WO2015112800A1 - Human antibodies to pd-1 - Google Patents

Human antibodies to pd-1 Download PDF

Info

Publication number
WO2015112800A1
WO2015112800A1 PCT/US2015/012589 US2015012589W WO2015112800A1 WO 2015112800 A1 WO2015112800 A1 WO 2015112800A1 US 2015012589 W US2015012589 W US 2015012589W WO 2015112800 A1 WO2015112800 A1 WO 2015112800A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen
antibody
binding
antibodies
amino acid
Prior art date
Application number
PCT/US2015/012589
Other languages
French (fr)
Inventor
Nicholas J. Papadopoulos
Andrew J. Murphy
Gavin Thurston
Ella Ioffe
Elena BUROVA
Original Assignee
Regeneron Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52462456&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015112800(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP21185778.4A priority Critical patent/EP3967710A1/en
Priority to KR1020217039773A priority patent/KR20210152583A/en
Priority to MA49604A priority patent/MA49604B1/en
Priority to BR122022010183-6A priority patent/BR122022010183B1/en
Priority to RS20211336A priority patent/RS62507B1/en
Priority to HRP20211794TT priority patent/HRP20211794T1/en
Priority to CN201580005698.9A priority patent/CN106068275B/en
Priority to CA2936075A priority patent/CA2936075C/en
Priority to KR1020167022944A priority patent/KR102337042B1/en
Priority to PL15703187T priority patent/PL3097119T3/en
Priority to BR112016016699A priority patent/BR112016016699A2/en
Priority to LTEPPCT/US2015/012589T priority patent/LT3097119T/en
Priority to DK15703187.3T priority patent/DK3097119T3/en
Application filed by Regeneron Pharmaceuticals, Inc. filed Critical Regeneron Pharmaceuticals, Inc.
Priority to EP15703187.3A priority patent/EP3097119B1/en
Priority to SI201531692T priority patent/SI3097119T1/en
Priority to MX2016009554A priority patent/MX2016009554A/en
Priority to EA201691482A priority patent/EA034770B8/en
Priority to JP2016548008A priority patent/JP6425730B2/en
Priority to AU2015209233A priority patent/AU2015209233B2/en
Priority to SG11201605482SA priority patent/SG11201605482SA/en
Priority to ES15703187T priority patent/ES2888224T3/en
Priority to UAA201608946A priority patent/UA122666C2/en
Priority to NZ722342A priority patent/NZ722342A/en
Publication of WO2015112800A1 publication Critical patent/WO2015112800A1/en
Priority to PH12016501330A priority patent/PH12016501330A1/en
Priority to IL246818A priority patent/IL246818B/en
Priority to IL267798A priority patent/IL267798B/en
Priority to CY20211101017T priority patent/CY1124747T1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/04Antipruritics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • the present invention is related to human antibodies and antigen-binding fragments of human antibodies that specifically bind to the immunomodulatory receptor programmed death-1 (PD-1 ), and therapeutic and diagnostic methods of using those antibodies.
  • PD-1 immunomodulatory receptor programmed death-1
  • PD-1 Programmed death-1
  • CD279 is a 288 amino acid protein receptor expressed on activated T-cells and B-cells, natural killer cells and monocytes.
  • PD-1 is a member of the CD28/CTLA-4 (cytotoxic T lymphocyte antigen)/ ICOS (inducible co-stimulator) family of T-cell co-inhibitory receptors (Chen et al 2013, Nat. Rev. Immunol. 13: 227-242).
  • CTLA-4 cytotoxic T lymphocyte antigen
  • ICOS inducible co-stimulator family of T-cell co-inhibitory receptors
  • the primary function of PD-1 is to attenuate the immune response (Riley 2009, Immunol. Rev. 229: 1 14-125).
  • PD-1 has two ligands, PD-ligand1 (PD-LI ) and PD-L2.
  • PD-L1 (CD274, B7H 1 ) is expressed widely on both lymphoid and non-lymphoid tissues such as CD4 and CD8 T-cells, macrophage lineage cells, peripheral tissues as well as on tumor cells, virally-infected cells and autoimmune tissue cells.
  • PD-L2 (CD273, B7-DC) has a more restricted expression than PD-L1 , being expressed on activated dendritic cells and macrophages (Dong et al 1999, Nature Med.).
  • Blockade of PD- 1 binding to reverse immunosuppression has been studied in autoimmune, viral and tumor immunotherapy (Ribas 2012, NEJM 366: 2517-2519; Watanabe et al 2012, Clin. Dev. Immunol. Volume 2012, Article ID: 269756; Wang et al 2013, J. Viral Hep. 20: 27-39).
  • T-cell co-stimulatory and co-inhibitory molecules play a crucial role in regulating T-cell activation, subset differentiation, effector function and survival (Chen et al 2013, Nature Rev. Immunol. 13: 227-242).
  • co-signaling receptors co-localize with T-cell receptors at the immune synapse, where they synergize with TCR signaling to promote or inhibit T-cell activation and function (Flies et al 201 1 , Yale J. Biol. Med. 84: 409-421 ).
  • PD-1 functions as one such 'immune checkpoint' in mediating peripheral T-cell tolerance and in avoiding autoimmunity.
  • PD-1 binds to PD-L1 or PD-L2 and inhibits T-cell activation.
  • the ability of PD1 to inhibit T-cell activation is exploited by chronic viral infections and tumors to evade immune response.
  • PD-1 plays an important role in autoimmunity, tumor immunity and infectious immunity, it is an ideal target for immunotherapy.
  • the present invention provides antibodies and antigen-binding fragments thereof that bind PD-1.
  • the antibodies of the present invention are useful, inter alia, for targeting T cells expressing PD-1 , and for modulating PD-1 activity.
  • the antibodies of the invention are useful for inhibiting or neutralizing PD-1 activity and/or for stimulating T cell activation, e.g., under circumstances where T cell-mediated killing is beneficial or desirable.
  • the antibodies enhance PD-1 binding and/or activity and may be used to inhibit T-cell activation.
  • the anti-PD-1 antibodies of the invention may be included as part of a multi-specific antigen-binding molecule, for example, to modulate the immune response and/or to target the antibodies to a specific cell type, such as a tumor cell, an autoimmune tissue cell or a virally infected cell.
  • the antibodies are useful in treating a disease or disorder such as cancer, viral infection and autoimmune disease.
  • the antibodies of the invention can be full-length (for example, an lgG1 or lgG4 antibody) or may comprise only an antigen-binding portion (for example, a Fab, F(ab') 2 or scFv fragment), and may be modified to affect functionality, e.g., to eliminate residual effector functions (Reddy et al., 2000, J. Immunol. 164:1925-1933).
  • the antibodies may be bispecific.
  • the present invention provides isolated recombinant monoclonal antibodies or antigen-binding fragments thereof that bind specifically to PD-1.
  • the antibodies are fully human.
  • Exemplary anti-PD-1 antibodies of the present invention are listed in Tables 1 - 3 herein. Table 1 sets forth the amino acid sequence identifiers of the heavy chain variable regions (HCVRs), light chain variable regions (LCVRs), heavy chain complementarity determining regions (HCDR1 , HCDR2 and HCDR3), and light chain complementarity determining regions (LCDR1 , LCDR2 and LCDR3) of the exemplary anti- PD-1 antibodies.
  • HCVRs heavy chain variable regions
  • LCVRs light chain variable regions
  • HCDR1 , HCDR2 and HCDR3 heavy chain complementarity determining regions
  • LCDR1 , LCDR2 and LCDR3 light chain complementarity determining regions
  • Table 2 sets forth the nucleic acid sequence identifiers of the HCVRs, LCVRs, HCDR1 , HCDR2 HCDR3, LCDR1 , LCDR2 and LCDR3 of the exemplary anti-PD-1 antibodies.
  • Table 3 sets forth the amino acid sequence identifiers of heavy chain and light chain sequences of exemplary anti-PD-1 antibodies.
  • the present invention provides antibodies, or antigen-binding fragments thereof, comprising an HCVR comprising an amino acid sequence selected from any of the HCVR amino acid sequences listed in Table 1 , or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
  • the present invention also provides antibodies, or antigen-binding fragments thereof, comprising an LCVR comprising an amino acid sequence selected from any of the LCVR amino acid sequences listed in Table 1 , or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
  • the present invention also provides antibodies, or antigen-binding fragments thereof, comprising an HCVR and an LCVR amino acid sequence pair (HCVR/LCVR) comprising any of the HCVR amino acid sequences listed in Table 1 paired with any of the LCVR amino acid sequences listed in Table 1.
  • the present invention provides antibodies, or antigen-binding fragments thereof, comprising an HCVR/LCVR amino acid sequence pair contained within any of the exemplary anti-PD-1 antibodies listed in Table 1.
  • the HCVR/LCVR amino acid sequence pair is selected from the group consisting of SEQ I D NOs: 2/10, 18/26, 34/42, 50/58, 66/74, 82/90, 98/106, 1 14/122, 130/138, 146/154, 162/170, 178/186, 194/202, 210/202, 218/202, 226/202, 234/202, 242/202, 250/202, 258/202, 266/202, 274/202, 282/202, 290/202, 298/186, 306/186 and 314/186.
  • the HCVR/LCVR amino acid sequence pair is selected from one of SEQ ID NOs: 130/138 (e.g.
  • H2M7795N 162/170 (e.g., H2M7798N), 234/202 (e.g. , H4xH9048P), or 314/186 (e.g. , H4xH9008P).
  • the present invention also provides antibodies, or antigen-binding fragments thereof, comprising a heavy chain CDR1 (HCDR1 ) comprising an amino acid sequence selected from any of the HCDR1 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.
  • HCDR1 heavy chain CDR1
  • the present invention also provides antibodies, or antigen-binding fragments thereof, comprising a heavy chain CDR2 (HCDR2) comprising an amino acid sequence selected from any of the HCDR2 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.
  • HCDR2 heavy chain CDR2
  • the present invention also provides antibodies, or antigen-binding fragments thereof, comprising a heavy chain CDR3 (HCDR3) comprising an amino acid sequence selected from any of the HCDR3 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.
  • HCDR3 heavy chain CDR3
  • the present invention also provides antibodies, or antigen-binding fragments thereof, comprising a light chain CDR1 (LCDR1 ) comprising an amino acid sequence selected from any of the LCDR1 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.
  • LCDR1 light chain CDR1
  • the present invention also provides antibodies, or antigen-binding fragments thereof, comprising a light chain CDR2 (LCDR2) comprising an amino acid sequence selected from any of the LCDR2 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.
  • LCDR2 light chain CDR2
  • the present invention also provides antibodies, or antigen-binding fragments thereof, comprising a light chain CDR3 (LCDR3) comprising an amino acid sequence selected from any of the LCDR3 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.
  • LCDR3 light chain CDR3
  • the present invention also provides antibodies, or antigen-binding fragments thereof, comprising an HCDR3 and an LCDR3 amino acid sequence pair (HCDR3/LCDR3) comprising any of the HCDR3 amino acid sequences listed in Table 1 paired with any of the LCDR3 amino acid sequences listed in Table 1 .
  • the present invention provides antibodies, or antigen-binding fragments thereof, comprising an HCDR3/LCDR3 amino acid sequence pair contained within any of the exemplary anti-PD-1 antibodies listed in Table 1.
  • the HCDR3/LCDR3 amino acid sequence pair is selected from the group consisting of SEQ ID NOs: 136/144 (e.g., H2M7795N), 168/176 (e.g., H2M7798N), 240/208 (e.g. , H4xH9048P), and 320/192 (e.g. , H4xH9008P).
  • the present invention provides antibodies, or antigen-binding fragments thereof, comprising a heavy chain comprising an amino acid sequence selected from any of the HC amino acid sequences listed in Table 3, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
  • the present invention also provides antibodies, or antigen-binding fragments thereof, comprising a light chain comprising an amino acid sequence selected from any of the LC amino acid sequences listed in Table 3, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
  • the present invention also provides antibodies, or antigen-binding fragments thereof, comprising a HC and a LC amino acid sequence pair (HC/LC) comprising any of the HC amino acid sequences listed in Table 3 paired with any of the LC amino acid sequences listed in Table 3.
  • the present invention provides antibodies, or antigen- binding fragments thereof, comprising an HC/LC amino acid sequence pair contained within any of the exemplary anti-PD-1 antibodies listed in Table 3.
  • the HC/LC amino acid sequence pair is selected from the group consisting of SEQ I D NOs: 330/331 , 332/333, 334/335, and 336/337.
  • the present invention also provides antibodies, or antigen-binding fragments thereof, comprising a set of six CDRs (i.e., HCDR1-HCDR2-HCDR3-LCDR1-LCDR2-LCDR3) contained within any of the exemplary anti-PD-1 antibodies listed in Table 1.
  • the HCDR1 -HCDR2-HCDR3-LCDR1 -LCDR2-LCDR3 amino acid sequence set is selected from the group consisting of SEQ ID NOs: 132-134-136-140-142-144 (e.g.
  • H2M7795N H2M7795N
  • 164-166-168- 172-174-176 e.g., H2M7798N
  • 236-238-240-204-206-208 e.g., H4xH9048P
  • 316-318- 320-188-190-192 e.g., H4xH9008P
  • the present invention provides antibodies, or antigen-binding fragments thereof, comprising a set of six CDRs (i.e. , HCDR1 -HCDR2-HCDR3-LCDR1 -LCDR2- LCDR3) contained within an HCVR/LCVR amino acid sequence pair as defined by any of the exemplary anti-PD-1 antibodies listed in Table 1.
  • the present invention includes antibodies, or antigen-binding fragments thereof, comprising the HCDR1 -HCDR2-HCDR3- LCDR1-LCDR2-LCDR3 amino acid sequences set contained within an HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ I D NOs: 130/138 (e.g., H2M7795N); 162/170 (e.g., H2M7798N); 234/202 (e.g., H4xH9048P); and 314/186 (e.g., H4xH9008P).
  • SEQ I D NOs 130/138
  • 162/170 e.g., H2M7798N
  • 234/202 e.g., H4xH9048P
  • 314/186 e.g., H4xH9008P
  • CDRs within HCVR and LCVR amino acid sequences are well known in the art and can be used to identify CDRs within the specified HCVR and/or LCVR amino acid sequences disclosed herein.
  • Exemplary conventions that can be used to identify the boundaries of CDRs include, e.g. , the Kabat definition, the Chothia definition, and the AbM definition.
  • the Kabat definition is based on sequence variability
  • the Chothia definition is based on the location of the structural loop regions
  • the AbM definition is a compromise between the Kabat and Chothia approaches. See, e.g. , Kabat, "Sequences of Proteins of Immunological Interest," National Institutes of Health, Bethesda, Md.
  • the present invention includes anti-PD-1 antibodies having a modified glycosylation pattern.
  • modification to remove undesirable glycosylation sites may be useful, or an antibody lacking a fucose moiety present on the oligosaccharide chain, for example, to increase antibody dependent cellular cytotoxicity (ADCC) function (see Shield et al. (2002) JBC 277:26733).
  • ADCC antibody dependent cellular cytotoxicity
  • modification of galactosylation can be made in order to modify complement dependent cytotoxicity (CDC).
  • the present invention also provides for antibodies and antigen-binding fragments thereof that compete for specific binding to PD-1 with an antibody or antigen-binding fragment thereof comprising the CDRs of a HCVR and the CDRs of a LCVR, wherein the HCVR and LCVR each has an amino acid sequence selected from the HCVR and LCVR sequences listed in Table 1 .
  • the present invention also provides isolated antibodies and antigen-binding fragments thereof that block PD-1 binding to PD-L1 or PD-L2.
  • the antibody or antigen-binding fragment thereof that blocks PD-1 binding to PD-L1 may bind to the same epitope on PD-1 as PD-L1 or may bind to a different epitope on PD-1 as PD-L1 .
  • the present invention provides antibodies and antigen-binding fragments thereof that stimulate PD-1 binding to PD-L1.
  • the present invention provides isolated antibodies or antigen-binding fragments thereof that bind PD-1 , wherein the antibodies or antigen-binding fragments thereof enhance PD-1 binding to PD-L1 .
  • the isolated antibodies or antigen-binding fragments thereof comprise the CDRs of a HCVR, wherein the HCVR has an amino acid sequence selected from the group consisting of SEQ I D NOs: 2, 98, and 250; and the CDRs of a LCVR, wherein the LCVR has an amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 106, and 202.
  • the isolated antibodies or antigen-binding fragments thereof comprise an HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 2/10 ⁇ e.g., H 1 M7789N), 98/106 (e.g., H2M7791 N), and 250/202 (e.g., H4H9068P2).
  • the present invention also provides antibodies and antigen-binding fragments thereof that bind specifically to PD-1 from human or other species.
  • the antibodies may bind to human PD-1 and/or to cynomolgus PD-1 .
  • the present invention also provides antibodies and antigen-binding fragments thereof that cross-compete for binding to PD-1 with a reference antibody or antigen-binding fragment thereof comprising the CDRs of a HCVR and the CDRs of a LCVR, wherein the HCVR and LCVR each has an amino acid sequence selected from the HCVR and LCVR sequences listed in Table 1 .
  • the invention provides an isolated antibody or antigen-binding fragment that has one or more of the following characteristics: (a) blocks the binding of PD-1 to PD-L1 or PD-L2; (b) binds specifically to human PD-1 and/or cynomolgus PD-1 ; (c) blocks PD- 1 -induced T-cell down regulation and rescues T-cell signaling; (d) suppresses tumor growth and increases survival in subjects with colon cancer; (e) inhibits T-cell proliferation in a mixed lymphocyte reaction (MLR) assay; and (f) increases IL-2 and/or interferon-gamma secretion in a MLR assay.
  • MLR mixed lymphocyte reaction
  • the antibody or antigen binding fragment thereof may bind specifically to PD-1 in an agonist manner, i.e., it may enhance or stimulate PD-1 binding and/or activity; in other embodiments, the antibody may bind specifically to PD-1 in an antagonist manner, i.e., it may block PD-1 from binding to its ligand.
  • the antibodies or antigen-binding fragments of the present invention are bispecific comprising a first binding specificity to PD-1 and a second binding specificity for a second target epitope.
  • the second target epitope may be another epitope on PD-1 or on a different protein.
  • the target epitope may be on a different cell including a different T-cell, a B-cell, a tumor cell, an autoimmune tissue cell or a virally infected cell.
  • the present invention provides nucleic acid molecules encoding anti- PD-1 antibodies or portions thereof.
  • the present invention also provides nucleic acid molecules encoding any of the LCVR amino acid sequences listed in Table 1 ; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCVR nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
  • the present invention also provides nucleic acid molecules encoding any of the HCDR1 amino acid sequences listed in Table 1 ; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCDR1 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
  • the present invention also provides nucleic acid molecules encoding any of the HCDR2 amino acid sequences listed in Table 1 ; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCDR2 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
  • the present invention also provides nucleic acid molecules encoding any of the HCDR3 amino acid sequences listed in Table 1 ; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCDR3 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
  • the present invention also provides nucleic acid molecules encoding any of the LCDR1 amino acid sequences listed in Table 1 ; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCDR1 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
  • the present invention also provides nucleic acid molecules encoding any of the LCDR2 amino acid sequences listed in Table 1 ; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCDR2 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
  • the present invention also provides nucleic acid molecules encoding any of the LCDR3 amino acid sequences listed in Table 1 ; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCDR3 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
  • the present invention also provides nucleic acid molecules encoding an HCVR, wherein the HCVR comprises a set of three CDRs (; ' .e., HCDR1-HCDR2-HCDR3), wherein the HCDR1- HCDR2-HCDR3 amino acid sequence set is as defined by any of the exemplary anti-PD-1 antibodies listed in Table 1.
  • the present invention also provides nucleic acid molecules encoding an LCVR, wherein the LCVR comprises a set of three CDRs ⁇ i.e., LCDR1-LCDR2-LCDR3), wherein the LCDR1- LCDR2-LCDR3 amino acid sequence set is as defined by any of the exemplary anti-PD-1 antibodies listed in Table 1.
  • the present invention also provides nucleic acid molecules encoding both an HCVR and an LCVR, wherein the HCVR comprises an amino acid sequence of any of the HCVR amino acid sequences listed in Table 1 , and wherein the LCVR comprises an amino acid sequence of any of the LCVR amino acid sequences listed in Table 1.
  • the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCVR nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto, and a polynucleotide sequence selected from any of the LCVR nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
  • the nucleic acid molecule encodes an HCVR and LCVR, wherein the HCVR and LCVR are both derived from the same anti-PD-1 antibody listed in Table 1.
  • the present invention provides nucleic acid molecules encoding any of the heavy chain amino acid sequences listed in Table 3.
  • the present invention also provides nucleic acid molecules encoding any of the light chain amino acid sequences listed in Table 3.
  • the present invention also provides nucleic acid molecules encoding both heavy chain (HC) and a light chain (LC), wherein the HC comprises an amino acid sequence of any of the HC amino acid sequences listed in Table 3, and wherein the LC comprises an amino acid sequence of any of the LC amino acid sequences listed in Table 3.
  • HC heavy chain
  • LC light chain
  • the present invention provides recombinant expression vectors capable of expressing a polypeptide comprising a heavy or light chain variable region of an anti- PD-1 antibody.
  • the present invention includes recombinant expression vectors comprising any of the nucleic acid molecules mentioned above, i.e., nucleic acid molecules encoding any of the HCVR, LCVR, and/or CDR sequences as set forth in Table 1.
  • the present invention also provides recombinant expression vectors capable of expressing a polypeptide comprising a heavy or light chain of an anti-PD-1 antibody.
  • the present invention includes recombinant expression vectors comprising any of the nucleic acid molecules mentioned above, i.e., nucleic acid molecules encoding any of the heavy chain or light chain sequences as set forth in Table 3.
  • host cells into which such vectors have been introduced are also included within the scope of the present invention, as well as methods of producing the antibodies or portions thereof by culturing the host cells under conditions permitting production of the antibodies or antibody fragments, and recovering the antibodies and antibody fragments so produced.
  • the present invention provides multi-specific antigen-binding molecules and antigen-binding fragments thereof comprising a first antigen-binding specificity that binds specifically to PD-1 and a second antigen-binding specificity that binds specifically to an antigen selected from the group consisting of a tumor cell-specific antigen, an autoimmune tissue- specific antigen, an infected-cell-specific antigen, a T-cell co-inhibitor, a T-cell receptor, a Fc receptor, PD-L1 , and PD-1.
  • an antigen selected from the group consisting of a tumor cell-specific antigen, an autoimmune tissue- specific antigen, an infected-cell-specific antigen, a T-cell co-inhibitor, a T-cell receptor, a Fc receptor, PD-L1 , and PD-1.
  • the first antigen-binding specificity may comprise three CDRs derived from a HCVR with an amino acid sequence selected from the HCVR sequences in Table 1 and three CDRs derived from a LCVR with an amino acid sequence selected from the LCVR sequences in Table 1.
  • the first antigen- binding specificity may comprise the extracellular domain of PD-L1.
  • the second antigen-binding specificity may target an antigen on the same cell as PD-1 or on a different cell of the same tissue type or of a different tissue type.
  • the multi-specific antigen-binding molecule may bind to a T-cell wherein the first antigen-binding specificity may bind specifically to PD-1 and the second antigen-binding specificity may bind to a T-cell receptor on the T-cell.
  • the first antigen-binding specificity may bind specifically to PD-1 on a T-cell and the second antigen-binding specificity may be targeted to an
  • antigen/receptor on a B-cell or a macrophage or antigen-presenting cell In certain embodiments,
  • the second antigen-binding specificity may be directed to an antigen associated with an autoimmune tissue.
  • the first antigen-binding specificity may comprise an extracellular domain of PD-L1 and the second antigen-binding specificity may bind to another epitope on PD-1 .
  • the first antigen-binding specificity binds to PD-1 with a lower affinity, for example, with a K D more than 10 "7 M, more than 10 "6 M, more than 10 "5 M, or more than 10 "4 M.
  • the invention provides a pharmaceutical composition comprising a recombinant human antibody or fragment thereof which specifically binds PD-1 and a pharmaceutically acceptable carrier.
  • the invention features a composition which is a combination of an anti-PD-1 antibody and a second therapeutic agent.
  • the second therapeutic agent is any agent that is advantageously combined with an anti-PD-1 antibody.
  • Exemplary agents that may be advantageously combined with an anti- PD-1 antibody include, without limitation, other agents that bind and/or modulate PD-1 signaling (including other antibodies or antigen-binding fragments thereof, etc.) and/or agents which do not directly bind PD-1 but nonetheless modulate immune cell activation. Additional combination therapies and co-formulations involving the anti-PD-1 antibodies of the present invention are disclosed elsewhere herein.
  • the invention provides methods to modulate the immune response in a subject, the method comprising administering a therapeutically effective amount of an anti-PD-1 antibody or antigen-binding fragment thereof of the invention to the subject in need thereof.
  • the invention provides methods to enhance the immune response in a subject, the methods comprising administering to the subject an effective amount of an antibody or fragment thereof of the invention that binds PD-1 and blocks PD-1 binding to PD-L1 .
  • the invention provides a method to stimulate or enhance T-cell stimulation in a subject.
  • the invention provides methods to inhibit a T-regulatory (Treg) cell in a subject, the methods comprising administering a therapeutically effective amount of a blocking antibody or antigen-binding fragment thereof of the invention to the subject in need thereof.
  • the subject in need thereof may suffer from a disease or disorder such as cancer or viral infection.
  • the invention provides for methods to inhibit or suppress T-cell activation in a subject, the methods comprising
  • the subject may suffer from an autoimmune disease or disorder.
  • the invention provides therapeutic methods for treating a disease or disorder such as cancer, autoimmune disease or viral infection in a subject using an anti-PD-1 antibody or antigen-binding portion of an antibody of the invention, wherein the therapeutic methods comprise administering a therapeutically effective amount of a pharmaceutical composition comprising an antibody or fragment of an antibody of the invention to the subject in need thereof.
  • the disorder treated is any disease or condition which is improved, ameliorated, inhibited or prevented by stimulation or inhibition of PD-1 activity or signaling.
  • the antibody or antigen-binding fragment thereof the invention is administered in combination with a second therapeutic agent to the subject in need thereof.
  • the second therapeutic agent may be selected from the group consisting of an antibody to another T-cell co- inhibitor, an antibody to a tumor cell antigen, an antibody to a T-cell receptor, an antibody to a Fc receptor, an antibody to an epitope on a virally infected cell, an antibody to an autoimmune tissue antigen, an antibody to PD-L1 , a cytotoxic agent, an anti-cancer drug, an anti-viral drug, an anti-inflammatory drug (e.g., corticosteroids), chemotherapeutic agent, radiation therapy, an immunosuppressant and any other drug or therapy known in the art.
  • the second therapeutic agent may be an agent that helps to counteract or reduce any possible side effect(s) associated with an antibody or antigen-binding fragment thereof of the invention, if such side effect(s) should occur.
  • the present invention provides methods for suppressing tumor growth. In certain embodiments, the present invention provides methods to enhance survival of cancer patients.
  • cancer include, but are not limited to, primary and/or recurrent cancer, including brain cancer (e.g. , glioblastoma multiforme), lung cancer (e.g. , non-small cell lung cancer), squamous cell carcinoma of head and neck, renal cell carcinoma, melanoma, multiple myeloma, prostate cancer, and colon cancer.
  • the methods comprise administering a pharmaceutical composition comprising a therapeutically effective amount of an anti-PD-1 antibody of the present invention in combination with a second therapeutic agent selected from the group consisting of a vascular endothelial growth factor (VEGF) antagonist (e.g., aflibercept, bevacizumab), an angiopoietin-2 (Ang2) inhibitor (e.g. , an anti-Ang2 antibody such as nesvacumab), a lymphocyte activation gene 3 (LAG-3) inhibitor, a cytotoxic T-lymphocyte antigen 4 (CTLA-4) inhibitor (e.g. , ipilimumab), a chemotherapeutic agent, and radiation therapy.
  • VEGF vascular endothelial growth factor
  • Ang2 angiopoietin-2
  • LAG-3 lymphocyte activation gene 3
  • CTLA-4 inhibitor e.g. , ipilimumab
  • chemotherapeutic agent e.g. ,
  • the antibody or fragment thereof may be administered subcutaneously, intravenously, intradermally, intraperitoneally, orally, intramuscularly, or intracranially.
  • the antibody or fragment thereof may be administered at a dose of about 0.1 mg/kg of body weight to about 100 mg/kg of body weight of the subject.
  • the present invention also includes use of an anti-PD-1 antibody or antigen-binding fragment thereof of the invention in the manufacture of a medicament for the treatment of a disease or disorder that would benefit from the blockade or enhancement of PD-1 binding and/or signaling.
  • FIG. 1 is a schematic of the luciferase-based PD-1 bioassay described in Example 8 herein.
  • Panel A Inactive Jurkat cells
  • Panel B Jurkat cells are activated by T-cell receptor (TCR) clustering through the CD3xCD20 bispecific antibody
  • Panel C PD-1 activation attenuates response in activated Jurkat cells
  • Panel D Blocking PD-1 rescues the response in activated Jurkat cells.
  • mlgG2a is lgG2 isotype control
  • Fc is human Fc control
  • VEGF Trap is aflibercept
  • anti-PD-1 is anti-mouse PD-1 clone RPMI-14
  • anti-PD-L1 is an anti-PD-L1 monoclonal antibody as described elsewhere herein.
  • FIG. 3 illustrates tumor growth and survival results for mice implanted with Colon-26 tumor cells at Day 0 and treated with the indicated combinations of molecules by injection at Days 3, 6, 10, 13 and 19 ("early-treatment tumor model").
  • the graph shows the tumor volume (in mm 3 ) of individual mice in each experimental group at Day 28 after implantation.
  • mlgG2a is lgG2 isotype control
  • Fc human Fc control
  • VEGF Trap is aflibercept
  • anti-PD-1 is anti- mouse PD-1 clone RPMI-14
  • anti-PD-L1 is an anti-PD-L1 monoclonal antibody as described elsewhere herein.
  • PD-1 refers to the programmed death-1 protein, a T-cell co-inhibitor, also known as CD279.
  • the amino acid sequence of full-length PD-1 is provided in GenBank as accession number NP_005009.2 and is also referred to herein as SEQ ID NO: 327.
  • the term “PD-1 " also includes protein variants of PD-1 having the amino acid sequence of SEQ ID NOs: 321 , 322, 323, or 324.
  • PD-1 includes recombinant PD-1 or a fragment thereof.
  • the term also encompasses PD-1 or a fragment thereof coupled to, for example, histidine tag, mouse or human Fc, or a signal sequence such as ROR1.
  • the term includes sequences exemplified by SEQ ID NOs: 323 or 324, comprising a mouse Fc (mlgG2a) or human Fc (hlgG1 ) at the C-terminal, coupled to amino acid residues 25 - 170 of full-length PD-1 with a C93S change.
  • Protein variants as exemplified by SEQ ID NO: 321 comprise a histidine tag at the C-terminal, coupled to amino acid residues 25 - 170 of full length PD-1.
  • PD-1 means human PD-1 .
  • PD-1 is a member of the CD28/ CTLA-4/ICOS family of T-cell co-inhibitors.
  • PD-1 is a 288- amino acid protein with an extracellular N-terminal domain which is IgV-like, a transmembrane domain and an intracellular domain containing an immunoreceptor tyrosine-based inhibitory (ITIM) motif and an immunoreceptor tyrosine-based switch (ITSM) motif (Chattopadhyay et al 2009, Immunol. Rev.).
  • ITIM immunoreceptor tyrosine-based inhibitory
  • ITSM immunoreceptor tyrosine-based switch
  • the PD-1 receptor has two ligands, PD-ligand-1 (PD-L1 ) and PD-L2.
  • PD-L1 refers to the ligand of the PD-1 receptor also known as CD274 and B7H 1 .
  • the amino acid sequence of full-length PD-L1 is provided in GenBank as accession number NP_054862.1 and is also referred to herein as SEQ I D NO: 328.
  • the term also encompasses PD-L1 or a fragment thereof coupled to, for example, histidine tag, mouse or human Fc, or a signal sequence such as ROR1.
  • the term includes sequences exemplified by SEQ I D NOs: 325 or 326, comprising a mouse Fc (mlgG2a) or human Fc (hlgG1 ) at the C-terminal, coupled to amino acid residues 19 - 239 of full-length PD-L1 .
  • PD-L1 is a 290 amino acid protein with an extracellular IgV-like domain, a transmembrane domain and a highly conserved intracellular domain of approximately 30 amino acids.
  • PD-L1 is constitutively expressed on many cells such as antigen presenting cells (e.g., dendritic cells, macrophages, and B-cells) and on hematopoietic and non-hematopoietic cells (e.g., vascular endothelial cells, pancreatic islets, and sites of immune privilege). PD-L1 is also expressed on a wide variety of tumors, virally-infected cells and autoimmune tissue, and is a component of the
  • T-cell co-inhibitor refers to a ligand and/or receptor which modulates the immune response via T-cell activation or suppression.
  • T-cell co- inhibitor also known as T-cell co-signaling molecule, includes, but is not limited to, lymphocyte activation gene 3 protein (LAG-3, also known as CD223), cytotoxic T-lymphocyte antigen-4 (CTLA-4), B and T lymphocyte attenuator (BTLA), CD-28, 2B4, LY108, T-cell immunoglobulin and mucin 3(TIM3), T-cell immunoreceptor with immunoglobulin and ITIM (TIGIT; also known as VSIG9), leucocyte associated immunoglobulin-like receptor 1 (LAIR1 ; also known as CD305), inducible T-cell costimulator (ICOS; also known as CD278), V-domain Ig suppressor of T-cell activation (VISTA) and CD160.
  • LAG-3 lymphocyte activation gene 3 protein
  • CTLA-4
  • Fc receptor refers to the surface receptor protein found on immune cells including B lymphocytes, natural killer cells, macrophages, basophils, neutrophils, and mast cells, which has a binding specificity for the Fc region of an antibody.
  • the term “Fc receptor” includes, but is not limited to, a Fey receptor [e.g., FcyRI (CD64), FcyRI IA (CD32), FcyRII B (CD32), FcyRI IIA (CD16a), and FcyRIII B (CD16b)], Fca receptor (e.g., FcaRI or CD89) and Fes receptor [e.g., FcsRI , and FcsRII (CD23)].
  • FcyRI e.g., FcyRI (CD64), FcyRI IA (CD32), FcyRII B (CD32), FcyRI IIA (CD16a), and FcyRIII B (CD16b)
  • Fca receptor e.g.,
  • antibody is intended to refer to immunoglobulin molecules comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains interconnected by disulfide bonds (i.e., “full antibody molecules"), as well as multimers thereof (e.g. IgM) or antigen-binding fragments thereof.
  • Each heavy chain is comprised of a heavy chain variable region ("HCVR” or "VH") and a heavy chain constant region (comprised of domains CH1 , CH2 and CH3).
  • Each light chain is comprised of a light chain variable region ("LCVR or "VL”) and a light chain constant region (C L ).
  • V H and V L regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR).
  • CDR complementarity determining regions
  • FR framework regions
  • Each V H and V L is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1 , CDR1 , FR2, CDR2, FR3, CDR3, FR4.
  • the FRs of the antibody may be identical to the human germline sequences, or may be naturally or artificially modified.
  • An amino acid consensus sequence may be defined based on a side-by-side analysis of two or more CDRs.
  • CDR residues not contacting antigen can be identified based on previous studies (for example residues H60-H65 in CDRH2 are often not required), from regions of Kabat CDRs lying outside Chothia CDRs, by molecular modeling and/or empirically. If a CDR or residue(s) thereof is omitted, it is usually substituted with an amino acid occupying the corresponding position in another human antibody sequence or a consensus of such sequences. Positions for substitution within CDRs and amino acids to substitute can also be selected empirically.
  • Empirical substitutions can be conservative or non-conservative substitutions.
  • the fully human anti-PD-1 monoclonal antibodies disclosed herein may comprise one or more amino acid substitutions, insertions and/or deletions in the framework and/or CDR regions of the heavy and light chain variable domains as compared to the corresponding germline sequences. Such mutations can be readily ascertained by comparing the amino acid sequences disclosed herein to germline sequences available from, for example, public antibody sequence databases.
  • the present invention includes antibodies, and antigen-binding fragments thereof, which are derived from any of the amino acid sequences disclosed herein, wherein one or more amino acids within one or more framework and/or CDR regions are mutated to the corresponding residue(s) of the germline sequence from which the antibody was derived, or to the corresponding residue(s) of another human germline sequence, or to a conservative amino acid substitution of the corresponding germline residue(s) (such sequence changes are referred to herein collectively as "germline mutations").
  • Germline mutations A person of ordinary skill in the art, starting with the heavy and light chain variable region sequences disclosed herein, can easily produce numerous antibodies and antigen-binding fragments which comprise one or more individual germline mutations or combinations thereof.
  • all of the framework and/or CDR residues within the V H and/or V L domains are mutated back to the residues found in the original germline sequence from which the antibody was derived.
  • only certain residues are mutated back to the original germline sequence, e.g. , only the mutated residues found within the first 8 amino acids of FR1 or within the last 8 amino acids of FR4, or only the mutated residues found within CDR1 , CDR2 or CDR3.
  • one or more of the framework and/or CDR residue(s) are mutated to the corresponding residue(s) of a different germline sequence (i.e., a germline sequence that is different from the germline sequence from which the antibody was originally derived).
  • the antibodies of the present invention may contain any combination of two or more germline mutations within the framework and/or CDR regions, e.g. , wherein certain individual residues are mutated to the corresponding residue of a particular germline sequence while certain other residues that differ from the original germline sequence are maintained or are mutated to the corresponding residue of a different germline sequence.
  • antibodies and antigen-binding fragments that contain one or more germline mutations can be easily tested for one or more desired property such as, improved binding specificity, increased binding affinity, improved or enhanced antagonistic or agonistic biological properties (as the case may be), reduced immunogenicity, etc.
  • Antibodies and antigen-binding fragments obtained in this general manner are
  • the present invention also includes fully human anti-PD-1 monoclonal antibodies comprising variants of any of the HCVR, LCVR, and/or CDR amino acid sequences disclosed herein having one or more conservative substitutions.
  • the present invention includes anti-PD-1 antibodies having HCVR, LCVR, and/or CDR amino acid sequences with, e.g. , 10 or fewer, 8 or fewer, 6 or fewer, 4 or fewer, etc. conservative amino acid substitutions relative to any of the HCVR, LCVR, and/or CDR amino acid sequences disclosed herein.
  • human antibody is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences.
  • the human mAbs of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs and in particular CDR3.
  • human antibody is not intended to include mAbs in which CDR sequences derived from the germline of another mammalian species (e.g., mouse), have been grafted onto human FR sequences.
  • the term includes antibodies recombinantly produced in a non-human mammal, or in cells of a non-human mammal.
  • the term is not intended to include antibodies isolated from or generated in a human subject.
  • recombinant refers to antibodies or antigen-binding fragments thereof of the invention created, expressed, isolated or obtained by technologies or methods known in the art as recombinant DNA technology which include, e.g. , DNA splicing and transgenic expression.
  • the term refers to antibodies expressed in a non-human mammal (including transgenic non-human mammals, e.g., transgenic mice), or a cell (e.g., CHO cells) expression system or isolated from a recombinant combinatorial human antibody library.
  • multi-specific antigen-binding molecules refers to bispecific, tri- specific or multi-specific antigen-binding molecules, and antigen-binding fragments thereof. Multi-specific antigen-binding molecules may be specific for different epitopes of one target polypeptide or may contain antigen-binding domains specific for epitopes of more than one target polypeptide.
  • a multi-specific antigen-binding molecule can be a single multifunctional polypeptide, or it can be a multimeric complex of two or more polypeptides that are covalently or non-covalently associated with one another.
  • multi-specific antigen-binding molecules includes antibodies of the present invention that may be linked to or co-expressed with another functional molecule, e.g., another peptide or protein.
  • another functional molecule e.g., another peptide or protein.
  • an antibody or fragment thereof can be functionally linked (e.g., by chemical coupling, genetic fusion, non-covalent association or otherwise) to one or more other molecular entities, such as a protein or fragment thereof to produce a bi-specific or a multi-specific antigen-binding molecule with a second binding specificity.
  • the term "multi-specific antigen-binding molecules” also includes bi-specific, tri-specific or multi-specific antibodies or antigen-binding fragments thereof.
  • an antibody of the present invention is functionally linked to another antibody or antigen-binding fragment thereof to produce a bispecific antibody with a second binding specificity. Bispecific and multi-specific antibodies of the present invention are described elsewhere herein.
  • the term "specifically binds,” or “binds specifically to”, or the like, means that an antibody or antigen-binding fragment thereof forms a complex with an antigen that is relatively stable under physiologic conditions. Specific binding can be characterized by an equilibrium dissociation constant of at least about 1x10 "8 M or less (e.g., a smaller K D denotes a tighter binding). Methods for determining whether two molecules specifically bind are well known in the art and include, for example, equilibrium dialysis, surface plasmon resonance, and the like. As described herein, antibodies have been identified by surface plasmon resonance, e.g.,
  • BIACORETM which bind specifically to PD-1.
  • multi-specific antibodies that bind to one domain in PD-1 and one or more additional antigens or a bi-specific that binds to two different regions of PD-1 are nonetheless considered antibodies that "specifically bind", as used herein.
  • high affinity antibody refers to those mAbs having a binding affinity to PD-1 , expressed as K D , of at least 10 "7 M; preferably 10 "8 M; more preferably 10 "9 M, even more preferably 10 "10 M, even more preferably 10 "11 M, as measured by surface plasmon resonance, e.g., BIACORETM or solution-affinity ELISA.
  • slow off rate an antibody that dissociates from PD-1 , with a rate constant of 1 x 10 "3 s “1 or less, preferably 1 x 10 "4 s “1 or less, as determined by surface plasmon resonance, e.g., BIACORETM.
  • antigen-binding portion of an antibody, "antigen-binding fragment” of an antibody, and the like, as used herein, include any naturally occurring, enzymatically obtainable, synthetic, or genetically engineered polypeptide or glycoprotein that specifically binds an antigen to form a complex.
  • antigen-binding fragment of an antibody, or “antibody fragment”, as used herein, refers to one or more fragments of an antibody that retain the ability to bind to PD-1.
  • antibody or antibody fragments of the invention may be conjugated to a moiety such a ligand or a therapeutic moiety (“immunoconjugate”), such as an antibiotic, a second anti-PD-1 antibody, or an antibody to another antigen such a tumor-specific antigen, an autoimmune tissue antigen, a virally-infected cell antigen, a Fc receptor, a T-cell receptor, or a T-cell co-inhibitor, or an immunotoxin, or any other therapeutic moiety useful for treating a disease or condition including cancer, autoimmune disease or chronic viral infection.
  • a moiety such as an antibiotic, a second anti-PD-1 antibody, or an antibody to another antigen such a tumor-specific antigen, an autoimmune tissue antigen, a virally-infected cell antigen, a Fc receptor, a T-cell receptor, or a T-cell co-inhibitor, or an immunotoxin, or any other therapeutic moiety useful for treating a disease or condition including cancer, autoimmune disease
  • an "isolated antibody”, as used herein, is intended to refer to an antibody that is substantially free of other antibodies (Abs) having different antigenic specificities (e.g., an isolated antibody that specifically binds PD-1 , or a fragment thereof, is substantially free of Abs that specifically bind antigens other than PD-1.
  • a “blocking antibody” or a “neutralizing antibody”, as used herein (or an “antibody that neutralizes PD-1 activity” or “antagonist antibody”), is intended to refer to an antibody whose binding to PD-1 results in inhibition of at least one biological activity of PD-1 .
  • an antibody of the invention may prevent or block PD-1 binding to PD-L1 .
  • an “activating antibody” or an “enhancing antibody”, as used herein (or an “agonist antibody”) is intended to refer to an antibody whose binding to PD-1 results in increasing or stimulating at least one biological activity of PD-1.
  • an antibody of the invention may increase PD-1 binding to PD-L1 .
  • surface plasmon resonance refers to an optical phenomenon that allows for the analysis of real-time biomolecular interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIACORETM system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.).
  • K D is intended to refer to the equilibrium dissociation constant of a particular antibody-antigen interaction.
  • epitope refers to an antigenic determinant that interacts with a specific antigen binding site in the variable region of an antibody molecule known as a paratope.
  • a single antigen may have more than one epitope. Thus, different antibodies may bind to different areas on an antigen and may have different biological effects.
  • epitope also refers to a site on an antigen to which B and/or T cells respond. It also refers to a region of an antigen that is bound by an antibody.
  • Epitopes may be defined as structural or functional. Functional epitopes are generally a subset of the structural epitopes and have those residues that directly contribute to the affinity of the interaction.
  • Epitopes may also be conformational, that is, composed of nonlinear amino acids.
  • epitopes may include determinants that are chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl groups, or sulfonyl groups, and, in certain embodiments, may have specific three- dimensional structural characteristics, and/or specific charge characteristics.
  • nucleic acid or fragment thereof indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 90%, and more preferably at least about 95%, 96%, 97%, 98% or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or GAP, as discussed below.
  • a nucleic acid molecule having substantial identity to a reference nucleic acid molecule may, in certain instances, encode a polypeptide having the same or substantially similar amino acid sequence as the polypeptide encoded by the reference nucleic acid molecule.
  • the term "substantial similarity" or “substantially similar” means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 90% sequence identity, even more preferably at least 95%, 98% or 99% sequence identity.
  • residue positions, which are not identical differ by conservative amino acid substitutions.
  • a “conservative amino acid substitution” is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein.
  • the percent or degree of similarity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. See, e.g., Pearson (1994) Methods Mol. Biol. 24: SOT- SSI , which is herein incorporated by reference.
  • Examples of groups of amino acids that have side chains with similar chemical properties include 1 ) aliphatic side chains: glycine, alanine, valine, leucine and isoleucine; 2) aliphatic-hydroxyl side chains: serine and threonine; 3) amide- containing side chains: asparagine and glutamine; 4) aromatic side chains: phenylalanine, tyrosine, and tryptophan; 5) basic side chains: lysine, arginine, and histidine; 6) acidic side chains: aspartate and glutamate, and 7) sulfur-containing side chains: cysteine and methionine.
  • Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamate-aspartate, and asparagine- glutamine.
  • a conservative replacement is any change having a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet et al. (1992) Science 256: 1443 45, herein incorporated by reference.
  • a "moderately conservative" replacement is any change having a nonnegative value in the PAM250 log-likelihood matrix.
  • Sequence similarity for polypeptides is typically measured using sequence analysis software. Protein analysis software matches similar sequences using measures of similarity assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions.
  • GCG software contains programs such as GAP and BESTFIT which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1. Polypeptide sequences also can be compared using FASTA with default or recommended parameters; a program in GCG Version 6.1.
  • FASTA e.g., FASTA2 and FAST A3
  • FASTA2 and FAST A3 provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson (2000) supra).
  • Another preferred algorithm when comparing a sequence of the invention to a database containing a large number of sequences from different organisms is the computer program BLAST, especially BLASTP or TBLASTN, using default parameters. See, e.g., Altschul et al. (1990) J. Mol. Biol. 215: 403-410 and (1997) Nucleic Acids Res. 25:3389-3402, each of which is herein incorporated by reference.
  • terapéuticaally effective amount is meant an amount that produces the desired effect for which it is administered. The exact amount will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, for example, Lloyd (1999) The Art, Science and Technology of Pharmaceutical Compounding).
  • the term "subject” refers to an animal, preferably a mammal, in need of amelioration, prevention and/or treatment of a disease or disorder such as chronic viral infection, cancer or autoimmune disease.
  • anti-cancer drug means any agent useful to treat cancer including, but not limited to, cytotoxins and agents such as antimetabolites, alkylating agents, anthracyclines, antibiotics, antimitotic agents, procarbazine, hydroxyurea, asparaginase, corticosteroids, mytotane (0,P'-(DDD)), biologies (e.g., antibodies and interferons) and radioactive agents.
  • a cytotoxin or cytotoxic agent also refers to a chemotherapeutic agent and means any agent that is detrimental to cells. Examples include Taxol® (paclitaxel),
  • temozolamide cytochalasin B, gramicidin D, ethidium bromide, emetine, cisplatin, mitomycin, etoposide, tenoposide, vincristine, vinblastine, coichicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1 -dehydrotestosterone,
  • glucocorticoids procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
  • anti-viral drug refers to any drug or therapy used to treat, prevent, or ameliorate a viral infection in a host subject.
  • anti-viral drug includes, but is not limited to zidovudine, lamivudine, abacavir, ribavirin, lopinavir, efavirenz, cobicistat, tenofovir, rilpivirine, analgesics and corticosteroids.
  • the viral infections include long-term or chronic infections caused by viruses including, but not limited to, human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), human papilloma virus (HPV), lymphocytic choriomeningitis virus (LCMV), and simian immunodeficiency virus (SIV).
  • viruses including, but not limited to, human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), human papilloma virus (HPV), lymphocytic choriomeningitis virus (LCMV), and simian immunodeficiency virus (SIV).
  • viruses including, but not limited to, human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), human papilloma virus (HPV), lymphocytic choriomeningitis
  • the antibodies and antigen-binding fragments of the present invention specifically bind to PD-1 and modulate the interaction of PD-1 with PD-L1.
  • the anti-PD-1 antibodies may bind to PD-1 with high affinity or with low affinity.
  • the antibodies of the present invention may be blocking antibodies wherein the antibodies may bind to PD-1 and block the interaction of PD-1 with PD-L1 .
  • the blocking antibodies of the invention may block the binding of PD-1 to PD-L1 and/or stimulate or enhance T-cell activation.
  • the blocking antibodies may be useful for stimulating or enhancing the immune response and/or for treating a subject suffering from cancer, or a chronic viral infection.
  • the antibodies when administered to a subject in need thereof may reduce the chronic infection by a virus such as HIV, LCMV or HBV in the subject. They may be used to inhibit the growth of tumor cells in a subject. They may be used alone or as adjunct therapy with other therapeutic moieties or modalities known in the art for treating cancer, or viral infection.
  • the antibodies of the present invention may be activating antibodies, wherein the antibodies may bind to PD-1 and enhance the interaction of PD-1 and PD-L1.
  • the activating antibodies may enhance binding of PD-1 to PD-L1 and/or inhibit or suppress T-cell activation.
  • the activating antibodies of the present invention may be useful for inhibiting the immune response in a subject and/or for treating autoimmune disease.
  • the anti-PD-1 antibodies may be multi-specific antigen-binding molecules, wherein they comprise a first binding specificity to PD-1 and a second binding specificity to an antigen selected from the group consisting of another T-cell co-inhibitor, an autoimmune tissue antigen, T-cell receptor, Fc receptor, T-cell receptor, PD-L1 , and a different epitope of PD-1.
  • the antibodies of the invention are obtained from mice immunized with a primary immunogen, such as a full length PD-1 [See GenBank accession number NP_005009.2 (SEQ I D NO: 327)] or with a recombinant form of PD-1 or modified human PD-1 fragments (SEQ I D NOs: 321 , 323, or 324) or with modified cynomolgus PD-1 fragments (SEQ I D NO: 322), followed by immunization with a secondary immunogen, or with an immunogen.
  • a primary immunogen such as a full length PD-1 [See GenBank accession number NP_005009.2 (SEQ I D NO: 327)] or with a recombinant form of PD-1 or modified human PD-1 fragments (SEQ I D NOs: 321 , 323, or 324) or with modified cynomolgus PD-1 fragments (SEQ I D NO: 322), followed by immunization with a secondary immunogen
  • the immunogen may be a biologically active and/or immunogenic fragment of PD-1 or DNA encoding the active fragment thereof.
  • the fragment may be derived from the N-terminal or C-terminal domain of PD-1.
  • the immunogen is a fragment of PD-1 that ranges from amino acid residues 25 - 170 of SEQ ID NO: 327 with a C93S change.
  • the peptides may be modified to include addition or substitution of certain residues for tagging or for purposes of conjugation to carrier molecules, such as, KLH.
  • a cysteine may be added at either the N terminal or C terminal end of a peptide, or a linker sequence may be added to prepare the peptide for conjugation to, for example, KLH for immunization.
  • the full-length amino acid sequence of full length human PD-1 is shown as SEQ ID NO: 327.
  • antibodies that bind specifically to PD-1 may be prepared using fragments of the above-noted regions, or peptides that extend beyond the designated regions by about 5 to about 20 amino acid residues from either, or both, the N or C terminal ends of the regions described herein.
  • any combination of the above-noted regions or fragments thereof may be used in the preparation of PD-1 specific antibodies.
  • any one or more of the above-noted regions of PD-1 , or fragments thereof may be used for preparing monospecific, bispecific, or multispecific antibodies.
  • Certain anti-PD-1 antibodies of the present invention are able to bind to and neutralize the activity of PD-1 , as determined by in vitro or in vivo assays.
  • the ability of the antibodies of the invention to bind to and neutralize the activity of PD-1 may be measured using any standard method known to those skilled in the art, including binding assays, or activity assays, as described herein.
  • Non-limiting, exemplary in vitro assays for measuring binding activity are illustrated in Examples herein.
  • Example 3 the binding affinities and kinetic constants of human anti-PD-1 antibodies for human PD-1 and cynomolgus PD-1 were determined by surface plasmon resonance and the measurements were conducted on a Biacore 4000 or T200 instrument.
  • Example 4 and 5 blocking assays were used to determine the ability of the anti-PD-1 antibodies to block PD-L1-binding ability of PD-1 in vitro.
  • Example 6 blocking assays were used to determine cross-competition between anti-PD-1 antibodies.
  • Example 7 describes the binding of the antibodies to cells overexpressing PD-1.
  • Example 8 a luciferase assay was used to determine the ability of anti-PD-1 antibodies to antagonize PD-1/PD-L1 signaling in T- cells.
  • the antibodies of the present invention are able to enhance or stimulate T-cell activation in vitro and in a subject with cancer or in a subject infected with a virus such as LCMV.
  • the antibodies of the present invention are used in combination with a second therapeutic agent, such as an antibody to a second T-cell co- inhibitor, to enhance the immune response and inhibit tumor growth in a subject.
  • the antibodies specific for PD-1 may contain no additional labels or moieties, or they may contain an N-terminal or C-terminal label or moiety.
  • the label or moiety is biotin.
  • the location of a label may determine the orientation of the peptide relative to the surface upon which the peptide is bound. For example, if a surface is coated with avidin, a peptide containing an N-terminal biotin will be oriented such that the C- terminal portion of the peptide will be distal to the surface.
  • the label may be a radionuclide, a fluorescent dye or a M I-detectable label. In certain embodiments, such labeled antibodies may be used in diagnostic assays including imaging assays. Antigen-Binding Fragments of Antibodies
  • antibody shall be understood to encompass antibody molecules comprising two immunoglobulin heavy chains and two immunoglobulin light chains (i.e. , “full antibody molecules") as well as antigen-binding fragments thereof.
  • full antibody molecules immunoglobulin heavy chains and two immunoglobulin light chains
  • antigen-binding portion of an antibody, antigen-binding fragment of an antibody, and the like, as used herein, include any naturally occurring, enzymatically obtainable, synthetic, or genetically engineered polypeptide or glycoprotein that specifically binds an antigen to form a complex.
  • antigen-binding fragment of an antibody, or "antibody fragment”, as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to PD-1 .
  • An antibody fragment may include a Fab fragment, a F(ab') 2 fragment, a Fv fragment, a dAb fragment, a fragment containing a CDR, or an isolated CDR.
  • the term "antigen-binding fragment” refers to a polypeptide fragment of a multi-specific antigen-binding molecule.
  • antigen-binding fragment includes, e.g., an extracellular domain of PD-L1 which binds specifically to PD-1 .
  • Antigen-binding fragments of an antibody may be derived, e.g., from full antibody molecules using any suitable standard techniques such as proteolytic digestion or recombinant genetic engineering techniques involving the manipulation and expression of DNA encoding antibody variable and (optionally) constant domains.
  • DNA is known and/or is readily available from, e.g., commercial sources, DNA libraries (including, e.g., phage-antibody libraries), or can be synthesized.
  • the DNA may be sequenced and manipulated chemically or by using molecular biology techniques, for example, to arrange one or more variable and/or constant domains into a suitable configuration, or to introduce codons, create cysteine residues, modify, add or delete amino acids, etc.
  • Non-limiting examples of antigen-binding fragments include: (i) Fab fragments; (ii) F(ab')2 fragments; (iii) Fd fragments; (iv) Fv fragments; (v) single-chain Fv (scFv) molecules; (vi) dAb fragments; and (vii) minimal recognition units consisting of the amino acid residues that mimic the hypervariable region of an antibody (e.g. , an isolated complementarity determining region (CDR) such as a CDR3 peptide), or a constrained FR3-CDR3-FR4 peptide.
  • CDR complementarity determining region
  • engineered molecules such as domain-specific antibodies, single domain antibodies, domain- deleted antibodies, chimeric antibodies, CDR-grafted antibodies, diabodies, triabodies, tetrabodies, minibodies, nanobodies (e.g. monovalent nanobodies, bivalent nanobodies, etc.), small modular immunopharmaceuticals (SMI Ps), and shark variable IgNAR domains, are also encompassed within the expression "antigen-binding fragment," as used herein.
  • SMI Ps small modular immunopharmaceuticals
  • shark variable IgNAR domains are also encompassed within the expression "antigen-binding fragment," as used herein.
  • An antigen-binding fragment of an antibody will typically comprise at least one variable domain.
  • the variable domain may be of any size or amino acid composition and will generally comprise at least one CDR, which is adjacent to or in frame with one or more framework sequences.
  • _ domains may be situated relative to one another in any suitable arrangement.
  • the variable region may be dimeric and contain V H - V H , V H - V L or V L - V L dimers.
  • the antigen-binding fragment of an antibody may contain a monomeric V H or V L domain.
  • an antigen-binding fragment of an antibody may contain at least one variable domain covalently linked to at least one constant domain.
  • variable and constant domains that may be found within an antigen- binding fragment of an antibody of the present invention include: (i) V H -C H 1 ; (ii) V H -C H 2; (iii) V H -C H 3; (iv) V H -C h 1 -C h 2; (V) V H -C h 1-C h 2-CH3; (vi) V H -C h 2-C h 3; (vii) V H -C L ; (viii) V L -C H 1 ; (ix) V L - C H 2; (x) V L -C H 3; (xi) V L -C H 1-C H 2; (xii) V L -C H 1-C H 2-C H 3; (xiii) V L -C H 2-C
  • variable and constant domains may be either directly linked to one another or may be linked by a full or partial hinge or linker region.
  • a hinge region may consist of at least 2 (e.g., 5, 10, 15, 20, 40, 60 or more) amino acids, which result in a flexible or semi-flexible linkage between adjacent variable and/or constant domains in a single polypeptide molecule.
  • an antigen-binding fragment of an antibody of the present invention may comprise a homo-dimer or hetero-dimer (or other multimer) of any of the variable and constant domain configurations listed above in non-covalent association with one another and/or with one or more monomeric V H or V L domain (e.g., by disulfide bond(s)).
  • antigen-binding fragments may be mono-specific or multi-specific (e.g., bi-specific).
  • a multi-specific antigen-binding fragment of an antibody will typically comprise at least two different variable domains, wherein each variable domain is capable of specifically binding to a separate antigen or to a different epitope on the same antigen.
  • Any multi-specific antibody format, including the exemplary bi-specific antibody formats disclosed herein, may be adapted for use in the context of an antigen-binding fragment of an antibody of the present invention using routine techniques available in the art.
  • an immunogen comprising any one of the following can be used to generate antibodies to PD-1.
  • the antibodies of the invention are obtained from mice immunized with a full length, native PD-1 (See GenBank accession number NP_005009.2) (SEQ ID NO: 327), or with a recombinant PD-1 peptide.
  • PD-1 or a fragment thereof may be produced using standard biochemical techniques and modified (SEQ ID NOS: 321 - 324) and used as immunogen.
  • the immunogen may be a peptide from the N terminal or C terminal end of PD-1.
  • the immunogen is the extracellular domain or the IgV- like domain of PD-1.
  • the immunogen is a fragment of PD-1 that ranges from about amino acid residues 25-170 of SEQ ID NO: 327 with a C93S change.
  • the immunogen may be a recombinant PD-1 peptide expressed in E. coli or in any other eukaryotic or mammalian cells such as Chinese hamster ovary (CHO) cells.
  • antibodies that bind specifically to PD-1 may be prepared using fragments of the above-noted regions, or peptides that extend beyond the designated regions by about 5 to about 20 amino acid residues from either, or both, the N or C terminal ends of the regions described herein. In certain embodiments, any combination of the above-noted regions or fragments thereof may be used in the preparation of PD-1 specific antibodies.
  • VELOCIMMUNE® technology see, for example, US 6,596,541 , Regeneron Pharmaceuticals, VELOCIMMUNE®
  • any other known method for generating monoclonal antibodies high affinity chimeric antibodies to PD-1 are initially isolated having a human variable region and a mouse constant region.
  • the VELOCIMMUNE® technology involves generation of a transgenic mouse having a genome comprising human heavy and light chain variable regions operably linked to endogenous mouse constant region loci such that the mouse produces an antibody comprising a human variable region and a mouse constant region in response to antigenic stimulation.
  • the DNA encoding the variable regions of the heavy and light chains of the antibody are isolated and operably linked to DNA encoding the human heavy and light chain constant regions.
  • the DNA is then expressed in a cell capable of expressing the fully human antibody.
  • the anti-PD-1 antibodies and antibody fragments of the present invention encompass proteins having amino acid sequences that vary from those of the described antibodies, but that retain the ability to bind PD-1 .
  • Such variant antibodies and antibody fragments comprise one or more additions, deletions, or substitutions of amino acids when compared to parent sequence, but exhibit biological activity that is essentially equivalent to that of the described antibodies.
  • the antibody-encoding DNA sequences of the present invention encompass sequences that comprise one or more additions, deletions, or substitutions of nucleotides when compared to the disclosed sequence, but that encode an antibody or antibody fragment that is essentially bioequivalent to an antibody or antibody fragment of the invention.
  • Two antigen-binding proteins, or antibodies are considered bioequivalent if, for example, they are pharmaceutical equivalents or pharmaceutical alternatives whose rate and extent of absorption do not show a significant difference when administered at the same molar dose under similar experimental conditions, either single dose or multiple doses.
  • Some antibodies will be considered equivalents or pharmaceutical alternatives if they are equivalent in the extent of their absorption but not in their rate of absorption and yet may be considered bioequivalent because such differences in the rate of absorption are intentional and are reflected in the labeling, are not essential to the attainment of effective body drug concentrations on, e.g., chronic use, and are considered medically insignificant for the particular drug product studied.
  • two antigen-binding proteins are bioequivalent if there are no clinically meaningful differences in their safety, purity, or potency.
  • two antigen-binding proteins are bioequivalent if a patient can be switched one or more times between the reference product and the biological product without an expected increase in the risk of adverse effects, including a clinically significant change in immunogenicity, or diminished effectiveness, as compared to continued therapy without such switching.
  • two antigen-binding proteins are bioequivalent if they both act by a common mechanism or mechanisms of action for the condition or conditions of use, to the extent that such mechanisms are known.
  • Bioequivalence may be demonstrated by in vivo and/or in vitro methods.
  • Bioequivalence measures include, e.g., (a) an in vivo test in humans or other mammals, in which the concentration of the antibody or its metabolites is measured in blood, plasma, serum, or other biological fluid as a function of time; (b) an in vitro test that has been correlated with and is reasonably predictive of human in vivo bioavailability data; (c) an in vivo test in humans or other mammals in which the appropriate acute pharmacological effect of the antibody (or its target) is measured as a function of time; and (d) in a well-controlled clinical trial that establishes safety, efficacy, or bioavailability or bioequivalence of an antibody.
  • Bioequivalent variants of the antibodies of the invention may be constructed by, for example, making various substitutions of residues or sequences or deleting terminal or internal residues or sequences not needed for biological activity.
  • cysteine residues not essential for biological activity can be deleted or replaced with other amino acids to prevent formation of unnecessary or incorrect intramolecular disulfide bridges upon renaturation.
  • bioequivalent antibodies may include antibody variants comprising amino acid changes, which modify the glycosylation characteristics of the antibodies, e.g., mutations that eliminate or remove glycosylation.
  • anti-PD-1 antibodies comprising an Fc domain comprising one or more mutations which enhance or diminish antibody binding to the Fc n receptor, e.g., at acidic pH as compared to neutral pH.
  • the present invention includes anti-PD-1 antibodies comprising a mutation in the C H 2 or a C H 3 region of the Fc domain, wherein the mutation(s) increases the affinity of the Fc domain to FcRn in an acidic environment (e.g., in an endosome where pH ranges from about 5.5 to about 6.0).
  • Such mutations may result in an increase in serum half-life of the antibody when administered to an animal.
  • Non-limiting examples of such Fc modifications include, e.g., a modification at position 250 (e.g., E or Q); 250 and 428 (e.g., L or F); 252 (e.g., L/Y/F/W or T), 254 (e.g., S or T), and 256 (e.g., S/R/Q/E/D or T); or a modification at position 428 and/or 433 (e.g., H/L/R/S/P/Q or K) and/or 434 (e.g., A, W, H, F or Y [N434A, N434W, N434H, N434F or N434Y]); or a modification at position 250 and/or 428; or a modification at position 307 or 308 (e.g., 308F, V308F), and 434.
  • a modification at position 250 e.g., E or Q
  • 250 and 428 e.g., L or F
  • the modification comprises a 428L (e.g., M428L) and 434S (e.g., N434S) modification; a 428L, 2591 (e.g., V259I), and 308F (e.g., V308F) modification; a 433K (e.g., H433K) and a 434 (e.g., 434Y) modification; a 252, 254, and 256 (e.g., 252Y, 254T, and 256E) modification; a 250Q and 428L modification (e.g., T250Q and M428L); and a 307 and/or 308 modification (e.g., 308F or 308P).
  • the modification comprises a 265A (e.g., D265A) and/or a 297A (e.g., N297A) modification.
  • the present invention includes anti-PD-1 antibodies comprising an Fc domain comprising one or more pairs or groups of mutations selected from the group consisting of: 250Q and 248L (e.g., T250Q and M248L); 252Y, 254T and 256E (e.g., M252Y, S254T and T256E); 428L and 434S (e.g., M428L and N434S); 257I and 31 1 1 (e.g., P257I and Q31 1 1); 2571 and 434H (e.g., P257I and N434H); 376V and 434H (e.g., D376V and N434H); 307A, 380A and 434A (e.g., T307A, E380A and N434A); and 433K and 434F (e.g., H433K and N434F).
  • 250Q and 248L e.g., T250Q and M248L
  • the present invention includes anti-PD-1 antibodies comprising an Fc domain comprising a S108P mutation in the hinge region of lgG4 to promote dimer stabilization. All possible combinations of the foregoing Fc domain mutations, and other mutations within the antibody variable domains disclosed herein, are contemplated within the scope of the present invention.
  • the present invention also includes anti-PD-1 antibodies comprising a chimeric heavy chain constant (C H ) region, wherein the chimeric C H region comprises segments derived from the C H regions of more than one immunoglobulin isotype.
  • the antibodies of the invention may comprise a chimeric C H region comprising part or all of a C H 2 domain derived from a human IgG 1 , human lgG2 or human lgG4 molecule, combined with part or all of a C H 3 domain derived from a human lgG1 , human lgG2 or human lgG4 molecule.
  • the antibodies of the invention comprise a chimeric C H region having a chimeric hinge region.
  • a chimeric hinge may comprise an "upper hinge" amino acid sequence (amino acid residues from positions 216 to 227 according to EU numbering) derived from a human lgG1 , a human lgG2 or a human lgG4 hinge region, combined with a "lower hinge” sequence (amino acid residues from positions 228 to 236 according to EU numbering) derived from a human lgG1 , a human lgG2 or a human lgG4 hinge region.
  • the chimeric hinge region comprises amino acid residues derived from a human lgG1 or a human lgG4 upper hinge and amino acid residues derived from a human lgG2 lower hinge.
  • An antibody comprising a chimeric CH region as described herein may, in certain embodiments, exhibit modified Fc effector functions without adversely affecting the therapeutic or pharmacokinetic properties of the antibody. (See, e.g., USSN. 14/170,166, filed January 31 , 2014, the disclosure of which is hereby incorporated by reference in its entirety).
  • the antibodies of the present invention function by binding to PD-1 .
  • the present invention includes anti-PD-1 antibodies and antigen-binding fragments thereof that bind soluble monomeric or dimeric PD-1 molecules with high affinity.
  • the present invention includes antibodies and antigen-binding fragments of antibodies that bind monomeric PD-1 (e.g., at 25°C or at 37°C) with a K D of less than about 50nM as measured by surface plasmon resonance, e.g., using the assay format as defined in Example 3 herein.
  • the antibodies or antigen-binding fragments thereof bind monomeric PD-1 with a K D of less than about 40nM, less than about 30nM, less than about 20nM, less than about 10nM less than about 5nM, less than about 2nM or less than about 1 nM, as measured by surface plasmon resonance, e.g., using the assay format as defined in Example 3 herein, or a substantially similar assay.
  • the present invention also includes antibodies and antigen-binding fragments thereof that bind dimeric PD-1 (e.g., at 25°C or at 37°C) with a K D of less than about 400 pM as measured by surface plasmon resonance, e.g., using the assay format as defined in Example 3 herein.
  • the antibodies or antigen-binding fragments thereof bind dimeric PD-1 with a K D of less than about 300 pM, less than about 250 pM, less than about 200 pM, less than about 100 pM, or less than about 50 pM, as measured by surface plasmon resonance, e.g. , using the assay format as defined in Example 3 herein, or a substantially similar assay.
  • the present invention also includes antibodies or antigen-binding fragments thereof that bind cynomolgus (Macaca fascicularis) PD-1 (e.g., at 25°C or at 37°C) with a K D of less than about 35 nM as measured by surface plasmon resonance, e.g., using the assay format as defined in Example 3 herein.
  • the antibodies or antigen-binding fragments thereof bind cynomolgus PD-1 with a K D of less than about 30 nM, less than about 20 nM, less than about 15 nM, less than about 10 nM, or less than about 5 nM, as measured by surface plasmon resonance, e.g., using the assay format as defined in Example 3 herein, or a substantially similar assay.
  • the present invention also includes antibodies and antigen-binding fragments thereof that bind PD-1 with a dissociative half-life (t1 ⁇ 2) of greater than about 1 .1 minutes as measured by surface plasmon resonance at 25°C or 37°C, e.g., using an assay format as defined in Example 3 herein, or a substantially similar assay.
  • t1 ⁇ 2 dissociative half-life
  • the antibodies or antigen-binding fragments of the present invention bind PD-1 with a t1 ⁇ 2 of greater than about 5 minutes, greater than about 10 minutes, greater than about 30 minutes, greater than about 50 minutes, greater than about 60 minutes, greater than about 70 minutes, greater than about 80 minutes, greater than about 90 minutes, greater than about 100 minutes, greater than about 200 minutes, greater than about 300 minutes, greater than about 400 minutes, greater than about 500 minutes, greater than about 600 minutes, greater than about 700 minutes, greater than about 800 minutes, greater than about 900 minutes, greater than about 1000 minutes, or greater than about 1200 minutes, as measured by surface plasmon resonance at 25°C or 37°C, e.g., using an assay format as defined in Example 3 herein (e.g., mAb-capture or antigen-capture format), or a substantially similar assay.
  • an assay format as defined in Example 3 herein (e.g., mAb-capture or antigen-capture format), or a substantially similar assay.
  • the present invention also includes antibodies or antigen-binding fragments thereof that block PD-1 binding to PD-L1 with an IC50 of less than about 3 nM as determined using a ELISA-based immunoassay assay, e.g., as shown in Example 4, or a substantially similar assay.
  • the present invention also includes antibodies and antigen-binding fragments thereof that bind to PD-1 and enhance the binding of PD-1 to PD-L1.
  • the antibodies of the present invention may bind to the extracellular domain of PD-1 or to a fragment of the domain. In some embodiments, the antibodies of the present invention may bind to more than one domain (cross-reactive antibodies). In certain embodiments, the antibodies of the present invention may bind to an epitope located in the extracellular domain comprising amino acid residues 21 - 171 of PD-1 (SEQ I D NO: 327). In one embodiment, the antibodies may bind to an epitope comprising one or more amino acids selected from the group consisting of amino acid residues 1 - 146 of SEQ I D NOs: 321 - 324.
  • the antibodies of the present invention may function by blocking or inhibiting the PD-L1 -binding activity associated with PD-1 by binding to any other region or fragment of the full length protein, the amino acid sequence of which is shown in SEQ I D NO: 327. In certain embodiments, the antibodies may attenuate or modulate the interaction between PD-1 and PD-L1 .
  • the antibodies of the present invention may be bi-specific antibodies.
  • the bi-specific antibodies of the invention may bind one epitope in one domain and may also bind a second epitope in a different domain of PD-1.
  • the bi- specific antibodies of the invention may bind two different epitopes in the same domain.
  • the multi-specific antigen-binding molecule comprises a first binding specificity wherein the first binding specificity comprises the extracellular domain or fragment thereof of PD-L1 ; and a second binding specificity to another epitope of PD-1.
  • the invention provides an isolated fully human monoclonal antibody or antigen-binding fragment thereof that binds to PD-1 , wherein the antibody or fragment thereof exhibits one or more of the following characteristics: (i) comprises a HCVR having an amino acid sequence selected from the group consisting of SEQ I D NO: 2, 18, 34, 50, 66, 82, 98, 1 14, 130, 146, 162, 178, 194, 210, 218, 226, 234, 242, 250, 258, 266, 274, 282, 290, 298, 306, and 314, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; (ii) comprises a LCVR having an amino acid sequence selected from the group consisting of SEQ ID NO: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, and 202, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at
  • the invention provides an isolated fully human monoclonal antibody or antigen-binding fragment thereof that blocks PD-1 binding to PD-L1 , wherein the antibody or fragment thereof exhibits one or more of the following characteristics: (i) comprises a HCVR having an amino acid sequence selected from the group consisting of SEQ ID NO: 130, 162, 234 and 314, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; (ii) comprises a LCVR having an amino acid sequence selected from the group consisting of SEQ ID NO: 138, 170, 186, and 202, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; (iii) comprises a HCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NO: 136, 168, 240, and 320, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 9
  • the antibodies of the present invention may possess one or more of the
  • the anti-PD-1 antibodies bind to human PD-1 but not to PD-1 from other species.
  • the anti-PD-1 antibodies of the invention in certain embodiments, bind to human PD-1 and to PD-1 from one or more non- human species.
  • the anti-PD-1 antibodies of the invention may bind to human PD- 1 and may bind or not bind, as the case may be, to one or more of mouse, rat, guinea pig, hamster, gerbil, pig, cat, dog, rabbit, goat, sheep, cow, horse, camel, cynomolgus, marmoset, rhesus or chimpanzee PD-1 .
  • the anti-PD-1 antibodies of the invention may bind to human and cynomolgus PD-1 with the same affinities or with different affinities, but do not bind to rat and mouse PD-1.
  • the present invention includes anti-PD-1 antibodies which interact with one or more amino acids found within one or more domains of the PD-1 molecule including, e.g. , extracellular (IgV-like) domain, a transmembrane domain, and an intracellular domain containing the immunoreceptor tyrosine-based inhibition motif (ITI M) and immunoreceptor tyrosine-based switch motif (ITSM).
  • the epitope to which the antibodies bind may consist of a single contiguous sequence of 3 or more (e.g., 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20 or more) amino acids located within any of the aforementioned domains of the PD-1 molecule (e.g.
  • the epitope may consist of a plurality of noncontiguous amino acids (or amino acid sequences) located within either or both of the aforementioned domains of the PD-1 molecule (e.g. a conformational epitope).
  • Various techniques known to persons of ordinary skill in the art can be used to determine whether an antibody "interacts with one or more amino acids" within a polypeptide or protein.
  • Exemplary techniques include, for example, routine cross-blocking assays, such as that described in Antibodies, Harlow and Lane (Cold Spring Harbor Press, Cold Spring Harbor, NY).
  • Other methods include alanine scanning mutational analysis, peptide blot analysis (Reineke (2004) Methods Mol. Biol. 248: 443-63), peptide cleavage analysis crystallographic studies and N MR analysis.
  • methods such as epitope excision, epitope extraction and chemical modification of antigens can be employed (Tomer (2000) Prot. Sci. 9: 487-496).
  • the hydrogen/deuterium exchange method involves deuterium-labeling the protein of interest, followed by binding the antibody to the deuterium-labeled protein. Next, the protein/antibody complex is transferred to water and exchangeable protons within amino acids that are protected by the antibody complex undergo deuterium-to-hydrogen back-exchange at a slower rate than exchangeable protons within amino acids that are not part of the interface. As a result, amino acids that form part of the protein/antibody interface may retain deuterium and therefore exhibit relatively higher mass compared to amino acids not included in the interface.
  • the target protein After dissociation of the antibody, the target protein is subjected to protease cleavage and mass spectrometry analysis, thereby revealing the deuterium-labeled residues which correspond to the specific amino acids with which the antibody interacts. See, e.g., Ehring (1999) Analytical Biochemistry 267: 252-259; Engen and Smith (2001 ) Anal. Chem. 73: 256A-265A.
  • epitope refers to a site on an antigen to which B and/or T cells respond.
  • B- cell epitopes can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents, whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents.
  • An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation.
  • Modification-Assisted Profiling also known as Antigen Structure-based Antibody Profiling (ASAP) is a method that categorizes large numbers of monoclonal antibodies (mAbs) directed against the same antigen according to the similarities of the binding profile of each antibody to chemically or enzymatically modified antigen surfaces (see US 2004/0101920, herein specifically incorporated by reference in its entirety). Each category may reflect a unique epitope either distinctly different from or partially overlapping with epitope represented by another category. This technology allows rapid filtering of genetically identical antibodies, such that characterization can be focused on genetically distinct antibodies.
  • MAP may facilitate identification of rare hybridoma clones that produce mAbs having the desired characteristics.
  • MAP may be used to sort the antibodies of the invention into groups of antibodies binding different epitopes.
  • the anti-PD-1 antibodies or antigen-binding fragments thereof bind an epitope within any one or more of the regions exemplified in PD-1 , either in natural form, as exemplified in SEQ ID NO: 327, or recombinantly produced, as exemplified in SEQ ID NOS: 321 - 324, or to a fragment thereof.
  • the antibodies of the invention bind to an extracellular region comprising one or more amino acids selected from the group consisting of amino acid residues 21 - 171 of PD-1.
  • the antibodies of the invention bind to an extracellular region comprising one or more amino acids selected from the group consisting of amino acid residues 1 - 146 of cynomolgus PD-1 , as exemplified by SEQ ID NO: 322.
  • the antibodies of the invention interact with at least one amino acid sequence selected from the group consisting of amino acid residues ranging from about position 21 to about position 136 of SEQ ID NO: 327; or amino acid residues ranging from about position 136 to about position 171 of SEQ ID NO: 327. These regions are partially exemplified in SEQ ID NOs: 321 - 324.
  • the present invention includes anti-PD-1 antibodies that bind to the same epitope, or a portion of the epitope, as any of the specific exemplary antibodies described herein in Table 1 , or an antibody having the CDR sequences of any of the exemplary antibodies described in Table 1 .
  • the present invention also includes anti-PD-1 antibodies that compete for binding to PD-1 or a PD-1 fragment with any of the specific exemplary antibodies described herein in Table 1 , or an antibody having the CDR sequences of any of the exemplary antibodies described in Table 1 .
