the upper surface of the holding table 120 including the heater 122, and the lower test piece 110 can be heated as necessary.
  • a thermocouple (not shown in FIG. 4) is attached to the lower test piece 110 in order to monitor the temperature of the lower test piece 110.
  • the upper test piece 100 used in the reciprocating friction test is a member that looks like the outer peripheral side portion of the pressure ring. Surface treatment (deposition of a hard film or formation of a nitride layer) applied to the outer peripheral surface was performed.
  • the pin used for preparation of this upper test piece 100 is 8 mm in diameter, and the front-end
  • the lower test piece 110 is a member that looks like a cylinder bore of an aluminum alloy cylinder block in which a cast iron cylinder liner is cast, and cast iron of a cylinder bore equivalent material is used as the material of the plate.
  • lubricating oil was supplied to the sliding interface between the upper test piece 100 and the lower test piece 110 using a tubing pump or an air dispenser.
  • the test conditions at this time are as follows. ⁇ Stroke: 50mm ⁇ Load P: 100N ⁇ Speed: 300cycle / min -Temperature of lower test piece 110: room temperature (25 ° C.) ⁇ Lubricant used: 0W-20 (viscosity classification SAE J300) ⁇ Test time: 60 minutes
  • the shape of the tip of the upper test piece 100 and the surface of the lower test piece 110 are measured with a surface roughness meter. The amount of wear was determined.
  • tip part was observed with the optical microscope after completion
  • the wear resistance of the outer peripheral sliding surface of the pressure ring was evaluated using a pin-on-plate reciprocating friction tester shown in FIG.
  • the upper test piece 100 used in the reciprocating friction test is a member that looks like a side portion of the pressure ring, and a pressure ring base material is used as the material of the pin. Then, the same nitriding treatment as that of the side surface of the pressure ring was performed to form a nitride layer.
  • the pin used for preparation of this upper test piece 100 is 8 mm in diameter, and the front-end
  • the lower test piece 110 is a member resembling a piston made of an aluminum alloy, and a plate made of an aluminum alloy obtained by performing T6 treatment of JIS standard H0001 on an AC8A material of JIS standard H5202 was used.
  • lubricating oil was supplied to the sliding interface between the upper test piece 100 and the lower test piece 110 using a tubing pump or an air dispenser.
  • Test condition 1 assumes that the temperature of the combustion chamber of the internal combustion engine is standard.
  • Test condition 2 in which the temperature of the lower test piece 110 in test condition 1 is changed to a higher temperature is the same as that of the internal combustion engine. It is assumed that the pressure ring is used in an internal combustion engine with a high compression ratio or a high output and high thermal load with a supercharger when the temperature of the combustion chamber becomes higher.
  • the shape of the tip of the upper test piece 100 and the surface of the lower test piece 110 are measured with a surface roughness meter. The amount of wear was determined.
  • blow-by gas amount A pressure ring was attached to an engine having a displacement of 2400 cc and a bore diameter of ⁇ 87 mm, and the blow-by gas amount was measured.
  • the dimensions of each part of the pressure ring used for the evaluation were a width: 1.2 mm, a thickness of 2.5 mm, and a gap that affects the amount of blow-by gas: 0.20 mm.
  • the cooling water temperature was set to 110 ° C. and the lubricating oil temperature was set to 125 ° C. under the conditions of the engine speed: 7100 rpm, the load condition: WOT (wide open throttle).
  • the engine was operated for about 5 hours from the start of the break-in operation, and the average amount of blow-by gas generated per minute during this period was measured.
  • the lubricating oil temperature was set higher than the normal temperature (90 ° C.).
  • the blow-by gas amount is evaluated in a state where the outer peripheral sliding surface and side surface of the pressure ring and the ring groove are not substantially worn. That is, the main factor affecting the blow-by gas amount in this test is the average linear expansion coefficient of the pressure ring.
  • the thermal conductivity was measured by a laser flash method using a disk-shaped test piece (diameter 10 mm, thickness 3 mm) made of a base material for pressure ring.
  • a model LFA457 manufactured by NETZSCH was used as the measuring device, and the measurement temperature was room temperature.
  • Vickers hardness is measured according to JIS Z 2244 "Vickers hardness test-test method" under the conditions of a test force of 0.9807 N and a test force holding time of 15 s with a micro Vickers hardness meter after polishing the sample to a mirror surface. It measured according to.
  • Table 1 shows the material and physical property values of the base material for the pressure ring used for preparing samples used for evaluation of the average linear expansion coefficient, wear resistance, and blow-by gas amount.
  • the pressure ring base materials used to manufacture the pressure ring of the present embodiment are the pressure ring base materials A1 to A3.
  • the pressure ring base material B is a SWOSC-V equivalent material
  • the pressure ring base material C is a SUS440B equivalent material.
  • Tables 2 and 3 show the evaluation results of the average linear expansion coefficient of various pressure rings produced using the pressure ring base material shown in Table 1, the hardness of the pressure ring base material, and the outer peripheral surface of the pressure ring main body. And the surface treatment conditions for the upper and lower surfaces.
  • the surface hardness HV is in the range of 700 to 900 even if nitriding is performed on the upper and lower surfaces of the pressure ring body. The nitride layer could not be formed.
  • the average linear expansion coefficient of the pressure ring is less than 13 ⁇ 10 ⁇ 6 / ° C., and the hardness HV of the side surface of the pressure ring main body portion
  • the pressure ring base material used had a thermal conductivity coefficient of less than 30.0 W / m ⁇ K.
  • Table 4 shows the results of evaluating the wear resistance assuming the wear of the hard coating provided on the outer peripheral surface of the pressure ring and the cylinder bore.
  • the relative wear amount shown in Table 4 is the result of evaluating the wear amount of the upper test piece of Experimental Example B1 as the reference value (100).
  • Experimental example B1 is a simulated reproduction of the outer peripheral surface of a pressure ring that is widely used in automobile internal combustion engines that are currently on the market. The practical allowable value is determined to be 110 or less in terms of the relative wear amount of the upper test piece from the market results. From comparison results between Experimental Examples A1 to A9 and Experimental Example B1, it was found that wear can be significantly suppressed by providing a hard coating having a higher hardness than the nitride layer.
  • the surface hardness HV of the hard coating is desirably 3200 or less for the laminated DLC coating in order to suppress chipping and cracking of the hard coating, and CrN It was found that 2500 or less is desirable for PVD coatings having a TiAlN-based or TiAlN-based film composition.
  • Table 5 shows the results of evaluating the wear resistance assuming the wear of the nitride layer and the ring groove formed on the upper and lower surfaces (side surfaces) of the pressure ring.
  • the relative wear amount shown in Table 5 is a result of evaluating the wear amount in the test condition 1 of the upper test piece of Experimental Example D3 as the reference value (100).
  • Experimental example D3 is a simulated reproduction of the upper and lower surfaces of a pressure ring that is widely used in an internal combustion engine of a motor vehicle currently on the market.
  • the allowable value in practical use is determined to be 400 or less in the total sum (a1 + b1) of the relative wear amount of the upper test piece and the lower test piece in the test condition 1 from the market results.
  • Test condition 1 assumes a general internal combustion engine with a normal compression ratio and no supercharger, whereas test condition 2 has a high compression ratio or high output with a supercharger. Assuming the use of a pressure ring in an internal combustion engine with a high heat load, the temperature of the lower test piece is 150 ° C. In an internal combustion engine with high output and high heat load, the temperature of the combustion chamber is high, so that the temperature at the top of the piston increases and the viscosity of the lubricant also decreases. It is a reproduction.
  • the total amount of relative wear (a1 + b1) can be more suppressed when the nitride layer is formed. Further, when the nitride layer is formed, the surface hardness HV of the nitride layer is high. It was found that the higher the total amount of relative wear (a1 + b1), the lower the value.
  • the evaluation result of test condition 2 shows that the surface hardness HV of the nitrided layer is slightly higher than that of Experimental Example D4 in which the total amount of relative wear (a1 + b1) is the smallest in test condition 1 and the surface hardness HV of the nitrided layer is the highest. It was found that the total amount of relative wear (a2 + b2) was smaller in the experimental examples C1 to C3 set in the lower range (700 to 900).
  • Table 6 shows the evaluation results of the amount of blow-by gas.
  • the test time since the test time is short, it is considered that there is almost no influence of wear on the outer peripheral sliding surface and upper and lower surfaces of the pressure ring. For this reason, it is considered that the difference in blow-by gas amount between Example 16 and Comparative Example 5 is caused by the difference in the average linear expansion coefficient of the pressure ring.

