WO2015114805A1 - 重金属含有排水の処理方法及び装置 - Google Patents

重金属含有排水の処理方法及び装置 Download PDF

Info

Publication number
WO2015114805A1
WO2015114805A1 PCT/JP2014/052289 JP2014052289W WO2015114805A1 WO 2015114805 A1 WO2015114805 A1 WO 2015114805A1 JP 2014052289 W JP2014052289 W JP 2014052289W WO 2015114805 A1 WO2015114805 A1 WO 2015114805A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy metal
containing wastewater
scavenger
added
dithiocarbamic acid
Prior art date
Application number
PCT/JP2014/052289
Other languages
English (en)
French (fr)
Inventor
河原林 直也
渡辺 実
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to PCT/JP2014/052289 priority Critical patent/WO2015114805A1/ja
Publication of WO2015114805A1 publication Critical patent/WO2015114805A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5209Regulation methods for flocculation or precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/14Additives which dissolves or releases substances when predefined environmental conditions are reached, e.g. pH or temperature

Definitions

  • the present invention relates to a treatment method and apparatus for heavy metal-containing wastewater, and in particular, after adding an inorganic flocculant to heavy metal-containing wastewater, a dithiocarbamic acid-based heavy metal collector is added to remove heavy metal components in the wastewater.
  • the present invention relates to a processing method and apparatus.
  • Heavy metal-containing wastewater such as plating wastewater and paint wastewater contains heavy metals such as copper, chromium, zinc, lead, manganese, iron, nickel, and cadmium. These heavy metal-containing wastewater is obliged to be treated appropriately by the Water Pollution Control Law.
  • Patent Document 1 a method for treating heavy metal-containing wastewater, a method is known in which a chelating heavy metal scavenger mainly composed of dithiocarbamic acid groups is added to perform a coagulation sedimentation treatment.
  • a chelating heavy metal scavenger mainly composed of dithiocarbamic acid groups is added to perform a coagulation sedimentation treatment.
  • chelate heavy metal scavenger addition is performed when chelating heavy metal scavenger is added and treated regardless of the water quality fluctuation of heavy metal containing wastewater.
  • the amount is insufficient, the quality of the treated water is lowered due to heavy metal leakage, and when it is excessively added, the quality of the treated water is lowered by the chelating heavy metal scavenger itself.
  • Patent Document 1 as a method of adding a chelate heavy metal scavenger to heavy metal-containing wastewater to remove heavy metal components in the wastewater, a chelate heavy metal scavenger is added to the heavy metal-containing wastewater, Measure the addition amount of the collector and the amount of change in the oxidation-reduction potential of the wastewater before and after the addition of the chelate heavy metal scavenger, and determine the required addition amount of the chelate heavy metal scavenger based on this measurement result A method is described.
  • the chelate heavy metal scavenger has a chelate-forming group (dithiocarbamic acid group), and this group reacts with heavy metal ions in the wastewater to form an insolubilized product and generate a precipitate. During this reaction, the redox potential (ORP) decreases.
  • ORP redox potential
  • Patent Document 2 describes the following method.
  • a sample is taken from a waste such as a heavy metal extraction treatment product, a liquid chelating agent is added to a predetermined amount of the sample, the heavy metal in the sample is reacted with the liquid chelating agent, and the sample to which the liquid chelating agent is added,
  • the absorbance IB at a specific wavelength for the liquid chelator is determined.
  • the amount B of the unreacted liquid chelating agent in the sample is obtained from the absorbance IB
  • the absorbance IA at a wavelength corresponding to the total amount of the liquid chelating agent added by the blank test is obtained, and the total amount A of the liquid chelating agent added from the absorbance IA is obtained.
  • Patent Document 2 describes 286 nm, 257 nm, and 215 nm as wavelengths used for measuring absorbance when the chelating agent is a dithiocarbamic acid type.
  • Patent Document 3 describes a method of insolubilizing heavy metal-containing fly ash with a dithiocarbamic acid chelating agent. Patent Document 3 describes that the concentration of a chelating agent in a liquid is measured by absorbance at a wavelength of 330 nm or more (specifically, 350 nm) (paragraphs 0018 and 0028 of patent document 3).
  • the applicant of the present application first added a dithiocarbamate heavy metal collector to a heavy metal-containing wastewater to remove the heavy metal component in the wastewater.
  • a dithiocarbamic acid heavy metal scavenger is added to the wastewater containing heavy metal, and after adding this dithiocarbamic acid heavy metal scavenger, a heavy metal compound is added to the solid-liquid separated treated water, and heavy metal ions are added.
  • the absorbance or transmittance at a wavelength of 400 to 700 nm is measured, and the dithiocarbamate heavy metal collector is measured based on the measurement result.
  • Patent Document 4 specifically, a dithiocarbamic acid heavy metal scavenger is added to the heavy metal-containing wastewater, the heavy metal in the wastewater is reacted with the scavenger to insolubilize, and then an inorganic flocculant is added to the reaction liquid Then, the polymer flocculant is added, and then a polymer flocculant is added to further agglomerate, followed by solid-liquid separation, and a heavy metal compound is added to the treated water subjected to solid-liquid separation.
  • a dithiocarbamic acid heavy metal scavenger is added to the heavy metal-containing wastewater, the heavy metal in the wastewater is reacted with the scavenger to insolubilize, and then an inorganic flocculant is added to the reaction liquid Then, the polymer flocculant is added, and then a polymer flocculant is added to further agglomerate, followed by solid-liquid separation, and a heavy metal compound is added to the treated water subject
  • the present invention provides a method and apparatus for treating heavy metal-containing wastewater with an inorganic flocculant and a dithiocarbamic acid-based heavy metal scavenger, thereby measuring the residual scavenger with high accuracy, thereby increasing the amount of heavy metal scavenger injection.
  • An object of the present invention is to provide a heavy metal-containing wastewater treatment method and apparatus capable of obtaining treated water with an appropriate amount without deficiency and having good water quality.
  • the method for treating heavy metal-containing wastewater according to the present invention is a method for treating heavy metal-containing wastewater, which is obtained by adding an inorganic flocculant to the heavy metal-containing wastewater and then aggregating, then adding a dithiocarbamic acid heavy metal scavenger, and then solid-liquid separation.
  • a heavy metal compound is added to the heavy metal-containing wastewater to which the dithiocarbamic acid heavy metal scavenger is added, if necessary, and the heavy metal compound reacts with the dithiocarbamic acid heavy metal scavenger in the water to cause color development.
  • the absorbance or transmittance at a wavelength of 400 to 700 nm is measured, and the addition amount of the dithiocarbamic acid heavy metal scavenger is controlled based on the measurement result.
  • the apparatus for treating heavy metal-containing wastewater comprises a means for adding an inorganic flocculant to a heavy metal-containing wastewater for agglomeration, a means for adding a dithiocarbamic acid heavy metal scavenger, and then a solid-liquid separation for solid-liquid separation. Separating means.
  • the apparatus of the present invention includes means for adding a heavy metal compound to a heavy metal-containing wastewater to which a dithiocarbamic acid heavy metal scavenger is added, as necessary.
  • the apparatus of the present invention further comprises means for measuring the absorbance or transmittance at a wavelength of 400 to 700 nm after reacting the heavy metal compound with the dithiocarbamic acid heavy metal scavenger in the water to cause color development, And a control means for controlling the amount of the dithiocarbamic acid heavy metal scavenger added.
  • the water-soluble iron salt or copper salt is suitable as the heavy metal compound for color development.
  • the addition amount of the heavy metal scavenger so that the concentration of the dithiocarbamic acid heavy metal scavenger in water determined from the absorbance or transmittance is 2 to 30 mg / L.
  • the inorganic flocculant and dithiocarbamic acid heavy metal collector are added to the wastewater.
  • Agents are added in this order, and solid-liquid separation is performed.