  • the present invention includes anti-PD-1 antibodies that cross-compete for binding to PD-1 with one or more antibodies as defined in Example 6 herein (e.g. , H2aM7788N, H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H 1 M7800N,
  • test antibody may bind to the same epitope as the epitope bound by the reference anti-PD-1 antibody of the invention.
  • the above-described binding methodology is performed in two orientations: In a first orientation, the reference antibody is allowed to bind to a PD-1 protein under saturating conditions followed by assessment of binding of the test antibody to the PD-1 molecule. In a second orientation, the test antibody is allowed to bind to a PD-1 molecule under saturating conditions followed by assessment of binding of the reference antibody to the PD-1 molecule. If, in both orientations, only the first (saturating) antibody is capable of binding to the PD-1 molecule, then it is concluded that the test antibody and the reference antibody compete for binding to PD-1.
  • an antibody that competes for binding with a reference antibody may not necessarily bind to the identical epitope as the reference antibody, but may sterically block binding of the reference antibody by binding an overlapping or adjacent epitope.
  • Two antibodies bind to the same or overlapping epitope if each competitively inhibits (blocks) binding of the other to the antigen. That is, a 1 -, 5-, 10-, 20- or 100-fold excess of one antibody inhibits binding of the other by at least 50% but preferably 75%, 90% or even 99% as measured in a competitive binding assay (see, e.g., Junghans et ai, Cancer Res. 1990 50:1495-1502).
  • two antibodies have the same epitope if essentially all amino acid mutations in the antigen that reduce or eliminate binding of one antibody reduce or eliminate binding of the other.
  • Two antibodies have overlapping epitopes if some amino acid mutations that reduce or eliminate binding of one antibody reduce or eliminate binding of the other.
  • the invention encompasses a human anti-PD-1 monoclonal antibody conjugated to a therapeutic moiety (“immunoconjugate”), such as a cytotoxin or a chemotherapeutic agent to treat cancer.
  • a therapeutic moiety such as a cytotoxin or a chemotherapeutic agent to treat cancer.
  • immunoconjugate refers to an antibody which is chemically or biologically linked to a cytotoxin, a radioactive agent, a cytokine, an interferon, a target or reporter moiety, an enzyme, a toxin, a peptide or protein or a therapeutic agent.
  • the antibody may be linked to the cytotoxin, radioactive agent, cytokine, interferon, target or reporter moiety, enzyme, toxin, peptide or therapeutic agent at any location along the molecule so long as it is able to bind its target.
  • immunoconjugates include antibody drug conjugates and antibody-toxin fusion proteins.
  • the agent may be a second different antibody to PD-1.
  • the antibody may be conjugated to an agent specific for a tumor cell or a virally infected cell.
  • the type of therapeutic moiety that may be conjugated to the anti-PD-1 antibody and will take into account the condition to be treated and the desired therapeutic effect to be achieved. Examples of suitable agents for forming immunoconjugates are known in the art; see for example, WO 05/103081 .
  • the antibodies of the present invention may be mono-specific, bi-specific, or multi- specific. Multi-specific antibodies may be specific for different epitopes of one target polypeptide or may contain antigen-binding domains specific for more than one target polypeptide. See, e.g., Tutt et al., 1991 , J. Immunol. 147:60-69; Kufer et al., 2004, Trends Biotechnol. 22:238-244.
  • the present invention includes multi-specific antigen-binding molecules or antigen-binding fragments thereof wherein one specificity of an immunoglobulin is specific for the extracellular domain of PD-1 , or a fragment thereof, and the other specificity of the immunoglobulin is specific for binding outside the extracellular domain of PD-1 , or a second therapeutic target, or is conjugated to a therapeutic moiety.
  • the first antigen-binding specificity may comprise PD-L1 or PD-L2, or a fragment thereof.
  • one specificity of an immunoglobulin is specific for an epitope comprising amino acid residues 21 -171 of PD-1 (SEQ ID NO: 327) or a fragment thereof, and the other specificity of the immunoglobulin is specific for a second target antigen.
  • the second target antigen may be on the same cell as PD-1 or on a different cell.
  • the second target cell is on an immune cell other than a T-cell such as a B-cell, antigen-presenting cell, monocyte, macrophage, or dendritic cell.
  • the second target antigen may be present on a tumor cell or an autoimmune tissue cell or on a virally infected cell.
  • the invention provides multi-specific antigen-binding molecules or antigen-binding fragments thereof comprising a first antigen-binding specificity that binds to PD- 1 and a second antigen-binding specificity that binds to a T-cell receptor, a B-cell receptor or a Fc receptor.
  • the invention provides multi-specific antigen-binding molecules or antigen-binding fragments thereof comprising a first antigen-binding specificity that binds to PD-1 and a second antigen-binding specificity that binds to a different T-cell co-inhibitor such as LAG-3, CTLA-4, BTLA, CD-28, 2B4, LY108, TIG IT, TI M3, LAI R1 , ICOS and CD160.
  • a different T-cell co-inhibitor such as LAG-3, CTLA-4, BTLA, CD-28, 2B4, LY108, TIG IT, TI M3, LAI R1 , ICOS and CD160.
  • the invention provides multi-specific antigen-binding molecules or antigen-binding fragments thereof comprising a first antigen-binding specificity that binds to PD- 1 and a second antigen-binding specificity that binds to an autoimmune tissue-specific antigen.
  • the antibodies may be activating or agonist antibodies.
  • any of the multi-specific antigen-binding molecules of the invention may be constructed using standard molecular biological techniques (e.g., recombinant DNA and protein expression technology), as will be known to a person of ordinary skill in the art.
  • PD-1 -specific antibodies are generated in a bi-specific format (a "bi-specific") in which variable regions binding to distinct domains of PD-1 are linked together to confer dual-domain specificity within a single binding molecule.
  • bi-specific a bi-specific format
  • Appropriately designed bi- specifics may enhance overall PD-1 inhibitory efficacy through increasing both specificity and binding avidity.
  • Variable regions with specificity for individual domains, (e.g., segments of the N- terminal domain), or that can bind to different regions within one domain are paired on a structural scaffold that allows each region to bind simultaneously to the separate epitopes, or to different regions within one domain.
  • V H heavy chain variable regions
  • V L light chain variable regions
  • antibodies that bind more than one domains and a second target may be prepared in a bi- specific format using techniques described herein, or other techniques known to those skilled in the art.
  • Antibody variable regions binding to distinct regions may be linked together with variable regions that bind to relevant sites on, for example, the extracellular domain of PD-1 , to confer dual-antigen specificity within a single binding molecule.
  • Appropriately designed bi- specifics of this nature serve a dual function.
  • extracellular domain are combined with a variable region with specificity for outside the extracellular domain and are paired on a structural scaffold that allows each variable region to bind to the separate antigens.
  • An exemplary bi-specific antibody format that can be used in the context of the present invention involves the use of a first immunoglobulin (Ig) C H 3 domain and a second Ig C H 3 domain, wherein the first and second Ig C H 3 domains differ from one another by at least one amino acid, and wherein at least one amino acid difference reduces binding of the bi-specific antibody to Protein A as compared to a bi-specific antibody lacking the amino acid difference.
  • the first Ig C H 3 domain binds Protein A and the second Ig C H 3 domain contains a mutation that reduces or abolishes Protein A binding such as an H95R modification (by I MGT exon numbering; H435R by EU numbering).
  • the second C H 3 may further comprise a Y96F modification (by I MGT; Y436F by EU). Further modifications that may be found within the second C H 3 include: D16E, L18M, N44S, K52N, V57M, and V82I (by IMGT; D356E, L358M, N384S, K392N, V397M, and V422I by EU) in the case of lgG1 antibodies; N44S, K52N, and V82I (I MGT; N384S, K392N, and V422I by EU) in the case of lgG2 antibodies; and Q15R, N44S, K52N, V57M, R69K, E79Q, and V82I (by IMGT; Q355R, N384S, K392N, V397M, R409K, E419Q, and V422I by EU) in the case of lgG4 antibodies. Variations on the bi-specific
  • Bispecific antibodies can also be constructed using peptide/nucleic acid conjugation, e.g. , wherein unnatural amino acids with orthogonal chemical reactivity are used to generate site-specific antibody-oligonucleotide conjugates which then self-assemble into multimeric complexes with defined composition, valency and geometry. (See, e.g., Kazane et ai, J. Am. Chem. Soc. [Epub: Dec. 4, 2012]). Therapeutic Administration and Formulations
  • the invention provides therapeutic compositions comprising the anti-PD-1 antibodies or antigen-binding fragments thereof of the present invention.
  • Therapeutic compositions in accordance with the invention will be administered with suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like.
  • suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like.
  • a multitude of appropriate formulations can be found in the formulary known to all pharmaceutical chemists: Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, PA.
  • formulations include, for example, powders, pastes, ointments, jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as LIPOFECTINTM), DNA conjugates, anhydrous absorption pastes, oil-in-water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semi-solid gels, and semi-solid mixtures containing carbowax. See also Powell et al. "Compendium of excipients for parenteral formulations" PDA (1998) J Pharm Sci Technol 52:238-31 1.
  • the dose of antibody may vary depending upon the age and the size of a subject to be administered, target disease, conditions, route of administration, and the like.
  • an antibody of the present invention is used for treating a disease or disorder in an adult patient, or for preventing such a disease, it is advantageous to administer the antibody of the present invention normally at a single dose of about 0.1 to about 60 mg/kg body weight, more preferably about 5 to about 60, about 10 to about 50, or about 20 to about 50 mg/kg body weight.
  • the frequency and the duration of the treatment can be adjusted.
  • the antibody or antigen-binding fragment thereof of the invention can be administered as an initial dose of at least about 0.1 mg to about 800 mg, about 1 to about 500 mg, about 5 to about 300 mg, or about 10 to about 200 mg, to about 100 mg, or to about 50 mg.
  • the initial dose may be followed by administration of a second or a plurality of subsequent doses of the antibody or antigen-binding fragment thereof in an amount that can be approximately the same or less than that of the initial dose, wherein the subsequent doses are separated by at least 1 day to 3 days; at least one week, at least 2 weeks; at least 3 weeks; at least 4 weeks; at least 5 weeks; at least 6 weeks; at least 7 weeks; at least 8 weeks; at least 9 weeks; at least 10 weeks; at least 12 weeks; or at least 14 weeks.
  • Various delivery systems are known and can be used to administer the pharmaceutical composition of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the mutant viruses, receptor mediated endocytosis (see, e.g., Wu et al. (1987) J. Biol. Chem. 262:4429-4432).
  • Methods of introduction include, but are not limited to, intradermal, transdermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural and oral routes.
  • the composition may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings ⁇ e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local.
  • the pharmaceutical composition can be also delivered in a vesicle, in particular a liposome (see, for example, Langer (1990) Science 249:1527-1533).
  • Nanoparticles to deliver the antibodies of the present invention are also contemplated herein.
  • Antibody-conjugated nanoparticles may be used both for therapeutic and diagnostic applications.
  • Antibody-conjugated nanoparticles and methods of preparation and use are described in detail by Arruebo, M., et al. 2009 ("Antibody-conjugated nanoparticles for biomedical applications" in J. Nanomat. Volume 2009, Article ID 439389, 24 pages, doi:
  • Nanoparticles may be developed and conjugated to antibodies contained in pharmaceutical compositions to target tumor cells or autoimmune tissue cells or vi rally infected cells. Nanoparticles for drug delivery have also been described in, for example, US 8257740, or US 8246995, each incorporated herein in its entirety.
  • the pharmaceutical composition can be delivered in a controlled release system.
  • a pump may be used.
  • polymeric materials can be used.
  • a controlled release system can be placed in proximity of the composition's target, thus requiring only a fraction of the systemic dose.
  • the injectable preparations may include dosage forms for intravenous, subcutaneous, intracutaneous, intracranial, intraperitoneal and intramuscular injections, drip infusions, etc. These injectable preparations may be prepared by methods publicly known. For example, the injectable preparations may be prepared, e.g., by dissolving, suspending or emulsifying the antibody or its salt described above in a sterile aqueous medium or an oily medium
  • aqueous medium for injections there are, for example, physiological saline, an isotonic solution containing glucose and other auxiliary agents, etc., which may be used in combination with an appropriate solubilizing agent such as an alcohol (e.g., ethanol), a polyalcohol (e.g., propylene glycol, polyethylene glycol), a nonionic surfactant [e.g., polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)], etc.
  • an alcohol e.g., ethanol
  • a polyalcohol e.g., propylene glycol, polyethylene glycol
  • a nonionic surfactant e.g., polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil
  • oily medium there are employed, e.g., sesame oil, soybean oil, etc., which may be used in combination with a solubilizing agent such as benzyl benzoate, benzyl alcohol, etc.
  • a solubilizing agent such as benzyl benzoate, benzyl alcohol, etc.
  • a pharmaceutical composition of the present invention can be delivered subcutaneously or intravenously with a standard needle and syringe.
  • a pen delivery device readily has applications in delivering a pharmaceutical composition of the present invention.
  • Such a pen delivery device can be reusable or disposable.
  • a reusable pen delivery device generally utilizes a replaceable cartridge that contains a pharmaceutical composition. Once all of the pharmaceutical composition within the cartridge has been administered and the cartridge is empty, the empty cartridge can readily be discarded and replaced with a new cartridge that contains the pharmaceutical composition. The pen delivery device can then be reused.
  • a disposable pen delivery device there is no replaceable cartridge. Rather, the disposable pen delivery device comes prefilled with the pharmaceutical composition held in a reservoir within the device. Once the reservoir is emptied of the pharmaceutical composition, the entire device is discarded.
  • Numerous reusable pen and autoinjector delivery devices have applications in the subcutaneous delivery of a pharmaceutical composition of the present invention. Examples include, but certainly are not limited to AUTOPENTM (Owen Mumford, Inc., Woodstock, UK), DISETRONICTM pen (Disetronic Medical Systems, Burghdorf, Switzerland), HUMALOG MIX 75/25TM pen, HUMALOGTM pen, HUMALIN 70/30TM pen (Eli Lilly and Co., Indianapolis, IN), NOVOPENTM I, II and III (Novo Nordisk, Copenhagen, Denmark), NOVOPEN JUNIORTM (Novo Nordisk, Copenhagen, Denmark), BDTM pen (Becton Dickinson, Franklin Lakes, NJ),
  • OPTIPENTM, OPTIPEN PROTM, OPTIPEN STARLETTM, and OPTICLIKTM (Sanofi-Aventis, Frankfurt, Germany), to name only a few.
  • disposable pen delivery devices having applications in subcutaneous delivery of a pharmaceutical composition of the present invention include, but certainly are not limited to the SOLOSTARTM pen (Sanofi-Aventis), the FLEXPENTM (Novo Nordisk), and the KWIKPENTM (Eli Lilly), the SURECLICKTM Autoinjector (Amgen, Thousand Oaks, CA), the PENLETTM (Haselmeier, Stuttgart, Germany), the EPIPEN (Dey, L.P.) and the HUMIRATM Pen (Abbott Labs, Abbott Park, IL), to name only a few.
  • the pharmaceutical compositions for oral or parenteral use described above are prepared into dosage forms in a unit dose suited to fit a dose of the active ingredients.
  • dosage forms in a unit dose include, for example, tablets, pills, capsules, injections (ampoules), suppositories, etc.
  • the amount of the antibody contained is generally about 5 to about 500 mg per dosage form in a unit dose; especially in the form of injection, it is preferred that the antibody is contained in about 5 to about 100 mg and in about 10 to about 250 mg for the other dosage forms.
  • the antibodies of the invention are useful, inter alia, for the treatment, prevention and/or amelioration of any disease or disorder associated with or mediated by PD-1 expression, signaling, or activity, or treatable by blocking the interaction between PD-1 and a PD-1 ligand (e.g., PD-L1 , or PD-L2) or otherwise inhibiting PD-1 activity and/or signaling.
  • a PD-1 ligand e.g., PD-L1 , or PD-L2
  • the present invention provides methods for treating cancer (tumor growth inhibition), chronic viral infections and/or autoimmune disease by administering an anti-PD-1 antibody (or
  • an anti-PD-1 antibody as described herein to a patient in need of such treatment.
  • the antibodies of the present invention are useful for the treatment, prevention, and/or amelioration of disease or disorder or condition such as cancer, autoimmune disease or a viral infection and/or for ameliorating at least one symptom associated with such disease, disorder or condition.
  • the anti-PD-1 antibody may be administered as a monotherapy ⁇ i.e., as the only therapeutic agent) or in combination with one or more additional therapeutic agents (examples of which are described elsewhere herein).
  • the antibodies described herein are useful for treating subjects suffering from primary or recurrent cancer, including, but not limited to, renal cell carcinoma, colorectal cancer, non-small-cell lung cancer, brain cancer (e.g., glioblastoma multiforme), squamous cell carcinoma of head and neck, gastric cancer, prostate cancer, ovarian cancer, kidney cancer, breast cancer, multiple myeloma, and melanoma.
  • primary or recurrent cancer including, but not limited to, renal cell carcinoma, colorectal cancer, non-small-cell lung cancer, brain cancer (e.g., glioblastoma multiforme), squamous cell carcinoma of head and neck, gastric cancer, prostate cancer, ovarian cancer, kidney cancer, breast cancer, multiple myeloma, and melanoma.
  • the antibodies may be used to treat early stage or late-stage symptoms of cancer.
  • an antibody or fragment thereof of the invention may be used to treat metastatic cancer.
  • the antibodies are useful in reducing or inhibiting or shrinking tumor growth of both solid tumors and blood cancers.
  • treatment with an antibody or antigen-binding fragment thereof of the invention leads to more than 50% regression, more than 60% regression, more than 70% regression, more than 80% regression or more than 90% regression of a tumor in a subject.
  • the antibodies may be used to prevent relapse of a tumor.
  • the antibodies are useful in extending overall survival in a subject with cancer.
  • the antibodies are useful in reducing toxicity due to chemotherapy or radiotherapy while maintaining long-term survival in a patient suffering from cancer.
  • the antibodies of the invention are useful to treat subjects suffering from a chronic viral infection. In some embodiments, the antibodies of the invention are useful in decreasing viral titers in the host and/or rescuing exhausted T-cells. In certain embodiments, an antibody or fragment thereof of the invention may be used to treat chronic viral infection by lymphocytic choriomeningitis virus (LCMV). In some embodiments, an antibody or antigen-binding fragment thereof the invention may be administered at a therapeutic dose to a patient with an infection by human immunodeficiency virus (HIV) or human papilloma virus (HPV) or hepatitis B/C virus (HBV/HCV). In a related embodiment, an antibody or antigen- binding fragment thereof of the invention may be used to treat an infection by simian
  • immunodeficiency virus in a simian subject such as cynomolgus.
  • a blocking antibody of the present invention may be any suitable blocking antibody of the present invention.
  • the antibodies of the invention are useful for treating an autoimmune disease, including but not limited to, alopecia areata, autoimmune hepatitis, celiac disease, Graves' disease, Guillain-Barre syndrome, Hashimoto's disease, hemolytic anemia, inflammatory bowel disease, inflammatory myopathies, multiple sclerosis, primary biliary cirrhosis, psoriasis, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic lupus erthyematosus, vitiligo, autoimmune pancreatitis, autoimmune urticaria, autoimmune
  • an autoimmune disease including but not limited to, alopecia areata, autoimmune hepatitis, celiac disease, Graves' disease, Guillain-Barre syndrome, Hashimoto's disease, hemolytic anemia, inflammatory bowel disease, inflammatory myopathies, multiple sclerosis, primary biliary cirr
  • an activating antibody of the invention may be used to treat a subject suffering from autoimmune disease.
  • One or more antibodies of the present invention may be administered to relieve or prevent or decrease the severity of one or more of the symptoms or conditions of the disease or disorder.
  • one or more antibodies of the present invention prophylactically to patients at risk for developing a disease or disorder such as cancer, autoimmune disease and chronic viral infection.
  • the present antibodies are used for the preparation of a pharmaceutical composition for treating patients suffering from cancer, autoimmune disease or viral infection.
  • the present antibodies are used as adjunct therapy with any other agent or any other therapy known to those skilled in the art useful for treating cancer, autoimmune disease or viral infection .
  • Combination therapies may include an anti-PD-1 antibody of the invention and any additional therapeutic agent that may be advantageously combined with an antibody of the invention, or with a biologically active fragment of an antibody of the invention.
  • the antibodies of the present invention may be combined synergistically with one or more anti-cancer drugs or therapy used to treat cancer, including, for example, renal cell carcinoma, colorectal cancer, glioblastoma multiforme, squamous cell carcinoma of head and neck, non-small-cell lung cancer, colon cancer, ovarian cancer, adenocarcinoma, prostate cancer, glioma, and melanoma. It is contemplated herein to use anti-PD-1 antibodies of the invention in combination with immunostimulatory and/or immunosupportive therapies to inhibit tumor growth, and/or enhance survival of cancer patients.
  • the immunostimulatory therapies include direct immunostimulatory therapies to augment immune cell activity by either "releasing the brake” on suppressed immune cells or "stepping on the gas” to activate an immune response. Examples include targeting other checkpoint receptors, vaccination and adjuvants.
  • the immunosupportive modalities may increase antigenicity of the tumor by promoting immunogenic cell death, inflammation or have other indirect effects that promote an anti-tumor immune response. Examples include radiation, chemotherapy, anti-angiogenic agents, and surgery.
  • one or more antibodies of the present invention may be used in combination with an antibody to PD-L1 , a second antibody to PD-1 (e.g., nivolumab), a LAG-3 inhibitor, a CTLA-4 inhibitor (e.g., ipilimumab), a TI M3 inhibitor, a BTLA inhibitor, a TIGIT inhibitor, a CD47 inhibitor, an antagonist of another T-cell co-inhibitor or ligand (e.g., an antibody to CD-28, 2B4, LY108, LAIR1 , ICOS, CD160 or VISTA), an indoleamine-2,3-dioxygenase (IDO) inhibitor, a vascular endothelial growth factor (VEGF) antagonist [e.g., a "VEGF-Trap” such as aflibercept or other VEGF-inhibiting fusion protein as set forth in US 7,087,41 1 , or an anti-VEGF
  • VEGF vascular
  • the anti-PD-1 antibodies of the present invention may be used in combination with cancer vaccines including dendritic cell vaccines, oncolytic viruses, tumor cell vaccines, etc. to augment the anti-tumor response.
  • cancer vaccines include MAGE3 vaccine for melanoma and bladder cancer, MUC1 vaccine for breast cancer, EGFRv3 (e.g., Rindopepimut) for brain cancer (including glioblastoma multiforme), or ALVAC-CEA (for CEA+ cancers).
  • the anti-PD-1 antibodies of the invention may be administered in combination with radiation therapy in methods to generate long-term durable anti-tumor responses and/or enhance survival of patients with cancer.
  • the anti-PD-1 antibodies of the invention may be administered prior to, concomitantly or after administering radiation therapy to a cancer patient.
  • radiation therapy may be administered in one or more doses to tumor lesions followed by administration of one or more doses of anti-PD- 1 antibodies of the invention.
  • radiation therapy may be administered locally to a tumor lesion to enhance the local immunogenicity of a patient's tumor (adjuvinating radiation) and/or to kill tumor cells (ablative radiation) followed by systemic administration of an anti-PD-1 antibody of the invention.
  • intracranial radiation may be administered to a patient with brain cancer (e.g., glioblastoma multiforme) in combination with systemic administration of an anti-PD-1 antibody of the invention.
  • the anti-PD-1 antibodies of the invention may be administered in combination with radiation therapy and a chemotherapeutic agent (e.g., temozolomide) or a VEGF antagonist (e.g., aflibercept).
  • a chemotherapeutic agent e.g., temozolomide
  • VEGF antagonist e.g., aflibercept
  • the anti-PD-1 antibodies of the invention may be administered in combination with one or more anti-viral drugs to treat chronic viral infection caused by LCMV, HIV, HPV, HBV or HCV.
  • anti-viral drugs include, but are not limited to, zidovudine, lamivudine, abacavir, ribavirin, lopinavir, efavirenz, cobicistat, tenofovir, rilpivirine and corticosteroids.
  • the anti-PD-1 antibodies of the invention may be administered in combination with a LAG3 inhibitor, a CTLA-4 inhibitor or any antagonist of another T-cell co-inhibitor to treat chronic viral infection.
  • the anti-PD-1 antibodies of the invention may be combined with an antibody to a Fc receptor on immune cells for the treatment of an autoimmune disease.
  • an antibody or fragment thereof of the invention is administered in
  • an antibody or antigen-binding fragment thereof of the invention is administered in combination with an antibody or antigen-binding protein targeted to a T-cell receptor or a B-cell receptor, including but not limited to, Fca (e.g., CD89), Fey (e.g., CD64, CD32, CD16a, and CD16b), CD19, etc.
  • Fca e.g., CD89
  • Fey e.g., CD64, CD32, CD16a, and CD16b
  • CD19 etc.
  • the antibodies of fragments thereof of the invention may be used in combination with any drug or therapy known in the art (e.g., corticosteroids and other immunosuppressants) to treat an autoimmune disease or disorder including, but not limited to alopecia areata, autoimmune hepatitis, celiac disease, Graves' disease, Guillain-Barre syndrome, Hashimoto's disease, hemolytic anemia, inflammatory bowel disease, inflammatory myopathies, multiple sclerosis, primary biliary cirrhosis, psoriasis, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic lupus erthyematosus, vitiligo, autoimmune pancreatitis, autoimmune urticaria, autoimmune thrombocytopenic purpura, Crohn's disease, diabetes type I, eosinophilic fasciitis, eosinophilic enterogastritis,
  • the additional therapeutically active agent(s)/component(s) may be administered prior to, concurrent with, or after the administration of the anti-PD-1 antibody of the present invention.
  • administration regimens are considered the administration of an anti-PD-1 antibody "in combination with" a second therapeutically active component.
  • the additional therapeutically active component(s) may be administered to a subject prior to administration of an anti-PD-1 antibody of the present invention.
  • a first component may be deemed to be administered "prior to" a second component if the first component is administered 1 week before, 72 hours before, 60 hours before, 48 hours before, 36 hours before, 24 hours before, 12 hours before, 6 hours before, 5 hours before, 4 hours before, 3 hours before, 2 hours before, 1 hour before, 30 minutes before, 15 minutes before, 10 minutes before, 5 minutes before, or less than 1 minute before administration of the second component.
  • the additional therapeutically active component(s) may be administered to a subject after administration of an anti-PD-1 antibody of the present invention.
  • a first component may be deemed to be administered "after" a second component if the first component is administered 1 minute after, 5 minutes after, 10 minutes after, 15 minutes after, 30 minutes after, 1 hour after, 2 hours after, 3 hours after, 4 hours after, 5 hours after, 6 hours after, 12 hours after, 24 hours after, 36 hours after, 48 hours after, 60 hours after, 72 hours after administration of the second component.
  • the additional therapeutically active component(s) may be administered to a subject concurrent with administration of an anti-PD-1 antibody of the present invention.
  • Constant administration includes, e.g., administration of an anti-PD-1 antibody and an additional therapeutically active component to a subject in a single dosage form ⁇ e.g., co- formulated), or in separate dosage forms administered to the subject within about 30 minutes or less of each other.
  • each dosage form may be administered via the same route ⁇ e.g., both the anti-PD-1 antibody and the additional therapeutically active component may be administered intravenously, subcutaneously, etc.); alternatively, each dosage form may be administered via a different route (e.g., the anti-PD-1 antibody may be administered intravenously, and the additional therapeutically active component may be administered subcutaneously).
  • administering the components in a single dosage from, in separate dosage forms by the same route, or in separate dosage forms by different routes are all considered “concurrent administration,” for purposes of the present disclosure.
  • administration of an anti-PD-1 antibody "prior to”, “concurrent with,” or “after” (as those terms are defined herein above) administration of an additional therapeutically active component is considered administration of an anti-PD-1 antibody "in combination with” an additional therapeutically active component).
  • the present invention includes pharmaceutical compositions in which an anti-PD-1 antibody of the present invention is co-formulated with one or more of the additional therapeutically active component(s) as described elsewhere herein using a variety of dosage combinations.
  • an anti-PD-1 antibody of the invention is administered in combination with a VEGF antagonist (e.g., a VEGF trap such as aflibercept), including administration of co-formulations comprising an anti-PD-1 antibody and a VEGF antagonist
  • a VEGF antagonist e.g., a VEGF trap such as aflibercept
  • the individual components may be administered to a subject and/or co-formulated using a variety of dosage combinations.
  • the anti-PD-1 antibody may be administered to a subject and/or contained in a co-formulation in an amount selected from the group consisting of 0.01 mg, 0.02 mg, 0.03 mg, 0.04 mg, 0.05 mg, 0.1 mg, 0.2 mg, 0.3 mg, 0.4 mg, 0.5 mg, 0.6 mg, 0.7 mg, 0.8 mg, 0.9 mg, 1.0 mg, 1.5 mg, 2.0 mg, 2.5 mg, 3.0 mg, 3.5 mg, 4.0 mg, 4.5 mg, 5.0 mg, 6.0 mg, 7.0 mg, 8.0 mg, 9.0 mg, and 10.0 mg; and the VEGF antagonist (e.g., a VEGF trap such as aflibercept) may be administered to the subject and/or contained in a co-formulation in an amount selected from the group consisting of 0.1 mg, 0.2 mg, 0.3 mg, 0.4 mg, 0.5 mg, 0.6 mg, 0.7 mg, 0.8 mg, 0.9 mg, 1 .0 mg, 1.1 mg, 1 .2 mg, 1 .
  • the combinations/co-formulations may be administered to a subject according to any of the administration regimens disclosed elsewhere herein, including, e.g., twice a week, once every week, once every 2 weeks, once every 3 weeks, once every month, once every 2 months, once every 3 months, once every 4 months, once every 5 months, once every 6 months, etc.
  • multiple doses of an anti-PD- 1 antibody may be administered to a subject over a defined time course.
  • the methods according to this aspect of the invention comprise sequentially administering to a subject multiple doses of an anti-PD-1 antibody of the invention.
  • sequentially administering means that each dose of anti-PD-1 antibody is administered to the subject at a different point in time, e.g., on different days separated by a predetermined interval [e.g., hours, days, weeks or months).
  • the present invention includes methods which comprise sequentially administering to the patient a single initial dose of an anti-PD-1 antibody, followed by one or more secondary doses of the anti-PD-1 antibody, and optionally followed by one or more tertiary doses of the anti-PD-1 antibody.
  • the anti-PD-1 antibody may be administered at a dose between 0.1 mg/kg to 100 mg/kg.
  • the terms “initial dose,” “secondary doses,” and “tertiary doses,” refer to the temporal sequence of administration of the anti-PD-1 antibody of the invention.
  • the “initial dose” is the dose which is administered at the beginning of the treatment regimen (also referred to as the “baseline dose”);
  • the “secondary doses” are the doses which are administered after the initial dose;
  • the “tertiary doses” are the doses which are administered after the secondary doses.
  • the initial, secondary, and tertiary doses may all contain the same amount of anti-PD-1 antibody, but generally may differ from one another in terms of frequency of administration.
  • the amount of anti-PD-1 antibody contained in the initial, secondary and/or tertiary doses varies from one another (e.g., adjusted up or down as appropriate) during the course of treatment.
  • two or more (e.g., 2, 3, 4, or 5) doses are administered at the beginning of the treatment regimen as "loading doses" followed by subsequent doses that are administered on a less frequent basis (e.g.,
  • each secondary and/or tertiary dose is administered 1 to 26 (e.g. , 1 , 1 1 ⁇ 2, 2, 21 ⁇ 2, 3, 31 ⁇ 2, 4, 41 ⁇ 2, 5, 51 ⁇ 2, 6, 61 ⁇ 2, 7, 7/ 2 , 8, 81 ⁇ 2, 9, 9 1 / 2 , 10, 101 ⁇ 2, 1 1 , 1 1 1 / 2 , 12, 121 ⁇ 2, 13, 13 1 / 2 , 14, 141 ⁇ 2, 15, 151 ⁇ 2, 16, 161 ⁇ 2, 17, 171 ⁇ 2, 18, 181 ⁇ 2, 19, 191 ⁇ 2, 20, 201 ⁇ 2, 21 , 21 1 ⁇ 2, 22, 221 ⁇ 2, 23, 231 ⁇ 2, 24, 241 ⁇ 2, 25, 251 ⁇ 2, 26, 261 ⁇ 2, or more) weeks after the immediately preceding dose.
  • the phrase "the immediately preceding dose,” as used herein, means, in a sequence of multiple administrations, the dose of anti-PD-1 antibody which is administered to a patient prior to the administration of the very next dose in the sequence with no intervening doses.
  • the methods according to this aspect of the invention may comprise administering to a patient any number of secondary and/or tertiary doses of an anti-PD-1 antibody.
  • any number of secondary and/or tertiary doses of an anti-PD-1 antibody may comprise administering to a patient any number of secondary and/or tertiary doses of an anti-PD-1 antibody.
  • only a single secondary dose is administered to the patient.
  • two or more (e.g. , 2, 3, 4, 5, 6, 7, 8, or more) secondary doses are administered to the patient.
  • only a single tertiary dose is administered to the patient.
  • two or more (e.g. , 2, 3, 4, 5, 6, 7, 8, or more) tertiary doses are administered to the patient.
  • each secondary dose may be administered at the same frequency as the other secondary doses. For example, each secondary dose may be administered to the patient 1 to 2 weeks or 1 to 2 months after the immediately preceding dose. Similarly, in embodiments involving multiple tertiary doses, each tertiary dose may be administered at the same frequency as the other tertiary doses. For example, each tertiary dose may be administered to the patient 2 to 12 weeks after the immediately preceding dose.
  • the frequency at which the secondary and/or tertiary doses are administered to a patient can vary over the course of the treatment regimen. The frequency of administration may also be adjusted during the course of treatment by a physician depending on the needs of the individual patient following clinical examination.
  • the present invention includes administration regimens in which 2 to 6 loading doses are administered to a patient at a first frequency (e.g., once a week, once every two weeks, once every three weeks, once a month, once every two months, etc.), followed by administration of two or more maintenance doses to the patient on a less frequent basis.
  • a first frequency e.g., once a week, once every two weeks, once every three weeks, once a month, once every two months, etc.
  • the maintenance doses may be administered to the patient once every five weeks, once every six weeks, once every seven weeks, once every eight weeks, once every ten weeks, once every twelve weeks, etc.).
  • the anti-PD-1 antibodies of the present invention may be used to detect and/or measure PD-1 in a sample, e.g. , for diagnostic purposes. Some embodiments contemplate the use of one or more antibodies of the present invention in assays to detect a disease or disorder such as cancer, autoimmune disease or chronic viral infection. Exemplary diagnostic assays for PD-1 may comprise, e.g., contacting a sample, obtained from a patient, with an anti-PD-1 antibody of the invention, wherein the anti-PD-1 antibody is labeled with a detectable label or reporter molecule or used as a capture ligand to selectively isolate PD-1 from patient samples.
  • an unlabeled anti-PD-1 antibody can be used in diagnostic applications in combination with a secondary antibody which is itself detectably labeled.
  • the detectable label or reporter molecule can be a radioisotope, such as 3 H, 14 C, 32 P, 35 S, or 125 l; a fluorescent or chemiluminescent moiety such as fluorescein isothiocyanate, or rhodamine; or an enzyme such as alkaline phosphatase, ⁇ -galactosidase, horseradish peroxidase, or luciferase.
  • Specific exemplary assays that can be used to detect or measure PD-1 in a sample include enzyme- linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence-activated cell sorting (FACS).
  • Samples that can be used in PD-1 diagnostic assays according to the present invention include any tissue or fluid sample obtainable from a patient, which contains detectable quantities of either PD-1 protein, or fragments thereof, under normal or pathological conditions.
  • levels of PD-1 in a particular sample obtained from a healthy patient ⁇ e.g., a patient not afflicted with cancer or an autoimmune disease
  • This baseline level of PD-1 can then be compared against the levels of PD-1 measured in samples obtained from individuals suspected of having a cancer-related condition, or symptoms associated with such condition.
  • the antibodies specific for PD-1 may contain no additional labels or moieties, or they may contain an N-terminal or C-terminal label or moiety.
  • the label or moiety is biotin.
  • the location of a label may determine the orientation of the peptide relative to the surface upon which the peptide is bound. For example, if a surface is coated with avidin, a peptide containing an N-terminal biotin will be oriented such that the C- terminal portion of the peptide will be distal to the surface.
  • aspects of the invention relate to use of the disclosed antibodies as markers for predicting prognosis of cancer or an autoimmune disorder in patients.
  • Antibodies of the present invention may be used in diagnostic assays to evaluate prognosis of cancer in a patient and to predict survival.
  • Human antibodies to PD-1 were generated using a fragment of PD-1 that ranges from about amino acids 25 - 170 of GenBank Accession NP_005009.2 (SEQ ID NO: 327) with a C93S change.
  • the immunogen was administered directly, with an adjuvant to stimulate the immune response, to a VELOCIMMUNE ® mouse comprising DNA encoding human
  • Immunoglobulin heavy and kappa light chain variable regions The antibody immune response was monitored by a PD-1 -specific immunoassay. When a desired immune response was achieved splenocytes were harvested and fused with mouse myeloma cells to preserve their viability and form hybridoma cell lines. The hybridoma cell lines were screened and selected to identify cell lines that produce PD-1-specific antibodies.
  • anti-PD-1 chimeric antibodies ⁇ i.e., antibodies possessing human variable domains and mouse constant domains
  • exemplary antibodies generated in this manner were designated as H1 M7789N, H1 M7799N, H1 M7800N, H2M7780N, H2M7788N, H2M7790N, H2M7791 N, H2M7794N, H2M7795N, H2M7796N, and H2M7798N.
  • Anti-PD-1 antibodies were also isolated directly from antigen-positive B cells without fusion to myeloma cells, as described in U.S. 2007/0280945A1 , herein specifically incorporated by reference in its entirety. Using this method, several fully human anti-PD-1 antibodies (i.e., antibodies possessing human variable domains and human constant domains) were obtained; exemplary antibodies generated in this manner were designated as follows: H4H9019P, H4xH9034P2, H4xH9035P2, H4xH9037P2, H4xH9045P2, H4xH9048P2, H4H9057P2,
  • H4H9068P2 H4xH91 19P2, H4xH9120P2, H4xH9128P2, H4xH9135P2, H4xH9145P2,
  • H4xH8992P, H4xH8999P, and H4xH9008P are examples of H4xH8992P, H4xH8999P, and H4xH9008P.
  • Table 1 sets forth the amino acid sequence identifiers of the heavy and light chain variable regions and CDRs of selected anti-PD-1 antibodies of the invention.
  • nucleic acid sequence identifiers are set forth in Table 2.
  • H4xH9135P2 282 284 286 288 202 204 206 208
  • H4xH9035P2 209 21 1 213 215 201 203 205 207
  • Antibodies are typically referred to herein according to the following nomenclature: Fc prefix (e.g. "H4xH,” “M M,” “H2M,” etc.), followed by a numerical identifier (e.g. "7789,” “7799,” etc., as shown in Table 1 ), followed by a "P,” “P2,” “N,” or “B” suffix.
  • Fc prefix e.g. "H4xH,” “M M,” “H2M,” etc.
  • a numerical identifier e.g. "7789,” “7799,” etc., as shown in Table 1
  • P2 P2
  • N a numerical suffix.
  • an antibody may be referred to herein as, e.g., “H1 H7789N,” “H1 M7799N,” “H2M7780N,” etc.
  • H4xH, H1 M, H2M and H2aM prefixes on the antibody designations used herein indicate the particular Fc region isotype of the antibody.
  • an "H4xH” antibody has a human lgG4 Fc with 2 or more amino acid changes as disclosed in
  • an "M M” antibody has a mouse lgG1 Fc
  • an "H2M” antibody has a mouse lgG2 Fc (a or b isotype) (all variable regions are fully human as denoted by the first ⁇ ' in the antibody designation).
  • an antibody having a particular Fc isotype can be converted to an antibody with a different Fc isotype (e.g., an antibody with a mouse lgG1 Fc can be converted to an antibody with a human lgG4, etc.), but in any event, the variable domains (including the CDRs) - which are indicated by the numerical identifiers shown in Table 1 - will remain the same, and the binding properties to antigen are expected to be identical or substantially similar regardless of the nature of the Fc domain.
  • selected antibodies with a mouse lgG1 Fc were converted to antibodies with human lgG4 Fc.
  • the lgG4 Fc domain comprises a serine to proline mutation in the hinge region (S108P) to promote dimer stabilization.
  • Table 3 sets forth the amino acid sequence identifiers of heavy chain and light chain sequences of selected anti- PD-1 antibodies with human lgG4 Fc.
  • Each heavy chain sequence in Table 3 comprised a variable region (V H or HCVR;
  • Each light chain sequence in Table 3 comprised a variable region (V L or LCVR; comprising LCDR1 , LCDR2 and LCDR3) and a constant region (C L ).
  • SEQ ID NO: 330 comprised a HCVR comprising amino acids 1 - 117 and a constant region comprising amino acids 1 18 - 444.
  • SEQ ID NO: 331 comprised a LCVR comprising amino acids 1 - 107 and a constant region comprising amino acids 108 - 214.
  • SEQ ID NO: 332 comprised a HCVR comprising amino acids 1 - 122 and a constant region comprising amino acids 123 - 449.
  • SEQ ID NO: 333 comprised a LCVR comprising amino acids 1 - 107 and a constant region comprising amino acids 108 - 214.
  • SEQ ID NO: 334 comprised a HCVR comprising amino acids 1 - 119 and a constant region comprising amino acids 120 - 446.
  • SEQ ID NO: 335 comprised a LCVR comprising amino acids 1 - 108 and a constant region comprising amino acids 109 - 215.
  • SEQ ID NO: 336 comprised a HCVR comprising amino acids 1 - 121 and a constant region comprising amino acids 122 - 448.
  • SEQ ID NO: 337 comprised a LCVR comprising amino acids 1 - 108 and a constant region comprising amino acids 109 - 215.
  • Example 3 Antibody binding to PD-1 as determined by Surface Plasmon Resonance
  • Binding association and dissociation rate constants ⁇ k a and k d , respectively), equilibrium dissociation constants and dissociation half-lives (K D and t 1 ⁇ 2 , respectively) for antigen binding to purified anti-PD1 antibodies were determined using a real-time surface plasmon resonance biosensor assay on a Biacore 4000 or Biacore T200 instrument.
  • the Biacore sensor surface was derivatized with either a polyclonal rabbit anti-mouse antibody (GE, # BR-1008-38) or with a monoclonal mouse anti-human Fc antibody (GE, # BR-1008-39) to capture
  • the PD-1 reagents tested for binding to the anti-PD-1 antibodies included recombinant human PD-1 expressed with a C-terminal myc-myc- hexahistidine tag (hPD-1-MMH; SEQ ID NO: 321 ), recombinant cynomolgus monkey PD-1 expressed with a C-terminal myc-myc-hexahistidine tag (MfPD-1 -MMH; SEQ I D NO: 322), recombinant human PD-1 dimer expressed with either a C-terminal mouse lgG2a Fc tag (hPD-MMH; SEQ ID NO: 321 ), recombinant cynomolgus monkey PD-1 expressed with a C-terminal myc-myc-hexahistidine tag (MfPD-1 -MMH; SEQ I D NO: 322), recombinant human PD-1 dimer expressed with either a C-terminal mouse lgG2a
  • PD-1 reagents 1 -mFc; SEQ ID NO: 323) or with a C-terminal human lgG1 Fc (hPD1 -hFc; SEQ ID NO: 324), and monkey PD-1 with mFc (SEQ I D NO: 329).
  • Different concentrations of PD-1 reagents ranging from 200nM to 3.7nM were injected over the anti-PD-1 monoclonal antibody captured surface at a flow rate of 30 ⁇ _/ ⁇ " ⁇ on Biacore 4000 or at 50 ⁇ _/ ⁇ " ⁇ on Biacore T200.
  • the binding of the PD-1 reagents to captured monoclonal antibodies was monitored for 3 to 5 minutes while their dissociation from the antibodies was monitored for 7 to 10 minutes in HBST running buffer
  • Binding kinetics parameters for different anti-PD-1 monoclonal antibodies binding to different PD-1 reagents at 25°C and 37°C are tabulated in Tables 4 - 1 1.
  • Table 4 Binding Kinetics parameters of anti-PD-1 monoclonal antibodies binding to human PD-1- MMH at 25°C.
  • Table 5 Binding Kinetics parameters of anti-PD-1 monoclonal antibodies binding to human PD-1- MMH at 37°C.
  • Table 6 Binding Kinetics parameters of anti-PD-1 monoclonal antibodies binding to human PD-1 dimer (human PD-1-mFc or human PD-1-hFc) at 25°C.
  • Table 7 Binding Kinetics parameters of anti-PD-1 monoclonal antibodies binding to human PD-1 dimer (human PD-1-mFc or human PD-1-hFc) at 37°C.
  • Table 8 Binding Kinetics parameters of anti-PD-1 monoclonal antibodies binding to MfPD-1- MMH at 25°C.
  • Table 9 Binding Kinetics parameters of anti-PD-1 monoclonal antibodies binding to MfPD-1- MMH at 37°C.
  • Example 4 Blocking of PD-1 binding to PD-L1 as determined by ELISA
  • Dimeric human PD- L1 proteins comprised of a portion of the human PD-L1 extracellular domain expressed with either a C-terminal human Fc tag (hPD-L1-hFc; SEQ ID: 325) or a C-terminal mouse Fc tag (hPD-L1-mFc; SEQ ID: 326), or dimeric human PD-L2, comprised of the human PD-L2 extracellular region produced with a C-terminal human Fc tag (hPD-L2-hFc; R&D Systems, #1224-PL) were separately coated at a concentration of 2 ⁇ g mL in PBS on a 96-well microtiter plate overnight at 4°C.
  • Nonspecific binding sites were subsequently blocked using a 0.5% (w/v) solution of BSA in PBS.
  • a constant concentration of 1.5nM of a dimeric human PD-1 protein comprised of the human PD-1 extracellular domain expressed with a C-terminal mouse Fc tag (hPD-1-mFc; SEQ ID: 323) was added to serial dilutions of anti-PD-1 antibodies or isotype control antibodies so that the final concentrations of antibodies ranged from 0 to 200nM.
  • a constant concentration of 200 pM of dimeric biotinylated human PD-1 protein comprised of the human PD-1 extracellular domain that was expressed with a C-terminal human Fc tag (biot-hPD-1 -hFc; SEQ ID: 323), was similarly added to serial dilutions of anti-PD-1 antibodies or an isotype control at final antibody concentrations ranging from 0 to 50nM.
  • a constant concentration of 100 pM of dimeric hPD-1-mFc protein was similarly added to serial dilutions of anti-PD-1 antibodies or an isotype control at final antibody concentrations ranging from 0 to 100nM.
  • Antibody-protein complexes with 1 .5 nM constant hPD-1 -mFc were transferred to microtiter plates coated with hPD-L1 -hFc
  • antibody-protein complexes with 200 pM constant biot-hPD-1 -hFc were transferred to hPD-L1-mFc coated plates
  • antibody-protein complexes with 100 pM constant hPD-1 - mFc were transferred to microtiter plates coated with hPD-L2-hFc.
  • HRP horseradish peroxidase
  • IC 50 value defined as the concentration of antibody required to reduce 50% of human PD-1 binding to human PD-L1 or PD-L2
  • Percent maximum blockade was calculated as a measure of the ability of the antibodies to completely block binding of human PD-1 to human PD-L1 or PD-L2 on the plate as determined from the dose curve.
  • This percent maximum blockade was calculated by subtracting from 100% the ratio of the reduction in signal observed in the presence of the highest tested concentration for each antibody relative to the difference between the signal observed for a sample of human PD-1 containing no anti-PD-1 antibody (0% blocking) and the background signal from HRP-conjugated secondary antibody alone (100% blocking).
  • Percent maximum blockade and the calculated IC 50 values for antibodies blocking greater than 35% of the hPD-1 binding signal are shown in Tables 12 - 14. Antibodies that showed a decrease in the hPD-1 binding signal of 35% or less were defined as non-blockers. Antibodies that showed an increase of 35% or more in the binding signal of human PD-1 were characterized as non-blocker/enhancers.
  • the theoretical assay bottom defined as the minimum antibody concentration theoretically needed to occupy 50% binding sites of human PD-1 in the assay, is 0.75nM for the format using 1 .5nM constant hPD-1-mFc, 100 pM for the format using 200pM constant biot-hPD-1 -hFc, and 50pM for the format using 100pM constant hPD-1 -mFc, indicating that lower calculated IC 50 values may not represent quantitative protein-antibody site binding.
  • antibodies with calculated IC 5 o values less than 0.75nM in the assay with hPD-1 -mFc constant and hPD-L1 coat, less than 100pM in the assay with biot-hPD-1 -hFc constant and hPD-L1 coat, and less than 50pM in the assay with hPD-1 -mFc constant and hPD- L2 coat are reported in Tables 12 - 14 as ⁇ 7.5E-10M, ⁇ 1 .0E-10M and ⁇ 5.0E-1 1 M, respectively.
  • Table 12 ELISA blocking of human PD-1 binding to human PD-L1 by anti-PD-1 antibodies 200nM Antibody blocking
  • Table 13 ELISA blocking of biotinylated human PD-1 binding to human PD-L1 by anti-PD-1 antibodies
  • Table 14 ELISA blocking of human PD-1 binding to human PD-L2 by anti-PD-1 antibodies
  • H2aM7796N was identified as a non-blocker.
  • Three anti-PD-1 antibodies H4H9068P2,
  • H1 M7789N, and H2aM7791 N) were identified as non-blockers/ enhancers.
  • H1 M7789N was identified as a non-blocker.
  • Three anti-PD-1 antibodies H4H9057P2,
  • H4H9068P2, and H2aM7791 N were identified as non-blockers/ enhancers.
  • Example 5 Blocking of PD-1 binding to PD-L1 as determined by biosensor assay and by surface plasmon resonance
  • Table 15 Inhibition of human PD-L1 binding to PD-1 by anti-PD-1 monoclonal antibodies expressed with mouse Fc as measured on an Octet Red 96 instrument Binding of the mixture of
  • Table 16 Inhibition of human PD-L1 binding to PD-1 by anti-PD-1 monoclonal antibodies expressed with human Fc as measured on a Biacore 3000 instrument
  • Example 6 Octet cross-competition between anti-PD-1 antibodies [0215] Binding competition between anti-PD-1 monoclonal antibodies was determined using a real time, label-free bio-layer interferometry assay on an Octet RED384 biosensor (Pall ForteBio Corp.). The entire experiment was performed at 25°C in 0.01 M HEPES pH7.4, 0.15M NaCI, 3 mM EDTA, 0.05% v/v Surfactant Tween-20, 0.1 mg/ml_ BSA (Octet HBS-ET buffer) with the plate shaking at the speed of lOOOrpm.
  • Octet RED384 biosensor Pall ForteBio Corp.
  • hPD-1-MMH C-terminal myc-myc-hexahistidine tag
  • the antigen captured biosensor tips were then saturated with the first anti-PD-1 monoclonal antibody (subsequently referred to as mAb-1 ) by dipping into wells containing 50 ⁇ g mL solution of mAb-1 for 5 minutes.
  • the biosensor tips were then subsequently dipped into wells containing a 50 ⁇ g mL solution of a second anti-PD-1 monoclonal antibody (subsequently referred to as mAb-2).
  • the biosensor tips were washed in Octet HBS-ET buffer in between every step of the experiment. The real-time binding response was monitored during the course of the experiment and the binding response at the end of every step was recorded.
  • H4xH8992P H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7788N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2,
  • H4xH8992P H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7788N, H2aM7794N, H4xH9145P2, H4H9057P2, H4xH9120P2,
  • H4xH8992P H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7788N, H2aM7794N, H2aM7798N, H4H9057P2, H4xH9120P2,
  • H4xH8992P H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7788N, H2aM7794N, H2aM7798N, H4xH9145P2, H4xH9120P2,
  • H2aM7790N H4xH9035P, H4xH9037P, H4xH9045P, H2aM7795N, H2aM7791 N, H4xH9048P2
  • H4xH8992P H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7788N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2,
  • H4xH8992P H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7788N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2,
  • H4xH9128P2 H4xH9120P2, H4H9019P, H4xH91 19P2, H4xH9135P2, H4xH9034P,
  • H4xH8992P H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2,
  • H4xH8992P H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2,
  • H4xH8992P H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2,
  • H4xH8992P H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2,
  • H4xH8992P H1 M7799N, H2aM7780N, H1 M7800N, H2aM7788N,
  • H4xH8992P H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2,
  • H4xH8992P H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2,
  • H4H9068P2 H4xH9128P2, H4xH9008P, H1 M7789N, H4xH9048P2
  • a second binding competition between a panel of selected anti-PD-1 monoclonal antibodies was determined using a real time, label-free bio-layer interferometry assay on an Octet HTX biosensor (Pall ForteBio Corp.). The entire experiment was performed at 25°C in 0.01 M HEPES pH7.4, 0.15M NaCI, 3 mM EDTA, 0.05% v/v Surfactant Tween-20, 0.1 mg/ml_ BSA (Octet HBS-ET buffer) with the plate shaking at the speed of l OOOrpm.
  • hPD-1-MMH was first captured onto anti-Penta-His antibody coated Octet biosensor tips (Fortebio Inc, # 18-5079) by submerging the tips for 150 seconds into wells containing a 10 ⁇ g/mL solution of hPD-1-MMH.
  • the antigen-captured biosensor tips were then saturated with a first anti-PD-1 monoclonal antibody (subsequently referred to as mAb-1 ) by dipping into wells containing 100 ⁇ g mL solution of mAb-1 for 5 minutes.
  • biosensor tips were then subsequently dipped into wells containing a 100 ⁇ g mL solution of second anti-PD-1 monoclonal antibody (subsequently referred to as mAb-2) for 4 minutes. All the biosensors were washed in Octet HBS-ET buffer in between every step of the experiment. The real-time binding response was monitored during the course of the experiment and the binding response at the end of every step was recorded as shown in Figure 2. The response of mAb-2 binding to hPD-1 -MMH pre-complexed with mAb-1 was compared and competitive/non- competitive behavior of different anti-PD-1 monoclonal antibodies was determined. Results are summarized in Table 18 ( * Self-competing mAb2s are not listed).
  • H4H7795N2 cross- competed with H4H7798N; H4H7798N cross-competed with H4H7795N2 and H4H9008P; H4H9008P cross-competed with H4H7798N and H4H9068P2; H4H9068P2 cross-competed with H4H9008P and H4H9048P2.
  • Example 7 Antibody binding to cells overexpressing PD-1
  • adherent cells were detached using trypsin or enzyme-free dissociation buffer and blocked with complete medium. Cells were centrifuged and resuspended at a concentration of 2.5-6 ⁇ 10 ⁇ 6 cells/mL in cold PBS containing 2% FBS. HEK293 parental and HEK293/hPD-1 cells were then incubated for 15-30min on ice with 100nM of each anti-PD-1 antibody.
  • Unbound antibodies were removed by washing with D-PBS containing 2% FBS, and cells were subsequently incubated with an allophycocyanin-conjugated secondary F(ab')2 recognizing either human Fc (Jackson ImmunoResearch, # 109-136-170) or mouse Fc (Jackson ImmunoResearch, #1 15-136-146) for 15-30 minutes on ice.
  • Cells were washed with D-PBS containing 2% FBS to remove unbound secondary F(ab')2 and fluorescence measurements were acquired using either a HyperCyte (IntelliCyt, Inc.) flow cytometer or an Accuri flow cytometer (BD Biosciences). Data was analyzed using FlowJo software (Tree Star).
  • Table 19 FACS binding of anti-PD-1 antibodies to HEK293/hPD-1 cells and parental HEK293 cells
  • adherent cells were detached using trypsin and blocked with complete medium. Cells were centrifuged and resuspended at a concentration of 6x10 ⁇ 6 cells/mL in staining buffer (1 % FBS in PBS). To determine the EC 50 and E max of the anti-PD1 antibodies, 90uL of cell suspension was incubated for 30 minutes on ice with a serial dilution of anti-PD-1 antibodies and controls diluted to a final concentration ranging from 5 pM to 100 nM (no mAb sample was included as negative control) in staining buffer. Cells were then centrifuged and pellets were washed once with staining buffer to remove unbound antibodies.
  • Fluorescence measurements were acquired on Hypercyt® cytometer and analyzed in ForeCytTM (IntelliCyt; Albuquerque, NM) to determine the mean fluorescence intensities (MFI).
  • MFI mean fluorescence intensities
  • the EC 50 values were calculated from a four-parameter logistic equation over an 1 1 -point response curve using GraphPad Prism. E max for each antibody was defined as the binding at the highest antibody dose (100nM) tested.
  • Example 8 Blocking of PD-1 -induced T-cell down-regulation in a T-cell/APC luciferase reporter assay
  • T-cell activation is achieved by stimulating T-cell receptors (TcR) that recognize specific peptides presented by major histocompatibility complex class I or II proteins on antigen- presenting cells (APC).
  • TcRs in turn initiate a cascade of signaling events that can be monitored by reporter genes driven by transcription factors such as activator-protein 1 (AP-1 ), Nuclear Factor of Activated T-cells (NFAT) or Nuclear factor kappa-light-chain-enhancer of activated B cells (NFKb).
  • AP-1 activator-protein 1
  • NFAT Nuclear Factor of Activated T-cells
  • NFKb Nuclear factor kappa-light-chain-enhancer of activated B cells
  • T-cell response is modulated via engagement of co-receptors expressed either constitutively or inducibly on T-cells.
  • PD-1 a negative regulator of T-cell activity.
  • PD-1 interacts with its ligand, PD-L1 , which is expressed on target cells including APCs or cancer cells, and acts to deliver inhibitory signals by recruiting phosphatases to the TcR signalosome, resulting in the suppression of positive signaling.
  • the ability of anti-PD-1 antibodies to antagonize PD-1/PD-L1-mediated signaling through the PD-1 receptor in human T cell lines was assessed using an in vitro cell based assay shown in Figure 1.
  • the bioassay was developed to measure T cell signaling induced by interaction between APC and T cells by utilizing a mixed culture derived from two mammalian cell lines: Jurkat cells (an immortalized T cell line) and Raji cells (a B cell line).
  • Jurkat Clone E6-1 cells ATCC, #TIB-152
  • the lentivirus encodes the firefly luciferase gene under the control of a minimal CMV promoter, tandem repeats of the TPA-inducible transcriptional response element (TRE) and a puromycin resistance gene.
  • the engineered Jurkat cell line was subsequently transduced with a PD-1 chimera comprising the extracellular domain of human PD-1 (amino acids from 1 to 170 of human PD1 ; accession number NP_005009.2) and the trans-membrane and cytoplasmic domains of human CD300a (amino acids from 181 to 299 of human CD300a; accession number NP_009192.2).
  • the resulting stable cell line (Jurkat/AP1 - Luc/ hPD1 -hCD300a) was selected and maintained in RPMI/10% FBS/
  • penicillin/streptomycin/glutamine supplemented with 500ug/mL G418+1 ug/mL puromycin.
  • Raji cells (ATCC, #CCL-86) were transduced with human PD-L1 gene (amino acids 1 -290 of accession number NP_054862.1 ) that had been cloned into a lentiviral (pLEX) vector system (Thermo Scientific Biosystems, #OHS4735).
  • Raji cells, positive for PD-L1 (Raji/ hPD-L1 ) were isolated by FACS using a PD-L1 antibody and maintained in lscove/10% FBS/penicillin/streptomycin/glutamine supplemented with 1 ug/ml_ puromycin.
  • a bispecific antibody composed of one Fab arm that binds to CD3 on T cells and the other one Fab arm binding that binds to CD20 on Raji cells (CD3xCD20 bispecific antibody; e.g., as disclosed in US20140088295) was utilized.
  • the presence of the bispecific molecule in the assay results in the activation of the T cell and APC by bridging the CD3 subunits on T-cells to CD20 endogenously expressed on Raji cells. Ligation of CD3 with anti-CD3 antibodies has been demonstrated to lead to activation of T cells.
  • antibodies blocking the PD1 /PD-L1 interaction rescue T-cell activity by disabling the inhibitory signaling and subsequently leading to increased AP1 -Luc activation.
  • RPMI 1640 supplemented with 10% FBS and penicillin/streptomycin/glutamine was used as assay medium to prepare cell suspensions and antibody dilutions to carry out the screening of anti-PD1 monoclonal antibodies (mAbs).
  • mAbs monoclonal antibodies
  • EC50 values of anti-PD1 mAbs in the presence of a fixed concentration of CD3xCD20 bispecific antibody (30 pM), as well as the EC50 of the bispecific antibody alone, were determined.
  • cells and reagents were added to 96 well white, flat- bottom plates.
  • the anti-PD1 mAb EC50 determinations first a fixed concentration of CD3xCD20 bispecific antibody (final 30 pM) was prepared and added to the microtiter plate wells. Then 12-point serial dilutions of anti-PD1 mAbs and controls were added (final concentrations ranging from 1.7 pM to 100 nM; plus wells with assay medium alone). For the bispecific antibody (alone) EC 50 determination, the bispecific antibody, at final concentrations ranging from 0.17 pM to 10 nM (plus wells with assay medium alone), was added to the microtiter plate wells.
  • a 2.5x10 A 6/mL Raji/hPD-L1 cell suspension was prepared and 20 uL per well was added (final cell number/well 5x10 ⁇ 4 cells). Plates were left at room temperature (15-20 minutes), while a suspension of 2.5x10 A 6/mL of Jurkat AP1 - Luc/hPD1 (ecto)-hCD300a(TM-Cyto) was prepared. 20 uL of the Jurkat suspension (final cell number/well 5x10 ⁇ 4 cells) was added per well. Plates containing the co-culture were incubated for 5 to 6 hours at 37°C/5% C0 2 . Samples were tested in duplicates and luciferase activity was then detected after the addition of ONE-GloTM (Promega, # E6051 ) reagent and relative light units (RLUs) were measured on a Victor luminometer.
  • ONE-GloTM Promega, # E6051
  • RLUs relative light units
  • RLU values for each screened antibody were normalized by setting the assay condition with fixed (30 pM) concentration of the CD3/CD20 bispecific antibody, but without anti-PD-1 antibody to 100%. This condition corresponds to the maximal AP1-Luc response elicited by the bispecific molecule in the presence of the PD-1/PD-L1 inhibitory signal. Upon addition of the anti-PD-1 antibody, the inhibitory signal is suppressed, and the increased stimulation is shown here as E max , the percentage increase in the signal in the presence of the highest antibody dose tested (100 nM).
  • Example 9 In vivo efficacy of anti-PD-1 antibodies
  • mice that were homozygous for the expression of the extracellular domain of human PD-1 in place of extracellular domain of mouse PD-1 (PD-1 Humln mice) on a 75% C57/BI6 / 25% 129 strain background.
  • mice were divided evenly according to body weight into 5 treatment or control groups for Study 1 (5 mice per group), 8 treatment or control groups for Study 2 (5 mice per group), and 5 treatment or control groups for Study 3 (7 mice per group).
  • mice were anesthetized by isoflurane inhalation and then injected subcutaneously into the right flank with 5x10 5 MC38.
  • treatment groups were intraperitoneal ⁇ injected with 200ug of either one of three anti-PD-1 antibodies of the invention, or an isotype control antibody with irrelevant specificity on days 3, 7, 10, 14, and 17 of the experiment, while one group of mice was left untreated.
  • treatment groups were intraperitoneally injected with either one of three anti-PD-1 antibodies of the invention at 10mg/kg or 5mg/kg per/dose, one antibody of the invention (H4H7795N2) at 10mg/kg per dose, or an isotype control antibody with irrelevant specificity at 10mg/kg on days 3, 7, 10, 14, and 17 of the experiment.
  • treatment groups were intraperitoneally injected with either one of two anti-PD-1 antibodies of the invention at 5mg/kg or 2.5mg/kg per/dose, or an isotype control antibody with irrelevant specificity at 5mg/kg on days 3, 7, 10, 14, and 17 of the experiment.
  • Experimental dosing and treatment protocol for groups of mice are shown in Table 24.
  • mice treated with one antibody of the invention did not develop any detectable tumors during the course of the study.
  • Mice treated with H4H9008P exhibited a sustained reduced tumor volume as compared to controls at days 17 and 24 of the study with 3 out of 5 mice or 4 out of 5 mice being tumor free by the end of the experiment, respectively.
  • treatment with one of the anti-PD1 antibodies did not develop any detectable tumors during the course of the study.
  • H4H7795N2 did not demonstrate significant efficacy in reducing tumor volume in this study as compared to controls.
  • day 23 of the study 1 out of 5 mice died in the H4H7795N2 group, and 2 out of 5 mice died in the isotype control treatment group.
  • non-treatment group and isotype control group some mice exhibited spontaneous regression of tumors (1 out of 5 mice and 2 out of 5 mice, respectively).
  • Table 26 Mean tumor volume, percent survival and numbers of tumor free mice in each treatment group from in vivo tumor Study 2
  • mice treated with one antibody of the invention H4H7798N at 10mg/kg did not develop detectable tumors during the course of the study.
  • mice treated with 10 mg/kg of either H4H9008P or H4H9048P2 exhibited substantially reduced tumor volume as compared to controls at days 17 and 24 of the study.
  • Four out of 5 mice in each group treated with 10mg/kg of either H4H9008P or H4H9048P2 were tumor free at Day 31 , whereas in the isotype control treatment group only 1 out of 5 animals was tumor free as a result of spontaneous tumor regression.
  • One antibody tested at 10mg/kg, H4H7795N2 demonstrated substantially reduced tumor volume as compared to controls at days 17 and 24 of the study, but this antibody was the least efficacious anti-PD1 antibody with only 2 out of 5 mice surviving at the end of the experiment.
  • H4H7798N or H4H9008P therapy at 5 mg/kg was less efficacious, with 4 out of 5 tumor-free mice at the end of experiment on day 21 , whereas 5 out of 5 mice remained tumor-free in both 10 mg/kg dose groups of H4H7798N, and H4H9008P.
  • Table 27 Mean tumor volume, percent survival and numbers of tumor free mice in each treatment group from in vivo tumor Study 3
  • mice treated with one antibody of the invention, H4H7798N, or another antibody of the invention, H4H9008P, at 5mg/kg were tumor free at the end of the experiment, whereas there were no tumor free animals in the isotype control group.
  • One tumor-bearing mouse in the lgG4 control group died on post-implantation day 17.
  • Only 4 out of 7 mice treated with H4H9008P at 2.5mg/kg dose remained tumor free at the end of the experiment.
  • the difference in tumor volumes at day 21 between anti-PD-1 antibodies tested and an isotype control group was statistically significant as determined by oneway ANOVA with Dunnett's multiple comparison post-test with p ⁇ 0.01. All four anti-PD-1 antibodies were equally more efficacious at the 5 mg/kg dose than at the 2.5 mg/kg dose.
  • Example 10 Anti-tumor effects of a combination of an anti-PD-1 antibody and a VEGF antagonist in a mouse early-treatment tumor model
  • An early-treatment tumor model was developed to test the efficacy of a combination of an anti-PD-1 antibody and a VEGF antagonist.
  • the combination therapy is administered shortly after tumor implantation.
  • the experiment also used an anti-PD-L1 antibody alone and in combination with the VEGF antagonist.
  • the anti-PD-1 antibody used in this experiment was anti-mouse PD-1 clone "RPMI-14" with rat lgG2b (Bio X Cell, West Riverside, NH).
  • the VEGF antagonist used in this experiment was aflibercept (a VEGF receptor-based chimeric molecule, also known as "VEGF-trap" or "VEGFR1 R2-FcAC1 (a),” a full description of which is provided elsewhere herein).
  • the anti-PD-L1 antibody used in this experiment was an anti-PD-L1 monoclonal antibody with V H V L sequences of antibody "YW243.55S70" according to US20100203056A1 (Genentech, Inc.), with mouse lgG2a and which was cross-reactive with mouse PD-L1.
  • mice were treated with one of the mono- or combination therapies, or control combination, as set forth in Table 28.
  • Tumor growth was substantially reduced in animals treated with the combination of VEGF Trap + anti-PD-1 antibody as compared with treatment regimens involving either therapeutic agent alone (see Figures 2 and 3). Furthermore, survival was substantially increased in the VEGF Trap + anti-PD-1 antibody group, with 70% of animals surviving to at least day 50 after tumor implantation. By contrast, for the anti-PD-1 and VEGF Trap monotherapy groups, survival to Day 50 was only 40% and 30% respectively (see Figure 3 and Table 29).
  • Example 11 Clinical trial study of repeat dosing with anti-PD-1 antibody as single therapy and in combination with other anti-cancer therapies in patients with advanced malignancies
  • mAb anti-PD-1 antibody
  • HCV HCV of SEQ I D NO: 162
  • LCV LCV of SEQ ID NO: 170.
  • the primary objective of the study is to characterize the safety, tolerability, DLTs of mAb administered IV as monotherapy, or in combination with targeted radiation (with the intent to have this serve as an immuno-stimulatory, rather than primarily tumor-ablative therapy), low- dose cyclophosphamide (a therapy shown to inhibit regulatory T-cell responses), or both in patients with advanced malignancies.
  • the secondary objectives of the study are: (1 ) to determine a recommended phase 2 dose (RP2D) of mAb as monotherapy and in combination with other anti-cancer therapies (targeted radiation, low-dose cyclophosphamide, or both); (2) to describe preliminary antitumor activity of mAb, alone and with each combination partner (s); (3) to characterize the PK of mAb as monotherapy and in combination with other anti-cancer therapies (targeted radiation, low- dose cyclophosphamide, or both); and (4) to assess immunogenicity of mAb.
  • R2D recommended phase 2 dose
  • Safety will be assessed in separate, standard 3 + 3 dose escalation cohorts (in monotherapy, combination with radiation therapy, combination with cyclophosphamide, and combination with radiation therapy plus cyclophosphamide).
  • the choice of combination therapy with radiation, cyclophosphamide, or both will be based on investigator assessment of the best choice of therapy for an individual patient in consultation with the sponsor.
  • a patient To be enrolled in a radiotherapy cohort, a patient must have a lesion that can be safely irradiated and for which radiation at the limited, palliative doses contemplated would be considered medically appropriate, and at least one other lesion suitable for response evaluation.
  • a patient will be allowed to enroll only if a slot is available in the cohort for the chosen treatment.
  • Patients will undergo screening procedures to determine eligibility within 28 days prior to the initial administration of mAb. Following enrollment of patients into a mAb monotherapy cohort, enrollment of subsequent cohorts will be determined by occurrence of DLTs in prior cohorts (i.e., no DLT in a cohort of 3 patients, or no more than 1 DLT in an expanded cohort of 6 patients), and the availability of patient slots.
  • the planned monotherapy dose levels are 1 , 3, or 10 mg/kg administered IV every 14 days (2 weeks).
  • Patients can be enrolled into a combination mAb + cyclophosphamide/radiotherapy cohort once the DLT observation periods for both the cohort for that mAb dose level + cyclophosphamide and the cohort for that mAb dose level + the same radiotherapy regimen are completed with no DLT in a cohort of 3 patients, or no more than 1 DLT in an expanded cohort of 6 patients.
  • a 10 mg/kg mAb monotherapy cohort may also enroll.
  • mAb 3 mg/kg and 10 mg/kg monotherapy cohorts will enroll only after the requisite number of patients in the prior monotherapy dose cohort (ie, 1 mg/kg and 3 mg/kg, respectively) have cleared the 28 day DLT observation period without a maximum tolerated dose (MTD) being demonstrated for that dose level.
  • a mAb 1 mg/kg combination treatment cohort will enroll only after completion of the DLT observation period for the 1 mg/kg monotherapy cohort.
  • Combination cohorts receiving 3 mg/kg mAb will enroll only when the requisite number of patients in the respective 1 mg/kg mAb combination cohorts has cleared the DLT observation period without demonstrating a MTD.
  • Triple combination cohorts combining mAb with cyclophosphamide and a radiation regimen will enroll only when the requisite number of patients in both corresponding double combination cohorts at that dosage level have cleared the DLT observation period without a MTD being demonstrated.
  • Table 30 summarizes the dose-escalation cohorts in which patients will be enrolled.
  • a DLT is defined as any of the following: a non-hematologic toxicity (e.g., uveitis, or any other irAE), or a hematologic toxicity (e.g., neutropenia, thrombocytopenia, febrile neutropenia).
  • a non-hematologic toxicity e.g., uveitis, or any other irAE
  • a hematologic toxicity e.g., neutropenia, thrombocytopenia, febrile neutropenia
  • the maximum tolerated dose is defined as the highest dose at which fewer than a third of an expanded cohort of 6 patients experience a DLT during the first cycle of treatment.
  • the MTD is defined as the dose level immediately below the level at which dosing is stopped due to the occurrence of 2 or more DLTs in an expanded cohort of 6 patients. If dose escalation is not stopped due to the occurrence of DLTs, it will be considered that the MTD has not been determined. It is possible that an MTD may not be defined in this study, either for a monotherapy group or for individual combination groups. Additionally, it is possible that mAb MTDs may differ between monotherapy and each combination treatment regimen.
  • Patients will receive up to 48 weeks of treatment, after which there will be a 24 week follow-up period. A patient will receive treatment until the 48 week treatment period is complete, or until disease progression, unacceptable toxicity, withdrawal of consent, or meeting of another study withdrawal criterion. After a minimum of 24 weeks of treatment, patients with confirmed complete responses (CR) may elect to discontinue treatment and continue with all relevant study assessments (eg, efficacy assessments). After a minimum of 24 weeks of treatment, patients with tumor burden assessments of stable disease (SD) or partial response (PR) that have been unchanged for 3 successive tumor evaluations may also elect to discontinue treatment and continue with all relevant study assessments (e.g., efficacy assessments).
  • SD stable disease
  • PR partial response
  • the target population for this study comprises patients with advanced malignancies who are not candidates for standard therapy, unwilling to undergo standard therapy, or for whom no available therapy is expected to convey clinical benefit; and patients with malignancies that are incurable and have failed to respond to or showed tumor progression despite standard therapy.
  • Inclusion criteria A patient must meet with the following criteria to be eligible for inclusion in the study: (1 ) demonstrated progression of a solid tumor with no alternative standard-of-care therapeutic option available; (2) at least 1 lesion for response assessment. Patients assigned to radiotherapy require at least one additional lesion that can be safely irradiated while sparing the index lesions and for which radiation at the limited, palliative doses contemplated would be considered medically appropriate; (3) Eastern Cooperative Oncology Group (ECOG) performance status ⁇ 1 ; (4) more than 18 years old; (5) hepatic function: a. total bilirubin ⁇ 1 .5x upper limit of normal (ULN; if liver metastases ⁇ 3x ULN), b.
  • ECG Eastern Cooperative Oncology Group
  • transaminases ⁇ 3x ULN (or ⁇ 5.0x ULN, if liver metastases), c. alkaline phosphatase (ALP) ⁇ 2.5x ULN (or 5.0x ULN, if liver metastases); (6) renal function: serum creatinine ⁇ 1.5x ULN; (7) neutrophil count (ANC) > 1.5 x 10 9 /L, c. platelet count > 75 x 10 9 /L; (8) ability to provide signed informed consent; and (9) ability and willingness to comply with scheduled visits, treatment plans, laboratory tests, and other study-related procedures.
  • ALP alkaline phosphatase
  • ALP alkaline phosphatase
  • renal function serum creatinine ⁇ 1.5x ULN
  • c. platelet count > 75 x 10 9 /L
  • ability to provide signed informed consent and (9) ability and willingness to comply with scheduled visits, treatment plans, laboratory tests, and other study-related procedures.
  • Exclusion criteria A patient who meets any of the following criteria will be excluded from the study: (1 ) Ongoing or recent (within 5 years) evidence of significant autoimmune disease that required treatment with systemic immunosuppressive treatments, which may suggest risk for irAEs; (2) Prior treatment with an agent that blocks the PD-1 /PD-L1 pathway; (3) Prior treatment with other immune modulating agents within fewer than 4 weeks or 4 half-lives, whichever is greater, prior to the first dose of mAb; (4) Examples of immune modulating agents include blockers of CTLA-4, 4-1 BB (CD137), OX-40, therapeutic vaccines, or cytokine treatments; (5) Untreated brain metastasis (es) that may be considered active.
  • Patients with previously treated brain metastases may participate provided they are stable (ie, without evidence of progression by imaging for at least 4 weeks prior to the first dose of study treatment, and any neurologic symptoms have returned to baseline), and there is no evidence of new or enlarging brain metastases; (6) Immunosuppressive corticosteroid doses (>10 mg prednisone daily or equivalent) within 4 weeks prior to the first dose of mAb; (7) Deep vein thrombosis, pulmonary embolism (including asymptomatic pulmonary embolism identified on imaging), or other thromboembolic event within the 6 months preceding the first dose of mAb; (8) Active infection requiring therapy, including known infection with human immunodeficiency virus, or active infection with hepatitis B or hepatitis C virus; (9) History of pneumonitis within the last 5 years; (10) Any investigational or antitumor treatment within 30 days prior to the initial administration of mAb; (1 1 ) History of documented allergic reactions or acute hypersensitivity reaction attributed to treatment
  • mAb will be supplied as a liquid in sterile, single-use vials. Each vial will contain a volume sufficient to withdraw 10 mL of mAb at a concentration of 25 mg/mL. Instructions on dose preparation are provided in the study reference manuals. mAb will be administered in an outpatient setting as a 30 minute IV infusion. Each patient's dose will depend on individual body weight. The dose of mAb must be adjusted each cycle for changes in body weight of ⁇ 10%. mAb will be administered alone and in combination with radiation and or cyclophosphamide. Monotherapy
  • mAb will be administered in an outpatient setting by IV infusion over 30 minutes every 14 days for 48 weeks (ie, Days 1 , 15 ⁇ 3, 29 ⁇ 3, and 43 ⁇ 3 of a 56 day cycle).
  • Planned monotherapy regimens to be assigned may include: (i) 1 mg/kg IV infusion over 30 minutes every 14 days for 48 weeks; (ii) 3 mg/kg infusion over 30 minutes every 14 days for 48 weeks; (iii) 10 mg/kg infusion over 30 minutes every 14 days for 48 weeks; and (iv) 0.3 mg/kg infusion over 30 minutes every 14 days for 48 weeks (if MTD is determined to be below 1 mg/kg).
  • Concomitant radiation therapy and cyclophosphamide will be supplied through a prescription and their usage, dose, dose modifications, reductions, or delays, as well as any potential AEs resulting from their use, will be tracked along with that of mAb.
  • mAb will be administered by IV infusion over 30 minutes every 14 days for 48 weeks in combination with radiation treatment from day 8 to day 12.
  • Planned combination mAb and radiation therapy regimens may include:
  • Patients will receive either 30 Gy given as 5 fractions of 6 Gy administered daily starting 1 week after the first dose of mAb, or 27 Gy given as 3 fractions of 9 Gy administered every other day starting 1 week after the first dose of mAb.
  • the lesion selected for radiation should be a lesion that can be safely irradiated with focal irradiation while sparing the index lesion(s), and for which radiation at the limited, palliative doses contemplated would be considered medically appropriate.
  • the target dose for a patient will be based on cohort assignment and should conform to the normal tissue requirements, in accord with standard radiation oncology practice. Treatment at the protocol-specified dosing regimen is permitted only if the normal tissue criteria are met. If the normal tissue criteria cannot be met at either of the radiation therapy regiments specified in the protocol, the patient is not eligible for enrollment in a combination radiation treatment cohort in this study.
  • mAb will be administered by IV infusion over 30 minutes every 14 days (2 weeks) for 48 weeks in combination with
  • Each of the 4 cyclophosphamide doses will be administered 1 day before each of the first 4 mAb doses (days -1 , 14, 28, and 42 of the first 56 day cycle).
  • the planned combination mAb, radiation, and cyclophosphamide regimen includes:
  • Primary safety variables include incidence of DLTs, incidence and severity of treatment-emergent adverse events (TEAEs), and abnormal laboratory findings through 48 weeks of treatment.
  • TEAEs treatment-emergent adverse events
  • Secondary Variables Key secondary variables include the following:
  • irRC o Immune-Related Response Criteria
  • Efficacy Procedures A CT or MRI for tumor assessment will be performed at the screening visit (within 28 days prior to infusion) and during every cycle (approximately every 8 weeks) on day 56 ⁇ 3, and when disease progression is suspected. Additionally, for patients who have not progressed on study, tumor assessment will be performed for follow-up visits 3, 5, and 7. Once the choice has been made to use CT scan or MRI, subsequent assessments will be made using the same modality.
  • Tumor response evaluation will be performed according to immune-related response criteria (irRC; Nishino 2013).
  • Assessments according to Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 (Eisenhauer 2009) will also be performed as a supportive exploration; however, the primary determination of disease progression for an individual patient will be made according to irRC.
  • Measurable lesions selected as target lesions for RECIST assessments will also be included as index lesions for irRC assessments.
  • Complete physical examination will include examination of skin, head, eyes, nose, throat, neck, joints, lungs, heart, pulse, abdomen (including liver and spleen), lymph nodes, and extremities, as well as a brief neurologic examination.
  • Limited physical examination will include lungs, heart, abdomen, and skin.
  • a standard 12-lead ECG will be performed. Any ECG finding that is judged by the investigator as a clinically significant change (worsening) compared to the baseline value will be considered an AE, recorded, and monitored.
  • Immune safety assays consist of rheumatoid factor (RF), thyroid stimulating hormone (TSH), C-reactive protein (CRP), and antinuclear antibody (ANA) titer and pattern. If, during the course of the study, a 4-fold or greater increase from baseline in RF or ANA or abnormal levels of TSH or CRP are observed, the following tests may also be performed: anti-DNA antibody, anti-Sjogren's syndrome A antigen (SSA) antibody (Ro), anti-Sjogren's syndrome B antigen (SSB) antibody (La), antithyroglobulin antibody, anti-LKM antibody, antiphospholipid antibody, anti-islet cell antibody, antineutrophil cytoplasm antibody, C3, C4, CH50.
  • SSA anti-Sjogren's syndrome A antigen
  • SSB anti-Sjogren's syndrome B antigen
  • La antithyroglobulin antibody
  • anti-LKM antibody antiphospholipid antibody
  • anti-islet cell antibody antineutrophil cytoplasm antibody
  • An adverse event is any untoward medical occurrence in a patient administered a study drug which may or may not have a causal relationship with the study drug. Therefore, an AE is any unfavorable and unintended sign (including abnormal laboratory finding), symptom, or disease which is temporally associated with the use of a study drug, whether or not considered related to the study drug.
  • An AE also includes any worsening (ie, any clinically significant change in frequency and/or intensity) of a pre-existing condition that is temporally associated with the use of the study drug. Progression of underlying malignancy will not be considered an AE if it is clearly consistent with the typical progression pattern of the underlying cancer (including time course, affected organs, etc.). Clinical symptoms of progression may be reported as AEs if the symptom cannot be determined as exclusively due to the progression of the underlying malignancy, or does not fit the expected pattern of progression for the disease under study.
  • SAE serious adverse event
  • the study dose escalation is based on a traditional 3 + 3 design with 3 to 6 patients assigned per dose level. The exact number of patients enrolled in the study will depend on the number of protocol-defined DLTs observed, and the need to expand currently defined dose levels, or open additional cohorts at lower dose levels. After the required initial enrollment to the next cohort in the dose escalation has occurred, enrollment to each of the previous cohorts below the MTD for that treatment will be expanded (if not previously expanded during escalation) to a total of 6 patients.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Dermatology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Neurology (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Obesity (AREA)
  • Pulmonology (AREA)