Abstract

内燃機関の使用初期からブローバイガス量が小さく、かつ、内燃機関を長期間に渡って使用してもブローバイガス量の継時的な増大を抑制すること。 アルミニウム合金製シリンダブロックおよびアルミニウム合金製ピストンを備えた内燃機関に用いられ、合口を有するリング状の圧力リング本体部と、圧力リング本体部の外周面を被覆する硬質被膜とを備え、室温~200℃の範囲内での平均線膨張係数が、13.0×10-6/℃以上であり、圧力リング本体部を構成する材料が、熱伝導率が30.0W/m・K以上であるマルテンサイト組成の炭素鋼であり、硬質被膜が、窒化物被膜および非晶質炭素被膜から選択される硬質被膜であり、圧力リング本体部の上面側部分および下面側部分には、ビッカース硬さHVが700~900の範囲内である窒化層が形成されている圧力リングおよびこれに用いる圧力リング用母材。

Description

圧力リングおよび圧力リング用母材
 本発明は、圧力リングおよび圧力リング用母材に関するものである。
 内燃機関用のピストンリングの1種である圧力リングは、主として気密作用、伝熱機能および耐久性が要求される。この圧力リングとしては様々なものが提案されている。たとえば、特許文献1には、アルミニウム合金製シリンダライナの相手材として使用され、ブローバイガスの発生の抑制等を目的として、15×10-6/℃以上の線膨張係数を有するオーステナイト系ステンレス鋼を圧力リング用の母材として用いた圧力リングが提案されている。
 また、特許文献2には、高圧縮比の内燃機関の熱負荷の高い環境で使用することが可能で、熱伝導性等にも優れた圧力リングを提供することを目的として、質量%でC:0.45~0.55、Si:0.15~0.35、Mn:0.65~0.95、Cr:0.8~1.10、V:0.15~0.25の範囲で含む組成を有し、焼き戻しマルテンサイトマトリックス中に球状化セメンタイトが分散している圧力リングが提案されている。また、ピストンがアルミニウム製の場合、燃焼室温度の上昇に伴いアルミニウムが軟化し、ピストンのリング溝内で圧力リングによる叩きと摺動が生じて、リング溝の摩耗等が発生しやすくなる。この点からは、熱伝導の高い圧力リングを用いてリング溝温度を下げることが要求されている。これに対して、特許文献2に記載の圧力リングでは、熱伝導率を35W/m・K以上とすることもできる。
特許第4374160号(請求項1、段落0007等) 特開2011-247310号公報(請求項1、3、段落0003、0008等)
 また、近年では、内燃機関は軽量化のためシリンダブロックにアルミニウム合金を使用し、シリンダボアに鋳鉄製シリンダライナを鋳ぐるむ構造が採用され、加えて内燃機関の高熱負荷化、多燃料化などにより、圧力リングの外周面および上下面における摩耗の低減が要求されている。また、このようなアルミニウム合金製のシリンダブロックには、アルミニウム合金製のピストンが組み合わせて用いられる。
 このようなアルミニウム合金製の内燃機関においては、高出力化や低燃費化が求められると同時に、長期間の使用によっても出力の低下や燃費の悪化が生じにくいことも求められている。そして、このような要求を満たすためには、内燃機関のブローバイガス量を抑制することが必要である。なお、ブローバイガスは、燃焼室内のガスがピストンとシリンダ内壁とのすき間を伝って漏れるガスであり、ガスの漏洩経路上に存在する圧力リングの合口すき間や圧力リングとピストンの外周面に設けられたリング溝との間に形成されるすき間を経由して漏洩する。
 ここで、通常の内燃機関で使用される圧力リングの母材は、JIS G3561(SAE9254相当)のSWOSC-V相当が主流であり、圧力リングの外周面には耐摩耗性の高い被膜が施されている。圧力リングの上下面がより耐摩耗性が要求される場合には、母材としてCr成分を13質量%以上含有するマルテンサイト系ステンレス鋼(JIS SUS420J2、SUS440Bなど)を無処理ないし窒化処理したものが使用されている。これに対して、アルミニウム合金製シリンダブロックの線膨張係数は15×10-6/℃~21×10-6/℃程度の水準にあり、一方、シリンダブロック内で摺動する上述した圧力リングを構成する材料(圧力リング用母材)の線膨張係数は11×10-6/℃以上13.5×10-6/℃以下の水準である。
 このため、両者の線膨張係数の差の大きさに比例して、シリンダブロックが高温となった場合に圧力リングの合口すき間が増大することで、ブローバイガス量が増加する。このような問題に対処するためには、JIS
G3561のSWOSC-V相当の母材を用いた圧力リングよりもより高い線膨張係数を持つ圧力リングを用いることが有効であると考えられる。このような圧力リングとしては、たとえば、特許文献1に例示されるような15×10-6/℃以上の線膨張係数を有するオーステナイト系ステンレス鋼を圧力リング用の母材として用いた圧力リングを用いることが考えられる。
 一方、高圧縮比あるいは過給機付きなどの高出力・高熱負荷化したアルミニウム合金製の内燃機関においては、燃焼温度がより高くなる。このため、アルミニウム合金製シリンダブロックの更なる膨張により、圧力リングの合口すき間がより増大するため、ブローバイガス量もさらに増加する。このような場合においても特許文献1に例示されるような高い線膨張係数を有する圧力リングを用いることが有効であるとも考えられる。また、特許文献2に例示されるような高い熱伝導率を有する圧力リングを用いれば、アルミニウム合金製ピストンの熱を圧力リングを介してアルミニウム合金製シリンダブロック側へと逃がすことが容易になるため、間接的に圧力リングの合口すき間の増大を抑制し、ブローバイガス量の増加を抑制できるとも考えられる。しかしながら、これら従来の圧力リングでは、必ずしも長期間に渡って安定してブローバイガス量を抑制することができない。
 本発明は上記事情に鑑みてなされたものであり、アルミニウム合金製シリンダブロックおよびアルミニウム合金製ピストンを少なくとも備えた内燃機関において、内燃機関の使用初期からブローバイガス量が小さく、かつ、内燃機関を長期間に渡って使用してもブローバイガス量の継時的な増大を抑制できる圧力リングおよびこれに用いる圧力リング用母材を提供することを課題とする。
 上記課題は以下の本発明により達成される。すなわち、
 本発明の圧力リングは、アルミニウム合金製シリンダブロックおよびアルミニウム合金製ピストンを少なくとも備えた内燃機関に用いられ、合口を有するリング状の圧力リング本体部と、圧力リング本体部の外周面を被覆する硬質被膜とを備え、室温から200℃の範囲内における平均線膨張係数が、13.0×10-6/℃以上であり、圧力リング本体部を構成する材料が、熱伝導率が30.0W/m・K以上であるマルテンサイト組成の炭素鋼であり、硬質被膜が、窒化物被膜および非晶質炭素被膜から選択される硬質被膜であり、圧力リング本体部の上面側部分および下面側部分には、ビッカース硬さHVが700以上900以下の範囲内である窒化層が形成されていることを特徴とする。
 本発明の圧力リングの一実施形態は、窒化物被膜が、CrN系およびTiAlN系から選択されるいずれかの膜組成を有し、かつ、ビッカース硬さHVで800以上2500以下の範囲内の表面硬度を有することが好ましい。
 本発明の圧力リングの他の実施形態は、非晶質炭素被膜が、ビッカース硬さHVで1200以上3200以下の範囲内の表面硬度を有し、0.3at%以下の水素濃度を有し、かつ、非晶質炭素被膜の圧力リング本体部が位置する側から順に、第一のアモルファスカーボン層と、第一のアモルファスカーボン層とは膜質の異なる第二のアモルファスカーボン層とが交互に積層されていることが好ましい。
 本発明の圧力リングの他の実施形態は、非晶質炭素被膜と、圧力リング本体部との間に、厚さが0.1μm以上1.0μm以下のTi被膜、Cr被膜、Si被膜およびV被膜から選択される接着層が設けられていることが好ましい。
 本発明の圧力リングの他の実施形態は、圧力リング本体部の上面側部分および下面側部分に設けられる窒化層の厚みが10μm以上50μm以下の範囲内であることが好ましい。
 本発明の圧力リング用母材は、熱伝導率が30W/m・K以上であり、Crを0.9質量%以上1.9質量%以下、Vを0.05質量%以上0.4質量%以下の範囲で含み、室温から200℃の範囲における平均線膨張係数が13.2×10-6/℃以上であるマルテンサイト組成の炭素鋼からなることを特徴とする。
 本発明によれば、アルミニウム合金製シリンダブロックおよびアルミニウム合金製ピストンを少なくとも備えた内燃機関において、内燃機関の使用初期からブローバイガス量が小さく、かつ、内燃機関を長期間に渡って使用してもブローバイガス量の継時的な増大を抑制できる圧力リングおよびこれに用いる圧力リング用母材を提供することができる。
本実施形態の圧力リングの外観図である。 本実施形態の圧力リングの断面構造を示す模式端面図である。ここで、図2(A)は図1に示す圧力リングの断面構造の一例を示す図であり、図2(B)は図1に示す圧力リングの断面構造の他の例を示す図であり、図2(C)は図1に示す圧力リングの断面構造の他の例を示す図である。 平均線膨張係数の測定方法を説明するための模式概略図(上面図)である。 耐摩耗性の評価に用いたピンオンプレート式往復動摩擦試験機について説明するための模式概略図である。
 本実施形態の圧力リングは、アルミニウム合金製シリンダブロックおよびアルミニウム合金製ピストンを少なくとも備えた内燃機関に用いられるものである。ここで、この内燃機関のアルミニウム合金製シリンダブロックは、シリンダボアに鋳鉄製シリンダライナを鋳ぐるむ構造を有するものである。そして、本実施形態の圧力リングは、合口を有するリング状の圧力リング本体部と、圧力リング本体部の外周面を被覆する硬質被膜とを備え、室温から200℃の範囲内における平均線膨張係数が、13.0×10-6/℃以上であり、圧力リング本体部を構成する材料が、熱伝導率が30.0W/m・K以上であるマルテンサイト組成の炭素鋼であり、硬質被膜が、窒化物被膜および非晶質炭素被膜から選択される硬質被膜であり、圧力リング本体部の上面側部分および下面側部分には、ビッカース硬さHVが700以上900以下の範囲内である窒化層が形成されていることを特徴とする。
 本実施形態の圧力リングでは、その平均線膨張係数が13.0×10-6/℃以上であるため、アルミニウム合金製シリンダブロックの熱膨張に対して、シリンダボアに追従して圧力リングの合口すきまの拡大を抑制することが容易である。このため、内燃機関の使用初期時点のブローバイガス量の増大を抑制できる。さらに、本実施形態の圧力リングは、従来から圧力リング用母材として広く利用されているマルテンサイト系ステンレス鋼(線膨張係数:13.0×10-6/℃未満)を用いた圧力リングと比べても、アルミニウム合金製シリンダブロック(線膨張係数:15×10-6/℃~21×10-6/℃程度)の熱膨張に対してシリンダボアへの追従性により優れるため、従来の圧力リングと比べてもブローバイガス量の増大を抑制できる。そして、この点は、高圧縮比あるいは過給機付きなどの高出力・高熱負荷化したアルミニウム合金製の内燃機関において本実施形態の圧力リングを用いる場合も同様である。