  • heavy metal compounds such as water-soluble iron salts and copper salts can be added to waste water containing heavy metals containing dithiocarbamic acid heavy metal collectors (hereinafter sometimes referred to as “heavy metal collector-added water”).
  • the absorbance or transmittance at 400 to 700 nm is measured.
  • color is developed by the reaction between the heavy metal ion and the dithiocarbamic acid heavy metal collector, and the absorbance or transmittance in the visible light region of 400 to 700 nm is measured, so that it is affected by the visible light absorption of the collector.
  • the organic substance concentration that affects the absorbance or transmittance varies, the residual collection agent can be detected or quantified with high accuracy.
  • An absorbance sensor or transmittance sensor of 400 to 700 nm is less expensive than a UV absorbance sensor or the like.
  • the dithiocarbamic acid heavy metal scavenger is added after the inorganic flocculant is added to the heavy metal-containing wastewater, the dithiocarbamic acid heavy metal scavenger is prevented or suppressed from reacting with the inorganic flocculant.
  • the residual dithiocarbamic acid heavy metal scavenger that has not reacted with the heavy metal ions in the wastewater can be measured with high accuracy.
  • the inorganic flocculant is added after adding the dithiocarbamic acid heavy metal collector to the heavy metal-containing wastewater as in Patent Document 4, the residual dithiocarbamic acid heavy metal collector that did not react with the heavy metal ions reacts with the inorganic flocculant.
  • the measurement accuracy of the residual collection agent is lowered, but the present invention solves such a problem.
  • the quality of the solid-liquid separation treated water is good. Since the inorganic flocculant is added prior to the addition of the dithiocarbamic acid-based heavy metal scavenger, the suspended matter and part of the soluble COD in the heavy metal-containing wastewater are coagulated. Thereby, the measurement accuracy of absorbance or transmittance is further improved.
  • an inorganic flocculant and a dithiocarbamic acid heavy metal scavenger are added to the heavy metal-containing wastewater in this order, and the heavy metal in the wastewater is reacted with the scavenger to insolubilize, and then solid-liquid separation is performed. .
  • This heavy metal-containing wastewater includes steel, semiconductor, and automobile manufacturing plating processes, smoke cleaning of garbage factories and power plants, dust collection processes, batteries, glass manufacturing processes, metal processing processes, landfill leachate from industrial waste treatment plants, etc. Although the drainage from is illustrated, it is not limited to this.
  • heavy metals in the heavy metal-containing wastewater include, but are not limited to, mercury, cadmium, arsenic, lead, hexavalent chromium, selenium, copper, zinc, manganese, divalent iron, nickel, and trivalent iron. .
  • the heavy metal ion concentration in the wastewater containing heavy metal is usually about 100 ppm or less, for example, about 1 to 50 ppm, but is not limited thereto.
  • an inorganic flocculant is first added to the heavy metal-containing wastewater to be agglomerated.
  • inorganic flocculant examples include iron-based inorganic flocculants such as polyferric sulfate and ferric chloride, and aluminum-based inorganic flocculants such as polyaluminum chloride and aluminum sulfate, but are not limited thereto.
  • the amount of inorganic flocculant added is usually about 10 to 1000 mg / L, although it varies depending on the content of suspended substances and soluble COD in the heavy metal-containing wastewater. After the addition of the inorganic flocculant, it is preferable to perform an agglomeration treatment for about 5 to 30 minutes.
  • a dithiocarbamic acid heavy metal scavenger is added to the agglomeration liquid, preferably without solid-liquid separation.
  • Dithiocarbamate heavy metal scavengers include dithiocarbamate, dialkyldithiocarbamate, cycloalkyldithiocarbamate, piperazine bisdithiocarbamate, tetraethylenepentamine dithiocarbamate, polyethyleneimine benzyl chloride condensate carbon disulfide, Examples include, but are not limited to, sodium hydroxide modified products, polyamine dithiocarbamate, and the like. In addition, these 1 type may be used independently and may use 2 or more types together.
  • An insolubilized product is generated by adding a dithiocarbamic acid heavy metal scavenger to the heavy metal-containing wastewater and preferably stirring slowly.
  • the reaction time with the dithiocarbamic acid heavy metal scavenger is preferably about 5 to 60 min.
  • the pH during the insolubilization product formation reaction is usually 6 to 11, and an acid or alkali is added as necessary to adjust the pH.
  • Polymer flocculants include anionic polymer flocculant homopolymers of acrylamide, copolymers of sodium acrylate and acrylamide, terpolymers of sodium acrylate, acrylamide and 2-acrylamido-2-methylpropanesulfonic acid. Can be used.
  • the amount of the polymer flocculant added varies depending on the amount of the aggregate and insolubilized product produced depending on the quality of the wastewater containing heavy metal, but is usually 0.5 to 5 mg / L. It is preferable to carry out for about 10 minutes.
  • the liquid containing the insolubilized material generated by adding the dithiocarbamic acid heavy metal scavenger is subjected to a solid-liquid separation process after adding a polymer flocculant and aggregating as necessary.
  • the solid-liquid separation means may be any of sedimentation separation, filtration, centrifugation, membrane separation, and the like.
  • Fe 2+ , Fe 3+ , Cu 2+ , Zn 2+ , Pb 2+ , Ni 2+ , Cd 2+ examples include sulfate salts such as Mn 2+, and water-soluble salts such as hydrochloride salts.
  • a salt of Fe 2+ or Fe 3+ for example, first chloride Iron, ferrous sulfate, ferric chloride, and ferric sulfate are preferred.
  • the heavy metal compound can be added to any liquid as long as it is water after a dithiocarbamic acid heavy metal scavenger is added and an insolubilized product is formed. It can be added to the treated liquid or treated water after the solid-liquid separation treatment.
  • the heavy metal compound when the heavy metal compound is added to a dilute aqueous solution of the dithiocarbamic acid heavy metal scavenger, the color becomes deeper as the amount of the heavy metal compound increases, but the total amount of the scavenger in water and the added heavy metal compound When the reaction equivalent is exceeded, the color development does not become deeper even if the amount of heavy metal compound added is increased. Therefore, in the present invention, when the residual scavenger concentration in the heavy metal scavenger-added water is quantified, the heavy metal compound is more than the above reaction equivalent (for example, about 1 to 10 times, particularly about 1.5 to 5 times the reaction equivalent). Is preferably added.
  • a heavy metal compound as heavy metal ions in an amount of 10 mg / L or more, particularly 20 mg / L or more, for example, 20 to 200 mg / L, particularly 10 to 30 mg / L, with respect to water added with a heavy metal scavenger.
  • the residual collection agent concentration in the heavy metal collection agent-added water is obtained based on the calibration curve (or calibration relationship) obtained in advance.
  • This calibration curve (or calibration relationship) is obtained from the absorbance or transmittance measured by adding a heavy metal compound having a reaction equivalent or higher to an aqueous collecting agent solution having a known concentration.
  • the measurement of absorbance or transmittance is preferably performed after removing turbidity such as insolubilized material in order to eliminate the influence of insolubilized material.
  • the absorbance can be measured as it is.
  • a heavy metal compound is added to the heavy metal scavenger-added water before solid-liquid separation, it is desirable to separately remove turbidity by sedimentation separation or filtration before measuring the absorbance.
  • the addition amount of the dithiocarbamic acid heavy metal collecting agent added to the aggregating treatment liquid with the inorganic flocculant is controlled. This control is preferably performed so that the concentration of the collection agent in the heavy metal collection agent-added water falls within the target concentration range.
  • the lower limit of the target concentration range is, for example, 0 to 10 mg / L, particularly 1 to 5 mg / L, and the upper limit is, for example, about 8 to 50 mg / L, particularly about 10 to 30 mg / L.
  • the target concentration range is preferably 2 to 30 mg / L, more preferably 10 to 20 mg / L, but is not limited thereto.
  • the measurement wavelength of absorbance or transmittance is 400 to 700 nm, preferably 400 to 660 nm, and particularly preferably 400 to 500 nm.