Abstract

The present invention provides antibodies that bind to the T-cell co-inhibitor programmed death- 1 (PD-1 ) protein, and methods of use. In various embodiments of the invention, the antibodies are fully human antibodies that bind to PD-1. In certain embodiments, the present invention provides multi-specific antigen-binding molecules comprising a first binding specificity that binds to PD-1 and a second binding specificity that binds to an autoimmune tissue antigen, another T- cell co-inhibitor, an Fc receptor, or a T-cell receptor. In some embodiments, the antibodies of the invention are useful for inhibiting or neutralizing PD-1 activity, thus providing a means of treating a disease or disorder such as cancer or a chronic viral infection. In other embodiments, the antibodies are useful for enhancing or stimulating PD-1 activity, thus providing a means of treating, for example, an autoimmune disease or disorder.

Description

HUMAN ANTIBODIES TO PD-1
FIELD OF THE INVENTION
[001] The present invention is related to human antibodies and antigen-binding fragments of human antibodies that specifically bind to the immunomodulatory receptor programmed death-1 (PD-1 ), and therapeutic and diagnostic methods of using those antibodies.
STATEMENT OF RELATED ART
[002] Programmed death-1 (PD-1 ) (also called CD279) is a 288 amino acid protein receptor expressed on activated T-cells and B-cells, natural killer cells and monocytes. PD-1 is a member of the CD28/CTLA-4 (cytotoxic T lymphocyte antigen)/ ICOS (inducible co-stimulator) family of T-cell co-inhibitory receptors (Chen et al 2013, Nat. Rev. Immunol. 13: 227-242). The primary function of PD-1 is to attenuate the immune response (Riley 2009, Immunol. Rev. 229: 1 14-125). PD-1 has two ligands, PD-ligand1 (PD-LI ) and PD-L2. PD-L1 (CD274, B7H 1 ) is expressed widely on both lymphoid and non-lymphoid tissues such as CD4 and CD8 T-cells, macrophage lineage cells, peripheral tissues as well as on tumor cells, virally-infected cells and autoimmune tissue cells. PD-L2 (CD273, B7-DC) has a more restricted expression than PD-L1 , being expressed on activated dendritic cells and macrophages (Dong et al 1999, Nature Med.). PD-L1 is expressed in most human cancers, including melanoma, glioma, non-small cell lung cancer, squamous cell carcinoma of head and neck, leukemia, pancreatic cancer, renal cell carcinoma, and hepatocellular carcinoma, and may be inducible in nearly all cancer types (Zou and Chen 2008, Nat. Rev. Immunol. 8: 467-77). PD-1 binding to its ligands results in decreased T-cell proliferation and cytokine secretion, compromising humoral and cellular immune responses in diseases such as cancer, viral infection and autoimmune disease. Blockade of PD- 1 binding to reverse immunosuppression has been studied in autoimmune, viral and tumor immunotherapy (Ribas 2012, NEJM 366: 2517-2519; Watanabe et al 2012, Clin. Dev. Immunol. Volume 2012, Article ID: 269756; Wang et al 2013, J. Viral Hep. 20: 27-39).
[003] T-cell co-stimulatory and co-inhibitory molecules (collectively named co-signaling molecules) play a crucial role in regulating T-cell activation, subset differentiation, effector function and survival (Chen et al 2013, Nature Rev. Immunol. 13: 227-242). Following recognition of cognate peptide-MHC complexes on antigen-presenting cells by the T-cell receptor, co-signaling receptors co-localize with T-cell receptors at the immune synapse, where they synergize with TCR signaling to promote or inhibit T-cell activation and function (Flies et al 201 1 , Yale J. Biol. Med. 84: 409-421 ). The ultimate immune response is regulated by a balance between co-stimulatory and co-inhibitory signals ("immune checkpoints") (Pardoll 2012, Nature 12: 252-264). PD-1 functions as one such 'immune checkpoint' in mediating peripheral T-cell tolerance and in avoiding autoimmunity. PD-1 binds to PD-L1 or PD-L2 and inhibits T-cell activation. The ability of PD1 to inhibit T-cell activation is exploited by chronic viral infections and tumors to evade immune response. In chronic viral infections, PD-1 is highly expressed on virus-specific T-cells and these T-cells become "exhausted" with loss of effector functions and proliferative capacity (Freeman 2008, PNAS 105: 10275-10276). PD-L1 is expressed on a wide variety of tumors and studies on animal models have shown that PD-L1 on tumors inhibits T-cell activation and lysis of tumor cells and may lead to increased death of tumor-specific T-cells. The PD-1 : PD-L1 system also plays an important role in induced T-regulatory (Treg) cell
development and in sustaining Treg function (Francisco et al 2010, Immunol. Rev. 236: 219- 242).
[004] Since PD-1 plays an important role in autoimmunity, tumor immunity and infectious immunity, it is an ideal target for immunotherapy. Blocking PD-1 with antagonists, including monoclonal antibodies, has been studied in treatments of cancer and chronic viral infections (Sheridan 2012, Nature Biotechnology 30: 729-730).
[005] Monoclonal antibodies to PD-1 are known in the art and have been described, for example, in US Patent/Publication Nos. 8008449, 8168757, 201 10008369, 20130017199, 20130022595, and in WO2006121168, WO20091 154335, WO2012145493, WO2013014668, WO2009101611 , EP2262837, and EP2504028.
BRIEF SUMMARY OF THE INVENTION
[006] The present invention provides antibodies and antigen-binding fragments thereof that bind PD-1. The antibodies of the present invention are useful, inter alia, for targeting T cells expressing PD-1 , and for modulating PD-1 activity. In certain embodiments, the antibodies of the invention are useful for inhibiting or neutralizing PD-1 activity and/or for stimulating T cell activation, e.g., under circumstances where T cell-mediated killing is beneficial or desirable. In alternate embodiments, the antibodies enhance PD-1 binding and/or activity and may be used to inhibit T-cell activation. The anti-PD-1 antibodies of the invention, or antigen-binding portions thereof, may be included as part of a multi-specific antigen-binding molecule, for example, to modulate the immune response and/or to target the antibodies to a specific cell type, such as a tumor cell, an autoimmune tissue cell or a virally infected cell. The antibodies are useful in treating a disease or disorder such as cancer, viral infection and autoimmune disease.
[007] The antibodies of the invention can be full-length (for example, an lgG1 or lgG4 antibody) or may comprise only an antigen-binding portion (for example, a Fab, F(ab')2 or scFv fragment), and may be modified to affect functionality, e.g., to eliminate residual effector functions (Reddy et al., 2000, J. Immunol. 164:1925-1933). In certain embodiments, the antibodies may be bispecific.
[008] In a first aspect, the present invention provides isolated recombinant monoclonal antibodies or antigen-binding fragments thereof that bind specifically to PD-1. In certain embodiments, the antibodies are fully human. Exemplary anti-PD-1 antibodies of the present invention are listed in Tables 1 - 3 herein. Table 1 sets forth the amino acid sequence identifiers of the heavy chain variable regions (HCVRs), light chain variable regions (LCVRs), heavy chain complementarity determining regions (HCDR1 , HCDR2 and HCDR3), and light chain complementarity determining regions (LCDR1 , LCDR2 and LCDR3) of the exemplary anti- PD-1 antibodies. Table 2 sets forth the nucleic acid sequence identifiers of the HCVRs, LCVRs, HCDR1 , HCDR2 HCDR3, LCDR1 , LCDR2 and LCDR3 of the exemplary anti-PD-1 antibodies. Table 3 sets forth the amino acid sequence identifiers of heavy chain and light chain sequences of exemplary anti-PD-1 antibodies.
[009] The present invention provides antibodies, or antigen-binding fragments thereof, comprising an HCVR comprising an amino acid sequence selected from any of the HCVR amino acid sequences listed in Table 1 , or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
[010] The present invention also provides antibodies, or antigen-binding fragments thereof, comprising an LCVR comprising an amino acid sequence selected from any of the LCVR amino acid sequences listed in Table 1 , or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
[011] The present invention also provides antibodies, or antigen-binding fragments thereof, comprising an HCVR and an LCVR amino acid sequence pair (HCVR/LCVR) comprising any of the HCVR amino acid sequences listed in Table 1 paired with any of the LCVR amino acid sequences listed in Table 1. According to certain embodiments, the present invention provides antibodies, or antigen-binding fragments thereof, comprising an HCVR/LCVR amino acid sequence pair contained within any of the exemplary anti-PD-1 antibodies listed in Table 1. In certain embodiments, the HCVR/LCVR amino acid sequence pair is selected from the group consisting of SEQ I D NOs: 2/10, 18/26, 34/42, 50/58, 66/74, 82/90, 98/106, 1 14/122, 130/138, 146/154, 162/170, 178/186, 194/202, 210/202, 218/202, 226/202, 234/202, 242/202, 250/202, 258/202, 266/202, 274/202, 282/202, 290/202, 298/186, 306/186 and 314/186. In certain embodiments, the HCVR/LCVR amino acid sequence pair is selected from one of SEQ ID NOs: 130/138 (e.g. , H2M7795N), 162/170 (e.g., H2M7798N), 234/202 (e.g. , H4xH9048P), or 314/186 (e.g. , H4xH9008P).
[012] The present invention also provides antibodies, or antigen-binding fragments thereof, comprising a heavy chain CDR1 (HCDR1 ) comprising an amino acid sequence selected from any of the HCDR1 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.
[013] The present invention also provides antibodies, or antigen-binding fragments thereof, comprising a heavy chain CDR2 (HCDR2) comprising an amino acid sequence selected from any of the HCDR2 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.
[014] The present invention also provides antibodies, or antigen-binding fragments thereof, comprising a heavy chain CDR3 (HCDR3) comprising an amino acid sequence selected from any of the HCDR3 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.
[015] The present invention also provides antibodies, or antigen-binding fragments thereof, comprising a light chain CDR1 (LCDR1 ) comprising an amino acid sequence selected from any of the LCDR1 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.
[016] The present invention also provides antibodies, or antigen-binding fragments thereof, comprising a light chain CDR2 (LCDR2) comprising an amino acid sequence selected from any of the LCDR2 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.
[017] The present invention also provides antibodies, or antigen-binding fragments thereof, comprising a light chain CDR3 (LCDR3) comprising an amino acid sequence selected from any of the LCDR3 amino acid sequences listed in Table 1 or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity.
[018] The present invention also provides antibodies, or antigen-binding fragments thereof, comprising an HCDR3 and an LCDR3 amino acid sequence pair (HCDR3/LCDR3) comprising any of the HCDR3 amino acid sequences listed in Table 1 paired with any of the LCDR3 amino acid sequences listed in Table 1 . According to certain embodiments, the present invention provides antibodies, or antigen-binding fragments thereof, comprising an HCDR3/LCDR3 amino acid sequence pair contained within any of the exemplary anti-PD-1 antibodies listed in Table 1. In certain embodiments, the HCDR3/LCDR3 amino acid sequence pair is selected from the group consisting of SEQ ID NOs: 136/144 (e.g., H2M7795N), 168/176 (e.g., H2M7798N), 240/208 (e.g. , H4xH9048P), and 320/192 (e.g. , H4xH9008P).
[019] The present invention provides antibodies, or antigen-binding fragments thereof, comprising a heavy chain comprising an amino acid sequence selected from any of the HC amino acid sequences listed in Table 3, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
[020] The present invention also provides antibodies, or antigen-binding fragments thereof, comprising a light chain comprising an amino acid sequence selected from any of the LC amino acid sequences listed in Table 3, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
[021] The present invention also provides antibodies, or antigen-binding fragments thereof, comprising a HC and a LC amino acid sequence pair (HC/LC) comprising any of the HC amino acid sequences listed in Table 3 paired with any of the LC amino acid sequences listed in Table 3. According to certain embodiments, the present invention provides antibodies, or antigen- binding fragments thereof, comprising an HC/LC amino acid sequence pair contained within any of the exemplary anti-PD-1 antibodies listed in Table 3. In certain embodiments, the HC/LC amino acid sequence pair is selected from the group consisting of SEQ I D NOs: 330/331 , 332/333, 334/335, and 336/337.
[022] The present invention also provides antibodies, or antigen-binding fragments thereof, comprising a set of six CDRs (i.e., HCDR1-HCDR2-HCDR3-LCDR1-LCDR2-LCDR3) contained within any of the exemplary anti-PD-1 antibodies listed in Table 1. In certain embodiments, the HCDR1 -HCDR2-HCDR3-LCDR1 -LCDR2-LCDR3 amino acid sequence set is selected from the group consisting of SEQ ID NOs: 132-134-136-140-142-144 (e.g. , H2M7795N); 164-166-168- 172-174-176 (e.g., H2M7798N); 236-238-240-204-206-208 (e.g., H4xH9048P); and 316-318- 320-188-190-192 (e.g., H4xH9008P).
[023] In a related embodiment, the present invention provides antibodies, or antigen-binding fragments thereof, comprising a set of six CDRs (i.e. , HCDR1 -HCDR2-HCDR3-LCDR1 -LCDR2- LCDR3) contained within an HCVR/LCVR amino acid sequence pair as defined by any of the exemplary anti-PD-1 antibodies listed in Table 1. For example, the present invention includes antibodies, or antigen-binding fragments thereof, comprising the HCDR1 -HCDR2-HCDR3- LCDR1-LCDR2-LCDR3 amino acid sequences set contained within an HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ I D NOs: 130/138 (e.g., H2M7795N); 162/170 (e.g., H2M7798N); 234/202 (e.g., H4xH9048P); and 314/186 (e.g., H4xH9008P). Methods and techniques for identifying CDRs within HCVR and LCVR amino acid sequences are well known in the art and can be used to identify CDRs within the specified HCVR and/or LCVR amino acid sequences disclosed herein. Exemplary conventions that can be used to identify the boundaries of CDRs include, e.g. , the Kabat definition, the Chothia definition, and the AbM definition. In general terms, the Kabat definition is based on sequence variability, the Chothia definition is based on the location of the structural loop regions, and the AbM definition is a compromise between the Kabat and Chothia approaches. See, e.g. , Kabat, "Sequences of Proteins of Immunological Interest," National Institutes of Health, Bethesda, Md. (1991 ); Al- Lazikani et al., J. Mol. Biol. 273:927-948 (1997); and Martin et al. , Proc. Natl. Acad. Sci. USA 86:9268-9272 (1989). Public databases are also available for identifying CDR sequences within an antibody.
[024] The present invention includes anti-PD-1 antibodies having a modified glycosylation pattern. In some embodiments, modification to remove undesirable glycosylation sites may be useful, or an antibody lacking a fucose moiety present on the oligosaccharide chain, for example, to increase antibody dependent cellular cytotoxicity (ADCC) function (see Shield et al. (2002) JBC 277:26733). In other applications, modification of galactosylation can be made in order to modify complement dependent cytotoxicity (CDC).
[025] The present invention also provides for antibodies and antigen-binding fragments thereof that compete for specific binding to PD-1 with an antibody or antigen-binding fragment thereof comprising the CDRs of a HCVR and the CDRs of a LCVR, wherein the HCVR and LCVR each has an amino acid sequence selected from the HCVR and LCVR sequences listed in Table 1 .
[026] The present invention also provides isolated antibodies and antigen-binding fragments thereof that block PD-1 binding to PD-L1 or PD-L2. In some embodiments, the antibody or antigen-binding fragment thereof that blocks PD-1 binding to PD-L1 may bind to the same epitope on PD-1 as PD-L1 or may bind to a different epitope on PD-1 as PD-L1 .
[027] In alternate embodiments, the present invention provides antibodies and antigen-binding fragments thereof that stimulate PD-1 binding to PD-L1. In certain embodiments, the present invention provides isolated antibodies or antigen-binding fragments thereof that bind PD-1 , wherein the antibodies or antigen-binding fragments thereof enhance PD-1 binding to PD-L1 . In some embodiments, the isolated antibodies or antigen-binding fragments thereof comprise the CDRs of a HCVR, wherein the HCVR has an amino acid sequence selected from the group consisting of SEQ I D NOs: 2, 98, and 250; and the CDRs of a LCVR, wherein the LCVR has an amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 106, and 202. In some embodiments, the isolated antibodies or antigen-binding fragments thereof comprise an HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 2/10 {e.g., H 1 M7789N), 98/106 (e.g., H2M7791 N), and 250/202 (e.g., H4H9068P2).
[028] The present invention also provides antibodies and antigen-binding fragments thereof that bind specifically to PD-1 from human or other species. In certain embodiments, the antibodies may bind to human PD-1 and/or to cynomolgus PD-1 .
[029] The present invention also provides antibodies and antigen-binding fragments thereof that cross-compete for binding to PD-1 with a reference antibody or antigen-binding fragment thereof comprising the CDRs of a HCVR and the CDRs of a LCVR, wherein the HCVR and LCVR each has an amino acid sequence selected from the HCVR and LCVR sequences listed in Table 1 .
[030] In one embodiment, the invention provides an isolated antibody or antigen-binding fragment that has one or more of the following characteristics: (a) blocks the binding of PD-1 to PD-L1 or PD-L2; (b) binds specifically to human PD-1 and/or cynomolgus PD-1 ; (c) blocks PD- 1 -induced T-cell down regulation and rescues T-cell signaling; (d) suppresses tumor growth and increases survival in subjects with colon cancer; (e) inhibits T-cell proliferation in a mixed lymphocyte reaction (MLR) assay; and (f) increases IL-2 and/or interferon-gamma secretion in a MLR assay.
[031] In some embodiments, the antibody or antigen binding fragment thereof may bind specifically to PD-1 in an agonist manner, i.e., it may enhance or stimulate PD-1 binding and/or activity; in other embodiments, the antibody may bind specifically to PD-1 in an antagonist manner, i.e., it may block PD-1 from binding to its ligand.
[032] In certain embodiments, the antibodies or antigen-binding fragments of the present invention are bispecific comprising a first binding specificity to PD-1 and a second binding specificity for a second target epitope. The second target epitope may be another epitope on PD-1 or on a different protein. In certain embodiments, the target epitope may be on a different cell including a different T-cell, a B-cell, a tumor cell, an autoimmune tissue cell or a virally infected cell. [033] In a second aspect, the present invention provides nucleic acid molecules encoding anti- PD-1 antibodies or portions thereof. For example, the present invention provides nucleic acid molecules encoding any of the HCVR amino acid sequences listed in Table 1 ; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCVR nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
[034] The present invention also provides nucleic acid molecules encoding any of the LCVR amino acid sequences listed in Table 1 ; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCVR nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
[035] The present invention also provides nucleic acid molecules encoding any of the HCDR1 amino acid sequences listed in Table 1 ; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCDR1 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
[036] The present invention also provides nucleic acid molecules encoding any of the HCDR2 amino acid sequences listed in Table 1 ; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCDR2 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
[037] The present invention also provides nucleic acid molecules encoding any of the HCDR3 amino acid sequences listed in Table 1 ; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCDR3 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
[038] The present invention also provides nucleic acid molecules encoding any of the LCDR1 amino acid sequences listed in Table 1 ; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCDR1 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
[039] The present invention also provides nucleic acid molecules encoding any of the LCDR2 amino acid sequences listed in Table 1 ; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCDR2 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
[040] The present invention also provides nucleic acid molecules encoding any of the LCDR3 amino acid sequences listed in Table 1 ; in certain embodiments the nucleic acid molecule comprises a polynucleotide sequence selected from any of the LCDR3 nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto.
[041] The present invention also provides nucleic acid molecules encoding an HCVR, wherein the HCVR comprises a set of three CDRs (;'.e., HCDR1-HCDR2-HCDR3), wherein the HCDR1- HCDR2-HCDR3 amino acid sequence set is as defined by any of the exemplary anti-PD-1 antibodies listed in Table 1.
[042] The present invention also provides nucleic acid molecules encoding an LCVR, wherein the LCVR comprises a set of three CDRs {i.e., LCDR1-LCDR2-LCDR3), wherein the LCDR1- LCDR2-LCDR3 amino acid sequence set is as defined by any of the exemplary anti-PD-1 antibodies listed in Table 1.
[043] The present invention also provides nucleic acid molecules encoding both an HCVR and an LCVR, wherein the HCVR comprises an amino acid sequence of any of the HCVR amino acid sequences listed in Table 1 , and wherein the LCVR comprises an amino acid sequence of any of the LCVR amino acid sequences listed in Table 1. In certain embodiments, the nucleic acid molecule comprises a polynucleotide sequence selected from any of the HCVR nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto, and a polynucleotide sequence selected from any of the LCVR nucleic acid sequences listed in Table 2, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity thereto. In certain embodiments according to this aspect of the invention, the nucleic acid molecule encodes an HCVR and LCVR, wherein the HCVR and LCVR are both derived from the same anti-PD-1 antibody listed in Table 1.
[044] The present invention provides nucleic acid molecules encoding any of the heavy chain amino acid sequences listed in Table 3. The present invention also provides nucleic acid molecules encoding any of the light chain amino acid sequences listed in Table 3.
[045] The present invention also provides nucleic acid molecules encoding both heavy chain (HC) and a light chain (LC), wherein the HC comprises an amino acid sequence of any of the HC amino acid sequences listed in Table 3, and wherein the LC comprises an amino acid sequence of any of the LC amino acid sequences listed in Table 3.
[046] In a related aspect, the present invention provides recombinant expression vectors capable of expressing a polypeptide comprising a heavy or light chain variable region of an anti- PD-1 antibody. For example, the present invention includes recombinant expression vectors comprising any of the nucleic acid molecules mentioned above, i.e., nucleic acid molecules encoding any of the HCVR, LCVR, and/or CDR sequences as set forth in Table 1. The present invention also provides recombinant expression vectors capable of expressing a polypeptide comprising a heavy or light chain of an anti-PD-1 antibody. For example, the present invention includes recombinant expression vectors comprising any of the nucleic acid molecules mentioned above, i.e., nucleic acid molecules encoding any of the heavy chain or light chain sequences as set forth in Table 3. Also included within the scope of the present invention are host cells into which such vectors have been introduced, as well as methods of producing the antibodies or portions thereof by culturing the host cells under conditions permitting production of the antibodies or antibody fragments, and recovering the antibodies and antibody fragments so produced.
[047] In a third aspect, the present invention provides multi-specific antigen-binding molecules and antigen-binding fragments thereof comprising a first antigen-binding specificity that binds specifically to PD-1 and a second antigen-binding specificity that binds specifically to an antigen selected from the group consisting of a tumor cell-specific antigen, an autoimmune tissue- specific antigen, an infected-cell-specific antigen, a T-cell co-inhibitor, a T-cell receptor, a Fc receptor, PD-L1 , and PD-1. In certain embodiments, the first antigen-binding specificity may comprise three CDRs derived from a HCVR with an amino acid sequence selected from the HCVR sequences in Table 1 and three CDRs derived from a LCVR with an amino acid sequence selected from the LCVR sequences in Table 1. In one embodiment, the first antigen- binding specificity may comprise the extracellular domain of PD-L1. The second antigen-binding specificity may target an antigen on the same cell as PD-1 or on a different cell of the same tissue type or of a different tissue type. For example, the multi-specific antigen-binding molecule may bind to a T-cell wherein the first antigen-binding specificity may bind specifically to PD-1 and the second antigen-binding specificity may bind to a T-cell receptor on the T-cell.
Alternatively, in another embodiment, the first antigen-binding specificity may bind specifically to PD-1 on a T-cell and the second antigen-binding specificity may be targeted to an
antigen/receptor on a B-cell or a macrophage or antigen-presenting cell. In certain
embodiments, the second antigen-binding specificity may be directed to an antigen associated with an autoimmune tissue. In one embodiment, the first antigen-binding specificity may comprise an extracellular domain of PD-L1 and the second antigen-binding specificity may bind to another epitope on PD-1 . In certain embodiments, the first antigen-binding specificity binds to PD-1 with a lower affinity, for example, with a KD more than 10"7 M, more than 10"6 M, more than 10"5 M, or more than 10"4 M.
[048] In a fourth aspect, the invention provides a pharmaceutical composition comprising a recombinant human antibody or fragment thereof which specifically binds PD-1 and a pharmaceutically acceptable carrier. In a related aspect, the invention features a composition which is a combination of an anti-PD-1 antibody and a second therapeutic agent. In one embodiment, the second therapeutic agent is any agent that is advantageously combined with an anti-PD-1 antibody. Exemplary agents that may be advantageously combined with an anti- PD-1 antibody include, without limitation, other agents that bind and/or modulate PD-1 signaling (including other antibodies or antigen-binding fragments thereof, etc.) and/or agents which do not directly bind PD-1 but nonetheless modulate immune cell activation. Additional combination therapies and co-formulations involving the anti-PD-1 antibodies of the present invention are disclosed elsewhere herein.
[049] In a fifth aspect, the invention provides methods to modulate the immune response in a subject, the method comprising administering a therapeutically effective amount of an anti-PD-1 antibody or antigen-binding fragment thereof of the invention to the subject in need thereof. In certain embodiments, the invention provides methods to enhance the immune response in a subject, the methods comprising administering to the subject an effective amount of an antibody or fragment thereof of the invention that binds PD-1 and blocks PD-1 binding to PD-L1 . In one embodiment, the invention provides a method to stimulate or enhance T-cell stimulation in a subject. In one embodiment, the invention provides methods to inhibit a T-regulatory (Treg) cell in a subject, the methods comprising administering a therapeutically effective amount of a blocking antibody or antigen-binding fragment thereof of the invention to the subject in need thereof. In certain embodiments, the subject in need thereof may suffer from a disease or disorder such as cancer or viral infection. In alternate embodiments, the invention provides for methods to inhibit or suppress T-cell activation in a subject, the methods comprising
administering a therapeutically effective amount of an activating antibody or fragment thereof of the invention to the subject in need thereof. In one embodiment, the subject may suffer from an autoimmune disease or disorder.
[050] In a sixth aspect, the invention provides therapeutic methods for treating a disease or disorder such as cancer, autoimmune disease or viral infection in a subject using an anti-PD-1 antibody or antigen-binding portion of an antibody of the invention, wherein the therapeutic methods comprise administering a therapeutically effective amount of a pharmaceutical composition comprising an antibody or fragment of an antibody of the invention to the subject in need thereof. The disorder treated is any disease or condition which is improved, ameliorated, inhibited or prevented by stimulation or inhibition of PD-1 activity or signaling. In certain embodiments, the antibody or antigen-binding fragment thereof the invention is administered in combination with a second therapeutic agent to the subject in need thereof. The second therapeutic agent may be selected from the group consisting of an antibody to another T-cell co- inhibitor, an antibody to a tumor cell antigen, an antibody to a T-cell receptor, an antibody to a Fc receptor, an antibody to an epitope on a virally infected cell, an antibody to an autoimmune tissue antigen, an antibody to PD-L1 , a cytotoxic agent, an anti-cancer drug, an anti-viral drug, an anti-inflammatory drug (e.g., corticosteroids), chemotherapeutic agent, radiation therapy, an immunosuppressant and any other drug or therapy known in the art. In certain embodiments, the second therapeutic agent may be an agent that helps to counteract or reduce any possible side effect(s) associated with an antibody or antigen-binding fragment thereof of the invention, if such side effect(s) should occur.
[051] In certain embodiments, the present invention provides methods for suppressing tumor growth. In certain embodiments, the present invention provides methods to enhance survival of cancer patients. Examples of cancer include, but are not limited to, primary and/or recurrent cancer, including brain cancer (e.g. , glioblastoma multiforme), lung cancer (e.g. , non-small cell lung cancer), squamous cell carcinoma of head and neck, renal cell carcinoma, melanoma, multiple myeloma, prostate cancer, and colon cancer. The methods comprise administering a pharmaceutical composition comprising a therapeutically effective amount of an anti-PD-1 antibody of the present invention in combination with a second therapeutic agent selected from the group consisting of a vascular endothelial growth factor (VEGF) antagonist (e.g., aflibercept, bevacizumab), an angiopoietin-2 (Ang2) inhibitor (e.g. , an anti-Ang2 antibody such as nesvacumab), a lymphocyte activation gene 3 (LAG-3) inhibitor, a cytotoxic T-lymphocyte antigen 4 (CTLA-4) inhibitor (e.g. , ipilimumab), a chemotherapeutic agent, and radiation therapy. Additional examples of additional therapies/therapeutic agents that can be used in combination with an anti-PD-1 antibody of the invention for use in treating cancer are described elsewhere herein.
[052] The antibody or fragment thereof may be administered subcutaneously, intravenously, intradermally, intraperitoneally, orally, intramuscularly, or intracranially. The antibody or fragment thereof may be administered at a dose of about 0.1 mg/kg of body weight to about 100 mg/kg of body weight of the subject.
[053] The present invention also includes use of an anti-PD-1 antibody or antigen-binding fragment thereof of the invention in the manufacture of a medicament for the treatment of a disease or disorder that would benefit from the blockade or enhancement of PD-1 binding and/or signaling.
[054] Other embodiments will become apparent from a review of the ensuing detailed description.
BRIEF DESCRIPTION OF THE FIGURES
[055] Figure 1 is a schematic of the luciferase-based PD-1 bioassay described in Example 8 herein. Panel A: Inactive Jurkat cells; Panel B: Jurkat cells are activated by T-cell receptor (TCR) clustering through the CD3xCD20 bispecific antibody; Panel C: PD-1 activation attenuates response in activated Jurkat cells; Panel D: Blocking PD-1 rescues the response in activated Jurkat cells.
[056] Figure 2 illustrates tumor growth and survival results for mice implanted with Colon-26 tumor cells at Day 0 and treated with the indicated combinations of molecules by injection at Days 3, 6, 10, 13 and 19 ("early-treatment tumor model"). The graph depicts tumor volume (in mm3) for the different experimental groups at various time points after implantation. Upward arrows along the X-axis indicate the timing of treatment injections. "mlgG2a" is lgG2 isotype control; "Fc" is human Fc control; "VEGF Trap" is aflibercept; "anti-PD-1 " is anti-mouse PD-1 clone RPMI-14; "anti-PD-L1 " is an anti-PD-L1 monoclonal antibody as described elsewhere herein.
[057] Figure 3 illustrates tumor growth and survival results for mice implanted with Colon-26 tumor cells at Day 0 and treated with the indicated combinations of molecules by injection at Days 3, 6, 10, 13 and 19 ("early-treatment tumor model"). The graph shows the tumor volume (in mm3) of individual mice in each experimental group at Day 28 after implantation. "mlgG2a" is lgG2 isotype control; "Fc" is human Fc control; "VEGF Trap" is aflibercept; "anti-PD-1 " is anti- mouse PD-1 clone RPMI-14; "anti-PD-L1 " is an anti-PD-L1 monoclonal antibody as described elsewhere herein.
DETAILED DESCRIPTION
[058] Before the present methods are described, it is to be understood that this invention is not limited to particular methods, and experimental conditions described, as such methods and conditions may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
[059] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference in their entirety.
[060] The term "PD-1 " refers to the programmed death-1 protein, a T-cell co-inhibitor, also known as CD279. The amino acid sequence of full-length PD-1 is provided in GenBank as accession number NP_005009.2 and is also referred to herein as SEQ ID NO: 327. The term "PD-1 " also includes protein variants of PD-1 having the amino acid sequence of SEQ ID NOs: 321 , 322, 323, or 324. The term "PD-1" includes recombinant PD-1 or a fragment thereof. The term also encompasses PD-1 or a fragment thereof coupled to, for example, histidine tag, mouse or human Fc, or a signal sequence such as ROR1. For example, the term includes sequences exemplified by SEQ ID NOs: 323 or 324, comprising a mouse Fc (mlgG2a) or human Fc (hlgG1 ) at the C-terminal, coupled to amino acid residues 25 - 170 of full-length PD-1 with a C93S change. Protein variants as exemplified by SEQ ID NO: 321 comprise a histidine tag at the C-terminal, coupled to amino acid residues 25 - 170 of full length PD-1. Unless specified as being from a non-human species, the term "PD-1 " means human PD-1 .
[061] PD-1 is a member of the CD28/ CTLA-4/ICOS family of T-cell co-inhibitors. PD-1 is a 288- amino acid protein with an extracellular N-terminal domain which is IgV-like, a transmembrane domain and an intracellular domain containing an immunoreceptor tyrosine-based inhibitory (ITIM) motif and an immunoreceptor tyrosine-based switch (ITSM) motif (Chattopadhyay et al 2009, Immunol. Rev.). The PD-1 receptor has two ligands, PD-ligand-1 (PD-L1 ) and PD-L2. [062] The term "PD-L1 " refers to the ligand of the PD-1 receptor also known as CD274 and B7H 1 . The amino acid sequence of full-length PD-L1 is provided in GenBank as accession number NP_054862.1 and is also referred to herein as SEQ I D NO: 328. The term also encompasses PD-L1 or a fragment thereof coupled to, for example, histidine tag, mouse or human Fc, or a signal sequence such as ROR1. For example, the term includes sequences exemplified by SEQ I D NOs: 325 or 326, comprising a mouse Fc (mlgG2a) or human Fc (hlgG1 ) at the C-terminal, coupled to amino acid residues 19 - 239 of full-length PD-L1 . PD-L1 is a 290 amino acid protein with an extracellular IgV-like domain, a transmembrane domain and a highly conserved intracellular domain of approximately 30 amino acids. PD-L1 is constitutively expressed on many cells such as antigen presenting cells (e.g., dendritic cells, macrophages, and B-cells) and on hematopoietic and non-hematopoietic cells (e.g., vascular endothelial cells, pancreatic islets, and sites of immune privilege). PD-L1 is also expressed on a wide variety of tumors, virally-infected cells and autoimmune tissue, and is a component of the
immunosuppressive milieu (Ribas 2012, NEJM 366: 2517-2519).
[063] As used herein, the term "T-cell co-inhibitor" refers to a ligand and/or receptor which modulates the immune response via T-cell activation or suppression. The term "T-cell co- inhibitor", also known as T-cell co-signaling molecule, includes, but is not limited to, lymphocyte activation gene 3 protein (LAG-3, also known as CD223), cytotoxic T-lymphocyte antigen-4 (CTLA-4), B and T lymphocyte attenuator (BTLA), CD-28, 2B4, LY108, T-cell immunoglobulin and mucin 3(TIM3), T-cell immunoreceptor with immunoglobulin and ITIM (TIGIT; also known as VSIG9), leucocyte associated immunoglobulin-like receptor 1 (LAIR1 ; also known as CD305), inducible T-cell costimulator (ICOS; also known as CD278), V-domain Ig suppressor of T-cell activation (VISTA) and CD160.
[064] As used herein, the term "Fc receptor" refers to the surface receptor protein found on immune cells including B lymphocytes, natural killer cells, macrophages, basophils, neutrophils, and mast cells, which has a binding specificity for the Fc region of an antibody. The term "Fc receptor" includes, but is not limited to, a Fey receptor [e.g., FcyRI (CD64), FcyRI IA (CD32), FcyRII B (CD32), FcyRI IIA (CD16a), and FcyRIII B (CD16b)], Fca receptor (e.g., FcaRI or CD89) and Fes receptor [e.g., FcsRI , and FcsRII (CD23)].
[065] The term "antibody", as used herein, is intended to refer to immunoglobulin molecules comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains interconnected by disulfide bonds (i.e., "full antibody molecules"), as well as multimers thereof (e.g. IgM) or antigen-binding fragments thereof. Each heavy chain is comprised of a heavy chain variable region ("HCVR" or "VH") and a heavy chain constant region (comprised of domains CH1 , CH2 and CH3). Each light chain is comprised of a light chain variable region ("LCVR or "VL") and a light chain constant region (CL). The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1 , CDR1 , FR2, CDR2, FR3, CDR3, FR4. In certain embodiments of the invention, the FRs of the antibody (or antigen binding fragment thereof) may be identical to the human germline sequences, or may be naturally or artificially modified. An amino acid consensus sequence may be defined based on a side-by-side analysis of two or more CDRs.
[066] Substitution of one or more CDR residues or omission of one or more CDRs is also possible. Antibodies have been described in the scientific literature in which one or two CDRs can be dispensed with for binding. Padlan ei a/. (1995 FASEB J. 9:133-139) analyzed the contact regions between antibodies and their antigens, based on published crystal structures, and concluded that only about one fifth to one third of CDR residues actually contact the antigen. Padlan also found many antibodies in which one or two CDRs had no amino acids in contact with an antigen (see also, Vajdos et al. 2002 J Mol Biol 320:415-428).
[067] CDR residues not contacting antigen can be identified based on previous studies (for example residues H60-H65 in CDRH2 are often not required), from regions of Kabat CDRs lying outside Chothia CDRs, by molecular modeling and/or empirically. If a CDR or residue(s) thereof is omitted, it is usually substituted with an amino acid occupying the corresponding position in another human antibody sequence or a consensus of such sequences. Positions for substitution within CDRs and amino acids to substitute can also be selected empirically.
Empirical substitutions can be conservative or non-conservative substitutions.
[068] The fully human anti-PD-1 monoclonal antibodies disclosed herein may comprise one or more amino acid substitutions, insertions and/or deletions in the framework and/or CDR regions of the heavy and light chain variable domains as compared to the corresponding germline sequences. Such mutations can be readily ascertained by comparing the amino acid sequences disclosed herein to germline sequences available from, for example, public antibody sequence databases. The present invention includes antibodies, and antigen-binding fragments thereof, which are derived from any of the amino acid sequences disclosed herein, wherein one or more amino acids within one or more framework and/or CDR regions are mutated to the corresponding residue(s) of the germline sequence from which the antibody was derived, or to the corresponding residue(s) of another human germline sequence, or to a conservative amino acid substitution of the corresponding germline residue(s) (such sequence changes are referred to herein collectively as "germline mutations"). A person of ordinary skill in the art, starting with the heavy and light chain variable region sequences disclosed herein, can easily produce numerous antibodies and antigen-binding fragments which comprise one or more individual germline mutations or combinations thereof. In certain embodiments, all of the framework and/or CDR residues within the VH and/or VL domains are mutated back to the residues found in the original germline sequence from which the antibody was derived. In other embodiments, only certain residues are mutated back to the original germline sequence, e.g. , only the mutated residues found within the first 8 amino acids of FR1 or within the last 8 amino acids of FR4, or only the mutated residues found within CDR1 , CDR2 or CDR3. In other embodiments, one or more of the framework and/or CDR residue(s) are mutated to the corresponding residue(s) of a different germline sequence (i.e., a germline sequence that is different from the germline sequence from which the antibody was originally derived). Furthermore, the antibodies of the present invention may contain any combination of two or more germline mutations within the framework and/or CDR regions, e.g. , wherein certain individual residues are mutated to the corresponding residue of a particular germline sequence while certain other residues that differ from the original germline sequence are maintained or are mutated to the corresponding residue of a different germline sequence. Once obtained, antibodies and antigen-binding fragments that contain one or more germline mutations can be easily tested for one or more desired property such as, improved binding specificity, increased binding affinity, improved or enhanced antagonistic or agonistic biological properties (as the case may be), reduced immunogenicity, etc. Antibodies and antigen-binding fragments obtained in this general manner are
encompassed within the present invention.
[069] The present invention also includes fully human anti-PD-1 monoclonal antibodies comprising variants of any of the HCVR, LCVR, and/or CDR amino acid sequences disclosed herein having one or more conservative substitutions. For example, the present invention includes anti-PD-1 antibodies having HCVR, LCVR, and/or CDR amino acid sequences with, e.g. , 10 or fewer, 8 or fewer, 6 or fewer, 4 or fewer, etc. conservative amino acid substitutions relative to any of the HCVR, LCVR, and/or CDR amino acid sequences disclosed herein.
[070] The term "human antibody", as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences. The human mAbs of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs and in particular CDR3.
However, the term "human antibody", as used herein, is not intended to include mAbs in which CDR sequences derived from the germline of another mammalian species (e.g., mouse), have been grafted onto human FR sequences. The term includes antibodies recombinantly produced in a non-human mammal, or in cells of a non-human mammal. The term is not intended to include antibodies isolated from or generated in a human subject.
[071] The term "recombinant", as used herein, refers to antibodies or antigen-binding fragments thereof of the invention created, expressed, isolated or obtained by technologies or methods known in the art as recombinant DNA technology which include, e.g. , DNA splicing and transgenic expression. The term refers to antibodies expressed in a non-human mammal (including transgenic non-human mammals, e.g., transgenic mice), or a cell (e.g., CHO cells) expression system or isolated from a recombinant combinatorial human antibody library.
[072] The term "multi-specific antigen-binding molecules", as used herein refers to bispecific, tri- specific or multi-specific antigen-binding molecules, and antigen-binding fragments thereof. Multi-specific antigen-binding molecules may be specific for different epitopes of one target polypeptide or may contain antigen-binding domains specific for epitopes of more than one target polypeptide. A multi-specific antigen-binding molecule can be a single multifunctional polypeptide, or it can be a multimeric complex of two or more polypeptides that are covalently or non-covalently associated with one another. The term "multi-specific antigen-binding molecules" includes antibodies of the present invention that may be linked to or co-expressed with another functional molecule, e.g., another peptide or protein. For example, an antibody or fragment thereof can be functionally linked (e.g., by chemical coupling, genetic fusion, non-covalent association or otherwise) to one or more other molecular entities, such as a protein or fragment thereof to produce a bi-specific or a multi-specific antigen-binding molecule with a second binding specificity. According to the present invention, the term "multi-specific antigen-binding molecules" also includes bi-specific, tri-specific or multi-specific antibodies or antigen-binding fragments thereof. In certain embodiments, an antibody of the present invention is functionally linked to another antibody or antigen-binding fragment thereof to produce a bispecific antibody with a second binding specificity. Bispecific and multi-specific antibodies of the present invention are described elsewhere herein.
[073] The term "specifically binds," or "binds specifically to", or the like, means that an antibody or antigen-binding fragment thereof forms a complex with an antigen that is relatively stable under physiologic conditions. Specific binding can be characterized by an equilibrium dissociation constant of at least about 1x10"8 M or less (e.g., a smaller KD denotes a tighter binding). Methods for determining whether two molecules specifically bind are well known in the art and include, for example, equilibrium dialysis, surface plasmon resonance, and the like. As described herein, antibodies have been identified by surface plasmon resonance, e.g.,
BIACORE™ , which bind specifically to PD-1. Moreover, multi-specific antibodies that bind to one domain in PD-1 and one or more additional antigens or a bi-specific that binds to two different regions of PD-1 are nonetheless considered antibodies that "specifically bind", as used herein.
[074] The term "high affinity" antibody refers to those mAbs having a binding affinity to PD-1 , expressed as KD, of at least 10"7 M; preferably 10"8 M; more preferably 10"9M, even more preferably 10"10 M, even more preferably 10"11 M, as measured by surface plasmon resonance, e.g., BIACORE™ or solution-affinity ELISA.
[075] By the term "slow off rate", "Koff" or "kd" is meant an antibody that dissociates from PD-1 , with a rate constant of 1 x 10"3 s"1 or less, preferably 1 x 10"4 s"1 or less, as determined by surface plasmon resonance, e.g., BIACORE™.
[076] The terms "antigen-binding portion" of an antibody, "antigen-binding fragment" of an antibody, and the like, as used herein, include any naturally occurring, enzymatically obtainable, synthetic, or genetically engineered polypeptide or glycoprotein that specifically binds an antigen to form a complex. The terms "antigen-binding fragment" of an antibody, or "antibody fragment", as used herein, refers to one or more fragments of an antibody that retain the ability to bind to PD-1.
[077] In specific embodiments, antibody or antibody fragments of the invention may be conjugated to a moiety such a ligand or a therapeutic moiety ("immunoconjugate"), such as an antibiotic, a second anti-PD-1 antibody, or an antibody to another antigen such a tumor-specific antigen, an autoimmune tissue antigen, a virally-infected cell antigen, a Fc receptor, a T-cell receptor, or a T-cell co-inhibitor, or an immunotoxin, or any other therapeutic moiety useful for treating a disease or condition including cancer, autoimmune disease or chronic viral infection.
[078] An "isolated antibody", as used herein, is intended to refer to an antibody that is substantially free of other antibodies (Abs) having different antigenic specificities (e.g., an isolated antibody that specifically binds PD-1 , or a fragment thereof, is substantially free of Abs that specifically bind antigens other than PD-1.
[079] A "blocking antibody" or a "neutralizing antibody", as used herein (or an "antibody that neutralizes PD-1 activity" or "antagonist antibody"), is intended to refer to an antibody whose binding to PD-1 results in inhibition of at least one biological activity of PD-1 . For example, an antibody of the invention may prevent or block PD-1 binding to PD-L1 .
[080] An "activating antibody" or an "enhancing antibody", as used herein (or an "agonist antibody"), is intended to refer to an antibody whose binding to PD-1 results in increasing or stimulating at least one biological activity of PD-1. For example, an antibody of the invention may increase PD-1 binding to PD-L1 .
[081] The term "surface plasmon resonance", as used herein, refers to an optical phenomenon that allows for the analysis of real-time biomolecular interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIACORE™ system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.).
[082] The term "KD ", as used herein, is intended to refer to the equilibrium dissociation constant of a particular antibody-antigen interaction.
[083] The term "epitope" refers to an antigenic determinant that interacts with a specific antigen binding site in the variable region of an antibody molecule known as a paratope. A single antigen may have more than one epitope. Thus, different antibodies may bind to different areas on an antigen and may have different biological effects. The term "epitope" also refers to a site on an antigen to which B and/or T cells respond. It also refers to a region of an antigen that is bound by an antibody. Epitopes may be defined as structural or functional. Functional epitopes are generally a subset of the structural epitopes and have those residues that directly contribute to the affinity of the interaction. Epitopes may also be conformational, that is, composed of nonlinear amino acids. In certain embodiments, epitopes may include determinants that are chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl groups, or sulfonyl groups, and, in certain embodiments, may have specific three- dimensional structural characteristics, and/or specific charge characteristics.
[084] The term "substantial identity" or "substantially identical," when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 90%, and more preferably at least about 95%, 96%, 97%, 98% or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or GAP, as discussed below. A nucleic acid molecule having substantial identity to a reference nucleic acid molecule may, in certain instances, encode a polypeptide having the same or substantially similar amino acid sequence as the polypeptide encoded by the reference nucleic acid molecule.
[085] As applied to polypeptides, the term "substantial similarity" or "substantially similar" means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 90% sequence identity, even more preferably at least 95%, 98% or 99% sequence identity. Preferably, residue positions, which are not identical, differ by conservative amino acid substitutions. A "conservative amino acid substitution" is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent or degree of similarity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. See, e.g., Pearson (1994) Methods Mol. Biol. 24: SOT- SSI , which is herein incorporated by reference. Examples of groups of amino acids that have side chains with similar chemical properties include 1 ) aliphatic side chains: glycine, alanine, valine, leucine and isoleucine; 2) aliphatic-hydroxyl side chains: serine and threonine; 3) amide- containing side chains: asparagine and glutamine; 4) aromatic side chains: phenylalanine, tyrosine, and tryptophan; 5) basic side chains: lysine, arginine, and histidine; 6) acidic side chains: aspartate and glutamate, and 7) sulfur-containing side chains: cysteine and methionine. Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamate-aspartate, and asparagine- glutamine. Alternatively, a conservative replacement is any change having a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet et al. (1992) Science 256: 1443 45, herein incorporated by reference. A "moderately conservative" replacement is any change having a nonnegative value in the PAM250 log-likelihood matrix.
[086] Sequence similarity for polypeptides is typically measured using sequence analysis software. Protein analysis software matches similar sequences using measures of similarity assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions. For instance, GCG software contains programs such as GAP and BESTFIT which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1. Polypeptide sequences also can be compared using FASTA with default or recommended parameters; a program in GCG Version 6.1. FASTA (e.g., FASTA2 and FAST A3) provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson (2000) supra). Another preferred algorithm when comparing a sequence of the invention to a database containing a large number of sequences from different organisms is the computer program BLAST, especially BLASTP or TBLASTN, using default parameters. See, e.g., Altschul et al. (1990) J. Mol. Biol. 215: 403-410 and (1997) Nucleic Acids Res. 25:3389-3402, each of which is herein incorporated by reference.
[087] By the phrase "therapeutically effective amount" is meant an amount that produces the desired effect for which it is administered. The exact amount will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, for example, Lloyd (1999) The Art, Science and Technology of Pharmaceutical Compounding).
[088] As used herein, the term "subject" refers to an animal, preferably a mammal, in need of amelioration, prevention and/or treatment of a disease or disorder such as chronic viral infection, cancer or autoimmune disease.
[089] As used herein, "anti-cancer drug" means any agent useful to treat cancer including, but not limited to, cytotoxins and agents such as antimetabolites, alkylating agents, anthracyclines, antibiotics, antimitotic agents, procarbazine, hydroxyurea, asparaginase, corticosteroids, mytotane (0,P'-(DDD)), biologies (e.g., antibodies and interferons) and radioactive agents. As used herein, "a cytotoxin or cytotoxic agent", also refers to a chemotherapeutic agent and means any agent that is detrimental to cells. Examples include Taxol® (paclitaxel),
temozolamide, cytochalasin B, gramicidin D, ethidium bromide, emetine, cisplatin, mitomycin, etoposide, tenoposide, vincristine, vinblastine, coichicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1 -dehydrotestosterone,
glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof.
[090] As used herein, the term "anti-viral drug" refers to any drug or therapy used to treat, prevent, or ameliorate a viral infection in a host subject. The term "anti-viral drug" includes, but is not limited to zidovudine, lamivudine, abacavir, ribavirin, lopinavir, efavirenz, cobicistat, tenofovir, rilpivirine, analgesics and corticosteroids. In the context of the present invention, the viral infections include long-term or chronic infections caused by viruses including, but not limited to, human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), human papilloma virus (HPV), lymphocytic choriomeningitis virus (LCMV), and simian immunodeficiency virus (SIV).
[091] The antibodies and antigen-binding fragments of the present invention specifically bind to PD-1 and modulate the interaction of PD-1 with PD-L1. The anti-PD-1 antibodies may bind to PD-1 with high affinity or with low affinity. In certain embodiments, the antibodies of the present invention may be blocking antibodies wherein the antibodies may bind to PD-1 and block the interaction of PD-1 with PD-L1 . In some embodiments, the blocking antibodies of the invention may block the binding of PD-1 to PD-L1 and/or stimulate or enhance T-cell activation. In some embodiments, the blocking antibodies may be useful for stimulating or enhancing the immune response and/or for treating a subject suffering from cancer, or a chronic viral infection. The antibodies when administered to a subject in need thereof may reduce the chronic infection by a virus such as HIV, LCMV or HBV in the subject. They may be used to inhibit the growth of tumor cells in a subject. They may be used alone or as adjunct therapy with other therapeutic moieties or modalities known in the art for treating cancer, or viral infection.
[092] In other embodiments, the antibodies of the present invention may be activating antibodies, wherein the antibodies may bind to PD-1 and enhance the interaction of PD-1 and PD-L1. In some embodiments, the activating antibodies may enhance binding of PD-1 to PD-L1 and/or inhibit or suppress T-cell activation. The activating antibodies of the present invention may be useful for inhibiting the immune response in a subject and/or for treating autoimmune disease.
[093] In certain embodiments, the anti-PD-1 antibodies may be multi-specific antigen-binding molecules, wherein they comprise a first binding specificity to PD-1 and a second binding specificity to an antigen selected from the group consisting of another T-cell co-inhibitor, an autoimmune tissue antigen, T-cell receptor, Fc receptor, T-cell receptor, PD-L1 , and a different epitope of PD-1.
[094] In certain embodiments, the antibodies of the invention are obtained from mice immunized with a primary immunogen, such as a full length PD-1 [See GenBank accession number NP_005009.2 (SEQ I D NO: 327)] or with a recombinant form of PD-1 or modified human PD-1 fragments (SEQ I D NOs: 321 , 323, or 324) or with modified cynomolgus PD-1 fragments (SEQ I D NO: 322), followed by immunization with a secondary immunogen, or with an
immunogenically active fragment of PD-1.
[095] The immunogen may be a biologically active and/or immunogenic fragment of PD-1 or DNA encoding the active fragment thereof. The fragment may be derived from the N-terminal or C-terminal domain of PD-1. In certain embodiments of the invention, the immunogen is a fragment of PD-1 that ranges from amino acid residues 25 - 170 of SEQ ID NO: 327 with a C93S change.
[096] The peptides may be modified to include addition or substitution of certain residues for tagging or for purposes of conjugation to carrier molecules, such as, KLH. For example, a cysteine may be added at either the N terminal or C terminal end of a peptide, or a linker sequence may be added to prepare the peptide for conjugation to, for example, KLH for immunization. [097] The full-length amino acid sequence of full length human PD-1 is shown as SEQ ID NO: 327.
[098] In certain embodiments, antibodies that bind specifically to PD-1 may be prepared using fragments of the above-noted regions, or peptides that extend beyond the designated regions by about 5 to about 20 amino acid residues from either, or both, the N or C terminal ends of the regions described herein. In certain embodiments, any combination of the above-noted regions or fragments thereof may be used in the preparation of PD-1 specific antibodies. In certain embodiments, any one or more of the above-noted regions of PD-1 , or fragments thereof may be used for preparing monospecific, bispecific, or multispecific antibodies.
[099] Certain anti-PD-1 antibodies of the present invention are able to bind to and neutralize the activity of PD-1 , as determined by in vitro or in vivo assays. The ability of the antibodies of the invention to bind to and neutralize the activity of PD-1 may be measured using any standard method known to those skilled in the art, including binding assays, or activity assays, as described herein.
[0100] Non-limiting, exemplary in vitro assays for measuring binding activity are illustrated in Examples herein. In Example 3, the binding affinities and kinetic constants of human anti-PD-1 antibodies for human PD-1 and cynomolgus PD-1 were determined by surface plasmon resonance and the measurements were conducted on a Biacore 4000 or T200 instrument. In Examples 4 and 5, blocking assays were used to determine the ability of the anti-PD-1 antibodies to block PD-L1-binding ability of PD-1 in vitro. In Example 6, blocking assays were used to determine cross-competition between anti-PD-1 antibodies. Example 7 describes the binding of the antibodies to cells overexpressing PD-1. In Example 8, a luciferase assay was used to determine the ability of anti-PD-1 antibodies to antagonize PD-1/PD-L1 signaling in T- cells.
[0101] In certain embodiments, the antibodies of the present invention are able to enhance or stimulate T-cell activation in vitro and in a subject with cancer or in a subject infected with a virus such as LCMV. In certain embodiments, the antibodies of the present invention are used in combination with a second therapeutic agent, such as an antibody to a second T-cell co- inhibitor, to enhance the immune response and inhibit tumor growth in a subject.
[0102] The antibodies specific for PD-1 may contain no additional labels or moieties, or they may contain an N-terminal or C-terminal label or moiety. In one embodiment, the label or moiety is biotin. In a binding assay, the location of a label (if any) may determine the orientation of the peptide relative to the surface upon which the peptide is bound. For example, if a surface is coated with avidin, a peptide containing an N-terminal biotin will be oriented such that the C- terminal portion of the peptide will be distal to the surface. In one embodiment, the label may be a radionuclide, a fluorescent dye or a M I-detectable label. In certain embodiments, such labeled antibodies may be used in diagnostic assays including imaging assays. Antigen-Binding Fragments of Antibodies
[0103] Unless specifically indicated otherwise, the term "antibody," as used herein, shall be understood to encompass antibody molecules comprising two immunoglobulin heavy chains and two immunoglobulin light chains (i.e. , "full antibody molecules") as well as antigen-binding fragments thereof. The terms "antigen-binding portion" of an antibody, "antigen-binding fragment" of an antibody, and the like, as used herein, include any naturally occurring, enzymatically obtainable, synthetic, or genetically engineered polypeptide or glycoprotein that specifically binds an antigen to form a complex. The terms "antigen-binding fragment" of an antibody, or "antibody fragment", as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to PD-1 . An antibody fragment may include a Fab fragment, a F(ab')2 fragment, a Fv fragment, a dAb fragment, a fragment containing a CDR, or an isolated CDR. In certain embodiments, the term "antigen-binding fragment" refers to a polypeptide fragment of a multi-specific antigen-binding molecule. In such embodiments, the term" antigen-binding fragment" includes, e.g., an extracellular domain of PD-L1 which binds specifically to PD-1 . Antigen-binding fragments of an antibody may be derived, e.g., from full antibody molecules using any suitable standard techniques such as proteolytic digestion or recombinant genetic engineering techniques involving the manipulation and expression of DNA encoding antibody variable and (optionally) constant domains. Such DNA is known and/or is readily available from, e.g., commercial sources, DNA libraries (including, e.g., phage-antibody libraries), or can be synthesized. The DNA may be sequenced and manipulated chemically or by using molecular biology techniques, for example, to arrange one or more variable and/or constant domains into a suitable configuration, or to introduce codons, create cysteine residues, modify, add or delete amino acids, etc.
[0104] Non-limiting examples of antigen-binding fragments include: (i) Fab fragments; (ii) F(ab')2 fragments; (iii) Fd fragments; (iv) Fv fragments; (v) single-chain Fv (scFv) molecules; (vi) dAb fragments; and (vii) minimal recognition units consisting of the amino acid residues that mimic the hypervariable region of an antibody (e.g. , an isolated complementarity determining region (CDR) such as a CDR3 peptide), or a constrained FR3-CDR3-FR4 peptide. Other engineered molecules, such as domain-specific antibodies, single domain antibodies, domain- deleted antibodies, chimeric antibodies, CDR-grafted antibodies, diabodies, triabodies, tetrabodies, minibodies, nanobodies (e.g. monovalent nanobodies, bivalent nanobodies, etc.), small modular immunopharmaceuticals (SMI Ps), and shark variable IgNAR domains, are also encompassed within the expression "antigen-binding fragment," as used herein.
[0105] An antigen-binding fragment of an antibody will typically comprise at least one variable domain. The variable domain may be of any size or amino acid composition and will generally comprise at least one CDR, which is adjacent to or in frame with one or more framework sequences. In antigen-binding fragments having a VH domain associated with a VL domain, the VH and V|_ domains may be situated relative to one another in any suitable arrangement. For example, the variable region may be dimeric and contain VH - VH, VH - VL or VL - VL dimers. Alternatively, the antigen-binding fragment of an antibody may contain a monomeric VH or VL domain.
[0106] In certain embodiments, an antigen-binding fragment of an antibody may contain at least one variable domain covalently linked to at least one constant domain. Non-limiting, exemplary configurations of variable and constant domains that may be found within an antigen- binding fragment of an antibody of the present invention include: (i) VH -CH1 ; (ii) VH -CH2; (iii) VH -CH3; (iv) VH -Ch1 -Ch2; (V) VH -Ch1-Ch2-CH3; (vi) VH -Ch2-Ch3; (vii) VH -CL; (viii) VL -CH1 ; (ix) VL - CH2; (x) VL -CH3; (xi) VL -CH1-CH2; (xii) VL -CH1-CH2-CH3; (xiii) VL -CH2-CH3; and (xiv) VL -CL. In any configuration of variable and constant domains, including any of the exemplary
configurations listed above, the variable and constant domains may be either directly linked to one another or may be linked by a full or partial hinge or linker region. A hinge region may consist of at least 2 (e.g., 5, 10, 15, 20, 40, 60 or more) amino acids, which result in a flexible or semi-flexible linkage between adjacent variable and/or constant domains in a single polypeptide molecule. Moreover, an antigen-binding fragment of an antibody of the present invention may comprise a homo-dimer or hetero-dimer (or other multimer) of any of the variable and constant domain configurations listed above in non-covalent association with one another and/or with one or more monomeric VH or VL domain (e.g., by disulfide bond(s)).
[0107] As with full antibody molecules, antigen-binding fragments may be mono-specific or multi-specific (e.g., bi-specific). A multi-specific antigen-binding fragment of an antibody will typically comprise at least two different variable domains, wherein each variable domain is capable of specifically binding to a separate antigen or to a different epitope on the same antigen. Any multi-specific antibody format, including the exemplary bi-specific antibody formats disclosed herein, may be adapted for use in the context of an antigen-binding fragment of an antibody of the present invention using routine techniques available in the art.
Preparation of Human Antibodies
[0108] Methods for generating human antibodies in transgenic mice are known in the art. Any such known methods can be used in the context of the present invention to make human antibodies that specifically bind to PD-1.
[0109] An immunogen comprising any one of the following can be used to generate antibodies to PD-1. In certain embodiments, the antibodies of the invention are obtained from mice immunized with a full length, native PD-1 (See GenBank accession number NP_005009.2) (SEQ ID NO: 327), or with a recombinant PD-1 peptide. Alternatively, PD-1 or a fragment thereof may be produced using standard biochemical techniques and modified (SEQ ID NOS: 321 - 324) and used as immunogen.
[0110] In certain embodiments, the immunogen may be a peptide from the N terminal or C terminal end of PD-1. In one embodiment, the immunogen is the extracellular domain or the IgV- like domain of PD-1. In certain embodiments of the invention, the immunogen is a fragment of PD-1 that ranges from about amino acid residues 25-170 of SEQ ID NO: 327 with a C93S change.
[0111] In some embodiments, the immunogen may be a recombinant PD-1 peptide expressed in E. coli or in any other eukaryotic or mammalian cells such as Chinese hamster ovary (CHO) cells.
[0112] In certain embodiments, antibodies that bind specifically to PD-1 may be prepared using fragments of the above-noted regions, or peptides that extend beyond the designated regions by about 5 to about 20 amino acid residues from either, or both, the N or C terminal ends of the regions described herein. In certain embodiments, any combination of the above-noted regions or fragments thereof may be used in the preparation of PD-1 specific antibodies.
[0113] Using VELOCIMMUNE® technology (see, for example, US 6,596,541 , Regeneron Pharmaceuticals, VELOCIMMUNE®) or any other known method for generating monoclonal antibodies, high affinity chimeric antibodies to PD-1 are initially isolated having a human variable region and a mouse constant region. The VELOCIMMUNE® technology involves generation of a transgenic mouse having a genome comprising human heavy and light chain variable regions operably linked to endogenous mouse constant region loci such that the mouse produces an antibody comprising a human variable region and a mouse constant region in response to antigenic stimulation. The DNA encoding the variable regions of the heavy and light chains of the antibody are isolated and operably linked to DNA encoding the human heavy and light chain constant regions. The DNA is then expressed in a cell capable of expressing the fully human antibody.
Bioequivalents
[0114] The anti-PD-1 antibodies and antibody fragments of the present invention encompass proteins having amino acid sequences that vary from those of the described antibodies, but that retain the ability to bind PD-1 . Such variant antibodies and antibody fragments comprise one or more additions, deletions, or substitutions of amino acids when compared to parent sequence, but exhibit biological activity that is essentially equivalent to that of the described antibodies. Likewise, the antibody-encoding DNA sequences of the present invention encompass sequences that comprise one or more additions, deletions, or substitutions of nucleotides when compared to the disclosed sequence, but that encode an antibody or antibody fragment that is essentially bioequivalent to an antibody or antibody fragment of the invention.
[0115] Two antigen-binding proteins, or antibodies, are considered bioequivalent if, for example, they are pharmaceutical equivalents or pharmaceutical alternatives whose rate and extent of absorption do not show a significant difference when administered at the same molar dose under similar experimental conditions, either single dose or multiple doses. Some antibodies will be considered equivalents or pharmaceutical alternatives if they are equivalent in the extent of their absorption but not in their rate of absorption and yet may be considered bioequivalent because such differences in the rate of absorption are intentional and are reflected in the labeling, are not essential to the attainment of effective body drug concentrations on, e.g., chronic use, and are considered medically insignificant for the particular drug product studied.
[0116] In one embodiment, two antigen-binding proteins are bioequivalent if there are no clinically meaningful differences in their safety, purity, or potency.
[0117] In one embodiment, two antigen-binding proteins are bioequivalent if a patient can be switched one or more times between the reference product and the biological product without an expected increase in the risk of adverse effects, including a clinically significant change in immunogenicity, or diminished effectiveness, as compared to continued therapy without such switching.
[0118] In one embodiment, two antigen-binding proteins are bioequivalent if they both act by a common mechanism or mechanisms of action for the condition or conditions of use, to the extent that such mechanisms are known.
[0119] Bioequivalence may be demonstrated by in vivo and/or in vitro methods. Bioequivalence measures include, e.g., (a) an in vivo test in humans or other mammals, in which the concentration of the antibody or its metabolites is measured in blood, plasma, serum, or other biological fluid as a function of time; (b) an in vitro test that has been correlated with and is reasonably predictive of human in vivo bioavailability data; (c) an in vivo test in humans or other mammals in which the appropriate acute pharmacological effect of the antibody (or its target) is measured as a function of time; and (d) in a well-controlled clinical trial that establishes safety, efficacy, or bioavailability or bioequivalence of an antibody.
[0120] Bioequivalent variants of the antibodies of the invention may be constructed by, for example, making various substitutions of residues or sequences or deleting terminal or internal residues or sequences not needed for biological activity. For example, cysteine residues not essential for biological activity can be deleted or replaced with other amino acids to prevent formation of unnecessary or incorrect intramolecular disulfide bridges upon renaturation. In other contexts, bioequivalent antibodies may include antibody variants comprising amino acid changes, which modify the glycosylation characteristics of the antibodies, e.g., mutations that eliminate or remove glycosylation.
Anti-PD-1 Antibodies Comprising Fc Variants
