WO2015114698A1 - トランジスタパッケージ、それを備えた増幅回路、及び、トランジスタの構成方法 - Google Patents

トランジスタパッケージ、それを備えた増幅回路、及び、トランジスタの構成方法 Download PDF

Info

Publication number
WO2015114698A1
WO2015114698A1 PCT/JP2014/005161 JP2014005161W WO2015114698A1 WO 2015114698 A1 WO2015114698 A1 WO 2015114698A1 JP 2014005161 W JP2014005161 W JP 2014005161W WO 2015114698 A1 WO2015114698 A1 WO 2015114698A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
sub
main
amplifier circuit
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2014/005161
Other languages
English (en)
French (fr)
Inventor
一実 椎熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to US15/112,912 priority Critical patent/US9853605B2/en
Priority to JP2015559622A priority patent/JPWO2015114698A1/ja
Publication of WO2015114698A1 publication Critical patent/WO2015114698A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/517Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers
    • H10D64/518Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers characterised by their lengths or sectional shapes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/18Indexing scheme relating to amplifiers the bias of the gate of a FET being controlled by a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/471Indexing scheme relating to amplifiers the voltage being sensed

Definitions

  • the present invention relates to a transistor package, an amplifier circuit including the same, and a method for configuring a transistor.
  • Linearity and high efficiency are required for power amplifier circuits used in wireless communication systems.
  • recent multi-level digital modulation communication systems and the like often handle signals in which the average value of the signal amplitude and the maximum amplitude are greatly different.
  • the operating point of the power amplifier circuit is set so that the signal can be amplified to the maximum amplitude without distortion. For this reason, there is almost no operation time near the saturated output capable of maintaining a relatively high efficiency, and the efficiency of the power amplifier circuit is generally low.
  • Patent Document 1 discloses a configuration of a Doherty amplifier circuit that improves power efficiency while maintaining linearity.
  • the Doherty amplifier circuit includes a distributor that distributes an input signal, a carrier amplifier that linearly amplifies one of the distributed signals, a peak amplifier that nonlinearly amplifies the other distributed signal, and a carrier amplifier and a peak amplifier. And a synthesizer for synthesizing the output signals.
  • this Doherty amplifier circuit achieves high efficiency while maintaining linearity.
  • the Doherty amplifier circuit is downsized by configuring the carrier amplifier and the peak amplifier with transistors in one package.
  • Doherty amplifier circuits having various operating characteristics from symmetric types to extended types have been used as power amplifier circuits. Therefore, when designing and manufacturing such various types of Doherty amplifier circuits, it is required to reduce the design man-hours and the management adjustment man-hours to improve efficiency.
  • Non-Patent Document 1 discloses an extended Doherty amplifier circuit in which the sizes of transistors constituting the carrier amplifier and the peak amplifier and the relative positions of the carrier amplifier and the peak amplifier are fixed.
  • Patent Document 2 discloses a configuration of a bias circuit that appropriately absorbs element variations without impairing high-frequency characteristics.
  • the sizes of the transistors in one package disclosed in Patent Document 1 are the same. Therefore, for example, when an extended Doherty amplifier circuit having a desired operating characteristic is configured using transistors in the package, the number of packages corresponding to the ratio of power distributed to the carrier amplifier and the peak amplifier is each The transistors of the same size must be provided, which increases the package size. As a result, the circuit scale of the extended Doherty amplifier circuit increases. In the extended Doherty amplifier circuit disclosed in Non-Patent Document 1, as described above, the sizes of the transistors constituting each of the carrier amplifier and the peak amplifier and the relative positions of the carrier amplifier and the peak amplifier are fixed. Therefore, the degree of freedom of amplifier arrangement has been impaired.
  • the present invention has been made in order to solve such problems, and various types of Doherty amplification such as a Doherty amplifier circuit to which an auto-bias function is added and an extended Doherty amplifier circuit having desired operation characteristics are provided. It is an object of the present invention to provide a more versatile transistor package capable of efficiently configuring a circuit, an amplifier circuit including the same, and a transistor configuration method.
  • the transistor package is provided in the same package as the first and second main transistors and the first and second main transistors, and is larger in size than the first and second main transistors.
  • a first sub-transistor having a small size.
  • the method of configuring the transistors includes the first and second main transistors and the first sub-transistor having a smaller size than the first and second main transistors in the same package. Provide.
  • the one embodiment it is possible to provide a more versatile transistor package capable of configuring various types of Doherty amplifier circuits, an amplifier circuit including the same, and a transistor configuration method. .
  • FIG. 3 is a plan view illustrating an outline of a transistor package PKG1 according to the first embodiment.
  • FIG. 6 is a diagram illustrating a configuration example of a Doherty amplifier circuit according to a second embodiment.
  • FIG. It is a figure which shows the relationship between the output amplitude and drain current of the amplifier circuit of each class.
  • FIG. 10 is a diagram illustrating a first specific configuration example of the Doherty amplifier circuit according to the second embodiment.
  • FIG. 10 is a diagram illustrating a second specific configuration example of the Doherty amplifier circuit according to the second embodiment.
  • FIG. 10 is a diagram illustrating a third specific configuration example of the Doherty amplifier circuit according to the second embodiment.
  • FIG. 10 is a diagram illustrating a fourth specific configuration example of the Doherty amplifier circuit according to the second embodiment.
  • FIG. 10 is a diagram illustrating a fifth specific configuration example of the Doherty amplifier circuit according to the second embodiment.
  • FIG. 6 is a diagram illustrating a first configuration example of a Doherty amplifier circuit according to a third embodiment.
  • FIG. 10 is a diagram illustrating a second configuration example of the Doherty amplifier circuit according to the third embodiment.
  • FIG. 10 is a diagram illustrating a third configuration example of the Doherty amplifier circuit according to the third embodiment.
  • FIG. 10 is a diagram illustrating a fourth configuration example of the Doherty amplifier circuit according to the third embodiment.
  • FIG. 10 is a diagram illustrating a fifth configuration example of the Doherty amplifier circuit according to the third embodiment.
  • FIG. 14 is a diagram showing a relationship between power and power efficiency of the Doherty amplifier circuit shown in FIGS. 10 to 13;
  • FIG. 10 is a plan view showing an outline of a transistor package PKG2 according to a fourth embodiment.
  • FIG. 16 is a diagram for describing a Doherty amplifier circuit to which the transistor package PKG2 illustrated in FIG. 15 is applied.
  • FIG. 10 is a plan view illustrating an outline of a transistor package PKG3 according to a fourth embodiment.
  • FIG. 18 is a diagram for describing a Doherty amplifier circuit to which the transistor package PKG3 illustrated in FIG. 17 is applied.
  • the constituent elements are not necessarily essential unless otherwise specified or apparently essential in principle.
  • the shapes when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numbers and the like (including the number, numerical value, quantity, range, etc.).
  • FIG. 1 is a plan view schematically showing the transistor package PKG1 according to the first embodiment.
  • a transistor package PKG1 shown in FIG. 1 is a transistor package including a plurality of transistors for constituting a Doherty amplifier circuit or the like, and includes a main transistor (first main transistor) MT1 and a main transistor (second main transistor) MT2. And a sub-transistor (first sub-transistor) ST1.
  • the main transistors MT1 and MT2 and the sub-transistor ST1 are all N-channel field effect transistors will be described as an example.
  • the sub-transistor ST1 is disposed at the center of the package in plan view, and the main transistors MT1 and MT2 are disposed near both ends of the package with the sub-transistor ST1 interposed therebetween.
  • the arrangement positions of the main transistors MT1 and MT2 and the sub-transistor ST1 are not limited to the arrangement positions shown in FIG.
  • one of the main transistors MT1 and MT2 may be arranged in the center of the package instead of the sub-transistor ST1.
  • the size of the sub-transistor ST1 is smaller than the size of the main transistors MT1 and MT2.
  • the gate width Wa of the sub-transistor ST1 is smaller than the gate width Wb of the main transistors MT1 and MT2.
  • the size of the sub-transistor ST1 is about 1/2 to 1/20 of the size of the main transistors MT1 and MT2.
  • the drain electrode DMT1 and the gate electrode GMT1 of the main transistor MT1, the drain electrode DMT2 and the gate electrode GMT2 of the main transistor MT2, and the drain electrode DST1 and the gate electrode GST1 of the sub-transistor ST1 are extended from the transistor package PKG1. Is provided. Note that the sources of the main transistors MT1 and MT2 and the sub-transistor ST1 are grounded.
  • the transistor package PKG1 shown in FIG. 1 can constitute various types of Doherty amplifier circuits such as a Doherty amplifier circuit to which an auto-bias function is added and an extended Doherty amplifier circuit.
  • Doherty amplifier circuits such as a Doherty amplifier circuit to which an auto-bias function is added and an extended Doherty amplifier circuit.
  • the size of the sub-transistor ST1 is small in the transistor package PKG1 shown in FIG. 1, various types of Doherty amplifier circuits can be realized on a small scale.
  • the main transistors MT1 and MT2 and the sub-transistor ST1 preferably have substantially the same DC characteristics and high-frequency characteristics per unit gate width.
  • the main transistors MT1 and MT2 and the sub-transistor ST1 are formed of the same die, so that the direct current characteristics and the high frequency characteristics per unit gate width have substantially the same characteristics.
  • the performance of the Doherty amplifier circuit to which the transistor package PKG1 is applied can be improved.
  • a desired bias can be given to each transistor with higher accuracy while suppressing variations.
  • FIG. 2 is a diagram illustrating a configuration example of the Doherty amplifier circuit 1 according to the second embodiment.
  • the Doherty amplifier circuit 1 illustrated in FIG. 2 includes a carrier amplifier (first amplifier) CA1, a peak amplifier (second amplifier) PA1, an auto bias circuit 10, a distributor 11, and a combiner 12.
  • the matching circuit, the bypass capacitor, and the like are omitted for simplification.
  • the distributor 11 distributes the input signal and generates first and second distribution signals.
  • the distributor 11 adjusts the phase of the input signal so that the phases of the output signals of the carrier amplifier CA1 and the peak amplifier PA1 are in phase when they are combined by the combiner 12.
  • a second distribution signal is generated.
  • the distributor 11 is configured by a 1/4 wavelength transmission line, a 90 ° hybrid circuit, or the like.
  • the carrier amplifier CA1 includes a main transistor MT1 provided in the transistor package PKG1, amplifies the first distribution signal input to the gate of the main transistor MT1, and outputs the amplified signal from the drain of the transistor MT1.
  • the carrier amplifier CA1 is biased to, for example, class AB or class B, and linearly amplifies the first distribution signal.