  • the wavelength is shorter than this range, it is affected by other organic compounds in the waste water, and the sensitivity is also lowered. If the wavelength is longer than this range, the sensitivity decreases.
  • wastewater containing heavy metal is introduced into the coagulation tank 2 through the raw water pipe 1, added with an inorganic coagulant and coagulated, then introduced into the reaction tank 4, and acid (HCl, etc.) or alkali (NaOH, etc.).
  • the pH adjusting agent is added to adjust the pH
  • the dithiocarbamic acid heavy metal scavenger is added from the drug storage tank 3 with the chemical injection pump P and reacted.
  • the liquid in the reaction tank 4 is introduced into the coagulation tank 5 and a polymer coagulant is added for coagulation treatment.
  • the coagulation treatment liquid is solid-liquid separated in the settling basin 6 and the resulting supernatant water is discharged as treated water. To do.
  • the separated sludge is dehydrated with a dehydrator (not shown).
  • FIG. 1 a part of the treated water from the sedimentation basin 6 is separated and introduced into the measuring tank 7, a heavy metal compound is added, and the absorbance at 400 to 700 nm is measured with the absorbance meter 8.
  • This absorbance is input to the controller 9, and the required addition amount of the dithiocarbamic acid heavy metal scavenger is calculated. Based on this calculation result, the chemical injection pump P is controlled, and appropriate chemical injection of the dithiocarbamic acid heavy metal scavenger is performed.
  • the dithiocarbamic acid heavy metal scavenger is added in the reaction tank 4, so that the dithiocarbamic acid heavy metal scavenger is The dithiocarbamic acid heavy metal scavenger that has been prevented or suppressed from reacting with the inorganic flocculant and has not reacted with the heavy metal can be measured with the absorptiometer 8 with high accuracy.
  • the agglomeration tank 2 is installed at the rear stage of the reaction tank 4 and a dithiocarbamic acid heavy metal scavenger is added to the heavy metal-containing wastewater, then an inorganic flocculant is added.
  • the unreacted residual dithiocarbamic acid heavy metal scavenger reacts with the inorganic flocculant in the agglomeration tank on the rear stage side, and the measurement accuracy of the residual scavenger decreases.
  • the inorganic flocculant is added prior to the addition of the dithiocarbamic acid heavy metal scavenger, the suspended matter and part of the soluble COD in the heavy metal-containing wastewater are coagulated. Thereby, the measurement accuracy of the absorbance or transmittance by the absorptiometer 8 is improved.
  • the absorbance measurement in the measuring tank 7 may be performed continuously or intermittently.
  • the calculation results of the absorptiometer 8 and the controller 9 are transmitted to the central monitoring device at the remote center via a telephone line via the communication terminal, and a setting change command signal (for example, setting change of measurement interval, Control command value change command signal (such as correction coefficient) is transmitted to the controller via the communication terminal via the telephone line, and the processing status in the remote location is monitored and monitored and controlled remotely by data communication between the local / center. It may be.
  • a setting change command signal for example, setting change of measurement interval, Control command value change command signal (such as correction coefficient)
  • the absorbance is measured by adding a heavy metal compound to the treated water from the sedimentation basin 6, but as shown in FIG. 2, water is collected from the upper part of the agglomeration tank 5 and introduced into the measurement tank 7.
  • a compound may be added and the absorbance measured.
  • the heavy metal compound is added and stirred, and then measured after standing for a while or sampling water is introduced into the measuring tank 7 and the heavy metal compound is added. After stirring, the mixture is allowed to stand for a while to allow the aggregates to settle, and then the absorbance of the supernatant water is measured.
  • the method and apparatus of FIG. 2 are more susceptible to contamination of the absorbance meter than the method of FIG. 1, but the time lag from the addition of the dithiocarbamic acid-based heavy metal scavenger to the absorbance measurement is small, so accurate control is possible. .
  • the sedimentation basin 6 is used, but as described above, various solid-liquid separation means can be used.
  • a transmittance meter can be used in place of the absorbance meter 8.
  • the method of the present invention and the apparatus can be applied to any heavy metal-containing wastewater as long as it contains a heavy metal capable of reacting with a dithiocarbamic acid heavy metal scavenger.
  • the absorbance at 470 nm was measured when the amount of FeSO 4 added to the 30 mg / L aqueous solution of drug 3 was changed and is shown in FIG. As shown in FIG. 5, the absorbance reached a peak when the Fe 2+ addition amount was 10 mg / L or more, and the reaction equivalent of Fe 2+ to 30 mg / L of the drug 3 was found to be 10 mg / L.
  • the absorbance at 470 nm was measured when the concentration of drug 3 was in the range of 3 to 30 mg / L, and 10 mg / L of FeSO 4 was added as Fe 2+ equal to or higher than the reaction equivalent, and the results are shown in FIG. As shown in FIG. 6, there is a linear relationship between the concentration of the drug 3 and the absorbance. From this, it was confirmed that the concentration of the drug 3 in water can be quantified from the absorbance measured by adding Fe 2+ or more to the reaction equivalent.
  • the liquid in the reaction tank 4 is introduced into the coagulation tank 5, and 2 mg / L of an anionic polymer coagulant (Kurita Kogyo Co., Ltd. Cliflock PA331, polyacrylamide type) is added, and the mixture is stirred slowly to coagulate. did.
  • the average residence time in the tank 5 was 1 min.
  • the coagulation treatment liquid with this polymer coagulant was introduced into the sedimentation basin 6 and subjected to solid-liquid separation treatment.
  • Treated water from the sedimentation basin 6 was introduced into the measuring tank 7, and 10 mg / L of ferrous chloride was added as Fe 2+ to develop color, and the absorbance at 470 nm was measured.
  • Table 2 shows the measurement results of the absorbance and the Ni 2+ and Zn 2+ concentrations in the treated water.
  • Example 8 (Comparative Example)> The heavy metal-containing wastewater was treated in the same manner as in Experimental Example 7, except that the dithiocarbamic acid heavy metal scavenger (K800) was first added to the heavy metal-containing wastewater, and then the inorganic flocculant and NaOH were added. Table 3 shows the absorbance and the measurement results of Ni 2+ and Zn 2+ concentrations in the treated water.
  • K800 dithiocarbamic acid heavy metal scavenger
  • Example 9 (Invention Example)>
  • the raw water is an aqueous solution containing 10 mg as Ni / L of NiSO 4 , 200 mg / L of a commercially available sulfuric acid band type flocculant (Al 2 O 3 content 8%) is added as an inorganic flocculant, and addition of a dithiocarbamic acid heavy metal scavenger K800
  • the experiment was performed under the same conditions as in Experimental Example 7, except that the amount was 0, 100, 300, 500 or 700 mg / L.
  • the results are shown in Table 4.
  • Example 10 (Comparative Example)>
  • the raw water is an aqueous solution containing 10 mg as Ni / L of NiSO 4 , 200 mg / L of a commercially available sulfuric acid band type flocculant (Al 2 O 3 content 8%) is added as an inorganic flocculant, and addition of a dithiocarbamic acid heavy metal scavenger K800
  • the experiment was performed under the same conditions as in Experimental Example 8 except that the amount was 0, 100, 300, 500 or 700 mg / L. The results are shown in Table 5.
  • Example 11 (Invention Example)> Raw water is made into an aqueous solution containing 10 mg as Zn / L of ZnCl 2 , 200 mg / L of a commercially available sulfuric acid band type flocculant (Al 2 O 3 content 8%) is added as an inorganic flocculant, and addition of a dithiocarbamic acid heavy metal scavenger K800 The experiment was performed under the same conditions as in Experimental Example 7, except that the amount was 0, 100, 300, 500 or 700 mg / L. The results are shown in Table 6.
  • Example 12 (Comparative Example)> Raw water is made into an aqueous solution containing 10 mg as Zn / L of ZnCl 2 , 200 mg / L of a commercially available sulfuric acid band type flocculant (Al 2 O 3 content 8%) is added as an inorganic flocculant, and addition of a dithiocarbamic acid heavy metal scavenger K800 The experiment was performed under the same conditions as in Experimental Example 8 except that the amount was 0, 100, 300, 500 or 700 mg / L. The results are shown in Table 7.