[0121] According to certain embodiments of the present invention, anti-PD-1 antibodies are provided comprising an Fc domain comprising one or more mutations which enhance or diminish antibody binding to the Fc n receptor, e.g., at acidic pH as compared to neutral pH. For example, the present invention includes anti-PD-1 antibodies comprising a mutation in the CH2 or a CH3 region of the Fc domain, wherein the mutation(s) increases the affinity of the Fc domain to FcRn in an acidic environment (e.g., in an endosome where pH ranges from about 5.5 to about 6.0). Such mutations may result in an increase in serum half-life of the antibody when administered to an animal. Non-limiting examples of such Fc modifications include, e.g., a modification at position 250 (e.g., E or Q); 250 and 428 (e.g., L or F); 252 (e.g., L/Y/F/W or T), 254 (e.g., S or T), and 256 (e.g., S/R/Q/E/D or T); or a modification at position 428 and/or 433 (e.g., H/L/R/S/P/Q or K) and/or 434 (e.g., A, W, H, F or Y [N434A, N434W, N434H, N434F or N434Y]); or a modification at position 250 and/or 428; or a modification at position 307 or 308 (e.g., 308F, V308F), and 434. In one embodiment, the modification comprises a 428L (e.g., M428L) and 434S (e.g., N434S) modification; a 428L, 2591 (e.g., V259I), and 308F (e.g., V308F) modification; a 433K (e.g., H433K) and a 434 (e.g., 434Y) modification; a 252, 254, and 256 (e.g., 252Y, 254T, and 256E) modification; a 250Q and 428L modification (e.g., T250Q and M428L); and a 307 and/or 308 modification (e.g., 308F or 308P). In yet another embodiment, the modification comprises a 265A (e.g., D265A) and/or a 297A (e.g., N297A) modification.
[0122] For example, the present invention includes anti-PD-1 antibodies comprising an Fc domain comprising one or more pairs or groups of mutations selected from the group consisting of: 250Q and 248L (e.g., T250Q and M248L); 252Y, 254T and 256E (e.g., M252Y, S254T and T256E); 428L and 434S (e.g., M428L and N434S); 257I and 31 1 1 (e.g., P257I and Q31 1 1); 2571 and 434H (e.g., P257I and N434H); 376V and 434H (e.g., D376V and N434H); 307A, 380A and 434A (e.g., T307A, E380A and N434A); and 433K and 434F (e.g., H433K and N434F). In one embodiment, the present invention includes anti-PD-1 antibodies comprising an Fc domain comprising a S108P mutation in the hinge region of lgG4 to promote dimer stabilization. All possible combinations of the foregoing Fc domain mutations, and other mutations within the antibody variable domains disclosed herein, are contemplated within the scope of the present invention.
[0123] The present invention also includes anti-PD-1 antibodies comprising a chimeric heavy chain constant (CH) region, wherein the chimeric CH region comprises segments derived from the CH regions of more than one immunoglobulin isotype. For example, the antibodies of the invention may comprise a chimeric CH region comprising part or all of a CH2 domain derived from a human IgG 1 , human lgG2 or human lgG4 molecule, combined with part or all of a CH3 domain derived from a human lgG1 , human lgG2 or human lgG4 molecule. According to certain embodiments, the antibodies of the invention comprise a chimeric CH region having a chimeric hinge region. For example, a chimeric hinge may comprise an "upper hinge" amino acid sequence (amino acid residues from positions 216 to 227 according to EU numbering) derived from a human lgG1 , a human lgG2 or a human lgG4 hinge region, combined with a "lower hinge" sequence (amino acid residues from positions 228 to 236 according to EU numbering) derived from a human lgG1 , a human lgG2 or a human lgG4 hinge region.
According to certain embodiments, the chimeric hinge region comprises amino acid residues derived from a human lgG1 or a human lgG4 upper hinge and amino acid residues derived from a human lgG2 lower hinge. An antibody comprising a chimeric CH region as described herein may, in certain embodiments, exhibit modified Fc effector functions without adversely affecting the therapeutic or pharmacokinetic properties of the antibody. (See, e.g., USSN. 14/170,166, filed January 31 , 2014, the disclosure of which is hereby incorporated by reference in its entirety).
Biological Characteristics of the Antibodies
[0124] In general, the antibodies of the present invention function by binding to PD-1 . The present invention includes anti-PD-1 antibodies and antigen-binding fragments thereof that bind soluble monomeric or dimeric PD-1 molecules with high affinity. For example, the present invention includes antibodies and antigen-binding fragments of antibodies that bind monomeric PD-1 (e.g., at 25°C or at 37°C) with a KD of less than about 50nM as measured by surface plasmon resonance, e.g., using the assay format as defined in Example 3 herein. In certain embodiments, the antibodies or antigen-binding fragments thereof bind monomeric PD-1 with a KD of less than about 40nM, less than about 30nM, less than about 20nM, less than about 10nM less than about 5nM, less than about 2nM or less than about 1 nM, as measured by surface plasmon resonance, e.g., using the assay format as defined in Example 3 herein, or a substantially similar assay.
[0125] The present invention also includes antibodies and antigen-binding fragments thereof that bind dimeric PD-1 (e.g., at 25°C or at 37°C) with a KD of less than about 400 pM as measured by surface plasmon resonance, e.g., using the assay format as defined in Example 3 herein. In certain embodiments, the antibodies or antigen-binding fragments thereof bind dimeric PD-1 with a KD of less than about 300 pM, less than about 250 pM, less than about 200 pM, less than about 100 pM, or less than about 50 pM, as measured by surface plasmon resonance, e.g. , using the assay format as defined in Example 3 herein, or a substantially similar assay.
[0126] The present invention also includes antibodies or antigen-binding fragments thereof that bind cynomolgus (Macaca fascicularis) PD-1 (e.g., at 25°C or at 37°C) with a KD of less than about 35 nM as measured by surface plasmon resonance, e.g., using the assay format as defined in Example 3 herein. In certain embodiments, the antibodies or antigen-binding fragments thereof bind cynomolgus PD-1 with a KD of less than about 30 nM, less than about 20 nM, less than about 15 nM, less than about 10 nM, or less than about 5 nM, as measured by surface plasmon resonance, e.g., using the assay format as defined in Example 3 herein, or a substantially similar assay.
[0127] The present invention also includes antibodies and antigen-binding fragments thereof that bind PD-1 with a dissociative half-life (t½) of greater than about 1 .1 minutes as measured by surface plasmon resonance at 25°C or 37°C, e.g., using an assay format as defined in Example 3 herein, or a substantially similar assay. In certain embodiments, the antibodies or antigen-binding fragments of the present invention bind PD-1 with a t½ of greater than about 5 minutes, greater than about 10 minutes, greater than about 30 minutes, greater than about 50 minutes, greater than about 60 minutes, greater than about 70 minutes, greater than about 80 minutes, greater than about 90 minutes, greater than about 100 minutes, greater than about 200 minutes, greater than about 300 minutes, greater than about 400 minutes, greater than about 500 minutes, greater than about 600 minutes, greater than about 700 minutes, greater than about 800 minutes, greater than about 900 minutes, greater than about 1000 minutes, or greater than about 1200 minutes, as measured by surface plasmon resonance at 25°C or 37°C, e.g., using an assay format as defined in Example 3 herein (e.g., mAb-capture or antigen-capture format), or a substantially similar assay.
[0128] The present invention also includes antibodies or antigen-binding fragments thereof that block PD-1 binding to PD-L1 with an IC50 of less than about 3 nM as determined using a ELISA-based immunoassay assay, e.g., as shown in Example 4, or a substantially similar assay. The present invention also includes antibodies and antigen-binding fragments thereof that bind to PD-1 and enhance the binding of PD-1 to PD-L1.
[0129] In some embodiments, the antibodies of the present invention may bind to the extracellular domain of PD-1 or to a fragment of the domain. In some embodiments, the antibodies of the present invention may bind to more than one domain (cross-reactive antibodies). In certain embodiments, the antibodies of the present invention may bind to an epitope located in the extracellular domain comprising amino acid residues 21 - 171 of PD-1 (SEQ I D NO: 327). In one embodiment, the antibodies may bind to an epitope comprising one or more amino acids selected from the group consisting of amino acid residues 1 - 146 of SEQ I D NOs: 321 - 324.
[0130] In certain embodiments, the antibodies of the present invention may function by blocking or inhibiting the PD-L1 -binding activity associated with PD-1 by binding to any other region or fragment of the full length protein, the amino acid sequence of which is shown in SEQ I D NO: 327. In certain embodiments, the antibodies may attenuate or modulate the interaction between PD-1 and PD-L1 .
[0131 ] In certain embodiments, the antibodies of the present invention may be bi-specific antibodies. The bi-specific antibodies of the invention may bind one epitope in one domain and may also bind a second epitope in a different domain of PD-1. In certain embodiments, the bi- specific antibodies of the invention may bind two different epitopes in the same domain. In one embodiment, the multi-specific antigen-binding molecule comprises a first binding specificity wherein the first binding specificity comprises the extracellular domain or fragment thereof of PD-L1 ; and a second binding specificity to another epitope of PD-1.
[0132] In one embodiment, the invention provides an isolated fully human monoclonal antibody or antigen-binding fragment thereof that binds to PD-1 , wherein the antibody or fragment thereof exhibits one or more of the following characteristics: (i) comprises a HCVR having an amino acid sequence selected from the group consisting of SEQ I D NO: 2, 18, 34, 50, 66, 82, 98, 1 14, 130, 146, 162, 178, 194, 210, 218, 226, 234, 242, 250, 258, 266, 274, 282, 290, 298, 306, and 314, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; (ii) comprises a LCVR having an amino acid sequence selected from the group consisting of SEQ ID NO: 10, 26, 42, 58, 74, 90, 106, 122, 138, 154, 170, 186, and 202, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; (iii) comprises a HCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NO: 8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, and 320, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; and a LCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NO: 16, 32, 48, 64, 80, 96, 1 12, 128, 144, 160, 176, 192, and 208, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; (iv) comprises a HCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NO: 4, 20, 36, 52, 68, 84, 100, 1 16, 132, 148, 164, 180, 196, 212, 220, 228, 236, 244, 252, 260, 268, 276, 284, 292, 300, 308, and 316, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; a HCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NO: 6, 22, 38, 54, 70, 86, 102, 118, 134, 150, 166, 182, 198, 214, 222, 230, 238, 246, 254, 262, 270, 278, 286, 294, 302, 310, and 318, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; a LCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NO: 12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, and 204, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; and a LCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NO: 14, 30, 46, 62, 78, 94, 1 10, 126, 142, 158, 174, 190, and 206, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; (v) is a multi-specific antigen-binding molecule comprising a first binding specificity to PD-1 and a second binding specificity to an antigen selected from the group consisting of PD-1 , a tumor specific antigen, an autoimmune tissue specific antigen, a virally infected cell antigen, a different T-cell co-inhibitor, T-cell receptor, and a Fc receptor; (vi) binds to human PD-1 with a KD of about 28pM to about 1.5μΜ; (vii) binds to cynomolgus PD-1 with a KD of about 3nM to about 7.5μΜ; (viii) blocks or enhances the binding of PD-1 to PD-L1 with an IC50 < about 3.3nM; (ix) blocks PD-1 -induced T- cell down regulation and/or rescues T-cell signaling in a T-cell/APC luciferase reporter assay; (x) stimulates T-cell proliferation and activity in a mixed lymphocyte reaction (MLR) assay; (xi) induces IL-2 and/or IFNy production in a MLR assay; and (xii) suppresses tumor growth and increases survival in subjects with cancer.
[0133] In one embodiment, the invention provides an isolated fully human monoclonal antibody or antigen-binding fragment thereof that blocks PD-1 binding to PD-L1 , wherein the antibody or fragment thereof exhibits one or more of the following characteristics: (i) comprises a HCVR having an amino acid sequence selected from the group consisting of SEQ ID NO: 130, 162, 234 and 314, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; (ii) comprises a LCVR having an amino acid sequence selected from the group consisting of SEQ ID NO: 138, 170, 186, and 202, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; (iii) comprises a HCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NO: 136, 168, 240, and 320, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; and a LCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NO: 144, 176, 192, and 208, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; (iv) comprises a HCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NO: 132, 164, 236, and 316, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; a HCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NO: 134, 166, 238, and 318, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; a LCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NO: 140, 172, 188, and 204, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; and a LCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NO: 142, 174, 190, and 206, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; (v) is a multi-specific antigen-binding molecule comprising a first binding specificity to PD-1 and a second binding specificity to an antigen selected from the group consisting of a different epitope of PD-1 , a tumor specific antigen, an autoimmune tissue specific antigen, a virally infected cell antigen, a different T-cell co-inhibitor, T-cell receptor, and a Fc receptor; (vi) binds to human PD- 1 with a KD≤ 10"9M; (vii) binds to cynomolgus PD-1 with a KD < 10"8M; (viii) blocks the binding of PD-1 to PD-L1 with an IC50 < 10"10M; (ix) blocks PD-1 -induced T-cell down regulation and/or rescues T-cell signaling in a T-cell/APC luciferase reporter assay; (x) stimulates T-cell proliferation and activity in a mixed lymphocyte reaction (MLR) assay; (xi) induces IL-2 and/or IFNy production in a MLR assay; and (xii) suppresses tumor growth and increases survival in subjects with cancer.
[0134] The antibodies of the present invention may possess one or more of the
aforementioned biological characteristics, or any combinations thereof. Other biological characteristics of the antibodies of the present invention will be evident to a person of ordinary skill in the art from a review of the present disclosure including the working Examples herein. Species Selectivity and Species Cross-Reactivity
[0135] According to certain embodiments of the invention, the anti-PD-1 antibodies bind to human PD-1 but not to PD-1 from other species. Alternatively, the anti-PD-1 antibodies of the invention, in certain embodiments, bind to human PD-1 and to PD-1 from one or more non- human species. For example, the anti-PD-1 antibodies of the invention may bind to human PD- 1 and may bind or not bind, as the case may be, to one or more of mouse, rat, guinea pig, hamster, gerbil, pig, cat, dog, rabbit, goat, sheep, cow, horse, camel, cynomolgus, marmoset, rhesus or chimpanzee PD-1 . In certain embodiments, the anti-PD-1 antibodies of the invention may bind to human and cynomolgus PD-1 with the same affinities or with different affinities, but do not bind to rat and mouse PD-1.
Epitope Mapping and Related Technologies
[0136] The present invention includes anti-PD-1 antibodies which interact with one or more amino acids found within one or more domains of the PD-1 molecule including, e.g. , extracellular (IgV-like) domain, a transmembrane domain, and an intracellular domain containing the immunoreceptor tyrosine-based inhibition motif (ITI M) and immunoreceptor tyrosine-based switch motif (ITSM). The epitope to which the antibodies bind may consist of a single contiguous sequence of 3 or more (e.g., 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15, 16, 17, 18, 19, 20 or more) amino acids located within any of the aforementioned domains of the PD-1 molecule (e.g. a linear epitope in a domain). Alternatively, the epitope may consist of a plurality of noncontiguous amino acids (or amino acid sequences) located within either or both of the aforementioned domains of the PD-1 molecule (e.g. a conformational epitope).
[0137] Various techniques known to persons of ordinary skill in the art can be used to determine whether an antibody "interacts with one or more amino acids" within a polypeptide or protein. Exemplary techniques include, for example, routine cross-blocking assays, such as that described in Antibodies, Harlow and Lane (Cold Spring Harbor Press, Cold Spring Harbor, NY). Other methods include alanine scanning mutational analysis, peptide blot analysis (Reineke (2004) Methods Mol. Biol. 248: 443-63), peptide cleavage analysis crystallographic studies and N MR analysis. In addition, methods such as epitope excision, epitope extraction and chemical modification of antigens can be employed (Tomer (2000) Prot. Sci. 9: 487-496). Another method that can be used to identify the amino acids within a polypeptide with which an antibody interacts is hydrogen/deuterium exchange detected by mass spectrometry. In general terms, the hydrogen/deuterium exchange method involves deuterium-labeling the protein of interest, followed by binding the antibody to the deuterium-labeled protein. Next, the protein/antibody complex is transferred to water and exchangeable protons within amino acids that are protected by the antibody complex undergo deuterium-to-hydrogen back-exchange at a slower rate than exchangeable protons within amino acids that are not part of the interface. As a result, amino acids that form part of the protein/antibody interface may retain deuterium and therefore exhibit relatively higher mass compared to amino acids not included in the interface. After dissociation of the antibody, the target protein is subjected to protease cleavage and mass spectrometry analysis, thereby revealing the deuterium-labeled residues which correspond to the specific amino acids with which the antibody interacts. See, e.g., Ehring (1999) Analytical Biochemistry 267: 252-259; Engen and Smith (2001 ) Anal. Chem. 73: 256A-265A.
[0138] The term "epitope" refers to a site on an antigen to which B and/or T cells respond. B- cell epitopes can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents, whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents. An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation.
[0139] Modification-Assisted Profiling (MAP), also known as Antigen Structure-based Antibody Profiling (ASAP) is a method that categorizes large numbers of monoclonal antibodies (mAbs) directed against the same antigen according to the similarities of the binding profile of each antibody to chemically or enzymatically modified antigen surfaces (see US 2004/0101920, herein specifically incorporated by reference in its entirety). Each category may reflect a unique epitope either distinctly different from or partially overlapping with epitope represented by another category. This technology allows rapid filtering of genetically identical antibodies, such that characterization can be focused on genetically distinct antibodies. When applied to hybridoma screening, MAP may facilitate identification of rare hybridoma clones that produce mAbs having the desired characteristics. MAP may be used to sort the antibodies of the invention into groups of antibodies binding different epitopes.
[0140] In certain embodiments, the anti-PD-1 antibodies or antigen-binding fragments thereof bind an epitope within any one or more of the regions exemplified in PD-1 , either in natural form, as exemplified in SEQ ID NO: 327, or recombinantly produced, as exemplified in SEQ ID NOS: 321 - 324, or to a fragment thereof. In some embodiments, the antibodies of the invention bind to an extracellular region comprising one or more amino acids selected from the group consisting of amino acid residues 21 - 171 of PD-1. In some embodiments, the antibodies of the invention bind to an extracellular region comprising one or more amino acids selected from the group consisting of amino acid residues 1 - 146 of cynomolgus PD-1 , as exemplified by SEQ ID NO: 322.
[0141] In certain embodiments, the antibodies of the invention, as shown in Table 1 , interact with at least one amino acid sequence selected from the group consisting of amino acid residues ranging from about position 21 to about position 136 of SEQ ID NO: 327; or amino acid residues ranging from about position 136 to about position 171 of SEQ ID NO: 327. These regions are partially exemplified in SEQ ID NOs: 321 - 324.
[0142] The present invention includes anti-PD-1 antibodies that bind to the same epitope, or a portion of the epitope, as any of the specific exemplary antibodies described herein in Table 1 , or an antibody having the CDR sequences of any of the exemplary antibodies described in Table 1 . Likewise, the present invention also includes anti-PD-1 antibodies that compete for binding to PD-1 or a PD-1 fragment with any of the specific exemplary antibodies described herein in Table 1 , or an antibody having the CDR sequences of any of the exemplary antibodies described in Table 1 . For example, the present invention includes anti-PD-1 antibodies that cross-compete for binding to PD-1 with one or more antibodies as defined in Example 6 herein (e.g. , H2aM7788N, H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H 1 M7800N,
H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2, H4xH9128P2,
H4H9019P, H4xH91 19P2, H4xH9135P2, H4xH9034P, H2aM7790N, H4xH9035P, H4xH9037P, H4xH9045P and H2aM7795N).
[0143] One can easily determine whether an antibody binds to the same epitope as, or competes for binding with, a reference anti-PD-1 antibody by using routine methods known in the art. For example, to determine if a test antibody binds to the same epitope as a reference anti-PD-1 antibody of the invention, the reference antibody is allowed to bind to a PD-1 protein or peptide under saturating conditions. Next, the ability of a test antibody to bind to the PD-1 molecule is assessed. If the test antibody is able to bind to PD-1 following saturation binding with the reference anti-PD-1 antibody, it can be concluded that the test antibody binds to a different epitope than the reference anti-PD-1 antibody. On the other hand, if the test antibody is not able to bind to the PD-1 protein following saturation binding with the reference anti-PD-1 antibody, then the test antibody may bind to the same epitope as the epitope bound by the reference anti-PD-1 antibody of the invention.
[0144] To determine if an antibody competes for binding with a reference anti-PD-1 antibody, the above-described binding methodology is performed in two orientations: In a first orientation, the reference antibody is allowed to bind to a PD-1 protein under saturating conditions followed by assessment of binding of the test antibody to the PD-1 molecule. In a second orientation, the test antibody is allowed to bind to a PD-1 molecule under saturating conditions followed by assessment of binding of the reference antibody to the PD-1 molecule. If, in both orientations, only the first (saturating) antibody is capable of binding to the PD-1 molecule, then it is concluded that the test antibody and the reference antibody compete for binding to PD-1. As will be appreciated by a person of ordinary skill in the art, an antibody that competes for binding with a reference antibody may not necessarily bind to the identical epitope as the reference antibody, but may sterically block binding of the reference antibody by binding an overlapping or adjacent epitope.
[0145] Two antibodies bind to the same or overlapping epitope if each competitively inhibits (blocks) binding of the other to the antigen. That is, a 1 -, 5-, 10-, 20- or 100-fold excess of one antibody inhibits binding of the other by at least 50% but preferably 75%, 90% or even 99% as measured in a competitive binding assay (see, e.g., Junghans et ai, Cancer Res. 1990 50:1495-1502). Alternatively, two antibodies have the same epitope if essentially all amino acid mutations in the antigen that reduce or eliminate binding of one antibody reduce or eliminate binding of the other. Two antibodies have overlapping epitopes if some amino acid mutations that reduce or eliminate binding of one antibody reduce or eliminate binding of the other.
[0146] Additional routine experimentation (e.g., peptide mutation and binding analyses) can then be carried out to confirm whether the observed lack of binding of the test antibody is in fact due to binding to the same epitope as the reference antibody or if steric blocking (or another phenomenon) is responsible for the lack of observed binding. Experiments of this sort can be performed using ELISA, RIA, surface plasmon resonance, flow cytometry or any other quantitative or qualitative antibody-binding assay available in the art.
Immunoconjugates
[0147] The invention encompasses a human anti-PD-1 monoclonal antibody conjugated to a therapeutic moiety ("immunoconjugate"), such as a cytotoxin or a chemotherapeutic agent to treat cancer. As used herein, the term "immunoconjugate" refers to an antibody which is chemically or biologically linked to a cytotoxin, a radioactive agent, a cytokine, an interferon, a target or reporter moiety, an enzyme, a toxin, a peptide or protein or a therapeutic agent. The antibody may be linked to the cytotoxin, radioactive agent, cytokine, interferon, target or reporter moiety, enzyme, toxin, peptide or therapeutic agent at any location along the molecule so long as it is able to bind its target. Examples of immunoconjugates include antibody drug conjugates and antibody-toxin fusion proteins. In one embodiment, the agent may be a second different antibody to PD-1. In certain embodiments, the antibody may be conjugated to an agent specific for a tumor cell or a virally infected cell. The type of therapeutic moiety that may be conjugated to the anti-PD-1 antibody and will take into account the condition to be treated and the desired therapeutic effect to be achieved. Examples of suitable agents for forming immunoconjugates are known in the art; see for example, WO 05/103081 .
Multi-specific Antibodies
[0148] The antibodies of the present invention may be mono-specific, bi-specific, or multi- specific. Multi-specific antibodies may be specific for different epitopes of one target polypeptide or may contain antigen-binding domains specific for more than one target polypeptide. See, e.g., Tutt et al., 1991 , J. Immunol. 147:60-69; Kufer et al., 2004, Trends Biotechnol. 22:238-244.
[0149] In one aspect, the present invention includes multi-specific antigen-binding molecules or antigen-binding fragments thereof wherein one specificity of an immunoglobulin is specific for the extracellular domain of PD-1 , or a fragment thereof, and the other specificity of the immunoglobulin is specific for binding outside the extracellular domain of PD-1 , or a second therapeutic target, or is conjugated to a therapeutic moiety. In certain embodiments, the first antigen-binding specificity may comprise PD-L1 or PD-L2, or a fragment thereof. In certain embodiments of the invention, one specificity of an immunoglobulin is specific for an epitope comprising amino acid residues 21 -171 of PD-1 (SEQ ID NO: 327) or a fragment thereof, and the other specificity of the immunoglobulin is specific for a second target antigen. The second target antigen may be on the same cell as PD-1 or on a different cell. In one embodiment, the second target cell is on an immune cell other than a T-cell such as a B-cell, antigen-presenting cell, monocyte, macrophage, or dendritic cell. In some embodiments, the second target antigen may be present on a tumor cell or an autoimmune tissue cell or on a virally infected cell.
[0150] In another aspect, the invention provides multi-specific antigen-binding molecules or antigen-binding fragments thereof comprising a first antigen-binding specificity that binds to PD- 1 and a second antigen-binding specificity that binds to a T-cell receptor, a B-cell receptor or a Fc receptor. In a related aspect, the invention provides multi-specific antigen-binding molecules or antigen-binding fragments thereof comprising a first antigen-binding specificity that binds to PD-1 and a second antigen-binding specificity that binds to a different T-cell co-inhibitor such as LAG-3, CTLA-4, BTLA, CD-28, 2B4, LY108, TIG IT, TI M3, LAI R1 , ICOS and CD160.
[0151 ] In another aspect, the invention provides multi-specific antigen-binding molecules or antigen-binding fragments thereof comprising a first antigen-binding specificity that binds to PD- 1 and a second antigen-binding specificity that binds to an autoimmune tissue-specific antigen. In certain embodiments, the antibodies may be activating or agonist antibodies.
[0152] Any of the multi-specific antigen-binding molecules of the invention, or variants thereof, may be constructed using standard molecular biological techniques (e.g., recombinant DNA and protein expression technology), as will be known to a person of ordinary skill in the art.
[0153] In some embodiments, PD-1 -specific antibodies are generated in a bi-specific format (a "bi-specific") in which variable regions binding to distinct domains of PD-1 are linked together to confer dual-domain specificity within a single binding molecule. Appropriately designed bi- specifics may enhance overall PD-1 inhibitory efficacy through increasing both specificity and binding avidity. Variable regions with specificity for individual domains, (e.g., segments of the N- terminal domain), or that can bind to different regions within one domain, are paired on a structural scaffold that allows each region to bind simultaneously to the separate epitopes, or to different regions within one domain. In one example for a bi-specific, heavy chain variable regions (VH) from a binder with specificity for one domain are recombined with light chain variable regions (VL) from a series of binders with specificity for a second domain to identify non- cognate V|_ partners that can be paired with an original VH without disrupting the original specificity for that VH. In this way, a single VL segment (e.g., VL1 ) can be combined with two different VH domains (e.g., VH1 and VH2) to generate a bi-specific comprised of two binding "arms" (VH1 - VL1 and VH2- VL1 ). Use of a single VL segment reduces the complexity of the system and thereby simplifies and increases efficiency in cloning, expression, and purification processes used to generate the bi-specific (See, for example, USSN 13/022759 and
US2010/0331527).
[0154] Alternatively, antibodies that bind more than one domains and a second target, such as, but not limited to, for example, a second different anti-PD-1 antibody, may be prepared in a bi- specific format using techniques described herein, or other techniques known to those skilled in the art. Antibody variable regions binding to distinct regions may be linked together with variable regions that bind to relevant sites on, for example, the extracellular domain of PD-1 , to confer dual-antigen specificity within a single binding molecule. Appropriately designed bi- specifics of this nature serve a dual function. Variable regions with specificity for the
extracellular domain are combined with a variable region with specificity for outside the extracellular domain and are paired on a structural scaffold that allows each variable region to bind to the separate antigens.
[0155] An exemplary bi-specific antibody format that can be used in the context of the present invention involves the use of a first immunoglobulin (Ig) CH3 domain and a second Ig CH3 domain, wherein the first and second Ig CH3 domains differ from one another by at least one amino acid, and wherein at least one amino acid difference reduces binding of the bi-specific antibody to Protein A as compared to a bi-specific antibody lacking the amino acid difference. In one embodiment, the first Ig CH3 domain binds Protein A and the second Ig CH3 domain contains a mutation that reduces or abolishes Protein A binding such as an H95R modification (by I MGT exon numbering; H435R by EU numbering). The second CH3 may further comprise a Y96F modification (by I MGT; Y436F by EU). Further modifications that may be found within the second CH3 include: D16E, L18M, N44S, K52N, V57M, and V82I (by IMGT; D356E, L358M, N384S, K392N, V397M, and V422I by EU) in the case of lgG1 antibodies; N44S, K52N, and V82I (I MGT; N384S, K392N, and V422I by EU) in the case of lgG2 antibodies; and Q15R, N44S, K52N, V57M, R69K, E79Q, and V82I (by IMGT; Q355R, N384S, K392N, V397M, R409K, E419Q, and V422I by EU) in the case of lgG4 antibodies. Variations on the bi-specific antibody format described above are contemplated within the scope of the present invention.
[0156] Other exemplary bispecific formats that can be used in the context of the present invention include, without limitation, e.g., scFv-based or diabody bispecific formats, IgG-scFv fusions, dual variable domain (DVD)-lg, Quadroma, knobs-into-holes, common light chain (e.g., common light chain with knobs-into-holes, etc.), CrossMab, CrossFab, (SEED)body, leucine zipper, Duobody, lgG1 /lgG2, dual acting Fab (DAF)-lgG, and Mab2 bispecific formats (see, e.g., Klein et at. 2012, mAbs 4:6, 1 -1 1 , and references cited therein, for a review of the foregoing formats). Bispecific antibodies can also be constructed using peptide/nucleic acid conjugation, e.g. , wherein unnatural amino acids with orthogonal chemical reactivity are used to generate site-specific antibody-oligonucleotide conjugates which then self-assemble into multimeric complexes with defined composition, valency and geometry. (See, e.g., Kazane et ai, J. Am. Chem. Soc. [Epub: Dec. 4, 2012]). Therapeutic Administration and Formulations
[0157] The invention provides therapeutic compositions comprising the anti-PD-1 antibodies or antigen-binding fragments thereof of the present invention. Therapeutic compositions in accordance with the invention will be administered with suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like. A multitude of appropriate formulations can be found in the formulary known to all pharmaceutical chemists: Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, PA. These formulations include, for example, powders, pastes, ointments, jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as LIPOFECTIN™), DNA conjugates, anhydrous absorption pastes, oil-in-water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semi-solid gels, and semi-solid mixtures containing carbowax. See also Powell et al. "Compendium of excipients for parenteral formulations" PDA (1998) J Pharm Sci Technol 52:238-31 1.
[0158] The dose of antibody may vary depending upon the age and the size of a subject to be administered, target disease, conditions, route of administration, and the like. When an antibody of the present invention is used for treating a disease or disorder in an adult patient, or for preventing such a disease, it is advantageous to administer the antibody of the present invention normally at a single dose of about 0.1 to about 60 mg/kg body weight, more preferably about 5 to about 60, about 10 to about 50, or about 20 to about 50 mg/kg body weight.
Depending on the severity of the condition, the frequency and the duration of the treatment can be adjusted. In certain embodiments, the antibody or antigen-binding fragment thereof of the invention can be administered as an initial dose of at least about 0.1 mg to about 800 mg, about 1 to about 500 mg, about 5 to about 300 mg, or about 10 to about 200 mg, to about 100 mg, or to about 50 mg. In certain embodiments, the initial dose may be followed by administration of a second or a plurality of subsequent doses of the antibody or antigen-binding fragment thereof in an amount that can be approximately the same or less than that of the initial dose, wherein the subsequent doses are separated by at least 1 day to 3 days; at least one week, at least 2 weeks; at least 3 weeks; at least 4 weeks; at least 5 weeks; at least 6 weeks; at least 7 weeks; at least 8 weeks; at least 9 weeks; at least 10 weeks; at least 12 weeks; or at least 14 weeks.
[0159] Various delivery systems are known and can be used to administer the pharmaceutical composition of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the mutant viruses, receptor mediated endocytosis (see, e.g., Wu et al. (1987) J. Biol. Chem. 262:4429-4432). Methods of introduction include, but are not limited to, intradermal, transdermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural and oral routes. The composition may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings {e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. The pharmaceutical composition can be also delivered in a vesicle, in particular a liposome (see, for example, Langer (1990) Science 249:1527-1533).
[0160] The use of nanoparticles to deliver the antibodies of the present invention is also contemplated herein. Antibody-conjugated nanoparticles may be used both for therapeutic and diagnostic applications. Antibody-conjugated nanoparticles and methods of preparation and use are described in detail by Arruebo, M., et al. 2009 ("Antibody-conjugated nanoparticles for biomedical applications" in J. Nanomat. Volume 2009, Article ID 439389, 24 pages, doi:
10.1 155/2009/439389), incorporated herein by reference. Nanoparticles may be developed and conjugated to antibodies contained in pharmaceutical compositions to target tumor cells or autoimmune tissue cells or vi rally infected cells. Nanoparticles for drug delivery have also been described in, for example, US 8257740, or US 8246995, each incorporated herein in its entirety.
[0161] In certain situations, the pharmaceutical composition can be delivered in a controlled release system. In one embodiment, a pump may be used. In another embodiment, polymeric materials can be used. In yet another embodiment, a controlled release system can be placed in proximity of the composition's target, thus requiring only a fraction of the systemic dose.
[0162] The injectable preparations may include dosage forms for intravenous, subcutaneous, intracutaneous, intracranial, intraperitoneal and intramuscular injections, drip infusions, etc. These injectable preparations may be prepared by methods publicly known. For example, the injectable preparations may be prepared, e.g., by dissolving, suspending or emulsifying the antibody or its salt described above in a sterile aqueous medium or an oily medium
conventionally used for injections. As the aqueous medium for injections, there are, for example, physiological saline, an isotonic solution containing glucose and other auxiliary agents, etc., which may be used in combination with an appropriate solubilizing agent such as an alcohol (e.g., ethanol), a polyalcohol (e.g., propylene glycol, polyethylene glycol), a nonionic surfactant [e.g., polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)], etc. As the oily medium, there are employed, e.g., sesame oil, soybean oil, etc., which may be used in combination with a solubilizing agent such as benzyl benzoate, benzyl alcohol, etc. The injection thus prepared is preferably filled in an appropriate ampoule.
[0163] A pharmaceutical composition of the present invention can be delivered subcutaneously or intravenously with a standard needle and syringe. In addition, with respect to subcutaneous delivery, a pen delivery device readily has applications in delivering a pharmaceutical composition of the present invention. Such a pen delivery device can be reusable or disposable. A reusable pen delivery device generally utilizes a replaceable cartridge that contains a pharmaceutical composition. Once all of the pharmaceutical composition within the cartridge has been administered and the cartridge is empty, the empty cartridge can readily be discarded and replaced with a new cartridge that contains the pharmaceutical composition. The pen delivery device can then be reused. In a disposable pen delivery device, there is no replaceable cartridge. Rather, the disposable pen delivery device comes prefilled with the pharmaceutical composition held in a reservoir within the device. Once the reservoir is emptied of the pharmaceutical composition, the entire device is discarded.
[0164] Numerous reusable pen and autoinjector delivery devices have applications in the subcutaneous delivery of a pharmaceutical composition of the present invention. Examples include, but certainly are not limited to AUTOPEN™ (Owen Mumford, Inc., Woodstock, UK), DISETRONIC™ pen (Disetronic Medical Systems, Burghdorf, Switzerland), HUMALOG MIX 75/25™ pen, HUMALOG™ pen, HUMALIN 70/30™ pen (Eli Lilly and Co., Indianapolis, IN), NOVOPEN™ I, II and III (Novo Nordisk, Copenhagen, Denmark), NOVOPEN JUNIOR™ (Novo Nordisk, Copenhagen, Denmark), BD™ pen (Becton Dickinson, Franklin Lakes, NJ),
OPTIPEN™, OPTIPEN PRO™, OPTIPEN STARLET™, and OPTICLIK™ (Sanofi-Aventis, Frankfurt, Germany), to name only a few. Examples of disposable pen delivery devices having applications in subcutaneous delivery of a pharmaceutical composition of the present invention include, but certainly are not limited to the SOLOSTAR™ pen (Sanofi-Aventis), the FLEXPEN™ (Novo Nordisk), and the KWIKPEN™ (Eli Lilly), the SURECLICK™ Autoinjector (Amgen, Thousand Oaks, CA), the PENLET™ (Haselmeier, Stuttgart, Germany), the EPIPEN (Dey, L.P.) and the HUMIRA™ Pen (Abbott Labs, Abbott Park, IL), to name only a few.
[0165] Advantageously, the pharmaceutical compositions for oral or parenteral use described above are prepared into dosage forms in a unit dose suited to fit a dose of the active ingredients. Such dosage forms in a unit dose include, for example, tablets, pills, capsules, injections (ampoules), suppositories, etc. The amount of the antibody contained is generally about 5 to about 500 mg per dosage form in a unit dose; especially in the form of injection, it is preferred that the antibody is contained in about 5 to about 100 mg and in about 10 to about 250 mg for the other dosage forms.
Therapeutic Uses of the Antibodies
[0166] The antibodies of the invention are useful, inter alia, for the treatment, prevention and/or amelioration of any disease or disorder associated with or mediated by PD-1 expression, signaling, or activity, or treatable by blocking the interaction between PD-1 and a PD-1 ligand (e.g., PD-L1 , or PD-L2) or otherwise inhibiting PD-1 activity and/or signaling. For example, the present invention provides methods for treating cancer (tumor growth inhibition), chronic viral infections and/or autoimmune disease by administering an anti-PD-1 antibody (or
pharmaceutical composition comprising an anti-PD-1 antibody) as described herein to a patient in need of such treatment. The antibodies of the present invention are useful for the treatment, prevention, and/or amelioration of disease or disorder or condition such as cancer, autoimmune disease or a viral infection and/or for ameliorating at least one symptom associated with such disease, disorder or condition. In the context of the methods of treatment described herein, the anti-PD-1 antibody may be administered as a monotherapy {i.e., as the only therapeutic agent) or in combination with one or more additional therapeutic agents (examples of which are described elsewhere herein).
[0167] In some embodiments of the invention, the antibodies described herein are useful for treating subjects suffering from primary or recurrent cancer, including, but not limited to, renal cell carcinoma, colorectal cancer, non-small-cell lung cancer, brain cancer (e.g., glioblastoma multiforme), squamous cell carcinoma of head and neck, gastric cancer, prostate cancer, ovarian cancer, kidney cancer, breast cancer, multiple myeloma, and melanoma.
[0168] The antibodies may be used to treat early stage or late-stage symptoms of cancer. In one embodiment, an antibody or fragment thereof of the invention may be used to treat metastatic cancer. The antibodies are useful in reducing or inhibiting or shrinking tumor growth of both solid tumors and blood cancers. In certain embodiments, treatment with an antibody or antigen-binding fragment thereof of the invention leads to more than 50% regression, more than 60% regression, more than 70% regression, more than 80% regression or more than 90% regression of a tumor in a subject. In certain embodiments, the antibodies may be used to prevent relapse of a tumor. In certain embodiments, the antibodies are useful in extending overall survival in a subject with cancer. In some embodiments, the antibodies are useful in reducing toxicity due to chemotherapy or radiotherapy while maintaining long-term survival in a patient suffering from cancer.
[0169] In certain embodiments, the antibodies of the invention are useful to treat subjects suffering from a chronic viral infection. In some embodiments, the antibodies of the invention are useful in decreasing viral titers in the host and/or rescuing exhausted T-cells. In certain embodiments, an antibody or fragment thereof of the invention may be used to treat chronic viral infection by lymphocytic choriomeningitis virus (LCMV). In some embodiments, an antibody or antigen-binding fragment thereof the invention may be administered at a therapeutic dose to a patient with an infection by human immunodeficiency virus (HIV) or human papilloma virus (HPV) or hepatitis B/C virus (HBV/HCV). In a related embodiment, an antibody or antigen- binding fragment thereof of the invention may be used to treat an infection by simian
immunodeficiency virus (SIV) in a simian subject such as cynomolgus.
[0170] In certain embodiments, a blocking antibody of the present invention may be
administered in a therapeutically effective amount to a subject suffering from a cancer or a viral infection.
[0171] In certain embodiments, the antibodies of the invention are useful for treating an autoimmune disease, including but not limited to, alopecia areata, autoimmune hepatitis, celiac disease, Graves' disease, Guillain-Barre syndrome, Hashimoto's disease, hemolytic anemia, inflammatory bowel disease, inflammatory myopathies, multiple sclerosis, primary biliary cirrhosis, psoriasis, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic lupus erthyematosus, vitiligo, autoimmune pancreatitis, autoimmune urticaria, autoimmune
thrombocytopenic purpura, Crohn's disease, diabetes type I, eosinophilic fasciitis, eosinophilic enterogastritis, Goodpasture's syndrome, myasthenia gravis, psoriatic arthritis, rheumatic fever, ulcerative colitis, vasculitis and Wegener's granulomatosis. In certain embodiments, an activating antibody of the invention may be used to treat a subject suffering from autoimmune disease.
[0172] One or more antibodies of the present invention may be administered to relieve or prevent or decrease the severity of one or more of the symptoms or conditions of the disease or disorder.
[0173] It is also contemplated herein to use one or more antibodies of the present invention prophylactically to patients at risk for developing a disease or disorder such as cancer, autoimmune disease and chronic viral infection.
[0174] In a further embodiment of the invention the present antibodies are used for the preparation of a pharmaceutical composition for treating patients suffering from cancer, autoimmune disease or viral infection. In another embodiment of the invention, the present antibodies are used as adjunct therapy with any other agent or any other therapy known to those skilled in the art useful for treating cancer, autoimmune disease or viral infection .
Combination Therapies and Formulations
[0175] Combination therapies may include an anti-PD-1 antibody of the invention and any additional therapeutic agent that may be advantageously combined with an antibody of the invention, or with a biologically active fragment of an antibody of the invention.
[0176] The antibodies of the present invention may be combined synergistically with one or more anti-cancer drugs or therapy used to treat cancer, including, for example, renal cell carcinoma, colorectal cancer, glioblastoma multiforme, squamous cell carcinoma of head and neck, non-small-cell lung cancer, colon cancer, ovarian cancer, adenocarcinoma, prostate cancer, glioma, and melanoma. It is contemplated herein to use anti-PD-1 antibodies of the invention in combination with immunostimulatory and/or immunosupportive therapies to inhibit tumor growth, and/or enhance survival of cancer patients. The immunostimulatory therapies include direct immunostimulatory therapies to augment immune cell activity by either "releasing the brake" on suppressed immune cells or "stepping on the gas" to activate an immune response. Examples include targeting other checkpoint receptors, vaccination and adjuvants. The immunosupportive modalities may increase antigenicity of the tumor by promoting immunogenic cell death, inflammation or have other indirect effects that promote an anti-tumor immune response. Examples include radiation, chemotherapy, anti-angiogenic agents, and surgery.
[0177] In various embodiments, one or more antibodies of the present invention may be used in combination with an antibody to PD-L1 , a second antibody to PD-1 (e.g., nivolumab), a LAG-3 inhibitor, a CTLA-4 inhibitor (e.g., ipilimumab), a TI M3 inhibitor, a BTLA inhibitor, a TIGIT inhibitor, a CD47 inhibitor, an antagonist of another T-cell co-inhibitor or ligand (e.g., an antibody to CD-28, 2B4, LY108, LAIR1 , ICOS, CD160 or VISTA), an indoleamine-2,3-dioxygenase (IDO) inhibitor, a vascular endothelial growth factor (VEGF) antagonist [e.g., a "VEGF-Trap" such as aflibercept or other VEGF-inhibiting fusion protein as set forth in US 7,087,41 1 , or an anti-VEGF antibody or antigen binding fragment thereof (e.g., bevacizumab, or ranibizumab) or a small molecule kinase inhibitor of VEGF receptor (e.g., sunitinib, sorafenib, or pazopanib)], an Ang2 inhibitor (e.g., nesvacumab), a transforming growth factor beta (TGF3) inhibitor, an epidermal growth factor receptor (EGFR) inhibitor (e.g., erlotinib, cetuximab), an agonist to a co- stimulatory receptor (e.g., an agonist to glucocorticoid-induced TNFR-related protein), an antibody to a tumor-specific antigen (e.g., CA9, CA125, melanoma-associated antigen 3 (MAGE3), carcinoembryonic antigen (CEA), vimentin, tumor-M2-PK, prostate-specific antigen (PSA), mucin-1 , MART-1 , and CA19-9), a vaccine (e.g., Bacillus Calmette-Guerin, a cancer vaccine), an adjuvant to increase antigen presentation (e.g., granulocyte-macrophage colony- stimulating factor), a bispecific antibody (e.g., CD3xCD20 bispecific antibody, PSMAxCD3 bispecific antibody), a cytotoxin, a chemotherapeutic agent (e.g., dacarbazine, temozolomide, cyclophosphamide, docetaxel, doxorubicin, daunorubicin, cisplatin, carboplatin, gemcitabine, methotrexate, mitoxantrone, oxaliplatin, paclitaxel, and vincristine), cyclophosphamide, radiotherapy, an IL-6R inhibitor (e.g., sarilumab), an IL-4R inhibitor (e.g., dupilumab), an IL-10 inhibitor, a cytokine such as I L-2, I L-7, IL-21 , and IL-15, an antibody-drug conjugate (ADC) (e.g., anti-CD19-DM4 ADC, and anti-DS6-DM4 ADC), an anti-inflammatory drug (e.g., corticosteroids, and non-steroidal anti-inflammatory drugs), a dietary supplement such as anti-oxidants or any palliative care to treat cancer. In certain embodiments, the anti-PD-1 antibodies of the present invention may be used in combination with cancer vaccines including dendritic cell vaccines, oncolytic viruses, tumor cell vaccines, etc. to augment the anti-tumor response. Examples of cancer vaccines that can be used in combination with anti-PD-1 antibodies of the present invention include MAGE3 vaccine for melanoma and bladder cancer, MUC1 vaccine for breast cancer, EGFRv3 (e.g., Rindopepimut) for brain cancer (including glioblastoma multiforme), or ALVAC-CEA (for CEA+ cancers).
[0178] In certain embodiments, the anti-PD-1 antibodies of the invention may be administered in combination with radiation therapy in methods to generate long-term durable anti-tumor responses and/or enhance survival of patients with cancer. In some embodiments, the anti-PD-1 antibodies of the invention may be administered prior to, concomitantly or after administering radiation therapy to a cancer patient. For example, radiation therapy may be administered in one or more doses to tumor lesions followed by administration of one or more doses of anti-PD- 1 antibodies of the invention. In some embodiments, radiation therapy may be administered locally to a tumor lesion to enhance the local immunogenicity of a patient's tumor (adjuvinating radiation) and/or to kill tumor cells (ablative radiation) followed by systemic administration of an anti-PD-1 antibody of the invention. For example, intracranial radiation may be administered to a patient with brain cancer (e.g., glioblastoma multiforme) in combination with systemic administration of an anti-PD-1 antibody of the invention. In certain embodiments, the anti-PD-1 antibodies of the invention may be administered in combination with radiation therapy and a chemotherapeutic agent (e.g., temozolomide) or a VEGF antagonist (e.g., aflibercept).
[0179] In certain embodiments, the anti-PD-1 antibodies of the invention may be administered in combination with one or more anti-viral drugs to treat chronic viral infection caused by LCMV, HIV, HPV, HBV or HCV. Examples of anti-viral drugs include, but are not limited to, zidovudine, lamivudine, abacavir, ribavirin, lopinavir, efavirenz, cobicistat, tenofovir, rilpivirine and corticosteroids. In some embodiments, the anti-PD-1 antibodies of the invention may be administered in combination with a LAG3 inhibitor, a CTLA-4 inhibitor or any antagonist of another T-cell co-inhibitor to treat chronic viral infection.
[0180] In certain embodiments, the anti-PD-1 antibodies of the invention may be combined with an antibody to a Fc receptor on immune cells for the treatment of an autoimmune disease. In one embodiment, an antibody or fragment thereof of the invention is administered in
combination with an antibody or antigen-binding protein targeted to an antigen specific to autoimmune tissue. In certain embodiments, an antibody or antigen-binding fragment thereof of the invention is administered in combination with an antibody or antigen-binding protein targeted to a T-cell receptor or a B-cell receptor, including but not limited to, Fca (e.g., CD89), Fey (e.g., CD64, CD32, CD16a, and CD16b), CD19, etc. The antibodies of fragments thereof of the invention may be used in combination with any drug or therapy known in the art (e.g., corticosteroids and other immunosuppressants) to treat an autoimmune disease or disorder including, but not limited to alopecia areata, autoimmune hepatitis, celiac disease, Graves' disease, Guillain-Barre syndrome, Hashimoto's disease, hemolytic anemia, inflammatory bowel disease, inflammatory myopathies, multiple sclerosis, primary biliary cirrhosis, psoriasis, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic lupus erthyematosus, vitiligo, autoimmune pancreatitis, autoimmune urticaria, autoimmune thrombocytopenic purpura, Crohn's disease, diabetes type I, eosinophilic fasciitis, eosinophilic enterogastritis,
Goodpasture's syndrome, myasthenia gravis, psoriatic arthritis, rheumatic fever, ulcerative colitis, vasculitis and Wegener's granulomatosis.
[0181] The additional therapeutically active agent(s)/component(s) may be administered prior to, concurrent with, or after the administration of the anti-PD-1 antibody of the present invention. For purposes of the present disclosure, such administration regimens are considered the administration of an anti-PD-1 antibody "in combination with" a second therapeutically active component.
[0182] The additional therapeutically active component(s) may be administered to a subject prior to administration of an anti-PD-1 antibody of the present invention. For example, a first component may be deemed to be administered "prior to" a second component if the first component is administered 1 week before, 72 hours before, 60 hours before, 48 hours before, 36 hours before, 24 hours before, 12 hours before, 6 hours before, 5 hours before, 4 hours before, 3 hours before, 2 hours before, 1 hour before, 30 minutes before, 15 minutes before, 10 minutes before, 5 minutes before, or less than 1 minute before administration of the second component. In other embodiments, the additional therapeutically active component(s) may be administered to a subject after administration of an anti-PD-1 antibody of the present invention. For example, a first component may be deemed to be administered "after" a second component if the first component is administered 1 minute after, 5 minutes after, 10 minutes after, 15 minutes after, 30 minutes after, 1 hour after, 2 hours after, 3 hours after, 4 hours after, 5 hours after, 6 hours after, 12 hours after, 24 hours after, 36 hours after, 48 hours after, 60 hours after, 72 hours after administration of the second component. In yet other embodiments, the additional therapeutically active component(s) may be administered to a subject concurrent with administration of an anti-PD-1 antibody of the present invention. "Concurrent" administration, for purposes of the present invention, includes, e.g., administration of an anti-PD-1 antibody and an additional therapeutically active component to a subject in a single dosage form {e.g., co- formulated), or in separate dosage forms administered to the subject within about 30 minutes or less of each other. If administered in separate dosage forms, each dosage form may be administered via the same route {e.g., both the anti-PD-1 antibody and the additional therapeutically active component may be administered intravenously, subcutaneously, etc.); alternatively, each dosage form may be administered via a different route (e.g., the anti-PD-1 antibody may be administered intravenously, and the additional therapeutically active component may be administered subcutaneously). In any event, administering the components in a single dosage from, in separate dosage forms by the same route, or in separate dosage forms by different routes are all considered "concurrent administration," for purposes of the present disclosure. For purposes of the present disclosure, administration of an anti-PD-1 antibody "prior to", "concurrent with," or "after" (as those terms are defined herein above) administration of an additional therapeutically active component is considered administration of an anti-PD-1 antibody "in combination with" an additional therapeutically active component).
[0183] The present invention includes pharmaceutical compositions in which an anti-PD-1 antibody of the present invention is co-formulated with one or more of the additional therapeutically active component(s) as described elsewhere herein using a variety of dosage combinations.
[0184] In exemplary embodiments in which an anti-PD-1 antibody of the invention is administered in combination with a VEGF antagonist (e.g., a VEGF trap such as aflibercept), including administration of co-formulations comprising an anti-PD-1 antibody and a VEGF antagonist, the individual components may be administered to a subject and/or co-formulated using a variety of dosage combinations. For example, the anti-PD-1 antibody may be administered to a subject and/or contained in a co-formulation in an amount selected from the group consisting of 0.01 mg, 0.02 mg, 0.03 mg, 0.04 mg, 0.05 mg, 0.1 mg, 0.2 mg, 0.3 mg, 0.4 mg, 0.5 mg, 0.6 mg, 0.7 mg, 0.8 mg, 0.9 mg, 1.0 mg, 1.5 mg, 2.0 mg, 2.5 mg, 3.0 mg, 3.5 mg, 4.0 mg, 4.5 mg, 5.0 mg, 6.0 mg, 7.0 mg, 8.0 mg, 9.0 mg, and 10.0 mg; and the VEGF antagonist (e.g., a VEGF trap such as aflibercept) may be administered to the subject and/or contained in a co-formulation in an amount selected from the group consisting of 0.1 mg, 0.2 mg, 0.3 mg, 0.4 mg, 0.5 mg, 0.6 mg, 0.7 mg, 0.8 mg, 0.9 mg, 1 .0 mg, 1.1 mg, 1 .2 mg, 1 .3 mg, 1 .4 mg, 1 .5 mg, 1 .6 mg, 1.7 mg, 1 .8 mg, 1 .9 mg, 2.0 mg, 2.1 mg, 2.2 mg, 2.3 mg, 2.4 mg, 2.5 mg, 2.6 mg, 2.7 mg, 2.8 mg, 2.9 mg and 3.0 mg. The combinations/co-formulations may be administered to a subject according to any of the administration regimens disclosed elsewhere herein, including, e.g., twice a week, once every week, once every 2 weeks, once every 3 weeks, once every month, once every 2 months, once every 3 months, once every 4 months, once every 5 months, once every 6 months, etc.
Administrative Regimens
[0185] According to certain embodiments of the present invention, multiple doses of an anti-PD- 1 antibody (or a pharmaceutical composition comprising a combination of an anti-PD-1 antibody and any of the additional therapeutically active agents mentioned herein) may be administered to a subject over a defined time course. The methods according to this aspect of the invention comprise sequentially administering to a subject multiple doses of an anti-PD-1 antibody of the invention. As used herein, "sequentially administering" means that each dose of anti-PD-1 antibody is administered to the subject at a different point in time, e.g., on different days separated by a predetermined interval [e.g., hours, days, weeks or months). The present invention includes methods which comprise sequentially administering to the patient a single initial dose of an anti-PD-1 antibody, followed by one or more secondary doses of the anti-PD-1 antibody, and optionally followed by one or more tertiary doses of the anti-PD-1 antibody. The anti-PD-1 antibody may be administered at a dose between 0.1 mg/kg to 100 mg/kg.
[0186] The terms "initial dose," "secondary doses," and "tertiary doses," refer to the temporal sequence of administration of the anti-PD-1 antibody of the invention. Thus, the "initial dose" is the dose which is administered at the beginning of the treatment regimen (also referred to as the "baseline dose"); the "secondary doses" are the doses which are administered after the initial dose; and the "tertiary doses" are the doses which are administered after the secondary doses. The initial, secondary, and tertiary doses may all contain the same amount of anti-PD-1 antibody, but generally may differ from one another in terms of frequency of administration. In certain embodiments, however, the amount of anti-PD-1 antibody contained in the initial, secondary and/or tertiary doses varies from one another (e.g., adjusted up or down as appropriate) during the course of treatment. In certain embodiments, two or more (e.g., 2, 3, 4, or 5) doses are administered at the beginning of the treatment regimen as "loading doses" followed by subsequent doses that are administered on a less frequent basis (e.g.,
"maintenance doses").
[0187] In certain exemplary embodiments of the present invention, each secondary and/or tertiary dose is administered 1 to 26 (e.g. , 1 , 1 ½, 2, 2½, 3, 3½, 4, 4½, 5, 5½, 6, 6½, 7, 7/2, 8, 8½, 9, 91/2, 10, 10½, 1 1 , 1 11/2, 12, 12½, 13, 131/2, 14, 14½, 15, 15½, 16, 16½, 17, 17½, 18, 18½, 19, 19½, 20, 20½, 21 , 21 ½, 22, 22½, 23, 23½, 24, 24½, 25, 25½, 26, 26½, or more) weeks after the immediately preceding dose. The phrase "the immediately preceding dose," as used herein, means, in a sequence of multiple administrations, the dose of anti-PD-1 antibody which is administered to a patient prior to the administration of the very next dose in the sequence with no intervening doses.
[0188] The methods according to this aspect of the invention may comprise administering to a patient any number of secondary and/or tertiary doses of an anti-PD-1 antibody. For example, in certain embodiments, only a single secondary dose is administered to the patient. In other embodiments, two or more (e.g. , 2, 3, 4, 5, 6, 7, 8, or more) secondary doses are administered to the patient. Likewise, in certain embodiments, only a single tertiary dose is administered to the patient. In other embodiments, two or more (e.g. , 2, 3, 4, 5, 6, 7, 8, or more) tertiary doses are administered to the patient.
[0189] In embodiments involving multiple secondary doses, each secondary dose may be administered at the same frequency as the other secondary doses. For example, each secondary dose may be administered to the patient 1 to 2 weeks or 1 to 2 months after the immediately preceding dose. Similarly, in embodiments involving multiple tertiary doses, each tertiary dose may be administered at the same frequency as the other tertiary doses. For example, each tertiary dose may be administered to the patient 2 to 12 weeks after the immediately preceding dose. In certain embodiments of the invention, the frequency at which the secondary and/or tertiary doses are administered to a patient can vary over the course of the treatment regimen. The frequency of administration may also be adjusted during the course of treatment by a physician depending on the needs of the individual patient following clinical examination.
[0190] The present invention includes administration regimens in which 2 to 6 loading doses are administered to a patient at a first frequency (e.g., once a week, once every two weeks, once every three weeks, once a month, once every two months, etc.), followed by administration of two or more maintenance doses to the patient on a less frequent basis. For example, according to this aspect of the invention, if the loading doses are administered at a frequency of, e.g. , once a month (e.g., two, three, four, or more loading doses administered once a month), then the maintenance doses may be administered to the patient once every five weeks, once every six weeks, once every seven weeks, once every eight weeks, once every ten weeks, once every twelve weeks, etc.).
Diagnostic Uses of the Antibodies
[0191 ] The anti-PD-1 antibodies of the present invention may be used to detect and/or measure PD-1 in a sample, e.g. , for diagnostic purposes. Some embodiments contemplate the use of one or more antibodies of the present invention in assays to detect a disease or disorder such as cancer, autoimmune disease or chronic viral infection. Exemplary diagnostic assays for PD-1 may comprise, e.g., contacting a sample, obtained from a patient, with an anti-PD-1 antibody of the invention, wherein the anti-PD-1 antibody is labeled with a detectable label or reporter molecule or used as a capture ligand to selectively isolate PD-1 from patient samples.
Alternatively, an unlabeled anti-PD-1 antibody can be used in diagnostic applications in combination with a secondary antibody which is itself detectably labeled. The detectable label or reporter molecule can be a radioisotope, such as 3H, 14C, 32P, 35S, or 125l; a fluorescent or chemiluminescent moiety such as fluorescein isothiocyanate, or rhodamine; or an enzyme such as alkaline phosphatase, β-galactosidase, horseradish peroxidase, or luciferase. Specific exemplary assays that can be used to detect or measure PD-1 in a sample include enzyme- linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence-activated cell sorting (FACS).
[0192] Samples that can be used in PD-1 diagnostic assays according to the present invention include any tissue or fluid sample obtainable from a patient, which contains detectable quantities of either PD-1 protein, or fragments thereof, under normal or pathological conditions. Generally, levels of PD-1 in a particular sample obtained from a healthy patient {e.g., a patient not afflicted with cancer or an autoimmune disease) will be measured to initially establish a baseline, or standard, level of PD-1. This baseline level of PD-1 can then be compared against the levels of PD-1 measured in samples obtained from individuals suspected of having a cancer-related condition, or symptoms associated with such condition.
[0193] The antibodies specific for PD-1 may contain no additional labels or moieties, or they may contain an N-terminal or C-terminal label or moiety. In one embodiment, the label or moiety is biotin. In a binding assay, the location of a label (if any) may determine the orientation of the peptide relative to the surface upon which the peptide is bound. For example, if a surface is coated with avidin, a peptide containing an N-terminal biotin will be oriented such that the C- terminal portion of the peptide will be distal to the surface.
[0194] Aspects of the invention relate to use of the disclosed antibodies as markers for predicting prognosis of cancer or an autoimmune disorder in patients. Antibodies of the present invention may be used in diagnostic assays to evaluate prognosis of cancer in a patient and to predict survival.
EXAMPLES
[0195] The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the methods and compositions of the invention, and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees Centigrade, room temperature is about 25°C, and pressure is at or near atmospheric.
Example 1 : Generation of Human Antibodies to PD-1
[0196] Human antibodies to PD-1 were generated using a fragment of PD-1 that ranges from about amino acids 25 - 170 of GenBank Accession NP_005009.2 (SEQ ID NO: 327) with a C93S change. The immunogen was administered directly, with an adjuvant to stimulate the immune response, to a VELOCIMMUNE® mouse comprising DNA encoding human
Immunoglobulin heavy and kappa light chain variable regions. The antibody immune response was monitored by a PD-1 -specific immunoassay. When a desired immune response was achieved splenocytes were harvested and fused with mouse myeloma cells to preserve their viability and form hybridoma cell lines. The hybridoma cell lines were screened and selected to identify cell lines that produce PD-1-specific antibodies. Using this technique, and the immunogen described above, several anti-PD-1 chimeric antibodies {i.e., antibodies possessing human variable domains and mouse constant domains) were obtained; exemplary antibodies generated in this manner were designated as H1 M7789N, H1 M7799N, H1 M7800N, H2M7780N, H2M7788N, H2M7790N, H2M7791 N, H2M7794N, H2M7795N, H2M7796N, and H2M7798N.
[0197] Anti-PD-1 antibodies were also isolated directly from antigen-positive B cells without fusion to myeloma cells, as described in U.S. 2007/0280945A1 , herein specifically incorporated by reference in its entirety. Using this method, several fully human anti-PD-1 antibodies (i.e., antibodies possessing human variable domains and human constant domains) were obtained; exemplary antibodies generated in this manner were designated as follows: H4H9019P, H4xH9034P2, H4xH9035P2, H4xH9037P2, H4xH9045P2, H4xH9048P2, H4H9057P2,
H4H9068P2, H4xH91 19P2, H4xH9120P2, H4xH9128P2, H4xH9135P2, H4xH9145P2,
H4xH8992P, H4xH8999P, and H4xH9008P.
[0198] The biological properties of the exemplary antibodies generated in accordance with the methods of this Example are described in detail in the Examples set forth below.
Example 2: Heavy and Light Chain Variable Region Amino Acid and Nucleotide
Sequences
[0199] Table 1 sets forth the amino acid sequence identifiers of the heavy and light chain variable regions and CDRs of selected anti-PD-1 antibodies of the invention. The
corresponding nucleic acid sequence identifiers are set forth in Table 2.
Table 1 : Amino Acid Sequence Identifiers
Figure imgf000049_0001
Designation
H1 M7789N 2 4 6 8 10 12 14 16
H1 M7799N 18 20 22 24 26 28 30 32
H1 M7800N 34 36 38 40 42 44 46 48
H2M7780N 50 52 54 56 58 60 62 64
H2M7788N 66 68 70 72 74 76 78 80
H2M7790N 82 84 86 88 90 92 94 96
H2M7791 N 98 100 102 104 106 108 1 10 1 12
H2M7794N 1 14 1 16 118 120 122 124 126 128
H2M7795N 130 132 134 136 138 140 142 144
H2M7796N 146 148 150 152 154 156 158 160
H2M7798N 162 164 166 168 170 172 174 176
H4H9019P 178 180 182 184 186 188 190 192
H4xH9034P2 194 196 198 200 202 204 206 208
H4xH9035P2 210 212 214 216 202 204 206 208
H4xH9037P2 218 220 222 224 202 204 206 208
H4xH9045P2 226 228 230 232 202 204 206 208
H4xH9048P2 234 236 238 240 202 204 206 208
H4H9057P2 242 244 246 248 202 204 206 208
H4H9068P2 250 252 254 256 202 204 206 208
H4xH91 19P2 258 260 262 264 202 204 206 208
H4xH9120P2 266 268 270 272 202 204 206 208
H4xH9128P2 274 276 278 280 202 204 206 208
H4xH9135P2 282 284 286 288 202 204 206 208
H4xH9145P2 290 292 294 296 202 204 206 208
H4xH8992P 298 300 302 304 186 188 190 192
H4xH8999P 306 308 310 312 186 188 190 192
H4xH9008P 314 316 318 320 186 188 190 192
Table 2: Nucleic Acid Sequence Identifiers
Figure imgf000050_0001
H2M7780N 49 51 53 55 57 59 61 63
H2M7788N 65 67 69 71 73 75 77 79
H2M7790N 81 83 85 87 89 91 93 95
H2M7791 N 97 99 101 103 105 107 109 1 11
H2M7794N 113 1 15 1 17 1 19 121 123 125 127
H2M7795N 129 131 133 135 137 139 141 143
H2M7796N 145 147 149 151 153 155 157 159
H2M7798N 161 163 165 167 169 171 173 175
H4H9019P 177 179 181 183 185 187 189 191
H4xH9034P2 193 195 197 199 201 203 205 207
H4xH9035P2 209 21 1 213 215 201 203 205 207
H4xH9037P2 217 219 221 223 201 203 205 207
H4xH9045P2 225 227 229 231 201 203 205 207
H4xH9048P2 233 235 237 239 201 203 205 207
H4H9057P2 241 243 245 247 201 203 205 207
H4H9068P2 249 251 253 255 201 203 205 207
H4xH9119P2 257 259 261 263 201 203 205 207
H4xH9120P2 265 267 269 271 201 203 205 207
H4xH9128P2 273 275 277 279 201 203 205 207
H4xH9135P2 281 283 285 287 201 203 205 207
H4xH9145P2 289 291 293 295 201 203 205 207
H4xH8992P 297 299 301 303 185 187 189 191
H4xH8999P 305 307 309 31 1 185 187 189 191
H4xH9008P 313 315 317 319 185 187 189 191
[0200] Antibodies are typically referred to herein according to the following nomenclature: Fc prefix (e.g. "H4xH," "M M," "H2M," etc.), followed by a numerical identifier (e.g. "7789," "7799," etc., as shown in Table 1 ), followed by a "P," "P2," "N," or "B" suffix. Thus, according to this nomenclature, an antibody may be referred to herein as, e.g., "H1 H7789N," "H1 M7799N," "H2M7780N," etc. The H4xH, H1 M, H2M and H2aM prefixes on the antibody designations used herein indicate the particular Fc region isotype of the antibody. For example, an "H4xH" antibody has a human lgG4 Fc with 2 or more amino acid changes as disclosed in
US20100331527, an "M M" antibody has a mouse lgG1 Fc, and an "H2M" antibody has a mouse lgG2 Fc (a or b isotype) (all variable regions are fully human as denoted by the first Ή' in the antibody designation). As will be appreciated by a person of ordinary skill in the art, an antibody having a particular Fc isotype can be converted to an antibody with a different Fc isotype (e.g., an antibody with a mouse lgG1 Fc can be converted to an antibody with a human lgG4, etc.), but in any event, the variable domains (including the CDRs) - which are indicated by the numerical identifiers shown in Table 1 - will remain the same, and the binding properties to antigen are expected to be identical or substantially similar regardless of the nature of the Fc domain.
[0201] In certain embodiments, selected antibodies with a mouse lgG1 Fc were converted to antibodies with human lgG4 Fc. In one embodiment, the lgG4 Fc domain comprises a serine to proline mutation in the hinge region (S108P) to promote dimer stabilization. Table 3 sets forth the amino acid sequence identifiers of heavy chain and light chain sequences of selected anti- PD-1 antibodies with human lgG4 Fc.
Table 3
Figure imgf000052_0001
[0202] Each heavy chain sequence in Table 3 comprised a variable region (VH or HCVR;