 ここで、圧力リングの平均線膨張係数は、内燃機関において使用されうる状態とされた圧力リングの状態で測定された線膨張係数を意味する。この平均線膨張係数の測定方法の詳細については後述する。また、圧力リングの平均線膨張係数は、内燃機関を構成するアルミニウム合金の線膨張係数に近ければ近い程好ましいが、平均線膨張係数以外のその他の特性もバランス良く確保できる圧力リング用母材を使用可能とする観点からは、13.0×10-6/℃~14.0/10-6/℃の範囲内が好ましく、13.2×10-6/℃~13.6×10-6/℃の範囲内がより好ましい。
 なお、アルミニウム合金製ピストンの外周面に設けられたリング溝に装着された圧力リングが長期間に渡って使用された場合、圧力リングの側面(上面および下面)とリング溝との接触により、圧力リングの側面、および/または、リング溝の摩耗が進行する。したがって、圧力リングの側面とリング溝とのクリアランスが時間の経過と共に拡大するに伴いブローバイガス量も増大する。このため、圧力リングの側面は、圧力リング自身の摩耗量と、相手部材であるリング溝表面の摩耗量との合計摩耗量を極小化できる適度な硬さを有している必要がある。圧力リングの側面の硬度を一方的に大きく向上させることで圧力リングの側面の摩耗を大幅に抑制できたとしても、相手材の摩耗は著しく促進されることになるため、結果的に継時的なブローバイガス量の増大を抑制できなくなるためである。
 一方、本実施形態の圧力リングでは、圧力リング本体部の上面側部分および下面側部分に、ビッカース硬さHVが700以上900以下の範囲内である窒化層が形成されている。このため、内燃機関を長期に渡って使用した場合でも、圧力リングの側面の摩耗量と、アルミニウム合金製ピストンの外周面に設けられたリング溝表面の摩耗量との合計摩耗量を極小化することが容易である。このため、継時的なブローバイガス量の増大を抑制することができる。ビッカース硬さHVが700未満では、圧力リングの側面の摩耗が顕著になるために合計摩耗量が増大し、その一方でビッカース硬さHVが900を超えると、リング溝表面の摩耗が顕著になるために合計摩耗量が増大するため、いずれの場合においても継時的なブローバイガス量の増大を抑制できなくなる。なお、ビッカース硬さHVは750~900の範囲内が好ましく、795~850の範囲内がより好ましい。
 なお、窒化層は、金属表面を窒化処理する公知の窒化処理法を適宜利用して形成できるが、コスト面からはガス窒化処理あるいは塩浴窒化処理を利用して形成することが好ましい。ここで、窒化処理条件は、ビッカース硬さHVが、700以上900以下の範囲内となるように適宜選択することができる。
 また、高圧縮比あるいは過給機付きの高出力・高熱負荷化した内燃機関においては燃焼温度が高くなるためアルミニウム合金製ピストンの頂面温度が上昇し、ピストンを構成するアルミニウム合金が軟化する。このため、リング溝内において圧力リングによる叩きと摺動が発生し、結果的にリング溝の摩耗が顕著になるため、圧力リングの側面とリング溝とのクリアランスが時間の経過と共に拡大してブローバイガス量が増大することになる。しかしながら、本実施形態の圧力リングでは、圧力リング本体部を構成する材料(圧力リング用母材)の熱伝導率は30.0W/m・K以上である。このため、燃焼により加熱されたアルミニウム合金製ピストン頂部の熱を、圧力リングを介してシリンダボア壁へと効率的に逃がすことができる。このため、リング溝の摩耗促進の原因となるアルミニウム合金の軟化を抑制することが容易である。これに加えて、上述したように、本実施形態の圧力リングでは、圧力リング側面の表面硬度が、圧力リング側面のみならずリング溝の著しい摩耗も生じないように適度な値(ビッカース硬度HVで700~900)に設定されている。よって、燃焼温度がより高くなる高圧縮比あるいは過給機付きの高出力・高熱負荷化した内燃機関において本実施形態の圧力リングを使用しても、リング溝の摩耗がより顕著となるのを確実に抑制でき、結果的に継時的なブローバイガス量の増大を抑制できる。
 なお、圧力リング用母材の熱伝導率は30.0W/m・K以上であれば特に限定されるものではないが、13.0×10-6/℃以上の平均線膨張係数を実現でき、適度な硬さ(ビッカース硬度HVで700~900)の窒化層が圧力リング側面部に形成可能な圧力リング用母材を使用可能する観点からは、30.0W/m・K~34.0W/m・Kの範囲内が好ましく、31.5W/m・K~32.4W/m・Kの範囲内がより好ましい。
 また、ブローバイガス量は、圧力リングの外周摺動面の摩耗の進行に伴う圧力リングの合口すきまの増大によっても継時的に増大する。このようなブローバイガス量の継時的な増大を抑制するために、本実施形態の圧力リングでは、圧力リング本体部の外周面が硬質被膜により被覆されている。ここで、硬質被膜としては、外周摺動面(すなわち硬質被膜表面)の耐摩耗性、耐スカッフ性に優れていることから、窒化物被膜または非晶質炭素被膜が用いられる。また、これらの硬質被膜の線膨張特性は、圧力リング本体部を構成する圧力リング用母材の平均線膨張係数の下限値(13.2×10-6/℃)よりもやや下回る傾向にあるもののこれに近い特性を有するため、本実施形態の圧力リングの平均線膨張係数を大幅に低下させる恐れがない点で有利である。
 以上に説明したように、本実施形態の圧力リングでは、アルミニウム合金製シリンダブロックおよびアルミニウム合金製ピストンを少なくとも備えた内燃機関において、内燃機関の使用初期からブローバイガス量が小さく、かつ、内燃機関を長期間に渡って使用してもブローバイガス量の継時的な増大を抑制できる。これに加えて、高圧縮比あるいは過給機付きの高出力・高熱負荷化した内燃機関においても、継時的なブローバイガス量の増大を抑制することもできる。次に本実施形態の圧力リングの形状・断面構造や、圧力リングを構成する各部材についてより詳細に説明する。
-圧力リングの形状・断面構造-
 図1は、本実施形態の圧力リングの外観図であり、圧力リングを上面または下面から見た図である。図1に示す圧力リング10は合口12を有するリング状を成している。なお、図1中、硬質被膜については記載を省略してある。また、図2は、圧力リングの断面構造の一例を示す模式端面図であり、具体的には、図1中の符号A1-A2間の断面構造について示した図である。図2(A)、図2(B)および図2(C)に示すように、圧力リング10は、圧力リング本体部20と、この圧力リング本体部20の外周面22を被覆する硬質被膜30とを有し、圧力リング本体部20の上面側部分24Uおよび下面側部分24Bには、窒化層40が必ず形成されている。なお、この窒化層40は、図2(A)、図2(B)および図2(C)に示すように、圧力リング本体部20の内周面側部分24Lにも形成されていてもよく、図2(C)に示すように、圧力リング本体部20の外周面側部分24Rにも形成されていてもよい。図1および図2に示す圧力リング10をピストンのリング溝に装着して使用した場合、硬質被膜30の表面32が、圧力リング10の外周摺動面14として、シリンダ内壁と接触し、圧力リング本体部20の上面26および下面28が、圧力リング10の上面16および下面18としてリング溝の内壁と接触する。
-硬質被膜-
 硬質被膜として窒化物被膜を設ける場合、この窒化物被膜は、たとえば、アークイオンプレーティング法、スパッタリング法等の公知のPVD(Physical Vapor Deposition)法により成膜することができる。この窒化物被膜の膜組成としては、CrN系またはTiAlN系から選択されることが好ましい。これらの窒化物被膜は酸素や炭素を含んでいてもよい。また、窒化物被膜の表面硬度はビッカース硬さHVで800以上2500以下の範囲内であることが好ましく、1000以上2100以下の範囲内であることがより好ましい。ビッカース硬さHVを800以上とすることにより耐摩耗性の確保が容易となり、また、ビッカース硬さHVを2500以下とすることにより、クラックや欠け、剥離を抑制することが容易となる。さらに、窒化物被膜の厚みは、0.01mm以上0.04mm以下の範囲内であることが好ましい。窒化物被膜の厚みを0.01mm以上とすることにより耐摩耗性の確保が容易となる。また、窒化物被膜の厚みを0.04mm以下とすることにより、成膜時間の増大を抑制してコストを抑えることが容易となる。これに加えて、窒化物被膜の厚みの増大に伴う圧力リングの平均線膨張係数の低下を防止することも容易となる。
 また、硬質被膜として非晶質炭素被膜(いわゆるDLC(Diamond-like Carbon)被膜)を設ける場合、この非晶質炭素被膜は、たとえば、アークイオンプレーティング法、スパッタリング法等の公知のPVD法により成膜することができる。非晶質炭素被膜の水素濃度は、被膜中に実質的に水素が含まれないと言える程度の濃度、すなわち0.3at%以下であることが好ましい。このような水素濃度は、非晶質炭素被膜の成膜に際して、成膜室中に水素ガスやメタンガスを流すなどの意図的な水素の供給をゼロとした状態で成膜することにより実現することができる。非晶質炭素被膜に含まれる水素濃度を0.3at%以下とすることにより耐熱性、低摩擦性、耐摩耗性を確保することが容易となり、成膜中に意図的に水素を供給することで作製された非晶質炭素被膜(すなわち水素濃度が0.3at%を超える非晶質炭素被膜)と比べて、優れた摺動特性を確保できる。なお、耐熱性、低摩擦性、耐摩耗性をより向上させるたには、水素濃度は、0.1at%以下がより好ましい。
 また、非晶質炭素被膜の厚みは3μm以上15μm以下の範囲内が好ましい。非晶質炭素被膜の厚みを3μm以上とすることにより、耐摩耗性の確保が容易となる。非晶質炭素被膜の厚みを15μm以下とすることにより、成膜時間の増大を抑制してコストを抑えることが容易となる。これに加えて、窒化物被膜の厚みの増大に伴う圧力リングの平均線膨張係数の低下を防止することも容易となる。非晶質炭素被膜の表面硬度はビッカース硬さHVで1200以上3200以下の範囲内であることが好ましく、1500以上2500以下の範囲内であることがより好ましい。ビッカース硬さHVを1200以上とすることにより耐摩耗性の確保が容易となり、また、ビッカース硬さHVを3200以下とすることにより、クラックや欠け、剥離を抑制することが容易となる。
 さらに、非晶質炭素被膜は、膜質(膜組成および/または膜構造)が異なる層を2層以上積層した積層構造を有していてもよい。このような積層構造の採用により耐摩耗性およびクラック・欠け・剥離の双方を同時に改善することがより容易になる。このような積層構造としては、非晶質炭素被膜の圧力リング本体部が位置する側から順に、第一のアモルファスカーボン層と、第一のアモルファスカーボン層とは膜質の異なる第二のアモルファスカーボン層とを交互に積層することが好ましい。第一のアモルファスカーボン層と、第二のアモルファスカーボン層との膜質を互いに異なるものとすることにより、相対的に一方の層をより硬質化し、他方の層をより軟質化できる。このため、相対的により硬質な一方の層により耐摩耗性をより向上させることが容易となる。