Abstract

 重金属含有排水をジチオカルバミン酸系重金属捕集剤によって処理するにあたり、重金属捕集剤の薬注量を過不足のない適正量とする。重金属含有排水に無機凝集剤を添加して凝集処理した後、ジチオカルバミン酸系重金属捕集剤を添加し、その後、固液分離する重金属含有排水の処理方法及び装置。該ジチオカルバミン酸系重金属捕集剤が添加された重金属含有排水に重金属化合物を加え、重金属化合物と該水中のジチオカルバミン酸系重金属捕集剤とを反応させて発色させた後に400~700nmの波長の吸光度又は透過率を測定し、その測定結果に基づいて、前記ジチオカルバミン酸系重金属捕集剤の添加量を制御する。

Description

重金属含有排水の処理方法及び装置
 本発明は、重金属含有排水の処理方法及び装置に係り、特に重金属含有排水に無機凝集剤を添加した後、ジチオカルバミン酸系重金属捕集剤を加えて該排水中の重金属成分を除去する重金属含有排水の処理方法及び装置に関するものである。
 メッキ排水、塗装排水等の重金属含有排水は、銅、クロム、亜鉛、鉛、マンガン、鉄、ニッケル、カドミウム等の重金属を含む。これらの重金属含有排水は、水質汚濁防止法等により適切な処理を行うことが義務づけられている。
 重金属含有排水の処理法として、ジチオカルバミン酸基を主体とするキレート系重金属捕集剤を添加して、凝集沈殿処理を行う方法が知られている(特許文献1)。このジチオカルバミン酸系重金属捕集剤を用いた重金属含有排水の処理方法において、重金属含有排水の水質変動にかかわらず、キレート系重金属捕集剤を定量添加して処理すると、キレート系重金属捕集剤添加量が不足する場合は、重金属のリークにより処理水質が低下し、過剰添加の場合は、キレート系重金属捕集剤自体によって処理水質が低下する。
 特許文献1には、重金属含有排水にキレート系重金属捕集剤を加えて該排水中の重金属成分を除去する方法として、該重金属含有排水にキレート系重金属捕集剤を添加し、キレート系重金属捕集剤の添加量と、キレート系重金属捕集剤の添加前後の該排水の酸化還元電位の変化量を測定し、この測定結果に基いて、キレート系重金属捕集剤の必要添加量を決定する方法が記載されている。
 キレート系重金属捕集剤は、キレート形成基(ジチオカルバミン酸基)を持ち、この基が排水中の重金属イオンと反応して不溶化物を作り沈殿を生成する。この反応時には、酸化還元電位(ORP)が低下する。特許文献1の方法は、このORPの変化、即ち、処理対象排水へのキレート系重金属捕集剤の添加濃度を変化させるとそれに応じて、重金属捕集剤の添加濃度が高くなるほどORPが低くなるように変化することを利用したものである。
 特許文献2には、次のような方法が記載されている。重金属抽出処理物などの廃棄物からサンプルを採取し、サンプルの所定量に対して液体キレート剤を添加してサンプル中の重金属と液体キレート剤とを反応させ、液体キレート剤を添加したサンプルについて、液体キレート剤について特異的な波長における吸光度IBを求める。吸光度IBからサンプル中の未反応の液体キレート剤の量Bを求め、空試験により添加した液体キレート剤の全量に相当する波長における吸光度IAを求め、吸光度IAから添加した液体キレート剤の全量Aを求める。全量Aと量Bの差から重金属と反応した液体キレート剤の量Cを求める。量Cとサンプルの所定量との比に基づいて廃棄物を処理するに適正な液体キレート剤の添加量を決定する。特許文献2には、キレート剤がジチオカルバミン酸系の場合、吸光度の測定に用いる波長として286nm、257nm、215nmが記載されている。
 特許文献3には、重金属含有飛灰をジチオカルバミン酸系キレート剤で重金属不溶化処理する方法が記載されている。特許文献3には、液中のキレート剤濃度を330nm以上の波長(具体的には350nm)の吸光度によって測定することが記載されている(特許文献3の0018段落、0028段落)。
 特許文献2,3の吸光度法によるジチオカルバミン酸系キレート剤の定量は、ジチオカルバミン酸系キレート剤それ自体の吸光度を検出するものであるため、重金属含有排水の処理等のジチオカルバミン酸系キレート剤の濃度が低い場合や、吸光度に影響する検水中の有機物濃度が変動する場合などにあっては、測定精度が低いものとなる。
 この問題を解決するものとして、本願出願人は、先に、重金属含有排水にジチオカルバミン酸系重金属捕集剤を加えて該排水中の重金属成分を除去する際の該ジチオカルバミン酸系重金属捕集剤の必要添加量を決定する方法として、重金属含有排水にジチオカルバミン酸系重金属捕集剤を添加し、このジチオカルバミン酸系重金属捕集剤添加後、固液分離された処理水に重金属化合物を加え、重金属イオンと該処理水中のジチオカルバミン酸系重金属捕集剤とを反応させて発色させた後に400~700nmの波長の吸光度又は透過率を測定し、その測定結果に基づいて、前記ジチオカルバミン酸系重金属捕集剤の添加量を制御する方法を提案した(特許文献4)。
 特許文献4では、具体的に、重金属含有排水にジチオカルバミン酸系重金属捕集剤を添加して排水中の重金属を該捕集剤と反応させて不溶化させた後、反応液に無機凝集剤を添加して凝集処理し、次いで高分子凝集剤を添加して更に凝集処理した後固液分離し、固液分離された処理水に重金属化合物を添加している。
特開2001-340874 特開平10-337550 特開2010-260010 特開2012-161724
 特許文献4の方法であれば、重金属イオンとジチオカルバミン酸系重金属捕集剤との反応によって発色させ、400~700nmの可視光域の吸光度又は透過率を測定するため、該捕集剤の可視光吸収の影響を受けることなく、また吸光度又は透過率に影響する有機物濃度が変動する場合であっても、残留捕集剤を精度よく検出ないし定量することができるが、重金属含有排水にジチオカルバミン酸系重金属捕集剤を添加した後に無機凝集剤を添加しているため、重金属イオンと反応しなかった残留ジチオカルバミン酸系重金属捕集剤が無機凝集剤と反応してしまい、残留捕集剤の測定精度が低いという課題があった。
 本発明は、重金属含有排水を無機凝集剤及びジチオカルバミン酸系重金属捕集剤によって処理する方法及び装置において、残留捕集剤を高精度に測定することにより、重金属捕集剤の薬注量を過不足のない適正量とし、水質の良好な処理水を得ることができる重金属含有排水の処理方法及び装置を提供することを目的とする。
 本発明の重金属含有排水の処理方法は、重金属含有排水に無機凝集剤を添加して凝集処理した後、ジチオカルバミン酸系重金属捕集剤を添加し、その後、固液分離する重金属含有排水の処理方法に関する。本発明では、ジチオカルバミン酸系重金属捕集剤が添加された重金属含有排水に対し、必要に応じ重金属化合物を加え、重金属化合物と該水中のジチオカルバミン酸系重金属捕集剤とを反応させて発色させる。次いで、400~700nmの波長の吸光度又は透過率を測定し、その測定結果に基づいて、前記ジチオカルバミン酸系重金属捕集剤の添加量を制御する。
 本発明の重金属含有排水の処理装置は、重金属含有排水に無機凝集剤を添加して凝集処理する手段と、次いでジチオカルバミン酸系重金属捕集剤を添加する手段と、その後、固液分離する固液分離手段とを有する。本発明装置は、必要に応じ、ジチオカルバミン酸系重金属捕集剤が添加された重金属含有排水に重金属化合物を添加する手段を備える。
 本発明装置は、さらに、該重金属化合物と該水中のジチオカルバミン酸系重金属捕集剤とを反応させて発色させた後に400~700nmの波長の吸光度又は透過率を測定する手段と、その測定結果に基づいて、前記ジチオカルバミン酸系重金属捕集剤の添加量を制御する制御手段とを有する。
 発色用の重金属化合物としては、水溶性の鉄塩又は銅塩が好適である。
 前記吸光度又は透過率より求められる水中のジチオカルバミン酸系重金属捕集剤の濃度が2~30mg/Lとなるように前記重金属捕集剤の添加量を制御することが好ましい。
 本発明の重金属捕集剤の薬注制御方法及び装置では、重金属含有排水へのジチオカルバミン酸系重金属捕集剤の添加量を決定する際に、該排水に無機凝集剤及びジチオカルバミン酸系重金属捕集剤をこの順に添加し、固液分離する。ジチオカルバミン酸系重金属捕集剤が添加された重金属含有排水(以下、「重金属捕集剤添加水」ということがある。)に対し、必要に応じ、水溶性鉄塩、銅塩等の重金属化合物を添加して重金属イオンと残留ジチオカルバミン酸系重金属捕集剤とを反応させて発色させた後、400~700nmの吸光度又は透過率を測定する。このように、重金属イオンとジチオカルバミン酸系重金属捕集剤との反応によって発色させ、400~700nmの可視光域の吸光度又は透過率を測定するため、該捕集剤の可視光吸収の影響を受けることなく、また吸光度又は透過率に影響する有機物濃度が変動する場合であっても、残留捕集剤を精度よく検出ないし定量することができる。400~700nmの吸光度センサ又は透過率センサは、UV吸光度センサ等に比べて安価である。
 本発明では、重金属含有排水に無機凝集剤を添加して凝集処理した後にジチオカルバミン酸系重金属捕集剤を添加するので、ジチオカルバミン酸系重金属捕集剤が無機凝集剤と反応することが防止ないし抑制され、排水中の重金属イオンと反応しなかった残留ジチオカルバミン酸系重金属捕集剤を高精度にて測定することができる。特許文献4のように、重金属含有排水にジチオカルバミン酸系重金属捕集剤を添加した後に無機凝集剤を添加すると、重金属イオンと反応しなかった残留ジチオカルバミン酸系重金属捕集剤が無機凝集剤と反応してしまい、残留捕集剤の測定精度が低下するが、本発明ではこのような問題は解決される。
 本発明では、無機凝集剤を併用するので、固液分離処理水の水質が良好である。ジチオカルバミン酸系重金属捕集剤の添加に先立って無機凝集剤を添加するので、重金属含有排水中の懸濁物質や溶解性CODの一部が凝集処理される。これにより、吸光度又は透過率の測定精度がより一層向上する。