comprising HCDR1 , HCDR2 and HCDR3) and a constant region (comprising CH1 , CH2 and CH3 domains). Each light chain sequence in Table 3 comprised a variable region (VL or LCVR; comprising LCDR1 , LCDR2 and LCDR3) and a constant region (CL). SEQ ID NO: 330 comprised a HCVR comprising amino acids 1 - 117 and a constant region comprising amino acids 1 18 - 444. SEQ ID NO: 331 comprised a LCVR comprising amino acids 1 - 107 and a constant region comprising amino acids 108 - 214. SEQ ID NO: 332 comprised a HCVR comprising amino acids 1 - 122 and a constant region comprising amino acids 123 - 449. SEQ ID NO: 333 comprised a LCVR comprising amino acids 1 - 107 and a constant region comprising amino acids 108 - 214. SEQ ID NO: 334 comprised a HCVR comprising amino acids 1 - 119 and a constant region comprising amino acids 120 - 446. SEQ ID NO: 335 comprised a LCVR comprising amino acids 1 - 108 and a constant region comprising amino acids 109 - 215. SEQ ID NO: 336 comprised a HCVR comprising amino acids 1 - 121 and a constant region comprising amino acids 122 - 448. SEQ ID NO: 337 comprised a LCVR comprising amino acids 1 - 108 and a constant region comprising amino acids 109 - 215.
Example 3: Antibody binding to PD-1 as determined by Surface Plasmon Resonance
[0203] Binding association and dissociation rate constants {ka and kd, respectively), equilibrium dissociation constants and dissociation half-lives (KD and t½, respectively) for antigen binding to purified anti-PD1 antibodies were determined using a real-time surface plasmon resonance biosensor assay on a Biacore 4000 or Biacore T200 instrument. The Biacore sensor surface was derivatized with either a polyclonal rabbit anti-mouse antibody (GE, # BR-1008-38) or with a monoclonal mouse anti-human Fc antibody (GE, # BR-1008-39) to capture
approximately 100-900 RUs of anti-PD-1 monoclonal antibodies, expressed with either a mouse
Fc or a human Fc, respectively. The PD-1 reagents tested for binding to the anti-PD-1 antibodies included recombinant human PD-1 expressed with a C-terminal myc-myc- hexahistidine tag (hPD-1-MMH; SEQ ID NO: 321 ), recombinant cynomolgus monkey PD-1 expressed with a C-terminal myc-myc-hexahistidine tag (MfPD-1 -MMH; SEQ I D NO: 322), recombinant human PD-1 dimer expressed with either a C-terminal mouse lgG2a Fc tag (hPD-
1 -mFc; SEQ ID NO: 323) or with a C-terminal human lgG1 Fc (hPD1 -hFc; SEQ ID NO: 324), and monkey PD-1 with mFc (SEQ I D NO: 329). Different concentrations of PD-1 reagents ranging from 200nM to 3.7nM were injected over the anti-PD-1 monoclonal antibody captured surface at a flow rate of 30μΙ_/η"ΐίη on Biacore 4000 or at 50μΙ_/η"ΐίη on Biacore T200. The binding of the PD-1 reagents to captured monoclonal antibodies was monitored for 3 to 5 minutes while their dissociation from the antibodies was monitored for 7 to 10 minutes in HBST running buffer
(0.01 M HEPES pH 7.4, 0.15 M NaCI, 3 mM EDTA, 0.05% v/v Surfactant P20). Experiments were performed at 25°C and 37°C. Kinetic association (ka) and dissociation (kd) rate constants were determined by processing and fitting the data to a 1 : 1 binding model using Scrubber 2.0c curve fitting software. Binding dissociation equilibrium constants (KD) and dissociative half-lives
(t1 2) were then calculated from the kinetic rate constants as: KD (M) = kd I ka and t½ (min) =
[ln2/(60*/ d)]. Binding kinetics parameters for different anti-PD-1 monoclonal antibodies binding to different PD-1 reagents at 25°C and 37°C are tabulated in Tables 4 - 1 1.
Table 4: Binding Kinetics parameters of anti-PD-1 monoclonal antibodies binding to human PD-1- MMH at 25°C.
Figure imgf000053_0001
H4xH9034P 1.02E+05 1.49E-03 1.45E-08 7.8
H4xH9035P 1.03E+05 4.75E-04 4.62E-09 24
H4xH9037P 7.32E+04 7.95E-04 1.09E-08 15
H4xH9045P 5.40E+04 4.03E-03 7.46E-08 2.9
H4xH9048P2 1.37E+05 1.23E-03 8.95E-09 9.4
H4H9057P2 4.60E+04 1.34E-02 2.91 E-07 0.9
H4H9068P2 NB* NB* NB* NB*
H4xH91 19P2 7.84E+04 1.22E-03 1.56E-08 9.5
H4xH9120P2 3.32E+04 9.98E-04 3.01 E-08 12
H4xH9128P2 4.95E+04 7.19E-04 1.45E-08 16
H4xH9135P2 1.17E+05 1.20E-03 1.02E-08 10
H4xH9145P2 3.47E+04 1.34E-03 3.85E-08 8.6
H4xH8992P 1.50E+05 2.13E-02 1.41 E-07 0.5
H4xH8999P 2.83E+05 1.23E-03 4.33E-09 9.4
H4xH9008P 4.29E+04 1.33E-03 3.10E-08 8.7
H4H7795N2 6.35E+04 1.48E-03 2.33E-08 8
H4H7798N 1.47E+05 4.43E-04 3.01 E-09 26
*NB indicates that under the experimental conditions, PD-1 reagent did not bind to the captured anti-PD-1 monoclonal antibody
Table 5: Binding Kinetics parameters of anti-PD-1 monoclonal antibodies binding to human PD-1- MMH at 37°C.
Figure imgf000054_0001
H4xH91 19P2 2.40E+05 1.04E-02 4.35E-08 1.1
H4xH9120P2 6.88E+04 7.01 E-03 1.02E-07 1.6
H4xH9128P2 1.04E+05 4.36E-03 4.20E-08 2.6
H4xH9135P2 4.18E+05 1.1 1 E-02 2.66E-08 1.0
H4xH9145P2 1.31 E+05 1.23E-02 9.40E-08 0.9
H4xH8992P IC* IC* IC* IC*
H4xH8999P 5.99E+05 9.42E-03 1.57E-08 1.2
H4xH9008P 1.29E+05 8.09E-03 6.26E-08 1.4
H4H7795N2 6.41 E+04 6.64E-03 1.04E-07 1.7
H4H7798N 2.27E+05 1.70E-03 7.48E-09 7
*NB indicates that under the experimental conditions, PD-1 reagent did not bind to the captured anti-PD-1 monoclonal antibody. IC indicates that under the experimental conditions, PD-1 binding is inconclusive.
Table 6: Binding Kinetics parameters of anti-PD-1 monoclonal antibodies binding to human PD-1 dimer (human PD-1-mFc or human PD-1-hFc) at 25°C.
Figure imgf000055_0001
H4xH8999P 5.55E+05 1.20E-04 2.17E-10 96
H4xH9008P 3.52E+04 2.80E-05 7.96E-10 412
H4H7795N2 1.50E+05 9.25E-05 6.15E-10 125
H4H7798N 4.41 E+05 5.40E-05 1.22E-10 214
Table 7: Binding Kinetics parameters of anti-PD-1 monoclonal antibodies binding to human PD-1 dimer (human PD-1-mFc or human PD-1-hFc) at 37°C.
Figure imgf000056_0001
Table 8: Binding Kinetics parameters of anti-PD-1 monoclonal antibodies binding to MfPD-1- MMH at 25°C.
Figure imgf000057_0001
Table 9: Binding Kinetics parameters of anti-PD-1 monoclonal antibodies binding to MfPD-1- MMH at 37°C.
Figure imgf000057_0002
H2aM7795N 6.47E+04 3.89E-03 6.02E-08 3.0
H2aM7796N NB* NB* NB* NB*
H2aM7798N 1.42E+05 9.93E-04 7.00E-09 12
H1 M7799N 8.80E+04 4.67E-02 5.30E-07 0.2
H1 M7800N 8.40E+04 4.43E-02 5.27E-07 0.3
H4H9019P 2.14E+04 7.63E-03 3.56E-07 1.5
H4xH9034P 2.83E+05 2.47E-02 8.73E-08 0.5
H4xH9035P 3.06E+05 4.29E-03 1.40E-08 2.7
H4xH9037P 2.22E+05 8.80E-03 3.97E-08 1.3
H4xH9045P 1.40E+04 1.05E-01 7.54E-06 0.1
H4xH9048P2 4.15E+05 6.97E-03 1.68E-08 1.7
H4H9057P2 NB* NB* NB* NB*
H4H9068P2 NB* NB* NB* NB*
H4xH91 19P2 2.40E+05 1.23E-02 5.14E-08 0.9
H4xH9120P2 6.98E+04 7.48E-03 1.07E-07 1.5
H4xH9128P2 9.06E+04 4.18E-03 4.61 E-08 2.8
H4xH9135P2 4.62E+05 1.34E-02 2.89E-08 0.9
H4xH9145P2 1.71 E+05 1.43E-02 8.37E-08 0.8
H4xH8992P IC* IC* IC* IC*
H4xH8999P 9.83E+05 9.26E-03 9.41 E-09 1.2
H4xH9008P 5.86E+05 1.38E-02 2.35E-08 0.8
H4H7795N2 7.80E+04 6.89E-03 8.83E-08 1.7
H4H7798N 2.13E+05 2.23E-3 1.05E-08 5
*NB indicates that under the experimental conditions, PD-1 reagent did not bind to the captured anti-PD-1 monoclonal antibody. IC indicates that under the experimental conditions, PD-1 binding is inconclusive.
Table 10: Binding Kinetics parameters of anti-PD-1 monoclonal antibodies binding to monkey PD-1 dimer (monkey PD-1-mFc) at 25°C
Figure imgf000058_0001
H4xH9120P2 195 52 5.84E+04 1 .12E-04 1.91 E-09 104
H4xH9128P2 175 64 7.87E+04 1 .24E-04 1.57E-09 94
H4xH9135P2 150 74 2.38E+05 1 .43E-04 6.02E-10 81
H4xH9145P2 304 84 7.24E+04 1 .50E-04 2.08E-09 77
H4xH8992P 260 122 2.03E+05 2.51 E-04 1.24E-09 46
H4xH8999P 217 126 5.50E+05 1 .15E-04 2.10E-10 100
H4xH9008P 248 93 1 .20E+05 5.77E-05 4.80E-10 200
H4H7795N2 204 60 1 .60E+05 9.92E-05 6.21 E-10 1 16
H4H7798N 223 93 4.49E+05 6.14E-05 1.37E-10 188
Table 11 : Binding Kinetics parameters of anti-PD-1 monoclonal antibodies binding to monkey PD-1 dimer (monkey PD-1-mFc) at 37°C
Figure imgf000059_0001
* indicates that under the current experimental conditions, no dissociation of PD-1 reagent was observed and the value of kd was manually fixed at 1.00E-05
[0204] As shown in Table 4, at 25°C, 28 of the 29 anti-PD-1 antibodies of the invention bound to hPD-1-MMH with KD values ranging from 2.1 nM to 291 nM. One antibody, H4H9068P2, did not demonstrate any measurable binding to hPD-1 -MMH at 25°C. As shown in Table 5, at 37°C, 26 of the 29 anti-PD-1 antibodies of the invention bound to hPD-1-MMH with KD values ranging from 3.79nM to 1.51 μΜ. Three antibodies of the invention did not demonstrate any conclusive binding to hPD-1-MMH at 37°C. As shown in Table 6, at 25°C, all 29 anti-PD-1 antibodies of the invention bound to hPD-1 dimer proteins with KD values ranging from 65.5pM to 59.4nM. As shown in Table 7, at 37°C, all 27 anti-PD-1 antibodies of the invention bound to hPD-1 dimer proteins with KD values ranging from 3.09pM to 551 nM. As shown in Table 8, at 25°C, 27 of the 29 anti-PD-1 antibodies of the invention bound to MfPD-1-MMH with KD values ranging from 3.09nM to 551 nM. Two antibodies of the invention did not demonstrate any conclusive binding to MfPD-1-MMH at 25°C. As shown in Table 9, at 37°C, 25 of the 29 anti-PD-1 antibodies of the invention bound to MfPD-1-MMH with KD values ranging from 7.00nM to 7.54μΜ. Four antibodies of the invention did not demonstrate any conclusive binding to MfPD-1 -MMH at 37°C. As shown in Table 10, at 25°C, all 18 of the tested anti-PD-1 antibodies of the invention bound to MfPD-1 dimer with KD values ranging from 137pM to 54.2nM. As shown in Table 1 1 , at 37°C, all 18 of the tested anti-PD-1 antibodies of the invention bound to MfPD-1 dimer with KD values ranging from less than 49pM to 86.3nM.
Example 4: Blocking of PD-1 binding to PD-L1 as determined by ELISA
[0205] The ability of anti-PD-1 antibodies to block human PD-1 binding to its ligand, the PD-L1 receptor, was measured using three competition sandwich ELISA formats. Dimeric human PD- L1 proteins, comprised of a portion of the human PD-L1 extracellular domain expressed with either a C-terminal human Fc tag (hPD-L1-hFc; SEQ ID: 325) or a C-terminal mouse Fc tag (hPD-L1-mFc; SEQ ID: 326), or dimeric human PD-L2, comprised of the human PD-L2 extracellular region produced with a C-terminal human Fc tag (hPD-L2-hFc; R&D Systems, #1224-PL) were separately coated at a concentration of 2 μg mL in PBS on a 96-well microtiter plate overnight at 4°C. Nonspecific binding sites were subsequently blocked using a 0.5% (w/v) solution of BSA in PBS. In a first competition format, a constant concentration of 1.5nM of a dimeric human PD-1 protein, comprised of the human PD-1 extracellular domain expressed with a C-terminal mouse Fc tag (hPD-1-mFc; SEQ ID: 323) was added to serial dilutions of anti-PD-1 antibodies or isotype control antibodies so that the final concentrations of antibodies ranged from 0 to 200nM. In a second competition format, a constant concentration of 200 pM of dimeric biotinylated human PD-1 protein, comprised of the human PD-1 extracellular domain that was expressed with a C-terminal human Fc tag (biot-hPD-1 -hFc; SEQ ID: 323), was similarly added to serial dilutions of anti-PD-1 antibodies or an isotype control at final antibody concentrations ranging from 0 to 50nM. In a third competition format, a constant concentration of 100 pM of dimeric hPD-1-mFc protein was similarly added to serial dilutions of anti-PD-1 antibodies or an isotype control at final antibody concentrations ranging from 0 to 100nM. These antibody-protein complexes were then incubated for 1 hour at room temperature (RT). Antibody-protein complexes with 1 .5 nM constant hPD-1 -mFc were transferred to microtiter plates coated with hPD-L1 -hFc, antibody-protein complexes with 200 pM constant biot-hPD-1 -hFc were transferred to hPD-L1-mFc coated plates, and antibody-protein complexes with 100 pM constant hPD-1 - mFc were transferred to microtiter plates coated with hPD-L2-hFc. After incubating for 1 hour at RT, the wells were washed, and plate-bound hPD-1 -mFc was detected with an anti-mFc polyclonal antibody conjugated with horseradish peroxidase (HRP) (Jackson ImmunoResearch Inc., #1 15-035-164), and plate-bound biot-hPD-1 -hFc was detected with streptavidin conjugated with H RP (Thermo Scientific, #N200). Samples were developed with a TMB solution (BD Biosciences, #51-2606KC and #51 -2607KC) to produce a colorimetric reaction and then color development was stabilized by addition of 1 M sulfuric acid before measuring absorbance at 450nm on a Victor X5 plate reader. Data analysis was performed using a sigmoidal dose- response model within Prism™ software (GraphPad). The calculated IC50 value, defined as the concentration of antibody required to reduce 50% of human PD-1 binding to human PD-L1 or PD-L2, was used as an indicator of blocking potency. Percent maximum blockade was calculated as a measure of the ability of the antibodies to completely block binding of human PD-1 to human PD-L1 or PD-L2 on the plate as determined from the dose curve. This percent maximum blockade was calculated by subtracting from 100% the ratio of the reduction in signal observed in the presence of the highest tested concentration for each antibody relative to the difference between the signal observed for a sample of human PD-1 containing no anti-PD-1 antibody (0% blocking) and the background signal from HRP-conjugated secondary antibody alone (100% blocking).
[0206] Percent maximum blockade and the calculated IC50 values for antibodies blocking greater than 35% of the hPD-1 binding signal are shown in Tables 12 - 14. Antibodies that showed a decrease in the hPD-1 binding signal of 35% or less were defined as non-blockers. Antibodies that showed an increase of 35% or more in the binding signal of human PD-1 were characterized as non-blocker/enhancers. The theoretical assay bottom, defined as the minimum antibody concentration theoretically needed to occupy 50% binding sites of human PD-1 in the assay, is 0.75nM for the format using 1 .5nM constant hPD-1-mFc, 100 pM for the format using 200pM constant biot-hPD-1 -hFc, and 50pM for the format using 100pM constant hPD-1 -mFc, indicating that lower calculated IC50 values may not represent quantitative protein-antibody site binding. For this reason, antibodies with calculated IC5o values less than 0.75nM in the assay with hPD-1 -mFc constant and hPD-L1 coat, less than 100pM in the assay with biot-hPD-1 -hFc constant and hPD-L1 coat, and less than 50pM in the assay with hPD-1 -mFc constant and hPD- L2 coat are reported in Tables 12 - 14 as <7.5E-10M, <1 .0E-10M and <5.0E-1 1 M, respectively.
Table 12: ELISA blocking of human PD-1 binding to human PD-L1 by anti-PD-1 antibodies 200nM Antibody blocking
Blocking 1.5nM of hPD- 1.5nM hPD-1 -mFc binding
Antibody 1-mFc binding to hPD- to
L1 -hFc, ICso (M)
hPD-L1-hFc, % blocking
H4H9019P 1.3E-09 98
H4xH9034P 5.1 E-10* 98
H4xH9045P 2.8E-10* 98
H4xH9048P2 3.3E-09 67
H4xH9120P2 1.0E-09 98
H4xH9128P2 6.4E-10* 98
H4xH9035P 6.2E-10* 99
H4xH9135P2 1.1 E-09 97
H4xH9145P2 9.3E-10 90
H4xH9119P2 2.0E-10* 78
H4H9057P2 1.9E-10* 98
NBI/
H4H9068P2 -142
Enchancer
H4xH9037P 8.9E-10 100
H2aM7780N 6.9E-10* 94
H2aM7788N 2.2E-10* 74
NBI/
H1 7789N -170
Enchancer
H2aM7790N 1.5E-09 74
NBI/
H2aM7791 N -154
Enchancer
H2aM7794N 1.1 E-09 95
H2a 7795N2 8.6E-10 93
H2aM7796N NBI -20
H2aM7798N 6.8E-10* 93
H1 7799N 2.2E-10* 82
H1 7800N 6.0E-10* 83
H4xH8992P 1.3E-09 93
H4xH8999P 1.3E-09 88
H4xH9008P 2.4E-09 88
Isotype control 1 NBI -3
Isotype control 2 NBI -34
Isotype control 2 NBI -7
Isotype control 2 NBI -16
Assay theoretical bottom: for blocking ELISA with hPD-1-mFc constant and hPD-L1 coat is 7.5E-10 M (*) - Below theoretical bottom of the assay;
NT- not tested; NBI - non-blocker;
NBI/Enhancer - non-blocker/enhancer; IC - inconclusive
Table 13: ELISA blocking of biotinylated human PD-1 binding to human PD-L1 by anti-PD-1 antibodies
Figure imgf000062_0001
H4xH9045P 1.3E-10 95
H4xH9048P2 IC 76
H4xH9120P2 3.9E-10 96
H4xH9128P2 1.9E-10 97
H4xH9035P 8.0E-11* 95
H4xH9135P2 1.5E-10 96
H4xH9145P2 3.5E-10 97
H4xH9119P2 8.2E-11* 96
H4H9057P2 NBI / Enhancer -57
H4H9068P2 NBI / Enhancer -43
H4xH9037P 7.8E-11* 95
H2aM7780N 9.1 E-11* 100
H2a 7788N 6.5E-11* 100
H1 M7789N NBI 9
H2a 7790N 1.9E-10 99
H2aM7791 N NBI / Enhancer -45
H2a 7794N 2.3E-10 99
H2aM7795N2 6.9E-11* 99
H2aM7796N 1.3E-09 60
H2aM7798N 7.3E-11* 100
H1 M7799N 5.9E-11* 100
H1 M7800N 6.5E-11* 99
H4xH8992P 1.6E-10 97
H4xH8999P 1.8E-10 92
H4xH9008P 1.3E-09 93
Isotype control 1 NBI 19
Isotype control 2 NBI 35
Isotype control 2 NBI -18
Isotype control 2 NBI -11
Assay theoretical bottom: for blocking ELISA with biot-hPD-1-mFc constant and hPD-L1 coat is 1.0E-10 M (*) - Below theoretical bottom of the assay;
NT- not tested; NBI - non-blocker;
NBI/Enhancer - non-blocker/enhancer; IC - inconclusive
Table 14: ELISA blocking of human PD-1 binding to human PD-L2 by anti-PD-1 antibodies
Figure imgf000063_0001
Assay theoretical bottom: blocking ELISA with hPD-1-mFc constant and hPD-L2 coat is 5.0E-1 1 M NBI - non-blocker
[0207] As indicated in Table 12, in the first assay format, 23 of the 27 anti-PD-1 antibodies blocked 1 .5nM of h PD-1 -mFc from binding to hPD-L1-hFc with IC50 values ranging from 190pM to 3.3nM with the percent maximum blockage ranging from 67% to 100%. One antibody,
H2aM7796N, was identified as a non-blocker. Three anti-PD-1 antibodies (H4H9068P2,
H1 M7789N, and H2aM7791 N) were identified as non-blockers/ enhancers.
[0208] As shown in Table 13, in the second assay format, 23 of the 27 anti-PD-1 antibodies blocked 200pM of biot-hPD-1 -hFc from binding to hPD-L1 -mFc with IC5o values ranging from
59pM to 1.3nM with maximum percent blockade ranging from 60% to 101 %. One antibody,
H1 M7789N, was identified as a non-blocker. Three anti-PD-1 antibodies (H4H9057P2,
H4H9068P2, and H2aM7791 N) were identified as non-blockers/ enhancers.
[0209] In the third assay format as shown in Table 14, four anti-PD-1 antibodies of the invention, and an Isotype control were tested. All 4 anti-PD-1 antibodies of the invention blocked
100pM (fixed concentration) of hPD-1-mFc from binding to plate-coated hPD-L2-hFc with IC50 values ranging from 0.13nM to 1.3nM and with maximum percent blockade ranging from 94% to
100%.
Example 5: Blocking of PD-1 binding to PD-L1 as determined by biosensor assay and by surface plasmon resonance
[0210] Inhibition of human PD-1 from binding to human PD-L1 by different anti-PD-1 monoclonal antibodies was studied either using real time bio-layer interferometry assay on an Octet ed96 biosensor instrument (Fortebio Inc.) or using a real-time surface plasmon resonance biosensor assay on a Biacore 3000 instrument.
[0211] Inhibition studies for anti-PD-1 monoclonal antibodies expressed with a mouse Fc were performed on an Octet Red 96 instrument. First, 100nM of a recombinant human PD-1 expressed with a C-terminal mouse lgG2a Fc tag (hPD-1-mFc; SEQ ID NO: 323) was incubated with 500nM of each anti-PD-1 monoclonal antibody for at least 1 hour before running the inhibition assay. Around 0.8nm to 1.2nm of recombinant human PD-L1 expressed with a C- terminal human lgG1 Fc tag (hPD-L1-hFc; SEQ ID NO: 325) was captured using anti-human IgG Fc capture Octet biosensor. The Octet biosensors coated with hPD-L1-hFc were then dipped into wells containing the mixture of hPD-1-mFc and different anti-PD-1 monoclonal antibodies. The entire experiment was performed at 25°C in Octet HBST buffer (0.01 M HEPES pH7.4, 0.15M NaCI, 3 mM EDTA, 0.05% v/v Surfactant P20, 0.1 mg/ml_ BSA) with the plate shaking at a speed of l OOOrpm. The biosensors were washed in Octet HBST buffer in between each step of the experiment. The real-time binding responses were monitored during the entire course of the experiment and the binding response at the end of every step was recorded. Binding of hPD-1-mFc to the captured hPD-L1-hFc was compared in the presence and absence of different anti-PD-1 monoclonal antibodies and was used to determine the blocking behavior of the tested antibodies as shown in Table 15.
Table 15: Inhibition of human PD-L1 binding to PD-1 by anti-PD-1 monoclonal antibodies expressed with mouse Fc as measured on an Octet Red 96 instrument Binding of the mixture of
Anti-PD-1 Amount of hPD-L1- 100nM hPD-1 -mFc and
% Blocking antibody hFc Captured (nm) 500nM anti-PD-1 monoclonal
antibody (nm)
No Antibody 0.77 0.07 0
H2aM7780N 1.07 -0.01 1 14
H2aM7788N 0.74 0.00 100
H1 M7789N 0.80 0.05 29
H2aM7790N 0.90 -0.01 1 14
H2aM7791 N 1.17 0.23 -229
H2aM7794N 0.87 -0.01 1 14
H2aM7795N 0.28 -0.01 1 14
H2aM7796N 0.82 -0.02 129
H2aM7798N 0.85 0.01 86
H1 M7799N 0.79 0.00 100
H1 M7800N 0.96 0.00 100
[0212] As shown in Table 15, 9 of the 1 1 anti-PD-1 antibodies tested on the Octet Red 96 instrument demonstrated strong blocking of hPD-1 -mFc from binding to hPD-L1 -hFc ranging from 86% to complete blockade of binding. One anti-PD-1 antibody (H 1 M7789N) tested showed weaker blocking of hPD-1 -mFc binding to hPD-L1 -hFc with 29% blockade. One antibody (H2aM7791 N) tested demonstrated the ability to enhance the binding of hPD-1-mFc to hPD-L1 - hFc.
[0213] Next, inhibition studies for anti-PD-1 monoclonal antibodies expressed with human Fc were performed on a Biacore 3000 instrument. First, 100nM of a recombinant human PD-1 expressed with a C-terminal human IgG 1 Fc tag (hPD-1 -hFc; SEQ ID: 324) was incubated with 500nM of each anti-PD-1 monoclonal antibody for at least 2 hours before running the inhibition assay. A CM5 Biacore sensor surface was first derivatized with polyclonal rabbit anti-mouse antibody (GE Catalog# BR-1008-38) using standard EDC-NHS chemistry. Around 730 RUs of recombinant human PD-L1 expressed with a C-terminal mouse lgG2a Fc tag (hPD-L1 .mFc; SEQ ID: 326) was then captured followed by the injection of 100nM of hPD-1 .hFc in the presence and absence of different anti-PD-1 monoclonal antibodies at a flow rate of 25μΙ_Λτπη for 3 minutes. The entire experiment was performed at 25°C in running buffer comprised of 0.01 M HEPES pH7.4, 0.15M NaCI, 3mM EDTA, 0.05% v/v Surfactant Tween-20 (HBS-ET running buffer).The real-time binding responses were monitored during the entire course of the experiment and the binding response at the end of every step was recorded. Binding of hPD-1 - hFc to the captured hPD-L1 -mFc was compared in the presence and absence of different anti- PD-1 monoclonal antibodies and was used to determine the blocking behavior of the tested antibodies as shown in Table 16.
Table 16: Inhibition of human PD-L1 binding to PD-1 by anti-PD-1 monoclonal antibodies expressed with human Fc as measured on a Biacore 3000 instrument
Figure imgf000066_0001
[0214] As shown in Table 16, 18 out of 20 anti-PD-1 antibodies of the invention tested on the Biacore 3000 instrument demonstrated strong blocking of hPD-1 -hFc from binding to hPD-L1 - mFc with the blockade ranging from 96% to 100%. One antibody demonstrated the ability to enhance the binding of hPD-1 -hFc binding to hPD-L1-mFc. In this study, one of the tested antibodies of the invention (H4H9057P2) demonstrated non-specific background binding to the anti-mouse Fc capture surface.
Example 6: Octet cross-competition between anti-PD-1 antibodies [0215] Binding competition between anti-PD-1 monoclonal antibodies was determined using a real time, label-free bio-layer interferometry assay on an Octet RED384 biosensor (Pall ForteBio Corp.). The entire experiment was performed at 25°C in 0.01 M HEPES pH7.4, 0.15M NaCI, 3 mM EDTA, 0.05% v/v Surfactant Tween-20, 0.1 mg/ml_ BSA (Octet HBS-ET buffer) with the plate shaking at the speed of lOOOrpm. To assess whether 2 antibodies were able to compete with one another for binding to their respective epitopes on a recombinantly expressed human PD-1 with a C-terminal myc-myc-hexahistidine tag (hPD-1-MMH; SEQ ID: 321 ), around 0.1 nM of hPD-1-MMH was first captured onto anti-Penta-His antibody coated Octet biosensor tips (Pall ForteBio Corp., # 18-5079) by submerging the tips for 5 minutes into wells containing a 50μg/mL solution of hPD-1-MMH. The antigen captured biosensor tips were then saturated with the first anti-PD-1 monoclonal antibody (subsequently referred to as mAb-1 ) by dipping into wells containing 50μg mL solution of mAb-1 for 5 minutes. The biosensor tips were then subsequently dipped into wells containing a 50μg mL solution of a second anti-PD-1 monoclonal antibody (subsequently referred to as mAb-2). The biosensor tips were washed in Octet HBS-ET buffer in between every step of the experiment. The real-time binding response was monitored during the course of the experiment and the binding response at the end of every step was recorded. The response of mAb-2 binding to hPD-1-MMH pre-complexed with mAb-1 was compared and competitive/non-competitive behavior of different anti-PD-1 monoclonal antibodies was determined. Results are summarized in Table 17 (*Self-competing mAb2s are not listed).
Table 17: Cross-competition between pairs of selected anti-PD-1 antibodies
Figure imgf000067_0001
H2aM7790N, H4xH9035P, H4xH9037P, H4xH9045P, H2aM7795N, H2aM7791 N
H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7788N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2,
H2aM7794N H4xH9128P2, H4H9019P, H4xH91 19P2, H4xH9135P2, H4xH9034P,
H2aM7790N, H4xH9035P, H4xH9037P, H4xH9045P, H2aM7795N, H4xH9008P
H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7788N, H2aM7794N, H4xH9145P2, H4H9057P2, H4xH9120P2,
H2aM7798N H4xH9128P2, H4H9019P, H4xH91 19P2, H4xH9135P2, H4xH9034P,
H2aM7790N, H4xH9035P, H4xH9037P, H4xH9045P, H2a 7795N, H4xH9008P
H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7788N, H2aM7794N, H2aM7798N, H4H9057P2, H4xH9120P2,
H4xH9145P2
H4xH9128P2, H4H9019P, H4xH91 19P2, H4xH9135P2, H4xH9034P, H2aM7790N, H4xH9035P, H4xH9037P, H4xH9045P, H4xH9008P
H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7788N, H2aM7794N, H2aM7798N, H4xH9145P2, H4xH9120P2,
H4H9057P2 H4xH9128P2, H4H9019P, H4xH91 19P2, H4xH9135P2, H4xH9034P,
H2aM7790N, H4xH9035P, H4xH9037P, H4xH9045P, H2aM7795N, H2aM7791 N, H4xH9048P2
H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7788N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2,
H4xH9120P2
H4xH9128P2, H4H9019P, H4xH91 19P2, H4xH9135P2, H4xH9034P, H2aM7790N, H4xH9035P, H4xH9037P, H4xH9045P, H4xH9048P2
H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7788N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2,
H4xH9128P2 H4xH9120P2, H4H9019P, H4xH91 19P2, H4xH9135P2, H4xH9034P,
H2aM7790N, H4xH9035P, H4xH9037P, H4xH9045P, H4xH9008P, H4H9066P2, H4xH9048P2
H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2,
H4H9019P H4xH9128P2, H2aM7788N, H4xH91 19P2, H4xH9135P2,
H4xH9034P, H4xH9035P, H4xH9037P, H4xH9045P, H2aM7795N, H2aM7791 N
H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2,
H4xH91 19P2
H4xH9128P2, H2aM7788N, H4H9019P, H4xH9135P2, H4xH9034P, H4xH9035P, H4xH9037P, H4xH9045P, H2aM7795N, H2aM7791 N
H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2,
H4xH9135P2
H4xH9128P2, H2aM7788N, H4H9019P, H4xH9119P2, H4xH9034P, H4xH9035P, H4xH9037P, H4xH9045P, H2aM7795N, H2aM7791 N
H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2,
H4xH9034P H4xH9128P2, H4H9019P, H4xH9119P2, H4xH9135P2, H2a 7788N,
H2aM7790N, H4xH9035P, H4xH9037P, H4xH9045P, H2aM7795N, H2aM7791 N
H4xH8992P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7788N,
H2aM7790N H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2,
H4xH9128P2, H4xH9034P, H4xH8999P, H4xH9008P
H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2,
H4xH9035P
H4xH9128P2, H2aM7788N, H4H9019P, H4XH91 19P2, H4xH9034P, H4xH9135P2, H4xH9037P, H4xH9045P, H2aM7795N, H2aM7791 N
H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2,
H4xH9037P
H4xH9128P2, H2aM7788N, H4H9019P, H4xH9119P2, H4xH9034P, H4xH9135P2, H4xH9035P, H4xH9045P, H2aM7795N, H2aM7791 N
H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N,
H4xH9045P
H2aM7794N, H2aM7798N, H4xH9145P2, H4H9057P2, H4xH9120P2, H4xH9128P2, H2aM7788N, H4H9019P, H4xH9119P2, H4xH9034P,
H4xH9135P2, H4xH9035P, H4xH9037P, H2aM7795N, H2aM7791 N
H4xH8992P, H4xH8999P, H1 M7799N, H2aM7780N, H1 M7800N, H2aM7794N, H2aM7798N, H4H9057P2, H2a 7788N, H4H9019P,
H2aM7795N
H4xH9119P2, H4xH9034P, H4xH9135P2, H4xH9035P, H4xH9037P, H4xH9045P, H2aM7791 N
H4xH8999P, H2a 7780N, H2aM7794N, H2aM7798N, H4xH9145P2,
H4xH9008P
H4xH9128P2, H2aM7790N, H4H9068P2, H1 M7799N, H4xH9048P2
H2aM7788N, H4H9057P2, H4H9019P, H4xH9119P2, H4xH9135P2,
H2aM7791 N
H4xH9034P, H4xH9035P, H4xH9037P, H4xH9045P, H2aM7795N
H4H9068P2 H4xH9128P2, H4xH9008P, H1 M7789N, H4xH9048P2
H1 M7789N H4xH9008P, H4H9068P2, H4xH9048P2
H4H9057P2, H4xH9120P2, H4xH9128P2, H4H9019P, H4xH9008P,
H4xH9048P2
H4H9068P2, H1 M7799N
[0216] A second binding competition between a panel of selected anti-PD-1 monoclonal antibodies was determined using a real time, label-free bio-layer interferometry assay on an Octet HTX biosensor (Pall ForteBio Corp.). The entire experiment was performed at 25°C in 0.01 M HEPES pH7.4, 0.15M NaCI, 3 mM EDTA, 0.05% v/v Surfactant Tween-20, 0.1 mg/ml_ BSA (Octet HBS-ET buffer) with the plate shaking at the speed of l OOOrpm. To assess whether 2 antibodies were able to compete with one another for binding to their respective epitopes on the hPD-1-MMH, around 0.25nm of hPD-1-MMH was first captured onto anti-Penta-His antibody coated Octet biosensor tips (Fortebio Inc, # 18-5079) by submerging the tips for 150 seconds into wells containing a 10μg/mL solution of hPD-1-MMH. The antigen-captured biosensor tips were then saturated with a first anti-PD-1 monoclonal antibody (subsequently referred to as mAb-1 ) by dipping into wells containing 100μg mL solution of mAb-1 for 5 minutes. The biosensor tips were then subsequently dipped into wells containing a 100μg mL solution of second anti-PD-1 monoclonal antibody (subsequently referred to as mAb-2) for 4 minutes. All the biosensors were washed in Octet HBS-ET buffer in between every step of the experiment. The real-time binding response was monitored during the course of the experiment and the binding response at the end of every step was recorded as shown in Figure 2. The response of mAb-2 binding to hPD-1 -MMH pre-complexed with mAb-1 was compared and competitive/non- competitive behavior of different anti-PD-1 monoclonal antibodies was determined. Results are summarized in Table 18 (*Self-competing mAb2s are not listed).
Table 18: Cross-competition between pairs of selected anti-PD-1 antibodies
Figure imgf000069_0001
[0217] Under the experimental conditions disclosed in this Example, H4H7795N2 cross- competed with H4H7798N; H4H7798N cross-competed with H4H7795N2 and H4H9008P; H4H9008P cross-competed with H4H7798N and H4H9068P2; H4H9068P2 cross-competed with H4H9008P and H4H9048P2.
Example 7: Antibody binding to cells overexpressing PD-1
[0218] The binding of anti-PD-1 antibodies to a human embryonic kidney cell line (HEK293; ATCC, #CRL-1573) stably transfected with full length human PD-1 (amino acids 1 to 289 of accession number NP_005009.2) (HEK293/hPD-1 ) was determined by FACS.
[0219] For the assay, adherent cells were detached using trypsin or enzyme-free dissociation buffer and blocked with complete medium. Cells were centrifuged and resuspended at a concentration of 2.5-6χ10Λ6 cells/mL in cold PBS containing 2% FBS. HEK293 parental and HEK293/hPD-1 cells were then incubated for 15-30min on ice with 100nM of each anti-PD-1 antibody. Unbound antibodies were removed by washing with D-PBS containing 2% FBS, and cells were subsequently incubated with an allophycocyanin-conjugated secondary F(ab')2 recognizing either human Fc (Jackson ImmunoResearch, # 109-136-170) or mouse Fc (Jackson ImmunoResearch, #1 15-136-146) for 15-30 minutes on ice. Cells were washed with D-PBS containing 2% FBS to remove unbound secondary F(ab')2 and fluorescence measurements were acquired using either a HyperCyte (IntelliCyt, Inc.) flow cytometer or an Accuri flow cytometer (BD Biosciences). Data was analyzed using FlowJo software (Tree Star).
Table 19: FACS binding of anti-PD-1 antibodies to HEK293/hPD-1 cells and parental HEK293 cells
Figure imgf000070_0001
H4xH9008P 509 26233 51.5
H4xH9034P 147 10115 69.0
H4xH9035P 108 9915 91.7
H4xH9037P 108 8787 81.4
H4xH9045P 95 8884 93.7
H4xH9048P2 102 7196 70.8
H4xH91 19P2 109 9142 84.0
H4xH9120P2 109 9975 91.9
H4xH9128P2 135 9081 67.5
H4xH9135P2 114 9380 82.2
H4xH9145P2 226 1 1552 51.2
[0220] As shown in Table 19, 25 of the 27 anti-PD-1 antibodies of the invention showed strong binding to the HEK293/ hPD-1 cells compared to binding on the parental HEK293 line. Two antibodies of the invention (H2aM7795N and H4H9068P2) bound weaker to human PD-1 expressing cells compared to the other antibodies tested.
[0221 ] To further characterize anti-PD1 antibodies of the invention, dose-dependent binding to a human embryonic kidney cell line (HEK293; ATCC, #CRL-1573) stably transfected with full length human PD-1 (amino acids 1 to 289 of accession number NP_005009.2) (HEK293/hPD-1 ) was determined by FACS.
[0222] For the assay, adherent cells were detached using trypsin and blocked with complete medium. Cells were centrifuged and resuspended at a concentration of 6x10Λ6 cells/mL in staining buffer (1 % FBS in PBS). To determine the EC50 and Emax of the anti-PD1 antibodies, 90uL of cell suspension was incubated for 30 minutes on ice with a serial dilution of anti-PD-1 antibodies and controls diluted to a final concentration ranging from 5 pM to 100 nM (no mAb sample was included as negative control) in staining buffer. Cells were then centrifuged and pellets were washed once with staining buffer to remove unbound antibodies. Cells were subsequently incubated for 30 minutes on ice either with an allophycocyanin-conjugated secondary F(ab')2 recognizing human Fc (Jackson ImmunoResearch, # 109-136-170) or mouse Fc (Jackson ImmunoResearch, #1 15-136-071 ). Cells were centrifuged and pellets were washed once with staining buffer to remove unbound secondary F(ab')2 and then fixed overnight with a 1 :1 dilution of Cytofix (BD Biosciences, # 554655) and staining buffer. The following day, cells were centrifuged and pellets were washed once with staining buffer, resuspended and filtered. Fluorescence measurements were acquired on Hypercyt® cytometer and analyzed in ForeCyt™ (IntelliCyt; Albuquerque, NM) to determine the mean fluorescence intensities (MFI). The EC50 values were calculated from a four-parameter logistic equation over an 1 1 -point response curve using GraphPad Prism. Emax for each antibody was defined as the binding at the highest antibody dose (100nM) tested.
Table 20: Dose dependent FACS binding of anti-PD-1 antibodies to HEK293/hPD-1 cells Max Geom. Mean
Antibody ECso [M] [MFI] @ 100nM
H2aM7779N 2.59E-09 16832
H2aM7780N 1.69E-09 18415
H2aM7781 N 5.67E-10 13740
H2aM7782N 1.26E-09 17302
H2aM7787N 2.40E-09 15744
H2aM7788N 3.21 E-10 14827
H2aM7790N 1.71 E-10 19196
H2aM7791 N No EC50 determined 1397
H2aM7794N 1.37E-09 16406
H2aM7795N No EC50 determined 624
H2aM7798N 6.985E-1 1 20900
H1 M7799N 3.318E-1 1 24405
H1 M7800N 4.80E-11 20763
H4xH8992P 5.45E-11 1 1368
H4xH8999P 5.27E-11 28341
H4H9019P 1.40E-09 29201
H4xH9034P 2.09E-10 32388
H4xH9035P 1.15E-10 28708
H4xH9037P 6.74E-10 36441
H4xH9045P 9.17E-11 24662
H4xH9048P2 6.68E-10 33687
H4H9057P2 2.363E-10 19953
H4H9068P2 No EC50 determined 639
H4xH9119P2 3.476E-10 37789
H4xH9120P2 4.797E-10 34057
H4xH9128P2 1.551 E-09 37167
H4xH9135P2 1.048E-10 32793
H4xH9145P2 2.321 E-10 30613
mlgG1 isotype N/A 200
mlgG2a isotype N/A 239
hlgG4 isotype N/A 459
Table 21 : Dose dependent FACS binding of anti-PD-1 antibodies to HEK293/hPD-1 cells
Figure imgf000072_0001
hlgG4 isotype N/A 809
[0223] As shown in Table 20, 25 of 28 anti-PD1 antibodies of the invention showed dose dependent binding to HEK293/hPD-1 cells with EC50 values ranging from 33.18pM to 2.59nM and Emax values ranging from 37,789 to 1 1 ,368 MFI. Three anti-PD1 antibodies of the invention did not demonstrate strong binding to HEK293/hPD-1 cells and therefore an EC5o value could not be determined. None of the isotype controls demonstrated any measurable binding in this assay.
[0224] As shown in Table 21 , 3 of 6 anti-PD1 antibodies of the invention showed dose dependent binding to HEK293/hPD-1 cells with EC5o values ranging from 509pM to 4.81 nM and Emax values ranging from 39,774 to 14,1 1 1 MFI. Three antibodies of the invention tested bound to HEK293/hPD-1 cells, but did not reach a plateau. Therefore their precise EC5o values could not be determined and their EC5o values are referred to as inconclusive. None of the isotype controls demonstrated any measurable binding in this assay.
Example 8: Blocking of PD-1 -induced T-cell down-regulation in a T-cell/APC luciferase reporter assay
[0225] T-cell activation is achieved by stimulating T-cell receptors (TcR) that recognize specific peptides presented by major histocompatibility complex class I or II proteins on antigen- presenting cells (APC). Activated TcRs in turn initiate a cascade of signaling events that can be monitored by reporter genes driven by transcription factors such as activator-protein 1 (AP-1 ), Nuclear Factor of Activated T-cells (NFAT) or Nuclear factor kappa-light-chain-enhancer of activated B cells (NFKb). T-cell response is modulated via engagement of co-receptors expressed either constitutively or inducibly on T-cells. One such receptor is PD-1 , a negative regulator of T-cell activity. PD-1 interacts with its ligand, PD-L1 , which is expressed on target cells including APCs or cancer cells, and acts to deliver inhibitory signals by recruiting phosphatases to the TcR signalosome, resulting in the suppression of positive signaling.
[0226] The ability of anti-PD-1 antibodies to antagonize PD-1/PD-L1-mediated signaling through the PD-1 receptor in human T cell lines was assessed using an in vitro cell based assay shown in Figure 1. The bioassay was developed to measure T cell signaling induced by interaction between APC and T cells by utilizing a mixed culture derived from two mammalian cell lines: Jurkat cells (an immortalized T cell line) and Raji cells (a B cell line). For the first component of the bioassay, Jurkat Clone E6-1 cells (ATCC, #TIB-152) were transduced with the Cignal Lenti AP-1 Luc Reporter (Qiagen - Sabiosciences, #CLS-01 1 L) as per the
manufacturer's instructions. The lentivirus encodes the firefly luciferase gene under the control of a minimal CMV promoter, tandem repeats of the TPA-inducible transcriptional response element (TRE) and a puromycin resistance gene. The engineered Jurkat cell line was subsequently transduced with a PD-1 chimera comprising the extracellular domain of human PD-1 (amino acids from 1 to 170 of human PD1 ; accession number NP_005009.2) and the trans-membrane and cytoplasmic domains of human CD300a (amino acids from 181 to 299 of human CD300a; accession number NP_009192.2). The resulting stable cell line (Jurkat/AP1 - Luc/ hPD1 -hCD300a) was selected and maintained in RPMI/10% FBS/
penicillin/streptomycin/glutamine supplemented with 500ug/mL G418+1 ug/mL puromycin.
[0227] For the second component of the bioassay, Raji cells (ATCC, #CCL-86) were transduced with human PD-L1 gene (amino acids 1 -290 of accession number NP_054862.1 ) that had been cloned into a lentiviral (pLEX) vector system (Thermo Scientific Biosystems, #OHS4735). Raji cells, positive for PD-L1 (Raji/ hPD-L1 ) were isolated by FACS using a PD-L1 antibody and maintained in lscove/10% FBS/penicillin/streptomycin/glutamine supplemented with 1 ug/ml_ puromycin.
[0228] To simulate the APC/T cell interaction, a bispecific antibody composed of one Fab arm that binds to CD3 on T cells and the other one Fab arm binding that binds to CD20 on Raji cells (CD3xCD20 bispecific antibody; e.g., as disclosed in US20140088295) was utilized. The presence of the bispecific molecule in the assay results in the activation of the T cell and APC by bridging the CD3 subunits on T-cells to CD20 endogenously expressed on Raji cells. Ligation of CD3 with anti-CD3 antibodies has been demonstrated to lead to activation of T cells. In this bioassay, antibodies blocking the PD1 /PD-L1 interaction rescue T-cell activity by disabling the inhibitory signaling and subsequently leading to increased AP1 -Luc activation.
[0229] In the luciferase-based bioassay, RPMI 1640 supplemented with 10% FBS and penicillin/streptomycin/glutamine was used as assay medium to prepare cell suspensions and antibody dilutions to carry out the screening of anti-PD1 monoclonal antibodies (mAbs). On the day of the screening, EC50 values of anti-PD1 mAbs, in the presence of a fixed concentration of CD3xCD20 bispecific antibody (30 pM), as well as the EC50 of the bispecific antibody alone, were determined. In the following order, cells and reagents were added to 96 well white, flat- bottom plates. For the anti-PD1 mAb EC50 determinations, first a fixed concentration of CD3xCD20 bispecific antibody (final 30 pM) was prepared and added to the microtiter plate wells. Then 12-point serial dilutions of anti-PD1 mAbs and controls were added (final concentrations ranging from 1.7 pM to 100 nM; plus wells with assay medium alone). For the bispecific antibody (alone) EC50 determination, the bispecific antibody, at final concentrations ranging from 0.17 pM to 10 nM (plus wells with assay medium alone), was added to the microtiter plate wells. Subsequently, a 2.5x10A6/mL Raji/hPD-L1 cell suspension was prepared and 20 uL per well was added (final cell number/well 5x10Λ4 cells). Plates were left at room temperature (15-20 minutes), while a suspension of 2.5x10A6/mL of Jurkat AP1 - Luc/hPD1 (ecto)-hCD300a(TM-Cyto) was prepared. 20 uL of the Jurkat suspension (final cell number/well 5x10Λ4 cells) was added per well. Plates containing the co-culture were incubated for 5 to 6 hours at 37°C/5% C02. Samples were tested in duplicates and luciferase activity was then detected after the addition of ONE-Glo™ (Promega, # E6051 ) reagent and relative light units (RLUs) were measured on a Victor luminometer.
[0230] RLU values for each screened antibody were normalized by setting the assay condition with fixed (30 pM) concentration of the CD3/CD20 bispecific antibody, but without anti-PD-1 antibody to 100%. This condition corresponds to the maximal AP1-Luc response elicited by the bispecific molecule in the presence of the PD-1/PD-L1 inhibitory signal. Upon addition of the anti-PD-1 antibody, the inhibitory signal is suppressed, and the increased stimulation is shown here as Emax, the percentage increase in the signal in the presence of the highest antibody dose tested (100 nM). To compare potency of the anti-PD1 antibodies tested, the concentration of antibody at which the normalized RLU value reached 150% activation was determined from a four-parameter logistic equation over a 12-point response curve using GraphPad Prism. The results are summarized in Table 22 and Table 23, respectively.
Table 22: Anti-PD1 antibody blocking PD-1/PD-L1 dependent inhibition of AP1-Luc signaling in
Experiment 1
Figure imgf000075_0001
H4xH9145P2 2.40E-09 185
H4xH8992P 5.32E-09 178
H4xH8999P 8.63E-10 217
H4H7798N 1.54E-09 202 mlgG1 isotype control N/A 92
mlgG2a isotype control N/A 91
hlgG4 isotype control N/A 94
N/A= not applicable because at the concentrations tested these antibodies did not activate 150%
Table 23: Anti-PD1 antibody blocking PD-1/PD-L1 dependent inhibition of AP1-Luc signaling in
Experiment 2
Figure imgf000076_0001
N/A= not applicable because at the concentrations tested these antibodies did not activate 150%
[0231] As shown in Table 22, 25 out of the 31 anti-PD-1 antibodies of the invention tested blocked PD-1/PD-L1 inhibition with Emax values ranging from 239 to 163. Six out of the 31 anti- PD-1 antibodies of the invention did not demonstrate substantial blockade of PD1/PD-L1 interaction when tested in this assay.
[0232] As shown in Table 23, 2 out of the 4 anti-PD-1 antibodies of the invention tested blocked PD-1/PD-L1 inhibition with Emax values of 150 and 343%, respectively. 2 out of the 4 anti-PD-1 antibodies of the invention did not demonstrate substantial blockade of PD1/PD-L1 interaction when tested in this assay.
Example 9: In vivo efficacy of anti-PD-1 antibodies
[0233] To determine the effect of a select number of anti-PD-1 antibodies of the invention in a relevant in vivo model, three MC38.ova tumor growth studies, involving subcutaneous injection of tumor cells and started on different days, were conducted in mice that were homozygous for the expression of the extracellular domain of human PD-1 in place of extracellular domain of mouse PD-1 (PD-1 Humln mice) on a 75% C57/BI6 / 25% 129 strain background.
[0234] For the studies, mice were divided evenly according to body weight into 5 treatment or control groups for Study 1 (5 mice per group), 8 treatment or control groups for Study 2 (5 mice per group), and 5 treatment or control groups for Study 3 (7 mice per group). At day 0, mice were anesthetized by isoflurane inhalation and then injected subcutaneously into the right flank with 5x105 MC38.ova cells in suspension of 100uL of DMEM for Study 1 or 1x106 MC38.ova cells in suspension of 100 uL of DMEM for Study 2 and Study 3. For Study 1 , treatment groups were intraperitoneal^ injected with 200ug of either one of three anti-PD-1 antibodies of the invention, or an isotype control antibody with irrelevant specificity on days 3, 7, 10, 14, and 17 of the experiment, while one group of mice was left untreated. For Study 2, treatment groups were intraperitoneally injected with either one of three anti-PD-1 antibodies of the invention at 10mg/kg or 5mg/kg per/dose, one antibody of the invention (H4H7795N2) at 10mg/kg per dose, or an isotype control antibody with irrelevant specificity at 10mg/kg on days 3, 7, 10, 14, and 17 of the experiment. For Study 3, treatment groups were intraperitoneally injected with either one of two anti-PD-1 antibodies of the invention at 5mg/kg or 2.5mg/kg per/dose, or an isotype control antibody with irrelevant specificity at 5mg/kg on days 3, 7, 10, 14, and 17 of the experiment. Experimental dosing and treatment protocol for groups of mice are shown in Table 24.
Table 24: Experimental dosing and treatment protocol for groups of mice
Figure imgf000077_0001
[0235] For the studies, average tumor volumes determined by caliper measurements and percent survival at Day 14 or 17 and Day 23 or 24 of each experiment for each treatment group were recorded. In addition, the number of tumor-free mice were also assessed at the end of the study (Day 42 for Study 1 and Day 31 for Study 2 and Study 3). Results, expressed as mean tumor volume (mm3)(±SD), percent survival, and number of tumor-free mice are shown in Table 23 for Study 1 , Table 3 for Study 2, and Table 4 for Study 3. Table 25: Mean tumor volume, percent survival and numbers of tumor free mice in each treatment group from in vivo tumor Study 1
Figure imgf000078_0001
[0236] As shown in Table 25 for Study 1 , mice treated with one antibody of the invention, H4H7798N did not develop any detectable tumors during the course of the study. Mice treated with H4H9008P exhibited a sustained reduced tumor volume as compared to controls at days 17 and 24 of the study with 3 out of 5 mice or 4 out of 5 mice being tumor free by the end of the experiment, respectively. In contrast, treatment with one of the anti-PD1 antibodies,
H4H7795N2, did not demonstrate significant efficacy in reducing tumor volume in this study as compared to controls. By day 23 of the study, 1 out of 5 mice died in the H4H7795N2 group, and 2 out of 5 mice died in the isotype control treatment group. In non-treatment group and isotype control group some mice exhibited spontaneous regression of tumors (1 out of 5 mice and 2 out of 5 mice, respectively).
Table 26: Mean tumor volume, percent survival and numbers of tumor free mice in each treatment group from in vivo tumor Study 2
Figure imgf000078_0002
[0237] As shown in Table 26 for Study 2, mice treated with one antibody of the invention, H4H7798N at 10mg/kg did not develop detectable tumors during the course of the study.
Groups of mice treated with 10 mg/kg of either H4H9008P or H4H9048P2 exhibited substantially reduced tumor volume as compared to controls at days 17 and 24 of the study. Four out of 5 mice in each group treated with 10mg/kg of either H4H9008P or H4H9048P2 were tumor free at Day 31 , whereas in the isotype control treatment group only 1 out of 5 animals was tumor free as a result of spontaneous tumor regression. One antibody tested at 10mg/kg, H4H7795N2, demonstrated substantially reduced tumor volume as compared to controls at days 17 and 24 of the study, but this antibody was the least efficacious anti-PD1 antibody with only 2 out of 5 mice surviving at the end of the experiment.
[0238] A dose-dependent response in tumor suppression at the tested doses (5 mg/kg and 10 mg/kg) was observed in groups treated with H4H7798N, H4H9008P, and H4H9048P2.
H4H7798N or H4H9008P therapy at 5 mg/kg was less efficacious, with 4 out of 5 tumor-free mice at the end of experiment on day 21 , whereas 5 out of 5 mice remained tumor-free in both 10 mg/kg dose groups of H4H7798N, and H4H9008P.
[0239] Dunett's test in 2 way ANOVA multiple comparisons revealed that the differences in tumor growth between the group treated with isotype control antibody at 10 mg/kg as reference and the groups treated at 10 mg/kg with either H4H7798N, H4H9008P, or H4H9048P2 were statistically significant with p value<0.005. The differences in tumor growth between the group treated with isotype control antibody at 10 mg/kg as reference and the groups treated at 5 mg/kg with either H4H7798N , H4H9008P, or H4H9048P2 were also statistically significant with a p value<0.05.
Table 27: Mean tumor volume, percent survival and numbers of tumor free mice in each treatment group from in vivo tumor Study 3
Figure imgf000079_0001
[0240] As shown in Table 27 for Study 3, 6 out or 7 mice treated with one antibody of the invention, H4H7798N, or another antibody of the invention, H4H9008P, at 5mg/kg were tumor free at the end of the experiment, whereas there were no tumor free animals in the isotype control group. One tumor-bearing mouse in the lgG4 control group died on post-implantation day 17. Only 4 out of 7 mice treated with H4H9008P at 2.5mg/kg dose remained tumor free at the end of the experiment. The difference in tumor volumes at day 21 between anti-PD-1 antibodies tested and an isotype control group was statistically significant as determined by oneway ANOVA with Dunnett's multiple comparison post-test with p<0.01. All four anti-PD-1 antibodies were equally more efficacious at the 5 mg/kg dose than at the 2.5 mg/kg dose.
Example 10: Anti-tumor effects of a combination of an anti-PD-1 antibody and a VEGF antagonist in a mouse early-treatment tumor model
[0241] An early-treatment tumor model was developed to test the efficacy of a combination of an anti-PD-1 antibody and a VEGF antagonist. In this model, the combination therapy is administered shortly after tumor implantation. The experiment also used an anti-PD-L1 antibody alone and in combination with the VEGF antagonist. The anti-PD-1 antibody used in this experiment was anti-mouse PD-1 clone "RPMI-14" with rat lgG2b (Bio X Cell, West Lebanon, NH). The VEGF antagonist used in this experiment was aflibercept (a VEGF receptor-based chimeric molecule, also known as "VEGF-trap" or "VEGFR1 R2-FcAC1 (a)," a full description of which is provided elsewhere herein). The anti-PD-L1 antibody used in this experiment was an anti-PD-L1 monoclonal antibody with VH VL sequences of antibody "YW243.55S70" according to US20100203056A1 (Genentech, Inc.), with mouse lgG2a and which was cross-reactive with mouse PD-L1.
[0242] For this experimental model, 1.0x106 Colon-26 tumor cells were implanted sub- cutaneously into BALB/c mice at Day 0. Starting on Day 3, prior to the establishment of measurable tumors, mice were treated with one of the mono- or combination therapies, or control combination, as set forth in Table 28.
Table 28: Experimental dosing and treatment groups
Figure imgf000080_0001
[0243] The various therapies were administered at five different time points over a two week period (i.e., injections at Day 3, Day 6, Day 10, Day 13 and Day 19).
[0244] Animals in each therapy group were evaluated in terms of tumor incidence, tumor volume, median survival time, and number of tumor-free animals at Day 50. The extent of tumor growth is summarized in Figure 2 (tumor growth curves) and Figure 3 (tumor volume at Day 28). Results are also summarized in Table 29.
Table 29: Tumor-free mice in treatment groups
Figure imgf000080_0002
VEGF Trap + anti-PD-1 7/10
VEGF Trap + anti-PD-L1 9/10
[0245] Tumor growth was substantially reduced in animals treated with the combination of VEGF Trap + anti-PD-1 antibody as compared with treatment regimens involving either therapeutic agent alone (see Figures 2 and 3). Furthermore, survival was substantially increased in the VEGF Trap + anti-PD-1 antibody group, with 70% of animals surviving to at least day 50 after tumor implantation. By contrast, for the anti-PD-1 and VEGF Trap monotherapy groups, survival to Day 50 was only 40% and 30% respectively (see Figure 3 and Table 29).
Example 11 : Clinical trial study of repeat dosing with anti-PD-1 antibody as single therapy and in combination with other anti-cancer therapies in patients with advanced malignancies
[0246] This is a dose-escalation study of anti-PD-1 antibody, alone or in combination with radiation therapy, cyclophosphamide, or both in patients with advanced malignancies. The exemplary anti-PD-1 antibody ("mAb") used in this Example comprises HCV of SEQ I D NO: 162 and LCV of SEQ ID NO: 170.
Study Objectives
[0247] The primary objective of the study is to characterize the safety, tolerability, DLTs of mAb administered IV as monotherapy, or in combination with targeted radiation (with the intent to have this serve as an immuno-stimulatory, rather than primarily tumor-ablative therapy), low- dose cyclophosphamide (a therapy shown to inhibit regulatory T-cell responses), or both in patients with advanced malignancies.
[0248] The secondary objectives of the study are: (1 ) to determine a recommended phase 2 dose (RP2D) of mAb as monotherapy and in combination with other anti-cancer therapies (targeted radiation, low-dose cyclophosphamide, or both); (2) to describe preliminary antitumor activity of mAb, alone and with each combination partner (s); (3) to characterize the PK of mAb as monotherapy and in combination with other anti-cancer therapies (targeted radiation, low- dose cyclophosphamide, or both); and (4) to assess immunogenicity of mAb.
Study Design
[0249] Safety will be assessed in separate, standard 3 + 3 dose escalation cohorts (in monotherapy, combination with radiation therapy, combination with cyclophosphamide, and combination with radiation therapy plus cyclophosphamide). The choice of combination therapy with radiation, cyclophosphamide, or both will be based on investigator assessment of the best choice of therapy for an individual patient in consultation with the sponsor. To be enrolled in a radiotherapy cohort, a patient must have a lesion that can be safely irradiated and for which radiation at the limited, palliative doses contemplated would be considered medically appropriate, and at least one other lesion suitable for response evaluation. A patient will be allowed to enroll only if a slot is available in the cohort for the chosen treatment.
[0250] Patients will undergo screening procedures to determine eligibility within 28 days prior to the initial administration of mAb. Following enrollment of patients into a mAb monotherapy cohort, enrollment of subsequent cohorts will be determined by occurrence of DLTs in prior cohorts (i.e., no DLT in a cohort of 3 patients, or no more than 1 DLT in an expanded cohort of 6 patients), and the availability of patient slots. The planned monotherapy dose levels are 1 , 3, or 10 mg/kg administered IV every 14 days (2 weeks).
[0251] Once one or both of the 1 mg/kg or 3 mg/kg mAb monotherapy cohort DLT observation periods are completed without a DLT in a cohort of 3 patients or with no more than 1 DLT in an expanded cohort of 6 patients, patients can be enrolled into a cohort combining
cyclophosphamide or radiotherapy with mAb at that monotherapy dose level. Patients can be enrolled into a combination mAb + cyclophosphamide/radiotherapy cohort once the DLT observation periods for both the cohort for that mAb dose level + cyclophosphamide and the cohort for that mAb dose level + the same radiotherapy regimen are completed with no DLT in a cohort of 3 patients, or no more than 1 DLT in an expanded cohort of 6 patients.
[0252] Once the 3 mg/kg mAb monotherapy cohort DLT observation period is completed with no DLT in a cohort of 3 patients, or no more than 1 DLT in an expanded cohort of 6 patients, a 10 mg/kg mAb monotherapy cohort may also enroll.
[0253] mAb 3 mg/kg and 10 mg/kg monotherapy cohorts will enroll only after the requisite number of patients in the prior monotherapy dose cohort (ie, 1 mg/kg and 3 mg/kg, respectively) have cleared the 28 day DLT observation period without a maximum tolerated dose (MTD) being demonstrated for that dose level. A mAb 1 mg/kg combination treatment cohort will enroll only after completion of the DLT observation period for the 1 mg/kg monotherapy cohort.
Combination cohorts receiving 3 mg/kg mAb will enroll only when the requisite number of patients in the respective 1 mg/kg mAb combination cohorts has cleared the DLT observation period without demonstrating a MTD. Triple combination cohorts combining mAb with cyclophosphamide and a radiation regimen will enroll only when the requisite number of patients in both corresponding double combination cohorts at that dosage level have cleared the DLT observation period without a MTD being demonstrated.
[0254] Table 30 summarizes the dose-escalation cohorts in which patients will be enrolled.
Table 30: Possible Dose-escalation Cohorts n Possible Assigned Treatment Cohort
3-6 0.3 mg/kg mAb monotherapy (to be enrolled only if MTD < 1 mg/kg mAb)
3-6 1 mg/kg mAb monotherapy
3-6 3 mg/kg mAb monotherapy8'
3-6 10 mg/kg mAb monotherapy0'
3-6 1 mg/kgaJ mAb + radiotherapy (6 Gy * 5)
3-6 1 mg/kgaJ mAb + radiotherapy (9 Gy χ 3)
3-6 3 mg/kgD) (or MTD) mAb + cyclophosphamide
3-6 3 mg/kgDJ (or MTD) mAb + radiotherapy (6 Gy χ 5)
3-6 3 mg/kgDJ (or MTD) mAb + radiotherapy (9 Gy * 3)
3-6 3 mg/kgDJ (or MTD) mAb + radiotherapy (6 Gy χ 5) + cyclophosphamide
3-6 3 mg/kgDJ (or MTD) mAb + radiotherapy (9 Gy χ 3) + cyclophosphamide
[0255] A DLT is defined as any of the following: a non-hematologic toxicity (e.g., uveitis, or any other irAE), or a hematologic toxicity (e.g., neutropenia, thrombocytopenia, febrile neutropenia).
[0256] The maximum tolerated dose (MTD) is defined as the highest dose at which fewer than a third of an expanded cohort of 6 patients experience a DLT during the first cycle of treatment. Thus, the MTD is defined as the dose level immediately below the level at which dosing is stopped due to the occurrence of 2 or more DLTs in an expanded cohort of 6 patients. If dose escalation is not stopped due to the occurrence of DLTs, it will be considered that the MTD has not been determined. It is possible that an MTD may not be defined in this study, either for a monotherapy group or for individual combination groups. Additionally, it is possible that mAb MTDs may differ between monotherapy and each combination treatment regimen.
Study Duration
[0257] Patients will receive up to 48 weeks of treatment, after which there will be a 24 week follow-up period. A patient will receive treatment until the 48 week treatment period is complete, or until disease progression, unacceptable toxicity, withdrawal of consent, or meeting of another study withdrawal criterion. After a minimum of 24 weeks of treatment, patients with confirmed complete responses (CR) may elect to discontinue treatment and continue with all relevant study assessments (eg, efficacy assessments). After a minimum of 24 weeks of treatment, patients with tumor burden assessments of stable disease (SD) or partial response (PR) that have been unchanged for 3 successive tumor evaluations may also elect to discontinue treatment and continue with all relevant study assessments (e.g., efficacy assessments).
Study Population
[0258] The target population for this study comprises patients with advanced malignancies who are not candidates for standard therapy, unwilling to undergo standard therapy, or for whom no available therapy is expected to convey clinical benefit; and patients with malignancies that are incurable and have failed to respond to or showed tumor progression despite standard therapy.
[0259] Inclusion criteria: A patient must meet with the following criteria to be eligible for inclusion in the study: (1 ) demonstrated progression of a solid tumor with no alternative standard-of-care therapeutic option available; (2) at least 1 lesion for response assessment. Patients assigned to radiotherapy require at least one additional lesion that can be safely irradiated while sparing the index lesions and for which radiation at the limited, palliative doses contemplated would be considered medically appropriate; (3) Eastern Cooperative Oncology Group (ECOG) performance status < 1 ; (4) more than 18 years old; (5) hepatic function: a. total bilirubin < 1 .5x upper limit of normal (ULN; if liver metastases≤ 3x ULN), b. transaminases≤ 3x ULN (or <5.0x ULN, if liver metastases), c. alkaline phosphatase (ALP) <2.5x ULN (or 5.0x ULN, if liver metastases); (6) renal function: serum creatinine≤ 1.5x ULN; (7) neutrophil count (ANC) > 1.5 x 109/L, c. platelet count > 75 x 109/L; (8) ability to provide signed informed consent; and (9) ability and willingness to comply with scheduled visits, treatment plans, laboratory tests, and other study-related procedures.
[0260] Exclusion criteria: A patient who meets any of the following criteria will be excluded from the study: (1 ) Ongoing or recent (within 5 years) evidence of significant autoimmune disease that required treatment with systemic immunosuppressive treatments, which may suggest risk for irAEs; (2) Prior treatment with an agent that blocks the PD-1 /PD-L1 pathway; (3) Prior treatment with other immune modulating agents within fewer than 4 weeks or 4 half-lives, whichever is greater, prior to the first dose of mAb; (4) Examples of immune modulating agents include blockers of CTLA-4, 4-1 BB (CD137), OX-40, therapeutic vaccines, or cytokine treatments; (5) Untreated brain metastasis (es) that may be considered active. Patients with previously treated brain metastases may participate provided they are stable (ie, without evidence of progression by imaging for at least 4 weeks prior to the first dose of study treatment, and any neurologic symptoms have returned to baseline), and there is no evidence of new or enlarging brain metastases; (6) Immunosuppressive corticosteroid doses (>10 mg prednisone daily or equivalent) within 4 weeks prior to the first dose of mAb; (7) Deep vein thrombosis, pulmonary embolism (including asymptomatic pulmonary embolism identified on imaging), or other thromboembolic event within the 6 months preceding the first dose of mAb; (8) Active infection requiring therapy, including known infection with human immunodeficiency virus, or active infection with hepatitis B or hepatitis C virus; (9) History of pneumonitis within the last 5 years; (10) Any investigational or antitumor treatment within 30 days prior to the initial administration of mAb; (1 1 ) History of documented allergic reactions or acute hypersensitivity reaction attributed to treatment with antibody therapies in general, or to agents specifically used in the study; (12) Known allergy to doxycycline or tetracycline (precaution due to presence of trace components in mAb); (13) Breast-feeding; (14) Positive serum pregnancy test; (15) History within the last 5 years of an invasive malignancy other than the one treated in this study, with the exception of resected/ablated basal or squamous-cell carcinoma of the skin or carcinoma in situ of the cervix, or other local tumors considered cured by local treatment; (16) Acute or chronic psychiatric problems that, under the evaluation of the investigator, make the patient ineligible for participation; and (17) Continued sexual activity in men or women of childbearing potential who are unwilling to practice adequate contraception during the study.
Study Treatments
[0261] mAb will be supplied as a liquid in sterile, single-use vials. Each vial will contain a volume sufficient to withdraw 10 mL of mAb at a concentration of 25 mg/mL. Instructions on dose preparation are provided in the study reference manuals. mAb will be administered in an outpatient setting as a 30 minute IV infusion. Each patient's dose will depend on individual body weight. The dose of mAb must be adjusted each cycle for changes in body weight of≥10%. mAb will be administered alone and in combination with radiation and or cyclophosphamide. Monotherapy
[0262] mAb will be administered in an outpatient setting by IV infusion over 30 minutes every 14 days for 48 weeks (ie, Days 1 , 15±3, 29±3, and 43±3 of a 56 day cycle). Planned monotherapy regimens to be assigned may include: (i) 1 mg/kg IV infusion over 30 minutes every 14 days for 48 weeks; (ii) 3 mg/kg infusion over 30 minutes every 14 days for 48 weeks; (iii) 10 mg/kg infusion over 30 minutes every 14 days for 48 weeks; and (iv) 0.3 mg/kg infusion over 30 minutes every 14 days for 48 weeks (if MTD is determined to be below 1 mg/kg).
Combination Therapy
[0263] Concomitant radiation therapy and cyclophosphamide will be supplied through a prescription and their usage, dose, dose modifications, reductions, or delays, as well as any potential AEs resulting from their use, will be tracked along with that of mAb.
[0264] Co-administration of mAb and radiation: mAb will be administered by IV infusion over 30 minutes every 14 days for 48 weeks in combination with radiation treatment from day 8 to day 12. Planned combination mAb and radiation therapy regimens may include:
• 1 mg/kg mAb infusion over 30 minutes every 14 days for 48 weeks plus
30 Gy radiotherapy (6 Gy χ 5 times/week; given 1 week after the first dose of mAb, preferably on consecutive days)
• 1 mg/kg mAb infusion over 30 minutes every 14 days for 48 weeks plus
27 Gy radiotherapy (9 Gy χ 3 times/week; given 1 week after the first dose of mAb, preferably not on consecutive days)
• 3 mg/kg mAb infusion over 30 minutes every 14 days for 48 weeks plus
30 Gy radiotherapy (6 Gy χ 5 times/week; given 1 week after the first dose of mAb, preferably on consecutive days)
• 3 mg/kg mAb infusion over 30 minutes every 14 days for 48 weeks plus
27 Gy radiotherapy (9 Gy * 3 times/week; given 1 week after the first dose of mAb, preferably not on consecutive days)
[0265] Patients will receive either 30 Gy given as 5 fractions of 6 Gy administered daily starting 1 week after the first dose of mAb, or 27 Gy given as 3 fractions of 9 Gy administered every other day starting 1 week after the first dose of mAb. The lesion selected for radiation should be a lesion that can be safely irradiated with focal irradiation while sparing the index lesion(s), and for which radiation at the limited, palliative doses contemplated would be considered medically appropriate. The target dose for a patient will be based on cohort assignment and should conform to the normal tissue requirements, in accord with standard radiation oncology practice. Treatment at the protocol-specified dosing regimen is permitted only if the normal tissue criteria are met. If the normal tissue criteria cannot be met at either of the radiation therapy regiments specified in the protocol, the patient is not eligible for enrollment in a combination radiation treatment cohort in this study.
[0266] Co-administration of mAb and cyclophosphamide: mAb will be administered by IV infusion over 30 minutes every 14 days (2 weeks) for 48 weeks in combination with
cyclophosphamide 200 mg/m2 every 14 days for 4 doses. Each of the 4 cyclophosphamide doses will be administered 1 day before each of the first 4 mAb doses (days -1 , 14, 28, and 42 of the first 56 day cycle).
[0267] Though cyclophosphamide has been used successfully concurrently with other drugs, the rate of metabolism and the leukopenic activity of cyclophosphamide reportedly are increased by chronic administration of high doses of phenobarbital. Cyclophosphamide treatment causes a marked and persistent inhibition of cholinesterase activity, thus potentiating the effect of succinylcholine chloride. The planned combination mAb and cyclophosphamide regimen to be assigned is:
• Cyclophosphamide 200 mg/m2 every 14 days (days -1 , 14, 28, and 42 of the first 56 day cycle) for a total of 4 doses plus
• 3 mg/kg mAb infusion over 30 minutes every 14 days for 48 weeks (provided
monotherapy dose of 3 mg/kg < MTD; if 3 mg/kg > MTD, dose will be 1 mg/kg).
[0268] Co-administration of mAb, radiation and cyclophosphamide: The planned combination mAb, radiation, and cyclophosphamide regimen includes:
• Cyclophosphamide 200 mg/m2 every 14 days (days -1 , 14, 28, and 42 of the first 56 day cycle) for a total of 4 doses
plus
• 27 Gy radiotherapy (9 Gy * 3 times/week; given 1 week after the first dose of mAb, preferably not on consecutive days) OR
30 Gy radiotherapy (6 Gy * 5 times/week; given 1 week after the first dose of mAb, preferably on consecutive days)
plus
• 3 mg/kg mAb infusion over 30 minutes every 14 days for 48 weeks (provided
monotherapy dose of 3 mg/kg < MTD; if 3 mg/kg > MTD, dose will be 1 mg/kg)
Study Variables [0269] Primary Variables: Primary safety variables include incidence of DLTs, incidence and severity of treatment-emergent adverse events (TEAEs), and abnormal laboratory findings through 48 weeks of treatment.
[0270] Secondary Variables: Key secondary variables include the following:
• Serum concentration and pharmacokinetics (PK) of mAb
• Antitumor activities assessed using the appropriate criteria for the indication:
o Response Evaluation Criteria in Solid Tumors (RECIST) criteria measured by computed tomography (CT) or magnetic resonance imaging (MRI) o Other assessment criteria should also be used for specific tumors in which
RECIST measurements are not the standard,
o Immune-Related Response Criteria (irRC) applied to RECIST measurements. In all cases, irRC will be the governing tool to determine progression of disease (PD), SD, CR, or PR. Standard RECIST data will also be collected for information purposes.
• Anti-mAb antibodies
Study Procedures
[0271] The following procedures will be performed at screening for the purpose of determining study eligibility or characterizing the baseline population: (i) serum β-HCG (result must be <72 hours before first dose); (ii) Collection of archived tumor material: After a patient has given informed consent, the patient will be asked to arrange to provide any available previously collected tumor samples; (iii) Brain MRI: Brain MRI is required at screening if not performed in the prior 60 days; and (iv) Chest x-ray: Chest is x-ray required at screening if not performed in the prior 60 days.
[0272] Efficacy Procedures: A CT or MRI for tumor assessment will be performed at the screening visit (within 28 days prior to infusion) and during every cycle (approximately every 8 weeks) on day 56±3, and when disease progression is suspected. Additionally, for patients who have not progressed on study, tumor assessment will be performed for follow-up visits 3, 5, and 7. Once the choice has been made to use CT scan or MRI, subsequent assessments will be made using the same modality.
[0273] Tumor response evaluation will be performed according to immune-related response criteria (irRC; Nishino 2013). Assessments according to Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 (Eisenhauer 2009) will also be performed as a supportive exploration; however, the primary determination of disease progression for an individual patient will be made according to irRC. Measurable lesions selected as target lesions for RECIST assessments will also be included as index lesions for irRC assessments.
[0274] Safety Procedures: Vital signs, including temperature, resting blood pressure, pulse, and respiration, will be collected. When scheduled at the same visit as other procedures, vital signs should be measured prior to clinical laboratory assessments, PK, or exploratory sample collection. During cycle 1 , vital signs will be recorded on treatment days prior to treatment, at the end of the infusion, every 30 minutes for the first 4 hours post-infusion, and at 6 and 8 hours post study drug administration. On subsequent cycles, vital signs on treatment days will be assessed and documented prior to the infusion, every 30 minutes for the first 2 hours, and then hourly until 4 hours following study drug administration.
[0275] A thorough complete or limited physical examination will be performed at visits.
Complete physical examination will include examination of skin, head, eyes, nose, throat, neck, joints, lungs, heart, pulse, abdomen (including liver and spleen), lymph nodes, and extremities, as well as a brief neurologic examination. Limited physical examination will include lungs, heart, abdomen, and skin.
[0276] A standard 12-lead ECG will be performed. Any ECG finding that is judged by the investigator as a clinically significant change (worsening) compared to the baseline value will be considered an AE, recorded, and monitored.
[0277] Immune safety assays consist of rheumatoid factor (RF), thyroid stimulating hormone (TSH), C-reactive protein (CRP), and antinuclear antibody (ANA) titer and pattern. If, during the course of the study, a 4-fold or greater increase from baseline in RF or ANA or abnormal levels of TSH or CRP are observed, the following tests may also be performed: anti-DNA antibody, anti-Sjogren's syndrome A antigen (SSA) antibody (Ro), anti-Sjogren's syndrome B antigen (SSB) antibody (La), antithyroglobulin antibody, anti-LKM antibody, antiphospholipid antibody, anti-islet cell antibody, antineutrophil cytoplasm antibody, C3, C4, CH50. Activated partial thromboplastin time (aPTT) and International Normalized Ratio (INR) will be analyzed by the site's local laboratory.
Safety
[0278] An adverse event (AE) is any untoward medical occurrence in a patient administered a study drug which may or may not have a causal relationship with the study drug. Therefore, an AE is any unfavorable and unintended sign (including abnormal laboratory finding), symptom, or disease which is temporally associated with the use of a study drug, whether or not considered related to the study drug. An AE also includes any worsening (ie, any clinically significant change in frequency and/or intensity) of a pre-existing condition that is temporally associated with the use of the study drug. Progression of underlying malignancy will not be considered an AE if it is clearly consistent with the typical progression pattern of the underlying cancer (including time course, affected organs, etc.). Clinical symptoms of progression may be reported as AEs if the symptom cannot be determined as exclusively due to the progression of the underlying malignancy, or does not fit the expected pattern of progression for the disease under study.
[0279] An serious adverse event (SAE) is any untoward medical occurrence that at any dose results in death, is life-threatening, requires in-patient hospitalization or prolongation of existing hospitalization, results in persistent or significant disability/incapacity (substantial disruption of one's ability to conduct normal life functions), is a congenital anomaly/birth defect.
[0280] Patient information on all AEs and SAEs will be recorded.
Statistical Plan
[0281] The study dose escalation is based on a traditional 3 + 3 design with 3 to 6 patients assigned per dose level. The exact number of patients enrolled in the study will depend on the number of protocol-defined DLTs observed, and the need to expand currently defined dose levels, or open additional cohorts at lower dose levels. After the required initial enrollment to the next cohort in the dose escalation has occurred, enrollment to each of the previous cohorts below the MTD for that treatment will be expanded (if not previously expanded during escalation) to a total of 6 patients.
[0282] Data will be summarized using descriptive statistics only. In general, data will be summarized by dose levels and combinations. The safety summaries and analyses will be performed on the safety analysis set (SAF). The primary analysis of safety will be based on treatment-emergent AEs (TEAEs).
[0283] The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and the accompanying figures. Such modifications are intended to fall within the scope of the appended claims.