 なお、相対的により硬質な一方の層(硬質層)は、耐摩耗性に優れるものの層の柔軟性に欠けるため、非晶質炭素被膜が仮に当該硬質層のみから構成される場合はクラック、欠け、剥離が生じやすくなる。しかしながら、膜厚方向において隣り合う2つの硬質層の間に、相対的により軟質な他方の層(軟質層)を設けることで、硬質層間の接合力を向上させると共に、積層構造を持つ非晶質炭素被膜全体のクラック、欠け、剥離を抑制することが容易となる。また、圧力リング本体部の外周面に最初に成膜する層は、軟質層であることが好ましい。これにより、圧力リング本体部と積層構造を持つ非晶質炭素被膜との剥離がより抑制できる。
 なお、硬質層は、テトラヘドラルアモルファスカーボン構造を有するta-C膜あるいはこれに近い膜質を有する膜からなると考えられ、軟質層は、ta-C膜よりも軟質なアモルファスカーボン構造を有するa-C膜あるいはこれに近い膜質を有する膜からなると考えられる。また、膜質の異なる2種類のアモルファスカーボン層を成膜するためには、各々のアモルファスカーボン層の成膜に際して、成膜方法、成膜条件あるいは成膜装置を互いに異なるものとすればよい。
 軟質層および硬質層の厚さは特に限定されないが、硬質層の厚さは軟質層の厚さよりも大きいことが好ましい。これにより、積層構造を持つ非晶質炭素被膜全体として、クラック、欠け、剥離を抑制しつつ同時に耐摩耗性をより向上さることが極めて容易になる。また、軟質層の厚さは1層当たり5nm以上80nm以下の範囲内であることが好ましく、8nm以上50nm以下の範囲内であることがより好ましい。1層当たりの軟質層の厚さを5nm以上とすることにより、硬質層間の接合力をより確実に確保できる。また、厚さを80nm以下とすることにより、軟質層に起因する耐摩耗性の低下をより確実に抑制することができる。一方、硬質層の厚さは1層当たり100nm以上920nm以下の範囲内であることが好ましく、200nm以上600nm以下の範囲内であることがより好ましい。1層当たりの硬質層の厚さを100nm以上とすることにより、耐摩耗性をより確実に確保することが容易になる。また、厚さを920nm以下とすることにより、硬質層内に生じる内部応力を小さくできるため、硬質層に隣接する軟質層との剥離をより確実に抑制できる。
-接着層-
 なお、硬質被膜として非晶質炭素被膜を用いる場合、圧力リング本体部の外周面と、非晶質炭素被膜との間の密着性を向上させるために、両者の間にTi被膜、Cr被膜、Si被膜およびV被膜のいずれかの被膜から選択される接着層を設けてもよい。これらの接着層の厚みは、0.1μm以上1.0μm以下とすることが好ましく、0.1μm以上0.5μm以下とすることが好ましい。接着層の厚みを0.1μm以上とすることにより圧力リング本体部の外周面と、非晶質炭素被膜との接合を強固にできるため、密着性を向上させることがより容易となる。また、接着層の厚みを1.0μm以下とすることにより、接着層を構成する材料の強度の低さに起因する密着性の低下を抑制することがより容易となる。
-窒化層-
 圧力リング本体部の上面側部分および下面側部分に形成される窒化層(側面部窒化層)の厚みは、10μm以上50μm以下の範囲内であることが好ましく、20μm以上40μm以下の範囲内であることがより好ましい。側面部窒化層の厚みを10μm以上とすることにより、圧力リングの上面および下面の耐摩耗性をより確実に確保することが容易となる。また、側面部窒化層の厚みを50μm以下とすることにより、窒化層を形成する際の窒化処理に要する時間が著しく増大するのを抑制できる。
 なお、圧力リング本体部の外周面部分を窒化処理することによって、外周面部分にも窒化層(外周面部窒化層)を設けてもよい。この場合、外周面のビッカース硬さHVが900以下となるように外周面部窒化層を形成することが好ましい。
-圧力リング用母材-
 本実施形態の圧力リングの圧力リング本体部を構成する材料(圧力リング用母材)としては、下記(1)~(3)を満たすものであれば、その組成・物性は特に限定されるものではない。
(1)熱伝導率が30.0W/m・K以上であるマルテンサイト組成の炭素鋼である。
(2)圧力リング用母材を、合口すきまを有するリング状に加工した後、窒化層を形成したり硬質被膜を設けたりして完成した圧力リングとした状態において、平均線膨張係数を13.0×10-6/℃以上とすることが可能である。
(3)圧力リング用母材に対して窒化処理を施した際に、表面硬度がビッカース硬さHVで700以上900以下の範囲内である窒化層を形成することが可能である。
 しかしながら、上記(1)を満たし、かつ、圧力リングを作製する際に、容易に上記(2)および(3)を満たすことが可能である点からは、本実施形態の圧力リング用母材は、(a)熱伝導率が30W/m・K以上であり、(b)Crを0.9質量%以上1.9質量%以下、Vを0.05質量%以上0.4質量%以下の範囲で含み、(c)室温から200℃の範囲における平均線膨張係数が13.2×10-6/℃以上であるマルテンサイト組成の炭素鋼であることが特に好ましい。
 ここで、圧力リング用母材の平均線膨張係数は、線材状の圧力リング用母材を、圧力リングと同様の円環状に加工した試験片の状態で測定される値を意味する。この測定に用いられる試験片は、線材状の圧力リング用母材を単に円環状に加工しただけのものであり、圧力リングとして完成させるために必要な窒化層の形成などの各種の表面処理や各種の硬質被膜の成膜処理が施されていない状態の部材である。この平均線膨張係数の測定方法の詳細については後述する。
 なお、各種の鋼材の中でも、圧力リング用母材として広く利用されているものとして、Crを約10質量%以上の割合で多量に含むマルテンサイト系ステンレス鋼や、JIS G3651 SWOSC-V相当の鋼材が挙げられる。本発明者らはこれらの鋼材についても検討を加えたが、いずれの鋼材についても、上記(1)~(3)に示すように、比較的高い熱伝導率および平均線膨張係数を確保しつつ、圧力リング本体部の側面部に窒化層を形成した場合に、圧力リング側面の摩耗を抑制しつつも相手部材であるリング溝の著しい摩耗も生じない適度な硬度を得ることができなかった。
 この理由は、マルテンサイト系ステンレス鋼では、圧力リング側面の摩耗を抑制すべく窒化層を形成すると硬度が必要以上に高くなり易いため、特に、アルミニウム合金製ピストンの頂面温度が高い環境下では、リング溝の著しい摩耗を招き、圧力リング側面部およびリング溝の合計摩耗量も著しく増大するためである。すなわち、この場合は、継時的なブローバイガス量の抑制が極めて困難である。これに加えてマルテンサイト系ステンレス鋼を用いて圧力リングを作製しても、高い平均線膨張係数が確保できないため、内燃機関の使用初期の時点からブローバイガス量が大きくなる。また、JIS G3651 SWOSC-V相当の鋼材では、窒化処理を行っても、十分な硬度を有する窒化層が形成できない。このため、圧力リング側面部およびリング溝の合計摩耗量が著しく増大し、継時的なブローバイガス量の抑制が極めて困難である。
 しかしながら、上述したように本実施形態の圧力リング用母材の平均線膨張係数は、13.2×10-6/℃以上であるため、本実施形態の圧力リング用母材を用いて本実施形態の圧力リングを作製した際に、この圧力リングの平均線膨張係数を13.0×10-6/℃以上に調整することが極めて容易である。また、炭素鋼の表面を窒化処理して窒化層を形成する場合、この窒化層のビッカース硬度はマルテンサイト組成の炭素鋼中に含まれるCrおよびVの含有量によって大きく影響される。ここで、本実施形態の圧力リング用母材は、Crを0.9質量%以上1.9質量%以下、かつ、Vを0.05質量%以上0.4質量%以下の範囲で含む。このため、継時的なブローバイガス量の増大に直結する圧力リング側面またはリング溝の著しい摩耗を抑制できる適度な表面硬度(ビッカース硬さでHVで700以上900以下)を有する窒化層を容易に形成することができる。また、これら元素の含有量が大きくなりすぎると、熱伝導性および/または線膨張係数が低下するため、上記(a)および(c)に示す物性値の実現が困難になる。しかし、本実施形態の圧力リング用母材では、Cr含有量の上限を1.9質量%以下、V含有量の上限を0.4質量%以下としているため、上記(a)および(c)に示す物性値も同時に実現できる。
 なお、上記(a)~(c)を満たすマルテンサイト組成の炭素鋼の好適な組成例としては、質量%で、C:0.55~0.65、Si:1.8~2.4、Mn:0.3~1.0、Cr:0.9~1.9、V:0.05~0.4、残部が鉄および不可避的不純物からなる組成(以下、当該組成を、「組成A」と称す場合がある)が挙げられる。
 ここで、上記組成からなる炭素鋼中に含まれるCは、一部が基地中に固溶し、硬さや疲労強度の向上に寄与し、他の一部は炭化物を生成して耐摩耗性の向上に寄与する元素である。ここで、C含有量を0.55質量%以上とすることにより耐摩耗性の確保が容易となり、0.65質量%以下とすることにより、冷間加工性の確保が容易となる。また、Siは、高温時の強度を高める作用を有する元素である。ここで、Si含有量の1.8質量%以上とすることにより適度な強度を確保することが容易となる。また、Si含有量を2.4質量%以下とすることにより、冷間加工性、靱延性の低下をより確実に防止できると共に、熱間加工性および熱伝導性を損なうこともより確実に回避できる。なお、上記Si含有量を1.8質量%以上とすることで、熱へたり性を向上させることもできる。たとえば組成Aの炭素鋼、および、組成Aに比較的類似する組成を持つJIS G3651 SWOSC-V(Si含有量=1.4質量%)について、完成した圧力リングにおける熱へたり性(JIS B 8032-5における「接線張力減退度」)を評価したところ、組成Aの炭素鋼は4%以下であり、JIS G3651 SWOSC-Vは4~6%前後の水準である。すなわち、熱へたり性については、Si含有量がより多い組成Aの炭素鋼の方がJIS G3651 SWOSC-Vよりも優れる。Mnは鋼の溶解時の脱炭および鋼中のS固定のために添加される元素である。ここで、Mn含有量を0.3質量%以上とすることにより脱炭およびS固定をより確実に行うことができる。また、Mn含有量を1.0質量%以下とすることにより、冷間加工性の低下をより確実に防止できる。
 CrはCと結合して炭化物を形成すると共に、窒化処理時に形成される窒化層の硬さを増す効果を有するため、窒化層の耐摩耗性の向上に寄与する元素である。ここで、Cr含有量を0.9質量%以上とすることにより窒化層の耐摩耗性を向上させることが容易となる。また、Cr含有量を1.9質量%以下とすることにより熱伝導性および線膨張係数の低下を抑制することができる。なお、Cr含有量は1.2質量%以上1.9質量%以下とすることがより好ましい。VもCと結合して炭化物を形成すると共に、窒化処理時に形成される窒化層の硬さを増す効果を有するため、窒化層の耐摩耗性の向上に寄与する元素である。ここで、V含有量を0.05質量%以上とすることにより窒化層の耐摩耗性を向上させることが容易となる。また、V含有量を0.4質量%以下とすることにより、線膨張係数の低下や、熱間加工性および冷間加工性の悪化を抑制できる。なお、V含有量が0.4質量%を超えると耐摩耗性を向上させる効果が飽和する傾向にある。
 また、上記に列挙したC、Si、Mn、Cr、V以外にもその他の元素が必要に応じて含まれていてもよい。たとえば、靱性を向上するために、Niが0.1質量%以上0.4質量%以下の範囲内で含まれていてもよい。
 以下に本発明を実施例を挙げて説明するが、本発明は以下に示す実施例にのみ限定されるものではない。
<評価サンプルの作製>
 各種評価を行うために、必要に応じて所定の形状に加工した圧力リング用母材(以下、「基材」と称す場合がある)に対して窒化層を形成したり、硬質被膜を成膜した評価サンプルを作製した。この際の窒化処理条件および硬質被膜の成膜条件は以下の通りである。
-窒化層の形成-
 窒化層の形成に際してはガス窒化処理を行った。この際の窒化処理条件は、処理温度:400℃~500℃、処理時間:6時間~12時間、雰囲気ガス:NHとNとを含む混合ガスとし、この条件範囲内で適宜窒化処理条件を選択することにより所定の厚みおよび表面硬度を有する窒化層を形成した。
-非晶質炭化被膜(積層DLC被膜)の成膜-
 非晶質炭化被膜の成膜に際しては、基材をフィルタードアークイオンプレーティング装置内にセットした状態で、装置内を真空排気して減圧した後、基材を加熱した。その後、基材に対してバイアス電圧を-50~-300Vの範囲内で印加した状態で、アルゴンイオンでイオンボンバードを行った。次に、バイアス電圧を-50~-300Vの範囲内に設定した後、接着層としてTi被膜を基材上に形成した。
 次にTi被膜上に、第一のアモルファスカーボン層と、第二のアモルファスカーボン層とを交互に成膜して積層した。ここで、第一のアモルファスカーボン層は、スパッタリング装置を用い、基材に対してバイアス電圧を-50~-300Vの範囲内で印加した状態で、カーボンターゲットを用いてアルゴンガス雰囲気下にて成膜した。また、第二のアモルファスカーボン層は、フィルタードアークイオンプレーティング装置を用い、基材に対してバイアス電圧を-50~-300Vの範囲内で印加した状態で、カーボンターゲットを用いて成膜した。なお、第一のアモルファスカーボン層および第二のアモルファスカーボン層の成膜に際しては、膜中に水素が取り込まれることのないように、いずれの成膜に際しても成膜室に水素を含むガスを導入せずに実施した。また、第一のアモルファスカーボン層の厚みは8nmとし、第二のアモルファスカーボン層の厚みは400nmとした。そして、1層の第一のアモルファスカーボン層と1層の、第二のアモルファスカーボン層とを1組2層とし、この1組2層単位で繰り返し積層し、所定の厚みとなるまで成膜した。
 なお、第一のアモルファスカーボン層のみからなる厚さ(2μm)に成膜した単層膜サンプル1と、第二のアモルファスカーボン層のみからなる厚さ(2μm)に成膜した単層膜サンプル2とを作製し、それぞれ簡易な耐摩耗性試験を実施したところ、単層膜サンプル1の方が単層膜サンプル2よりも摩耗し易かったが、剥離、クラック、欠け等は逆に少なかった。
 また、成膜された非晶質炭素被膜について、弾性反跳検出法(ERDA)にて水素分析を行い被膜中の水素濃度を測定したところ、いずれも0.035at%であった。
-窒化物被膜(PVD(CrN)被膜またはPVD(TiAl)N被膜)の成膜-
 窒化物被膜の成膜に際しては、基材をアークイオンプレーティング装置内にセットした状態で、装置内を真空排気して減圧すると共に、基材を加熱した。次に、基材に対してバイアス電圧を-500~-1000Vの範囲内で印加した状態で、成膜する窒化物被膜の膜組成に応じた金属ターゲット(CrターゲットまたはTiAlターゲット)を利用してイオンボンバードを行った。次に、バイアス電圧を0~-200Vの範囲内に変更すると共に、装置内にプロセスガスを導入した状態で成膜し、所定の厚みと膜組成とを有する窒化物被膜を得た。なお、プロセスガスとしてはNガスを用いた。
<評価方法>
1.平均線膨張係数
 圧力リングの平均線膨張係数は、図3に示すように、ホットプレート50上に、リングゲージ60を配置し、さらにこのリングゲージ60の内周側に測定サンプルである圧力リング70を配置した状態で、リングゲージ60および圧力リング70を加熱し、この際の温度と圧力リング70の合口72のすき間Gとの関係から平均線膨張係数を求めた。また、圧力リング70の代わりに圧力リング用母材の平均線膨張係数を測定する場合は、圧力リング用母材を、単に圧力リングと同様の合口を有する寸法形状に加工しただけの状態のサンプルを用いた。
 ここで、合口72のすき間Gは、光学顕微鏡のステージ(X-Yテーブル)上に、リングゲージおよび圧力リングを設置した状態のホットプレートを設置した状態で測定した。また、温度は熱電対および温度記録装置を利用してモニターした。なお、熱電対は、圧力リングおよびリングゲージの各々の上面部分に対して周方向に約90度毎の位置(図3中のA1点~A4点およびB1点~B4点の位置)に耐熱テープを用いて取り付け、熱電対の他端は温度記録装置に接続した。
 なお、測定に際して用いた各種の機器および部材の詳細は以下の通りである。
・ホットプレート:
 AS ONE製ホットプレート、型番ND-1(ヒータ容量:670W、最高温度:350℃、マイコン式PID制御方式)
・リングゲージ:
 リングゲージは市販品のアルミナ素材から外径φ150mm、内径φ86mm、厚さ15mmの寸法に切り出し製作した。リングゲージ素材は純度99.5%、密度3.9g/cm、硬さ15.7GPa、線膨張係数は8.7×10-6/℃(25℃~200℃)、8.6×10-6/℃(25℃~150℃)、8.9×10-6/℃(25℃~300℃)である。
・測定用サンプル(圧力リングおよび圧力リング用母材):
 測定に用いた圧力リングの、寸法はエンジンシリンダボア径φ86mmで、ボア軸方向の寸法(圧力リング幅)1.2mm、ボア径方向の寸法(圧力リング厚さ)2.9mmである。圧力リングはリング状に加工した圧力リング用母材に対して、所定の窒化層を形成したり硬質被膜を形成したものを用いた。また、測定に用いた圧力リング用母材は、圧力リング用母材を上述した圧力リングと同様の形状に加工したものを用いた。
・熱電対:
 K熱電対
・光学顕微鏡:
 株式会社ミツトヨ製の測定顕微鏡(型番MF-A1010C)を用い、測定に際しては最小表示量を0.001mmとして使用した。
・温度記録装置:
 グラフテック製の温度記録装置(midi LOGGER、型番GL220)を使用した。
-合口すきまの寸法の測定手順-
 平均線膨張係数を求めるために必要な各温度における合口72のすき間Gは、以下に示す(1)~(7)の手順で測定した。
(1)室温20℃(T20)の恒温室内にて、東京精密製三次元座標測定機の測定テーブル上にリングゲージを置き、測定プローブを介してリングゲージ内周面の円周方向に45度毎にリングゲージ内周面の座標を検出し、これら8点の座標から演算処理された平均径をリングゲージ内径寸法GD20とする。
(2)リングゲージおよび圧力リングの所定の位置にK熱電対を耐熱テープで固定する。
(3)定盤上にリングゲージを置き、圧力リングをリングゲージの内周面に対して水平に挿入する。
(4)圧力リングが装着されたリングゲージをホットプレートの天板上に置く。
(5)ホットプレートにより、温度記録装置で表示されるリングゲージおよび圧力リングの平均温度が25℃(T25)に昇温したところで、この温度を恒温として圧力リングの合口すきまを繰り返し10回測定し、記録する。
(6)続いて、ホットプレートにより、温度記録装置で表示されるリングゲージおよび圧力リングの平均温度が150℃(T150)に昇温したところで、この温度を恒温として保ちながら圧力リングの合口すきまを繰り返し10回測定し、記録する。
(7)続いて、ホットプレートにより、温度記録装置で表示されるリングゲージおよび圧力リングの平均温度が200℃(T200)に昇温したところで、この温度を恒温として圧力リングの合口すきまを繰り返し10回測定し、記録する。
(8) 以上の手順において、(5)~(8)で測定した圧力リングの合口すきまの平均値を算出しそれぞれをs125、s1150、s1200とする。
-平均線膨張係数の算出手順-
 25℃、150℃および200℃の各々において、以下の(i)~(XI)示す数値設定および計算式を用いた計算を行うことで、室温25℃~150℃の範囲内における平均線膨張係数と室温25℃~200℃の範囲内における平均線膨張係数とをそれぞれ求めた。
(I)室温20℃におけるリングゲージ内径をGD20とし、線膨張係数(αG)は8.7×10-6/℃を使用する。
(II)室温(25℃)のリングゲージの内周の周長(GL25)は、下式に基づき求めた。
  GL25=GD20×π+(GD20×π)×(T25-T20)×αG
(III)室温(25℃)の圧力リング外周摺動面の周長(RL25)は、下式に基づき求めた
  RL25=GL25-s125
(IV)高温時(150℃)のリングゲージの内周の周長(GL150)は、下式に基づき求めた。
  GL150=GD20×π+(GD20×π)×(T150-T20)×αG
(V)高温時(150℃)の圧力リング外周摺動面の周長(RL150)は、下式に基づき求めた。
  RL150=GL150-s1150
(VI)高温時(150℃)の圧力リング外周摺動面の周長変化量(ΔRL150)は、下式に基づき求めた。
  ΔRL150=RL150-RL25
(VII)高温時(150℃)の圧力リングの平均線膨張係数(αR150)は、下式に基づき求めた。
  αR150=(ΔRL150/RL25)/(T150-T25
(VIII)高温時(200℃)のリングゲージの内周の周長(GL200)は、下式に基づき求めた。
  GL200=GD20×π+(GD20×π)×(T200-T20)×αG
(IX)高温時(200℃)の圧力リング外周摺動面の周長(RL200)は、下式に基づき求めた。
  RL200=GL200-s1200
(X)高温時(200℃)の圧力リング外周摺動面の周長変化量(ΔRL200)は、下式に基づき求めた。
  ΔRL200=RL200-RL25
(XI)高温時(200℃)の平均線膨張係数(αR200)は、下式に基づき求めた。
  αR200=(ΔRL200/RL25)/(T200-T25
2.圧力リング外周摺動面の耐摩耗性評価
 圧力リングの外周摺動面の摩耗が増加すると、合口すきまの増大、および、圧力リングとシリンダボアとのシール性の悪化が生じ、結果的にブローバイガス量の増加を招く。このため、圧力リングの外周摺動面を模したサンプルを用いて、以下に示す手順にて圧力リングの外周摺動面の耐摩耗性の評価を行った。