実施の形態に係る重金属捕集剤の薬注制御方法及び装置を示すフロー図である。 別の実施の形態に係る重金属捕集剤の薬注制御方法及び装置を示すフロー図である。 重金属捕集剤の吸光度を示すグラフである。 ジチオカルバミン酸系重金属捕集剤水溶液にFe2+を添加したときの吸光度を示すグラフである。 ジチオカルバミン酸系重金属捕集剤水溶液にFe2+を添加したときの吸光度を示すグラフである。 Fe2+にジチオカルバミン酸系重金属捕集剤水溶液を添加したときの吸光度を示すグラフである。 ジチオカルバミン酸系重金属捕集剤水溶液にCu2+を添加したときの吸光度を示すグラフである。 ジチオカルバミン酸系重金属捕集剤水溶液にFe3+,Al3+又はCa2+を添加したときの吸光度を示すグラフである。 ジチオカルバミン酸系重金属捕集剤水溶液にCu2+又はFe2+を添加したときの吸光度を示すグラフである。 ジチオカルバミン酸系重金属捕集剤水溶液にCu2+を添加したときの吸光度を示すグラフである。
 以下、本発明についてさらに詳細に説明する。
 本発明では、重金属含有排水に、無機凝集剤及びジチオカルバミン酸系重金属捕集剤をこの順に添加して、該排水中の重金属を該捕集剤と反応させて不溶化させた後、固液分離する。
 この重金属含有排水としては、鉄鋼や半導体及び自動車製造のメッキ工程、清掃工場や発電所の洗煙、集塵工程、電池、硝子製造工程、金属加工工程、産業廃棄物処理場の埋立浸出水などからの排水が例示されるが、これに限定されない。
 この重金属含有排水中の重金属としては、水銀、カドミウム、砒素、鉛、6価クロム、セレン、銅、亜鉛、マンガン、2価鉄、ニッケル、3価鉄などが例示されるが、これに限定されない。
 重金属含有排水中の重金属イオン濃度は、通常は約100ppm以下、例えば1~50ppm程度であるが、これに限定されない。
 本発明では、この重金属含有排水にまず無機凝集剤を添加して凝集処理する。
 無機凝集剤としてはポリ硫酸第二鉄、塩化第二鉄等の鉄系無機凝集剤、ポリ塩化アルミニウム、硫酸アルミニウム等のアルミニウム系無機凝集剤等を使用することができるが、これに限定されない。
 この無機凝集剤の凝集処理により、重金属含有排水中の懸濁物質や溶解性CODの少なくとも一部が凝集され、処理水の水質が向上すると共に、後に行われる吸光度又は透過率の測定精度が向上する。
 無機凝集剤の添加量は重金属含有排水中の懸濁物質や溶解性COD等の含有量によっても異なるが、通常10~1000mg/L程度である。無機凝集剤添加後は5~30min程度凝集処理を行うことが好ましい。
 この無機凝集剤の添加後に酸又はアルカリを添加してpH調整を行い、無機凝集剤中の金属イオンを不溶化させることが好ましい。
 無機凝集剤と必要に応じ酸又はアルカリを添加して好ましくは撹拌して凝集処理を行った後、好ましくは固液分離することなく、この凝集処理液にジチオカルバミン酸系重金属捕集剤を添加する。
 ジチオカルバミン酸系重金属捕集剤としては、ジチオカルバミン酸塩、ジアルキルジチオカルバミン酸塩、シクロアルキルジチオカルバミン酸塩、ピペラジンビスジチオカルバミン酸塩、テトラエチレンペンタミンジチオカルバミン酸塩、ポリエチレンイミン塩化ベンジル縮合物の二硫化炭素・水酸化ナトリウム変性物、ポリアミンのジチオカルバミン酸塩などが例示されるが、これに限定されない。なお、これらの1種を単独で用いてもよく、2種以上を併用してもよい。
 重金属含有排水にジチオカルバミン酸系重金属捕集剤を添加して好ましくはゆっくりと撹拌することにより、不溶化物が生成する。ジチオカルバミン酸系重金属捕集剤による反応時間は5~60min程度とすることが好ましい。不溶化物生成反応時のpHは通常6~11であり、必要に応じて酸又はアルカリを添加してpHを調整する。
 この不溶化物含有液に対し高分子凝集剤を添加し、好ましくはゆっくりと撹拌し、無機凝集剤による凝集物及びこの不溶化物を凝集させることが好ましい。高分子凝集剤を添加することで処理水の水質をより向上させることが可能となる。
 高分子凝集剤としては、アニオン性の高分子凝集剤であるアクリルアミドのホモポリマー、アクリル酸ナトリウムとアクリルアミドのコポリマー、アクリル酸ナトリウムとアクリルアミドと2-アクリルアミド-2-メチルプロパンスルホン酸のターポリマーなどを使用することができる。高分子凝集剤の添加量は重金属含有排水の水質により、生成する凝集物及び不溶化物の量によっても異なるが、通常0.5~5mg/Lであり、高分子凝集剤添加後の撹拌は1~10min程度行うことが好ましい。
 ジチオカルバミン酸系重金属捕集剤の添加によって生成した不溶化物を含有する液を、必要に応じて高分子凝集剤を添加して凝集処理した後に、固液分離処理する。この固液分離手段としては、沈降分離、濾過、遠心分離、膜分離などのいずれでもよい。
 重金属捕集剤添加水に対し必要に応じ添加され、残留捕集剤と反応して発色する重金属化合物としては、Fe2+、Fe3+、Cu2+、Zn2+、Pb2+、Ni2+、Cd2+、Mn2+などの硫酸塩、塩酸塩等の水溶性塩が挙げられるが、発色の度合や分析作業終了後の放流時に特段の処理が不要となることからFe2+又はFe3+の塩例えば塩化第一鉄、硫酸第一鉄、塩化第二鉄、硫酸第二鉄が好適である。
 前記重金属化合物は、ジチオカルバミン酸系重金属捕集剤が添加されて不溶化物が生成した後の水であれば、いずれの液にでも添加することが可能であり、高分子凝集剤を添加して凝集処理した液や、固液分離処理後の処理水などに添加することができる。
 一般に、上記ジチオカルバミン酸系重金属捕集剤の希薄水溶液に上記重金属化合物を添加した場合、該重金属化合物の添加量が増加するほど発色が濃くなるが、水中の捕集剤の全量と添加重金属化合物とが反応する反応当量以上になると、重金属化合物添加量を多くしても発色はそれ以上濃くならない。従って、本発明において、重金属捕集剤添加水中の残留捕集剤濃度を定量するときには、上記の反応当量以上(例えば反応当量の1~10倍、特に1.5~5倍程度)に重金属化合物を添加することが好ましい。通常は、重金属捕集剤添加水に対し重金属化合物を重金属イオンとして10mg/L以上特に20mg/L以上、例えば20~200mg/L特に10~30mg/L添加することが望ましい。
 反応当量以上に重金属化合物を添加して吸光度又は透過率を測定した後、予め求めておいた検量線(又は検量関係)に基づいて重金属捕集剤添加水中の残留捕集剤濃度を求める。この検量線(又は検量関係)は、濃度既知の捕集剤水溶液に反応当量以上の重金属化合物を添加して測定した吸光度又は透過率によって求められるものである。
 吸光度又は透過率の測定は、不溶化物の影響を排除するために、不溶化物などの濁質を除去した後に行うことが好ましい。重金属化合物を固液分離処理後の処理水に添加した場合には、そのまま吸光度を測定することができる。固液分離前の重金属捕集剤添加水に重金属化合物を添加した場合には、吸光度測定前に別途、沈降分離や濾過などによって濁質を除去することが望ましい。
 このようにして求めた重金属捕集剤添加水中の捕集剤濃度に基づいて、前記無機凝集剤による凝集処理液に対して添加するジチオカルバミン酸系重金属捕集剤の添加量を制御する。この制御は、重金属捕集剤添加水中の捕集剤濃度が目標濃度範囲となるように行われるのが好ましい。
 目標濃度範囲の下限値としては、例えば0~10mg/L特に1~5mg/L、上限値としては例えば8~50mg/L特に10~30mg/L程度とされる。目標濃度範囲は好ましくは2~30mg/L、より好ましくは10~20mg/Lとされるが、これに限定されない。
 吸光度又は透過率の測定波長は400~700nm、好ましくは400~660nm、特に好ましくは400~500nmである。波長がこの範囲より短くなると、排水中の他の有機化合物の影響を受けたり、また、感度も低くなる。波長がこの範囲より長くなると感度が低くなる。
 固液分離処理水等の水中の捕集剤濃度に基づいて排水への捕集剤添加量を制御する排水処理方法のフローの一例について図1,2を参照して説明する。
 この排水処理系では、重金属含有排水を原水配管1によって凝集槽2に導入し、無機凝集剤を添加して凝集処理し、次いで反応槽4に導入し、酸(HCl等)又はアルカリ(NaOH等)のpH調整剤を添加してpH調整すると共に薬剤貯槽3から薬注ポンプPでジチオカルバミン酸系重金属捕集剤を添加して反応させる。この反応槽4内の液を凝集槽5に導入し、高分子凝集剤を添加して凝集処理し、凝集処理液を沈殿池6で固液分離し、得られた上澄水を処理水として放流する。分離された汚泥は脱水機(図示略)等で脱水処理する。
 図1では、沈殿池6からの処理水の一部を分取して計測槽7に導入し、重金属化合物を添加し、400~700nmの吸光度を吸光度計8で計測する。この吸光度が制御器9に入力され、ジチオカルバミン酸系重金属捕集剤の必要添加量が算出される。この算出結果に基づいて薬注ポンプPが制御され、ジチオカルバミン酸系重金属捕集剤の適正な薬注が行われる。
 この実施の形態では、重金属含有排水に凝集槽2で無機凝集剤を添加して凝集処理した後に、反応槽4でジチオカルバミン酸系重金属捕集剤を添加するので、ジチオカルバミン酸系重金属捕集剤が無機凝集剤と反応することが防止ないし抑制され、重金属と反応しなかったジチオカルバミン酸系重金属捕集剤を吸光度計8で高精度にて測定することができる。仮に凝集槽2を反応槽4の後段に設置し、重金属含有排水にジチオカルバミン酸系重金属捕集剤を添加した後に無機凝集剤を添加するように構成した場合、反応槽4からの流出液中の未反応残留ジチオカルバミン酸系重金属捕集剤が後段側の凝集槽で無機凝集剤と反応してしまい、残留捕集剤の測定精度が低下する。