Claims

What is claimed is:
1 . An isolated antibody or antigen-binding fragment thereof that competes for binding to human programmed death-1 (PD-1 ) protein with a reference antibody or antigen-binding fragment thereof comprising the complementarity determining regions (CDRs) of a heavy chain variable region (HCVR), wherein the HCVR has an amino acid sequence selected from the group consisting of HCVR sequences listed in Table 1 ; and the CDRs of a light chain variable region (LCVR), wherein the LCVR has an amino acid sequence selected from the group consisting of LCVR sequences listed in Table 1 , and wherein the antibody has one or more of the following properties:
(a) blocks human PD-1 protein binding to PD-L1 with an IC50 of less than 3 nM as measured in a competition sandwich ELISA assay at 25°C;
(b) binds monomeric human PD-1 with a binding dissociation equilibrium constant (KD) of less than about 50 nM as measured in a surface plasmon resonance assay at 37°C;
(c) binds monomeric human PD-1 with a KD less than about 12 nM in a surface plasmon resonance assay at 25°C;
(d) binds monomeric cynomolgus PD-1 with a KD less than about 8.5 nM in a surface plasmon resonance assay at 25°C;
(e) binds monomeric human PD-1 with a dissociative half-life (t½) of greater than about 6.3 minutes as measured in a surface plasmon resonance assay at 25°C; and
(f) binds monomeric human PD-1 with a dissociative half-life (t½) of greater than about 0.9 minutes as measured in a surface plasmon resonance assay at 37°C.
2. The isolated antibody or antigen-binding fragment of claim 1 , wherein the reference antibody or antigen-binding fragment thereof comprises an HCVR/LCVR amino acid sequence pair as set forth in Table 1 .
3. The isolated antibody or antigen-binding fragment of claim 2, wherein the reference antibody comprises an HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 130/138, 162/170, 234/202, and 314/186.
4. An isolated human monoclonal antibody or antigen-binding fragment thereof that binds specifically to human PD-1 , wherein the antibody or antigen-binding fragment thereof comprises three heavy chain CDRs (HCDR1 , HCDR2 and HCDR3) contained within any one of the HCVR sequences listed in Table 1 ; and three light chain CDRs (LCDR1 , LCDR2 and LCDR3) contained within any one of the LCVR sequences listed in Table 1.
5. The isolated antibody or antigen-binding fragment thereof of claim 4, comprising a HCVR having an amino acid sequence selected from the group consisting of HCVR sequences listed in Table 1.
6. The isolated antibody or antigen-binding fragment thereof of either claim 4 or 5, comprising a LCVR having an amino acid sequence selected from the group consisting of LCVR sequences listed in Table 1.
7. The isolated antibody or antigen-binding fragment thereof of any one of claims 4 - 6, comprising: (a) a HCVR having an amino acid sequence selected from the group consisting of HCVR sequences listed in Table 1 ; and (b) a LCVR having an amino acid sequence selected from the group consisting of LCVR sequences listed in Table 1.
8. The isolated antibody or antigen-binding fragment thereof of any one of claims 1 - 7, comprising:
(a) a HCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 4, 20, 36, 52, 68, 84, 100, 1 16, 132, 148, 164, 180, 196, 212, 220, 228, 236, 244, 252, 260, 268, 276, 284, 292, 300, 308, and 316;
(b) a HCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 6, 22, 38, 54, 70, 86, 102, 1 18, 134, 150, 166, 182, 198, 214, 222, 230, 238, 246, 254, 262, 270, 278, 286, 294, 302, 310, and 318;
(c) a HCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, and 320;
(d) a LCDR1 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, and 204;
(e) a LCDR2 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 14, 30, 46, 62, 78, 94, 110, 126, 142, 158, 174, 190, and 206; and
(f) a LCDR3 domain having an amino acid sequence selected from the group consisting of SEQ ID NOs: 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, and 208.
9. An isolated antibody or antigen-binding fragment thereof that blocks PD-1 binding to PD-L1 comprising the CDRs of a HCVR, wherein the HCVR has an amino acid sequence selected from the group consisting of SEQ ID NOs: 18, 34, 50, 66, 82, 1 14, 130, 162, 178, 194, 210, 218, 226, 234, 242, 258, 266, 274, 282, 290, 298, 306 and 314; and the CDRs of a LCVR, wherein the LCVR has an amino acid sequence selected from the group consisting of SEQ ID NOs: 26, 42, 58, 74, 90, 122, 138, 170, 186, and 202.
10. The isolated antibody or antigen-binding fragment of claim 9, comprising a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 130/138, 162/170, 234/202, and 314/186.
1 1. An isolated antibody or antigen-binding fragment thereof that binds human PD-1 , wherein the antibody or antigen-binding fragment thereof enhances PD-1 binding to PD-L1 , as measured by a competition sandwich ELISA assay at 25°C.
12. The isolated antibody or antigen-binding fragment thereof of claim 11 , wherein the antibody comprises the CDRs of a HCVR, wherein the HCVR has an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 98, and 250; and the CDRs of a LCVR, wherein the LCVR has an amino acid sequence selected from the group consisting of SEQ ID NOs: 10, 106, and 202.
13. The isolated antibody or antigen-binding fragment thereof of claim 12, wherein the antibody comprises an HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 2/10, 98/106, and 250/202.
14. The antibody or antigen-binding fragment thereof of any one of claims 1 - 13, wherein the antibody is a multi-specific antigen-binding molecule.
15. A pharmaceutical composition comprising an isolated antibody or antigen-binding fragment thereof that binds to PD-1 according to any one of claims 1 - 14 and a
pharmaceutically acceptable carrier or diluent.
16. An isolated polynucleotide molecule comprising a polynucleotide sequence that encodes a HCVR of an antibody as set forth in any one of claims 1 - 13.
17. An isolated polynucleotide molecule comprising a polynucleotide sequence that encodes a LCVR of an antibody as set forth in any one of claims 1 - 13.
18. A vector comprising the polynucleotide sequence of claim 16 or 17.
19. A cell expressing the vector of claim 18.
20. A multi-specific antigen-binding molecule or antigen-binding fragment thereof comprising a first antigen-binding specificity that binds specifically to PD-1 and a second antigen-binding specificity that comprises an extracellular domain of PD-L1 or PD-L2, or fragment thereof.
21. A multi-specific antigen-binding molecule or antigen-binding fragment thereof comprising a first antigen-binding specificity that binds specifically to PD-1 and a second antigen-binding specificity that binds specifically to a T-cell co-inhibitor.
22. The multi-specific antigen-binding molecule or fragment thereof of claim 20 or 21 , wherein the first antigen-binding specificity comprises three heavy chain CDRs (HCDR1 , HCDR2 and HCDR3) contained within any one of the HCVR sequences listed in Table 1 ; and three light chain CDRs (LCDR1 , LCDR2 and LCDR3) contained within any one of the LCVR sequences listed in Table 1.
23. The multi-specific antigen-binding molecule or fragment thereof of any one of claims 20 - 22, wherein the first antigen-binding specificity comprises a HCVR having an amino acid sequence selected from the group consisting of HCVR sequences listed in Table 1 ; and a LCVR having an amino acid sequence selected from the group consisting of LCVR sequences listed in Table 1.
24. The multi-specific antigen-binding molecule or fragment thereof of claim 23, wherein the first antigen-binding specificity comprises a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 130/138, 162/170, 234/202, and 314/186.
25. The multi-specific antigen-binding molecule or fragment thereof of claim 21 , wherein the second antigen-binding specificity binds specifically to a T-cell co-inhibitor selected from the group consisting of LAG 3, TIM3, B7-1 , CTLA-4, BTLA, CD28, 2B4, LY108, TIGIT, ICOS, and CD160.
26. The multi-specific antigen-binding molecule or fragment thereof of any one of claims 20 - 25 for use in the treatment of a cancer selected from the group consisting of renal cell carcinoma, colorectal cancer, ovarian cancer, prostate cancer, breast cancer, colon cancer, non-small-cell lung cancer and melanoma.
27. The multi-specific antigen-binding molecule or fragment thereof any one of claims 20 - 25 for use in the treatment of a chronic viral infection caused by a virus selected from the group consisting of human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), human papilloma virus (HPV), lymphocytic choriomeningitis virus (LCMV), and simian immunodeficiency virus (SIV).
28. A multi-specific antigen-binding molecule or fragment thereof comprising a first antigen-binding specificity that binds specifically to PD-1 and a second antigen-binding specificity that binds specifically to an antigen selected from the group consisting of an autoimmune-tissue-specific antigen, a T-cell receptor and an Fc receptor.
29. The multi-specific antigen-binding molecule or fragment thereof of claim 28, wherein the first antigen-binding specificity comprises three heavy chain CDRs (HCDR1 , HCDR2 and HCDR3) contained within any one of the HCVR sequences listed in Table 1 ; and three light chain CDRs (LCDR1 , LCDR2 and LCDR3) contained within any one of the LCVR sequences listed in Table 1.
30. The multi-specific antigen-binding molecule or fragment thereof of claim 28 or 29, wherein the first antigen-binding specificity comprises a HCVR having an amino acid sequence selected from the group consisting of HCVR sequences listed in Table 1 ; and a LCVR having an amino acid sequence selected from the group consisting of LCVR sequences listed in Table 1 .
31. The multi-specific antigen-binding molecule or fragment thereof of claim 30, wherein the first antigen-binding specificity comprises a HCVR/LCVR amino acid sequence pair selected from the group consisting of SEQ ID NOs: 130/138, 162/170, 234/202, and 314/186.
32. The multi-specific antigen-binding molecule or fragment thereof of claim 28, wherein the first antigen-binding specificity comprises the extracellular domain of PD-L1 and/or PD-L2 or fragment thereof.
33. The multi-specific antigen-binding molecule or fragment thereof of any one of claims 28 - 32, wherein the second antigen-binding specificity binds specifically to an autoimmune- tissue-specific antigen.
34. The multi-specific antigen-binding molecule or fragment thereof of claim 33, wherein the autoimmune-tissue-specific antigen is associated with alopecia areata, autoimmune hepatitis, celiac disease, Graves' disease, Guillain-Barre syndrome, Hashimoto's disease, hemolytic anemia, inflammatory bowel disease, inflammatory myopathies, multiple sclerosis, primary biliary cirrhosis, psoriasis, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic lupus erthyematosus, vitiligo, autoimmune pancreatitis, autoimmune urticaira, autoimmune thrombocytopenic purpura, Crohn's disease, diabetes type I, eosinophilic fasciitis, eosinophilic enterogastritis, Goodpasture's syndrome, myasthenia gravis, psoriatic arthritis, rheumatic fever, ulcerative colitis, vasculitis or Wegener's granulomatosis.
35. The multi-specific antigen-binding molecule or fragment thereof of any one of claims 28 - 32, wherein the second antigen-binding specificity binds specifically to one of a T-cell receptor, Fca receptor, Fey receptor, or CD19.
36. The multi-specific antigen-binding molecule or fragment thereof of any one of claims 28 - 35 for use in the treatment of an autoimmune disease or disorder selected from the group consisting of alopecia areata, autoimmune hepatitis, celiac disease, Graves' disease, Guillain- Barre syndrome, Hashimoto's disease, hemolytic anemia, inflammatory bowel disease, inflammatory myopathies, multiple sclerosis, primary biliary cirrhosis, psoriasis, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic lupus erthyematosus, vitiligo, autoimmune pancreatitis, autoimmune urticaria, autoimmune thrombocytopenic purpura, Crohn's disease, diabetes type I, eosinophilic fasciitis, eosinophilic enterogastritis, Goodpasture's syndrome, myasthenia gravis, psoriatic arthritis, rheumatic fever, ulcerative colitis, vasculitis and Wegener's granulomatosis.
37. A method of enhancing an immune response in a subject, the method comprising administering a pharmaceutical composition comprising an isolated antibody or antigen-binding fragment thereof according to any one of claims 1 - 13; or a multi-specific antigen-binding molecule or fragment thereof according to any one of claims 20 - 25.
38. A method of inhibiting a T-regulatory (Treg) cell in a subject comprising
administering a pharmaceutical composition comprising an isolated human antibody or antigen- binding fragment thereof according to any one of claims 1 - 13; or a multi-specific antigen- binding molecule or fragment thereof according to any one of claims 20 - 25.
39. A method of enhancing T-cell activation in a subject, the method comprising administering a pharmaceutical composition comprising an antibody or antigen-binding fragment thereof according to any one of claims 1 - 13; or a multi-specific antigen-binding molecule or fragment thereof according to any one of claims 20 - 25.
40. The method of any one of claims 37 - 39, wherein the subject has a disease or disorder selected from the group consisting of brain cancer, renal cell carcinoma, ovarian cancer, prostate cancer, colon cancer, non-small-cell lung cancer, squamous cell carcinoma of head and neck, colorectal cancer, and melanoma.
41. The method of any one of claims 37 - 39, wherein the subject has a chronic viral infection caused by a virus selected from the group consisting of HIV, HCV, HBV, HPV, LCMV and SIV.
42. A method of inhibiting growth of a tumor or a tumor cell comprising contacting the tumor or tumor cell with a therapeutically effective amount of the antibody of any one of claims 1 - 13 or 20 - 25.
43. A method of inhibiting T-cell activation in a subject, the method comprising administering a therapeutically effective amount of an antibody or antigen-binding fragment thereof according to any one of claims 1 - 13; or a multi-specific antigen-binding molecule or fragment thereof according to any one of claims 28 - 35.
44. The method of claim 43, wherein the subject has an autoimmune disease or disorder selected from the group consisting of alopecia areata, autoimmune hepatitis, celiac disease, Graves' disease, Guillain-Barre syndrome, Hashimoto's disease, hemolytic anemia, inflammatory bowel disease, inflammatory myopathies, multiple sclerosis, primary biliary cirrhosis, psoriasis, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic lupus erthyematosus, vitiligo, autoimmune pancreatitis, autoimmune urticaria, autoimmune thrombocytopenic purpura, Crohn's disease, diabetes type I, eosinophilic fasciitis, eosinophilic enterogastritis, Goodpasture's syndrome, myasthenia gravis, psoriatic arthritis, rheumatic fever, ulcerative colitis, vasculitis and Wegener's granulomatosis.
45. The method of any one of claims 37 - 44, wherein the antibody or antigen-binding fragment thereof, or the pharmaceutical composition comprising the antibody or antigen-binding fragment thereof, is administered to the subject in combination with a second therapeutic agent.
46. The method of claim 45, wherein the second therapeutic agent is selected from the group consisting of a NSAID, a corticosteroid, an antibody to a different T-cell co-inhibitor, an antibody to a tumor specific antigen, an antibody to an autoimmune tissue antigen, an antibody to a virally-infected-cell antigen, an antibody to PD-L1 , a dietary supplement such an antioxidant, a VEGF antagonist, a chemotherapeutic agent, a cytotoxic agent, an anti-viral drug, radiation, and any other therapy useful for ameliorating at least one symptom associated with the disease or disorder.
47. The method of any one of claims 37 - 46, wherein the antibody or antigen-binding fragment thereof is administered subcutaneously, intravenously, intradermally, intraperitoneally, orally, intramuscularly or intracranially.
48. The method of any one of claims 37 - 47, wherein the antibody or antigen-binding fragment is administered at a dose of about 0.1 mg/kg of body weight to about 60 mg/kg of body weight of the subject.
49. The isolated antibody or antigen-binding fragment of claim 1 , wherein the antibody or antigen-binding fragment thereof competes for binding to human PD-1 with a reference antibody or antigen-binding fragment thereof comprising a heavy chain and a light chain, wherein the heavy chain comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 330, 332, 334 and 336.
50. The isolated antibody or antigen-binding fragment of claim 1 , wherein the antibody or antigen-binding fragment thereof competes for binding to human PD-1 with a reference antibody or antigen-binding fragment thereof comprising a heavy chain and a light chain, wherein the light chain chain comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 331 , 333, 335 and 337.
51. The isolated antibody or antigen-binding fragment of claim 1 , wherein the antibody or antigen-binding fragment thereof competes for binding to human PD-1 with a reference antibody or antigen-binding fragment thereof comprising a heavy chain/light chain amino acid sequence pair selected from the group consisting of SEQ ID NOs: 330/331 , 332/333, 334/335 and 336/337.
52. A pharmaceutical composition comprising an isolated monoclonal antibody or antigen-binding fragment thereof that binds PD-1 according to any one of claims 49 - 51 , and a pharmaceutically acceptable carrier or diluent.
53. An isolated polynucleotide molecule comprising a polynucleotide sequence that encodes a heavy chain of an antibody as set forth in any one of claims 49 - 51.
54. An isolated polynucleotide molecule comprising a polynucleotide sequence that encodes a light chain of an antibody as set forth in any one of claims 49 - 51.
55. A vector comprising the polynucleotide sequence of claim 53 or 54.
56. A cell expressing the vector of claim 55.
PCT/US2015/012589 2014-01-23 2015-01-23 Human antibodies to pd-1 WO2015112800A1 (en)

Priority Applications (27)

Application Number Priority Date Filing Date Title
NZ722342A NZ722342A (en) 2014-01-23 2015-01-23 Human antibodies to pd-1
SI201531692T SI3097119T1 (en) 2014-01-23 2015-01-23 Human antibodies to pd-1
EP15703187.3A EP3097119B1 (en) 2014-01-23 2015-01-23 Human antibodies to pd-1
BR122022010183-6A BR122022010183B1 (en) 2014-01-23 2015-01-23 ISOLATED ANTIBODY OR ANTIGEN-BINDING FRAGMENT THEREOF THAT SPECIFICALLY BINDS TO PD-1, ITS METHOD FOR PRODUCTION, PHARMACEUTICAL COMPOSITION, ISOLATED POLYNUKEOTIDE MOLECULES, AND VECTORS
KR1020217039773A KR20210152583A (en) 2014-01-23 2015-01-23 Human antibodies to pd-1
HRP20211794TT HRP20211794T1 (en) 2014-01-23 2015-01-23 Human antibodies to pd-1
CN201580005698.9A CN106068275B (en) 2014-01-23 2015-01-23 Human antibodies against PD-1
CA2936075A CA2936075C (en) 2014-01-23 2015-01-23 Human antibodies to pd-1
KR1020167022944A KR102337042B1 (en) 2014-01-23 2015-01-23 Human antibodies to pd-1
PL15703187T PL3097119T3 (en) 2014-01-23 2015-01-23 Human antibodies to pd-1
BR112016016699A BR112016016699A2 (en) 2014-01-23 2015-01-23 HUMAN ANTIBODIES TO PD-1
MX2016009554A MX2016009554A (en) 2014-01-23 2015-01-23 Human antibodies to pd-1.
DK15703187.3T DK3097119T3 (en) 2014-01-23 2015-01-23 Humane antistoffer mod PD-1
EP21185778.4A EP3967710A1 (en) 2014-01-23 2015-01-23 Human antibodies to pd-1
MA49604A MA49604B1 (en) 2014-01-23 2015-01-23 Human antibodies binding to pd-1
RS20211336A RS62507B1 (en) 2014-01-23 2015-01-23 Human antibodies to pd-1
LTEPPCT/US2015/012589T LT3097119T (en) 2014-01-23 2015-01-23 Human antibodies to pd-1
EA201691482A EA034770B8 (en) 2014-01-23 2015-01-23 Human antibodies to pd-1
JP2016548008A JP6425730B2 (en) 2014-01-23 2015-01-23 Human antibody to PD-1
AU2015209233A AU2015209233B2 (en) 2014-01-23 2015-01-23 Human antibodies to PD-1
SG11201605482SA SG11201605482SA (en) 2014-01-23 2015-01-23 Human antibodies to pd-1
ES15703187T ES2888224T3 (en) 2014-01-23 2015-01-23 Human antibodies against PD-1
UAA201608946A UA122666C2 (en) 2014-01-23 2015-01-23 Human antibodies to pd-1
PH12016501330A PH12016501330A1 (en) 2014-01-23 2016-07-04 Human antibodies to pd-1
IL246818A IL246818B (en) 2014-01-23 2016-07-18 Human antibodies to pd-1
IL267798A IL267798B (en) 2014-01-23 2019-07-02 Human antibodies to pd-1
CY20211101017T CY1124747T1 (en) 2014-01-23 2021-11-24 HUMAN ANTIBODIES TO PD-1

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461930576P 2014-01-23 2014-01-23
US61/930,576 2014-01-23
US201462014181P 2014-06-19 2014-06-19
US62/014,181 2014-06-19

Publications (1)

Publication Number Publication Date
WO2015112800A1 true WO2015112800A1 (en) 2015-07-30

Family

ID=52462456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/012589 WO2015112800A1 (en) 2014-01-23 2015-01-23 Human antibodies to pd-1

Country Status (30)

Country Link
US (4) US9987500B2 (en)
EP (2) EP3967710A1 (en)
JP (4) JP6425730B2 (en)
KR (2) KR102337042B1 (en)
CN (2) CN113248614A (en)
AU (1) AU2015209233B2 (en)
BR (2) BR122022010183B1 (en)
CA (2) CA3207270A1 (en)
CL (1) CL2016001871A1 (en)
CY (1) CY1124747T1 (en)
DK (1) DK3097119T3 (en)
EA (1) EA034770B8 (en)
ES (1) ES2888224T3 (en)
HR (1) HRP20211794T1 (en)
HU (1) HUE056332T2 (en)
IL (2) IL246818B (en)
LT (1) LT3097119T (en)
MX (3) MX2016009554A (en)
MY (1) MY176475A (en)
NZ (1) NZ722342A (en)
PH (1) PH12016501330A1 (en)
PL (1) PL3097119T3 (en)
PT (1) PT3097119T (en)
RS (1) RS62507B1 (en)
SG (1) SG11201605482SA (en)
SI (1) SI3097119T1 (en)
TW (1) TWI681969B (en)
UA (1) UA122666C2 (en)
UY (1) UY35964A (en)
WO (1) WO2015112800A1 (en)

Cited By (358)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017058115A1 (en) 2015-09-29 2017-04-06 Asia Biotech Pte. Ltd. Pd-1 antibodies and uses thereof
WO2017079112A1 (en) 2015-11-03 2017-05-11 Janssen Biotech, Inc. Antibodies specifically binding pd-1 and their uses
WO2017096026A1 (en) * 2015-12-02 2017-06-08 Stcube, Inc. Antibodies specific to glycosylated pd-1 and methods of use thereof
WO2017141208A1 (en) 2016-02-17 2017-08-24 Novartis Ag Tgfbeta 2 antibodies
WO2017125815A3 (en) * 2016-01-22 2017-09-08 MabQuest SA Pd1 specific antibodies
US9815897B2 (en) 2013-05-02 2017-11-14 Anaptysbio, Inc. Antibodies directed against programmed death-1 (PD-1)
WO2017197259A1 (en) * 2016-05-13 2017-11-16 Regeneron Pharmaceuticals, Inc. Combination of anti-pd-1 antibodies and radiation to treat cancer
WO2017210473A1 (en) 2016-06-02 2017-12-07 Bristol-Myers Squibb Company Use of an anti-pd-1 antibody in combination with an anti-cd30 antibody in lymphoma treatment
WO2017210624A1 (en) 2016-06-03 2017-12-07 Bristol-Myers Squibb Company Anti-pd-1 antibody for use in a method of treating a tumor
WO2017210453A1 (en) 2016-06-02 2017-12-07 Bristol-Myers Squibb Company Pd-1 blockade with nivolumab in refractory hodgkin's lymphoma
WO2017210631A1 (en) 2016-06-03 2017-12-07 Bristol-Myers Squibb Company Anti-pd-1 antibody for use in a method of treatment of recurrent small cell lung cancer
WO2017210637A1 (en) 2016-06-03 2017-12-07 Bristol-Myers Squibb Company Use of anti-pd-1 antibody in the treatment of patients with colorectal cancer
WO2017214092A1 (en) * 2016-06-07 2017-12-14 Macrogenics, Inc. Combination therapy
WO2017214182A1 (en) * 2016-06-07 2017-12-14 The United States Of America. As Represented By The Secretary, Department Of Health & Human Services Fully human antibody targeting pdi for cancer immunotherapy
WO2017218533A1 (en) 2016-06-13 2017-12-21 Torque Therapeutics, Inc. Methods and compositions for promoting immune cell function
WO2017220990A1 (en) 2016-06-20 2017-12-28 Kymab Limited Anti-pd-l1 antibodies
WO2018036472A1 (en) * 2016-08-23 2018-03-01 中山康方生物医药有限公司 Anti-pd1 monoclonal antibody, pharmaceutical composition thereof and use thereof
US9938345B2 (en) 2014-01-23 2018-04-10 Regeneron Pharmaceuticals, Inc. Human antibodies to PD-L1
EP3220927A4 (en) * 2014-11-20 2018-04-25 Promega Corporation Systems and methods for assessing modulators of immune checkpoints
WO2018081621A1 (en) 2016-10-28 2018-05-03 Bristol-Myers Squibb Company Methods of treating urothelial carcinoma using an anti-pd-1 antibody
WO2018085555A1 (en) 2016-11-03 2018-05-11 Bristol-Myers Squibb Company Activatable anti-ctla-4 antibodies and uses thereof
WO2018091661A1 (en) * 2016-11-18 2018-05-24 Symphogen A/S Anti-pd-1 antibodies and compositions
US9987500B2 (en) 2014-01-23 2018-06-05 Regeneron Pharmaceuticals, Inc. Human antibodies to PD-1
WO2018134784A1 (en) 2017-01-20 2018-07-26 Novartis Ag Combination therapy for the treatment of cancer
WO2018134681A1 (en) 2017-01-20 2018-07-26 Sanofi Anti-tgf-beta antibodies and their use
WO2018146612A1 (en) 2017-02-10 2018-08-16 Novartis Ag 1-(4-amino-5-bromo-6-(1 h-pyrazol-1-yl)pyrimidin-2-yl)-1 h-pyrazol-4-ol and use thereof in the treatment of cancer
WO2018152396A1 (en) 2017-02-17 2018-08-23 Innate Tumor Immunity, Inc. Substituted imidazo-quinolines as nlrp3 modulators
WO2018156494A1 (en) * 2017-02-21 2018-08-30 Regeneron Pharmaceuticals, Inc. Anti-pd-1 antibodies for treatment of lung cancer
CN108473578A (en) * 2015-12-22 2018-08-31 瑞泽恩制药公司 anti-PD-1 antibody and bispecific anti-CD 20/anti-CD 3 antibody combinations for treating cancer
WO2018160540A1 (en) 2017-02-28 2018-09-07 Sanofi Therapeutic rna
JP2018527952A (en) * 2015-09-01 2018-09-27 アジェナス インコーポレイテッド Anti-PD-1 antibody and method of use thereof
CN108601829A (en) * 2015-11-18 2018-09-28 礼进生物医药科技(上海)有限公司 Anti- PD-1 antibody and its therapeutical uses
WO2018183928A1 (en) 2017-03-31 2018-10-04 Bristol-Myers Squibb Company Methods of treating tumor
WO2018187057A1 (en) 2017-04-06 2018-10-11 Regeneron Pharmaceuticals, Inc. Stable antibody formulation
WO2018187613A2 (en) 2017-04-07 2018-10-11 Bristol-Myers Squibb Company Anti-icos agonist antibodies and uses thereof
WO2018198091A1 (en) 2017-04-28 2018-11-01 Novartis Ag Antibody conjugates comprising toll-like receptor agonist and combination therapies
WO2018211453A1 (en) 2017-05-19 2018-11-22 Novartis Ag Compositions comprising naphthyridine derivatives and aluminium adjuvant for use in treating solid tumors
WO2018222718A1 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Treatment of lag-3 positive tumors
WO2018220546A1 (en) 2017-05-31 2018-12-06 Novartis Ag Crystalline forms of 5-bromo-2,6-di(1 h-pyrazol-1-yl)pyrimidin-4-amine and new salts
WO2018222722A2 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Compositions comprising an anti-lag-3 antibody or an anti-lag-3 antibody and an anti-pd-1 or anti-pd-l1 antibody
WO2018222711A2 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Compositions comprising a combination of an anti-lag-3 antibody, a pd-1 pathway inhibitor, and an immunotherapeutic agent
WO2018223040A1 (en) 2017-06-01 2018-12-06 Bristol-Myers Squibb Company Methods of treating a tumor using an anti-pd-1 antibody
US10155037B2 (en) 2014-12-09 2018-12-18 Rinat Neuroscience Corp. Anti-PD-1 antibodies and methods of use thereof
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
US10160806B2 (en) 2014-06-26 2018-12-25 Macrogenics, Inc. Covalently bonded diabodies having immunoreactivity with PD-1 and LAG-3, and methods of use thereof
WO2018235056A1 (en) 2017-06-22 2018-12-27 Novartis Ag Il-1beta binding antibodies for use in treating cancer
WO2018237157A1 (en) 2017-06-22 2018-12-27 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2018234879A1 (en) 2017-06-22 2018-12-27 Novartis Ag Il-1beta binding antibodies for use in treating cancer
WO2018237173A1 (en) 2017-06-22 2018-12-27 Novartis Ag Antibody molecules to cd73 and uses thereof
EP3421494A1 (en) 2017-06-29 2019-01-02 Sanofi Use of isatuximab in combination with an anti-pd-1 antibody
WO2019006007A1 (en) 2017-06-27 2019-01-03 Novartis Ag Dosage regimens for anti-tim-3 antibodies and uses thereof
WO2019014402A1 (en) 2017-07-14 2019-01-17 Innate Tumor Immunity, Inc. Nlrp3 modulators
WO2019018730A1 (en) 2017-07-20 2019-01-24 Novartis Ag Dosage regimens of anti-lag-3 antibodies and uses thereof
US10188729B2 (en) 2013-08-20 2019-01-29 Merck Sharp & Dohme Corp. Modulation of tumor immunity
WO2019023459A1 (en) 2017-07-28 2019-01-31 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
US10208285B2 (en) 2016-10-07 2019-02-19 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
WO2019046498A1 (en) 2017-08-31 2019-03-07 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
JP2019506400A (en) * 2016-01-21 2019-03-07 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Treatment of cancer using an immunomodulator
WO2019046496A1 (en) 2017-08-31 2019-03-07 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
WO2019046500A1 (en) 2017-08-31 2019-03-07 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
WO2019075468A1 (en) 2017-10-15 2019-04-18 Bristol-Myers Squibb Company Methods of treating tumor
WO2019074887A1 (en) 2017-10-10 2019-04-18 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
WO2019079261A1 (en) 2017-10-16 2019-04-25 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
WO2019081983A1 (en) 2017-10-25 2019-05-02 Novartis Ag Antibodies targeting cd32b and methods of use thereof
WO2019090263A1 (en) 2017-11-06 2019-05-09 Genentech, Inc. Diagnostic and therapeutic methods for cancer
WO2019090330A1 (en) 2017-11-06 2019-05-09 Bristol-Myers Squibb Company Methods of treating a tumor
WO2019090390A1 (en) * 2017-11-08 2019-05-16 University Of Canberra Immunogenic compositions and uses therefor
WO2019099838A1 (en) 2017-11-16 2019-05-23 Novartis Ag Combination therapies
WO2019108900A1 (en) 2017-11-30 2019-06-06 Novartis Ag Bcma-targeting chimeric antigen receptor, and uses thereof
JP2019517549A (en) * 2016-06-10 2019-06-24 ノバルティス アーゲー Therapeutic use of C-RAF inhibitors
US10344090B2 (en) 2013-12-12 2019-07-09 Shanghai Hangrui Pharmaceutical Co., Ltd. PD-1 antibody, antigen-binding fragment thereof, and medical application thereof
WO2019136432A1 (en) 2018-01-08 2019-07-11 Novartis Ag Immune-enhancing rnas for combination with chimeric antigen receptor therapy
US10358474B2 (en) 2015-05-18 2019-07-23 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
WO2019144098A1 (en) 2018-01-22 2019-07-25 Bristol-Myers Squibb Company Compositions and methods of treating cancer
WO2019143607A1 (en) 2018-01-16 2019-07-25 Bristol-Myers Squibb Company Methods of treating cancer with antibodies against tim3
WO2019144126A1 (en) 2018-01-22 2019-07-25 Pascal Biosciences Inc. Cannabinoids and derivatives for promoting immunogenicity of tumor and infected cells
WO2019152660A1 (en) 2018-01-31 2019-08-08 Novartis Ag Combination therapy using a chimeric antigen receptor
WO2019160956A1 (en) 2018-02-13 2019-08-22 Novartis Ag Chimeric antigen receptor therapy in combination with il-15r and il15
WO2019160884A1 (en) 2018-02-13 2019-08-22 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
US10392442B2 (en) 2015-12-17 2019-08-27 Bristol-Myers Squibb Company Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment
WO2019173587A1 (en) 2018-03-08 2019-09-12 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
EP3538137A2 (en) * 2016-11-08 2019-09-18 Qilu Puget Sound Biotherapeutics Corporation Anti-pd1 and anti-ctla4 antibodies
WO2019180265A1 (en) * 2018-03-23 2019-09-26 Immune System Regulation Holding Ab Combinations of macrolide compounds and immune checkpoint inhibitors
WO2019191676A1 (en) 2018-03-30 2019-10-03 Bristol-Myers Squibb Company Methods of treating tumor
WO2019195452A1 (en) 2018-04-04 2019-10-10 Bristol-Myers Squibb Company Anti-cd27 antibodies and uses thereof
WO2019200229A1 (en) 2018-04-13 2019-10-17 Novartis Ag Dosage regimens for anti-pd-l1 antibodies and uses thereof
WO2019209896A1 (en) 2018-04-25 2019-10-31 Innate Tumor Immunity, Inc. Nlrp3 modulators
WO2019206281A1 (en) * 2018-04-28 2019-10-31 齐鲁制药有限公司 Anti-human pd-1 monoclonal antibody formulation, combined medicament and use thereof
WO2019211489A1 (en) 2018-05-04 2019-11-07 Merck Patent Gmbh COMBINED INHIBITION OF PD-1/PD-L1, TGFβ AND DNA-PK FOR THE TREATMENT OF CANCER
US10472419B2 (en) 2014-01-31 2019-11-12 Novartis Ag Antibody molecules to TIM-3 and uses thereof
WO2019219709A1 (en) 2018-05-14 2019-11-21 Immunocore Limited Bifunctional binding polypeptides
WO2019232319A1 (en) 2018-05-31 2019-12-05 Peloton Therapeutics, Inc. Compositions and methods for inhibiting cd73
WO2019229658A1 (en) 2018-05-30 2019-12-05 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
WO2019232244A2 (en) 2018-05-31 2019-12-05 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2019229701A2 (en) 2018-06-01 2019-12-05 Novartis Ag Binding molecules against bcma and uses thereof
WO2019180201A3 (en) * 2018-03-22 2019-12-05 Keires Ag Antagonistic pd-1, pd-l1 and lag-3 binding proteins
WO2019246557A1 (en) 2018-06-23 2019-12-26 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor
WO2020012337A1 (en) 2018-07-10 2020-01-16 Novartis Ag 3-(5-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of i karos family zinc finger 2 (ikzf2)-dependent diseases
WO2020012334A1 (en) 2018-07-10 2020-01-16 Novartis Ag 3-(5-hydroxy-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of ikaros family zinc finger 2 (ikzf2)-dependent diseases
WO2020018789A1 (en) 2018-07-18 2020-01-23 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, an antimetabolite, and a platinum agent
WO2020021465A1 (en) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Method of treatment of neuroendocrine tumors
WO2020023707A1 (en) 2018-07-26 2020-01-30 Bristol-Myers Squibb Company Lag-3 combination therapy for the treatment of cancer
CN110799537A (en) * 2017-06-25 2020-02-14 西雅图免疫公司 anti-PD-1 antibodies and methods of making and using the same
WO2020037092A1 (en) 2018-08-16 2020-02-20 Innate Tumor Immunity, Inc. Imidazo[4,5-c]quinoline derived nlrp3-modulators
WO2020037094A1 (en) 2018-08-16 2020-02-20 Innate Tumor Immunity, Inc. Substitued 4-amino-1h-imidazo[4,5-c]quinoline compounds and improved methods for their preparation
WO2020037091A1 (en) 2018-08-16 2020-02-20 Innate Tumor Immunity, Inc. Imidazo[4,5-c]quinoline derived nlrp3-modulators
US10570204B2 (en) 2013-09-26 2020-02-25 The Medical College Of Wisconsin, Inc. Methods for treating hematologic cancers
WO2020041655A1 (en) 2018-08-24 2020-02-27 Sanofi Therapeutic rna for solid tumor cancers
US10577422B2 (en) 2015-07-30 2020-03-03 Macrogenics, Inc. PD-1-binding molecules and methods of use thereof
WO2020044252A1 (en) 2018-08-31 2020-03-05 Novartis Ag Dosage regimes for anti-m-csf antibodies and uses thereof
WO2020051099A1 (en) 2018-09-03 2020-03-12 Genentech, Inc. Carboxamide and sulfonamide derivatives useful as tead modulators
WO2020049534A1 (en) 2018-09-07 2020-03-12 Novartis Ag Sting agonist and combination therapy thereof for the treatment of cancer
US10604576B2 (en) 2016-06-20 2020-03-31 Kymab Limited Antibodies and immunocytokines
WO2020076799A1 (en) 2018-10-09 2020-04-16 Bristol-Myers Squibb Company Anti-mertk antibodies for treating cancer
WO2020081928A1 (en) 2018-10-19 2020-04-23 Bristol-Myers Squibb Company Combination therapy for melanoma
WO2020079581A1 (en) 2018-10-16 2020-04-23 Novartis Ag Tumor mutation burden alone or in combination with immune markers as biomarkers for predicting response to targeted therapy
WO2020086724A1 (en) 2018-10-23 2020-04-30 Bristol-Myers Squibb Company Methods of treating tumor
WO2020089811A1 (en) 2018-10-31 2020-05-07 Novartis Ag Dc-sign antibody drug conjugates
US10654929B2 (en) 2016-11-02 2020-05-19 Jounce Therapeutics, Inc. Antibodies to PD-1 and uses thereof
WO2020102501A1 (en) 2018-11-16 2020-05-22 Bristol-Myers Squibb Company Anti-nkg2a antibodies and uses thereof
WO2020106695A1 (en) 2018-11-19 2020-05-28 Ariagen, Inc. Methods of treating cancer
WO2020117988A1 (en) 2018-12-04 2020-06-11 Tolero Pharmaceuticals, Inc. Cdk9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
WO2020117849A1 (en) 2018-12-04 2020-06-11 Bristol-Myers Squibb Company Methods of analysis using in-sample calibration curve by multiple isotopologue reaction monitoring
WO2020123453A2 (en) 2018-12-11 2020-06-18 Theravance Biopharma R&D Ip, Llc Alk5 inhibitors
WO2020128637A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1 binding antibodies in the treatment of a msi-h cancer
WO2020128972A1 (en) 2018-12-20 2020-06-25 Novartis Ag Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2020128613A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1beta binding antibodies
WO2020127965A1 (en) 2018-12-21 2020-06-25 Onxeo New conjugated nucleic acid molecules and their uses
WO2020128636A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1 beta antibodies in the treatment or prevention of myelodysplastic syndrome
WO2020128620A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1beta binding antibodies
WO2020136133A1 (en) 2018-12-23 2020-07-02 F. Hoffmann-La Roche Ag Tumor classification based on predicted tumor mutational burden
WO2020150113A1 (en) 2019-01-14 2020-07-23 Innate Tumor Immunity, Inc. Substituted quinazolines as nlrp3 modulators, for use in the treatment of cancer
WO2020150152A1 (en) 2019-01-14 2020-07-23 Genentech, Inc. Methods of treating cancer with a pd-1 axis binding antagonist and an rna vaccine
WO2020150114A1 (en) 2019-01-14 2020-07-23 Innate Tumor Immunity, Inc. Heterocyclic nlrp3 modulators, for use in the treatment of cancer
WO2020150115A1 (en) 2019-01-14 2020-07-23 Innate Tumor Immunity, Inc. Nlrp3 modulators
WO2020150116A1 (en) 2019-01-14 2020-07-23 Innate Tumor Immunity, Inc. Nlrp3 modulators
EP3500294A4 (en) * 2016-08-22 2020-07-29 Arbutus Biopharma Corporation Anti-pd-1 antibodies, or fragments thereof, for treating hepatitis b
WO2020154189A1 (en) 2019-01-21 2020-07-30 Sanofi Therapeutic rna and anti-pd1 antibodies for advanced stage solid tumor cancers
WO2020165733A1 (en) 2019-02-12 2020-08-20 Novartis Ag Pharmaceutical combination comprising tno155 and a pd-1 inhibitor
WO2020167990A1 (en) 2019-02-12 2020-08-20 Tolero Pharmaceuticals, Inc. Formulations comprising heterocyclic protein kinase inhibitors
WO2020165833A1 (en) 2019-02-15 2020-08-20 Novartis Ag 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2020165834A1 (en) 2019-02-15 2020-08-20 Novartis Ag Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
US10752687B2 (en) 2014-01-24 2020-08-25 Novartis Ag Antibody molecules to PD-1 and uses thereof
US10766955B2 (en) 2017-01-20 2020-09-08 Sanofi Anti-TGF-β antibodies and their use
WO2020198077A1 (en) 2019-03-22 2020-10-01 Sumitomo Dainippon Pharma Oncology, Inc. Compositions comprising pkm2 modulators and methods of treatment using the same
WO2020198676A1 (en) 2019-03-28 2020-10-01 Bristol-Myers Squibb Company Methods of treating tumor
WO2020198672A1 (en) 2019-03-28 2020-10-01 Bristol-Myers Squibb Company Methods of treating tumor
WO2020214995A1 (en) 2019-04-19 2020-10-22 Genentech, Inc. Anti-mertk antibodies and their methods of use
US10836827B2 (en) 2015-03-30 2020-11-17 Stcube, Inc. Antibodies specific to glycosylated PD-L1 and methods of use thereof
WO2020231766A1 (en) 2019-05-13 2020-11-19 Bristol-Myers Squibb Company AGONISTS OF ROR GAMMAt
WO2020231713A1 (en) 2019-05-13 2020-11-19 Bristol-Myers Squibb Company AGONISTS OF ROR GAMMAt
US10844115B2 (en) 2017-01-20 2020-11-24 Genzyme Corporation Bone-targeting antibodies
WO2020243563A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Multi-tumor gene signatures for suitability to immuno-oncology therapy
WO2020243568A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Methods of identifying a subject suitable for an immuno-oncology (i-o) therapy
WO2020239558A1 (en) 2019-05-24 2020-12-03 Pfizer Inc. Combination therapies using cdk inhibitors
WO2020243570A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Cell localization signature and combination therapy
US10875864B2 (en) 2011-07-21 2020-12-29 Sumitomo Dainippon Pharma Oncology, Inc. Substituted imidazo[1,2-B]pyridazines as protein kinase inhibitors
WO2021003417A1 (en) 2019-07-03 2021-01-07 Sumitomo Dainippon Pharma Oncology, Inc. Tyrosine kinase non-receptor 1 (tnk1) inhibitors and uses thereof
WO2021006199A1 (en) 2019-07-05 2021-01-14 小野薬品工業株式会社 Treatment of hematologic cancer with pd-1/cd3 dual specificity protein
WO2021026179A1 (en) 2019-08-06 2021-02-11 Bristol-Myers Squibb Company AGONISTS OF ROR GAMMAt
WO2021024020A1 (en) 2019-08-06 2021-02-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer
WO2021025140A1 (en) 2019-08-08 2021-02-11 小野薬品工業株式会社 Dual-specific protein
US10954301B2 (en) 2015-12-14 2021-03-23 Macrogenics, Inc. Bispecific molecules having immunoreactivity with PD-1 and CTLA-4, and methods of use thereof
WO2021055994A1 (en) 2019-09-22 2021-03-25 Bristol-Myers Squibb Company Quantitative spatial profiling for lag-3 antagonist therapy
WO2021053559A1 (en) 2019-09-18 2021-03-25 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
WO2021053560A1 (en) 2019-09-18 2021-03-25 Novartis Ag Combination therapy with entpd2 and cd73 antibodies
US10961310B2 (en) 2017-03-15 2021-03-30 Pandion Operations, Inc. Targeted immunotolerance
WO2021062122A1 (en) 2019-09-25 2021-04-01 Seagen Inc. Combination anti-cd30 adc, anti-pd-1 and chemotherapeutic for treatment of hematopoietic cancers
WO2021062018A1 (en) 2019-09-25 2021-04-01 Bristol-Myers Squibb Company Composite biomarker for cancer therapy
WO2021079188A1 (en) 2019-10-21 2021-04-29 Novartis Ag Combination therapies with venetoclax and tim-3 inhibitors
WO2021079195A1 (en) 2019-10-21 2021-04-29 Novartis Ag Tim-3 inhibitors and uses thereof
WO2021092380A1 (en) 2019-11-08 2021-05-14 Bristol-Myers Squibb Company Lag-3 antagonist therapy for melanoma
WO2021092044A1 (en) 2019-11-05 2021-05-14 Bristol-Myers Squibb Company M-protein assays and uses thereof
WO2021092221A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
WO2021092220A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
WO2021097256A1 (en) 2019-11-14 2021-05-20 Cohbar, Inc. Cxcr4 antagonist peptides
WO2021097110A1 (en) 2019-11-13 2021-05-20 Genentech, Inc. Therapeutic compounds and methods of use
WO2021102468A1 (en) 2019-11-22 2021-05-27 Theravance Biopharma R&D Ip, Llc Substituted 1,5-naphthyridines or quinolines as alk5 inhibitors
WO2021102343A1 (en) 2019-11-22 2021-05-27 Sumitomo Dainippon Pharma Oncology, Inc. Solid dose pharmaceutical composition
WO2021119105A1 (en) 2019-12-09 2021-06-17 Seagen Inc. Combination therapy with liv1-adc and pd-1 antagonist
WO2021127554A1 (en) 2019-12-19 2021-06-24 Bristol-Myers Squibb Company Combinations of dgk inhibitors and checkpoint antagonists
WO2021123996A1 (en) 2019-12-20 2021-06-24 Novartis Ag Uses of anti-tgf-beta antibodies and checkpoint inhibitors for the treatment of proliferative diseases
WO2021142203A1 (en) 2020-01-10 2021-07-15 Innate Tumor Immunity, Inc. Nlrp3 modulators
WO2021144657A1 (en) 2020-01-17 2021-07-22 Novartis Ag Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia
US11072653B2 (en) 2015-06-08 2021-07-27 Macrogenics, Inc. LAG-3-binding molecules and methods of use thereof
US11078279B2 (en) 2015-06-12 2021-08-03 Macrogenics, Inc. Combination therapy for the treatment of cancer
WO2021152548A1 (en) 2020-01-30 2021-08-05 Benitah Salvador Aznar Combination therapy for treatment of cancer and cancer metastasis
WO2021155149A1 (en) 2020-01-31 2021-08-05 Genentech, Inc. Methods of inducing neoepitope-specific t cells with a pd-1 axis binding antagonist and an rna vaccine
WO2021158938A1 (en) 2020-02-06 2021-08-12 Bristol-Myers Squibb Company Il-10 and uses thereof
US11091526B2 (en) 2017-12-06 2021-08-17 Pandion Operations, Inc. IL-2 muteins and uses thereof
WO2021171260A2 (en) 2020-02-28 2021-09-02 Novartis Ag A triple pharmaceutical combination comprising dabrafenib, an erk inhibitor and a raf inhibitor or a pd-1 inhibitor
WO2021176424A1 (en) 2020-03-06 2021-09-10 Ona Therapeutics, S.L. Anti-cd36 antibodies and their use to treat cancer
WO2021178807A1 (en) 2020-03-06 2021-09-10 Celgene Quanticel Research, Inc. Combination of an lsd-1 inhibitor and nivolumab for use in treating sclc or sqnsclc
US11130810B2 (en) 2015-10-02 2021-09-28 Hoffmann-La Roche Inc. Bispecific antibodies specific for PD1 and TIM3
WO2021194942A1 (en) 2020-03-23 2021-09-30 Bristol-Myers Squibb Company Anti-ccr8 antibodies for treating cancer
US11136394B2 (en) 2018-05-17 2021-10-05 Nanjing Leads Biolabs Co., Ltd. Antibody binding PD-1 and use thereof
WO2021203131A1 (en) 2020-03-31 2021-10-07 Theravance Biopharma R&D Ip, Llc Substituted pyrimidines and methods of use
US11155624B2 (en) 2016-11-01 2021-10-26 Anaptysbio, Inc. Antibodies directed against programmed death-1 (PD-1)
US11155619B2 (en) 2015-11-18 2021-10-26 Merck Sharp & Dohme Corp. PD1 and/or LAG3 binders
WO2021216478A1 (en) 2020-04-22 2021-10-28 Merck Sharp & Dohme Corp. HUMAN INTERLEUKIN-2 CONJUGATES BIASED FOR THE INTERLEUKIN-2 RECEPTOR BETA GAMMAc DIMER AND CONJUGATED TO A NONPEPTIDIC, WATER-SOLUBLE POLYMER
WO2021214623A1 (en) 2020-04-21 2021-10-28 Novartis Ag Dosing regimen for treating a disease modulated by csf-1r
US11161905B2 (en) 2017-03-04 2021-11-02 Xiangtan Tenghua Bioscience Recombinant antibodies to programmed death 1 (PD-1) and uses thereof
US11174315B2 (en) 2015-10-08 2021-11-16 Macrogenics, Inc. Combination therapy for the treatment of cancer
WO2021253041A1 (en) 2020-06-10 2021-12-16 Theravance Biopharma R&D Ip, Llc Naphthyridine derivatives useful as alk5 inhibitors
WO2021255223A1 (en) 2020-06-19 2021-12-23 Onxeo New conjugated nucleic acid molecules and their uses
WO2021260528A1 (en) 2020-06-23 2021-12-30 Novartis Ag Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2022003568A1 (en) 2020-06-30 2022-01-06 Dcprime B.V. Use of leukemia-derived cells in ovarian cancer vaccines
WO2022008519A1 (en) 2020-07-07 2022-01-13 BioNTech SE Therapeutic rna for hpv-positive cancer
WO2022009157A1 (en) 2020-07-10 2022-01-13 Novartis Ag Lhc165 and spartalizumab combinations for treating solid tumors
WO2022020716A1 (en) 2020-07-24 2022-01-27 Genentech, Inc. Heterocyclic inhibitors of tead for treating cancer
US11242376B2 (en) 2016-08-02 2022-02-08 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
US11242393B2 (en) 2018-03-23 2022-02-08 Bristol-Myers Squibb Company Antibodies against MICA and/or MICB and uses thereof
WO2022029573A1 (en) 2020-08-03 2022-02-10 Novartis Ag Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2022047412A1 (en) 2020-08-31 2022-03-03 Bristol-Myers Squibb Company Cell localization signature and immunotherapy
WO2022043557A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
WO2022047189A1 (en) 2020-08-28 2022-03-03 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hepatocellular carcinoma
WO2022043558A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
WO2022049526A1 (en) 2020-09-02 2022-03-10 Pharmabcine Inc. Combination therapy of a pd-1 antagonist and an antagonist for vegfr-2 for treating patients with cancer
WO2022053703A1 (en) 2020-09-14 2022-03-17 Boehringer Ingelheim International Gmbh Heterologous prime boost vaccine
US11279694B2 (en) 2016-11-18 2022-03-22 Sumitomo Dainippon Pharma Oncology, Inc. Alvocidib prodrugs and their use as protein kinase inhibitors
US11285207B2 (en) 2017-04-05 2022-03-29 Hoffmann-La Roche Inc. Bispecific antibodies specifically binding to PD1 and LAG3
WO2022066832A1 (en) 2020-09-24 2022-03-31 Merck Sharp & Dohme Corp. Stable formulations of programmed death receptor 1 (pd-1) antibodies and hyaluronidase variants and fragments thereof and methods of use thereof
WO2022076318A1 (en) 2020-10-05 2022-04-14 Bristol-Myers Squibb Company Methods for concentrating proteins
WO2022076596A1 (en) 2020-10-06 2022-04-14 Codiak Biosciences, Inc. Extracellular vesicle-aso constructs targeting stat6
WO2022087402A1 (en) 2020-10-23 2022-04-28 Bristol-Myers Squibb Company Lag-3 antagonist therapy for lung cancer
WO2022086957A1 (en) 2020-10-20 2022-04-28 Genentech, Inc. Peg-conjugated anti-mertk antibodies and methods of use
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
WO2022094567A1 (en) 2020-10-28 2022-05-05 Ikena Oncology, Inc. Combination of an ahr inhibitor with a pdx inhibitor or doxorubicine
WO2022098638A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
WO2022097060A1 (en) 2020-11-06 2022-05-12 Novartis Ag Cd19 binding molecules and uses thereof
WO2022098628A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies
WO2022098648A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies and anti-cd79b antibody drug conjugates
EP3368572B1 (en) 2015-10-02 2022-05-25 Symphogen A/S Anti-pd-1 antibodies and compositions
US11344620B2 (en) 2014-09-13 2022-05-31 Novartis Ag Combination therapies
WO2022120179A1 (en) 2020-12-03 2022-06-09 Bristol-Myers Squibb Company Multi-tumor gene signatures and uses thereof
WO2022118197A1 (en) 2020-12-02 2022-06-09 Pfizer Inc. Time to resolution of axitinib-related adverse events
WO2022119830A1 (en) 2020-12-02 2022-06-09 Genentech, Inc. Methods and compositions for neoadjuvant and adjuvant urothelial carcinoma therapy
WO2022135666A1 (en) 2020-12-21 2022-06-30 BioNTech SE Treatment schedule for cytokine proteins
WO2022135667A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
WO2022136266A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
WO2022146948A1 (en) 2020-12-28 2022-07-07 Bristol-Myers Squibb Company Subcutaneous administration of pd1/pd-l1 antibodies
WO2022146947A1 (en) 2020-12-28 2022-07-07 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
US11390621B2 (en) 2019-04-15 2022-07-19 Ariagen, Inc. Chiral indole compounds and their use
WO2022157715A1 (en) 2021-01-22 2022-07-28 Dcprime B.V. Methods of tumor vaccination
WO2022162569A1 (en) 2021-01-29 2022-08-04 Novartis Ag Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof
US11407830B2 (en) 2017-01-09 2022-08-09 Tesaro, Inc. Methods of treating cancer with anti-PD-1 antibodies
WO2022169921A1 (en) 2021-02-04 2022-08-11 Bristol-Myers Squibb Company Benzofuran compounds as sting agonists
US11413331B2 (en) 2017-04-03 2022-08-16 Hoffmann-La Roche Inc. Immunoconjugates
US11427576B2 (en) 2017-11-20 2022-08-30 Ariagen, Inc. Indole compounds and their use
US11440960B2 (en) 2017-06-20 2022-09-13 Kymab Limited TIGIT antibodies, encoding nucleic acids and methods of using said antibodies in vivo
WO2022190058A1 (en) 2021-03-12 2022-09-15 Dcprime B.V. Methods of vaccination and use of cd47 blockade
WO2022195551A1 (en) 2021-03-18 2022-09-22 Novartis Ag Biomarkers for cancer and methods of use thereof
WO2022204438A1 (en) * 2021-03-25 2022-09-29 Oncxerna Therapeutics, Inc. Targeted therapies in cancer
WO2022203090A1 (en) 2021-03-25 2022-09-29 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 for treatment of cancer
US11459394B2 (en) 2017-02-24 2022-10-04 Macrogenics, Inc. Bispecific binding molecules that are capable of binding CD137 and tumor antigens, and uses thereof
WO2022212876A1 (en) 2021-04-02 2022-10-06 The Regents Of The University Of California Antibodies against cleaved cdcp1 and uses thereof
WO2022212400A1 (en) 2021-03-29 2022-10-06 Juno Therapeutics, Inc. Methods for dosing and treatment with a combination of a checkpoint inhibitor therapy and a car t cell therapy
US11466068B2 (en) 2017-05-24 2022-10-11 Pandion Operations, Inc. Targeted immunotolerance
WO2022215011A1 (en) 2021-04-07 2022-10-13 Novartis Ag USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES
WO2022221227A1 (en) 2021-04-13 2022-10-20 Nuvalent, Inc. Amino-substituted heterocycles for treating cancers with egfr mutations
US11479608B2 (en) 2016-08-23 2022-10-25 Akeso Biopharma, Inc. Anti-CTLA4 antibodies
WO2022228705A1 (en) 2021-04-30 2022-11-03 F. Hoffmann-La Roche Ag Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate
WO2022232503A1 (en) 2021-04-30 2022-11-03 Genentech, Inc. Therapeutic and diagnostic methods and compositions for cancer
US11497756B2 (en) 2017-09-12 2022-11-15 Sumitomo Pharma Oncology, Inc. Treatment regimen for cancers that are insensitive to BCL-2 inhibitors using the MCL-1 inhibitor alvocidib
WO2022243846A1 (en) 2021-05-18 2022-11-24 Novartis Ag Combination therapies
WO2022251359A1 (en) 2021-05-26 2022-12-01 Theravance Biopharma R&D Ip, Llc Bicyclic inhibitors of alk5 and methods of use
US11518808B2 (en) 2018-01-12 2022-12-06 Amgen Inc. Anti-PD-1 antibodies and methods of treatment
WO2022254227A1 (en) 2021-06-04 2022-12-08 Kymab Limited Treatment of pd-l1 negative or low expressing cancer with anti-icos antibodies
WO2022256534A1 (en) 2021-06-03 2022-12-08 Synthorx, Inc. Head and neck cancer combination therapy comprising an il-2 conjugate and pembrolizumab
WO2022266510A1 (en) 2021-06-18 2022-12-22 Genzyme Corporation Anti-tgf-beta antibody formulations and their use
EP3902822A4 (en) * 2018-12-27 2022-12-28 Gigagen, Inc. Anti-pd-1 binding proteins and methods of use thereof
US11541103B2 (en) 2017-08-03 2023-01-03 Amgen Inc. Interleukin-21 mutein/ anti-PD-1 antibody conjugates
WO2023279092A2 (en) 2021-07-02 2023-01-05 Genentech, Inc. Methods and compositions for treating cancer
US11547698B2 (en) 2016-12-26 2023-01-10 Ariagen, Inc. Aryl hydrocarbon receptor modulators
WO2023285552A1 (en) 2021-07-13 2023-01-19 BioNTech SE Multispecific binding agents against cd40 and cd137 in combination therapy for cancer
WO2023004282A2 (en) 2021-07-19 2023-01-26 Regeneron Pharmaceuticals, Inc. Il12 receptor agonists and methods of use thereof
WO2023010095A1 (en) 2021-07-28 2023-02-02 F. Hoffmann-La Roche Ag Methods and compositions for treating cancer
WO2023007472A1 (en) 2021-07-30 2023-02-02 ONA Therapeutics S.L. Anti-cd36 antibodies and their use to treat cancer
WO2023010094A2 (en) 2021-07-28 2023-02-02 Genentech, Inc. Methods and compositions for treating cancer
US11578128B2 (en) 2016-08-23 2023-02-14 Akeso Pharmaceuticals, Inc. Anti-CTLA4 and anti-PD-1 bifunctional antibody, pharmaceutical composition thereof and use thereof
WO2023022965A2 (en) 2021-08-16 2023-02-23 Regeneron Pharmaceuticals, Inc. Novel il27 receptor agonists and methods of use thereof
WO2023052531A1 (en) 2021-09-30 2023-04-06 BioNTech SE Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists
WO2023056403A1 (en) 2021-09-30 2023-04-06 Genentech, Inc. Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
WO2023057882A1 (en) 2021-10-05 2023-04-13 Pfizer Inc. Combinations of azalactam compounds with a pd-1 axis binding antagonist for the treatment of cancer
WO2023057534A1 (en) 2021-10-06 2023-04-13 Genmab A/S Multispecific binding agents against pd-l1 and cd137 in combination
US11629189B2 (en) 2017-12-19 2023-04-18 Kymab Limited Bispecific antibody for ICOS and PD-L1
WO2023061930A1 (en) 2021-10-11 2023-04-20 BioNTech SE Therapeutic rna for lung cancer
WO2023077090A1 (en) 2021-10-29 2023-05-04 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hematological cancer
WO2023080900A1 (en) 2021-11-05 2023-05-11 Genentech, Inc. Methods and compositions for classifying and treating kidney cancer
WO2023079428A1 (en) 2021-11-03 2023-05-11 Pfizer Inc. Combination therapies using tlr7/8 agonist
WO2023083439A1 (en) 2021-11-09 2023-05-19 BioNTech SE Tlr7 agonist and combinations for cancer treatment
WO2023084445A1 (en) 2021-11-12 2023-05-19 Novartis Ag Combination therapy for treating lung cancer
US11660352B2 (en) 2016-03-29 2023-05-30 Stcube, Inc. Dual function antibodies specific to glycosylated PD-L1 and methods of use thereof
WO2023097194A2 (en) 2021-11-24 2023-06-01 Genentech, Inc. Therapeutic compounds and methods of use
WO2023097195A1 (en) 2021-11-24 2023-06-01 Genentech, Inc. Therapeutic indazole compounds and methods of use in the treatment of cancer
WO2023122573A1 (en) 2021-12-20 2023-06-29 Synthorx, Inc. Head and neck cancer combination therapy comprising an il-2 conjugate and pembrolizumab
WO2023147371A1 (en) 2022-01-26 2023-08-03 Bristol-Myers Squibb Company Combination therapy for hepatocellular carcinoma
US11739146B2 (en) 2019-05-20 2023-08-29 Pandion Operations, Inc. MAdCAM targeted immunotolerance
WO2023164638A1 (en) 2022-02-25 2023-08-31 Bristol-Myers Squibb Company Combination therapy for colorectal carcinoma
US11746103B2 (en) 2020-12-10 2023-09-05 Sumitomo Pharma Oncology, Inc. ALK-5 inhibitors and uses thereof
US11746161B2 (en) 2017-06-05 2023-09-05 Janssen Biotech, Inc. Antibodies that specifically bind PD-1 and methods of use
US11746152B2 (en) 2016-07-20 2023-09-05 Stcube, Inc. Methods of cancer treatment and therapy using a combination of antibodies that bind glycosylated PD-L1
WO2023168404A1 (en) 2022-03-04 2023-09-07 Bristol-Myers Squibb Company Methods of treating a tumor
US11753479B2 (en) 2014-03-04 2023-09-12 Kymab Limited Nucleic acids encoding anti-OX40L antibodies
EP3982997A4 (en) * 2019-06-14 2023-09-13 Dana-Farber Cancer Institute, Inc. Antibodies against pd-1 and methods of use thereof
WO2023170606A1 (en) 2022-03-08 2023-09-14 Alentis Therapeutics Ag Use of anti-claudin-1 antibodies to increase t cell availability
WO2023178329A1 (en) 2022-03-18 2023-09-21 Bristol-Myers Squibb Company Methods of isolating polypeptides
US11773176B2 (en) 2020-01-24 2023-10-03 Aprilbio Co., Ltd. Multispecific antibodies, compositions comprising the same, and vectors and uses thereof
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
US11779632B2 (en) 2017-12-06 2023-10-10 Pandion Operation, Inc. IL-2 muteins and uses thereof
US11779604B2 (en) 2016-11-03 2023-10-10 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses and methods
US11780921B2 (en) 2017-09-07 2023-10-10 Augusta University Research Institute, Inc. Antibodies to programmed cell death protein 1
US11780922B2 (en) 2018-02-28 2023-10-10 Ap Biosciences, Inc. Bifunctional proteins combining checkpoint blockade for targeted therapy
EP4079763A4 (en) * 2019-12-20 2023-10-11 Guangdong Feipeng Pharmaceutical Co., Ltd Anti-human programmed death -1 (pd-1) monoclonal antibody
WO2023196964A1 (en) 2022-04-08 2023-10-12 Bristol-Myers Squibb Company Machine learning identification, classification, and quantification of tertiary lymphoid structures
WO2023196987A1 (en) 2022-04-07 2023-10-12 Bristol-Myers Squibb Company Methods of treating tumor
US11793802B2 (en) 2019-03-20 2023-10-24 Sumitomo Pharma Oncology, Inc. Treatment of acute myeloid leukemia (AML) with venetoclax failure
WO2023214325A1 (en) 2022-05-05 2023-11-09 Novartis Ag Pyrazolopyrimidine derivatives and uses thereof as tet2 inhibitors
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023218046A1 (en) 2022-05-12 2023-11-16 Genmab A/S Binding agents capable of binding to cd27 in combination therapy
WO2023220647A1 (en) 2022-05-11 2023-11-16 Regeneron Pharmaceuticals, Inc. Multispecific binding molecule proproteins and uses thereof
WO2023230594A1 (en) 2022-05-27 2023-11-30 Regeneron Pharmaceuticals, Inc. Interleukin-2 proproteins and uses thereof
WO2023230554A1 (en) 2022-05-25 2023-11-30 Pfizer Inc. Combination of a braf inhibitor, an egfr inhibitor, and a pd-1 antagonist for the treatment of braf v600e-mutant, msi-h/dmmr colorectal cancer
WO2023235847A1 (en) 2022-06-02 2023-12-07 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
WO2023235848A1 (en) 2022-06-04 2023-12-07 Regeneron Pharmaceuticals, Inc. Interleukin-2 proproteins and uses thereof
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
US11851491B2 (en) 2016-11-22 2023-12-26 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
US11858996B2 (en) 2016-08-09 2024-01-02 Kymab Limited Anti-ICOS antibodies
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
EP4310197A1 (en) 2022-07-21 2024-01-24 Fundación para la Investigación Biomédica del Hospital Universitario Puerta de Hierro Majadahonda Method for identifying lung cancer patients for a combination treatment of immuno- and chemotherapy
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024023740A1 (en) 2022-07-27 2024-02-01 Astrazeneca Ab Combinations of recombinant virus expressing interleukin-12 with pd-1/pd-l1 inhibitors
WO2024040249A1 (en) 2022-08-18 2024-02-22 Regeneron Pharmaceuticals, Inc. Interferon receptor agonists and uses thereof
WO2024040247A1 (en) 2022-08-18 2024-02-22 Regeneron Pharmaceuticals, Inc. Interferon proproteins and uses thereof
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
US11933786B2 (en) 2015-03-30 2024-03-19 Stcube, Inc. Antibodies specific to glycosylated PD-L1 and methods of use thereof
WO2024069009A1 (en) 2022-09-30 2024-04-04 Alentis Therapeutics Ag Treatment of drug-resistant hepatocellular carcinoma
WO2024077095A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating bladder cancer
WO2024077166A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating lung cancer
WO2024091991A1 (en) 2022-10-25 2024-05-02 Genentech, Inc. Therapeutic and diagnostic methods for multiple myeloma
WO2024094688A1 (en) 2022-11-01 2024-05-10 Heidelberg Pharma Research Gmbh Anti-gucy2c antibody and uses thereof
US11981715B2 (en) 2020-02-21 2024-05-14 Pandion Operations, Inc. Tissue targeted immunotolerance with a CD39 effector
WO2024116140A1 (en) 2022-12-01 2024-06-06 Medimmune Limited Combination therapy for treatment of cancer comprising anti-pd-l1 and anti-cd73 antibodies
WO2024115725A1 (en) 2022-12-01 2024-06-06 BioNTech SE Multispecific antibody against cd40 and cd137 in combination therapy with anti-pd1 ab and chemotherapy
WO2024126457A1 (en) 2022-12-14 2024-06-20 Astellas Pharma Europe Bv Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and immune checkpoint inhibitors
WO2024137589A2 (en) 2022-12-20 2024-06-27 Genentech, Inc. Methods of treating pancreatic cancer with a pd-1 axis binding antagonist and an rna vaccine
WO2024137776A1 (en) 2022-12-21 2024-06-27 Bristol-Myers Squibb Company Combination therapy for lung cancer
US12030942B2 (en) 2015-10-02 2024-07-09 Les Laboratoires Servier Anti-PD-1 antibodies and compositions
WO2024150177A1 (en) 2023-01-11 2024-07-18 Advesya Treatment methods for solid tumors
WO2024151978A1 (en) 2023-01-13 2024-07-18 Regeneron Pharmaceuticals, Inc. Il12 receptor agonists and methods of use thereof
WO2024160721A1 (en) 2023-01-30 2024-08-08 Kymab Limited Antibodies
US12059474B2 (en) 2016-03-29 2024-08-13 Stcube & Co., Inc. Methods for selecting antibodies that specifically bind glycosylated immune checkpoint proteins
US12065499B2 (en) 2017-11-03 2024-08-20 Novartis Ag Anti-CD40 antibodies for use in treatment of Sjögren's syndrome
WO2024175699A1 (en) 2023-02-23 2024-08-29 Imcheck Therapeutics Combination of btn3a activating antibody and immune checkpoint inhibitors
WO2024182540A2 (en) 2023-02-28 2024-09-06 Regeneron Pharmaceuticals, Inc. T cell activators and methods of use thereof
US12091681B2 (en) 2020-03-27 2024-09-17 Mendus B.V. Ex vivo use of modified cells of leukemic origin for enhancing the efficacy of adoptive cell therapy
WO2024196952A1 (en) 2023-03-20 2024-09-26 Bristol-Myers Squibb Company Tumor subtype assessment for cancer therapy
WO2024209072A1 (en) 2023-04-06 2024-10-10 Genmab A/S Multispecific binding agents against pd-l1 and cd137 for treating cancer