 ここで、圧力リングの外周摺動面の耐摩耗性は、図4に示すピンオンプレート式往復動摩擦試験機を用いて評価した。この往復動摩擦試験機は、ピンの先端部に必要に応じて表面処理(硬質被膜の成膜または窒化処理による窒化層の形成)が行なわれた上試験片100を、スプリング荷重により荷重Pを加えてプレート状の下試験片110に押し付け、下試験片110が往復動することにより両者が摺動するよう構成されている。ここで、下試験片110は、ヒータ122を内蔵した保持台120の上面に固定されており、下試験片110を必要に応じて加熱することができる。なお、下試験片110を加熱する際には、下試験片110の温度をモニターするために、下試験片110には熱電対(図4中、不図示)が取り付けられる。
 また、往復動摩擦試験に際して用いた上試験片100は、圧力リングの外周側部分に見立てた部材であり、ピンの材質には圧力リング用母材を使用し、ピンの先端部には圧力リングの外周面に施した表面処理(硬質被膜の成膜または窒化層の形成)を実施した。なお、この上試験片100の作製に用いたピンは、直径が8mmであり、ピンの先端部(摺動面)は、曲率半径が18mmとなるように鏡面仕上げされたものである。また、下試験片110は、鋳鉄製シリンダライナを鋳ぐるんだアルミニウム合金製シリンダブロックのシリンダボアに見立てた部材であり、プレートの材質にはシリンダボア相当材の鋳鉄を使用した。また、往復動摩擦試験に際しては、上試験片100と、下試験片110との摺動界面にチュービングポンプやエアディスペンサーを用いて潤滑油を供給した。この際の試験条件は以下の通りである。
・ストローク:50mm
・荷重P:100N
・速度:300cycle/min
・下試験片110の温度:室温(25℃)
・使用した潤滑油:0W-20(粘度分類SAE J300)
・試験時間:60分間
 そして試験の前後で、上試験片100の先端部の形状および下試験片110の表面(上試験片100と摺動する領域の中央部近傍の位置の表面)を表面粗さ計により測定することで摩耗量を求めた。また、上試験片100については試験終了後に先端部を光学顕微鏡により観察し、先端部のクラック・欠け・剥離の発生状況について確認した。
3.圧力リング側面の耐摩耗性評価
 アルミニウム合金製ピストンのリング溝に装着された圧力リングおよびリング溝は、ピストンの往復運動により、互いに叩かれ、摺動し摩耗する。そして、摩耗が増加するとリング溝と圧力リング側面とのクリアランスが拡大し、結果的にブローバイガス量の増加を招く。このため、圧力リングの側面を模したサンプルを用いて、以下に示す手順にて、圧力リング側面の耐摩耗性評価を行った。
 ここで、圧力リングの外周摺動面の耐摩耗性は、図4に示すピンオンプレート式往復動摩擦試験機を用いて評価した。また、往復動摩擦試験に際して用いた上試験片100は、圧力リングの側面側部分に見立てた部材であり、ピンの材質には圧力リング用母材を使用し、ピンの全面には、必要に応じて圧力リングの側面と同様の窒化処理を行い、窒化層を形成した。なお、この上試験片100の作製に用いたピンは、直径が8mmであり、ピンの先端部(摺動面)は、曲率半径が18mmとなるように鏡面仕上げされたものである。また、下試験片110は、アルミニウム合金製ピストンに見立てた部材であり、JIS規格 H5202のAC8A材にJIS規格 H0001のT6処理を実施したアルミニウム合金からなるプレートを用いた。また、往復動摩擦試験に際しては、上試験片100と、下試験片110との摺動界面にチュービングポンプやエアディスペンサーを用いて潤滑油を供給した。この際の試験条件は以下の2水準である。なお、試験条件1は、内燃機関の燃焼室の温度が標準的な場合を想定したものであり、試験条件1における下試験片110の温度をより高温に変更した試験条件2は、内燃機関の燃焼室の温度がより高温となる場合、すなわち、高圧縮比あるいは過給機付きの高出力・高熱負荷化した内燃機関での圧力リングの使用を想定したものである。
-試験条件1-
・ストローク:50mm
・荷重P:100N
・速度:300cycle/min
・下試験片110の温度:室温(25℃)
・使用した潤滑油:0W-20(粘度分類SAE J300)
・試験時間:60分間
-試験条件2-
・ストローク:50mm
・荷重P:100N
・速度:300cycle/min
・下試験片110の温度:150℃
・使用した潤滑油:0W-20 (粘度分類SAE J300)
・試験時間:60分間
 そして試験の前後で、上試験片100の先端部の形状および下試験片110の表面(上試験片100と摺動する領域の中央部近傍の位置の表面)を表面粗さ計により測定することで摩耗量を求めた。
4.ブローバイガス量の評価
 排気量2400cc、ボア径φ87mmのエンジンに圧力リングを取り付けて、ブローバイガス量を測定した。なお、評価に使用した圧力リングの各所の寸法は、幅:1.2mm、厚さ2.5mm、ブローバイガス量に影響する合口すき間:0.20mmとした。
測定に際しては、エンジンのならし運転を行った後に、エンジン回転速度:7100rpm、負荷条件:WOT(ワイドオープンスロットル)の状態で、冷却水温度:110℃、潤滑油温度:125℃に設定した。この状態で、ならし運転の開始から約5時間に渡ってエンジンを稼働させ、この間における一分間当たりに発生する平均ブローバイガス量を計測した。なお、潤滑油温度は、通常の温度(90℃)よりも高めに設定した。また、本試験では、試験時間が極めて短いため、圧力リングの外周摺動面および側面、ならびに、リング溝の摩耗が実質的に生じていない状態でブローバイガス量を評価していることになる。すなわち、本試験においてブローバイガス量に影響している主たる要因は、圧力リングの平均線膨張係数である。
5.熱伝導率測定
 熱伝導率の測定は、圧力リング用母材からなるディスク状試験片(直径10mm、厚さ3mm)を用いてレーザーフラッシュ法により実施した。ここで測定装置としてはNETZSCH社製の型式LFA457を使用し、測定温度は室温とした。
6.ビッカース硬さ
 ビッカース硬さは、測定サンプルを鏡面に研磨後、マイクロビッカース硬度計で試験力0.9807N、試験力の保持時間15sの条件にて、JIS Z 2244 「ビッカース硬さ試験-試験方法」に準じて測定した。
<評価結果>
 表1に、平均線膨張係数、耐摩耗性およびブローバイガス量の評価に用いるサンプルの作製に用いた圧力リング用母材の材質および物性値を示す。なお、本実施形態の圧力リングの作製に用いられる圧力リング用母材は、圧力リング用母材A1~A3である。また、圧力リング用母材BはSWOSC-V相当材、圧力リング用母材CはSUS440B相当材である。
 表2および表3に、表1に示す圧力リング用母材を用いて作製した各種の圧力リングの平均線膨張係数の評価結果を、圧力リング用母材の硬度、圧力リング本体部の外周面および上下面の表面処理条件と共に示す。SWOSC-V相当材の圧力リング用母材Bを用いた比較例1、2では、圧力リング本体部の上下面に対して窒化処理を行っても、表面硬さHVが700~900の範囲内の窒化層を形成することができなかった。また、SUS440B相当材の圧力リング用母材Cを用いた比較例3、4では、圧力リングの平均線膨張係数は13×10-6/℃未満であり、圧力リング本体部の側面の硬度HVは、窒化層を形成すると900を超え、窒化層を形成しない場合は700未満であり、さらに、使用した圧力リング用母材の熱伝導係数は30.0W/m・K未満であった。
 表4に、圧力リングの外周面に設けられる硬質被膜とシリンダボアとの摩耗を想定した耐摩耗性を評価した結果を示す。なお、表4に示す相対摩耗量は、実験例B1の上試験片の摩耗量を基準値(100)として評価した結果である。実験例B1は、現在市販されている自動車の内燃機関に広く利用されている圧力リングの外周面を模擬的に再現したものである。実用上の許容値は市場実績から上試験片の相対摩耗量で110以下と判断される。実験例A1~A9と実験例B1との比較結果から、窒化層よりもより硬度の高い硬質被膜を設けることで摩耗が大幅に抑制できることが判った。また、実験例A1~A6と実験例A7~A9との比較結果から、硬質被膜の欠けやクラックを抑制する上では、硬質被膜の表面硬度HVは、積層DLC被膜については3200以下が望ましく、CrN系またはTiAlN系の膜組成を持つPVD被膜については2500以下が望ましいことが判った。
 表5に、圧力リングの上下面(側面)に形成される窒化層とリング溝との摩耗を想定した耐摩耗性を評価した結果を示す。なお、表5に示す相対摩耗量は、実験例D3の上試験片の試験条件1における摩耗量を基準値(100)として評価した結果である。実験例D3は、現在市販されている自動車の内燃機関に広く利用されている圧力リングの上下面を模擬的に再現したものである。実用上の許容値は市場実績から試験条件1において、上試験片および下試験片の相対摩耗量の総和(a1+b1)で400以下と判断される。なお、試験条件1は、通常の圧縮比で過給機無しの一般的な内燃機関を想定したものであるのに対して、試験条件2は、高圧縮比あるいは過給機付きの高出力・高熱負荷化した内燃機関での圧力リングの使用を想定して、下試験片の温度を150℃としている。高出力・高熱負荷化した内燃機関では、燃焼室の温度が高いために、ピストン頂部の温度が上昇すると共に、潤滑剤の粘度も低下するため、試験条件2ではこのような環境を疑似的に再現したものである。
 試験条件1の評価結果からは、相対摩耗量の総和(a1+b1)は、窒化層が形成されている方がより抑制でき、さらに、窒化層を形成した場合は窒化層の表面硬度HVが高ければ高いほど相対摩耗量の総和(a1+b1)を極小化できることが判った。しかしながら、試験条件2の評価結果からは、試験条件1において相対摩耗量の総和(a1+b1)が最も小さく窒化層の表面硬度HVが最も高い実験例D4と比べて、窒化層の表面硬度HVをやや低めの範囲内(700~900)とした実験例C1~C3の方が相対摩耗量の総和(a2+b2)がより小さくなっていることが判った。
 表6に、ブローバイガス量の評価結果を示す。表6に示す試験では、試験時間が短いため、圧力リングの外周摺動面や上下面の摩耗の影響は殆ど無いと考えられる。このため、実施例16と比較例5とのブローバイガス量の差は、圧力リングの平均線膨張係数の差に起因するものと考えられる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
10   :圧力リング
12   :合口
14   :外周摺動面
16   :上面
18   :下面
20   :圧力リング本体部
22   :外周面
24B  :下面側部分
24L  :内周面側部分
24R  :外周面側部分
24U  :上面側部分
26   :上面
28   :下面
30   :硬質被膜
32   :表面
40   :窒化層
50   :ホットプレート
60   :リングゲージ
70   :圧力リング(測定サンプル)
72   :合口(リングゲージ内)
100  :上試験片
110  :下試験片
120  :保持台
122  :ヒータ
 

Claims (6)

  1.  アルミニウム合金製シリンダブロックおよびアルミニウム合金製ピストンを少なくとも備えた内燃機関に用いられ、
     合口を有するリング状の圧力リング本体部と、前記圧力リング本体部の外周面を被覆する硬質被膜とを備え、 
     室温から200℃の範囲内における平均線膨張係数が、13.0×10-6/℃以上であり、
     前記圧力リング本体部を構成する材料が、熱伝導率が30.0W/m・K以上であるマルテンサイト組成の炭素鋼であり、
     前記硬質被膜が、窒化物被膜および非晶質炭素被膜から選択される硬質被膜であり、
     前記圧力リング本体部の上面側部分および下面側部分には、ビッカース硬さHVが700以上900以下の範囲内である窒化層が形成されていることを特徴とする圧力リング。
  2.  請求項1に記載の圧力リングにおいて、
     前記窒化物被膜は、 
     CrN系およびTiAlN系から選択されるいずれかの膜組成を有し、かつ、
     ビッカース硬さHVで800以上2500以下の範囲内の表面硬度を有することを特徴とする圧力リング。
  3.  請求項1に記載の圧力リングにおいて、
     前記非晶質炭素被膜は、
     ビッカース硬さHVで1200以上3200以下の範囲内の表面硬度を有し、
     0.3at%以下の水素濃度を有し、かつ、
     前記非晶質炭素被膜の前記圧力リング本体部が位置する側から順に、第一のアモルファスカーボン層と、前記第一のアモルファスカーボン層とは膜質の異なる第二のアモルファスカーボン層とが交互に積層されていることを特徴とする圧力リング。
  4.  請求項3に記載の圧力リングにおいて、前記非晶質炭素被膜と、前記圧力リング本体部との間に、厚さが0.1μm以上1.0μm以下のTi被膜、Cr被膜、Si被膜およびV被膜から選択される接着層が設けられていることを特徴とする圧力リング。
  5.  請求項1~4のいずれか1つに記載の圧力リングにおいて
     前記圧力リング本体部の上面側部分および下面側部分に設けられる前記窒化層の厚みが10μm以上50μm以下の範囲内であることを特徴とする圧力リング。
  6.  熱伝導率が30W/m・K以上であり、Crを0.9質量%以上1.9質量%以下、Vを0.05質量%以上0.4質量%以下の範囲で含み、室温から200℃の範囲における平均線膨張係数が13.2×10-6/℃以上であるマルテンサイト組成の炭素鋼からなることを特徴とする圧力リング用母材。
     
PCT/JP2014/052344 2014-01-31 2014-01-31 圧力リングおよび圧力リング用母材 WO2015114822A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015553939A JP5890946B2 (ja) 2014-01-31 2014-01-31 圧力リングおよび圧力リング用母材
PCT/JP2014/052344 WO2015114822A1 (ja) 2014-01-31 2014-01-31 圧力リングおよび圧力リング用母材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/052344 WO2015114822A1 (ja) 2014-01-31 2014-01-31 圧力リングおよび圧力リング用母材

Publications (1)

Publication Number Publication Date
WO2015114822A1 true WO2015114822A1 (ja) 2015-08-06

Family

ID=53756432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052344 WO2015114822A1 (ja) 2014-01-31 2014-01-31 圧力リングおよび圧力リング用母材

Country Status (2)

Country Link
JP (1) JP5890946B2 (ja)
WO (1) WO2015114822A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107166030A (zh) * 2017-06-05 2017-09-15 柳州市御朗机械制造有限公司 活塞环
JP2020016186A (ja) * 2018-07-26 2020-01-30 Tpr株式会社 鋳鉄製シリンダライナおよび内燃機関
JP2021504633A (ja) * 2017-11-30 2021-02-15 フェデラル−モグル・ブルシャイト・ゲーエムベーハーFederal−Mogul Burscheid Gmbh ピストンリング
AU2020208981B2 (en) * 2019-01-16 2022-12-15 Kaji Technology Corporation Gas compressor and production method for gas compressor
KR102662928B1 (ko) * 2017-11-30 2024-05-02 페데랄-모굴 부르샤이트 게엠베하 피스톤 링
EP4365433A4 (en) * 2022-09-08 2024-05-15 Tpr Co Ltd COMPRESSION RING

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145963A (ja) * 1998-11-06 2000-05-26 Nippon Piston Ring Co Ltd ピストンリング
JP2002030394A (ja) * 2000-07-17 2002-01-31 Riken Corp 耐スカッフィング性、耐クラッキング性及び耐疲労性に優れたピストンリング及びその製造方法、並びにピストンリングとシリンダーブロックの組合わせ
JP2002317225A (ja) * 2001-04-17 2002-10-31 Riken Corp ピストンリング
JP2013029191A (ja) * 2011-06-24 2013-02-07 Riken Corp ピストンリング

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226949A (ja) * 2001-01-31 2002-08-14 Nippon Piston Ring Co Ltd アルミニウム合金製ピストン用耐摩環
US20100253006A1 (en) * 2007-11-30 2010-10-07 Nippon Piston Ring Co., Ltd Steel products for piston rings and piston rings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145963A (ja) * 1998-11-06 2000-05-26 Nippon Piston Ring Co Ltd ピストンリング
JP2002030394A (ja) * 2000-07-17 2002-01-31 Riken Corp 耐スカッフィング性、耐クラッキング性及び耐疲労性に優れたピストンリング及びその製造方法、並びにピストンリングとシリンダーブロックの組合わせ
JP2002317225A (ja) * 2001-04-17 2002-10-31 Riken Corp ピストンリング
JP2013029191A (ja) * 2011-06-24 2013-02-07 Riken Corp ピストンリング

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107166030A (zh) * 2017-06-05 2017-09-15 柳州市御朗机械制造有限公司 活塞环
JP2021504633A (ja) * 2017-11-30 2021-02-15 フェデラル−モグル・ブルシャイト・ゲーエムベーハーFederal−Mogul Burscheid Gmbh ピストンリング
KR102662928B1 (ko) * 2017-11-30 2024-05-02 페데랄-모굴 부르샤이트 게엠베하 피스톤 링
JP2020016186A (ja) * 2018-07-26 2020-01-30 Tpr株式会社 鋳鉄製シリンダライナおよび内燃機関
AU2020208981B2 (en) * 2019-01-16 2022-12-15 Kaji Technology Corporation Gas compressor and production method for gas compressor
EP4365433A4 (en) * 2022-09-08 2024-05-15 Tpr Co Ltd COMPRESSION RING

Also Published As

Publication number Publication date
JPWO2015114822A1 (ja) 2017-03-23
JP5890946B2 (ja) 2016-03-22

Similar Documents

Publication Publication Date Title
JP5452734B2 (ja) コーティングを有するスライド要素、特に、ピストンリング、およびスライド要素を製造するプロセス
JP5890946B2 (ja) 圧力リングおよび圧力リング用母材
US9644738B2 (en) Combination of cylinder and piston ring
KR101801400B1 (ko) Dlc 코팅을 구비한 슬라이딩 요소
JP5976328B2 (ja) ピストンリング
WO2012176846A1 (ja) ピストンリング
JP2008286354A (ja) 摺動部材
WO2015041215A1 (ja) シリンダボアとピストンリングの組合せ
WO2012176847A1 (ja) ピストンリング
WO2016143464A1 (ja) ピストンリング
JP6422495B2 (ja) ピストンリング
US10677355B2 (en) Tribological system of an internal combustion engine with a coating
JP6181905B1 (ja) 摺動部材及びピストンリング
JP6143916B2 (ja) ピストンリング
JP2006265646A (ja) 摺動部材
JP4374154B2 (ja) ピストンリング
JP6757769B2 (ja) ピストンリング
JP6339812B2 (ja) ピストンリング
WO2023053380A1 (ja) 摺動部材
JP6938807B1 (ja) 摺動部材及びピストンリング
JPH02159478A (ja) ピストンリング
EP4080033A1 (en) Piston ring, and method for manufacturing same
JP2006002254A (ja) ピストンリング
US20200299812A1 (en) Sliding member
JPH02134468A (ja) ピストンリング

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553939

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880974

Country of ref document: EP

Kind code of ref document: A1