 この実施の形態では、ジチオカルバミン酸系重金属捕集剤の添加に先立って無機凝集剤を添加するので、重金属含有排水中の懸濁物質や溶解性CODの一部が凝集処理される。これにより、吸光度計8による吸光度又は透過率の測定精度が向上する。
 計測槽7での吸光度測定は連続的に行ってもよく、間欠的に行ってもよい。
 吸光度計8と制御器9の算出結果を通信端末を経て電話回線で遠隔地のセンターの中央監視装置に送信すると共に、この中央監視装置からの設定変更指令信号(例えば、計測間隔の設定変更、補正係数等の制御設定値の変更指令信号等)を電話回線で通信端末を経て制御器に送信し、現地/センター相互のデータ通信で遠隔地における処理状況の把握及び監視と遠隔制御を行うようにしてもよい。
 図1では、沈殿池6からの処理水に重金属化合物を添加して吸光度を測定しているが、図2のように、凝集槽5の上部から採水して計測槽7に導入し、重金属化合物を添加し、吸光度を測定してもよい。この場合、濾過膜等により、懸濁物を濾過した後、重金属化合物を添加して撹拌した後、しばらく静置してから測定するか、計測槽7に採取水を導入し重金属化合物を添加して攪拌した後、暫く静置し、凝集物を沈降させてから、上澄水について吸光度を測定するのが好ましい。図2の方法及び装置は、図1の方法に比べ吸光度計が汚れやすいものの、ジチオカルバミン酸系重金属捕集剤を添加してから吸光度測定までのタイムラグが小さいため、精度の良い制御が可能となる。
 図1,2では、沈殿池6を用いているが、前述の通り、固液分離手段としては各種のものを用いることができる。
 本発明では、吸光度計8の代りに透過率計を用いることもできる。
 本発明及び装置の方法は、ジチオカルバミン酸系重金属捕集剤との反応が可能な重金属を含有するものであれば、どのような重金属含有排水にも適用可能である。
 以下に、実施例及び比較例に代る実験例を挙げて本発明をより具体的に説明する。
<実験例1>
 ジチオカルバミン酸系重金属捕集剤として、表1の4種類の薬剤1~4について吸光度スペクトルを測定し、図3に示した。図示の通り、いずれの捕集剤も200~350nmに強い吸収帯を有し、約240nm付近に吸光ピークを有する。また、400nm以上では吸光度はきわめて小さい。
Figure JPOXMLDOC01-appb-T000001
<実験例2>
 ジチオカルバミン酸系重金属捕集剤として薬剤3を30mg/L溶解させた水にFeSOをFe2+として10mg/L添加し、吸光度スペクトルを測定した。結果を図4に示す。図4には、FeSO無添加の場合のスペクトルを併せて示す。
 図4の通り、Fe2+を添加することにより、420nmをピークとする強い吸光が生じることが認められた。
 そこで、薬剤3の30mg/L水溶液に対するFeSOの添加量を変えたときの470nmの吸光度を測定し、図5に示した。図5の通り、Fe2+添加量が10mg/L以上では吸光度が頭打ちとなり、30mg/Lの薬剤3に対するFe2+の反応当量は10mg/Lであることが認められた。
 そこで、薬剤3の濃度を3~30mg/Lの範囲とし、FeSOを反応当量以上であるFe2+として10mg/L添加したときの470nmの吸光度を測定し、結果を図6に示した。図6の通り、薬剤3の濃度と吸光度との間には直線関係が存在する。このことから、Fe2+を反応当量以上添加して測定した吸光度から、水中の薬剤3の濃度を定量できることが認められた。
<実験例3,4>
 Fe2+以外の重金属イオンの発色作用を確認するために、30mg/Lの薬剤3水溶液に対し、CuSOをCu2+として20mg/L添加した場合のスペクトルを測定し、図7に示した(実験例3)。また、30mg/Lの薬剤3水溶液に対し、Fe(SOをFe3+として10mg/L添加した場合のスペクトルを測定し、図8に示した(実験例4)。
 その結果、Cu2+,Fe3+の場合も、薬剤3と反応して約460nm(Cu2+の場合)又は360nm(Fe3+の場合)にピークを有する発色が生じることが認められた。なお、Al3+,Ca2+を添加したところ、図8の通り、発色は生じないことが認められた。
<実験例5>
 自動車工場の実排水を用いて、ジチオカルバミン酸系重金属捕集剤として薬剤2の3~36mg/Lの水溶液を作成し、各々に対しCuSO又はFeSOをCu2+又はFe2+として10mg/L添加し、425nmの吸光度を図9に示した。図9の通り、薬剤2の場合も、Cu2+,Fe2+と反応して発色すること、吸光度と薬剤2の濃度との間に線形の相関関係が存在し、吸光度から薬剤2の濃度を定量できることが認められた。
<実験例6>
 実験例3において、ジチオカルバミン酸系重金属捕集剤として薬剤1又は4を用いたほかは同様にして吸光度を測定した。結果を図10に示した。図10の通り、薬剤1、4の場合もCu2+と反応して発色することが認められる。
<実験例7(本発明例)>
 図1に示す排水処理系にて、自動車工場の重金属含有排水を模擬した模擬排水よりなる原水を処理した。即ち、Ni、Zn、Cu、Cd、Pbがそれぞれ10mg-Metal/Lとなるよう、NiSO、ZnCl、CuSO、CdCl、PbClを添加した水溶液に無機凝集剤としてFeCl含有率37%の市販の塩化第二鉄系凝集剤を200mg/L添加し、撹拌して凝集処理した。凝集槽2内の平均滞留時間は1minとした。この凝集処理液を反応槽4に導入し、ジチオカルバミン酸系重金属捕集剤(栗田工業(株)製ウェルクリンK800。以下、単にK800ということがある。)を500、900、1300又は1700mg/L添加すると共に、NaOHを添加してpH=7.5とし、ゆっくりと撹拌した。反応槽4内の平均滞留時間は1minとした。この反応槽4内の液を凝集槽5に導入し、アニオン性高分子凝集剤(栗田工業(株)製クリフロックPA331、ポリアクリルアミド系)を2mg/L添加し、ゆっくりと撹拌して凝集処理した。槽5内の平均滞留時間は1minとした。
 この高分子凝集剤による凝集処理液を沈殿池6に導入し、固液分離処理した。
 沈殿池6からの処理水を計測槽7に導入し、塩化第一鉄をFe2+として10mg/L添加し、発色させ、470nmの吸光度を測定した。この吸光度と処理水中のNi2+及びZn2+濃度の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す通り、吸光度が0.2以上となるようにジチオカルバミン酸系重金属捕集剤(K800)を添加することにより、処理水中のNi2+及びZn2+濃度が十分に低くなることが認められた。なお、吸光度0.2のときの処理水中のK800の残留濃度は5mg/Lであった。
<実験例8(比較例)>
 重金属含有排水にまずジチオカルバミン酸系重金属捕集剤(K800)を添加し、その後無機凝集剤及びNaOHを添加するようにしたこと以外は実験例7と同様にして重金属含有排水を処理した。この場合の吸光度と処理水中のNi2+及びZn2+濃度の測定結果を表3に示す
Figure JPOXMLDOC01-appb-T000003
 表3の通り、ジチオカルバミン酸系重金属捕集剤を無機凝集剤よりも先に添加した場合、ジチオカルバミン酸系重金属捕集剤の一部が無機凝集剤と反応してしまい、計測槽での発色が不十分となり、適切な薬注制御は難しいことが認められた。
<実験例9(本発明例)>
 原水をNiSO10mgasNi/Lを含む水溶液とし、無機凝集剤として市販の硫酸バンド系凝集剤(Al含有率8%)を200mg/L添加し、ジチオカルバミン酸系重金属捕集剤K800の添加量を0、100、300、500又は700mg/Lとしたこと以外は実験例7と同一条件にて実験を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
<実験例10(比較例)>
 原水をNiSO10mgasNi/Lを含む水溶液とし、無機凝集剤として市販の硫酸バンド系凝集剤(Al含有率8%)を200mg/L添加し、ジチオカルバミン酸系重金属捕集剤K800の添加量を0、100、300、500又は700mg/Lとしたこと以外は実験例8と同一条件にて実験を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
<実験例11(本発明例)>
 原水をZnCl10mgasZn/Lを含む水溶液とし、無機凝集剤として市販の硫酸バンド系凝集剤(Al含有率8%)を200mg/L添加し、ジチオカルバミン酸系重金属捕集剤K800の添加量を0、100、300、500又は700mg/Lとしたこと以外は実験例7と同一条件にて実験を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
<実験例12(比較例)>
 原水をZnCl10mgasZn/Lを含む水溶液とし、無機凝集剤として市販の硫酸バンド系凝集剤(Al含有率8%)を200mg/L添加し、ジチオカルバミン酸系重金属捕集剤K800の添加量を0、100、300、500又は700mg/Lとしたこと以外は実験例8と同一条件にて実験を行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表4~7からも明らかな通り、ジチオカルバミン酸系重金属捕集剤よりも先に無機凝集剤を添加すると共に、吸光度が所定以上となるようにジチオカルバミン酸系重金属捕集剤を添加することにより、Ni2+やZn2+が十分に除去される。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 なお、本出願は、2012年7月31日付で出願された日本特許出願(特願2012-170051)に基づいており、その全体が引用により援用される。
 2 凝集槽
 3 薬剤貯槽
 4 反応槽
 5 凝集槽
 6 沈殿池
 7 計測槽
 8 吸光度計