Families Citing this family (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245640B (en) 2008-12-09 2014-12-31 霍夫曼-拉罗奇有限公司 Anti-PD-L1 antibodies and their use to enhance T-cell function
JOP20200236A1 (en) 2012-09-21 2017-06-16 Regeneron Pharma Anti-cd3 antibodies, bispecific antigen-binding molecules that bind cd3 and cd20, and uses thereof
TWI635098B (en) 2013-02-01 2018-09-11 再生元醫藥公司 Antibodies comprising chimeric constant domains
AR095196A1 (en) 2013-03-15 2015-09-30 Regeneron Pharma SERUM FREE CELL CULTIVATION MEDIA
US9394365B1 (en) 2014-03-12 2016-07-19 Yeda Research And Development Co., Ltd Reducing systemic regulatory T cell levels or activity for treatment of alzheimer's disease
US10519237B2 (en) 2014-03-12 2019-12-31 Yeda Research And Development Co. Ltd Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS
AU2015228372B2 (en) 2014-03-12 2018-05-31 Yeda Research And Development Co. Ltd Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS
US10618963B2 (en) 2014-03-12 2020-04-14 Yeda Research And Development Co. Ltd Reducing systemic regulatory T cell levels or activity for treatment of disease and injury of the CNS
WO2017042633A2 (en) * 2015-09-10 2017-03-16 Yeda Research And Development Co. Ltd Reducing systemic regulatory t cell levels or activity for treatment of disease and injury of the cns
TWI754319B (en) 2014-03-19 2022-02-01 美商再生元醫藥公司 Methods and antibody compositions for tumor treatment
CA2957258C (en) 2014-08-05 2023-11-07 MabQuest SA Immunological reagents
US9982052B2 (en) 2014-08-05 2018-05-29 MabQuest, SA Immunological reagents
EP3699198A1 (en) 2014-11-17 2020-08-26 Regeneron Pharmaceuticals, Inc. Methods for tumor treatment using cd3xcd20 bispecific antibody
CA2981312C (en) 2015-03-30 2023-09-26 Regeneron Pharmaceuticals, Inc. Heavy chain constant regions with reduced binding to fc gamma receptors
WO2016161410A2 (en) 2015-04-03 2016-10-06 Xoma Technology Ltd. Treatment of cancer using inhibitors of tgf-beta and pd-1
CA2991976A1 (en) 2015-07-13 2017-01-19 Cytomx Therapeutics, Inc. Anti-pd-1 antibodies, activatable anti-pd-1 antibodies, and methods of use thereof
RU2711380C2 (en) 2015-07-16 2020-01-16 Байоксэл Терапьютикс, Инк. New approach to treating cancer with application of immunomodulation
TW202330904A (en) 2015-08-04 2023-08-01 美商再生元醫藥公司 Taurine supplemented cell culture medium and methods of use
EA201890456A1 (en) 2015-08-07 2018-07-31 ПИЕРИС ФАРМАСЬЮТИКАЛС ГмбХ NEW FUSED POLYPEPTIDE SPECIFIC WITH RESPECT TO LAG-3 AND PD-1
BR112018002824A2 (en) * 2015-08-11 2018-11-06 Open Monoclonal Tech Inc antibody, polynucleotide, vector, cell, methods to express the antibody, to treat a condition associated with pd-1 and to treat a condition in a subject, kit, pharmaceutical composition and use of the antibody
AR105654A1 (en) * 2015-08-24 2017-10-25 Lilly Co Eli ANTIBODIES PD-L1 (LINKING 1 OF PROGRAMMED CELL DEATH)
EP3353212B1 (en) 2015-09-23 2021-11-03 Regeneron Pharmaceuticals, Inc. Optimized anti-cd3 bispecific antibodies and uses thereof
JP6933379B2 (en) * 2015-09-24 2021-09-08 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル Methods and compositions for reducing metastasis
WO2017058859A1 (en) * 2015-09-29 2017-04-06 Celgene Corporation Pd-1 binding proteins and methods of use thereof
TWI756187B (en) 2015-10-09 2022-03-01 美商再生元醫藥公司 Anti-lag3 antibodies and uses thereof
CN105669864B (en) * 2015-12-23 2018-10-16 杭州尚健生物技术有限公司 Anti-human 1 antibody of programmed death receptor and its preparation method and application
US11214617B2 (en) 2016-01-22 2022-01-04 MabQuest SA Immunological reagents
US11513127B2 (en) 2016-01-25 2022-11-29 Genentech, Inc. Methods for assaying T-cell dependent bispecific antibodies
TWI752012B (en) 2016-03-04 2022-01-11 美商Jn生物科學有限責任公司 Antibodies to tigit
US11549099B2 (en) 2016-03-23 2023-01-10 Novartis Ag Cell secreted minibodies and uses thereof
US10894823B2 (en) * 2016-03-24 2021-01-19 Gensun Biopharma Inc. Trispecific inhibitors for cancer treatment
US11542332B2 (en) 2016-03-26 2023-01-03 Bioatla, Inc. Anti-CTLA4 antibodies, antibody fragments, their immunoconjugates and uses thereof
JP7366388B2 (en) 2016-03-28 2023-10-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Anti-Ryk antibody and its use
CA3022961A1 (en) 2016-05-02 2017-11-09 Tetragenetics, Inc. Anti-kv1.3 antibodies, and methods of production and use thereof
SG11201810525XA (en) 2016-06-10 2018-12-28 Regeneron Pharma Anti-gitr antibodies and uses thereof
GB2569463A (en) 2016-07-18 2019-06-19 Harvard College Human lymphoid tissue-on-chip
NL2017267B1 (en) 2016-07-29 2018-02-01 Aduro Biotech Holdings Europe B V Anti-pd-1 antibodies
WO2018026248A1 (en) * 2016-08-05 2018-02-08 주식회사 와이바이오로직스 Novel antibody against programmed cell death protein (pd-1), and use thereof
BR112019002258A2 (en) * 2016-08-05 2019-05-14 Y-Biologics Inc. pd-1 binding antibody or antigen binding fragment of the antibody, method for producing the same and composition for preventing or treating cancer
WO2018039499A1 (en) 2016-08-24 2018-03-01 Regeneron Pharmaceuticals, Inc. Host cell protein modification
EA201990747A1 (en) 2016-09-19 2019-10-31 METHODS FOR TREATING IMMUNE DISORDERS WITH APPLICATION OF PROTEINS BINDING PD – 1
JP2019534859A (en) 2016-09-19 2019-12-05 セルジーン コーポレイション Method for treating vitiligo using PD-1 binding protein
PE20190576A1 (en) 2016-09-29 2019-04-22 Beijing Hanmi Pharmaceutical Co Ltd HETERODIMERIC IMMUNOGLOBULINE CONSTRUCTIONS AND SAME PREPARATION METHODS
MX2019005858A (en) 2016-11-18 2019-08-12 Beijing Hanmi Pharmaceutical Co Ltd Anti-pd-1/anti-her2 natural antibody structure-like bispecific antibody of heterodimeric form and preparation thereof.
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
JP7105235B2 (en) * 2016-12-01 2022-07-22 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Radiolabeled anti-PD-L1 antibody for immunoPET imaging
BR112019011582A2 (en) 2016-12-07 2019-10-22 Agenus Inc. antibodies and their methods of use
US11274342B2 (en) 2016-12-09 2022-03-15 Regeneron Pharmaceuticals, Inc. Systems and methods for sequencing T cell receptors and uses thereof
RU2768404C2 (en) * 2016-12-23 2022-03-24 Ремд Биотерапьютикс, Инк. Immunotherapy using antibodies binding protein 1 of programmed cell death (pd-1)
CN106674209B (en) * 2016-12-23 2020-03-06 深圳先进技术研究院 Programmed death receptor 1 gene inhibitor and preparation method and application thereof
CN108203464B (en) * 2016-12-25 2021-07-20 南京金斯瑞生物科技有限公司 High-affinity, high-specificity and high-functionality anti-human PD-1 antibody with multiple antigen recognition epitopes
CN109071656B (en) 2017-01-05 2021-05-18 璟尚生物制药公司 Checkpoint modulator antagonists
WO2018134279A1 (en) 2017-01-18 2018-07-26 Pieris Pharmaceuticals Gmbh Novel fusion polypeptides specific for lag-3 and pd-1
AR110904A1 (en) * 2017-01-20 2019-05-15 Sanofi Sa ANTI-TGF-b ANTIBODIES AND ITS USE
CN110291109B (en) 2017-01-20 2023-01-31 大有华夏生物医药集团有限公司 Monoclonal antibodies to human programmed death receptor PD-1 and fragments thereof
IL268667B1 (en) 2017-02-10 2024-08-01 Regeneron Pharma Radiolabeled anti-lag3 antibodies for immuno-pet imaging
AU2018246252A1 (en) * 2017-03-29 2019-09-19 Celgene Corporation Formulations comprising PD-1 binding proteins and methods of making thereof
AU2018243104A1 (en) 2017-04-01 2019-10-17 Beijing Hanmi Pharm. Co., Ltd. Anti-PD-L1/anti-PD-1 natural antibody structure-like heterodimeric bispecific antibody and preparation thereof
CN110914300A (en) 2017-04-03 2020-03-24 安康乐济股份有限公司 Methods of treating cancer using PS-targeted antibodies and immunooncology agents
JP2020513009A (en) 2017-04-05 2020-04-30 シムフォゲン・アクティーゼルスカブSymphogen A/S Combination therapy targeting PD-1, TIM-3, and LAG-3
US11547741B2 (en) * 2017-05-22 2023-01-10 Oncoimmune, Inc. Methods of use of soluble CD24 for treating immune related adverse events in cancer therapies
CN114075269A (en) 2017-07-06 2022-02-22 菲仕兰坎皮纳荷兰私人有限公司 Cell culture process for the production of glycoproteins
SG11202000073XA (en) * 2017-07-24 2020-02-27 Regeneron Pharma Anti-cd8 antibodies and uses thereof
TWI799432B (en) 2017-07-27 2023-04-21 美商再生元醫藥公司 Anti-ctla-4 antibodies and uses thereof
EP3661556A4 (en) * 2017-07-29 2021-04-28 University of Southern California Synthetic extracellular vesicles for novel therapies
US11640848B2 (en) 2017-09-20 2023-05-02 Regeneron Pharmaceuticals, Inc. Immunotherapy methods for patients whose tumors carry a high passenger gene mutation burden
CN109912577B (en) * 2017-12-12 2021-10-22 深圳先进技术研究院 Compound for inhibiting tumor related to EB virus and preparation method and application thereof
MX2020006639A (en) 2017-12-22 2020-09-14 Regeneron Pharma System and method for characterizing drug product impurities.
AU2019215363A1 (en) 2018-01-31 2020-07-23 Regeneron Pharmaceuticals, Inc. System and method for characterizing size and charge variant drug product impurities
TW202311746A (en) 2018-02-02 2023-03-16 美商再生元醫藥公司 System and method for characterizing protein dimerization
KR102171766B1 (en) * 2018-02-02 2020-10-29 주식회사 뉴라클제네틱스 PD-1 Variants with Enhanced PD-L1 Binding Affinity
WO2019153200A1 (en) 2018-02-08 2019-08-15 北京韩美药品有限公司 Anti-pd-1/anti-her2 natural antibody structure-like bispecific antibody in heterodimeric form and preparation thereof
GB201802573D0 (en) * 2018-02-16 2018-04-04 Crescendo Biologics Ltd Therapeutic molecules that bind to LAG3
JP2021514609A (en) 2018-02-28 2021-06-17 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Systems and methods for identifying viral contaminants
EP4317959A3 (en) 2018-03-19 2024-03-27 Regeneron Pharmaceuticals, Inc. Microchip capillary electrophoresis assays and reagents
CN108546297B (en) * 2018-03-29 2019-08-02 中国人民解放军军事科学院军事医学研究院 For the monoclonal antibody and its application of PD-1
CN109336975B (en) * 2018-04-18 2022-05-13 中国科学院微生物研究所 PD-1-targeted tumor inhibitory antibody and application thereof
CN108840932B (en) * 2018-04-28 2022-03-29 中国科学院微生物研究所 PD-1 specific antibody and anti-tumor application thereof
TW202016125A (en) 2018-05-10 2020-05-01 美商再生元醫藥公司 Systems and methods for quantifying and modifying protein viscosity
US11548947B2 (en) 2018-06-21 2023-01-10 Regeneron Pharmaceuticals, Inc. Bispecific anti-PSMA X anti-CD28 antibodies and uses thereof
TW202005985A (en) 2018-06-21 2020-02-01 美商再生元醫藥公司 Methods for treating cancer with bispecific anti-CD3xMUC16 antibodies and anti-PD-1 antibodies
US11795206B2 (en) * 2018-06-24 2023-10-24 Yunbiao Lu Specific bifunctional BY-001 (active composition of homomultimer of chimeric protein pd-L1 / fc-gamma1) down regulates the activation of human immune cells and the use thereof
EP3814381A4 (en) 2018-06-29 2022-08-10 Gensun Biopharma Inc. Trispecific antagonists
KR20210042909A (en) * 2018-07-09 2021-04-20 프레시전 인코포레이티드 Fusion structure and its use method
CN112424231B (en) * 2018-07-19 2022-09-13 大有华夏生物医药集团有限公司 anti-PD-1 antibodies and dosages and uses thereof
WO2020021061A1 (en) 2018-07-26 2020-01-30 Pieris Pharmaceuticals Gmbh Humanized anti-pd-1 antibodies and uses thereof
MX2021002279A (en) 2018-08-27 2021-05-27 Regeneron Pharma Use of raman spectroscopy in downstream purification.
AU2019328632A1 (en) 2018-08-27 2021-03-25 Pieris Pharmaceuticals Gmbh Combination therapies comprising CD137/HER2 bispecific agents and PD-1 axis inhibitors and uses thereof
WO2020047067A1 (en) 2018-08-30 2020-03-05 Regeneron Pharmaceuticals, Inc. Methods for characterizing protein complexes
JP2021535142A (en) 2018-08-31 2021-12-16 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. Dosing strategies to reduce cytokine release syndrome of CD3 / C20 bispecific antibodies
KR20210091209A (en) * 2018-11-05 2021-07-21 머크 샤프 앤드 돔 코포레이션 Dosage regimen of anti-TIGIT antibodies for the treatment of cancer
BR112021008795A2 (en) * 2018-11-13 2021-08-31 Compass Therapeutics Llc MULTISPECIFIC BINDING CONSTRUCTS AGAINST CHECKPOINT MOLECULES AND THEIR USES
EP3880186B1 (en) 2018-11-14 2024-04-03 Regeneron Pharmaceuticals, Inc. Intralesional administration of pd-1 inhibitors for treating skin cancer
KR20210116437A (en) 2018-11-20 2021-09-27 코넬 유니버시티 Macrocyclic complexes of radionuclides and their use in radiation therapy of cancer
AU2019405736A1 (en) 2018-12-19 2021-06-24 Regeneron Pharmaceuticals, Inc. Bispecific anti-MUC16 x anti-CD28 antibodies and uses thereof
US20220127336A1 (en) * 2018-12-19 2022-04-28 Humabs Biomed Sa Antibodies that neutralize hepatitis b virus and uses thereof
CA3124168A1 (en) 2018-12-19 2020-06-25 Regeneron Pharmaceuticals, Inc. Bispecific anti-cd28 x anti-cd22 antibodies and uses thereof
WO2020150491A1 (en) 2019-01-16 2020-07-23 Regeneron Pharmaceuticals, Inc. Methods for characterizing disulfide bonds
WO2020160375A1 (en) 2019-02-01 2020-08-06 Glaxosmithkline Intellectual Property Development Limited Combination treatments for cancer comprising belantamab mafodotin and an anti ox40 antibody and uses and methods thereof
AU2020228296A1 (en) * 2019-02-28 2021-10-14 Regeneron Pharmaceuticals, Inc. Administration of PD-1 inhibitors for treating skin cancer
MA55204A (en) * 2019-03-06 2022-01-12 Regeneron Pharma IL-4/IL-13 PATHWAY INHIBITORS FOR IMPROVED EFFECTIVENESS IN THE TREATMENT OF CANCER
EP3941941A1 (en) 2019-03-22 2022-01-26 Regeneron Pharmaceuticals, Inc. Egfr x cd28 multispecific antibodies
EA202192800A1 (en) 2019-04-12 2022-03-30 Васкулар Биодженикс Лтд METHODS OF ANTITUMOR THERAPY
EP3725370A1 (en) 2019-04-19 2020-10-21 ImmunoBrain Checkpoint, Inc. Modified anti-pd-l1 antibodies and methods and uses for treating a neurodegenerative disease
MA55965A (en) 2019-05-13 2022-03-23 Regeneron Pharma COMBINATION OF PD-1 INHIBITORS AND LAG-3 INHIBITORS FOR IMPROVED EFFECTIVENESS IN THE TREATMENT OF CANCER
EP3969908A1 (en) 2019-05-13 2022-03-23 Regeneron Pharmaceuticals, Inc. Improved competitive ligand binding assays
MA56533A (en) 2019-06-18 2022-04-27 Janssen Sciences Ireland Unlimited Co COMBINATION OF HEPATITIS B VIRUS (HBV) VACCINES AND ANTI-PD-1 ANTIBODIES
CA3143680A1 (en) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combination of hepatitis b virus (hbv) vaccines and anti-pd-1 or anti-pd-l1 antibody
JP2022540571A (en) 2019-06-28 2022-09-16 ゲンスン バイオファーマ、インコーポレーテッド An anti-tumor antagonist composed of a mutated TGFβ1-RII extracellular domain and an immunoglobulin scaffold
WO2021005607A1 (en) * 2019-07-09 2021-01-14 National Institute For Biotechnology In The Negev Ltd. Antibodies with reduced immunogenicity
CA3152371A1 (en) * 2019-08-01 2021-02-04 Vaccinex, Inc. Combined inhibition of semaphorin-4d and tgf.beta. and compositions therefor
US11629190B2 (en) 2019-08-15 2023-04-18 Oregon State University Canine antibody therapeutic for treating cancer
KR20220066393A (en) 2019-09-24 2022-05-24 리제너론 파아마슈티컬스, 인크. Systems and methods for the use and regeneration of chromatography
CN114846135A (en) 2019-11-04 2022-08-02 杜克大学 Treatment of primary and metastatic cancers
WO2021092019A1 (en) * 2019-11-04 2021-05-14 Inovio Pharmaceuticals, Inc. Combination therapy to treat brain cancer
AU2020378280A1 (en) 2019-11-07 2022-04-07 Feng Biosciences, Ltd. Classification of tumor microenvironments
MX2022006236A (en) 2019-11-25 2022-06-22 Regeneron Pharma Sustained release formulations using non-aqueous emulsions.
EP4085253B1 (en) 2020-01-21 2024-03-13 Regeneron Pharmaceuticals, Inc. Deglycosylation methods for electrophoresis of glycosylated proteins
CN113244385A (en) * 2020-02-07 2021-08-13 上海君实生物医药科技股份有限公司 Use of anti-PD-1 antibodies in the treatment of malignant tumors
CA3168173A1 (en) 2020-03-06 2021-09-10 Robert Babb Anti-gitr antibodies and uses thereof
JP2023520772A (en) * 2020-03-26 2023-05-19 キュアイミューン セラピューティクス インク. Anti-PD-1 Antibodies and Methods of Use
JP7240512B2 (en) * 2020-05-26 2023-03-15 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Methods of treating cervical cancer by administering a PD-1 inhibitor
KR20230029611A (en) * 2020-05-27 2023-03-03 다나-파버 캔서 인스티튜트 인크. Bispecific molecules for selectively regulating T cells
AU2021284273A1 (en) 2020-06-02 2022-12-15 Arcus Biosciences, Inc. Antibodies to TIGIT
EP4204592A1 (en) 2020-08-26 2023-07-05 Regeneron Pharmaceuticals, Inc. Methods of treating cancer by administering a pd-1 inhibitor
US20230331848A1 (en) * 2020-08-31 2023-10-19 Biosion Inc. Pd-1 binding antibodies and uses thereof
MX2023002417A (en) 2020-08-31 2023-03-22 Regeneron Pharma Asparagine feed strategies to improve cell culture performance and mitigate asparagine sequence variants.
KR20230061499A (en) 2020-09-03 2023-05-08 리제너론 파마슈티칼스 인코포레이티드 Method for treating cancer pain by administering a PD-1 inhibitor
MX2023003214A (en) 2020-09-18 2023-05-24 Regeneron Pharma Antigen-binding molecules that bind cd38 and/or cd28, and uses thereof.
JP2023544164A (en) 2020-10-02 2023-10-20 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Antibody combinations to treat cancer with reduced cytokine release syndrome
WO2022104043A1 (en) * 2020-11-13 2022-05-19 Ludwig Institute For Cancer Research Ltd Pd-1 decoy variants for immunotherapy
AU2021385363A1 (en) 2020-11-25 2023-06-08 Regeneron Pharmaceuticals, Inc. Sustained release formulations using non-aqueous membrane emulsification
US20240082394A1 (en) * 2020-12-15 2024-03-14 Bicara Therapeutics Inc. Combination therapy for the treatment of cancer
CA3205135A1 (en) 2020-12-17 2022-06-23 Regeneron Pharmaceuticals, Inc. Fabrication of protein-encapsulating microgels
US12031151B2 (en) 2021-01-20 2024-07-09 Regeneron Pharmaceuticals, Inc. Methods of improving protein titer in cell culture
CA3170208A1 (en) 2021-02-11 2022-08-18 Elizabeth Miller Methods of treating cancer by administering a neoadjuvant pd-1 inhibitor
AR125585A1 (en) 2021-03-03 2023-08-02 Regeneron Pharma SYSTEMS AND METHODS TO QUANTIFY AND MODIFY THE VISCOSITY OF PROTEINS
AU2022242000A1 (en) 2021-03-23 2023-09-14 Regeneron Pharmaceuticals, Inc. Methods of treating cancer in immunosuppressed or immunocompromised patients by administering a pd-1 inhibitor
WO2022204728A1 (en) 2021-03-26 2022-09-29 Regeneron Pharmaceuticals, Inc. Methods and systems for developing mixing protocols
CA3218786A1 (en) 2021-05-25 2022-12-01 Lifei HOU C-x-c motif chemokine receptor 6 (cxcr6) binding molecules, and methods of using the same
WO2022256383A1 (en) 2021-06-01 2022-12-08 Regeneron Pharmaceuticals, Inc. Micropchip capillary electrophoresis assays and reagents
TW202317623A (en) 2021-06-14 2023-05-01 美商再生元醫藥公司 Il2-based therapeutics and methods of use thereof
WO2023004287A1 (en) 2021-07-19 2023-01-26 Regeneron Pharmaceuticals, Inc. Combination of checkpoint inhibitors and an oncolytic virus for treating cancer
TW202326138A (en) 2021-09-08 2023-07-01 美商再生元醫藥公司 A high-throughput and mass-spectrometry-based method for quantitating antibodies and other fc-containing proteins
EP4405390A1 (en) 2021-09-20 2024-07-31 Regeneron Pharmaceuticals, Inc. Methods of controlling antibody heterogeneity
WO2023059800A2 (en) 2021-10-07 2023-04-13 Regeneron Pharmaceuticals, Inc. Systems and methods of ph modeling and control
IL311248A (en) 2021-10-07 2024-05-01 Regeneron Pharma Ph meter calibration and correction
CA3236367A1 (en) 2021-10-26 2023-05-04 Michelle Lafond Systems and methods for generating laboratory water and distributing laboratory water at different temperatures
CN116333118B (en) * 2021-12-16 2024-04-19 徕特康(苏州)生物制药有限公司 Anti-EGF receptor antibody, preparation method and application thereof
KR20240130137A (en) 2022-01-07 2024-08-28 리제너론 파아마슈티컬스, 인크. Method for treating recurrent ovarian cancer with a bispecific anti-MUC16 x anti-CD3 antibody alone or in combination with an anti-PD-1 antibody
WO2023154799A1 (en) 2022-02-14 2023-08-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Combination immunotherapy for treating cancer
KR20240149434A (en) 2022-02-17 2024-10-14 리제너론 파마슈티칼스 인코포레이티드 Combination of checkpoint inhibitors and oncolytic viruses to treat cancer
WO2023177772A1 (en) 2022-03-17 2023-09-21 Regeneron Pharmaceuticals, Inc. Methods of treating recurrent epithelioid sarcoma with bispecific anti-muc16 x anti-cd3 antibodies alone or in combination with anti-pd-1 antibodies
WO2023177836A1 (en) 2022-03-18 2023-09-21 Regeneron Pharmaceuticals, Inc. Methods and systems for analyzing polypeptide variants
CN116925223A (en) * 2022-04-02 2023-10-24 普米斯生物技术(珠海)有限公司 anti-PD-1 monoclonal antibody, derivative and application thereof
WO2023224912A1 (en) 2022-05-16 2023-11-23 Regeneron Pharmaceuticals, Inc. Methods of treating metastatic castration-resistant prostate cancer with bispecific anti-psma x anti-cd3 antibodies alone or in combination with anti-pd-1 antibodies
WO2023225098A1 (en) 2022-05-18 2023-11-23 Regeneron Pharmaceuticals, Inc. Multispecific antigen binding molecules that bind cd38 and 4-1bb, and uses thereof
WO2024018069A1 (en) 2022-07-22 2024-01-25 Philogen S.P.A Anti-cd28 antibodies
WO2024030453A1 (en) 2022-08-02 2024-02-08 Regeneron Pharmaceuticals, Inc. Methods of treating metastatic castration-resistant prostate cancer with bispecific anti-psma x anti-cd28 antibodies in combination with anti-pd-1 antibodies
WO2024040229A2 (en) * 2022-08-19 2024-02-22 Flagship Pioneering Innovations V, Inc. Combination therapies comprising myc modulators and checkpoint inhibitors
WO2024076926A1 (en) 2022-10-03 2024-04-11 Regeneron Pharmaceuticals, Inc. Methods of treating cancer with bispecific egfr x cd28 antibodies alone or in combination with anti-pd-1 antibodies
US20240198253A1 (en) 2022-12-16 2024-06-20 Regeneron Pharmaceuticals, Inc. Methods and systems for assessing chromatographic column integrity
WO2024148243A1 (en) 2023-01-06 2024-07-11 Lassen Therapeutics 1, Inc. Anti-il-18bp antibodies
WO2024148241A1 (en) 2023-01-06 2024-07-11 Lassen Therapeutics 1, Inc. Anti-il-18bp antibodies
WO2024158880A1 (en) 2023-01-25 2024-08-02 Regeneron Pharmaceuticals, Inc. Methods of modeling liquid protein composition stability
US20240248097A1 (en) 2023-01-25 2024-07-25 Regeneron Pharmaceuticals, Inc. Mass spectrometry-based characterization of antibodies co-expressed in vivo
WO2024163708A1 (en) 2023-02-01 2024-08-08 Regeneron Pharmaceuticals, Inc. Asymmetrical flow field-flow fractionation with mass spectrometry for biomacromolecule analysis
WO2024165403A1 (en) 2023-02-06 2024-08-15 Philogen S.P.A. Anti-cea antibodies
US20240280551A1 (en) 2023-02-22 2024-08-22 Regeneron Pharmaceuticals, Inc. System suitability parameters and column aging
WO2024192033A1 (en) 2023-03-13 2024-09-19 Regeneron Pharmaceuticals, Inc. Combination of pd-1 inhibitors and lag-3 inhibitors for enhanced efficacy in treating melanoma

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596541B2 (en) 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US20040101920A1 (en) 2002-11-01 2004-05-27 Czeslaw Radziejewski Modification assisted profiling (MAP) methodology
WO2004056875A1 (en) * 2002-12-23 2004-07-08 Wyeth Antibodies against pd-1 and uses therefor
EP1591527A1 (en) * 2003-01-23 2005-11-02 Ono Pharmaceutical Co., Ltd. Substance specific to human pd-1
WO2005103081A2 (en) 2004-04-20 2005-11-03 Genmab A/S Human monoclonal antibodies against cd20
US7087411B2 (en) 1999-06-08 2006-08-08 Regeneron Pharmaceuticals, Inc. Fusion protein capable of binding VEGF
WO2006121168A1 (en) 2005-05-09 2006-11-16 Ono Pharmaceutical Co., Ltd. Human monoclonal antibodies to programmed death 1(pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics
US20070280945A1 (en) 2006-06-02 2007-12-06 Sean Stevens High affinity antibodies to human IL-6 receptor
WO2009101611A1 (en) 2008-02-11 2009-08-20 Curetech Ltd. Monoclonal antibodies for tumor treatment
WO2009114335A2 (en) 2008-03-12 2009-09-17 Merck & Co., Inc. Pd-1 binding proteins
US20100203056A1 (en) 2008-12-09 2010-08-12 Genentech, Inc. Anti-pd-l1 antibodies and their use to enhance t-cell function
US20100331527A1 (en) 2009-06-26 2010-12-30 Regeneron Pharmaceuticals, Inc. Readily Isolated Bispecific Antibodies with Native Immunoglobulin Format
WO2011110621A1 (en) * 2010-03-11 2011-09-15 Ucb Pharma, S.A. Biological products: humanised agonistic anti-pd-1 antibodies
US8246995B2 (en) 2005-05-10 2012-08-21 The Board Of Trustees Of The Leland Stanford Junior University Hydrophobic nanotubes and nanoparticles as transporters for the delivery of drugs into cells
US8257740B1 (en) 2011-08-15 2012-09-04 Gp Medical, Inc. Pharmaceutical composition of nanoparticles
EP2504028A2 (en) 2009-11-24 2012-10-03 Amplimmune, Inc. Simultaneous inhibition of pd-l1/pd-l2
WO2012145493A1 (en) 2011-04-20 2012-10-26 Amplimmune, Inc. Antibodies and other molecules that bind b7-h1 and pd-1
US20130022595A1 (en) 2011-07-24 2013-01-24 Curetech Ltd. Variants of humanized immunomodulatory monoclonal antibodies
US20140088295A1 (en) 2012-09-21 2014-03-27 Regeneron Pharmaceuticals, Inc. Anti-cd3 antibodies, bispecific antigen-binding molecules that bind cd3 and cd20, and uses thereof

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2143491C (en) 1994-03-01 2011-02-22 Yasumasa Ishida A novel peptide related to human programmed cell death and dna encoding it
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
CA2383424C (en) 1999-08-23 2011-02-15 Gordon Freeman Novel b7-4 molecules and uses therefor
EP2360254A1 (en) 1999-08-23 2011-08-24 Dana-Farber Cancer Institute, Inc. Assays for screening anti-pd-1 antibodies and uses thereof
AU784634B2 (en) 1999-11-30 2006-05-18 Mayo Foundation For Medical Education And Research B7-H1, a novel immunoregulatory molecule
ES2402546T3 (en) 2000-06-28 2013-05-06 Genetics Institute, Llc PD-L2 molecules: new PD-1 ligands and their uses
AR036993A1 (en) 2001-04-02 2004-10-20 Wyeth Corp USE OF AGENTS THAT MODULATE THE INTERACTION BETWEEN PD-1 AND ITS LINKS IN THE SUBMODULATION OF IMMUNOLOGICAL ANSWERS
AU2002258941A1 (en) 2001-04-20 2002-11-05 Mayo Foundation For Medical Education And Research Methods of enhancing cell responsiveness
JP4488740B2 (en) 2001-11-13 2010-06-23 ダナ−ファーバー キャンサー インスティテュート,インコーポレイテッド Agents that modulate immune cell activation and methods of use thereof
JP4409430B2 (en) 2002-07-03 2010-02-03 小野薬品工業株式会社 Immunostimulatory composition
JP2004104681A (en) 2002-09-12 2004-04-02 Renesas Technology Corp Input buffer circuit
US7276585B2 (en) 2004-03-24 2007-10-02 Xencor, Inc. Immunoglobulin variants outside the Fc region
EP2357201B1 (en) 2004-04-13 2017-08-30 F. Hoffmann-La Roche AG Anti-P-selectin antibodies
US8097703B2 (en) 2005-06-20 2012-01-17 Medarex, Inc. CD19 antibodies and their uses
KR101888321B1 (en) 2005-07-01 2018-08-13 이. 알. 스퀴부 앤드 선즈, 엘.엘.씨. Human monoclonal antibodies to programmed death ligand 1(pd-l1)
CN104072614B (en) 2005-07-08 2017-04-26 生物基因Ma公司 Anti-alpha[v]beta[6] antibodies and uses thereof
EP1820513A1 (en) 2006-02-15 2007-08-22 Trion Pharma Gmbh Destruction of tumor cells expressing low to medium levels of tumor associated target antigens by trifunctional bispecific antibodies
EP2468765B1 (en) 2006-03-03 2015-04-22 ONO Pharmaceutical Co., Ltd. Tetramer of extracellular domain of PD-L1
NZ600758A (en) 2007-06-18 2013-09-27 Merck Sharp & Dohme Antibodies to human programmed death receptor pd-1
US20090028857A1 (en) 2007-07-23 2009-01-29 Cell Genesys, Inc. Pd-1 antibodies in combination with a cytokine-secreting cell and methods of use thereof
EP2195347A1 (en) 2007-08-17 2010-06-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for treating and diagnosing hematologic malignancies
WO2009030285A1 (en) 2007-09-07 2009-03-12 Ablynx N.V. Binding molecules with multiple binding sites, compositions comprising the same and uses thereof
KR101001360B1 (en) 2008-06-16 2010-12-14 (주)기가레인 printed circuit board electrically connected to the ground of electronic device
EA023148B1 (en) 2008-08-25 2016-04-29 Эмплиммьюн, Инк. Compositions of pd-1 antagonists and use thereof
JP5794917B2 (en) 2008-09-12 2015-10-14 アイシス・イノベーション・リミテッドIsis Innovationlimited PD-1-specific antibodies and uses thereof
US8927697B2 (en) 2008-09-12 2015-01-06 Isis Innovation Limited PD-1 specific antibodies and uses thereof
US8552154B2 (en) 2008-09-26 2013-10-08 Emory University Anti-PD-L1 antibodies and uses therefor
KR101050829B1 (en) 2008-10-02 2011-07-20 서울대학교산학협력단 Anticancer agents comprising an anti-PD-1 antibody or an anti-PD-L1 antibody
ES2629337T3 (en) 2009-02-09 2017-08-08 Inserm - Institut National De La Santé Et De La Recherche Médicale Antibodies against PD-1 and antibodies against PD-L1 and uses thereof
PL2482849T3 (en) 2009-09-30 2018-11-30 Memorial Sloan-Kettering Cancer Center Combination immunotherapy for the treatment of cancer
MX359551B (en) 2009-11-24 2018-10-02 Medimmune Ltd Targeted binding agents against b7-h1.
RS55315B2 (en) 2010-02-08 2020-08-31 Regeneron Pharma Common light chain mouse
WO2011110604A1 (en) 2010-03-11 2011-09-15 Ucb Pharma, S.A. Pd-1 antibody
CA2802344C (en) 2010-06-18 2023-06-13 The Brigham And Women's Hospital, Inc. Bi-specific antibodies against tim-3 and pd-1 for immunotherapy in chronic immune conditions
EP2638061B1 (en) 2010-11-11 2015-04-22 The University of Hong Kong Soluble pd-1 variants, fusion constructs, and uses thereof
TW202114735A (en) 2011-08-01 2021-04-16 美商建南德克公司 Methods of treating cancer using pd-1 axis binding antagonists and mek inhibitors
PT2785375T (en) 2011-11-28 2020-10-29 Merck Patent Gmbh Anti-pd-l1 antibodies and uses thereof
GB201120527D0 (en) 2011-11-29 2012-01-11 Ucl Business Plc Method
AU2013211824B2 (en) 2012-01-27 2017-06-01 Gliknik Inc. Fusion proteins comprising IgG2 hinge domains
RU2644684C2 (en) * 2012-03-16 2018-02-13 Регенерон Фармасьютикалз, Инк. Antibodies with built in the light circuit by hystidine and genetically modified excellent from human animals for their obtaining
CA2871751C (en) 2012-05-04 2021-08-24 Dana-Farber Cancer Institute, Inc. Affinity matured anti-ccr4 humanized monoclonal antibodies and methods of use
WO2013169693A1 (en) 2012-05-09 2013-11-14 Bristol-Myers Squibb Company Methods of treating cancer using an il-21 polypeptide and an anti-pd-1 antibody
US20130303250A1 (en) 2012-05-11 2013-11-14 Ryan Moore Method of Playing a Card Game
SG11201407190TA (en) 2012-05-15 2014-12-30 Bristol Myers Squibb Co Cancer immunotherapy by disrupting pd-1/pd-l1 signaling
BR112014029887A8 (en) 2012-05-31 2021-09-14 Genentech Inc Method to treat or slow the progression of cancer, kits and use of a pd-1 axis binding antagonist, oxaliplatin, leucovorin and 5-fu
SG11201502496WA (en) 2012-10-02 2015-04-29 Bristol Myers Squibb Co Combination of anti-kir antibodies and anti-pd-1 antibodies to treat cancer
WO2014066834A1 (en) 2012-10-26 2014-05-01 The University Of Chicago Synergistic combination of immunologic inhibitors for the treatment of cancer
TWI635098B (en) 2013-02-01 2018-09-11 再生元醫藥公司 Antibodies comprising chimeric constant domains
SG11201506052PA (en) 2013-02-22 2015-09-29 Curevac Gmbh Combination of vaccination and inhibition of the pd-1 pathway
EP2970473B1 (en) 2013-03-14 2017-08-16 Bristol-Myers Squibb Company Combination of dr5 agonist and anti-pd-1 antagonist and methods of use
SG10201701380TA (en) 2013-03-15 2017-04-27 Genentech Inc Biomarkers and methods of treating pd-1 and pd-l1 related conditions
JP6742903B2 (en) 2013-05-02 2020-08-19 アナプティスバイオ インコーポレイティッド Antibodies to programmed death-1 (PD-1)
WO2014194293A1 (en) 2013-05-30 2014-12-04 Amplimmune, Inc. Improved methods for the selection of patients for pd-1 or b7-h4 targeted therapies, and combination therapies thereof
WO2014209804A1 (en) 2013-06-24 2014-12-31 Biomed Valley Discoveries, Inc. Bispecific antibodies
JP6636920B2 (en) 2013-07-16 2020-01-29 ジェネンテック, インコーポレイテッド Method of treating cancer using PD-1 axis binding antagonist and TIGIT inhibitor
EP3027210A1 (en) 2013-08-02 2016-06-08 Aduro Biotech Holdings, Europe B.V. Combining cd27 agonists and immune checkpoint inhibition for immune stimulation
MX2016002273A (en) 2013-08-20 2016-05-31 Merck Sharp & Dohme Treating cancer with a combination of a pd-1 antagonist and dinaciclib.
AR097306A1 (en) 2013-08-20 2016-03-02 Merck Sharp & Dohme MODULATION OF TUMOR IMMUNITY
DK3508502T5 (en) 2013-09-20 2024-09-02 Bristol Myers Squibb Co COMBINATION OF ANTI-LAG-3 ANTIBODIES AND ANTI-PD-1 ANTIBODIES FOR THE TREATMENT OF TUMORS
EP3049442A4 (en) 2013-09-26 2017-06-28 Costim Pharmaceuticals Inc. Methods for treating hematologic cancers
PT3049441T (en) 2013-09-27 2020-01-21 Hoffmann La Roche Anti-pdl1 antibody formulations
MX2016007958A (en) 2013-12-17 2016-08-03 Genentech Inc Anti-cd3 antibodies and methods of use.
TWI681969B (en) * 2014-01-23 2020-01-11 美商再生元醫藥公司 Human antibodies to pd-1
TWI680138B (en) 2014-01-23 2019-12-21 美商再生元醫藥公司 Human antibodies to pd-l1
JOP20200094A1 (en) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc Antibody molecules to pd-1 and uses thereof
TWI754319B (en) 2014-03-19 2022-02-01 美商再生元醫藥公司 Methods and antibody compositions for tumor treatment
US10092645B2 (en) 2014-06-17 2018-10-09 Medimmune Limited Methods of treatment with antagonists against PD-1 and PD-L1 in combination with radiation therapy
TWI693232B (en) 2014-06-26 2020-05-11 美商宏觀基因股份有限公司 Covalently bonded diabodies having immunoreactivity with pd-1 and lag-3, and methods of use thereof
PE20171067A1 (en) 2014-10-14 2017-07-24 Novartis Ag ANTIBODY MOLECULES BINDING AND USES OF PD-L1
CN114702586A (en) 2015-03-13 2022-07-05 西托姆克斯治疗公司 anti-PDL 1 antibodies, activatable anti-PDL 1 antibodies, and methods of use thereof
CA2991976A1 (en) * 2015-07-13 2017-01-19 Cytomx Therapeutics, Inc. Anti-pd-1 antibodies, activatable anti-pd-1 antibodies, and methods of use thereof
RS64588B1 (en) 2015-12-22 2023-10-31 Regeneron Pharma Combination of anti-pd-1 antibodies and bispecific anti-cd20/anti-cd3 antibodies to treat cancer
US11603407B2 (en) * 2017-04-06 2023-03-14 Regeneron Pharmaceuticals, Inc. Stable antibody formulation

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087411B2 (en) 1999-06-08 2006-08-08 Regeneron Pharmaceuticals, Inc. Fusion protein capable of binding VEGF
US6596541B2 (en) 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US20040101920A1 (en) 2002-11-01 2004-05-27 Czeslaw Radziejewski Modification assisted profiling (MAP) methodology
WO2004056875A1 (en) * 2002-12-23 2004-07-08 Wyeth Antibodies against pd-1 and uses therefor
EP1591527A1 (en) * 2003-01-23 2005-11-02 Ono Pharmaceutical Co., Ltd. Substance specific to human pd-1
WO2005103081A2 (en) 2004-04-20 2005-11-03 Genmab A/S Human monoclonal antibodies against cd20
WO2006121168A1 (en) 2005-05-09 2006-11-16 Ono Pharmaceutical Co., Ltd. Human monoclonal antibodies to programmed death 1(pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics
US8008449B2 (en) 2005-05-09 2011-08-30 Medarex, Inc. Human monoclonal antibodies to programmed death 1 (PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics
US8246995B2 (en) 2005-05-10 2012-08-21 The Board Of Trustees Of The Leland Stanford Junior University Hydrophobic nanotubes and nanoparticles as transporters for the delivery of drugs into cells
US20070280945A1 (en) 2006-06-02 2007-12-06 Sean Stevens High affinity antibodies to human IL-6 receptor
WO2009101611A1 (en) 2008-02-11 2009-08-20 Curetech Ltd. Monoclonal antibodies for tumor treatment
WO2009114335A2 (en) 2008-03-12 2009-09-17 Merck & Co., Inc. Pd-1 binding proteins
EP2262837A2 (en) 2008-03-12 2010-12-22 Merck Sharp & Dohme Corp. Pd-1 binding proteins
US8168757B2 (en) 2008-03-12 2012-05-01 Merck Sharp & Dohme Corp. PD-1 binding proteins
US20110008369A1 (en) 2008-03-12 2011-01-13 Finnefrock Adam C Pd-1 binding proteins
US20100203056A1 (en) 2008-12-09 2010-08-12 Genentech, Inc. Anti-pd-l1 antibodies and their use to enhance t-cell function
US20100331527A1 (en) 2009-06-26 2010-12-30 Regeneron Pharmaceuticals, Inc. Readily Isolated Bispecific Antibodies with Native Immunoglobulin Format
EP2504028A2 (en) 2009-11-24 2012-10-03 Amplimmune, Inc. Simultaneous inhibition of pd-l1/pd-l2
US20130017199A1 (en) 2009-11-24 2013-01-17 AMPLIMMUNE ,Inc. a corporation Simultaneous inhibition of pd-l1/pd-l2
WO2011110621A1 (en) * 2010-03-11 2011-09-15 Ucb Pharma, S.A. Biological products: humanised agonistic anti-pd-1 antibodies
WO2012145493A1 (en) 2011-04-20 2012-10-26 Amplimmune, Inc. Antibodies and other molecules that bind b7-h1 and pd-1
US20130022595A1 (en) 2011-07-24 2013-01-24 Curetech Ltd. Variants of humanized immunomodulatory monoclonal antibodies
WO2013014668A1 (en) 2011-07-24 2013-01-31 Curetech Ltd. Variants of humanized immunomodulatory monoclonal antibodies
US8257740B1 (en) 2011-08-15 2012-09-04 Gp Medical, Inc. Pharmaceutical composition of nanoparticles
US20140088295A1 (en) 2012-09-21 2014-03-27 Regeneron Pharmaceuticals, Inc. Anti-cd3 antibodies, bispecific antigen-binding molecules that bind cd3 and cd20, and uses thereof

Non-Patent Citations (41)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Sciences", MACK PUBLISHING COMPANY
AI-LAZIKANI ET AL., J. MOL. BIOL., vol. 273, 1997, pages 927 - 948
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
ARRUEBO, M. ET AL.: "Antibody-conjugated nanoparticles for biomedical applications", J. NANOMAT., vol. 2009, 2009, pages 24
CHEN ET AL., NAT. REV. IMMUNOL., vol. 13, 2013, pages 227 - 242
CHEN ET AL., NATURE REV. IMMUNOL., vol. 13, 2013, pages 227 - 242
DA SILVA R MOREIRA: "Anti-PD-1 monoclonal antibody Cancer immunotherapy", DRUGS OF THE FUTURE, vol. 39, no. 1, 1 January 2014 (2014-01-01), pages 15 - 24, XP055199597, ISSN: 0377-8282 *
DONG ET AL., NATURE MED., 1999
EHRING, ANALYTICAL BIOCHEMISTRY, vol. 267, 1999, pages 252 - 259
ENGEN; SMITH, ANAL. CHEM., vol. 73, 2001, pages 256A - 265A
FLIES ET AL., YALE J. BIOL. MED., vol. 84, 2011, pages 409 - 421
FRANCISCO ET AL., IMMUNOL. REV., vol. 236, 2010, pages 219 - 242
FREEMAN, PNAS, vol. 105, 2008, pages 10275 - 10276
GONNET ET AL., SCIENCE, vol. 256, 1992, pages 1443 - 45
HARLOW; LANE: "Antibodies", COLD SPRING HARBOR PRESS
JUNGHANS ET AL., CANCER RES., vol. 50, 1990, pages 1495 - 1502
KABAT: "Sequences of Proteins of Immunological Interest", 1991, NATIONAL INSTITUTES OF HEALTH
KEIR MARY E ET AL: "Programmed death-1 (PD-1):PD-ligand 1 interactions inhibit TCR-mediated positive selection of thymocytes", THE JOURNAL OF IMMUNOLOGY, THE AMERICAN ASSOCIATION OF IMMUNOLOGISTS, US, vol. 175, no. 11, 1 December 2005 (2005-12-01), pages 7372 - 7379, XP002636167, ISSN: 0022-1767 *
KUFER ET AL., TRENDS BIOTECHNOL., vol. 22, 2004, pages 238 - 244
LANGER, SCIENCE, vol. 249, 1990, pages 1527 - 1533
MARTIN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 9268 - 9272
NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402
PADLAN ET AL., FASEB J., vol. 9, 1995, pages 133 - 139
PARDOLL, NATURE, vol. 12, 2012, pages 252 - 264
PEARSON, METHODS MOL. BIOL., vol. 24, 1994, pages 307 - 331
POWELL ET AL.: "Compendium of excipients for parenteral formulations", J PHARM SCI TECHNOL, vol. 52, 1998, pages 238 - 311, XP009119027
REDDY ET AL., J. IMMUNOL., vol. 164, 2000, pages 1925 - 1933
REINEKE, METHODS MOL. BIOL., vol. 248, 2004, pages 443 - 63
RIBAS, NEJM, vol. 366, 2012, pages 2517 - 2519
RIELLA L V ET AL: "Role of the PD-1 pathway in the immune response.", AMERICAN JOURNAL OF TRANSPLANTATION : OFFICIAL JOURNAL OF THE AMERICAN SOCIETY OF TRANSPLANTATION AND THE AMERICAN SOCIETY OF TRANSPLANT SURGEONS OCT 2012, vol. 12, no. 10, October 2012 (2012-10-01), pages 2575 - 2587, XP002738626, ISSN: 1600-6143 *
RILEY, IMMUNOL. REV., vol. 229, 2009, pages 114 - 125
SHERIDAN, NATURE BIOTECHNOLOGY, vol. 30, 2012, pages 729 - 730
SHIELD ET AL., JBC, vol. 277, 2002, pages 26733
TOMER, PROT. SCI., vol. 9, 2000, pages 487 - 496
TUTT ET AL., J. IMMUNOL., vol. 147, 1991, pages 60 - 69
VAJDOS ET AL., J MOL BIOL, vol. 320, 2002, pages 415 - 428
WANG ET AL., J. VIRAL HEP., vol. 20, 2013, pages 27 - 39
WATANABE ET AL., CLIN. DEV. IMMUNOL., 2012
WU ET AL., J. BIOL. CHEM., vol. 262, 1987, pages 4429 - 4432
ZORAN GATALICA, CARRIE L. SNYDER, KIMBERLY YEATTS, NIANQING XIAO, DANIEL HOLTERMAN, HENRY T. LYNCH: "Programmed death 1 (PD-1) lymphocytes and ligand (PD-L1) in colorectal cancer and their relationship to microsatellite instability status.", J CLIN ONCOL, vol. 32, no. 5s, 30 May 2014 (2014-05-30), XP055199884 *
ZOU; CHEN, NAT. REV. IMMUNOL., vol. 8, 2008, pages 467 - 77

Cited By (491)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10875864B2 (en) 2011-07-21 2020-12-29 Sumitomo Dainippon Pharma Oncology, Inc. Substituted imidazo[1,2-B]pyridazines as protein kinase inhibitors
US9815897B2 (en) 2013-05-02 2017-11-14 Anaptysbio, Inc. Antibodies directed against programmed death-1 (PD-1)
US10738117B2 (en) 2013-05-02 2020-08-11 Anaptysbio, Inc. Antibodies directed against programmed death-1 (PD-1)
US10994008B2 (en) 2013-08-20 2021-05-04 Merck Sharp & Dohme Corp. Modulation of tumor immunity
US10188729B2 (en) 2013-08-20 2019-01-29 Merck Sharp & Dohme Corp. Modulation of tumor immunity
US11708412B2 (en) 2013-09-26 2023-07-25 Novartis Ag Methods for treating hematologic cancers
US10570204B2 (en) 2013-09-26 2020-02-25 The Medical College Of Wisconsin, Inc. Methods for treating hematologic cancers
US11365255B2 (en) 2013-12-12 2022-06-21 Suzhou Suncadia Biopharmaceuticals Co., Ltd. PD-1 antibody, antigen-binding fragment thereof, and medical application thereof
US10344090B2 (en) 2013-12-12 2019-07-09 Shanghai Hangrui Pharmaceutical Co., Ltd. PD-1 antibody, antigen-binding fragment thereof, and medical application thereof
US10737113B2 (en) 2014-01-23 2020-08-11 Regeneron Pharmaceuticals, Inc. Human antibodies to PD-1
US11117970B2 (en) 2014-01-23 2021-09-14 Regeneron Pharmaceuticals, Inc. Human antibodies to PD-L1
US9938345B2 (en) 2014-01-23 2018-04-10 Regeneron Pharmaceuticals, Inc. Human antibodies to PD-L1
US9987500B2 (en) 2014-01-23 2018-06-05 Regeneron Pharmaceuticals, Inc. Human antibodies to PD-1
US10752687B2 (en) 2014-01-24 2020-08-25 Novartis Ag Antibody molecules to PD-1 and uses thereof
US11827704B2 (en) 2014-01-24 2023-11-28 Novartis Ag Antibody molecules to PD-1 and uses thereof
US10981990B2 (en) 2014-01-31 2021-04-20 Novartis Ag Antibody molecules to TIM-3 and uses thereof
US11155620B2 (en) 2014-01-31 2021-10-26 Novartis Ag Method of detecting TIM-3 using antibody molecules to TIM-3
US10472419B2 (en) 2014-01-31 2019-11-12 Novartis Ag Antibody molecules to TIM-3 and uses thereof
US11753479B2 (en) 2014-03-04 2023-09-12 Kymab Limited Nucleic acids encoding anti-OX40L antibodies
US11773175B2 (en) 2014-03-04 2023-10-03 Kymab Limited Antibodies, uses and methods
US10160806B2 (en) 2014-06-26 2018-12-25 Macrogenics, Inc. Covalently bonded diabodies having immunoreactivity with PD-1 and LAG-3, and methods of use thereof
US11098119B2 (en) 2014-06-26 2021-08-24 Macrogenics, Inc. Covalently bonded diabodies having immunoreactivity with PD-1 and LAG-3, and methods of use thereof
US11344620B2 (en) 2014-09-13 2022-05-31 Novartis Ag Combination therapies
EP3220927A4 (en) * 2014-11-20 2018-04-25 Promega Corporation Systems and methods for assessing modulators of immune checkpoints
EP3984542A1 (en) * 2014-11-20 2022-04-20 Promega Corporation Systems and methods for assessing modulators of immune checkpoints
US11338035B2 (en) 2014-12-09 2022-05-24 Rinat Neuroscience Corp. Anti-PD-1 antibodies and methods of use thereof
US10660953B2 (en) 2014-12-09 2020-05-26 Rinat Neuroscience Corp. Anti-PD-1 antibodies and methods of use thereof
US10155037B2 (en) 2014-12-09 2018-12-18 Rinat Neuroscience Corp. Anti-PD-1 antibodies and methods of use thereof
US11933786B2 (en) 2015-03-30 2024-03-19 Stcube, Inc. Antibodies specific to glycosylated PD-L1 and methods of use thereof
US10836827B2 (en) 2015-03-30 2020-11-17 Stcube, Inc. Antibodies specific to glycosylated PD-L1 and methods of use thereof
US10358473B2 (en) 2015-05-18 2019-07-23 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
US11028142B2 (en) 2015-05-18 2021-06-08 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
US11965012B2 (en) 2015-05-18 2024-04-23 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
US10358474B2 (en) 2015-05-18 2019-07-23 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
US10442849B2 (en) 2015-05-18 2019-10-15 Tcr2 Therabeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
US11072653B2 (en) 2015-06-08 2021-07-27 Macrogenics, Inc. LAG-3-binding molecules and methods of use thereof
US11858991B2 (en) 2015-06-08 2024-01-02 Macrogenics, Inc. LAG-3-binding molecules and methods of use thereof
US11078279B2 (en) 2015-06-12 2021-08-03 Macrogenics, Inc. Combination therapy for the treatment of cancer
US11623959B2 (en) 2015-07-30 2023-04-11 Macrogenics, Inc. PD-1-binding molecules and methods of use thereof
US10577422B2 (en) 2015-07-30 2020-03-03 Macrogenics, Inc. PD-1-binding molecules and methods of use thereof
JP2018527952A (en) * 2015-09-01 2018-09-27 アジェナス インコーポレイテッド Anti-PD-1 antibody and method of use thereof
KR102685020B1 (en) 2015-09-29 2024-07-16 상하이 장지앙 바이오테크놀로지 컴퍼니 리미티드 PD-1 antibody and its uses
EP3356416A4 (en) * 2015-09-29 2019-04-10 Asia Biotech Pte. Ltd. Pd-1 antibodies and uses thereof
WO2017058115A1 (en) 2015-09-29 2017-04-06 Asia Biotech Pte. Ltd. Pd-1 antibodies and uses thereof
KR20180083318A (en) * 2015-09-29 2018-07-20 아시아 바이오테크 피티이. 엘티디. PD-1 antibodies and uses thereof
CN108368175B (en) * 2015-09-29 2021-08-06 上海张江生物技术有限公司 PD-1 antibodies and uses thereof
CN108368175A (en) * 2015-09-29 2018-08-03 亚洲生物技术私人有限公司 PD-1 antibody and application thereof
US10981991B2 (en) 2015-09-29 2021-04-20 Shanghai Zhangjiang Biotechnology Co., Ltd. PD-1 antibodies and uses thereof
JP2018529368A (en) * 2015-09-29 2018-10-11 アジア バイオテック ピーティーイー リミテッド PD-1 antibody and use thereof
US11130810B2 (en) 2015-10-02 2021-09-28 Hoffmann-La Roche Inc. Bispecific antibodies specific for PD1 and TIM3
US12030942B2 (en) 2015-10-02 2024-07-09 Les Laboratoires Servier Anti-PD-1 antibodies and compositions
EP3368572B1 (en) 2015-10-02 2022-05-25 Symphogen A/S Anti-pd-1 antibodies and compositions
US11174315B2 (en) 2015-10-08 2021-11-16 Macrogenics, Inc. Combination therapy for the treatment of cancer
WO2017079112A1 (en) 2015-11-03 2017-05-11 Janssen Biotech, Inc. Antibodies specifically binding pd-1 and their uses
EP3370768A4 (en) * 2015-11-03 2019-07-24 Janssen Biotech, Inc. Antibodies specifically binding pd-1 and their uses
EP4046655A1 (en) * 2015-11-03 2022-08-24 Janssen Biotech, Inc. Antibodies specifically binding pd-1 and their uses
US10894830B2 (en) 2015-11-03 2021-01-19 Janssen Biotech, Inc. Antibodies specifically binding PD-1, TIM-3 or PD-1 and TIM-3 and their uses
CN108601829B (en) * 2015-11-18 2020-04-24 礼进生物医药科技(上海)有限公司 anti-PD-1 antibodies and therapeutic uses thereof
US10913797B2 (en) 2015-11-18 2021-02-09 Lyvgen Biopharma Holdings Limited Anti-PD-1 antibodies and therapeutic uses thereof
US11155619B2 (en) 2015-11-18 2021-10-26 Merck Sharp & Dohme Corp. PD1 and/or LAG3 binders
US11168135B2 (en) 2015-11-18 2021-11-09 Merck Sharp & Dohme Corp. PD1 and/or LAG3 binders
US11168136B2 (en) 2015-11-18 2021-11-09 Merck Sharp & Dohme Corp. PD1 and/or LAG3 binders
EP3377102A4 (en) * 2015-11-18 2019-07-10 Lyvgen Biopharma Holdings Limited Anti-pd-1 antibodies and therapeutic uses thereof
CN108601829A (en) * 2015-11-18 2018-09-28 礼进生物医药科技(上海)有限公司 Anti- PD-1 antibody and its therapeutical uses
US10858432B2 (en) 2015-12-02 2020-12-08 Stcube, Inc. Antibodies specific to glycosylated PD-1 and methods of use thereof
WO2017096026A1 (en) * 2015-12-02 2017-06-08 Stcube, Inc. Antibodies specific to glycosylated pd-1 and methods of use thereof
US11981736B2 (en) 2015-12-02 2024-05-14 St Cube Inc. Antibodies specific to glycosylated PD-1 and methods of use thereof
US11840571B2 (en) 2015-12-14 2023-12-12 Macrogenics, Inc. Methods of using bispecific molecules having immunoreactivity with PD-1 and CTLA-4
US10954301B2 (en) 2015-12-14 2021-03-23 Macrogenics, Inc. Bispecific molecules having immunoreactivity with PD-1 and CTLA-4, and methods of use thereof
US10392442B2 (en) 2015-12-17 2019-08-27 Bristol-Myers Squibb Company Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment
US10668152B2 (en) 2015-12-17 2020-06-02 Bristol-Myers Squibb Company Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment
US11965031B2 (en) 2015-12-17 2024-04-23 Bristol-Myers Squibb Company Use of anti-PD-1 antibody in combination with anti-CD27 antibody in cancer treatment
JP2019503361A (en) * 2015-12-22 2019-02-07 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. Combination of anti-PD-1 antibody and bispecific anti-CD20 / anti-CD3 antibody for treating cancer
CN108473578A (en) * 2015-12-22 2018-08-31 瑞泽恩制药公司 anti-PD-1 antibody and bispecific anti-CD 20/anti-CD 3 antibody combinations for treating cancer
JP7126941B2 (en) 2015-12-22 2022-08-29 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Combination of anti-PD-1 antibody and bispecific anti-CD20/anti-CD3 antibody for treating cancer
US12054557B2 (en) 2015-12-22 2024-08-06 Regeneron Pharmaceuticals, Inc. Combination of anti-PD-1 antibodies and bispecific anti-CD20/anti-CD3 antibodies to treat cancer
JP2022033899A (en) * 2016-01-21 2022-03-02 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Treatment of cancer with combinations of immunoregulatory agents
JP2019506400A (en) * 2016-01-21 2019-03-07 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Treatment of cancer using an immunomodulator
JP7026047B2 (en) 2016-01-21 2022-02-25 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Treatment of cancer with immunomodulators
WO2017125815A3 (en) * 2016-01-22 2017-09-08 MabQuest SA Pd1 specific antibodies
WO2017141208A1 (en) 2016-02-17 2017-08-24 Novartis Ag Tgfbeta 2 antibodies
US11660352B2 (en) 2016-03-29 2023-05-30 Stcube, Inc. Dual function antibodies specific to glycosylated PD-L1 and methods of use thereof
US12059474B2 (en) 2016-03-29 2024-08-13 Stcube & Co., Inc. Methods for selecting antibodies that specifically bind glycosylated immune checkpoint proteins
TWI755395B (en) * 2016-05-13 2022-02-21 美商再生元醫藥公司 Combination of anti-pd-1 antibodies and radiation to treat cancer
US10457725B2 (en) 2016-05-13 2019-10-29 Regeneron Pharmaceuticals, Inc. Methods of treating skin cancer by administering a PD-1 inhibitor
WO2017197259A1 (en) * 2016-05-13 2017-11-16 Regeneron Pharmaceuticals, Inc. Combination of anti-pd-1 antibodies and radiation to treat cancer
EP4180459A1 (en) * 2016-05-13 2023-05-17 Regeneron Pharmaceuticals, Inc. Methods of treating brain cancer by administering a pd-1 inhibitor
KR20190007488A (en) * 2016-05-13 2019-01-22 리제너론 파아마슈티컬스, 인크. Combination of anti-PD1 antibody and radiation to treat cancer
WO2017197263A1 (en) * 2016-05-13 2017-11-16 Regeneron Pharmaceuticals, Inc. Methods of treating skin cancer by administering a pd-1 inhibitor
IL262562B2 (en) * 2016-05-13 2023-11-01 Regeneron Pharma Combination of anti-pd-1 antibodies and radiation to treat cancer
CN109153724A (en) * 2016-05-13 2019-01-04 瑞泽恩制药公司 Method of treating skin cancer by administering PD-1 inhibitor
CN109153723B (en) * 2016-05-13 2023-10-27 瑞泽恩制药公司 Combination of anti-PD-1 antibodies and radiation for treatment of cancer
CN109153724B (en) * 2016-05-13 2023-02-21 瑞泽恩制药公司 Method of treating skin cancer by administering PD-1 inhibitor
US11505600B2 (en) 2016-05-13 2022-11-22 Regeneron Pharmaceuticals, Inc. Methods of treating skin cancer by administering a PD-1 inhibitor
KR102470294B1 (en) * 2016-05-13 2022-11-28 리제너론 파아마슈티컬스, 인크. Combination of anti-PD1 antibody and radiation to treat cancer
CN109153723A (en) * 2016-05-13 2019-01-04 瑞泽恩制药公司 Combination of anti-PD-1 antibodies with radiation for the treatment of cancer
IL262562B1 (en) * 2016-05-13 2023-07-01 Regeneron Pharma Combination of anti-pd-1 antibodies and radiation to treat cancer
EP3932951A1 (en) * 2016-05-13 2022-01-05 Regeneron Pharmaceuticals, Inc. Methods of treating skin cancer by administering a pd-1 inhibitor
WO2017210473A1 (en) 2016-06-02 2017-12-07 Bristol-Myers Squibb Company Use of an anti-pd-1 antibody in combination with an anti-cd30 antibody in lymphoma treatment
WO2017210453A1 (en) 2016-06-02 2017-12-07 Bristol-Myers Squibb Company Pd-1 blockade with nivolumab in refractory hodgkin's lymphoma
US11083790B2 (en) 2016-06-02 2021-08-10 Bristol-Myers Squibb Company Treatment of Hodgkin lymphoma using an anti-PD-1 antibody
US11299543B2 (en) 2016-06-02 2022-04-12 Bristol-Myers Squibb Company Use of an anti-PD-1 antibody in combination with an anti-CD30 antibody in cancer treatment
EP4248989A2 (en) 2016-06-02 2023-09-27 Bristol-Myers Squibb Company Use of an anti-pd-1 antibody in combination with an anti-cd30 antibody in lymphoma treatment
EP4248990A2 (en) 2016-06-02 2023-09-27 Bristol-Myers Squibb Company Pd-1 blockade with nivolumab in refractory hodgkin's lymphoma
WO2017210637A1 (en) 2016-06-03 2017-12-07 Bristol-Myers Squibb Company Use of anti-pd-1 antibody in the treatment of patients with colorectal cancer
WO2017210631A1 (en) 2016-06-03 2017-12-07 Bristol-Myers Squibb Company Anti-pd-1 antibody for use in a method of treatment of recurrent small cell lung cancer
WO2017210624A1 (en) 2016-06-03 2017-12-07 Bristol-Myers Squibb Company Anti-pd-1 antibody for use in a method of treating a tumor
US11767361B2 (en) 2016-06-03 2023-09-26 Bristol-Myers Squibb Company Method of treating lung cancer
US11332529B2 (en) 2016-06-03 2022-05-17 Bristol-Myers Squibb Company Methods of treating colorectal cancer
EP3988570A1 (en) 2016-06-03 2022-04-27 Bristol-Myers Squibb Company Use of anti-pd-1 antibody in the treatment of patients with colorectal cancer
EP4386005A2 (en) 2016-06-03 2024-06-19 Bristol-Myers Squibb Company Anti-pd-1 antibody for use in a method of treatment of recurrent small cell lung cancer
CN109310762A (en) * 2016-06-07 2019-02-05 宏观基因有限公司 Conjoint therapy
WO2017214182A1 (en) * 2016-06-07 2017-12-14 The United States Of America. As Represented By The Secretary, Department Of Health & Human Services Fully human antibody targeting pdi for cancer immunotherapy
WO2017214092A1 (en) * 2016-06-07 2017-12-14 Macrogenics, Inc. Combination therapy
JP2019517549A (en) * 2016-06-10 2019-06-24 ノバルティス アーゲー Therapeutic use of C-RAF inhibitors
WO2017218533A1 (en) 2016-06-13 2017-12-21 Torque Therapeutics, Inc. Methods and compositions for promoting immune cell function
WO2017220989A1 (en) 2016-06-20 2017-12-28 Kymab Limited Anti-pd-l1 and il-2 cytokines
WO2017220990A1 (en) 2016-06-20 2017-12-28 Kymab Limited Anti-pd-l1 antibodies
US10604576B2 (en) 2016-06-20 2020-03-31 Kymab Limited Antibodies and immunocytokines
US11965026B2 (en) 2016-06-20 2024-04-23 Kymab Limited Anti-PD-L1 and IL-2 cytokines
WO2017220988A1 (en) 2016-06-20 2017-12-28 Kymab Limited Multispecific antibodies for immuno-oncology
US11746152B2 (en) 2016-07-20 2023-09-05 Stcube, Inc. Methods of cancer treatment and therapy using a combination of antibodies that bind glycosylated PD-L1
US11242376B2 (en) 2016-08-02 2022-02-08 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
US11858996B2 (en) 2016-08-09 2024-01-02 Kymab Limited Anti-ICOS antibodies
EP3500294A4 (en) * 2016-08-22 2020-07-29 Arbutus Biopharma Corporation Anti-pd-1 antibodies, or fragments thereof, for treating hepatitis b
WO2018036472A1 (en) * 2016-08-23 2018-03-01 中山康方生物医药有限公司 Anti-pd1 monoclonal antibody, pharmaceutical composition thereof and use thereof
US11479608B2 (en) 2016-08-23 2022-10-25 Akeso Biopharma, Inc. Anti-CTLA4 antibodies
US12076398B2 (en) 2016-08-23 2024-09-03 CTTQ-Akeso (ShangHai) Biomed. Tech. Co., Ltd. Anti-PD1 monoclonal antibody, pharmaceutical composition thereof and use thereof
US11578128B2 (en) 2016-08-23 2023-02-14 Akeso Pharmaceuticals, Inc. Anti-CTLA4 and anti-PD-1 bifunctional antibody, pharmaceutical composition thereof and use thereof
US11377638B2 (en) 2016-10-07 2022-07-05 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
US11085021B2 (en) 2016-10-07 2021-08-10 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
US10208285B2 (en) 2016-10-07 2019-02-19 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
WO2018081621A1 (en) 2016-10-28 2018-05-03 Bristol-Myers Squibb Company Methods of treating urothelial carcinoma using an anti-pd-1 antibody
US11155624B2 (en) 2016-11-01 2021-10-26 Anaptysbio, Inc. Antibodies directed against programmed death-1 (PD-1)
US11384147B2 (en) 2016-11-02 2022-07-12 Jounce Therapeutics, Inc. Anti-PD-1 antibodies and uses thereof
US11905329B2 (en) 2016-11-02 2024-02-20 Jounce Therapeutics, Inc. Anti-PD-1 antibodies and uses thereof
US10654929B2 (en) 2016-11-02 2020-05-19 Jounce Therapeutics, Inc. Antibodies to PD-1 and uses thereof
US11779604B2 (en) 2016-11-03 2023-10-10 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses and methods
US11117968B2 (en) 2016-11-03 2021-09-14 Bristol-Myers Squibb Company Activatable anti-CTLA-4 antibodies and uses thereof
WO2018085555A1 (en) 2016-11-03 2018-05-11 Bristol-Myers Squibb Company Activatable anti-ctla-4 antibodies and uses thereof
EP3538137A2 (en) * 2016-11-08 2019-09-18 Qilu Puget Sound Biotherapeutics Corporation Anti-pd1 and anti-ctla4 antibodies
US11124570B2 (en) 2016-11-08 2021-09-21 Qilu Puget Sound Biotherapeutics Corporation Anti-PD1 and anti-CTLA4 antibodies
US12037397B2 (en) 2016-11-08 2024-07-16 Qilu Puget Sound Biotherapeutics Corporation Anti-PD1 and anti-CTLA4 antibodies
JP2020503001A (en) * 2016-11-18 2020-01-30 シムフォゲン・アクティーゼルスカブSymphogen A/S Anti-PD-1 antibodies and compositions
JP7178999B2 (en) 2016-11-18 2022-11-28 シムフォゲン・アクティーゼルスカブ Anti-PD-1 Antibodies and Compositions
US11359018B2 (en) 2016-11-18 2022-06-14 Symphogen A/S Anti-PD-1 antibodies and compositions
US11279694B2 (en) 2016-11-18 2022-03-22 Sumitomo Dainippon Pharma Oncology, Inc. Alvocidib prodrugs and their use as protein kinase inhibitors
WO2018091661A1 (en) * 2016-11-18 2018-05-24 Symphogen A/S Anti-pd-1 antibodies and compositions
US11851491B2 (en) 2016-11-22 2023-12-26 TCR2 Therapeutics Inc. Compositions and methods for TCR reprogramming using fusion proteins
US11547698B2 (en) 2016-12-26 2023-01-10 Ariagen, Inc. Aryl hydrocarbon receptor modulators
US11407830B2 (en) 2017-01-09 2022-08-09 Tesaro, Inc. Methods of treating cancer with anti-PD-1 antibodies
WO2018134681A1 (en) 2017-01-20 2018-07-26 Sanofi Anti-tgf-beta antibodies and their use
US10844115B2 (en) 2017-01-20 2020-11-24 Genzyme Corporation Bone-targeting antibodies
US10766955B2 (en) 2017-01-20 2020-09-08 Sanofi Anti-TGF-β antibodies and their use
US12098194B2 (en) 2017-01-20 2024-09-24 Genzyme Corporation Bone-targeting antibodies
US11242384B2 (en) 2017-01-20 2022-02-08 Sanofi Anti-TGF-beta antibodies and their use
US12049496B2 (en) 2017-01-20 2024-07-30 Sanofi Anti-TGF-beta antibodies and their use
WO2018134784A1 (en) 2017-01-20 2018-07-26 Novartis Ag Combination therapy for the treatment of cancer
WO2018146612A1 (en) 2017-02-10 2018-08-16 Novartis Ag 1-(4-amino-5-bromo-6-(1 h-pyrazol-1-yl)pyrimidin-2-yl)-1 h-pyrazol-4-ol and use thereof in the treatment of cancer
EP3753938A1 (en) 2017-02-17 2020-12-23 Innate Tumor Immunity, Inc. Substituted imidazo-quinolines as nlrp3 modulators
WO2018152396A1 (en) 2017-02-17 2018-08-23 Innate Tumor Immunity, Inc. Substituted imidazo-quinolines as nlrp3 modulators
IL268479B2 (en) * 2017-02-21 2024-06-01 Regeneron Pharma Anti-pd-1 antibodies for treatment of lung cancer
IL268479B1 (en) * 2017-02-21 2024-02-01 Regeneron Pharma Anti-pd-1 antibodies for treatment of lung cancer
WO2018156494A1 (en) * 2017-02-21 2018-08-30 Regeneron Pharmaceuticals, Inc. Anti-pd-1 antibodies for treatment of lung cancer
US11292842B2 (en) 2017-02-21 2022-04-05 Regeneron Pharmaceuticals, Inc. Anti-PD-1 antibodies for treatment of lung cancer
US11926668B2 (en) 2017-02-21 2024-03-12 Regeneron Pharmaceuticals Inc. Anti-PD-1 antibodies for treatment of lung cancer
US11459394B2 (en) 2017-02-24 2022-10-04 Macrogenics, Inc. Bispecific binding molecules that are capable of binding CD137 and tumor antigens, and uses thereof
EP4389226A2 (en) 2017-02-24 2024-06-26 MacroGenics, Inc. Bispecific binding molecules that are capable of binding cd137 and tumor antigens, and uses thereof
US11942149B2 (en) 2017-02-24 2024-03-26 Macrogenics, Inc. Bispecific binding molecules that are capable of binding CD137 and tumor antigens, and uses thereof
WO2018160540A1 (en) 2017-02-28 2018-09-07 Sanofi Therapeutic rna
US11865159B2 (en) 2017-02-28 2024-01-09 Sanofi Therapeutic RNA
US11161905B2 (en) 2017-03-04 2021-11-02 Xiangtan Tenghua Bioscience Recombinant antibodies to programmed death 1 (PD-1) and uses thereof
US10961310B2 (en) 2017-03-15 2021-03-30 Pandion Operations, Inc. Targeted immunotolerance
WO2018183928A1 (en) 2017-03-31 2018-10-04 Bristol-Myers Squibb Company Methods of treating tumor
US11413331B2 (en) 2017-04-03 2022-08-16 Hoffmann-La Roche Inc. Immunoconjugates
US12023368B2 (en) 2017-04-03 2024-07-02 Hoffmann-La Roche Inc. Immunoconjugates
US11285207B2 (en) 2017-04-05 2022-03-29 Hoffmann-La Roche Inc. Bispecific antibodies specifically binding to PD1 and LAG3
EP4249512A2 (en) 2017-04-06 2023-09-27 Regeneron Pharmaceuticals, Inc. Stable antibody formulation
WO2018187057A1 (en) 2017-04-06 2018-10-11 Regeneron Pharmaceuticals, Inc. Stable antibody formulation
US11603407B2 (en) 2017-04-06 2023-03-14 Regeneron Pharmaceuticals, Inc. Stable antibody formulation
WO2018187613A2 (en) 2017-04-07 2018-10-11 Bristol-Myers Squibb Company Anti-icos agonist antibodies and uses thereof
WO2018198091A1 (en) 2017-04-28 2018-11-01 Novartis Ag Antibody conjugates comprising toll-like receptor agonist and combination therapies
WO2018211453A1 (en) 2017-05-19 2018-11-22 Novartis Ag Compositions comprising naphthyridine derivatives and aluminium adjuvant for use in treating solid tumors
US11466068B2 (en) 2017-05-24 2022-10-11 Pandion Operations, Inc. Targeted immunotolerance
WO2018222711A2 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Compositions comprising a combination of an anti-lag-3 antibody, a pd-1 pathway inhibitor, and an immunotherapeutic agent
WO2018222722A2 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Compositions comprising an anti-lag-3 antibody or an anti-lag-3 antibody and an anti-pd-1 or anti-pd-l1 antibody
US11723975B2 (en) 2017-05-30 2023-08-15 Bristol-Myers Squibb Company Compositions comprising an anti-LAG-3 antibody or an anti-LAG-3 antibody and an anti-PD-1 or anti-PD-L1 antibody
WO2018222718A1 (en) 2017-05-30 2018-12-06 Bristol-Myers Squibb Company Treatment of lag-3 positive tumors
US12049503B2 (en) 2017-05-30 2024-07-30 Bristol-Myers Squibb Company Treatment of LAG-3 positive tumors
US11807686B2 (en) 2017-05-30 2023-11-07 Bristol-Myers Squibb Company Treatment of LAG-3 positive tumors
EP4306542A2 (en) 2017-05-30 2024-01-17 Bristol-Myers Squibb Company Treatment of lag-3 positive tumors
EP4245375A2 (en) 2017-05-30 2023-09-20 Bristol-Myers Squibb Company Compositions comprising a combination of an anti-lag-3 antibody, a pd-1 pathway inhibitor, and an immunotherapeutic agent
WO2018220546A1 (en) 2017-05-31 2018-12-06 Novartis Ag Crystalline forms of 5-bromo-2,6-di(1 h-pyrazol-1-yl)pyrimidin-4-amine and new salts
US11566073B2 (en) 2017-06-01 2023-01-31 Bristol-Myers Squibb Company Methods of treating a tumor using an anti-PD-1 antibody
WO2018223040A1 (en) 2017-06-01 2018-12-06 Bristol-Myers Squibb Company Methods of treating a tumor using an anti-pd-1 antibody
US11746161B2 (en) 2017-06-05 2023-09-05 Janssen Biotech, Inc. Antibodies that specifically bind PD-1 and methods of use
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
US11440960B2 (en) 2017-06-20 2022-09-13 Kymab Limited TIGIT antibodies, encoding nucleic acids and methods of using said antibodies in vivo
WO2018234879A1 (en) 2017-06-22 2018-12-27 Novartis Ag Il-1beta binding antibodies for use in treating cancer
WO2018237173A1 (en) 2017-06-22 2018-12-27 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2018237157A1 (en) 2017-06-22 2018-12-27 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2018235056A1 (en) 2017-06-22 2018-12-27 Novartis Ag Il-1beta binding antibodies for use in treating cancer
CN110799537B (en) * 2017-06-25 2023-07-28 西雅图免疫公司 anti-PD-1 antibodies and methods of making and using the same
EP3645740A4 (en) * 2017-06-25 2021-08-18 Systimmune, Inc. Anti-pd-1 antibodies and methods of making and using thereof
CN110799537A (en) * 2017-06-25 2020-02-14 西雅图免疫公司 anti-PD-1 antibodies and methods of making and using the same
WO2019006007A1 (en) 2017-06-27 2019-01-03 Novartis Ag Dosage regimens for anti-tim-3 antibodies and uses thereof
EP3421494A1 (en) 2017-06-29 2019-01-02 Sanofi Use of isatuximab in combination with an anti-pd-1 antibody
WO2019014402A1 (en) 2017-07-14 2019-01-17 Innate Tumor Immunity, Inc. Nlrp3 modulators
WO2019018730A1 (en) 2017-07-20 2019-01-24 Novartis Ag Dosage regimens of anti-lag-3 antibodies and uses thereof
WO2019023459A1 (en) 2017-07-28 2019-01-31 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
US11541103B2 (en) 2017-08-03 2023-01-03 Amgen Inc. Interleukin-21 mutein/ anti-PD-1 antibody conjugates
WO2019046500A1 (en) 2017-08-31 2019-03-07 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
WO2019046496A1 (en) 2017-08-31 2019-03-07 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
WO2019046498A1 (en) 2017-08-31 2019-03-07 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
US11780921B2 (en) 2017-09-07 2023-10-10 Augusta University Research Institute, Inc. Antibodies to programmed cell death protein 1
US11497756B2 (en) 2017-09-12 2022-11-15 Sumitomo Pharma Oncology, Inc. Treatment regimen for cancers that are insensitive to BCL-2 inhibitors using the MCL-1 inhibitor alvocidib
WO2019074887A1 (en) 2017-10-10 2019-04-18 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
WO2019075468A1 (en) 2017-10-15 2019-04-18 Bristol-Myers Squibb Company Methods of treating tumor
US11919957B2 (en) 2017-10-15 2024-03-05 Bristol-Myers Squibb Company Methods of treating tumor
WO2019079261A1 (en) 2017-10-16 2019-04-25 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
WO2019081983A1 (en) 2017-10-25 2019-05-02 Novartis Ag Antibodies targeting cd32b and methods of use thereof
US12065499B2 (en) 2017-11-03 2024-08-20 Novartis Ag Anti-CD40 antibodies for use in treatment of Sjögren's syndrome
WO2019090330A1 (en) 2017-11-06 2019-05-09 Bristol-Myers Squibb Company Methods of treating a tumor
WO2019090263A1 (en) 2017-11-06 2019-05-09 Genentech, Inc. Diagnostic and therapeutic methods for cancer
AU2018363880B2 (en) * 2017-11-08 2022-04-07 Epiaxis Therapeutics Pty Ltd Immunogenic compositions and uses therefor
CN111587120A (en) * 2017-11-08 2020-08-25 艾比克斯治疗私人有限公司 Immunogenic compositions and uses thereof
WO2019090390A1 (en) * 2017-11-08 2019-05-16 University Of Canberra Immunogenic compositions and uses therefor
WO2019099838A1 (en) 2017-11-16 2019-05-23 Novartis Ag Combination therapies
US11459322B2 (en) 2017-11-20 2022-10-04 Ariagen, Inc. Indole compounds and their use
US11427576B2 (en) 2017-11-20 2022-08-30 Ariagen, Inc. Indole compounds and their use
US11891386B2 (en) 2017-11-20 2024-02-06 Ariagen, Inc. Indole compounds and their use
WO2019108900A1 (en) 2017-11-30 2019-06-06 Novartis Ag Bcma-targeting chimeric antigen receptor, and uses thereof
US11779632B2 (en) 2017-12-06 2023-10-10 Pandion Operation, Inc. IL-2 muteins and uses thereof
US11945852B2 (en) 2017-12-06 2024-04-02 Pandion Operations, Inc. IL-2 muteins and uses thereof
US11091526B2 (en) 2017-12-06 2021-08-17 Pandion Operations, Inc. IL-2 muteins and uses thereof
US11965008B2 (en) 2017-12-06 2024-04-23 Pandion Operations, Inc. IL-2 muteins and uses thereof
US11629189B2 (en) 2017-12-19 2023-04-18 Kymab Limited Bispecific antibody for ICOS and PD-L1
WO2019136432A1 (en) 2018-01-08 2019-07-11 Novartis Ag Immune-enhancing rnas for combination with chimeric antigen receptor therapy
US11518808B2 (en) 2018-01-12 2022-12-06 Amgen Inc. Anti-PD-1 antibodies and methods of treatment
WO2019143607A1 (en) 2018-01-16 2019-07-25 Bristol-Myers Squibb Company Methods of treating cancer with antibodies against tim3
WO2019144126A1 (en) 2018-01-22 2019-07-25 Pascal Biosciences Inc. Cannabinoids and derivatives for promoting immunogenicity of tumor and infected cells
WO2019144098A1 (en) 2018-01-22 2019-07-25 Bristol-Myers Squibb Company Compositions and methods of treating cancer
WO2019152660A1 (en) 2018-01-31 2019-08-08 Novartis Ag Combination therapy using a chimeric antigen receptor
WO2019160956A1 (en) 2018-02-13 2019-08-22 Novartis Ag Chimeric antigen receptor therapy in combination with il-15r and il15
WO2019160884A1 (en) 2018-02-13 2019-08-22 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
US11780922B2 (en) 2018-02-28 2023-10-10 Ap Biosciences, Inc. Bifunctional proteins combining checkpoint blockade for targeted therapy
WO2019173587A1 (en) 2018-03-08 2019-09-12 Bristol-Myers Squibb Company Cyclic dinucleotides as anticancer agents
WO2019180201A3 (en) * 2018-03-22 2019-12-05 Keires Ag Antagonistic pd-1, pd-l1 and lag-3 binding proteins
CN112188893A (en) * 2018-03-23 2021-01-05 Isr免疫系统调节控股公共有限公司 Combination of macrolide compounds and immune checkpoint inhibitors
US11242393B2 (en) 2018-03-23 2022-02-08 Bristol-Myers Squibb Company Antibodies against MICA and/or MICB and uses thereof
WO2019180265A1 (en) * 2018-03-23 2019-09-26 Immune System Regulation Holding Ab Combinations of macrolide compounds and immune checkpoint inhibitors
WO2019191676A1 (en) 2018-03-30 2019-10-03 Bristol-Myers Squibb Company Methods of treating tumor
WO2019195452A1 (en) 2018-04-04 2019-10-10 Bristol-Myers Squibb Company Anti-cd27 antibodies and uses thereof
WO2019200229A1 (en) 2018-04-13 2019-10-17 Novartis Ag Dosage regimens for anti-pd-l1 antibodies and uses thereof
EP4353235A2 (en) 2018-04-25 2024-04-17 Innate Tumor Immunity, Inc. Nlrp3 modulators
WO2019209896A1 (en) 2018-04-25 2019-10-31 Innate Tumor Immunity, Inc. Nlrp3 modulators
CN110404066B (en) * 2018-04-28 2022-06-17 齐鲁制药有限公司 Monoclonal antibody preparation for resisting human PD-1, combined medicament and application thereof
CN110404066A (en) * 2018-04-28 2019-11-05 齐鲁制药有限公司 A kind of monoclonal antibody formulation of anti-human PD-1, combination medicine and application thereof
WO2019206281A1 (en) * 2018-04-28 2019-10-31 齐鲁制药有限公司 Anti-human pd-1 monoclonal antibody formulation, combined medicament and use thereof
WO2019211489A1 (en) 2018-05-04 2019-11-07 Merck Patent Gmbh COMBINED INHIBITION OF PD-1/PD-L1, TGFβ AND DNA-PK FOR THE TREATMENT OF CANCER
WO2019219709A1 (en) 2018-05-14 2019-11-21 Immunocore Limited Bifunctional binding polypeptides
US11136394B2 (en) 2018-05-17 2021-10-05 Nanjing Leads Biolabs Co., Ltd. Antibody binding PD-1 and use thereof
WO2019229658A1 (en) 2018-05-30 2019-12-05 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
WO2019232319A1 (en) 2018-05-31 2019-12-05 Peloton Therapeutics, Inc. Compositions and methods for inhibiting cd73
WO2019232244A2 (en) 2018-05-31 2019-12-05 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2019229701A2 (en) 2018-06-01 2019-12-05 Novartis Ag Binding molecules against bcma and uses thereof
WO2019246557A1 (en) 2018-06-23 2019-12-26 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor
WO2020012337A1 (en) 2018-07-10 2020-01-16 Novartis Ag 3-(5-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of i karos family zinc finger 2 (ikzf2)-dependent diseases
WO2020012334A1 (en) 2018-07-10 2020-01-16 Novartis Ag 3-(5-hydroxy-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of ikaros family zinc finger 2 (ikzf2)-dependent diseases
EP4306111A2 (en) 2018-07-10 2024-01-17 Novartis AG 3-(5-hydroxy-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2020018789A1 (en) 2018-07-18 2020-01-23 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, an antimetabolite, and a platinum agent
WO2020021465A1 (en) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Method of treatment of neuroendocrine tumors
WO2020023707A1 (en) 2018-07-26 2020-01-30 Bristol-Myers Squibb Company Lag-3 combination therapy for the treatment of cancer
WO2020037092A1 (en) 2018-08-16 2020-02-20 Innate Tumor Immunity, Inc. Imidazo[4,5-c]quinoline derived nlrp3-modulators
WO2020037094A1 (en) 2018-08-16 2020-02-20 Innate Tumor Immunity, Inc. Substitued 4-amino-1h-imidazo[4,5-c]quinoline compounds and improved methods for their preparation
WO2020037091A1 (en) 2018-08-16 2020-02-20 Innate Tumor Immunity, Inc. Imidazo[4,5-c]quinoline derived nlrp3-modulators
WO2020041655A1 (en) 2018-08-24 2020-02-27 Sanofi Therapeutic rna for solid tumor cancers
WO2020044252A1 (en) 2018-08-31 2020-03-05 Novartis Ag Dosage regimes for anti-m-csf antibodies and uses thereof
WO2020051099A1 (en) 2018-09-03 2020-03-12 Genentech, Inc. Carboxamide and sulfonamide derivatives useful as tead modulators
WO2020049534A1 (en) 2018-09-07 2020-03-12 Novartis Ag Sting agonist and combination therapy thereof for the treatment of cancer
WO2020076799A1 (en) 2018-10-09 2020-04-16 Bristol-Myers Squibb Company Anti-mertk antibodies for treating cancer
WO2020079581A1 (en) 2018-10-16 2020-04-23 Novartis Ag Tumor mutation burden alone or in combination with immune markers as biomarkers for predicting response to targeted therapy
WO2020081928A1 (en) 2018-10-19 2020-04-23 Bristol-Myers Squibb Company Combination therapy for melanoma
EP4445958A2 (en) 2018-10-19 2024-10-16 Bristol-Myers Squibb Company Combination therapy for melanoma
WO2020086724A1 (en) 2018-10-23 2020-04-30 Bristol-Myers Squibb Company Methods of treating tumor
WO2020089811A1 (en) 2018-10-31 2020-05-07 Novartis Ag Dc-sign antibody drug conjugates
WO2020102501A1 (en) 2018-11-16 2020-05-22 Bristol-Myers Squibb Company Anti-nkg2a antibodies and uses thereof
WO2020106695A1 (en) 2018-11-19 2020-05-28 Ariagen, Inc. Methods of treating cancer
US12077554B2 (en) 2018-12-04 2024-09-03 Sumitomo Pharma Oncology, Inc. CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
US11034710B2 (en) 2018-12-04 2021-06-15 Sumitomo Dainippon Pharma Oncology, Inc. CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
WO2020117988A1 (en) 2018-12-04 2020-06-11 Tolero Pharmaceuticals, Inc. Cdk9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
WO2020117849A1 (en) 2018-12-04 2020-06-11 Bristol-Myers Squibb Company Methods of analysis using in-sample calibration curve by multiple isotopologue reaction monitoring
US11530231B2 (en) 2018-12-04 2022-12-20 Sumitomo Pharma Oncology, Inc. CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
WO2020123453A2 (en) 2018-12-11 2020-06-18 Theravance Biopharma R&D Ip, Llc Alk5 inhibitors
WO2020128972A1 (en) 2018-12-20 2020-06-25 Novartis Ag Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2020127965A1 (en) 2018-12-21 2020-06-25 Onxeo New conjugated nucleic acid molecules and their uses
WO2020128613A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1beta binding antibodies
WO2020128636A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1 beta antibodies in the treatment or prevention of myelodysplastic syndrome
WO2020128620A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1beta binding antibodies
WO2020128637A1 (en) 2018-12-21 2020-06-25 Novartis Ag Use of il-1 binding antibodies in the treatment of a msi-h cancer
WO2020136133A1 (en) 2018-12-23 2020-07-02 F. Hoffmann-La Roche Ag Tumor classification based on predicted tumor mutational burden
EP3902822A4 (en) * 2018-12-27 2022-12-28 Gigagen, Inc. Anti-pd-1 binding proteins and methods of use thereof
WO2020150114A1 (en) 2019-01-14 2020-07-23 Innate Tumor Immunity, Inc. Heterocyclic nlrp3 modulators, for use in the treatment of cancer
WO2020150115A1 (en) 2019-01-14 2020-07-23 Innate Tumor Immunity, Inc. Nlrp3 modulators
WO2020150116A1 (en) 2019-01-14 2020-07-23 Innate Tumor Immunity, Inc. Nlrp3 modulators
WO2020150152A1 (en) 2019-01-14 2020-07-23 Genentech, Inc. Methods of treating cancer with a pd-1 axis binding antagonist and an rna vaccine
WO2020150113A1 (en) 2019-01-14 2020-07-23 Innate Tumor Immunity, Inc. Substituted quinazolines as nlrp3 modulators, for use in the treatment of cancer
WO2020154189A1 (en) 2019-01-21 2020-07-30 Sanofi Therapeutic rna and anti-pd1 antibodies for advanced stage solid tumor cancers
WO2020165733A1 (en) 2019-02-12 2020-08-20 Novartis Ag Pharmaceutical combination comprising tno155 and a pd-1 inhibitor
WO2020167990A1 (en) 2019-02-12 2020-08-20 Tolero Pharmaceuticals, Inc. Formulations comprising heterocyclic protein kinase inhibitors
US11471456B2 (en) 2019-02-12 2022-10-18 Sumitomo Pharma Oncology, Inc. Formulations comprising heterocyclic protein kinase inhibitors
WO2020165833A1 (en) 2019-02-15 2020-08-20 Novartis Ag 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2020165834A1 (en) 2019-02-15 2020-08-20 Novartis Ag Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
US11793802B2 (en) 2019-03-20 2023-10-24 Sumitomo Pharma Oncology, Inc. Treatment of acute myeloid leukemia (AML) with venetoclax failure
WO2020198077A1 (en) 2019-03-22 2020-10-01 Sumitomo Dainippon Pharma Oncology, Inc. Compositions comprising pkm2 modulators and methods of treatment using the same
US11712433B2 (en) 2019-03-22 2023-08-01 Sumitomo Pharma Oncology, Inc. Compositions comprising PKM2 modulators and methods of treatment using the same
WO2020198676A1 (en) 2019-03-28 2020-10-01 Bristol-Myers Squibb Company Methods of treating tumor
WO2020198672A1 (en) 2019-03-28 2020-10-01 Bristol-Myers Squibb Company Methods of treating tumor
US11390621B2 (en) 2019-04-15 2022-07-19 Ariagen, Inc. Chiral indole compounds and their use
WO2020214995A1 (en) 2019-04-19 2020-10-22 Genentech, Inc. Anti-mertk antibodies and their methods of use
WO2020231766A1 (en) 2019-05-13 2020-11-19 Bristol-Myers Squibb Company AGONISTS OF ROR GAMMAt
WO2020231713A1 (en) 2019-05-13 2020-11-19 Bristol-Myers Squibb Company AGONISTS OF ROR GAMMAt
US11739146B2 (en) 2019-05-20 2023-08-29 Pandion Operations, Inc. MAdCAM targeted immunotolerance
WO2020239558A1 (en) 2019-05-24 2020-12-03 Pfizer Inc. Combination therapies using cdk inhibitors
WO2020243563A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Multi-tumor gene signatures for suitability to immuno-oncology therapy
WO2020243570A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Cell localization signature and combination therapy
WO2020243568A1 (en) 2019-05-30 2020-12-03 Bristol-Myers Squibb Company Methods of identifying a subject suitable for an immuno-oncology (i-o) therapy
EP3982997A4 (en) * 2019-06-14 2023-09-13 Dana-Farber Cancer Institute, Inc. Antibodies against pd-1 and methods of use thereof
WO2021003417A1 (en) 2019-07-03 2021-01-07 Sumitomo Dainippon Pharma Oncology, Inc. Tyrosine kinase non-receptor 1 (tnk1) inhibitors and uses thereof
US11529350B2 (en) 2019-07-03 2022-12-20 Sumitomo Pharma Oncology, Inc. Tyrosine kinase non-receptor 1 (TNK1) inhibitors and uses thereof
WO2021006199A1 (en) 2019-07-05 2021-01-14 小野薬品工業株式会社 Treatment of hematologic cancer with pd-1/cd3 dual specificity protein
WO2021024020A1 (en) 2019-08-06 2021-02-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer
WO2021025177A1 (en) 2019-08-06 2021-02-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 and immune checkpoint inhibitors for treatment of cancer
WO2021026179A1 (en) 2019-08-06 2021-02-11 Bristol-Myers Squibb Company AGONISTS OF ROR GAMMAt
WO2021025140A1 (en) 2019-08-08 2021-02-11 小野薬品工業株式会社 Dual-specific protein
WO2021053560A1 (en) 2019-09-18 2021-03-25 Novartis Ag Combination therapy with entpd2 and cd73 antibodies
WO2021053559A1 (en) 2019-09-18 2021-03-25 Novartis Ag Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
WO2021055994A1 (en) 2019-09-22 2021-03-25 Bristol-Myers Squibb Company Quantitative spatial profiling for lag-3 antagonist therapy
WO2021062018A1 (en) 2019-09-25 2021-04-01 Bristol-Myers Squibb Company Composite biomarker for cancer therapy
WO2021062122A1 (en) 2019-09-25 2021-04-01 Seagen Inc. Combination anti-cd30 adc, anti-pd-1 and chemotherapeutic for treatment of hematopoietic cancers
WO2021079195A1 (en) 2019-10-21 2021-04-29 Novartis Ag Tim-3 inhibitors and uses thereof
WO2021079188A1 (en) 2019-10-21 2021-04-29 Novartis Ag Combination therapies with venetoclax and tim-3 inhibitors
WO2021092044A1 (en) 2019-11-05 2021-05-14 Bristol-Myers Squibb Company M-protein assays and uses thereof
WO2021092220A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
WO2021092221A1 (en) 2019-11-06 2021-05-14 Bristol-Myers Squibb Company Methods of identifying a subject with a tumor suitable for a checkpoint inhibitor therapy
WO2021092380A1 (en) 2019-11-08 2021-05-14 Bristol-Myers Squibb Company Lag-3 antagonist therapy for melanoma
WO2021097110A1 (en) 2019-11-13 2021-05-20 Genentech, Inc. Therapeutic compounds and methods of use
WO2021097256A1 (en) 2019-11-14 2021-05-20 Cohbar, Inc. Cxcr4 antagonist peptides
WO2021102468A1 (en) 2019-11-22 2021-05-27 Theravance Biopharma R&D Ip, Llc Substituted 1,5-naphthyridines or quinolines as alk5 inhibitors
WO2021102343A1 (en) 2019-11-22 2021-05-27 Sumitomo Dainippon Pharma Oncology, Inc. Solid dose pharmaceutical composition
WO2021119105A1 (en) 2019-12-09 2021-06-17 Seagen Inc. Combination therapy with liv1-adc and pd-1 antagonist
WO2021127554A1 (en) 2019-12-19 2021-06-24 Bristol-Myers Squibb Company Combinations of dgk inhibitors and checkpoint antagonists
EP4079763A4 (en) * 2019-12-20 2023-10-11 Guangdong Feipeng Pharmaceutical Co., Ltd Anti-human programmed death -1 (pd-1) monoclonal antibody
WO2021123902A1 (en) 2019-12-20 2021-06-24 Novartis Ag Combination of anti tim-3 antibody mbg453 and anti tgf-beta antibody nis793, with or without decitabine or the anti pd-1 antibody spartalizumab, for treating myelofibrosis and myelodysplastic syndrome
WO2021123996A1 (en) 2019-12-20 2021-06-24 Novartis Ag Uses of anti-tgf-beta antibodies and checkpoint inhibitors for the treatment of proliferative diseases
WO2021142203A1 (en) 2020-01-10 2021-07-15 Innate Tumor Immunity, Inc. Nlrp3 modulators
WO2021144657A1 (en) 2020-01-17 2021-07-22 Novartis Ag Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia
US11773176B2 (en) 2020-01-24 2023-10-03 Aprilbio Co., Ltd. Multispecific antibodies, compositions comprising the same, and vectors and uses thereof
WO2021152548A1 (en) 2020-01-30 2021-08-05 Benitah Salvador Aznar Combination therapy for treatment of cancer and cancer metastasis
WO2021155149A1 (en) 2020-01-31 2021-08-05 Genentech, Inc. Methods of inducing neoepitope-specific t cells with a pd-1 axis binding antagonist and an rna vaccine
WO2021158938A1 (en) 2020-02-06 2021-08-12 Bristol-Myers Squibb Company Il-10 and uses thereof
US11981715B2 (en) 2020-02-21 2024-05-14 Pandion Operations, Inc. Tissue targeted immunotolerance with a CD39 effector
WO2021171260A2 (en) 2020-02-28 2021-09-02 Novartis Ag A triple pharmaceutical combination comprising dabrafenib, an erk inhibitor and a raf inhibitor or a pd-1 inhibitor
WO2021176424A1 (en) 2020-03-06 2021-09-10 Ona Therapeutics, S.L. Anti-cd36 antibodies and their use to treat cancer
WO2021178807A1 (en) 2020-03-06 2021-09-10 Celgene Quanticel Research, Inc. Combination of an lsd-1 inhibitor and nivolumab for use in treating sclc or sqnsclc
WO2021194942A1 (en) 2020-03-23 2021-09-30 Bristol-Myers Squibb Company Anti-ccr8 antibodies for treating cancer
US12091681B2 (en) 2020-03-27 2024-09-17 Mendus B.V. Ex vivo use of modified cells of leukemic origin for enhancing the efficacy of adoptive cell therapy
WO2021203131A1 (en) 2020-03-31 2021-10-07 Theravance Biopharma R&D Ip, Llc Substituted pyrimidines and methods of use
WO2021214623A1 (en) 2020-04-21 2021-10-28 Novartis Ag Dosing regimen for treating a disease modulated by csf-1r
US11827684B2 (en) 2020-04-22 2023-11-28 Merck Sharp & Dohme Llc Human interleukin-2 conjugates biased for the interleukin-2 receptor beta GAMMAc dimer and conjugated to a nonpeptidic, water-soluble polymer
WO2021216478A1 (en) 2020-04-22 2021-10-28 Merck Sharp & Dohme Corp. HUMAN INTERLEUKIN-2 CONJUGATES BIASED FOR THE INTERLEUKIN-2 RECEPTOR BETA GAMMAc DIMER AND CONJUGATED TO A NONPEPTIDIC, WATER-SOLUBLE POLYMER
WO2021253041A1 (en) 2020-06-10 2021-12-16 Theravance Biopharma R&D Ip, Llc Naphthyridine derivatives useful as alk5 inhibitors
WO2021255223A1 (en) 2020-06-19 2021-12-23 Onxeo New conjugated nucleic acid molecules and their uses
WO2021260528A1 (en) 2020-06-23 2021-12-30 Novartis Ag Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2022003568A1 (en) 2020-06-30 2022-01-06 Dcprime B.V. Use of leukemia-derived cells in ovarian cancer vaccines
WO2022008519A1 (en) 2020-07-07 2022-01-13 BioNTech SE Therapeutic rna for hpv-positive cancer
WO2022009157A1 (en) 2020-07-10 2022-01-13 Novartis Ag Lhc165 and spartalizumab combinations for treating solid tumors
WO2022020716A1 (en) 2020-07-24 2022-01-27 Genentech, Inc. Heterocyclic inhibitors of tead for treating cancer
WO2022029573A1 (en) 2020-08-03 2022-02-10 Novartis Ag Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2022047189A1 (en) 2020-08-28 2022-03-03 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hepatocellular carcinoma
WO2022043557A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
WO2022043558A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
WO2022047412A1 (en) 2020-08-31 2022-03-03 Bristol-Myers Squibb Company Cell localization signature and immunotherapy
WO2022049526A1 (en) 2020-09-02 2022-03-10 Pharmabcine Inc. Combination therapy of a pd-1 antagonist and an antagonist for vegfr-2 for treating patients with cancer
WO2022053703A1 (en) 2020-09-14 2022-03-17 Boehringer Ingelheim International Gmbh Heterologous prime boost vaccine
WO2022066832A1 (en) 2020-09-24 2022-03-31 Merck Sharp & Dohme Corp. Stable formulations of programmed death receptor 1 (pd-1) antibodies and hyaluronidase variants and fragments thereof and methods of use thereof
WO2022076318A1 (en) 2020-10-05 2022-04-14 Bristol-Myers Squibb Company Methods for concentrating proteins
WO2022076596A1 (en) 2020-10-06 2022-04-14 Codiak Biosciences, Inc. Extracellular vesicle-aso constructs targeting stat6
WO2022086957A1 (en) 2020-10-20 2022-04-28 Genentech, Inc. Peg-conjugated anti-mertk antibodies and methods of use
WO2022087402A1 (en) 2020-10-23 2022-04-28 Bristol-Myers Squibb Company Lag-3 antagonist therapy for lung cancer
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
WO2022094567A1 (en) 2020-10-28 2022-05-05 Ikena Oncology, Inc. Combination of an ahr inhibitor with a pdx inhibitor or doxorubicine
WO2022098638A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
WO2022098628A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies
WO2022098648A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies and anti-cd79b antibody drug conjugates
WO2022097060A1 (en) 2020-11-06 2022-05-12 Novartis Ag Cd19 binding molecules and uses thereof
WO2022119830A1 (en) 2020-12-02 2022-06-09 Genentech, Inc. Methods and compositions for neoadjuvant and adjuvant urothelial carcinoma therapy
WO2022118197A1 (en) 2020-12-02 2022-06-09 Pfizer Inc. Time to resolution of axitinib-related adverse events
WO2022120179A1 (en) 2020-12-03 2022-06-09 Bristol-Myers Squibb Company Multi-tumor gene signatures and uses thereof
US11746103B2 (en) 2020-12-10 2023-09-05 Sumitomo Pharma Oncology, Inc. ALK-5 inhibitors and uses thereof
WO2022136266A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
WO2022136255A1 (en) 2020-12-21 2022-06-30 BioNTech SE Treatment schedule for cytokine proteins
WO2022135666A1 (en) 2020-12-21 2022-06-30 BioNTech SE Treatment schedule for cytokine proteins
WO2022135667A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
WO2022136257A1 (en) 2020-12-21 2022-06-30 BioNTech SE Therapeutic rna for treating cancer
WO2022146947A1 (en) 2020-12-28 2022-07-07 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
WO2022146948A1 (en) 2020-12-28 2022-07-07 Bristol-Myers Squibb Company Subcutaneous administration of pd1/pd-l1 antibodies
WO2022157715A1 (en) 2021-01-22 2022-07-28 Dcprime B.V. Methods of tumor vaccination
WO2022162569A1 (en) 2021-01-29 2022-08-04 Novartis Ag Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof
WO2022169921A1 (en) 2021-02-04 2022-08-11 Bristol-Myers Squibb Company Benzofuran compounds as sting agonists
WO2022190058A1 (en) 2021-03-12 2022-09-15 Dcprime B.V. Methods of vaccination and use of cd47 blockade
WO2022195551A1 (en) 2021-03-18 2022-09-22 Novartis Ag Biomarkers for cancer and methods of use thereof
WO2022203090A1 (en) 2021-03-25 2022-09-29 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 for treatment of cancer
WO2022204438A1 (en) * 2021-03-25 2022-09-29 Oncxerna Therapeutics, Inc. Targeted therapies in cancer
WO2022212400A1 (en) 2021-03-29 2022-10-06 Juno Therapeutics, Inc. Methods for dosing and treatment with a combination of a checkpoint inhibitor therapy and a car t cell therapy
WO2022212876A1 (en) 2021-04-02 2022-10-06 The Regents Of The University Of California Antibodies against cleaved cdcp1 and uses thereof
WO2022215011A1 (en) 2021-04-07 2022-10-13 Novartis Ag USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES
US12037346B2 (en) 2021-04-13 2024-07-16 Nuvalent, Inc. Amino-substituted heteroaryls for treating cancers with EGFR mutations
WO2022221227A1 (en) 2021-04-13 2022-10-20 Nuvalent, Inc. Amino-substituted heterocycles for treating cancers with egfr mutations
WO2022232503A1 (en) 2021-04-30 2022-11-03 Genentech, Inc. Therapeutic and diagnostic methods and compositions for cancer
WO2022228705A1 (en) 2021-04-30 2022-11-03 F. Hoffmann-La Roche Ag Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate
WO2022243846A1 (en) 2021-05-18 2022-11-24 Novartis Ag Combination therapies
WO2022251359A1 (en) 2021-05-26 2022-12-01 Theravance Biopharma R&D Ip, Llc Bicyclic inhibitors of alk5 and methods of use
WO2022256534A1 (en) 2021-06-03 2022-12-08 Synthorx, Inc. Head and neck cancer combination therapy comprising an il-2 conjugate and pembrolizumab
WO2022254227A1 (en) 2021-06-04 2022-12-08 Kymab Limited Treatment of pd-l1 negative or low expressing cancer with anti-icos antibodies
WO2022266510A1 (en) 2021-06-18 2022-12-22 Genzyme Corporation Anti-tgf-beta antibody formulations and their use
WO2023279092A2 (en) 2021-07-02 2023-01-05 Genentech, Inc. Methods and compositions for treating cancer
WO2023285552A1 (en) 2021-07-13 2023-01-19 BioNTech SE Multispecific binding agents against cd40 and cd137 in combination therapy for cancer
WO2023004282A2 (en) 2021-07-19 2023-01-26 Regeneron Pharmaceuticals, Inc. Il12 receptor agonists and methods of use thereof
WO2023010095A1 (en) 2021-07-28 2023-02-02 F. Hoffmann-La Roche Ag Methods and compositions for treating cancer
WO2023010094A2 (en) 2021-07-28 2023-02-02 Genentech, Inc. Methods and compositions for treating cancer
WO2023007472A1 (en) 2021-07-30 2023-02-02 ONA Therapeutics S.L. Anti-cd36 antibodies and their use to treat cancer
WO2023022965A2 (en) 2021-08-16 2023-02-23 Regeneron Pharmaceuticals, Inc. Novel il27 receptor agonists and methods of use thereof
WO2023052531A1 (en) 2021-09-30 2023-04-06 BioNTech SE Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists
WO2023051926A1 (en) 2021-09-30 2023-04-06 BioNTech SE Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists
WO2023056403A1 (en) 2021-09-30 2023-04-06 Genentech, Inc. Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
WO2023057882A1 (en) 2021-10-05 2023-04-13 Pfizer Inc. Combinations of azalactam compounds with a pd-1 axis binding antagonist for the treatment of cancer
WO2023057534A1 (en) 2021-10-06 2023-04-13 Genmab A/S Multispecific binding agents against pd-l1 and cd137 in combination
WO2023061930A1 (en) 2021-10-11 2023-04-20 BioNTech SE Therapeutic rna for lung cancer
WO2023077090A1 (en) 2021-10-29 2023-05-04 Bristol-Myers Squibb Company Lag-3 antagonist therapy for hematological cancer
WO2023079428A1 (en) 2021-11-03 2023-05-11 Pfizer Inc. Combination therapies using tlr7/8 agonist
WO2023080900A1 (en) 2021-11-05 2023-05-11 Genentech, Inc. Methods and compositions for classifying and treating kidney cancer
WO2023083439A1 (en) 2021-11-09 2023-05-19 BioNTech SE Tlr7 agonist and combinations for cancer treatment
WO2023083868A1 (en) 2021-11-09 2023-05-19 BioNTech SE Tlr7 agonist and combinations for cancer treatment
WO2023084445A1 (en) 2021-11-12 2023-05-19 Novartis Ag Combination therapy for treating lung cancer
WO2023097194A2 (en) 2021-11-24 2023-06-01 Genentech, Inc. Therapeutic compounds and methods of use
WO2023097195A1 (en) 2021-11-24 2023-06-01 Genentech, Inc. Therapeutic indazole compounds and methods of use in the treatment of cancer
US12110276B2 (en) 2021-11-24 2024-10-08 Genentech, Inc. Pyrazolo compounds and methods of use thereof
WO2023122573A1 (en) 2021-12-20 2023-06-29 Synthorx, Inc. Head and neck cancer combination therapy comprising an il-2 conjugate and pembrolizumab
WO2023147371A1 (en) 2022-01-26 2023-08-03 Bristol-Myers Squibb Company Combination therapy for hepatocellular carcinoma
WO2023164638A1 (en) 2022-02-25 2023-08-31 Bristol-Myers Squibb Company Combination therapy for colorectal carcinoma
WO2023168404A1 (en) 2022-03-04 2023-09-07 Bristol-Myers Squibb Company Methods of treating a tumor
WO2023170606A1 (en) 2022-03-08 2023-09-14 Alentis Therapeutics Ag Use of anti-claudin-1 antibodies to increase t cell availability
WO2023178329A1 (en) 2022-03-18 2023-09-21 Bristol-Myers Squibb Company Methods of isolating polypeptides
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023196987A1 (en) 2022-04-07 2023-10-12 Bristol-Myers Squibb Company Methods of treating tumor
WO2023196964A1 (en) 2022-04-08 2023-10-12 Bristol-Myers Squibb Company Machine learning identification, classification, and quantification of tertiary lymphoid structures
WO2023214325A1 (en) 2022-05-05 2023-11-09 Novartis Ag Pyrazolopyrimidine derivatives and uses thereof as tet2 inhibitors
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023220647A1 (en) 2022-05-11 2023-11-16 Regeneron Pharmaceuticals, Inc. Multispecific binding molecule proproteins and uses thereof
WO2023218046A1 (en) 2022-05-12 2023-11-16 Genmab A/S Binding agents capable of binding to cd27 in combination therapy
WO2023230554A1 (en) 2022-05-25 2023-11-30 Pfizer Inc. Combination of a braf inhibitor, an egfr inhibitor, and a pd-1 antagonist for the treatment of braf v600e-mutant, msi-h/dmmr colorectal cancer
WO2023230594A1 (en) 2022-05-27 2023-11-30 Regeneron Pharmaceuticals, Inc. Interleukin-2 proproteins and uses thereof
WO2023235847A1 (en) 2022-06-02 2023-12-07 Bristol-Myers Squibb Company Antibody compositions and methods of use thereof
WO2023235848A1 (en) 2022-06-04 2023-12-07 Regeneron Pharmaceuticals, Inc. Interleukin-2 proproteins and uses thereof
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
EP4310197A1 (en) 2022-07-21 2024-01-24 Fundación para la Investigación Biomédica del Hospital Universitario Puerta de Hierro Majadahonda Method for identifying lung cancer patients for a combination treatment of immuno- and chemotherapy
WO2024017510A1 (en) 2022-07-21 2024-01-25 Fundación Para La Investigación Biomédica Del Hospital Universitario Puerta De Hierro Majadahonda Method for identifying lung cancer patients for a combination treatment of immuno- and chemotherapy
WO2024023740A1 (en) 2022-07-27 2024-02-01 Astrazeneca Ab Combinations of recombinant virus expressing interleukin-12 with pd-1/pd-l1 inhibitors
WO2024040247A1 (en) 2022-08-18 2024-02-22 Regeneron Pharmaceuticals, Inc. Interferon proproteins and uses thereof
WO2024040249A1 (en) 2022-08-18 2024-02-22 Regeneron Pharmaceuticals, Inc. Interferon receptor agonists and uses thereof
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024069009A1 (en) 2022-09-30 2024-04-04 Alentis Therapeutics Ag Treatment of drug-resistant hepatocellular carcinoma
WO2024077166A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating lung cancer
WO2024077095A1 (en) 2022-10-05 2024-04-11 Genentech, Inc. Methods and compositions for classifying and treating bladder cancer
WO2024091991A1 (en) 2022-10-25 2024-05-02 Genentech, Inc. Therapeutic and diagnostic methods for multiple myeloma
WO2024094688A1 (en) 2022-11-01 2024-05-10 Heidelberg Pharma Research Gmbh Anti-gucy2c antibody and uses thereof
WO2024115725A1 (en) 2022-12-01 2024-06-06 BioNTech SE Multispecific antibody against cd40 and cd137 in combination therapy with anti-pd1 ab and chemotherapy
WO2024116140A1 (en) 2022-12-01 2024-06-06 Medimmune Limited Combination therapy for treatment of cancer comprising anti-pd-l1 and anti-cd73 antibodies
WO2024126457A1 (en) 2022-12-14 2024-06-20 Astellas Pharma Europe Bv Combination therapy involving bispecific binding agents binding to cldn18.2 and cd3 and immune checkpoint inhibitors
WO2024137589A2 (en) 2022-12-20 2024-06-27 Genentech, Inc. Methods of treating pancreatic cancer with a pd-1 axis binding antagonist and an rna vaccine
WO2024137776A1 (en) 2022-12-21 2024-06-27 Bristol-Myers Squibb Company Combination therapy for lung cancer
WO2024150177A1 (en) 2023-01-11 2024-07-18 Advesya Treatment methods for solid tumors
WO2024151978A1 (en) 2023-01-13 2024-07-18 Regeneron Pharmaceuticals, Inc. Il12 receptor agonists and methods of use thereof
WO2024160721A1 (en) 2023-01-30 2024-08-08 Kymab Limited Antibodies
WO2024175699A1 (en) 2023-02-23 2024-08-29 Imcheck Therapeutics Combination of btn3a activating antibody and immune checkpoint inhibitors
WO2024182540A2 (en) 2023-02-28 2024-09-06 Regeneron Pharmaceuticals, Inc. T cell activators and methods of use thereof
WO2024196952A1 (en) 2023-03-20 2024-09-26 Bristol-Myers Squibb Company Tumor subtype assessment for cancer therapy
WO2024209072A1 (en) 2023-04-06 2024-10-10 Genmab A/S Multispecific binding agents against pd-l1 and cd137 for treating cancer

Also Published As

Publication number Publication date
US20180185668A1 (en) 2018-07-05
JP6711883B2 (en) 2020-06-17
DK3097119T3 (en) 2021-09-27
MX2016009554A (en) 2016-11-17
IL246818B (en) 2019-07-31
UA122666C2 (en) 2020-12-28
CL2016001871A1 (en) 2017-05-19
JP2019038823A (en) 2019-03-14
SI3097119T1 (en) 2021-11-30
CN113248614A (en) 2021-08-13
CA3207270A1 (en) 2015-07-30
JP7174009B2 (en) 2022-11-17
KR102337042B1 (en) 2021-12-08
US9987500B2 (en) 2018-06-05
BR112016016699A2 (en) 2017-10-03
CN106068275A (en) 2016-11-02
JP2020146050A (en) 2020-09-17
TW201540726A (en) 2015-11-01
JP6425730B2 (en) 2018-11-21
MX2021009852A (en) 2021-09-10
AU2015209233A1 (en) 2016-08-04
UY35964A (en) 2015-08-31
IL246818A0 (en) 2016-08-31
JP2017505125A (en) 2017-02-16
KR20210152583A (en) 2021-12-15
US20200330794A1 (en) 2020-10-22
ES2888224T3 (en) 2022-01-03
HUE056332T2 (en) 2022-02-28
US20150203579A1 (en) 2015-07-23
PT3097119T (en) 2021-09-29
SG11201605482SA (en) 2016-08-30
TWI681969B (en) 2020-01-11
EP3097119B1 (en) 2021-08-25
HRP20211794T1 (en) 2022-03-18
CA2936075A1 (en) 2015-07-30
CA2936075C (en) 2023-09-19
EA034770B8 (en) 2020-07-10
IL267798B (en) 2020-09-30
RS62507B1 (en) 2021-11-30
EP3097119A1 (en) 2016-11-30
IL267798A (en) 2019-09-26
EA034770B1 (en) 2020-03-18
BR122022010183B1 (en) 2024-01-30
CN106068275B (en) 2021-06-01
AU2015209233B2 (en) 2020-03-05
US10737113B2 (en) 2020-08-11
PH12016501330B1 (en) 2016-08-15
JP2022160558A (en) 2022-10-19
PL3097119T3 (en) 2022-01-03
MX2021003436A (en) 2021-06-15
PH12016501330A1 (en) 2016-08-15
EA201691482A1 (en) 2016-11-30
MY176475A (en) 2020-08-11
NZ722342A (en) 2022-05-27
EP3967710A1 (en) 2022-03-16
US20240316361A1 (en) 2024-09-26
LT3097119T (en) 2021-10-11
CY1124747T1 (en) 2022-07-22
JP7562606B2 (en) 2024-10-07
KR20160132010A (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP7562606B2 (en) Human antibodies against PD-1
US20210380702A1 (en) Human antibodies to pd-l1
US20240166740A1 (en) Anti-lag3 antibodies and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15703187

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12016501330

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2936075

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 246818

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 39201

Country of ref document: MA

ENP Entry into the national phase

Ref document number: 2016548008

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: NC2016/0000106

Country of ref document: CO

Ref document number: MX/A/2016/009554

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016016699

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015209233

Country of ref document: AU

Date of ref document: 20150123

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015703187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015703187

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167022944

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201691482

Country of ref document: EA

Ref document number: A201608946

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 112016016699

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160719