  • the peak amplifier PA1 includes a main transistor MT2 provided in the transistor package PKG1, amplifies the second distribution signal input to the gate of the main transistor MT2, and outputs the amplified signal from the drain of the transistor MT2.
  • the peak amplifier PA1 is biased to, for example, class C, and nonlinearly amplifies the second distribution signal. That is, the peak amplifier PA1 performs an amplification operation only at the time of high power output.
  • the combiner 12 combines the output signals of the carrier amplifier CA1 and the peak amplifier PA1 and outputs the combined signals as output signals of the Doherty amplifier circuit 1.
  • the synthesizer 12 is usually composed of a transformer, an impedance converter, or a transmission path of 1/4 wavelength or the like when handling a signal such as a microwave band.
  • the Doherty amplifier circuit 1 includes a carrier amplifier CA1 that operates while maintaining saturation near the saturated output power, and a peak amplifier PA1 that operates only near the saturated output power, thereby taking back-off from the saturated power. Even at the time of output, higher power efficiency is realized than a normal class A or class AB amplifier circuit.
  • the carrier amplifier CA1 and the peak amplifier PA1 are built in one package. Therefore, the Doherty amplifier circuit 1 can be downsized as compared with the configuration in which the carrier amplifier CA1 and the peak amplifier PA1 are incorporated in different packages. In addition, since the transmission line length from the output of each of the carrier amplifier CA1 and the peak amplifier PA1 to the signal combining point in the combiner 12 is shortened, the transmission loss is reduced. As a result, the power efficiency of the Doherty amplifier circuit 1 is improved. be able to.
  • the auto bias circuit 10 is a circuit that automatically sets a bias current and a bias voltage for each of the carrier amplifier CA1 and the peak amplifier PA1. Although not shown in FIG. 2, in practice, the auto bias circuit 10 operates by providing a DC blocking capacitor on the input / output signal line of each amplifier. A specific configuration example of the auto bias circuit 10 will be described later with reference to FIG.
  • the auto-bias circuit 10 detects the gate voltage of the sub-transistor ST1 that keeps the drain current (bias current) of the sub-transistor ST1 at a predetermined value Ia.
  • the auto bias circuit 10 supplies a bias voltage Vb1 corresponding to the detected gate voltage (in this example, the detected gate voltage is directly used as the bias voltage Vb1) to the gate of the main transistor MT1.
  • the drain current (bias current) of the main transistor MT1 constituting the carrier amplifier CA1 is set to the desired value Ib.
  • the bias voltage Vb1 is set to a bias voltage value at which the carrier amplifier CA1 operates as a class AB or class B amplifier.
  • the bias current of the sub-transistor ST1 is Ia and the bias current of the main transistor MT1 is Ib
  • the auto bias circuit 10 supplies a bias voltage Vb2 corresponding to the detected gate voltage to the gate of the main transistor MT2.
  • the auto bias circuit 10 generates a bias voltage Vb2 having a voltage level lower than the bias voltage Vb1 by subtracting the voltage from the bias voltage Vb1 using the voltage addition / subtraction unit 13.
  • the drain current (bias current) of the main transistor MT2 constituting the peak amplifier PA1 is set to a desired value.
  • the bias voltage Vb2 is set to a bias voltage value at which the peak amplifier PA1 operates as a class C amplifier.
  • FIG. 3 is a diagram showing the relationship between the output amplitude and drain current of each class of amplifier circuits.
  • the carrier amplifier CA1 is biased to, for example, the class AB in which the drain current increases as the output amplitude increases.
  • the auto bias circuit 10 is configured to supply the bias voltage Vb1 directly to the gate of the main transistor MT1, the drain current of the carrier amplifier CA1 has the auto bias circuit 10 even if the output amplitude increases. It is held at a constant value by the desired negative feedback action (dotted line in FIG. 3). Therefore, the carrier amplifier CA1 cannot perform a desired amplification operation.
  • a current detection element such as a resistance element is provided between the power supply and the drain of the carrier amplifier CA1 in order to detect the drain current. Therefore, power consumption increases due to this current detection element.
  • the auto bias circuit 10 detects and sets the bias voltage Vb1 (Vb2) using the sub-transistor ST1.
  • the bias voltage Vb1 is not changed by the signal input / output. That is, the bias voltage Vb1 of the carrier amplifier CA1 is maintained at a desired value by the auto bias circuit 10 regardless of signal input / output. Therefore, the drain current of the carrier amplifier CA1 is not held at a constant value even when the output amplitude increases (solid line in FIG. 3). Therefore, the carrier amplifier CA1 can perform a desired amplification operation.
  • the size of the sub-transistor ST1 is small, even when a current detection element such as a resistance element is provided between the power supply and the drain of the sub-transistor ST1, the power consumed by the current detection element can be reduced. Is possible.
  • a Doherty amplifier circuit to which an auto-bias function is added can be configured using the transistor package PKG1.
  • the size of the sub-transistor ST1 is small in the transistor package PKG1, a Doherty amplifier circuit to which an auto-bias function is added can be realized on a small scale.
  • the transmission line length from the output of each of the carrier amplifier CA1 and the peak amplifier PA1 to the signal synthesis point is shortened, the transmission loss is reduced. As a result, the power efficiency of the Doherty amplifier circuit 1 can be improved.
  • the gate voltage of the sub-transistor ST1 may be used, for example, for bias setting of a driver or pre-driver with a very small output power provided in the previous stage of the Doherty amplifier circuit 1.
  • very small refers to a region where the drain current can be regarded as substantially constant regardless of the output power in the vicinity of the operating point. Since part of the power consumed by the auto-bias circuit 10 can be used for the bias setting of the driver or pre-driver, the power efficiency of the entire amplifier circuit can be further improved.
  • the driver or the pre-driver may have, for example, a configuration of a Doherty amplifier circuit with an auto bias function as shown in FIG.
  • the configuration of the auto-bias circuit 10 shown in FIG. 2 is only an example for explaining the operation principle of the present invention, and can be appropriately changed to another configuration having an equivalent function. Several specific examples will be described below.
  • FIG. 4 is a diagram illustrating a first specific configuration example of the Doherty amplifier circuit 1.
  • FIG. 4 shows a specific configuration example of the auto bias circuit 1.
  • the auto-bias circuit 10 shown in FIG. 4 includes capacitive elements C1 to C5, coils L1 to L6, resistance elements R1 to R4, a voltage addition / subtraction unit 13, a bipolar transistor Tr1, and a sub-transistor provided in the transistor package PKG1. ST1.
  • the coils L1 to L6 mean RF choke coils.
  • the resistance elements R1 and R2 are provided in series between the ground voltage terminal GND and the power supply voltage terminal Vdd1.
  • the base is connected to the node between the resistance elements R1 and R2, the collector is connected to the node N1, and the emitter is connected to the node N2.
  • Resistance element R3 is provided between power supply voltage terminal Vdd2 and node N1.
  • Resistance element R4 is provided between power supply voltage terminal Vdd1 and node N2.
  • the capacitive element C1 is provided between a node between the external input terminal of the Doherty amplifier circuit 1 and the input terminal of the distributor 11, and an input terminal of the carrier amplifier CA1 (gate electrode of the transistor MT1).
  • the capacitive element C2 is provided between the output terminal of the distributor 11 and the input terminal of the peak amplifier PA1 (the gate electrode of the transistor MT2).
  • the capacitive element C3 is provided between the output terminal of the carrier amplifier CA1 (the drain electrode of the transistor MT1) and the input terminal of the combiner 12.
  • the capacitive element C4 is provided between the output terminal of the peak amplifier PA1 (the drain electrode of the transistor MT2) and a node between the external output terminal of the Doherty amplifier circuit 1 and the output terminal of the combiner 12.
  • the capacitive element C5 is provided between the ground voltage terminal GND and the node N1.
  • the coil L1 is provided between the input terminal of the carrier amplifier CA1 and the node N1.
  • the coil L2 is provided between the input terminal of the peak amplifier PA1 and the node N1.
  • the coil L3 is provided between the output terminal of the carrier amplifier CA1 and the power supply voltage terminal Vdd1.
  • the coil L4 is provided between the output terminal of the peak amplifier PA1 and the power supply voltage terminal Vdd1.
  • the coil L5 is provided between the gate electrode of the sub-transistor ST1 and the node N1.
  • the coil L6 is provided between the drain electrode of the sub-transistor ST1 and the node N2.
  • the voltage addition / subtraction unit 13 is provided between the coil L2 and the node N1.
  • the gate bias can be wired by RF choking in the package.
  • FIG. 5 is a diagram illustrating a second specific configuration example of the Doherty amplifier circuit 1 as the Doherty amplifier circuit 1a.
  • the Doherty amplifier circuit 1a shown in FIG. 5 includes N (N is a natural number) diodes D1 to DN and a resistance element R13 as a voltage addition / subtraction unit 13. .
  • the diodes D1 to DN are provided in series between the node N1 and the coil L2.
  • the anodes of the diodes D1 to DN are connected to the node N1 side, and the cathodes of the diodes D1 to N are connected to the coil L2 side.
  • the resistance element R13 is provided between a node between the diodes D1 to DN and the coil L2, and the power supply voltage terminal Vdd3.
  • Vf the relationship between the bias voltages Vb1 and Vb2
  • Vb2 Vb1 ⁇ N ⁇ Vf. Since the voltage drop per diode is about 0.7V, for example, when the number of diodes is 3, the potential difference generated between the bias voltages Vb1 and Vb2 is about 2.1V. Of course, it may be used in combination with diodes having different degrees of voltage drop.
  • FIG. 6 is a diagram illustrating a third specific configuration example of the Doherty amplifier circuit 1 as the Doherty amplifier circuit 1b.
  • the Doherty amplifier circuit 1b shown in FIG. 6 includes a Zener diode ZD1 and a resistance element R13 as the voltage adder / subtractor 13 as compared with the Doherty amplifier circuit 1 shown in FIG.
  • the cathode of the Zener diode ZD1 is connected to the node N1, and the anode of the Zener diode ZD1 is connected to the coil L2.
  • the resistance element R13 is provided between a node between the Zener diode ZD1 and the coil L2 and the power supply voltage terminal Vdd3.
  • Vb2 Vb1 ⁇ Vzd.
  • FIG. 7 is a diagram illustrating a fourth specific configuration example of the Doherty amplifier circuit 1 as the Doherty amplifier circuit 1c.
  • the Doherty amplifier circuit 1c shown in FIG. 7 includes an NPN bipolar transistor Tr2 and resistance elements R11 to R13 as the voltage addition / subtraction unit 13.
  • the collector of the bipolar transistor Tr2 is connected to the node N1, and the emitter of the bipolar transistor Tr2 is connected to the coil L2.
  • the resistance element R11 is provided between the base and collector of the bipolar transistor Tr2.
  • the resistance element R12 is provided between the base and emitter of the bipolar transistor Tr2.
  • the resistance element R13 is provided between the emitter of the bipolar transistor Tr2 and the power supply voltage terminal Vdd3.
  • Vtr2 Vb1 ⁇ Vtr2.
  • the base-emitter voltage of the bipolar transistor Tr2 Vbe, then Vtr2 ⁇ (1 + R11 / R12) ⁇ Vbe.
  • FIG. 8 is a diagram illustrating a fifth specific configuration example of the Doherty amplifier circuit 1 as the Doherty amplifier circuit 1d.
  • the Doherty amplifier circuit 1d shown in FIG. 8 includes a PNP-type bipolar transistor Tr3 and resistance elements R11 to R13 as the voltage addition / subtraction unit 13.
  • the emitter of the bipolar transistor Tr3 is connected to the node N1, and the collector of the bipolar transistor Tr3 is connected to the coil L2.
  • the resistance element R11 is provided between the base and emitter of the bipolar transistor Tr3.
  • the resistance element R12 is provided between the base and collector of the bipolar transistor Tr3.
  • the resistance element R13 is provided between the collector of the bipolar transistor Tr3 and the power supply voltage terminal Vdd3.
  • the voltage adding / subtracting unit 13 shown in FIGS. 5 to 8 are all simple, for example, together with all or part of the auto-bias circuit 10, the main transistors MT1 and MT2, and the sub-transistor ST1. It can be integrated or mounted in the same package. Of course, a circuit for compensating the temperature characteristics of the diode may be further provided.
  • an extended Doherty amplifier circuit will be described as another example of the Doherty amplifier circuit to which the transistor package PKG1 illustrated in FIG. 1 is applied.
  • FIG. 9 is a diagram illustrating a first configuration example of the Doherty amplifier circuit 2 according to the third embodiment.
  • the Doherty amplifier circuit 2 shown in FIG. 9 includes a carrier amplifier CA1, a peak amplifier PA1, a distributor 11, and a combiner 12. Since the basic operation and connection relationship of each component are as described above, description thereof is omitted.
  • the carrier amplifier CA1 is constituted by a transistor MT1
  • the peak amplifier PA1 is constituted by a transistor MT2. That is, the carrier amplifier CA1 and the peak amplifier PA1 are composed of transistors having the same size. Therefore, in the Doherty amplifier circuit 2 shown in FIG. 9, the power distributed to each of the carrier amplifier CA1 and the peak amplifier PA1 is the same.
  • FIG. 10 is a diagram illustrating a second configuration example of the Doherty amplifier circuit 2 according to the third embodiment as the Doherty amplifier circuit 2a.
  • the Doherty amplifier circuit 2a shown in FIG. 10 differs from the Doherty amplifier circuit 2 shown in FIG. 9 in the configuration of the carrier amplifier CA1.
  • the carrier amplifier CA1 shown in FIG. 10 includes a main transistor MT1 and a sub-transistor ST1, and amplifies the first distribution signal input to the gates of the transistors MT1 and ST1, and from the drains of the transistors MT1 and ST1. Output.
  • the other configuration of the Doherty amplifier circuit 2a shown in FIG. 10 is the same as that of the Doherty amplifier circuit 2 shown in FIG.
  • the Doherty amplifier circuit 2a shown in FIG. 10 the power distributed to the carrier amplifier CA1 and the peak amplifier PA1 is different. That is, the Doherty amplifier circuit 2a shown in FIG. 10 constitutes a so-called extended Doherty amplifier circuit.
  • FIG. 11 is a diagram illustrating a third configuration example of the Doherty amplifier circuit 2 according to the third embodiment as the Doherty amplifier circuit 2b.
  • the arrangement of the carrier amplifier CA1 and the peak amplifier PA1 is switched compared to the Doherty amplifier circuit 2a shown in FIG.
  • the carrier amplifier CA1 shown in FIG. 11 includes a main transistor MT2 and a sub-transistor ST1, and amplifies the first distribution signal input to the gates of the transistors MT2 and ST1, and from the drains of the transistors MT2 and ST1. Output.
  • a peak amplifier PA1 shown in FIG. 11 includes a main transistor MT1, amplifies the second distribution signal input to the gate of the main transistor MT1, and outputs the amplified signal from the drain of the main transistor MT1. Since the other configuration of the Doherty amplifier circuit 2b shown in FIG. 11 is the same as that of the Doherty amplifier circuit 2 shown in FIG. 9, the description thereof is omitted.
  • the Doherty amplifier circuit 2b shown in FIG. 11 power is distributed to each of the carrier amplifier CA1 and the peak amplifier PA1 at the same ratio as the Doherty amplifier circuit 2a shown in FIG. That is, the Doherty amplifier circuit 2b shown in FIG. 11 configures an extended Doherty amplifier circuit similar to the Doherty amplifier circuit 2a shown in FIG. 10 except that the arrangement of the carrier amplifier CA1 and the peak amplifier PA1 is switched. Yes.
  • FIG. 12 is a diagram illustrating a fourth configuration example of the Doherty amplifier circuit 2 according to Embodiment 3 as the Doherty amplifier circuit 2c.
  • the Doherty amplifier circuit 2c shown in FIG. 12 differs from the Doherty amplifier circuit 2 shown in FIG. 9 in the configuration of the peak amplifier PA1.
  • the peak amplifier PA1 shown in FIG. 12 includes a main transistor MT2 and a sub-transistor ST1, and amplifies the second distribution signal input to the gates of the transistors MT2 and ST1, and from the drains of the transistors MT2 and ST1. Output. Since the other configuration of the Doherty amplifier circuit 2c shown in FIG. 12 is the same as that of the Doherty amplifier circuit 2 shown in FIG. 9, the description thereof is omitted.
  • the Doherty amplifier circuit 2c shown in FIG. 12 the power distributed to the carrier amplifier CA1 and the peak amplifier PA1 is different. That is, the Doherty amplifier circuit 2c shown in FIG. 12 constitutes a so-called extended Doherty amplifier circuit.
  • FIG. 13 is a diagram illustrating a fifth configuration example of the Doherty amplifier circuit 2 according to the third embodiment as the Doherty amplifier circuit 2d.
  • the arrangement of the carrier amplifier CA1 and the peak amplifier PA1 is switched compared to the Doherty amplifier circuit 2c shown in FIG.
  • the carrier amplifier CA1 shown in FIG. 13 includes a main transistor MT2, amplifies the first distribution signal input to the gate of the main transistor MT2, and outputs it from the drain of the main transistor MT2.
  • a peak amplifier PA1 shown in FIG. 13 includes a main transistor MT1 and a sub-transistor ST1, and amplifies the second distribution signal input to the gates of the transistors MT1 and ST1 and outputs the amplified signal from the drains of the transistors MT1 and ST1.
  • the other configuration of the Doherty amplifier circuit 2d shown in FIG. 13 is the same as that of the Doherty amplifier circuit 2 shown in FIG.
  • the Doherty amplifier circuit 2d shown in FIG. 13 power is distributed to each of the carrier amplifier CA1 and the peak amplifier PA1 at the same ratio as in the Doherty amplifier circuit 2c shown in FIG. That is, the Doherty amplifier circuit 2d shown in FIG. 13 constitutes an extended Doherty amplifier circuit similar to the Doherty amplifier circuit 2c shown in FIG. 12, except that the arrangement of the carrier amplifier CA1 and the peak amplifier PA1 is switched. Yes.
  • FIG. 14 is a diagram showing the relationship between the power and power efficiency of the Doherty amplifier circuits 2a to 2d shown in FIGS. As shown in FIG. 14, it can be seen that the Doherty amplifier circuits 2a and 2b and the Doherty amplifier circuits 2c and 2d having different power distribution ratios with respect to the carrier amplifier CA1 and the peak amplifier PA1 have different power efficiency peaks with respect to power. That is, an extended Doherty amplifier circuit having various operating characteristics can be configured using the transistor package PKG1.
  • an extended Doherty amplifier circuit having a desired operation characteristic and a desired arrangement can be configured by using the transistor package PKG1.
  • the size of the sub-transistor ST1 is small in the transistor package PKG1, an extended Doherty amplifier circuit having a desired operation characteristic and a desired arrangement can be realized on a small scale. Further, if the number of sub-transistors ST1 is increased, the power distribution ratio can be finely adjusted.
  • the transmission line length from the output of each of the carrier amplifier CA1 and the peak amplifier PA1 to the signal synthesis point is shortened, the transmission loss is reduced. As a result, the power efficiency of the extended Doherty amplifier circuit can be improved.
  • FIG. 15 is a plan view schematically showing a transistor package PKG2 according to the fourth embodiment.
  • the transistor package PKG2 illustrated in FIG. 15 further includes a sub-transistor (second sub-transistor) ST2 having the same structure as the sub-transistor ST1 as compared with the transistor package PKG1 illustrated in FIG.
  • Other configurations of the transistor package PKG2 illustrated in FIG. 15 are the same as those of the transistor package PKG1 illustrated in FIG.
  • the main transistor MT1, the sub-transistor ST1, the main transistor MT2, and the sub-transistor ST1 are arranged in the order in the package.
  • FIG. 16 is a diagram for explaining a Doherty amplifier circuit to which the transistor package PKG2 shown in FIG. 15 is applied.
  • FIG. 16 shows three application examples of the transistor package PKG2 shown in FIG.
  • “carrier” in the figure indicates that the transistor constitutes the carrier amplifier CA1
  • “peak” indicates that the transistor constitutes the peak amplifier PA1
  • “bias” indicates that the transistor is an auto-bias circuit.
  • 10 indicates that the transistor constitutes a carrier amplifier CA1 or a peak amplifier PA1 together with other main transistors. Note that the three application examples shown in FIG. 16 are merely examples.
  • FIG. 17 is a plan view showing a modified example of the transistor package PKG2 according to the present embodiment as a transistor package PKG3.
  • the arrangement positions of the transistors are different from those of the transistor package PKG2 illustrated in FIG.
  • the main transistor MT1, the subtransistor ST1, the subtransistor ST1, and the main transistor MT2 are arranged in the package in order in plan view.
  • FIG. 18 is a diagram for explaining a Doherty amplifier circuit to which the transistor package PKG3 shown in FIG. 17 is applied. 18 shows four application examples of the transistor package PKG3 shown in FIG.
  • the transistor packages PKG2 and PKG3 include the two sub-transistors ST1 and ST2, more various types of Doherty amplifier circuits such as an extended Doherty amplifier circuit to which an auto bias function is added are configured. Can do.
  • the sizes of the sub-transistors ST1 and ST2 are small in the transistor packages PKG2 and PKG3, various types of Doherty amplifier circuits can be realized on a small scale.
  • the number of sub-transistors provided in the transistor package PKG2 may be three or more.
  • the number of main transistors provided in the transistor package PKG2 may be three or more.
  • the transistor packages PKG1 to PKG3 include various types of Doherty amplifier circuits such as a Doherty amplifier circuit to which an auto-bias function is added and an extended Doherty amplifier circuit having desired operation characteristics. Can be configured. Since various types of Doherty amplifier circuits can be configured by a common transistor package, when various types of Doherty amplifier circuits are designed and manufactured, it is possible to reduce the design man-hours and management adjustment man-hours to increase efficiency. Here, since the transistor packages PKG1 and PKG2 have small sub-transistor sizes, various types of Doherty amplifier circuits can be realized on a small scale.
  • the main transistors MT1 and MT2 and the sub-transistors ST1 and ST2 are field effect transistors
  • the main transistors MT1, MT2 and subtransistors ST1, ST2 may be bipolar transistors.
  • the size of the field effect transistor is typically represented by the gate width, whereas the size of the bipolar transistor is represented by the emitter area.
  • a field effect transistor is a voltage control element
  • a bipolar transistor is a current control element. Therefore, when a bipolar transistor is used, a bias or the like is given by a current. It goes without saying that the present invention can be realized by making an easy change.
  • the transistor packages PKG1 to PKG3 may be configured with the sizes of the sub-transistors ST1 and ST2 being approximately the same as the sizes of the main transistors MT1 and MT2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

 一実施の形態によれば、トランジスタパッケージは、メイントランジスタ(MT1,MT2)と、メイントランジスタ(MT1,MT2)と同じパッケージ内に設けられ、メイントランジスタ(MT1,MT2)よりもサイズの小さいサブトランジスタ(ST1)と、を備える。それにより、オートバイアス機能が付加されたドハティ増幅回路や、所望の動作特性の拡張型ドハティ増幅回路等、様々な種類のドハティ増幅回路を構成することが可能なより汎用性の高いトランジスタパッケージ、それを備えた増幅回路、及び、トランジスタの構成方法を提供することができる。

Description

トランジスタパッケージ、それを備えた増幅回路、及び、トランジスタの構成方法
 本発明は、トランジスタパッケージ、それを備えた増幅回路、及び、トランジスタの構成方法に関する。
 無線通信システムに利用される電力増幅回路には、線形性と高効率とが要求されている。特に、最近の多値デジタル変調通信システム等では、信号振幅の平均値と最大振幅とが大きく異なる信号を取り扱うことが多い。従来の電力増幅回路を用いてこのような信号を増幅する場合、この電力増幅回路の動作点は、信号を歪ませずに最大振幅まで増幅できるように設定される。このため、比較的高効率を維持できる飽和出力付近で動作している時間がほとんどなく、一般的に電力増幅回路の効率は低かった。
 このような問題に対する解決策が、特許文献1に開示されている。特許文献1には、線形性を維持しつつ電力効率を向上させたドハティ増幅回路の構成が開示されている。このドハティ増幅回路は、入力信号を分配する分配器と、分配された一方の信号を線形増幅するキャリア増幅器と、分配された他方の信号を非線形増幅するピーク増幅器と、キャリア増幅器及びピーク増幅器のそれぞれの出力信号を合成する合成器と、を備える。それにより、このドハティ増幅回路は、線形性を維持しつつ高効率化を実現している。また、このドハティ増幅回路は、キャリア増幅器及びピーク増幅器を1個のパッケージ内のトランジスタで構成することで、小型化を実現している。
 ところで、近年では、対称型から拡張型まで様々な動作特性のドハティ増幅回路が電力増幅回路として使用されてきている。そのため、このような様々な種類のドハティ増幅回路を設計し製造するに際し、設計工数や管理調整工数を削減して効率化することが求められている。
 その他、非特許文献1には、キャリア増幅器及びピーク増幅器のそれぞれを構成するトランジスタのサイズ、及び、キャリア増幅器及びピーク増幅器の相対位置が固定された拡張型ドハティ増幅回路が開示されている。また、特許文献2には、高周波特性を損なうことなく素子のばらつきを適切に吸収するバイアス回路の構成が開示されている。
国際公開第2005/029695号 特開平6-237123号公報
freescale Semiconductor, Inc.、"Technical Data"、[online]、[2013年12月17日検索]、インターネット、<URL:http://www.freescale.com/files/rf_if/doc/data_sheet/AFT09H310-03S.pdf>
 ここで、特許文献1に開示された1個のパッケージ内のトランジスタのサイズは同じであると考えられる。そのため、例えば、パッケージ内のトランジスタを用いて所望の動作特性の拡張型ドハティ増幅回路を構成しようとした場合、パッケージには、キャリア増幅器及びピーク増幅器のそれぞれに分配される電力の比に応じた数の同一サイズのトランジスタが設けられている必要があり、パッケージのサイズが大きくなってしまう。その結果、拡張型ドハティ増幅回路の回路規模が増大してしまう。また、非特許文献1に開示された拡張型ドハティ増幅回路では、上記したように、キャリア増幅器及びピーク増幅器のそれぞれを構成するトランジスタのサイズ、及び、キャリア増幅器及びピーク増幅器の相対位置が固定されているため、増幅器配置の自由度が損なわれていた。例えば、キャリア増幅器及びピーク増幅器の位置を入れ替えた拡張型ドハティ増幅器を構成する場合には、キャリア増幅器及びピーク増幅器のそれぞれを構成するトランジスタの配置が入れ替わった別のトランジスタ構成のパッケージが必要になり、設計の自由度やトランジスタの汎用性に問題があった。このように、特許文献1や非特許文献1に開示されたパッケージのトランジスタ構成では、様々な種類のドハティ増幅回路をより効率的に構成するのが困難であった。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本発明は、このような問題点を解決するためになされたものであり、オートバイアス機能が付加されたドハティ増幅回路や、所望の動作特性の拡張型ドハティ増幅回路等、様々な種類のドハティ増幅回路を効率的に構成することが可能なより汎用性の高いトランジスタパッケージ、それを備えた増幅回路、及び、トランジスタの構成方法を提供することを目的とする。
 一実施の形態によれば、トランジスタパッケージは、第1及び第2メイントランジスタと、前記第1及び前記第2メイントランジスタと同じパッケージ内に設けられ、前記第1及び前記第2メイントランジスタよりもサイズの小さい第1サブトランジスタと、を備える。
 また、一実施の形態によれば、トランジスタの構成方法は、第1及び第2メイントランジスタと、前記第1及び前記第2メイントランジスタよりもサイズの小さい第1サブトランジスタと、を同じパッケージ内に設ける。
 前記一実施の形態によれば、様々な種類のドハティ増幅回路を構成することが可能なより汎用性の高いトランジスタパッケージ、それを備えた増幅回路、及び、トランジスタの構成方法を提供することができる。
実施の形態1に係るトランジスタパッケージPKG1の概略を示す平面図である。 実施の形態2に係るドハティ増幅回路の構成例を示す図である。 各クラスの増幅回路の出力振幅とドレイン電流との関係を示す図である。 実施の形態2に係るドハティ増幅回路の第1具体的構成例を示す図である。 実施の形態2に係るドハティ増幅回路の第2具体的構成例を示す図である。 実施の形態2に係るドハティ増幅回路の第3具体的構成例を示す図である。 実施の形態2に係るドハティ増幅回路の第4具体的構成例を示す図である。 実施の形態2に係るドハティ増幅回路の第5具体的構成例を示す図である。 実施の形態3に係るドハティ増幅回路の第1構成例を示す図である。 実施の形態3に係るドハティ増幅回路の第2構成例を示す図である。 実施の形態3に係るドハティ増幅回路の第3構成例を示す図である。 実施の形態3に係るドハティ増幅回路の第4構成例を示す図である。 実施の形態3に係るドハティ増幅回路の第5構成例を示す図である。 図10~図13に示すドハティ増幅回路の電力と電力効率との関係を示す図である。 実施の形態4に係るトランジスタパッケージPKG2の概略を示す平面図である。 図15に示すトランジスタパッケージPKG2が適用されたドハティ増幅回路を説明するための図である。 実施の形態4に係るトランジスタパッケージPKG3の概略を示す平面図である。 図17に示すトランジスタパッケージPKG3が適用されたドハティ増幅回路を説明するための図である。
 以下、図面を参照しつつ、実施の形態について説明する。なお、図面は簡略的なものであるから、この図面の記載を根拠として実施の形態の技術的範囲を狭く解釈してはならない。また、同一の要素には、同一の符号を付し、重複する説明は省略する。
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、応用例、詳細説明、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
 さらに、以下の実施の形態において、その構成要素(動作ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数等(個数、数値、量、範囲等を含む)についても同様である。
<実施の形態1>
 図1は、実施の形態1に係るトランジスタパッケージPKG1の概略を示す平面図である。図1に示すトランジスタパッケージPKG1は、ドハティ増幅回路等を構成するための複数のトランジスタを備えたトランジスタパッケージであって、メイントランジスタ(第1メイントランジスタ)MT1と、メイントランジスタ(第2メイントランジスタ)MT2と、サブトランジスタ(第1サブトランジスタ)ST1と、を備える。なお、本実施の形態では、メイントランジスタMT1,MT2及びサブトランジスタST1が何れもNチャネル型の電界効果トランジスタである場合を例に説明する。
 図1の例では、平面視上、サブトランジスタST1がパッケージ中央に配置され、メイントランジスタMT1,MT2がサブトランジスタST1を挟んでパッケージ両端付近に配置されている。なお、メイントランジスタMT1,MT2及びサブトランジスタST1の配置位置は、図1に示す配置位置に限られない。例えば、メイントランジスタMT1,MT2の何れか一方がサブトランジスタST1の代わりにパッケージ中央に配置されてもよい。
 サブトランジスタST1のサイズは、メイントランジスタMT1,MT2のサイズより小さい。具体的には、サブトランジスタST1のゲート幅Waは、メイントランジスタMT1,MT2のゲート幅Wbより小さい。好適には、サブトランジスタST1のサイズは、メイントランジスタMT1,MT2のサイズの1/2~1/20程度である。
 トランジスタパッケージPKG1から張り出すようにして、メイントランジスタMT1のドレイン電極DMT1及びゲート電極GMT1と、メイントランジスタMT2のドレイン電極DMT2及びゲート電極GMT2と、サブトランジスタST1のドレイン電極DST1及びゲート電極GST1と、が設けられている。なお、メイントランジスタMT1,MT2及びサブトランジスタST1のそれぞれのソースは、接地されている。
 このような構成により、図1に示すトランジスタパッケージPKG1は、オートバイアス機能が付加されたドハティ増幅回路や、拡張型ドハティ増幅回路等、様々な種類のドハティ増幅回路を構成することができる。ここで、図1に示すトランジスタパッケージPKG1は、サブトランジスタST1のサイズが小さいため、様々な種類のドハティ増幅回路を小規模で実現することができる。
 なお、メイントランジスタMT1,MT2及びサブトランジスタST1は、単位ゲート幅あたりの直流特性および高周波特性が略同一の特性を有することが好ましい。例えば、メイントランジスタMT1,MT2及びサブトランジスタST1は、同一ダイにて形成されることで、単位ゲート幅あたりの直流特性および高周波特性が略同一の特性を有する。それにより、トランジスタパッケージPKG1が適用されるドハティ増幅回路の性能を向上させることができる。例えば、オートバイアス機能が付加されたドハティ増幅回路の場合には、各トランジスタに対して所望のバイアスを、バラつきを抑えてより精度良く与えることが可能になる。また、拡張型ドハティ増幅回路の場合には、キャリア増幅器及びピーク増幅器に対して所望の分配率で電力を分配合成し、ドハティ増幅器としての所望の利得や出力電力をより安定して得ることが可能になる。また、製造調整コストの低減や小型化の面でも有利になることは言うまでもない。これらの増幅回路の詳細については、実施の形態2以降で説明する。
 また、図1の例では示されていないが、トランジスタパッケージPKG1内部に、トランジスタ入出力整合回路等が配置される場合も考えられる。本発明の本質が変わるものではなく、また、必須の構成でもないので説明は省略している。
<実施の形態2>
 本実施の形態では、図1に示すトランジスタパッケージPKG1が適用されたドハティ増幅回路の一例として、オートバイアス機能が付加されたドハティ増幅回路について説明する。
 図2は、実施の形態2に係るドハティ増幅回路1の構成例を示す図である。図2に示すドハティ増幅回路1は、キャリア増幅器(第1増幅器)CA1と、ピーク増幅器(第2増幅器)PA1と、オートバイアス回路10と、分配器11と、合成器12と、を備える。なお、図2では、簡略化のため、整合回路やバイパスキャパシタ等は省略されている。
(分配器11)
 分配器11は、入力信号を分配して第1及び第2分配信号を生成する。分配器11は、キャリア増幅器CA1及びピーク増幅器PA1のそれぞれの出力信号が合成器12にて合成されるときに、それらの位相が同相となるように、入力信号の位相を調整して第1及び第2分配信号を生成する。例えば、分配器11は、1/4波長の伝送線路や90°ハイブリッド回路などによって構成されている。
(キャリア増幅器CA1)
 キャリア増幅器CA1は、トランジスタパッケージPKG1に設けられたメイントランジスタMT1により構成され、メイントランジスタMT1のゲートに入力された第1分配信号を増幅してトランジスタMT1のドレインから出力する。ここで、キャリア増幅器CA1は、例えば、AB級やB級にバイアスされ、第1分配信号を線形増幅する。
(ピーク増幅器PA1)
 ピーク増幅器PA1は、トランジスタパッケージPKG1に設けられたメイントランジスタMT2により構成され、メイントランジスタMT2のゲートに入力された第2分配信号を増幅してトランジスタMT2のドレインから出力する。ここで、ピーク増幅器PA1は、例えば、C級にバイアスされ、第2分配信号を非線形増幅する。つまり、ピーク増幅器PA1は、高電力出力時にのみ増幅動作を行う。
(合成器12)
 合成器12は、キャリア増幅器CA1及びピーク増幅器PA1のそれぞれの出力信号を合成し、ドハティ増幅回路1の出力信号として出力する。例えば、合成器12は、トランス、インピーダンス変換器、又は、マイクロ波帯等の信号を扱う場合には通常1/4波長の伝送経路等によって構成されている。
 ドハティ増幅回路1は、飽和出力電力近傍にて飽和を維持しながら動作するキャリア増幅器CA1と、飽和出力電力近傍のみで動作するピーク増幅器PA1と、を備えることで、飽和電力からバックオフをとった出力時においても、通常のA級、AB級の増幅回路よりも高い電力効率を実現している。
 ここで、キャリア増幅器CA1及びピーク増幅器PA1は、1個のパッケージに内蔵されている。そのため、キャリア増幅器CA1及びピーク増幅器PA1がそれぞれ別のパッケージに内蔵されている構成と比較して、ドハティ増幅回路1の小型化を実現することができる。また、キャリア増幅器CA1及びピーク増幅器PA1のそれぞれの出力から合成器12における信号合成点までの伝送線路長が短くなるため、伝送損失が減少する、その結果、ドハティ増幅回路1の電力効率を向上させることができる。
(オートバイアス回路10)
 オートバイアス回路10は、キャリア増幅器CA1及びピーク増幅器PA1のそれぞれに対して自動でバイアス電流やバイアス電圧を設定する回路である。なお、図2には示されていないが、実際には、各増幅器の入出力信号線上に直流遮断用のキャパシタが設けられることでオートバイアス回路10は動作する。オートバイアス回路10の具体的な構成例については、図4等を用いて後述する。
 まず、オートバイアス回路10は、サブトランジスタST1のドレイン電流(バイアス電流)を所定値Iaに保つようなサブトランジスタST1のゲート電圧を検出する。
 次に、オートバイアス回路10は、検出されたゲート電圧に応じたバイアス電圧Vb1を(本例では、検出されたゲート電圧をそのままバイアス電圧Vb1として)メイントランジスタMT1のゲートに供給する。それにより、キャリア増幅器CA1を構成するメイントランジスタMT1のドレイン電流(バイアス電流)は所望値Ibに設定される。例えば、バイアス電圧Vb1は、キャリア増幅器CA1がAB級やB級の増幅器として動作するようなバイアス電圧値に設定される。
 ここで、サブトランジスタST1のバイアス電流をIa、メイントランジスタMT1のバイアス電流をIbとすると、バイアス電流Ia,Ibの関係は、例えば、Ia=(Wa/Wb)×Ibと表される。
 次に、オートバイアス回路10は、検出されたゲート電圧に応じたバイアス電圧Vb2をメイントランジスタMT2のゲートに供給する。本例では、オートバイアス回路10は、電圧加減算部13を用いてバイアス電圧Vb1から電圧を減算することで、当該バイアス電圧Vb1より低い電圧レベルのバイアス電圧Vb2を生成する。それにより、ピーク増幅器PA1を構成するメイントランジスタMT2のドレイン電流(バイアス電流)は所望値に設定される。例えば、バイアス電圧Vb2は、ピーク増幅器PA1がC級増幅器として動作するようなバイアス電圧値に設定される。
 図3は、各クラスの増幅回路の出力振幅とドレイン電流との関係を示す図である。前述のように、キャリア増幅器CA1は、例えば、出力振幅の増加に伴ってドレイン電流が増加するAB級にバイアスされる。
 ここで、仮に、オートバイアス回路10がメイントランジスタMT1のゲートに直接バイアス電圧Vb1を供給する構成である場合、キャリア増幅器CA1のドレイン電流は、出力振幅が増加しても、オートバイアス回路10が有する所望の負帰還作用によって、一定の値に保持されてしまう(図3の点線)。そのため、キャリア増幅器CA1は所望の増幅動作を行うことができない。また、通常、ドレイン電流の検出のために電源とキャリア増幅器CA1のドレインとの間には抵抗素子等の電流検出素子が設けられる。そのため、この電流検出素子によって消費電力が増大してしまう。
 そこで、本実施の形態にかかるオートバイアス回路10は、サブトランジスタST1を用いてバイアス電圧Vb1(Vb2)を検出し設定している。ここで、サブトランジスタST1には信号の入出力が無いため、バイアス電圧Vb1は信号の入出力によって変化することはない。つまり、キャリア増幅器CA1のバイアス電圧Vb1は信号の入出力によらずオートバイアス回路10によって所望の値に保たれる。そのため、キャリア増幅器CA1のドレイン電流は、出力振幅が増加しても一定の値に保持されることはない(図3の実線)。そのため、キャリア増幅器CA1は所望の増幅動作を行うことができる。さらに、サブトランジスタST1のサイズが小さいため、電源とサブトランジスタST1のドレインとの間に抵抗素子等の電流検出素子が設けられた場合でも、この電流検出素子によって消費される電力をより小さくすることが可能である。
 このように、トランジスタパッケージPKG1を用いて、オートバイアス機能が付加されたドハティ増幅回路を構成することができる。ここで、トランジスタパッケージPKG1は、サブトランジスタST1のサイズが小さいため、オートバイアス機能が付加されたドハティ増幅回路を小規模で実現することができる。
 また、キャリア増幅器CA1及びピーク増幅器PA1のそれぞれの出力から信号合成点までの伝送線路長が短くなるため、伝送損失が減少する。その結果、ドハティ増幅回路1の電力効率を向上させることができる。
 なお、サブトランジスタST1のゲート電圧は、例えば、ドハティ増幅回路1の前段に設けられた非常に小さい出力電力のドライバ又はプリドライバのバイアス設定に用いられてもよい。ここで、非常に小さいとは、動作点近傍で出力電力によらずドレイン電流が略一定とみなせる領域のことを指す。オートバイアス回路10によって消費される電力の一部を、ドライバ又はプリドライバのバイアス設定に用いることができるため、増幅回路全体の電力効率をさらに向上させることができる。なお、当然ながら、ドライバ又はプリドライバは、例えば、図2に示すようなオートバイアス機能付きのドハティ増幅回路の構成を有していてもよい。
 また、図2に示すオートバイアス回路10の構成は本発明の動作原理を説明する一例にすぎず、同等の機能を有する他の構成に適宜変更可能である。以下、幾つかの具体例を説明する。
(ドハティ増幅回路1の第1具体的構成例)
 図4は、ドハティ増幅回路1の第1具体的構成例を示す図である。図4では、オートバイアス回路1の具体的構成例が示されている。
 図4に示すオートバイアス回路10は、容量素子C1~C5と、コイルL1~L6と、抵抗素子R1~R4と、電圧加減算部13と、バイポーラトランジスタTr1と、トランジスタパッケージPKG1に設けられたサブトランジスタST1と、を有する。ここで、コイルL1~L6はRFチョークコイルを意味している。
 抵抗素子R1,R2は、接地電圧端子GNDと電源電圧端子Vdd1との間に直列に設けられている。バイポーラトランジスタTr1では、ベースが抵抗素子R1,R2間のノードに接続され、コレクタがノードN1に接続され、エミッタがノードN2に接続されている。抵抗素子R3は、電源電圧端子Vdd2とノードN1との間に設けられている。抵抗素子R4は、電源電圧端子Vdd1とノードN2との間に設けられている。
 容量素子C1は、ドハティ増幅回路1の外部入力端子と分配器11の入力端子との間のノードと、キャリア増幅器CA1の入力端子(トランジスタMT1のゲート電極)と、の間に設けられている。容量素子C2は、分配器11の出力端子と、ピーク増幅器PA1の入力端子(トランジスタMT2のゲート電極)と、の間に設けられている。容量素子C3は、キャリア増幅器CA1の出力端子(トランジスタMT1のドレイン電極)と、合成器12の入力端子と、の間に設けられている。容量素子C4は、ピーク増幅器PA1の出力端子(トランジスタMT2のドレイン電極)と、ドハティ増幅回路1の外部出力端子と合成器12の出力端子との間のノードと、の間に設けられている。容量素子C5は、接地電圧端子GNDと、ノードN1と、の間に設けられている。
 コイルL1は、キャリア増幅器CA1の入力端子と、ノードN1と、の間に設けられている。コイルL2は、ピーク増幅器PA1の入力端子と、ノードN1と、の間に設けられている。コイルL3は、キャリア増幅器CA1の出力端子と、電源電圧端子Vdd1と、の間に設けられている。コイルL4は、ピーク増幅器PA1の出力端子と、電源電圧端子Vdd1と、の間に設けられている。コイルL5は、サブトランジスタST1のゲート電極と、ノードN1と、の間に設けられている。コイルL6は、サブトランジスタST1のドレイン電極と、ノードN2と、の間に設けられている。電圧加減算部13は、コイルL2と、ノードN1と、の間に設けられている。
 なお、不要発振防止のため、サブトランジスタST1の入出力は適切に終端することが好ましい。また、回路の配置や用途が決まっているのであれば、ゲートバイアスはパッケージ内においてRFチョークして配線しておくことも可能である。
(ドハティ増幅回路1の第2具体的構成例)
 図5は、ドハティ増幅回路1の第2具体的構成例をドハティ増幅回路1aとして示す図である。図5に示すドハティ増幅回路1aは、図4に示すドハティ増幅回路1と比較して、電圧加減算部13として、N(Nは自然数)個のダイオードD1~DNと、抵抗素子R13と、を備える。
 ダイオードD1~DNは、ノードN1とコイルL2との間に直列に設けられている。なお、各ダイオードD1~DNのアノードはノードN1側に接続され、各ダイオードD1~NのカソードはコイルL2側に接続されている。抵抗素子R13は、ダイオードD1~DNとコイルL2との間のノードと、電源電圧端子Vdd3と、の間に設けられている。
 ここで、ダイオード1個当たりの電圧降下分をVfとすると、バイアス電圧Vb1,Vb2の関係は、Vb2=Vb1-N×Vfと表される。ダイオード1個当たりの電圧降下分は0.7V程度であるから、例えば、ダイオードの数が3個の場合、バイアス電圧Vb1,Vb2間に生じる電位差は2.1V程度である。なお、当然ながら電圧降下の程度の異なるダイオードと組み合わせて用いられてもよい。
(ドハティ増幅回路1の第3具体的構成例)
 図6は、ドハティ増幅回路1の第3具体的構成例をドハティ増幅回路1bとして示す図である。図6に示すドハティ増幅回路1bは、図4に示すドハティ増幅回路1と比較して、電圧加減算部13として、ツェナーダイオードZD1と、抵抗素子R13と、を備える。
 ツェナーダイオードZD1のカソードはノードN1に接続され、ツェナーダイオードZD1のアノードはコイルL2に接続されている。抵抗素子R13は、ツェナーダイオードZD1とコイルL2との間のノードと、電源電圧端子Vdd3と、の間に設けられている。
 ここで、ツェナーダイオードZD1のブレークダウン電圧をVzdとすると、バイアス電圧Vb1,Vb2の関係は、Vb2=Vb1-Vzdと表される。
(ドハティ増幅回路1の第4具体的構成例)
 図7は、ドハティ増幅回路1の第4具体的構成例をドハティ増幅回路1cとして示す図である。図7に示すドハティ増幅回路1cは、図4に示すドハティ増幅回路1と比較して、電圧加減算部13として、NPN型のバイポーラトランジスタTr2と、抵抗素子R11~R13と、を備える。
 バイポーラトランジスタTr2のコレクタはノードN1に接続され、バイポーラトランジスタTr2のエミッタはコイルL2に接続されている。抵抗素子R11は、バイポーラトランジスタTr2のベース及びコレクタ間に設けられている。抵抗素子R12は、バイポーラトランジスタTr2のベース及びエミッタ間に設けられている。抵抗素子R13は、バイポーラトランジスタTr2のエミッタと、電源電圧端子Vdd3と、の間に設けられている。
 ここで、バイポーラトランジスタTr2のコレクタ-エミッタ間電圧をVtr2とすると、バイアス電圧Vb1,Vb2の関係は、Vb2=Vb1-Vtr2と表される。ただし、バイポーラトランジスタTr2のベース-エミッタ間電圧をVbeとすると、Vtr2≒(1+R11/R12)・Vbeである。
(ドハティ増幅回路1の第5具体的構成例)
 図8は、ドハティ増幅回路1の第5具体的構成例をドハティ増幅回路1dとして示す図である。図8に示すドハティ増幅回路1dは、図4に示すドハティ増幅回路1と比較して、電圧加減算部13として、PNP型のバイポーラトランジスタTr3と、抵抗素子R11~R13と、を備える。
 バイポーラトランジスタTr3のエミッタはノードN1に接続され、バイポーラトランジスタTr3のコレクタはコイルL2に接続されている。抵抗素子R11は、バイポーラトランジスタTr3のベース及びエミッタ間に設けられている。抵抗素子R12は、バイポーラトランジスタTr3のベース及びコレクタ間に設けられている。抵抗素子R13は、バイポーラトランジスタTr3のコレクタと、電源電圧端子Vdd3と、の間に設けられている。
 ここで、バイポーラトランジスタTr3のコレクタ-エミッタ間電圧をVtr3とすると、バイアス電圧Vb1,Vb2の関係は、Vb2=Vb1-Vtr3と表される。ただし、バイポーラトランジスタTr3のベース-エミッタ間電圧をVbeとすると、Vtr3≒(1+R12/R11)・Vbeと表される。
 図5~図8に示す電圧加減算部13の具体的構成例は、何れも単純な構成であるため、例えばオートバイアス回路10、メイントランジスタMT1,MT2、及び、サブトランジスタST1の全部又は一部とともに集積化したり同一パッケージに搭載することができる。なお、当然ながら、ダイオードの温度特性を補償する回路等がさらに設けられてもよい。
<実施の形態3>
 本実施の形態では、図1に示すトランジスタパッケージPKG1が適用されたドハティ増幅回路の他の例として、拡張型ドハティ増幅回路について説明する。
(ドハティ増幅回路2の第1構成例)
 図9は、実施の形態3に係るドハティ増幅回路2の第1構成例を示す図である。図9に示すドハティ増幅回路2は、キャリア増幅器CA1と、ピーク増幅器PA1と、分配器11と、合成器12と、を備える。各構成要素の基本動作及び接続関係については、前述のとおりであるため、その説明を省略する。
 図9の例では、キャリア増幅器CA1がトランジスタMT1によって構成され、ピーク増幅器PA1がトランジスタMT2によって構成されている。つまり、キャリア増幅器CA1及びピーク増幅器PA1は、互いに同じサイズのトランジスタにより構成されている。そのため、図9に示すドハティ増幅回路2では、キャリア増幅器CA1及びピーク増幅器PA1のそれぞれに分配される電力が同じになる。
(ドハティ増幅回路2の第2構成例)
 図10は、実施の形態3に係るドハティ増幅回路2の第2構成例をドハティ増幅回路2aとして示す図である。図10に示すドハティ増幅回路2aでは、図9に示すドハティ増幅回路2と比較して、キャリア増幅器CA1の構成が異なる。
 具体的には、図10に示すキャリア増幅器CA1は、メイントランジスタMT1及びサブトランジスタST1により構成され、トランジスタMT1,ST1のゲートに入力された第1分配信号を増幅してトランジスタMT1,ST1のドレインから出力する。図10に示すドハティ増幅回路2aのその他の構成については、図9に示すドハティ増幅回路2の場合と同様であるため、その説明を省略する。
 図10に示すドハティ増幅回路2aでは、キャリア増幅器CA1及びピーク増幅器PA1のそれぞれに分配される電力が異なる。つまり、図10に示すドハティ増幅回路2aは、所謂、拡張型ドハティ増幅回路を構成している。
(ドハティ増幅回路2の第3構成例)
 図11は、実施の形態3に係るドハティ増幅回路2の第3構成例をドハティ増幅回路2bとして示す図である。図11に示すドハティ増幅回路2bでは、図10に示すドハティ増幅回路2aと比較して、キャリア増幅器CA1及びピーク増幅器PA1の配置が入れ替わっている。
 具体的には、図11に示すキャリア増幅器CA1は、メイントランジスタMT2及びサブトランジスタST1により構成され、トランジスタMT2,ST1のゲートに入力された第1分配信号を増幅してトランジスタMT2,ST1のドレインから出力する。図11に示すピーク増幅器PA1は、メイントランジスタMT1により構成され、メイントランジスタMT1のゲートに入力された第2分配信号を増幅してメイントランジスタMT1のドレインから出力する。図11に示すドハティ増幅回路2bのその他の構成については、図9に示すドハティ増幅回路2の場合と同様であるため、その説明を省略する。
 図11に示すドハティ増幅回路2bでは、図10に示すドハティ増幅回路2aと同様の比率で、キャリア増幅器CA1及びピーク増幅器PA1のそれぞれに電力が分配されている。つまり、図11に示すドハティ増幅回路2bは、キャリア増幅器CA1及びピーク増幅器PA1の配置が入れ替わっていることを除いて、図10に示すドハティ増幅回路2aと同様の拡張型ドハティ増幅回路を構成している。
(ドハティ増幅回路2の第4構成例)
 図12は、実施の形態3に係るドハティ増幅回路2の第4構成例をドハティ増幅回路2cとして示す図である。図12に示すドハティ増幅回路2cでは、図9に示すドハティ増幅回路2と比較して、ピーク増幅器PA1の構成が異なる。
 具体的には、図12に示すピーク増幅器PA1は、メイントランジスタMT2及びサブトランジスタST1により構成され、トランジスタMT2,ST1のゲートに入力された第2分配信号を増幅してトランジスタMT2,ST1のドレインから出力する。図12に示すドハティ増幅回路2cのその他の構成については、図9に示すドハティ増幅回路2の場合と同様であるため、その説明を省略する。
 図12に示すドハティ増幅回路2cでは、キャリア増幅器CA1及びピーク増幅器PA1のそれぞれに分配される電力が異なる。つまり、図12に示すドハティ増幅回路2cは、所謂、拡張型ドハティ増幅回路を構成している。
(ドハティ増幅回路2の第5構成例)
 図13は、実施の形態3に係るドハティ増幅回路2の第5構成例をドハティ増幅回路2dとして示す図である。図13に示すドハティ増幅回路2dでは、図12に示すドハティ増幅回路2cと比較して、キャリア増幅器CA1及びピーク増幅器PA1の配置が入れ替わっている。
 具体的には、図13に示すキャリア増幅器CA1は、メイントランジスタMT2により構成され、メイントランジスタMT2のゲートに入力された第1分配信号を増幅してメイントランジスタMT2のドレインから出力する。図13に示すピーク増幅器PA1は、メイントランジスタMT1及びサブトランジスタST1により構成され、トランジスタMT1,ST1のゲートに入力された第2分配信号を増幅してトランジスタMT1,ST1のドレインから出力する。図13に示すドハティ増幅回路2dのその他の構成については、図9に示すドハティ増幅回路2の場合と同様であるため、その説明を省略する。
 図13に示すドハティ増幅回路2dでは、図12に示すドハティ増幅回路2cと同様の比率で、キャリア増幅器CA1及びピーク増幅器PA1のそれぞれに電力が分配されている。つまり、図13に示すドハティ増幅回路2dは、キャリア増幅器CA1及びピーク増幅器PA1の配置が入れ替わっていることを除いて、図12に示すドハティ増幅回路2cと同様の拡張型ドハティ増幅回路を構成している。
 図14は、図10~図13に示すドハティ増幅回路2a~2dの電力と電力効率との関係を示す図である。図14に示すように、キャリア増幅器CA1及びピーク増幅器PA1に対する電力分配比が異なるドハティ増幅回路2a,2bとドハティ増幅回路2c,2dとでは、電力に対する電力効率のピークが異なっているのがわかる。つまり、トランジスタパッケージPKG1を用いて、様々な動作特性の拡張型ドハティ増幅回路を構成することができる。
 このように、トランジスタパッケージPKG1を用いて、所望の動作特性及び所望の配置の拡張型ドハティ増幅回路を構成することができる。ここで、トランジスタパッケージPKG1は、サブトランジスタST1のサイズが小さいため、所望の動作特性及び所望の配置の拡張型ドハティ増幅回路を小規模で実現することができる。また、サブトランジスタST1の数を増やせば電力分配比を細かく調整することができる。
 さらに、キャリア増幅器CA1及びピーク増幅器PA1のそれぞれの出力から信号合成点までの伝送線路長が短くなるため、伝送損失が減少する。その結果、拡張ドハティ増幅回路の電力効率を向上させることができる。
<実施の形態4>
 図15は、実施の形態4に係るトランジスタパッケージPKG2の概略を示す平面図である。図15に示すトランジスタパッケージPKG2は、図1に示すトランジスタパッケージPKG1と比較して、サブトランジスタST1と同じ構造のサブトランジスタ(第2サブトランジスタ)ST2をさらに備える。図15に示すトランジスタパッケージPKG2のその他の構成については、図1に示すトランジスタパッケージPKG1の場合と同様であるため、その説明を省略する。
 図15の例では、平面視上、メイントランジスタMT1、サブトランジスタST1、メイントランジスタMT2、及び、サブトランジスタST1の順に並んでパッケージ内に配置されている。
 図16は、図15に示すトランジスタパッケージPKG2が適用されたドハティ増幅回路を説明するための図である。図16では、図15に示すトランジスタパッケージPKG2の3つの適用事例が示されている。ここで、図中の「キャリア」は、トランジスタがキャリア増幅器CA1を構成することを示し、「ピーク」は、トランジスタがピーク増幅器PA1を構成することを示し、「バイアス」は、トランジスタがオートバイアス回路10を構成することを示し、「拡張」は、トランジスタが他のメイントランジスタとともにキャリア増幅器CA1又はピーク増幅器PA1を構成することを示している。なお、図16に示す3つの適用事例はほんの一例にすぎない。
(トランジスタパッケージPKG2の変形例)
 図17は、本実施の形態に係るトランジスタパッケージPKG2の変形例をトランジスタパッケージPKG3として示す平面図である。図17に示すトランジスタパッケージPKG3では、図15に示すトランジスタパッケージPKG2と比較して、各トランジスタの配置位置が異なる。
 図17の例では、平面視上、メイントランジスタMT1、サブトランジスタST1、サブトランジスタST1、及び、メイントランジスタMT2の順に並んでパッケージ内に配置されている。
 図18は、図17に示すトランジスタパッケージPKG3が適用されたドハティ増幅回路を説明するための図である。図18では、図17に示すトランジスタパッケージPKG3の4つの適用事例が示されている。
 このように、トランジスタパッケージPKG2,PKG3は、2つのサブトランジスタST1,ST2を備えているため、オートバイアス機能が付加された拡張型ドハティ増幅回路等、より様々な種類のドハティ増幅回路を構成することができる。ここで、トランジスタパッケージPKG2,PKG3は、サブトランジスタST1,ST2のサイズが小さいため、様々な種類のドハティ増幅回路を小規模で実現することができる。
 なお、トランジスタパッケージPKG2に設けられるサブトランジスタの数は、3個以上であってもよい。同じく、トランジスタパッケージPKG2に設けられるメイントランジスタの数は、3個以上であってもよい。
 以上のように、上記実施の形態にかかるトランジスタパッケージPKG1~PKG3は、オートバイアス機能が付加されたドハティ増幅回路や、所望の動作特性の拡張型ドハティ増幅回路等、様々な種類のドハティ増幅回路を構成することができる。様々な種類のドハティ増幅回路を共通のトランジスタパッケージにより構成することができるため、様々な種類のドハティ増幅回路を設計し製造する場合において設計工数や管理調整工数を減らして効率化することができる。ここで、トランジスタパッケージPKG1~PKG2は、サブトランジスタのサイズが小さいため、様々な種類のドハティ増幅回路を小規模で実現することができる。
 上記実施の形態では、メイントランジスタMT1,MT2及びサブトランジスタST1,ST2が電界効果トランジスタである場合を例に説明したが、これに限られない。メイントランジスタMT1,MT2及びサブトランジスタST1,ST2は、バイポーラトランジスタであってもよい。なお、電界効果トランジスタのサイズがゲート幅により代表的に表されるのに対し、バイポーラトランジスタのサイズはエミッタ面積により表されることとなる。また、電界効果トランジスタが電圧制御素子であるのに対し、バイポーラトランジスタは電流制御素子であるため、バイポーラトランジスタが用いられる場合には、バイアス等は電流によって与えられることとなる等、当業者にとっては容易な変更がなされることで本発明が成り立つことは言うまでもない。
 なお、必ずしも好適ではないが、トランジスタパッケージPKG1~PKG3は、サブトランジスタST1,ST2のサイズをメイントランジスタMT1,MT2のサイズと同等程度にして構成されてもよい。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2014年1月31日に出願された日本出願特願2014-17171を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1 ドハティ増幅回路
 1a~1d ドハティ増幅回路
 2 ドハティ増幅回路
 2a~2d ドハティ増幅回路
 10 オートバイアス回路
 10a~10d オートバイアス回路
 11 分配器
 12 合成器
 13 電圧加減算部
 13a~13d 電圧加減算部
 C1~C5 容量素子
 CA1 キャリア増幅器
 D1~DN ダイオード
 DMT1 ドレイン電極
 DMT2 ドレイン電極
 DST1 ドレイン電極
 DST2 ドレイン電極
 GMT1 ゲート電極
 GMT2 ゲート電極
 GST1 ゲート電極
 GST2 ゲート電極
 L1~L6 コイル
 MT1,MT2 メイントランジスタ
 PA1 ピーク増幅器
 PKG1~PKG3 トランジスタパッケージ
 R1~R4 抵抗素子
 R11~R13 抵抗素子
 ST1,ST2 サブトランジスタ
 Tr1~Tr3 バイポーラトランジスタ
 ZD1 ツェナーダイオード

Claims (18)

  1.  第1及び第2メイントランジスタと、
     前記第1及び前記第2メイントランジスタと同じパッケージ内に設けられ、前記第1及び前記第2メイントランジスタよりもサイズの小さい第1サブトランジスタと、を備えたトランジスタパッケージ。
  2.  請求項1に記載のトランジスタパッケージを備えた増幅回路であって、
     入力信号を分配して第1及び第2分配信号を生成する分配器と、
     少なくとも前記第1メイントランジスタにより構成され、前記第1分配信号を線形増幅する第1増幅器と、
     少なくとも前記第2メイントランジスタにより構成され、前記第2分配信号を非線形増幅する第2増幅器と、
     前記第1及び前記第2増幅器のそれぞれの出力信号を合成する合成器と、を備えた、増幅回路。
  3.  前記第1サブトランジスタは、前記第1又は前記第2メイントランジスタとともに、前記第1又は第2増幅器を構成する、請求項2に記載の増幅回路。
  4.  前記第1メイントランジスタ、前記第2メイントランジスタ及び前記第1サブトランジスタは、何れも電界効果トランジスタであって、
     前記第1サブトランジスタのドレイン電流を所定値に保つような前記第1サブトランジスタのゲート電圧を検出し、検出された前記ゲート電圧に応じた第1バイアス電圧を前記第1メイントランジスタのゲートに供給することで前記第1増幅器の動作点を設定する、オートバイアス回路をさらに備えた、請求項2に記載の増幅回路。
  5.  前記オートバイアス回路は、さらに、検出された前記ゲート電圧に応じた第2バイアス電圧を前記第2メイントランジスタのゲートに供給することで前記第2増幅器の動作点を設定する、請求項4に記載の増幅回路。
  6.  前記第1メイントランジスタ、前記第2メイントランジスタ及び前記第1サブトランジスタは、何れもバイポーラトランジスタであって、
     前記第1サブトランジスタのコレクタ電流を所定値に保つような前記第1サブトランジスタのベース電流を検出し、検出された前記ベース電流に応じた第1バイアス電流を前記第1メイントランジスタのベースに供給することで前記第1増幅器の動作点を設定する、オートバイアス回路をさらに備えた、請求項2に記載の増幅回路。
  7.  前記オートバイアス回路は、さらに、検出された前記ベース電流に応じた第2バイアス電流を前記第2メイントランジスタのベースに供給することで前記第2増幅器の動作点を設定する、請求項6に記載の増幅回路。
  8.  前記第1メイントランジスタ、前記第2メイントランジスタ及び前記第1サブトランジスタの単位サイズあたりの特性は略同一である、請求項2~7の何れか一項に記載の増幅回路。
  9.  前記第1及び前記第2メイントランジスタよりもサイズの小さい第2サブトランジスタをさらに備えた請求項1に記載のトランジスタパッケージ。
  10.  請求項9に記載のトランジスタパッケージを備えた増幅回路であって、
     入力信号を分配して第1及び第2分配信号を生成する分配器と、
     少なくとも前記第1メイントランジスタにより構成され、前記第1分配信号を線形増幅する第1増幅器と、
     少なくとも前記第2メイントランジスタにより構成され、前記第2分配信号を非線形増幅する第2増幅器と、
     前記第1及び前記第2増幅器のそれぞれの出力信号を合成する合成器と、を備えた、増幅回路。
  11.  前記第1サブトランジスタは、前記第1又は前記第2メイントランジスタとともに、前記第1又は第2増幅器を構成する、請求項10に記載の増幅回路。
  12.  前記第1メイントランジスタ、前記第2メイントランジスタ、前記第1サブトランジスタ及び前記第2サブトランジスタは、何れも電界効果トランジスタであって、
     前記第2サブトランジスタのドレイン電流を所定値に保つような前記第2サブトランジスタのゲート電圧を検出し、検出された前記ゲート電圧に応じた第1バイアス電圧を前記第1メイントランジスタのゲートに供給することで前記第1増幅器の動作点を設定し、かつ、検出された前記ゲート電圧に応じた第2バイアス電圧を前記第2メイントランジスタのゲートに供給することで前記第2増幅器の動作点を設定する、オートバイアス回路をさらに備えた、請求項10又は11に記載の増幅回路。
  13.  前記第1メイントランジスタ、前記第2メイントランジスタ、前記第1サブトランジスタ及び前記第2サブトランジスタは、何れもバイポーラトランジスタであって、
     前記第2サブトランジスタのコレクタ電流を所定値に保つような前記第2サブトランジスタのベース電流を検出し、検出された前記ベース電流に応じた第1バイアス電流を前記第1メイントランジスタのベースに供給することで前記第1増幅器の動作点を設定し、かつ、検出された前記ベース電流に応じた第2バイアス電流を前記第2メイントランジスタのベースに供給することで前記第2増幅器の動作点を設定する、オートバイアス回路をさらに備えた、請求項10又は11に記載の増幅回路。
  14.  前記第1メイントランジスタ、前記第2メイントランジスタ、前記第1サブトランジスタ及び第2サブトランジスタの単位サイズあたりの特性は略同一である、請求項10~13の何れか一項に記載の増幅回路。
  15.  前記サイズはゲート幅である、請求項1又は9に記載のトランジスタパッケージ。
  16.  前記サイズはゲート幅である、請求項2~8、10~14の何れか一項に記載の増幅回路。
  17.  第1及び第2メイントランジスタと、前記第1及び前記第2メイントランジスタよりもサイズの小さい第1サブトランジスタと、を同じパッケージ内に設ける、トランジスタの構成方法。
  18.  前記サイズはゲート幅である、請求項17に記載のトランジスタの構成方法。
PCT/JP2014/005161 2014-01-31 2014-10-10 トランジスタパッケージ、それを備えた増幅回路、及び、トランジスタの構成方法 Ceased WO2015114698A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/112,912 US9853605B2 (en) 2014-01-31 2014-10-10 Transistor package, amplification circuit including the same, and method of forming transistor
JP2015559622A JPWO2015114698A1 (ja) 2014-01-31 2014-10-10 トランジスタパッケージ、それを備えた増幅回路、及び、トランジスタの構成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-017171 2014-01-31
JP2014017171 2014-01-31

Publications (1)

Publication Number Publication Date
WO2015114698A1 true WO2015114698A1 (ja) 2015-08-06

Family

ID=53756324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005161 Ceased WO2015114698A1 (ja) 2014-01-31 2014-10-10 トランジスタパッケージ、それを備えた増幅回路、及び、トランジスタの構成方法

Country Status (3)

Country Link
US (1) US9853605B2 (ja)
JP (1) JPWO2015114698A1 (ja)
WO (1) WO2015114698A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022527051A (ja) * 2019-03-28 2022-05-30 ウルフスピード インコーポレイテッド トランジスタ内負荷変調
WO2023171364A1 (ja) * 2022-03-10 2023-09-14 株式会社村田製作所 高周波モジュールおよび通信装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806681B2 (en) * 2015-02-15 2017-10-31 Skyworks Solutions, Inc. Doherty power amplifier having AM-AM compensation
EP3723282B1 (en) * 2019-04-12 2024-12-18 NXP USA, Inc. Power amplifier packages and systems incorporating design-flexible package platforms
CN114430884B (zh) 2019-10-02 2024-11-12 三菱电机株式会社 多赫蒂放大器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022300A (ja) * 1996-07-08 1998-01-23 Oki Electric Ind Co Ltd 半導体集積回路
JPH10270953A (ja) * 1997-03-26 1998-10-09 Mitsubishi Electric Corp 高周波回路
JP2005123861A (ja) * 2003-10-16 2005-05-12 Renesas Technology Corp 高周波電力増幅回路および高周波電力増幅用電子部品
JP2012500583A (ja) * 2008-08-19 2012-01-05 クリー インコーポレイテッド 異なるターンオンパワーレベルを有するトランジスタ増幅器の並列な組を有する集積回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265675B2 (ja) 1993-02-09 2002-03-11 日本電気株式会社 バイアス回路およびこれを用いた集積回路
JP3444653B2 (ja) * 1994-06-09 2003-09-08 三菱電機株式会社 電力増幅器
JP5230044B2 (ja) * 2000-08-28 2013-07-10 日本ケミコン株式会社 電気二重層コンデンサ
CN1853343B (zh) * 2003-09-17 2012-01-11 日本电气株式会社 放大器
US7304539B2 (en) 2003-10-16 2007-12-04 Renesas Technology Corporation High frequency power amplifier circuit and electronic component for high frequency power amplifier
US7560983B1 (en) * 2008-02-02 2009-07-14 Zerog Wireless, Inc. Multiple-path power amplifier
JP2011182043A (ja) * 2010-02-26 2011-09-15 Fujitsu Ltd 増幅器
WO2012083256A2 (en) * 2010-12-17 2012-06-21 Skyworks Solutions, Inc. Apparatus and methods for oscillation suppression
EP2817880A4 (en) * 2012-02-24 2015-05-20 Ericsson Telefon Ab L M REVERSE AMPLIFIER AND METHOD THEREFOR
JPWO2013153894A1 (ja) * 2012-04-09 2015-12-17 三菱電機株式会社 増幅回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022300A (ja) * 1996-07-08 1998-01-23 Oki Electric Ind Co Ltd 半導体集積回路
JPH10270953A (ja) * 1997-03-26 1998-10-09 Mitsubishi Electric Corp 高周波回路
JP2005123861A (ja) * 2003-10-16 2005-05-12 Renesas Technology Corp 高周波電力増幅回路および高周波電力増幅用電子部品
JP2012500583A (ja) * 2008-08-19 2012-01-05 クリー インコーポレイテッド 異なるターンオンパワーレベルを有するトランジスタ増幅器の並列な組を有する集積回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022527051A (ja) * 2019-03-28 2022-05-30 ウルフスピード インコーポレイテッド トランジスタ内負荷変調
JP7383041B2 (ja) 2019-03-28 2023-11-17 ウルフスピード インコーポレイテッド トランジスタ内負荷変調
US12009788B2 (en) 2019-03-28 2024-06-11 Macom Technology Solutions Holdings, Inc. In-transistor load modulation
WO2023171364A1 (ja) * 2022-03-10 2023-09-14 株式会社村田製作所 高周波モジュールおよび通信装置

Also Published As

Publication number Publication date
JPWO2015114698A1 (ja) 2017-03-23
US20160344349A1 (en) 2016-11-24
US9853605B2 (en) 2017-12-26

Similar Documents

Publication Publication Date Title
US11855586B2 (en) Power amplifier module
TWI644511B (zh) 電力增幅電路
JP6680235B2 (ja) 電力増幅回路および高周波モジュール
CN107408924B (zh) 通过共射共基电流导引的增强的放大器效率
JP5821876B2 (ja) 電力増幅モジュール
US20150091645A1 (en) Envelope tracking power transmitter using common-gate voltage modulation linearizer
CN108933574B (zh) 功率放大电路
CN110708026B (zh) 改进效率的包络跟踪调制器的线性放大器
JP2010124433A (ja) 高周波電力増幅器
KR102525526B1 (ko) 베이스 전류를 재사용하는 증폭기
US9929694B2 (en) Schottky enhanced bias circuit
US7872532B2 (en) High-frequency power amplifier and communication device
JP7171950B2 (ja) 電力増幅装置
WO2015114698A1 (ja) トランジスタパッケージ、それを備えた増幅回路、及び、トランジスタの構成方法
JP4330549B2 (ja) 高周波電力増幅装置
JP2025506139A (ja) 包絡線追跡を用いて増幅器バイアスを調整するシステム及び方法
US20140354363A1 (en) Power amplifier
JP2010283556A (ja) 高周波増幅器及びそれを用いた高周波モジュール
JP2019205006A (ja) 電力増幅回路
US20050140439A1 (en) Predistortion linearizer for power amplifier
JP2009094570A (ja) 増幅器
KR101435342B1 (ko) 이득을 부스팅하는 증폭기
JP2012065105A (ja) 電力増幅器および無線機
CN116941180A (zh) 基于输入信号包络跟踪调整放大器偏置电流的系统和方法
JP2007288736A (ja) 電力増幅回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559622

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15112912

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881264

Country of ref document: EP

Kind code of ref document: A1