Claims (11)

  1.  重金属含有排水に無機凝集剤を添加して凝集処理した後、ジチオカルバミン酸系重金属捕集剤を添加し、その後、固液分離する重金属含有排水の処理方法であって、
     該ジチオカルバミン酸系重金属捕集剤が添加された重金属含有排水に重金属化合物を加え、
     該重金属化合物と該重金属含有排水中に残留するジチオカルバミン酸系重金属捕集剤とを反応させて発色させた後に400~700nmの波長の吸光度又は透過率を測定し、その測定結果に基づいて、前記ジチオカルバミン酸系重金属捕集剤の添加量を制御することを特徴とする重金属含有排水の処理方法。
  2.  請求項1において、重金属化合物が水溶性の鉄塩又は銅塩であることを特徴とする重金属含有排水の処理方法。
  3.  請求項2において、400~500nmの波長の吸光度又は透過率を測定することを特徴とする重金属含有排水の処理方法。
  4.  請求項1ないし3のいずれか1項において、前記吸光度又は透過率より求められる水中のジチオカルバミン酸系重金属捕集剤の濃度が2~30mg/Lとなるように前記ジチオカルバミン酸系重金属捕集剤の添加量を制御することを特徴とする重金属含有排水の処理方法。
  5.  請求項1ないし4のいずれか1項において、前記重金属含有排水に無機凝集剤を添加して凝集処理した後、固液分離することなく、前記ジチオカルバミン酸系重金属捕集剤を添加することを特徴とする重金属含有排水の処理方法。
  6.  請求項1ないし5のいずれか1項において、前記重金属化合物が添加される前記ジチオカルバミン酸系重金属捕集剤が添加された重金属含有排水が、前記固液分離により得られた分離水であることを特徴とする重金属含有排水の処理方法。
  7.  請求項1ないし6のいずれか1項において、前記重金属含有排水に無機凝集剤を添加して凝集処理した後、ジチオカルバミン酸系重金属捕集剤を添加し、その後高分子凝集剤を添加して凝集処理し、凝集処理液を固液分離することを特徴とする重金属含有排水の処理方法。
  8.  請求項7において、前記重金属化合物が添加される前記ジチオカルバミン酸系重金属捕集剤が添加された重金属含有排水が、前記凝集処理液であり、該凝集処理液に重金属化合物を添加した後、凝集物を沈降分離して得られた上澄水について、前記吸光度又は透過率を測定することを特徴とする重金属含有排水の処理方法。
  9.  重金属含有排水に無機凝集剤を添加して凝集処理した後、ジチオカルバミン酸系重金属捕集剤を添加し、その後、固液分離する重金属含有排水の処理方法であって、
     該ジチオカルバミン酸系重金属捕集剤が添加された重金属含有排水の400~700nmの波長の吸光度又は透過率を測定し、その測定結果に基づいて、前記ジチオカルバミン酸系重金属捕集剤の添加量を制御することを特徴とする重金属含有排水の処理方法。
  10.  重金属含有排水に無機凝集剤を添加して凝集処理する手段と、
     次いでジチオカルバミン酸系重金属捕集剤を添加する手段と、
     その後、固液分離する固液分離手段と
    を有する重金属含有排水の処理装置であって、
     該ジチオカルバミン酸系重金属捕集剤が添加された重金属含有排水に重金属化合物を添加する手段と、
     該重金属化合物と該水中のジチオカルバミン酸系重金属捕集剤とを反応させて発色させた後に400~700nmの波長の吸光度又は透過率を測定する手段と、
     その測定結果に基づいて、前記ジチオカルバミン酸系重金属捕集剤の添加量を制御する制御手段と
    を有することを特徴とする重金属含有排水の処理装置。
  11.  重金属含有排水に無機凝集剤を添加して凝集処理する手段と、
     次いで、ジチオカルバミン酸系重金属捕集剤を添加する手段と、
     その後、固液分離する固液分離手段と
    を有する重金属含有排水の処理装置であって、
     該ジチオカルバミン酸系重金属捕集剤が添加された重金属含有排水の400~700nmの波長の吸光度又は透過率を測定する手段と、
     その測定結果に基づいて、前記ジチオカルバミン酸系重金属捕集剤の添加量を制御する制御手段と
    を有することを特徴とする重金属含有排水の処理装置。
PCT/JP2014/052289 2014-01-31 2014-01-31 重金属含有排水の処理方法及び装置 WO2015114805A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/052289 WO2015114805A1 (ja) 2014-01-31 2014-01-31 重金属含有排水の処理方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/052289 WO2015114805A1 (ja) 2014-01-31 2014-01-31 重金属含有排水の処理方法及び装置

Publications (1)

Publication Number Publication Date
WO2015114805A1 true WO2015114805A1 (ja) 2015-08-06

Family

ID=53756417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052289 WO2015114805A1 (ja) 2014-01-31 2014-01-31 重金属含有排水の処理方法及び装置

Country Status (1)

Country Link
WO (1) WO2015114805A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105170121A (zh) * 2015-09-30 2015-12-23 山东建筑大学 一种利用γ-聚谷氨酸去除电镀废水中铜离子的装置及方法
CN111484161A (zh) * 2020-04-10 2020-08-04 中冶一局环境科技有限公司 一种土壤修复产生的淋洗废液的再生处理方法及再生淋洗液和应用
CN111573884A (zh) * 2020-04-30 2020-08-25 贵州金诚环保科技有限公司 一种重金属检测用样品废料收集装置
CN111650146A (zh) * 2020-07-29 2020-09-11 深圳市长隆科技有限公司 分离式水质检测设备及系统
CN114835283A (zh) * 2022-03-31 2022-08-02 南京工业大学 一种脱硫废水中重金属离子分级去除的处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624493A (ja) * 1985-07-01 1987-01-10 Unitika Ltd 重金属含有排水の処理方法
JP2008264626A (ja) * 2007-04-17 2008-11-06 Taiheiyo Cement Corp 土壌洗浄廃水の処理方法
JP2009229146A (ja) * 2008-03-19 2009-10-08 Oriental Giken Kogyo Kk 焼却飛灰中の重金属を固定化するための固定剤の適正添加量を決定する方法および装置
JP2012148253A (ja) * 2011-01-20 2012-08-09 Institute Of Microbial Chemistry 塩分含有有機廃液処理剤、並びに、塩分濃度低下剤、塩分含有有機廃液の処理方法、及び包括固定担体
JP2012161724A (ja) * 2011-02-04 2012-08-30 Kurita Water Ind Ltd 重金属捕集剤の薬注制御方法
JP2014028342A (ja) * 2012-07-31 2014-02-13 Kurita Water Ind Ltd 重金属含有排水の処理方法及び装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624493A (ja) * 1985-07-01 1987-01-10 Unitika Ltd 重金属含有排水の処理方法
JP2008264626A (ja) * 2007-04-17 2008-11-06 Taiheiyo Cement Corp 土壌洗浄廃水の処理方法
JP2009229146A (ja) * 2008-03-19 2009-10-08 Oriental Giken Kogyo Kk 焼却飛灰中の重金属を固定化するための固定剤の適正添加量を決定する方法および装置
JP2012148253A (ja) * 2011-01-20 2012-08-09 Institute Of Microbial Chemistry 塩分含有有機廃液処理剤、並びに、塩分濃度低下剤、塩分含有有機廃液の処理方法、及び包括固定担体
JP2012161724A (ja) * 2011-02-04 2012-08-30 Kurita Water Ind Ltd 重金属捕集剤の薬注制御方法
JP2014028342A (ja) * 2012-07-31 2014-02-13 Kurita Water Ind Ltd 重金属含有排水の処理方法及び装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105170121A (zh) * 2015-09-30 2015-12-23 山东建筑大学 一种利用γ-聚谷氨酸去除电镀废水中铜离子的装置及方法
CN111484161A (zh) * 2020-04-10 2020-08-04 中冶一局环境科技有限公司 一种土壤修复产生的淋洗废液的再生处理方法及再生淋洗液和应用
CN111573884A (zh) * 2020-04-30 2020-08-25 贵州金诚环保科技有限公司 一种重金属检测用样品废料收集装置
CN111650146A (zh) * 2020-07-29 2020-09-11 深圳市长隆科技有限公司 分离式水质检测设备及系统
CN114835283A (zh) * 2022-03-31 2022-08-02 南京工业大学 一种脱硫废水中重金属离子分级去除的处理方法

Similar Documents

Publication Publication Date Title
JP5728983B2 (ja) 重金属捕集剤の薬注制御方法
JP6044160B2 (ja) 重金属含有排水の処理方法及び装置
López-Maldonado et al. Coagulation–flocculation mechanisms in wastewater treatment plants through zeta potential measurements
CN102001734B (zh) 处理含汞废水的重金属沉降剂
WO2015114805A1 (ja) 重金属含有排水の処理方法及び装置
Wang et al. Removal of Cr (VI) from aqueous solution by flocculant with the capacity of reduction and chelation
US3947354A (en) Removal of heavy metal ions from wastewater
US8663480B2 (en) Heavy metal removal from waste streams
US20090120881A1 (en) Treatment blends for removing metals from wastewater, methods of producing and process of using the same
Wang et al. Physicochemical treatment consisting of chemical coagulation, precipitation, sedimentation, and flotation
EP3160912B1 (fr) Procédé de traitement des eaux chargées en sels
Morikubo et al. Effect of ammonia stripping and influence of contaminants in zinc plating wastewater
US20160304366A1 (en) Methods for removing contaminants from aqueous systems
Uysal et al. Examination of nutrient removal from anaerobic effluent of the dairy processing industry by struvite precipitation using the response surface methodology
JP4723624B2 (ja) 塩素含有微粉状廃棄物の処理方法
JP5880625B2 (ja) 重金属捕集剤濃度の測定方法及び装置
WO2012018249A1 (en) Flocculating agent for waste water treatment and method of using thereof
JP4678599B2 (ja) リン酸含有排水の処理方法
JP4338705B2 (ja) ホウフッ化物イオンを含む廃液の処理方法
Hazourli et al. Analysis of wastewater loaded with paint before and after treatment of coagulation–flocculation
Han et al. new Arsenic standard Spurs Search for Cost‐Effective Removal Techniques
JPS61161191A (ja) 重金属イオン含有液の処理方法
CN114162949A (zh) 一种工业废水重金属离子捕捉剂、制备方法及废水处理方法
JP6555182B2 (ja) 排水の処理方法
Yatim et al. Removing copper, chromium and nickel in industrial effluent using hydroxide precipitation versus sulphide precipitation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP