WO2015111453A1 - 絶縁電線およびその製造方法、ならびに回転電機およびその製造方法 - Google Patents

絶縁電線およびその製造方法、ならびに回転電機およびその製造方法 Download PDF

Info

Publication number
WO2015111453A1
WO2015111453A1 PCT/JP2015/050540 JP2015050540W WO2015111453A1 WO 2015111453 A1 WO2015111453 A1 WO 2015111453A1 JP 2015050540 W JP2015050540 W JP 2015050540W WO 2015111453 A1 WO2015111453 A1 WO 2015111453A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulated wire
coil
relative dielectric
slot
resin
Prior art date
Application number
PCT/JP2015/050540
Other languages
English (en)
French (fr)
Inventor
石井 庸平
恒夫 青井
Original Assignee
古河電気工業株式会社
古河マグネットワイヤ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河マグネットワイヤ株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020167022006A priority Critical patent/KR20160111414A/ko
Priority to CN201580005131.1A priority patent/CN106062890B/zh
Priority to EP15740870.9A priority patent/EP3098818A4/en
Publication of WO2015111453A1 publication Critical patent/WO2015111453A1/ja
Priority to US15/216,093 priority patent/US10601277B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/40Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/307Other macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0275Disposition of insulation comprising one or more extruded layers of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0414Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils
    • H02K15/0421Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils consisting of single conductors, e.g. hairpins
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

Definitions

  • the present invention relates to an insulated wire and a manufacturing method thereof, and a rotating electrical machine and a manufacturing method thereof.
  • Rotating electric machines such as automobiles and motors for general industries are increasingly demanded for high density, small size, and high output.
  • the insulated wire is squared in order to increase the conductor occupying ratio in the slot of the stator core of the rotating electrical machine.
  • an insulated wire is cut and turned into a U-shape or the like, and two ends (open ends) such as a U-shape of a plurality of U-shaped insulated wires are staggered. Connected to form a coil, which is received in a slot of the stator core.
  • the connected U-shaped insulated wire coil (insulated wire segment) includes a slot accommodating portion (slot straight portion) accommodated in the slot and a coil end portion (U-shaped turn portion not accommodated in the slot). And two open ends).
  • Two linear slot accommodating portions of a coil of an insulated wire such as a U-shape are accommodated in different slots.
  • a curved coil end portion such as a U-shape and an open end coil end portion are arranged in the upper and lower portions of the stator so as to protrude without being accommodated in the slot, and the open end coil end portion is the other end. It is connected to the open end of the coil and wired. For this reason, attempts have been made to increase the density by further shortening the coil end portion.
  • high output is achieved by increasing the voltage, current and rotation of the rotating electrical machine.
  • coiling is performed by bundling a plurality of insulated conductors in the vertical, horizontal, vertical, and horizontal directions, and if necessary, the entire bundled insulated wires are coated with resin for electric field relaxation or insulation.
  • the insulating wire or coil used in the rotating electrical machine has insufficient insulation.
  • durability is required for long-term use. This durability is that the corona discharge occurs between the coated conductors (between a plurality of the bundled coated conductors) at a certain electric field strength or more, thereby impairing the durability. There is a strong demand for minimizing this corona discharge, that is, partial discharge degradation.
  • partial discharge deterioration includes molecular chain breakage deterioration due to collision of charged particles generated by the partial discharge of an electrically insulating material, sputtering deterioration, thermal melting or thermal decomposition deterioration due to local temperature rise, chemical deterioration due to ozone generated by discharge, etc. Is a complicated phenomenon. As a result, the thickness of the electrically insulating material deteriorated by the actual partial discharge is reduced.
  • This partial discharge deterioration is likely to occur in a curved coil end portion such as a U-shape that is not housed and fixed in a slot.
  • insulation that coats a conductor in the slot housing portion and the coil end portion of a coil of an insulated wire. It has been proposed to change the thickness of the film and the insulating material to be coated (see Patent Document 1).
  • the first object of the present invention is to solve the above problems. That is, the present invention provides an insulated wire that can be manufactured in a simple and inexpensive manufacturing process that is excellent in durability based on partial discharge deterioration and does not require a complicated manufacturing process, a manufacturing method thereof, a rotating electrical machine, and a manufacturing method thereof. The issue is to provide.
  • the present inventors have conducted various studies to solve the above problems.
  • a study was made focusing on a means for suppressing corona discharge in the coil end portion with the same insulating material, instead of changing the thickness of the portion serving as the coil end portion of the insulated wire and the thickness serving as the slot accommodating portion and the insulating material.
  • partial change of the relative dielectric constant in the length direction of the insulated wire is effective, and does not require a complicated manufacturing process, and can improve the durability of the insulated wire.
  • the present invention has been made based on these findings.
  • Insulation characterized in that a conductor is an insulated wire coated with at least one layer of insulating material, and has portions having different relative dielectric constants in the length direction or circumferential direction of the same film layer. Electrical wire.
  • the insulated wire according to (1) wherein the insulating material is a resin, and a relative dielectric constant of a portion having a different relative dielectric constant is lower than a relative dielectric constant of the resin material.
  • the insulating material constituting the skin covering layer having portions having different relative dielectric constants is at least polyphenylene sulfide, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyether ether ketone, polyether sulfone, poly The insulated wire according to any one of (1) to (5), wherein the insulated wire includes a resin selected from etherimide, polyimide, and polyamideimide. (7) The insulated wire according to any one of (1) to (6), wherein a cross-sectional shape of the conductor is a circle or a rectangle. (8) A rotating electrical machine characterized by using the insulated wire according to any one of (1) to (7).
  • the insulated wire is formed by winding and processing into a coil, and the coil includes a slot accommodating portion that is accommodated in a stator core slot that accommodates the coil, and a coil end portion that is not accommodated in the stator core slot.
  • the rotating electrical machine according to (8).
  • the relative dielectric constant of the coil end portion of the insulated wire coating that is not housed in the stator core slot is greater than the relative dielectric constant of the slot housing portion of the insulated wire coating housed in the stator core slot.
  • the rotating electric machine according to (9), wherein the rotating electric machine is low.
  • the foaming is a method in which an insulating material is infiltrated into a gas or a liquid and then foamed, and the insulating material is covered with a material that is solid and does not deform even at the heating temperature during the foaming step, and is not covered.
  • a rotating electrical machine manufacturing method using an insulated wire coated with at least one layer of an insulating material around a conductor The insulated wire is processed into a coil, and the coil includes a slot housing portion that is housed in a slot of a stator core that houses the coil, and a coil end portion that is not housed in the slot of the stator core, The dielectric constant of the insulating material of the coil end portion is reduced in either the step of placing the coil in the slot of the stator core and fixing the coil or the step of assembling the rotating electric machine thereafter.
  • a method of manufacturing a rotating electrical machine (15) The method of manufacturing a rotating electric machine according to (14), wherein the insulating material of the coil end portion that is not accommodated in the slot of the stator core is foamed.
  • the present invention provides an insulated wire that can be manufactured by a simple and inexpensive manufacturing process that is excellent in durability based on partial discharge deterioration and does not require a complicated manufacturing process, a manufacturing method thereof, a rotating electrical machine, and a manufacturing method thereof. It became possible. The above and other features and advantages of the present invention will become more apparent from the following description and accompanying drawings.
  • FIG.1 (a) is a typical top view of an insulated wire
  • FIG.1 (b) is typical sectional drawing of an insulated wire.
  • FIG. 2A is an external perspective view showing a schematic shape of a coil (insulated wire segment) used in the present invention
  • FIG. 2B schematically shows a state where the coil is mounted in a slot of a stator core.
  • FIG. 3A is an external perspective view showing a schematic shape of a coil used in the present invention
  • FIG. 3B is a schematic external perspective view in which two sets of the coil are set.
  • FIG. 4 is a perspective view showing a process of inserting two sets of coils according to the present invention into slots of the stator core.
  • FIG. 5 is an overall perspective view of the stator.
  • FIG. 5 is an overall perspective view of the stator.
  • FIG. 6A is a schematic partial perspective view of the stator
  • FIG. 6B is a schematic side view of the stator.
  • 7 (a1), FIG. 7 (a2), and FIG. 7 (a3) are top views of typical insulated wires using circular conductors.
  • FIG. 7 (b1), FIG. 7 (b2), and FIG. b3) is a sectional view
  • FIG. 7C2 is a z 1 z 2 sectional view
  • FIG. 7C3 is a z 3 z 4 sectional view. It is a typical process drawing of non-foaming part formation by partial masking in the length direction.
  • 8 (a1), FIG. 8 (a2), and FIG. 8 (a3) are top views of schematic insulated wires using rectangular conductors.
  • FIG. 8 (a3) are top views of schematic insulated wires using rectangular conductors.
  • FIG. 8 (b1), FIG. 8 (b2), and FIG. b3) is a cross-sectional view
  • FIG. 8 (c2) is a z 1 z 2 cross-sectional view
  • FIG. 8 (c3) is a z 3 z 4 cross-sectional view. It is a typical process drawing of non-foaming part formation by partial masking in the length direction.
  • the insulated wire of this invention can be used conveniently for rotary electric machines, such as a motor for motor vehicles for general industries.
  • rotary electric machines such as a motor for motor vehicles for general industries.
  • the stator 100 incorporates a processed insulated wire (coil) 11 as shown in FIG.
  • the stator 100 is generally composed of two sets of coils (insulated wire segment segments) 11 as shown in FIGS. 2 (a) and 3 (a) as a minimum basic unit, as shown in FIG. 3 (b).
  • the set (11 ⁇ , 11 ⁇ ) is stored as a basic unit in the slot 22 as shown in FIG.
  • FIG. 2B schematically shows a state in which the minimum basic unit coil (insulated wire division segment) 11 is housed.
  • a coil (insulated wire split segment) 11 is incorporated in a tooth 21 provided on the stator core 20 of the stator 100 and a slot 22 different from the slot 22.
  • the coil (insulated wire split segment) 11 includes a slot accommodating portion a (11a) accommodated in the slot 22 and a coil end portion that is not accommodated.
  • the slot accommodating part a (11a) is usually a straight line.
  • the coil (insulated wire split segment) 11 is set as a minimum basic unit, and normally, two sets (11 ⁇ , 11 ⁇ ) are set as basic units as shown in FIG. . Thereafter, the coil (insulated wire split segment) b1 (11b1) and the coil (insulated wire split segment) b2 (11b2) protrude from the slot 22, and the coil (insulated wire split segment) b1 (11b1) is shown in FIG. It is arranged in such a state. On the other hand, the coil (insulated wire split segment) b2 (11b2) is bent, and the coil end portions of the two open ends are connected to the open ends of the other coils and wired.
  • FIG. 6B is a side view of the stator 100 shown in FIG. 5 in which an insulated wire (coil) 11 is incorporated, and coil end portions (11b1, 11b2) of the insulated wire (coil) 11 above and below the stator 100. Protrudes.
  • the insulated wire in the stator 100 is likely to generate corona discharge at the slot end portions (11b1, 11b2). Therefore, the values of the relative dielectric constants of the coil end portions (11b1, 11b2) and the slot accommodating portion (11a) are different, preferably the relative dielectric constants of the coil end portions (11b1, 11b2) are set to the slot accommodating portion (11a).
  • the insulated wire of the present invention is an insulated wire in which a conductor is coated with at least one layer of an insulating material.
  • the film is used synonymously with the coating, and the film layer is used synonymous with the coating layer.
  • the conductors will be described in order.
  • the conductor used in the present invention may be any material as long as it has conductivity, and examples thereof include copper, copper alloy, aluminum, and aluminum alloy.
  • the conductor is copper, for example, when melted by heat for welding, 99.96% or more of copper and an oxygen content of 30 ppm or less, preferably from the viewpoint of preventing generation of voids in the welded portion due to the contained oxygen Is preferably 20 ppm or less of low oxygen copper or oxygen free copper.
  • the conductor is aluminum, various aluminum alloys can be used in terms of required mechanical strength. For example, for applications such as rotating electrical machines, pure aluminum having a purity of 99.00% or more that can obtain a high current value is suitable.
  • the cross-sectional shape of the conductor is determined according to the application, it may be any shape such as a circle (round), a rectangle (flat), or a hexagon.
  • rectangular conductors are preferred in that the occupation ratio of the conductors in the slots of the stator core can be increased.
  • the conductor size is not specified because it is determined according to the application.
  • the diameter is preferably 0.3 to 3.0 mm, more preferably 0.4 to 2.7 mm.
  • the length of one side is preferably 1.0 to 5.0 mm, more preferably 1.4 to 4.0 mm, and the thickness (short side) is 0.4 to 3. 0 mm is preferable, and 0.5 to 2.5 mm is more preferable.
  • the range of the conductor size in which the effect of the present invention can be obtained is not limited to this. In the case of a flat rectangular conductor, this also varies depending on the application, but a rectangular cross section is more common than a square cross section.
  • the chamfers (curvature radius r) of the four corners of the conductor cross section are small in terms of increasing the conductor occupancy in the slots of the stator core. Is preferred. From the viewpoint of suppressing the partial discharge phenomenon due to the electric field concentration at the four corners, r is preferably large. For this reason, the locality radius r is preferably 0.6 mm or less, and more preferably 0.2 to 0.4 mm. However, the range in which the effect of the present invention can be obtained is not limited to this.
  • FIG. 1 shows an insulated wire covered with two coating layers (first coating layer 2 and second coating layer 3) of a rectangular conductor 1.
  • FIG. 1A is a top view of the insulated wire 10
  • FIG. 1B is a cross-sectional view.
  • the insulating material is preferably a resin
  • the resin that can be used for the insulating coating resin of the present invention is a thermoplastic resin such as polyamide (PA) (nylon), polyacetal (POM), polycarbonate (PC), polyphenylene ether (modified).
  • polysulfone PSF
  • PSU Polysulfone
  • PES polyethersulfone
  • PPSU polyphenylsulfone
  • PEI polyphenylene sulfide
  • U polymer Polyamideimide
  • PEK Polyetherketone
  • PAEK Polyaryletherketone
  • ETFE Tetrafluoroethylene / ethylene copolymer
  • PEEK Tetrafluoroethylene par Fluoroalkyl vinyl ether copolymer
  • PTFE polytetrafluoroethylene
  • TP thermoplastic polyimide resin
  • the resin used is not limited by the resin names shown above, and it is needless to say that resins other than those listed above can be used as long as they are superior in performance to those resins.
  • the film layer of the thermoplastic resin may be provided by forming into a resin varnish and performing a baking treatment after the application, as in the case of a film layer of a thermosetting resin described later.
  • a thermoplastic resin is extruded to provide an extrusion-coated resin layer.
  • thermosetting resins such as polyimide, polyurethane, polyamideimide, polyester, polybenzimidazole, polyesterimide, melamine resin, and epoxy resin. Moreover, you may use combining these 2 or more types. In addition to the resins listed above, it is of course possible to use any resin that is superior in performance to those resins.
  • the film layer of the thermosetting resin can be formed by the same method as the baking of the enamel wire. That is, a thermosetting resin is varnished with an organic solvent to form a resin varnish, the resin varnish is applied to a conductor, and the applied conductor is baked in a baking furnace in a conventional manner to form a thermosetting resin film layer. Can be provided.
  • the specific baking conditions depend on the shape of the furnace used, but for a natural convection type vertical furnace of about 5 m, the passage time is set to 400 to 500 ° C. and 10 to 90 seconds. Can be achieved.
  • the organic solvent used for varnishing the resin varnish is not particularly limited as long as it does not inhibit the reaction of the thermosetting resin.
  • NMP N-methyl-2-pyrrolidone
  • DMAC N-dimethylacetamide
  • Amide solvents such as dimethyl sulfoxide, N, N-dimethylformamide, urea solvents such as N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea, tetramethylurea, ⁇ -butyrolactone, ⁇ -caprolactone, etc.
  • Lactone solvents carbonate solvents such as propylene carbonate, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolve acetate, ethyl carbitol Examples thereof include ester solvents such as diacetate, glyme solvents such as diglyme, triglyme and tetraglyme, hydrocarbon solvents such as toluene, xylene and cyclohexane, and sulfone solvents such as sulfolane.
  • the boiling point of the organic solvent is preferably 160 ° C to 250 ° C, more preferably 165 ° C to 210 ° C.
  • amide solvents and urea solvents are preferable in terms of high solubility, high reaction acceleration, and the like, and they do not have hydrogen atoms that easily inhibit crosslinking reaction by heating.
  • -Pyrrolidone, N, N-dimethylacetamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea and tetramethylurea are more preferred, and N-methyl-2-pyrrolidone is particularly preferred.
  • resin varnishes in addition to resins, antioxidants, antistatic agents, UV inhibitors, light stabilizers, fluorescent brighteners, pigments, dyes, compatibilizers, lubricants, reinforcing agents, flame retardants Further, it may contain various additives such as a crosslinking agent, a crosslinking aid, a plasticizer, a thickener, a thickener, and an elastomer.
  • polyphenylene sulfide PPS
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PEEK polyether ether ketone
  • PES polyether sulfone
  • PEI Polyetherimide
  • PI polyimide
  • PAI polyamideimide
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • PET polyethylene terephthalate
  • TR-8550T trade name, manufactured by Teijin Ltd.
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PEEK polyetheretherketone
  • PEEK4 As a commercial item of 50G (made by Victorex Japan Co., Ltd., trade name) and polyethersulfone (PES), for example, as a commercial product of SUMIKAEXCEL PES (made by Sumitomo Chemical Co., Ltd., trade name) and polyetherimide (PEI)
  • PES polyethersulfone
  • Ultem 1010 trade name, manufactured by Subic Innovative Plastics
  • polyimide (PI) are commercially available products such as Aurum PL450C (trade name, manufactured by Mitsui Chemicals), and polyamideimide (PAI). Examples thereof include HI406 (trade name, manufactured by Hitachi Chemical Co., Ltd.).
  • the total thickness of the coating layer is preferably 3 to 200 ⁇ m, more preferably 10 to 80 ⁇ m, and even more preferably 20 to 50 ⁇ m.
  • two or more coating layers may be provided.
  • the same resin varnish is applied and baked a plurality of times, and when the thickness of the layer is simply adjusted, it is one layer, that is, the same, and the type and amount of additives in the resin varnish are different even with the same resin. Things count as separate layers.
  • the insulated wire of the present invention is a thermosetting capable of maintaining a high adhesion to the conductor and a high heat resistance of the coating on the outer periphery of the conductor.
  • a resin that is arranged in the order of thermoplastic resin that can easily contain bubbles on the outer periphery and obtain a high expansion ratio, adhesion between the conductor and the insulating film, heat resistance of the insulating film, insulation It becomes possible to ensure the difference in the relative dielectric constant of the film.
  • the insulated wire of this invention has a part from which a dielectric constant differs in the length direction or the circumferential direction of the same membrane
  • the layer having a portion having a different relative dielectric constant in the same layer may be any layer when having a plurality of coating layers.
  • the layer contacting the conductor, the outermost layer, or the inner layer may be used. It is also preferable that the relative dielectric constants of all the layers at the same location are different. In the present invention, those having two or more coating layers on the conductor are preferred.
  • the layers having different relative dielectric constants in the same layer are preferably higher layers than the layer in contact with the conductor.
  • the relative dielectric constant of the same location of all the layers above the layer in contact with the conductor is different from that of another location.
  • the change in the relative dielectric constant does not change the kind of the insulating material, preferably the resin, which forms the layer having the portion having the different relative dielectric constant, but changes the relative dielectric constant of the desired portion using the same resin. It is preferable. In the present invention, it is preferable to change the relative dielectric constant by changing the bulk density of the resin, preferably the presence or absence of bubbles, and the total volume of bubbles per unit volume.
  • foam resin and to form a bubble in resin it is preferable to foam resin and to form a bubble in resin.
  • a method of foaming only a specific portion in the length direction or circumferential direction of the insulated wire and forming bubbles in the resin a method of infiltrating the gas or liquid into the insulated wire and foaming the permeated gas or liquid, and When manufacturing insulated wires, a small amount of foam nucleating agent is included in the resin varnish, and the insulated wire is manufactured under the condition that the foam nucleating agent is not volatilized, and the relative permittivity is lowered during processing in the required shape.
  • the method of heating and foaming only the part which is made to carry out is mentioned.
  • a method in which a gas or a liquid is infiltrated into an insulated wire and the permeated gas or liquid is foamed is preferable.
  • One preferred embodiment of the present invention is a method of infiltrating a gas into an insulating film of an insulated wire after manufacture, and foaming the insulating film starting from the permeated gas.
  • the insulating coating in this case is preferably an extrusion coating resin made of a thermoplastic resin.
  • the gas to be used is preferably an inert gas, and examples thereof include argon, hydrogen, methane, chlorofluorocarbon, carbon dioxide gas, helium, oxygen, and nitrogen.
  • carbon dioxide gas which has a strong gas permeation power to a resin used for a normal insulated wire and can be foamed at a high magnification, is preferable.
  • the gas to be used becomes liquid under high pressure, and this liquid may be used. In the present specification, these gases are collectively referred to as an inert gas.
  • the inert gas atmosphere includes an inert gas liquid. Foaming with an inert gas is preferably performed in the order of steps (1) and (2) as follows.
  • Foaming method (1) Step of maintaining the insulated wire in a pressurized inert gas atmosphere and infiltrating the inert gas (2) Foaming the insulated wire infiltrated with the inert gas into the resin by heating under normal pressure Process
  • the pressurization of the high-pressure gas in the step (1) is preferably 1 to 20 MPa, more preferably 1 to 15 MPa, and further preferably 1 to 10 MPa, although it depends on the resin used for the insulated wire.
  • the holding time in the inert gas atmosphere is preferably 6 hours or more, more preferably 12 hours or more, and further preferably 24 hours or more.
  • the temperature in the inert gas atmosphere is preferably 40 ° C. or lower, more preferably 30 ° C. or lower, and further preferably 20 ° C. or lower.
  • the heating temperature for foaming under normal pressure in the above step (2) depends on the resin used for the coating layer, preferably the extrusion-coated resin layer.
  • the glass transition temperature is preferably 5 to 200 ° C, more preferably 30 to 180 ° C, and still more preferably 50 to 150 ° C.
  • the heating time is preferably 3 to 120 seconds, although it depends on the heating temperature.
  • any method may be used as long as a part having a low relative dielectric constant is partially formed in the coating layer, preferably the extrusion-coated resin layer.
  • a method in which a component that decomposes with ultraviolet rays is added to a coating layer, preferably an extrusion coating resin, and bubbles are formed with a decomposition gas by partially irradiating ultraviolet rays after molding the coating The method of forming bubbles by generating water vapor after absorbing water, adding a component that decomposes by electron beam irradiation, and partially irradiating the electron beam after forming the film, The method of forming can be selected.
  • the bubbles formed in the coating layer, preferably the extrusion-coated resin layer may be closed cells, open cells, or both.
  • the closed cell refers to one in which a hole in the inner wall of the bubble, that is, a communication opening with an adjacent bubble cannot be confirmed when a cross section of the extruded coated resin layer cut with an arbitrary cross section is observed with a microscope.
  • Bubbles are those in which holes can be confirmed on the bubble inner wall when observed in the same manner.
  • the diameter of the bubbles was observed with a scanning electron microscope (SEM) through a cross section of the coating layer, preferably the extrusion-coated resin layer, and the diameter of 20 arbitrarily selected bubbles was measured using image size measurement software (WinROOF manufactured by Mitani Corporation). This is a value calculated by measuring in diameter measurement mode using and averaging these. When the shape of the bubble is not circular, the longest part is the diameter.
  • SEM scanning electron microscope
  • the size and shape of the bubbles obtained by foaming are not particularly limited.
  • the shape is preferably spherical.
  • the average of one bubble diameter is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 2 ⁇ m or less, as the radius of bubble volume in terms of a sphere.
  • a portion having a relatively large relative dielectric constant is covered with a solid material that does not deform even at the heating temperature during the foaming step, Prevent inert gases or liquids from penetrating, or, when foaming, cooler than uncovered parts.
  • FIG. 7 shows an insulated electric wire in which a film layer is provided on a circular conductor 1, and an extrusion-coated resin layer 3 is coated as a preferred layer.
  • FIG. 7 is an insulated wire covered with coating layers 2 and 3 of layers. 7 and 8 show the following steps as preferable steps.
  • FIG. 3 is a cross-sectional view before foaming in the Z 1 -Z 2 portion.
  • C3 is a cross-sectional view of a non-foamed portion (pnf) at the Z 3 -Z 4 portion of (a3), and (a3) and (b3) show foamed coating layers (FIG. 7 (a3), 8 (a3) shows that pf is formed, and FIG. 7 (b3) and FIG. 8 (b3) show that 3 ′) is formed.
  • the mask material for example, aluminum, stainless steel, iron, copper, glass, ceramic, and polyimide are preferable.
  • a slot for example, a magnetic steel sheet
  • the stator having the coil mounted in the slot can be held in an inert gas atmosphere, which is particularly preferable in the present invention.
  • the inert gas or liquid does not permeate, so the mask may be removed before the foaming step.
  • the covered part When covered with a non-penetrable material with a gap, the covered part will also foam slightly. If the relative dielectric constant is different from that of the uncovered portion, the effect of the present invention is exhibited. Therefore, in the case of a rotating electrical machine, a slight gap may be created in a portion covered with a slot to allow gas or liquid to penetrate and foam. If at least the coil end part is foamed and the relative dielectric constant is lowered, the effect of the present invention is exhibited. In this case, rather, the slot accommodating portion is foamed, so that the gap between the slot and the insulated wire is filled, and another effect that the insulated wire is fixed is obtained.
  • the coating layer on the conductor is only a thermosetting resin (enamel layer)
  • the enamel layer is partially formed with bubbles in the length direction or the circumferential direction so that the relative dielectric constant is different. It can also be.
  • a method of forming bubbles an insulated wire formed by baking an enamel paint mixed with a thermoplastic resin to form an insulating film.
  • a method is preferred in which a gas is permeated into the gas and the permeated gas is foamed.
  • thermosetting resin various resins can be used as long as the gist of the present invention is not impaired.
  • polyimide, polyamideimide, polyesterimide, polyetherimide, polyimide hydantoin modified polyester, polyamide, formal, polyurethane, polyester, polyvinyl formal, epoxy, polyhydantoin, melamine resin, phenol resin, urea resin, polybenzimidazole, etc. can do.
  • resins such as polyester, polyimide, polyamideimide, and polybenzimidazole are preferable from the viewpoint of heat resistance and flexibility.
  • these may be used individually by 1 type, and may mix and use 2 or more types.
  • thermoplastic resin that can be used in this application is only required to be soluble in a solvent, and is preferable because the amorphous thermoplastic resin is easily dissolved and has good workability.
  • the amorphous thermoplastic resin is, for example, acrylic resin, norbornene resin, cycloolefin resin, polystyrene, polycarbonate, polyethersulfone, polyetherimide, polyethersulfone, polyphenylsulfone, polysulfone. It means polyarylate, thermoplastic polyimide, and the like.
  • thermoplastic resins polyetherimide, polycarbonate, polyethersulfone, polyphenylsulfone, polysulfone, polyarylate, and the like are particularly preferable.
  • an amorphous thermoplastic resin it can be easily dissolved in a solvent.
  • these resins can be finely dispersed in the network structure of the thermosetting resin, and fine pores can be formed.
  • these may be used individually by 1 type, and may mix and use 2 or more types.
  • thermoplastic resin does not dissolve in the solvent
  • air bubbles may be included using an insulated wire formed by applying and baking a paint obtained by dispersing a powdered thermoplastic resin in an enamel paint.
  • the powder may be in any shape as long as it does not impair the appearance of the film, such as spherical and irregular shapes. A spherical shape is more preferable because of its high electrical characteristics.
  • a / B is 10/90 to 90/10, where A is the mass of the resin component not containing the solvent of the thermosetting resin and B is the mass of the thermoplastic resin. More preferably, A / B is 30/70 to 70/30, and particularly preferably A / B is 40/60 to 60/40.
  • thermosetting resin components it tends to be excellent in heat resistance, but it is difficult to increase the expansion ratio, and the reduction amount of the relative permittivity tends to be small. Further, when there are a large number of thermoplastic resin components, the expansion ratio can be easily increased and the amount of reduction in the relative dielectric constant increases, but the heat resistance tends to decrease. Therefore, it is preferable to select a blending ratio as required.
  • thermoplastic resin layer may be provided on the film layer made of the thermosetting resin.
  • Foaming with foam nucleating agent As another form of the present invention, there is a method in which a foam nucleating agent is contained in the insulating film in the manufacturing process of the insulated wire. Specifically, a component that decomposes with ultraviolet rays, electron beams, heat, etc. to generate gas is included in the insulating film resin, and only after the portion where the relative dielectric constant of the insulating film is desired to be lowered, ultraviolet rays, electron beams, By applying heat or the like, it is possible to realize a reduction in relative permittivity by foaming a predetermined portion.
  • the resin of the insulated wire is foamed, for example, by observing a cross-sectional photograph in a cross section cut in either the thickness direction, the vertical direction of the sample area, or the horizontal direction by a scanning electron microscope or an optical microscope, If a bubble cell can be confirmed, it can be determined that foaming has occurred, and indirectly it can be confirmed by a decrease in bulk density.
  • the bulk density of the resin in the foamed portion is lowered. From the relationship of this change in bulk density, the expansion ratio is calculated. Specifically, the expansion ratio is obtained by the following formula.
  • Foaming ratio bulk density of resin before foaming / bulk density of resin after foaming
  • the expansion ratio is preferably 1.2 to 5.0, more preferably 1.2 to 2.0, and still more preferably 1.3 to 1.8.
  • the bulk density for obtaining the above expansion ratio can be measured as follows. Determined in accordance with JIS-K-7112 (1999) “Method for measuring density and specific gravity of non-foamed plastic” and method A (underwater substitution method). Specifically, for example, a density measurement kit attached to METTLER's electronic balance SX64 is used, and methanol is used as the immersion liquid. The U-shaped part which is the coil end part which is the foamed part of the extrusion coated resin of the insulated wire and the non-foamed slot accommodating part are peeled off to make each test piece, and the density of each test piece is calculated by the following formula Calculate from
  • m S, A is the mass (g) of the test piece measured in the air
  • m s, IL is the mass (g) of the test piece measured in the immersion liquid
  • ⁇ IL is It is the density (g / cm 3 ) of the immersion liquid.
  • the relative dielectric constant specified by the present invention can be obtained by measuring the capacitance of the insulating layer and calculating from the obtained capacitance as follows. Specifically, a metal electrode is deposited on the entire circumference of the outermost surface film of the insulated wire, the capacitance between the conductor and the metal electrode is measured, and the relative dielectric constant is calculated from the relationship between the electrode length and the insulating film thickness.
  • the capacitance of the insulating layer is measured at 25 ° C. and 100 Hz using a commercially available LCR meter, for example, an LCR HiTester (manufactured by Hioki Electric Co., Ltd., Model 3532-50).
  • a partial ratio can be obtained by locally peeling off the in-plane insulating film on one surface with four flat surfaces (insulating film) in the circumferential direction and evaporating a metal electrode. Measurement of dielectric constant is also possible.
  • the insulated wire of this invention has a part from which a dielectric constant differs in the length direction or the circumferential direction of the same membrane
  • the dielectric constant of the portion with a high relative dielectric constant is 100
  • the dielectric constant of the portion with a low relative dielectric constant is preferably 90 or less, more preferably 80 or less, and even more preferably 75 or less. Note that the lower limit of the relative dielectric constant of the portion having a low relative dielectric constant is realistically 20 or more.
  • the relative dielectric constant reduction rate [(relative dielectric constant before foaming ⁇ relative dielectric constant after foaming) ⁇ 100 / relative dielectric constant before foaming] due to the decrease in bulk density due to foaming is preferably 10% or more, preferably 20% The above is more preferable, and 25% or more is more preferable.
  • the upper limit of the relative dielectric constant reduction rate is realistically 80% or less.
  • the insulated wire of the present invention can be used for various electric devices and electronic devices.
  • the insulated wire of the present invention is coiled and used for a motor, a transformer, etc., and can constitute a high-performance electric device.
  • it is used suitably as a coil
  • HV hybrid car
  • EV electric vehicle
  • the insulated wire is cut as shown in FIG. 2 and turned into a U-shape or the like, and two U-shaped two U-shaped insulated wires are formed.
  • Open ends b2 (11b2) which are the ends, are alternately connected to form a coil, which is accommodated in the slot 22 of the stator core.
  • the open end b2 (11b2) is connected in the method 1 in which the open end b2 (11b2) is connected and then stored in the slot 22, or in the case where all the insulated wire segment segments 11 are stored in the slot 22 without being connected and then bent.
  • the U-shaped insulated wire coil 11 (insulated wire segment) 11 is not accommodated with the slot accommodating portion a (11a) accommodated in the slot 22 of the stator core 20.
  • the coil end portions b1 and b2 (11b1 and 11b2) projecting from the slot 22 are accommodated in different slot 22 and the coil end portions b1 and b2 (11b1 and 11b2) are formed on the stator 100.
  • the upper and lower portions are arranged in a state of protruding from the stator surface.
  • the insulated wires to be used are cut slightly longer, and the coil end portions b1, b2 (11b1, 11b2) are covered in advance by covering only the portion accommodated in the slot 22 with a material or material that does not allow inert gas or liquid to permeate.
  • the coil end portions b1 and b2 are foamed to reduce the relative dielectric constant of the insulated wire and the insulating material of a specific portion of the coil that has processed this.
  • the method for manufacturing a rotating electrical machine of the present invention is a method for manufacturing a rotating electrical machine using an insulated wire coated with an insulating material of at least one layer as described above,
  • the insulated wire is processed into a coil, and the coil includes a slot housing portion that is housed in a slot of a stator core that houses the coil, and a coil end portion that is not housed in the slot of the stator core,
  • the manufacturing method of reducing the relative dielectric constant of the insulating material of the coil end portion in either the step of housing the coil in the slot of the stator core and fixing the coil or the step of assembling the rotating electric machine thereafter.
  • the insulating material of the coil end portion is foamed.
  • Example 1 (Production of insulated wires that do not contain bubbles) An insulated wire was produced as follows.
  • the thermoplastic resin is polyethylene terephthalate (PET) (trade name: PET resin TR-8550T, relative dielectric constant 3.2, manufactured by Teijin Ltd.), and the shape of the cross section of the extrusion-coated resin layer is similar to the shape of the conductor.
  • PET polyethylene terephthalate
  • the extrusion coating of PET was performed using an extrusion die, and an extrusion coating resin layer having a thickness of 32 ⁇ m was formed on the outside of the conductor to obtain an insulated wire composed of a PET extrusion coated wire.
  • the periphery of the insulated wire was covered with a mask made of aluminum having a width of 100 mm and a thickness of 0.05 mm.
  • the partially masked insulated wire is stored in a high-pressure container filled with carbon dioxide gas under a pressure of 1.7 MPa at a temperature of ⁇ 30 ° C. for 42 hours, and is not masked.
  • Carbon dioxide gas was infiltrated into the part of the coating resin.
  • the insulated wire was taken out from the high-pressure vessel and heated for 1 minute under the condition of a temperature of 200 ° C. to foam the portion of the coating resin that was not masked.
  • the thickness of the PET extrusion-coated resin layer after foaming was 39 ⁇ m.
  • m S, A is the mass (g) of the test piece measured in the air
  • m s, IL is the mass (g) of the test piece measured in the immersion liquid
  • ⁇ IL is It is the density (g / cm 3 ) of the immersion liquid.
  • the bulk density of the coating resin before and after foaming of the unmasked part was measured by the above method.
  • the bulk density of the film resin before foaming, which is a masked part, was divided by the bulk density of the film resin of the same part after foaming to obtain the expansion ratio.
  • the expansion ratio was 1.6.
  • the relative dielectric constants of the resin of the film layer of the masked part that was not foamed and the part that was not masked were measured as follows. As a result, the relative dielectric constant of the masked portion of the film resin was 3.3, and the relative dielectric constant of the unmasked portion of the film resin was 2.4.
  • the relative dielectric constant was calculated from the capacitance of the insulating layer. That is, a metal electrode was deposited on the entire circumference of the outermost surface film of the insulated wire, the capacitance between the conductor and the metal electrode was measured, and the relative dielectric constant was calculated from the relationship between the electrode length and the thickness of the insulating film.
  • the electrostatic capacitance of the insulating layer was measured at 25 ° C. and 100 Hz using an LCR HiTester (manufactured by Hioki Electric Co., Ltd., Model 3532-50).
  • the partial discharge start voltage was evaluated as the durability of the insulated wire partially foamed in this way.
  • the partial discharge start voltage was measured using a partial discharge tester “KPD2050” (trade name) manufactured by Kikusui Electronics Corporation.
  • the partial discharge start voltage is twisted in the form of a twist of two insulated wires, an AC voltage of 50 Hz sine wave is applied between the two conductors, and the voltage is boosted at a boosting speed of 50 V / sec.
  • the voltage at the time when the discharge occurred was read.
  • the measurement was performed at a temperature of 25 ° C. As a result, the voltage at which a partial discharge of 10 pC occurred was 0.940 kV.
  • Comparative Example 1 In Example 1, the insulated wire before foaming was used as Comparative Example 1. The relative dielectric constant was measured in the same manner as in Example 1. As a result, the dielectric constant of the film resin before foaming was 3.2.
  • test piece which twisted together the unfoamed part of two insulated wires in a twist form was produced, and it carried out similarly to Example 1, and measured the voltage (effective value) when the amount of discharge charges was 10 pC. As a result, the voltage at which a partial discharge of 10 pC occurred was 0.700 kV.
  • Example 2 (Production of insulated wires that do not contain bubbles) An insulated wire was produced as follows.
  • Polyethylene naphthalate (PEN) (trade name: Teonex TN8065S, relative dielectric constant 3.0) is used as the thermoplastic resin, and the outer shape of the cross section of the extrusion-coated resin layer is similar to the shape of the conductor.
  • extrusion coating of PEN was performed using an extrusion die, and an extrusion-coated resin layer having a thickness of 100 ⁇ m was formed on the outside of the conductor to obtain an insulated wire made of PEN-extruded coated wire.
  • the insulated wire produced as described above was covered with a film-like mask made of polyimide having a width of 100 mm and a thickness of 0.2 mm so that the periphery of the insulated wire was overlapped 10 times.
  • the partially masked insulated wire is stored in a high-pressure container filled with carbon dioxide gas under a pressure of 1.7 MPa at a temperature of ⁇ 25 ° C. for 168 hours, and is then placed in the coating resin. Carbon dioxide gas was infiltrated. Thereafter, the insulated wire was taken out from the high-pressure vessel and heated for 1 minute under the condition of a temperature of 100 ° C. to foam the coating resin.
  • the thickness of the PET extrusion-coated resin layer after foaming of the portion not covered with the mask was 142 ⁇ m.
  • the portion covered with the mask was 132 ⁇ m.
  • the relative dielectric constant of the resin of the film layer of the masked portion and the unmasked portion was measured in the same manner as in Example 1. As a result, the relative dielectric constant of the masked portion of the film resin was 2.4, and the relative dielectric constant of the unmasked portion of the film resin was 1.6.
  • Comparative Example 2 In Example 2, the insulated wire before foaming was set as Comparative Example 2. The relative dielectric constant was measured in the same manner as in Example 2. As a result, the dielectric constant of the film resin before foaming was 3.0.
  • test piece which twisted together the two insulated wires before foaming in the twist form was produced, and it carried out similarly to Example 2, and measured the partial discharge start voltage. As a result, it was 1.10 kV.
  • Example 3 (Production of insulated wires that do not contain bubbles) An insulated wire was produced as follows.
  • an enamel baking layer is formed on the conductor. Formed.
  • the enamel baked layer was formed by coating a polyamide imide resin (PAI) varnish (trade name: HI406, manufactured by Hitachi Chemical Co., Ltd.) on a conductor using a die similar to the conductor, and a furnace length of 8 m set at 450 ° C. Was passed at a speed that would result in a baking time of 15 seconds, and this was repeated several times to form an enamel baking layer having a thickness of 40 ⁇ m, and an enameled wire was obtained.
  • PAI polyamide imide resin
  • the obtained enameled wire was used as a core wire, and an extrusion-coated resin layer was formed as follows.
  • the thermoplastic resin is polyphenylene sulfide (PPS) (manufactured by DIC, trade name: FZ-2100, relative dielectric constant 3.3), and the outer shape of the cross section of the extrusion-coated resin layer is similar to the shape of the conductor.
  • extrusion coating of PPS was performed using an extrusion die, and an extrusion-coated resin layer having a thickness of 41 ⁇ m was formed on the outer side of the enamel baking layer to obtain an insulated wire made of PPS extrusion-coated enamel wire.
  • FIG. 6A shows a U-shaped portion of the coil housed in the slot.
  • the stator mounted with the coil thus prepared is stored in a high-pressure vessel filled with carbon dioxide gas under a pressure of 1.2 MPa at a temperature of ⁇ 32 ° C. for 24 hours to form a coil end coating. Carbon dioxide gas was infiltrated into the resin. Thereafter, the stator was taken out from the high-pressure vessel and heated for 1 minute under the condition of a temperature of 200 ° C. to foam the coating resin at the coil end portion. The thickness of the PPS extrusion coating resin layer after foaming was 45 ⁇ m.
  • the bulk density of the resin of the coating layer before and after foaming of the U-shaped part which is the coil end part was measured by the above method.
  • the foam density of the U-shaped portion of the coil end portion before foaming was divided by the bulk density of the same portion of the coating resin after foaming to obtain the expansion ratio.
  • the expansion ratio was 1.5.
  • Comparative Example 3 The insulated wire before foaming produced in Example 3 was referred to as Comparative Example 3.
  • the relative dielectric constant of the part measured in Example 3 was measured in the same manner as in Example 3.
  • the relative dielectric constant of the coating resin in the slot accommodating portion and the coating resin in the coil end portion was 3.3.
  • Example 3 since the relative dielectric constant of the foamed part is lower than that of the non-foamed part, the voltage at which a partial discharge of 10 pC is generated is higher than that before foaming. It is suggested that it is excellent in durability.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Organic Insulating Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

 導体の周りが、少なくとも1層の絶縁材料で皮膜された絶縁電線であって、同一皮膜層の長さ方向または周方向で、比誘電率が異なる部分を有する絶縁電線及びその製造方法並びに回転電機及びその製造方法。

Description

絶縁電線およびその製造方法、ならびに回転電機およびその製造方法
 本発明は、絶縁電線およびその製造方法、ならびに回転電機およびその製造方法に関する。
 自動車、一般産業用のモーター等の回転電機は、高密度での小型化、高出力への要求が高まっている。小型化は回転電機のステータコアのスロット内で導体占有率を高めるために絶縁電線の角線化が行われている。また、回転電機では、最近は、絶縁電線を切断してU字形状等にターン加工し、複数のU字形状等の絶縁電線のU字形状等の2つの末端(開放端部)を互い違いに接続して、コイルとされ、ステータコアのスロットに収められる。この接続されたU字形状等の絶縁電線のコイル(絶縁電線分割セグメント)は、スロットに収納されるスロット収容部(スロット直線部)とスロットに収納されないコイルエンド部(U字形状等のターン部と2つの末端である開放端部)からなる。U字形状等の絶縁電線のコイルの2つの直線状のスロット収容部がそれぞれ互いに異なるスロットに収められる。一方、U字等の湾曲状のコイルエンド部と開放端部のコイルエンド部がステータの上下部分で、スロットに収納されずにはみ出した状態で配列し、開放端部のコイルエンド部が他のコイルの開放端部と接続されて配線される。このため、コイルエンド部をさらに短縮化することで、高密度化が試みられている。
 一方、高出力化は、回転電機を高電圧化、大電流化、高回転化で達成されている。
 ここで、コイル化は絶縁被覆された導体を複数、上下、左右もしくは上下左右に束ね、必要によっては、この束ねた複数の絶縁電線全体を電界緩和もしくは絶縁化のための樹脂被覆が行われる。
 しかしながら、従来の数kHz~数十kHzの規定電圧を超えた高電圧では、回転電機に用いられる絶縁電線もしくはコイルでは絶縁性が不十分であった。特に、長期使用における耐久性が求められている。
 この耐久性は、皮膜された導体間(束ねられた複数の皮膜された導体間)で、一定電界強度以上でコロナ放電が発生し、耐久性を損なうものである。このコロナ放電、すなわち、部分放電劣化を最小限に抑えることが強く求められている。
 一般に、部分放電劣化は電気絶縁材料がその部分放電で発生した荷電粒子の衝突による分子鎖切断劣化、スパッタリング劣化、局部温度上昇による熱溶融あるいは熱分解劣化、放電で発生したオゾンによる化学的劣化等が複雑に起こる現象である。これによって、実際の部分放電で劣化した電気絶縁材料では厚さが減少したりする。
 この部分放電劣化は、スロットで収納固定されていない、U字等の湾曲状のコイルエンド部で生じ易く、例えば、絶縁電線のコイルの前記スロット収容部とコイルエンド部で、導体を皮膜する絶縁皮膜の厚みや皮膜する絶縁材料を変更することが提案されている(特許文献1参照)。
特開2008-236924号公報
 しかしながら、このような絶縁電線を製造するには、煩雑な製造工程が必要となり、製造コスト的にも問題があった。
 従って、本発明は、上記の問題点を解決することを第一の課題とするものである。
 すなわち、本発明は、部分放電劣化に基づく耐久性に対して優れ、かつ煩雑な製造工程を必要としない簡便で安価な製造工程で製造できる絶縁電線およびその製造方法ならびに回転電機およびその製造方法を提供することを課題とする。
 本発明者らは、上記の課題を解決すべく、種々の検討を行った。特に、絶縁電線のコイルエンド部となる部分とスロット収容部となる部分の厚みや絶縁材料の変更でなく、同一の絶縁材料でコイルエンド部のコロナ放電を抑止する手段を中心に検討した。この結果、絶縁電線の長さ方向の比誘電率の部分的変更が有効であり、しかも煩雑な製造工程を必要とせず、絶縁電線の耐久性を向上できることを見出した。本発明は、これらの知見に基づきなされたものである。
 すなわち、本発明によれば以下の手段が提供される。
(1)導体の周りが、少なくとも1層の絶縁材料で皮膜された絶縁電線であって、同一皮膜層の長さ方向または周方向で、比誘電率が異なる部分を有することを特徴とする絶縁電線。
(2)前記絶縁材料が樹脂であり、前記比誘電率の異なる部分の比誘電率が、該樹脂材料の比誘電率より低いことを特徴とする(1)に記載の絶縁電線。
(3)前記皮膜層の嵩密度の差で、該皮膜層の比誘電率が異なっていることを特徴とする(1)または(2)に記載の絶縁電線。
(4)前記皮膜層が、気泡を含むことで、前記比誘電率が異なっていることを特徴とする(1)~(3)のいずれか1項に記載の絶縁電線。
(5)前記同一皮膜層の長さ方向または周方向で、前記比誘電率の異なる部分が、発泡されてなることを特徴とする(1)~(4)のいずれか1項に記載の絶縁電線。
(6)前記比誘電率が異なる部分を有する皮覆層を構成する絶縁材料が、少なくともポリフェニレンスルフィド、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルエーテルケトン、ポリエーテルサルホン、ポリエーテルイミド、ポリイミドおよびポリアミドイミドから選択される樹脂を含むことを特徴とする(1)~(5)のいずれか1項に記載の絶縁電線。
(7)前記導体の断面形状が、円形または矩形であることを特徴とする(1)~(6)のいずれか1項に記載の絶縁電線。
(8)前記(1)~(7)のいずれか1項に記載の絶縁電線を用いてなることを特徴とする回転電機。
(9)前記絶縁電線が、巻線加工されてコイルに加工され、該コイルがコイルを収めるステータコアのスロットに収納されるスロット収容部とステータコアのスロットに収納されないコイルエンド部からなることを特徴とする(8)に記載の回転電機。
(10)前記コイルにおいて、ステータコアのスロットに収納されていない絶縁電線皮膜の前記コイルエンド部の比誘電率が、ステータコアのスロットに収納されている絶縁電線皮膜の前記スロット収容部の比誘電率より低いことを特徴とする(9)に記載の回転電機。
(11)導体の周りが、少なくとも1層の絶縁材料で皮膜された絶縁電線の製造方法であって、
 前記絶縁電線が、同一皮膜層の長さ方向または周方向で、比誘電率が異なる部分を有する絶縁電線であり、
 前記絶縁材料を発泡させることで、前記比誘電率の異なる部分を形成することを特徴とする絶縁電線の製造方法。
(12)前記絶縁材料で皮膜された絶縁材料が発泡していない絶縁電線を製造した後に、該絶縁材料を発泡させることを特徴とする(11)に記載の絶縁電線の製造方法。
(13)前記発泡が、絶縁材料を気体または液体に浸透させた後、発泡させる方法であって、該絶縁材料を固体でかつ発泡工程時の加熱温度でも変形しない材料で覆い、覆われていない部分は、覆われている部分より比誘電率が低いことを特徴とする(11)または(12)に記載の絶縁電線の製造方法。
(14)導体の周りが、少なくとも1層の絶縁材料で皮膜された絶縁電線を用いた回転電機の製造方法であって、
 前記絶縁電線がコイルに加工され、該コイルが、コイルを収めるステータコアのスロットに収納されるスロット収容部とステータコアのスロットに収納されないコイルエンド部からなり、
 前記ステータコアのスロットに前記コイルを収めて、該コイルを固定する工程もしくはこれ以降の回転電機を組み立てる工程のいずれかで、前記コイルエンド部の絶縁材料の比誘電率を低下させることを特徴とする回転電機の製造方法。
(15)ステータコアのスロットに収納されていない前記コイルエンド部の絶縁材料を発泡させることを特徴とする(14)に記載の回転電機の製造方法。
 本発明により、部分放電劣化に基づく耐久性に対して優れ、かつ煩雑な製造工程を必要としない簡便で安価な製造工程で製造できる絶縁電線およびその製造方法ならびに回転電機およびその製造方法を提供することが可能となった。
 本発明の上記および他の特徴および利点は、下記の記載および添付の図面からより明らかになるであろう。
図1(a)は絶縁電線の模式的な上面図であり、図1(b)は絶縁電線の模式的な断面図である 図2(a)は本発明で使用するコイル(絶縁電線分割セグメント)の模式的な形状を示す外観斜視図であり、図2(b)は該コイルをステータコアのスロットへ装着された状態を模式的に示す拡大斜視図である。 図3(a)は本発明で使用するコイルの模式的な形状を示す外観斜視図であり、図3(b)は該コイルを2組セットした模式的な外観斜視図である。 図4は、本発明に係る2組セットのコイルをステータコアのスロットへ挿入する工程を示す斜視図である。 図5は、ステータの全体斜視図である。 図6(a)はステータの模式的な部分斜視図であり、図6(b)は該ステータの模式的な側面図である。 図7(a1)、図7(a2)および図7(a3)は、円形導体を使用した模式的な絶縁電線の上面図であり、図7(b1)、図7(b2)および図7(b3)は断面図、図7(c2)はz断面図、および図7(c3)はz断面図である。長さ方向での部分マスク化による非発泡部形成の模式的な工程図である。 図8(a1)、図8(a2)および図8(a3)は、矩形導体を使用した模式的な絶縁電線の上面図であり、図8(b1)、図8(b2)および図8(b3)は断面図、図8(c2)はz断面図、および図8(c3)はz断面図である。長さ方向での部分マスク化による非発泡部形成の模式的な工程図である。
<<絶縁電線>>
 本発明の絶縁電線は、自動車、一般産業用のモーター等の回転電機に好適に使用できるものである。
 本発明では、導体を被覆する絶縁電線の長さ方向または周方向で、絶縁材料の比誘電率が異なった部分を設けることで、特に、絶縁電線のコロナ放電が発生しやすい部分での部分放電劣化を抑制し、耐久性を向上させるものである。
 例えば、自動車等の回転電機の場合、図5に示すように、ステータ100は加工された絶縁電線(コイル)11が組み込まれている。
 このステータ100は、図2(a)、図3(a)で示されるようなコイル(絶縁電線分割セグメント)11を最小基本単位として、通常は、図3(b)に示すように2組のセット(11α、11β)を基本単位として図4に示すようにしてスロット22に収納される。ここで、図2(b)では最小基本単位のコイル(絶縁電線分割セグメント)11を収納した状態を模式的に示したものである。ステータ100のステータコア20に設けられたティース21と、スロット22の異なったスロット22とに、コイル(絶縁電線分割セグメント)11が組み込まれる。このとき、コイル(絶縁電線分割セグメント)11は、図2(a)に示すように、スロット22に収納されるスロット収容部a(11a)と収納されないコイルエンド部、詳細には、U字形状等のターン部b1(11b1)と2つの末端部である開放端部b2(11b2)からなる。なお、スロット収容部a(11a)は通常直線である。
 図4のようにして、コイル(絶縁電線分割セグメント)11を最小基本単位として、通常は、図3(b)に示すように2組のセット(11α、11β)を基本単位として、ステータに組み込む。その後、コイル(絶縁電線分割セグメント)b1(11b1)とコイル(絶縁電線分割セグメント)b2(11b2)はスロット22からはみ出し、コイル(絶縁電線分割セグメント)b1(11b1)は、図6(a)のような状態で配列される。一方、コイル(絶縁電線分割セグメント)b2(11b2)は、折り曲げ加工され、2つの開放端部のコイルエンド部が他のコイルの開放端部と接続されて配線される。
 図6(b)は、絶縁電線(コイル)11が組み込まれた、図5で示すステータ100の側面図であり、ステータ100の上下に絶縁電線(コイル)11のコイルエンド部(11b1、11b2)がはみ出す。
 ステータ100での絶縁電線は、このスロットエンド部(11b1、11b2)でコロナ放電が生じ易い。
 このため、コイルエンド部(11b1、11b2)とスロット収容部(11a)との比誘電率を異なった値、好ましくは、コイルエンド部(11b1、11b2)の比誘電率をスロット収容部(11a)の比誘電率より低くすることで、最もコロナ放電が生じ易いコイルエンド部(特に、U字形状等のターン部11b1)の部分放電劣化を抑制し、耐久性を向上させるものである。
 本発明の絶縁電線は、導体の周りが、少なくとも1層の絶縁材料で皮膜された絶縁電線である。
 なお、本願明細書では、皮膜は被覆と同義で使用し、皮膜層は被覆層と同義で使用する。
 以下、導体から順に説明する。
<導体>
 本発明に用いる導体としては、その材質は導電性を有するものであればよく、例えば銅、銅合金、アルミニウム、アルミニウム合金等が挙げられる。導体が銅の場合、例えば溶接のために熱で溶融させた場合、含有酸素に起因する溶接部分におけるボイドの発生を防止する観点において、銅99.96%以上、酸素含有量は30ppm以下、好ましくは20ppm以下の低酸素銅または無酸素銅が好適である。導体がアルミニウムの場合は、必要機械強度の点において、様々なアルミニウム合金を用いることができる。例えば回転電機のような用途に対しては、高い電流値を得られる純度99.00%以上の純アルミニウムが好適である。
 導体の断面形状は用途に応じて決めるものであるため、円形(丸)、矩形(平角)、あるいは六角形などいずれの形状でも構わない。例えば回転電機のような用途に対しては、ステータコアのスロット内における導体の占有率を高くできるという点においては矩形状の導体が好ましい。
 導体のサイズは用途に応じて決めるものであるため特に指定はない。丸形状の導体の場合は直径で0.3~3.0mmが好ましく、0.4~2.7mmがより好ましい。平角形状の導体の場合は一辺の長さが幅(長辺)は1.0~5.0mmが好ましく1.4~4.0mmがより好ましく、厚み(短辺)は0.4~3.0mmが好ましく、0.5~2.5mmがより好ましい。ただし、本発明の効果が得られる導体サイズの範囲はこの限りではない。また、平角形状の導体の場合、これも用途に応じて異なるが、断面正方形よりも、断面長方形が一般的である。また、平角形状の導体の場合は、用途が回転電機の場合では、その導体断面の4隅の面取り(曲率半径r)は、ステータコアのスロット内での導体占有率を高める観点において、rは小さい方が好ましい。4隅への電界集中による部分放電現象を抑制するという観点においては、rは大きい方が好ましい。このため、局率半径rは0.6mm以下が好ましく、0.2~0.4mmがより好ましい。ただし、本発明の効果が得られる範囲はこの限りではない。
<皮膜層>
 本発明では、絶縁材料からなる少なくとも1層の皮膜層を有する。例えば、図1では、矩形の導体1の2層の皮膜層(第一の皮膜層2、第二の皮膜層3)で被覆された絶縁電線を示す。ここで、図1(a)は絶縁電線10の上面図であり、図1(b)は断面図である。
 絶縁材料は樹脂が好ましく、本発明の絶縁被覆樹脂に用いることができる樹脂としては、熱可塑性樹脂、例えば、ポリアミド(PA)(ナイロン)、ポリアセタール(POM)、ポリカーボネート(PC)、ポリフェニレンエーテル(変性ポリフェニレンエーテルを含む)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリブチレンナフタレート(PBN)、ポリエチレンナフタレート(PEN)、超高分子量ポリエチレン等の汎用エンジニアリングプラスチックの他、ポリスルホン(PSF)、ポリサルホン(PSU)、ポリエーテルスルホン(PES)、ポリフェニルサルホン(PPSU)、ポリエーテルイミド(PEI)、ポリフェニレンスルフィド(PPS)、ポリアリレート(Uポリマー)、ポリアミドイミド、ポリエーテルケトン(PEK)、ポリアリールエーテルケトン(PAEK)(変性PEEKを含む)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)(FEP)、ポリテトラフルオロエチレン(PTFE)、熱可塑性ポリイミド樹脂(TPI)、ポリアミドイミド(PAI)、液晶ポリエステル等のスーパーエンジニアリングプラスチック、さらに、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)をベース樹脂とするポリマーアロイ、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)/ポリカーボネート、ナイロン6,6、芳香族ポリアミド樹脂、ポリフェニレンエーテル/ナイロン6,6、ポリフェニレンエーテル/ポリスチレン、ポリブチレンテレフタレート/ポリカーボネート等の前記エンジニアリングプラスチックを含むポリマーアロイが挙げられる。これらの熱可塑性樹脂は1種単独で用いてもよく、また、2種以上を組み合わせて用いてもよい。
 なお、上記に示した樹脂名によって使用樹脂が限定されるものではなく、上記に列挙した樹脂以外にも、それらの樹脂より性能的に優れる樹脂であれば使用可能であるのは勿論である。
 熱可塑性樹脂の皮膜層は、後述の熱硬化性樹脂の皮膜層と同様に、樹脂ワニス化して、塗布、または塗布後にさらに焼付け処理を行って設けてもよい。好ましくは、熱可塑性樹脂を押出し加工し、押出被覆樹脂層を設ける。
 本発明の絶縁被覆樹脂に用いることができる樹脂としては、熱硬化性樹脂、例えば、ポリイミド、ポリウレタン、ポリアミドイミド、ポリエステル、ポリベンゾイミダゾール、ポリエステルイミド、メラミン樹脂、エポキシ樹脂が挙げられる。また、これらを2種以上組み合わせて用いてもよい。
 また、上記に列挙した樹脂以外にも、それらの樹脂より性能的に優れる樹脂であれば使用可能であるのは勿論である。
 熱硬化性樹脂の皮膜層はエナメル線の焼付けと同様の方法で形成することができる。
 すなわち、熱硬化性樹脂を有機溶媒でワニス化して樹脂ワニスとし、この樹脂ワニスを導体に塗布し、塗布した導体を、常法にて焼付炉で焼付けすることで熱硬化性樹脂の皮膜層を設けることができる。具体的な焼付け条件はその使用される炉の形状などに左右されるが、およそ5mの自然対流式の竪型炉であれば、400~500℃にて通過時間を10~90秒に設定することにより達成することができる。
 樹脂ワニスのワニス化に使用する有機溶媒としては、熱硬化性樹脂の反応を阻害しない限りは特に制限はなく、例えば、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)、ジメチルスルホキシド、N,N-ジメチルホルムアミド等のアミド系溶媒、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素等の尿素系溶媒、γ-ブチロラクトン、γ-カプロラクトン等のラクトン系溶媒、プロピレンカーボネート等のカーボネート系溶媒、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル系溶媒、ジグライム、トリグライム、テトラグライム等のグライム系溶媒、トルエン、キシレン、シクロヘキサン等の炭化水素系溶媒、スルホラン等のスルホン系溶媒などが挙げられる。有機溶剤の沸点は、好ましくは160℃~250℃、より好ましくは165℃~210℃のものである。
 これらの有機溶媒のうち、高溶解性、高反応促進性等の点でアミド系溶媒、尿素系溶媒が好ましく、加熱による架橋反応を阻害しやすい水素原子を有さないため、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素がより好ましく、N-メチル-2-ピロリドンが特に好ましい。
 なお、樹脂ワニスには、樹脂以外に、必要に応じ酸化防止剤、帯電防止剤、紫外線防止剤、光安定剤、蛍光増白剤、顔料、染料、相溶化剤、滑剤、強化剤、難燃剤、架橋剤、架橋助剤、可塑剤、増粘剤、減粘剤、およびエラストマーなどの各種添加剤などを含有してもよい。
 本発明では、少なくともポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルサルホン(PES)、ポリエーテルイミド(PEI)、ポリイミド(PI)およびポリアミドイミド(PAI)から選択される樹脂を含むことが好ましい。
 ポリフェニレンスルフィド(PPS)の市販品としては、例えば、FZ-2100(DIC社製、商品名)、ポリカーボネート(PC)の市販品としては、例えば、パンライト LV-2250Y(帝人社製、商品名)、ポリエチレンテレフタレート(PET)の市販品としては、例えば、TR-8550T(帝人社製、商品名)、ポリブチレンテレフタレート(PBT)の市販品としては、例えば、トレコン 1401X31(東レ社製、商品名)、ポリエチレンナフタレート(PEN)の市販品としては、例えば、テオネックス TN8065S(帝人社製、商品名)、ポリエーテルエーテルケトン(PEEK)の市販品としては、例えば、キータスパイアKT-820(ソルベイスペシャリティポリマーズ社製、商品名)、PEEK450G(ビクトレックスジャパン社製、商品名)、ポリエーテルサルホン(PES)の市販品としては、例えば、スミカエクセルPES(住友化学社製、商品名)、ポリエーテルイミド(PEI)の市販品としては、例えば、ウルテム1010(サビックイノベーティブプラスチック社製、商品名)、ポリイミド(PI)の市販品としては、例えば、オーラムPL450C(三井化学社製、商品名)、ポリアミドイミド(PAI)の市販品としては、例えば、HI406(日立化成社製、商品名)が挙げられる。
 皮膜層の総厚みは、3~200μmが好ましく、10~80μmがより好ましく、20~50μmがさらに好ましい。
 本発明において、皮膜層を2層以上有してもよい。なお、本発明では、全く同じ樹脂ワニスを複数回塗布、焼付けを行い、単に層の厚みを調整する場合は1層、すなわち同一とし、同じ樹脂でも樹脂ワニス中の添加剤の種類、量が異なるものは別の層としてカウントする。
 本発明の絶縁電線は、特許第4177295号公報で示されるように、絶縁皮膜の構成を、導体の外周に、導体との高い密着性や皮膜の耐熱性を高く維持することが可能な熱硬化性樹脂を、その外周に気泡を含ませやすく高い発泡倍率を得ることが可能な熱可塑性樹脂の順序に配したものを用いることで、導体と絶縁皮膜の密着性、絶縁皮膜の耐熱性、絶縁皮膜の比誘電率の差の確保を両立させることが可能となる。
<<同一皮膜層の長さ方向または周方向で比誘電率が異なる部分を有する絶縁電線絶縁、その製造方法>>
 本発明の絶縁電線は、同一皮膜層の長さ方向または周方向で比誘電率が異なる部分を有する。
 同一層で比誘電率が異なる部分を有する層は、複数の皮膜層を有する場合、いずれの層であっても構わない。
 例えば、導体に接する層でも、最外層でも、内部の層でも構わない。また、同一箇所の全ての層の比誘電率が異なることも好ましい。
 本発明では、導体上の皮膜層を2層以上有するものが好ましい。この場合、同一層で比誘電率が異なる層は導体に接する層より上層の層が好ましい。また、導体に接する層より上層の層の全ての層の同一箇所の比誘電率が、別の箇所より異なることも好ましい。
 比誘電率の変化は、該比誘電率の異なる部分を有する層を形成する絶縁材料、好ましくは樹脂の種類を変更するのでなく、同一の樹脂を使用して望む部分の比誘電率を変更することが好ましい。
 本発明では、樹脂の嵩密度の変更、好ましくは気泡の有無、単位体積当たりの気泡の総体積の量で比誘電率を変更するのが好ましい。
 また、本発明では、樹脂を発泡させて気泡を樹脂中に形成することが好ましい。
 絶縁電線の長さ方向または周方向の特定の箇所のみを発泡させ、樹脂中に気泡を形成する方法としては、絶縁電線にガスまたは液体を浸透させ、浸透したガスまたは液体を発泡させる方法と、絶縁電線を製造する際に、樹脂ワニスに発泡核剤を微量含ませ、該発泡核剤が揮散しない条件で、絶縁電線を製造し、必要とされる形状での加工時に、比誘電率を低下させる予定の箇所のみを加熱して発泡する方法が挙げられる。
 本発明では、絶縁電線にガスまたは液体を浸透させ、浸透したガスまたは液体を発泡させる方法が好ましい。
 本発明の1つの好ましい形態は、製造後の絶縁電線の絶縁皮膜にガスを浸透させて、その浸透させたガスを起点に絶縁皮膜を発泡させる方法である。
 この場合の絶縁皮膜は、熱可塑性樹脂からなる押出被覆樹脂が好ましい。
(ガスによる発泡)
 使用するガスは、不活性ガスが好ましく、アルゴン、水素、メタン、フロン、炭酸ガス、ヘリウム、酸素、窒素等が挙げられる。これらの中でも、通常の絶縁電線に使用される樹脂へのガス浸透力が強く、高倍率に発泡できる炭酸ガスが好ましい。
 なお、使用するガスは、高圧下で液状となり、この液状であってもよく、本願明細書ではこれらをまとめて不活性ガスと称する。同じく不活性ガス雰囲気中は不活性ガスの液体中をも含める。
 不活性ガスによる発泡は、以下のように、工程(1)、(2)の順に行って発泡させることが好ましい。
発泡方法
(1)絶縁電線を加圧不活性ガス雰囲気中に保持して不活性ガスを浸透させる工程
(2)該不活性ガスを樹脂中に浸透させた絶縁電線を常圧下で加熱して発泡させる工程
 上記工程(1)の高圧ガスの加圧は、絶縁電線に使用されている樹脂にもよるが、1~20MPaが好ましく、1~15MPaがより好ましく、1~10MPaがさらに好ましい。また、不活性ガス雰囲気中に保持時間は、6時間以上が好ましく、12時間以上がより好ましく、24時間以上がさらに好ましい。不活性ガス雰囲気下の温度は、40℃以下が好ましく、30℃以下がより好ましく、20℃以下がさらに好ましい。
 上記工程(2)の常圧下で加熱発泡の加熱温度は、皮膜層、好ましくは押出被覆樹脂層に使用される樹脂によるが、ガラス転移温度より高くすると樹脂が変形しやすくなることから好ましく、樹脂のガラス転移温度より5~200℃が好ましく、30~180℃がより好ましく、50~150℃がさらに好ましい。加熱時間は、加熱温度にもよるが、3~120秒間が好ましい。
 本発明においては皮膜層、好ましくは押出被覆樹脂層に部分的に比誘電率の低い部分ができるのであれば、どのような方法でも構わない。前記のガス浸透の他には、皮膜層、好ましくは押出被覆樹脂の中に紫外線で分解する成分を添加しておき、皮膜成型後に部分的に紫外線を照射して分解ガスで気泡を形成する方法、水を吸収させてから加熱して水蒸気の発生によって気泡を形成する方法、電子線照射で分解する成分を添加しておき、皮膜成形後に部分的に電子線を照射して分解ガスで気泡を形成する方法などが選択できる。
 皮膜層、好ましくは押出被覆樹脂層に形成される気泡は、独立気泡であっても連通気泡であってもよく、またこれら両方であってもよい。ここで、独立気泡とは、任意の断面で切断した押出被覆樹脂層の断面をマイクロスコープで観察したときに気泡内壁に穴、すなわち隣接する気泡との連通開口部が確認できないものをいい、連通気泡とは、同様にして観察したときに気泡内壁に穴が確認できるものをいう。気泡は、皮膜層、好ましくは押出被覆樹脂層の摩耗特性や機械特性を維持しつつ、縦方向、すなわち厚み方向の瞬間的な潰れに変形しても、内圧が上がり、圧力が開放されると戻りやすいという点で、また、溶剤等に浸漬されても気泡内部に溶剤等が侵入して気泡部分が埋まることなく、比誘電率の上昇を抑えることができる点で、独立気泡を含んでいるのが好ましい。
 気泡の径は、皮膜層、好ましくは押出被覆樹脂層の断面を走査電子顕微鏡(SEM)で観察し、任意に選択した20個の気泡の直径を、画像寸法計測ソフト(三谷商事社製WinROOF)を用いて径測定モードで測定し、これらを平均して算出した値である。なお、気泡の形状が円形でない場合は、最長部分を直径とする。
 なお、発泡により得られる気泡の大きさ、形状は特に限定されるものではない。形状は球状が好ましい。1つの気泡径の平均は、気泡体積の球換算での半径として、10μm以下が好ましく、5μm以下がより好ましく、2μm以下がさらに好ましい。
 本発明では、絶縁電線の長さ方向の比誘電率が異なった部分を設けるには、相対的に比誘電率が大きい部分を、固体でかつ発泡工程時の加熱温度でも変形しない材料で覆い、不活性ガスまたは液体が浸透しないように、または発泡時に、覆われていない部分より温度が低いようにする。
 例えば、この方法における工程は、図7および8で示される。
 ここで、図7では、円形の導体1上に皮膜層を1層設けた絶縁電線であり、好ましい層として押出被覆樹脂層3を皮膜しており、図8では、矩形の導体1上に2層の皮膜層2、3で被覆された絶縁電線である。また、図7、8ともに、好ましい工程として下記の工程を示している。
工程(I):気泡を含有しない絶縁電線を用意もしくは製造して用意する工程
工程(II):非発泡部分をマスクMで、マスク化する工程
工程(III):ガス浸透、発泡およびマスクMを除去する工程
 ここで、図7、8ともに、(a1)~(a3)は、絶縁電線10の各工程における上面図であり、(b1)~(b3)は各工程での断面図であり、(c2)はZ-Z部分での発泡させる前の断面図である。(c3)は(a3)のZ-Z部分での発泡していない部分(pnf)の断面図であり、(a3)と(b3)には発泡した皮膜層(図7(a3)、図8(a3)ではpf、図7(b3)、図8(b3)では3’)が形成されていることが示されている。
 マスク材料としては、例えば、アルミニウム、ステンレス、鉄、銅、ガラス、セラミック、ポリイミドが好ましい。なかでも、本発明の絶縁電線が加工されて、コイルとされる場合においては、該コイルを挿入するスロット(例えば、電磁鋼板)が、挿入部分のみ該スロットで覆われている場合、スロット中に加工された絶縁電線のコイルを挿入、固定された状態で、不活性ガス雰囲気中に保持することも可能であり、好ましい。例えば、モーターのような回転電機の場合、該コイルがスロットに装着されたステータを不活性ガス雰囲気中に保持することが可能であり、本発明においては、特に好ましい。また、アルミニウム、ステンレス、鉄、銅、ガラス、セラミックでマスクした場合、不活性ガスまたは液体が浸透しないため、発泡工程の前にマスク除去してもよい。
 浸透しない材料で隙間をあけて覆ったときは、覆った部分でも多少発泡する。覆っていない部分と比較して比誘電率に差があれば、本発明の効果が発現される。
 従って、回転電機の場合、スロットで覆われている部分に、わずかに隙間をつくり、ガスまたは液体を浸透させ、発泡させても構わない。少なくともコイルエンド部が発泡し、比誘電率が低下していれば、本発明の効果が発現される。この場合、むしろ、スロット収容部が発泡することでスロットと絶縁電線との隙間が埋まり、絶縁電線が固定されるという別の効果も得られる。
 本発明においては、導体上の皮膜層が、熱硬化性樹脂(エナメル層)のみの場合、該エナメル層を長さ方向または周方向で、部分的に気泡を形成して比誘電率を異なったものとすることもできる。
 具体的には、特開2011-238384号公報に記載のように、気泡を形成する方法としては、エナメル塗料の中に熱可塑性樹脂を混合したものを焼付けて絶縁皮膜として形成してなる絶縁電線に対してガスを浸透させ、浸透したガスを発泡させる方法が好ましい。
 熱硬化性樹脂としては、本発明の趣旨を損なわない範囲内で種々のものを使用することができる。例えば、ポリイミド、ポリアミドイミド、ポリエステルイミド、ポリエーテルイミド、ポリイミドヒダントイン変性ポリエステル、ポリアミド、ホルマール、ポリウレタン、ポリエステル、ポリビニルホルマール、エポキシ、ポリヒダントイン、メラミン樹脂、フェノール樹脂、ウレア樹脂、ポリベンゾイミダゾールなどを使用することができる。その中でもポリエステル、ポリイミド、ポリアミドイミド、ポリベンゾイミダゾールなどの樹脂が耐熱性と可とう性の点から、好ましい。また、これらは1種を単独で使用してもよく、また、2種以上を混合して使用してもよい。
 この用途で使用できる熱可塑性樹脂としては溶媒に溶解させることが可能であればよく、非晶性の熱可塑性樹脂が溶解しやすく作業性がよいため好ましい。本発明において、非晶性熱可塑性樹脂とは、例えば、アクリル樹脂、ノルボルネン樹脂、シクロオレフィン系樹脂、ポリスチレン、ポリカーボネート、ポリエーテルサルホン、ポリエーテルイミド、ポリエーテルサルホン、ポリフェニルサルホン、ポリサルホン、ポリアリレート、熱可塑性ポリイミド等のことをいう。非晶性熱可塑性樹脂の中でも、特に、ポリエーテルイミド、ポリカーボネート、ポリエーテルサルホン、ポリフェニルサルホン、ポリサルホン、ポリアリレートなどが好ましい。非晶性熱可塑性樹脂を用いることで溶剤に溶解させることが容易となる。またこれらの樹脂は熱硬化性樹脂の網目構造中で、微分散することができ、微細な気孔を形成することができる。また、これらは1種を単独で使用してもよく、また、2種以上を混合して使用するようにしてもよい。
 熱可塑性樹脂が溶剤に溶解しない場合においても、エナメル塗料中に粉体の熱可塑性樹脂を分散させてなる塗料を塗布焼付して形成した絶縁電線を用いて気泡を含ませてもよい。粉体は球状・不定形など皮膜の外観を損なわない範囲において何れの形でもよい。電気的な特性が高いことから球状がより好ましい。
 熱硬化性樹脂の溶剤を含まない樹脂成分の質量をA、前記熱可塑性樹脂の質量をBとしたとき、A/Bが10/90~90/10であることが好ましい。さらに好ましくは、A/Bが30/70~70/30であり、特に好ましくは、A/Bが40/60~60/40である。熱硬化性樹脂成分が多いと耐熱性において優れる傾向になるが、発泡倍率を上げにくく、比誘電率の低減量は少なくなる傾向にある。また、熱可塑性樹脂成分が多いと発泡倍率を上げやすく、比誘電率の低減量は多くなるが、耐熱性においては下がる傾向にあるため、必要に応じた配合比を選択するとよい。
 なお、上記の熱硬化性樹脂からなる皮膜層上に、熱可塑性樹脂層を設けてもよい。
(発泡核剤による発泡)
 また本発明の別の形態としては、絶縁電線の製造プロセスにおいて、絶縁皮膜に発泡核剤を含有させておく方法がある。具体的には紫外線、電子線、熱等で分解してガスを発生させる成分を絶縁皮膜樹脂へ含有させておき、絶縁皮膜の比誘電率を下げたい部分のみに後から、紫外線、電子線、熱等を与えることで、所定の箇所を発泡させることで比誘電率の低減を実現することが可能である。
 絶縁電線の樹脂が発泡されたかどうかは、例えば、走査型電子顕微鏡や光学顕微鏡により、厚み方向、サンプル面積の縦方向、横方向のいずれかに切断した断面で、断面写真を観察したときに、気泡セルが確認できれば、発泡したことが判定でき、また間接的には嵩密度の低下で確認可能である。
 発泡した部分の樹脂の嵩密度が低下する。この嵩密度の変化の関係から、発泡倍率が算出される。
 具体的には、発泡倍率は、以下の式で求められる。
  発泡倍率=発泡前の樹脂の嵩密度/発泡後の樹脂の嵩密度
 発泡倍率は、好ましくは、1.2~5.0であり、より好ましくは1.2~2.0であり、さらに好ましくは1.3~1.8である。
 この発泡倍率が大きいほど、発泡部分の比誘電率が低下する。
(嵩密度の測定)
 ここで、上記の発泡倍率を求めるための嵩密度は下記のようにして測定することができる。
 JIS-K-7112(1999)「プラスチック-非発泡プラスチックの密度および比重の測定方法」のA法(水中置換法)に準拠して求める。
 具体的には、例えば、メトラー社製電子天秤SX64に付属の密度測定キットを用い、浸漬液はメタノールを使用する。絶縁電線の押出被覆樹脂の発泡した部分であるコイルエンド部であるU字形状部分および発泡していないスロット収容部をそれぞれ剥がし取って、各試験片とし、該各試験片の密度を下記計算式から算出する。
 試験片の密度ρS,t=(mS,A×ρIL)/(mS,A-ms,IL
 ここで、mS,Aは、空気中で測定した試験片の質量(g)であり、ms,ILは、浸漬液中で測定した試験片の質量(g)であり、ρILは、浸漬液の密度(g/cm)である。
(比誘電率の測定)
 一方、本発明で特定する比誘電率は下記のようにして、絶縁層の静電容量を測定し、得られた静電容量から算出して求めることができる。
 具体的には、絶縁電線の最表面皮膜の全周に金属電極を蒸着し、導体と金属電極間の静電容量を測定し、電極長と絶縁皮膜厚の関係から比誘電率を算出する。ここで、絶縁層の静電容量は、市販のLCRメータ、例えば、LCRハイテスタ(日置電機株式会社製、型式3532-50)を用いて、25℃、100Hzで測定する。
 導体形状が矩形の絶縁電線では、周方向で4面ある平らな面(絶縁皮膜)のある一面において、面内の絶縁皮膜を局所的に剥離し、金属電極を蒸着すれば、部分的な比誘電率の測定も可能である。
 本発明の絶縁電線は、同一皮膜層の長さ方向または周方向で、比誘電率が異なる部分を有する。比誘電率が高い部分の比誘電率を100としたとき、比誘電率の低い部分の誘電率は90以下が好ましく、80以下がより好ましく、75以下がさらに好ましい。なお、比誘電率の低い部分の比誘電率の下限は、20以上が現実的である。
 このため、発泡による嵩密度低下による比誘電率低下率〔(発泡前の比誘電率-発泡後の比誘電率)×100/発泡前の比誘電率〕は、10%以上が好ましく、20%以上がより好ましく、25%以上がさらに好ましい。また、比誘電率低下率の上限は、80%以下が現実的である。
 例えば、ポリフェニレンスルフィド(PPS)(DIC社製、商品名:FZ-2100)では、嵩密度で算出される発泡倍率が、1.5であれば、該ポリフェニレンスルフィド(PPS)自身の比誘電率が3.3であるのに対し、27~28%低下して、発泡後の比誘電率は2.4となる。
<<回転電機およびその製造方法>>
 本発明の絶縁電線は、各種電気機器、電子機器に使用できる。特に、本発明の絶縁電線はコイル加工してモーターやトランスなどに用いられ、高性能の電気機器を構成できる。なかでもHV(ハイブリッドカー)やEV(電気自動車)の駆動モーター用の巻線として好適に用いられる。
 このうち、モーターのような回転電機で使用する場合、絶縁電線を図2に示すように切断してU字形状等にターン加工し、複数のU字形状の絶縁電線のU字形状の2つの末端である開放端部b2(11b2)を互い違いに接続して、コイルとし、ステータコアのスロット22に収納される。なお、このとき、開放端部b2(11b2)の接続は、接続してからスロット22に収納する方法1と、接続しないで全ての絶縁電線分割セグメント11をスロット22に収納した後に、折り曲げ加工して接続する方法2がある。本発明では、このいずれの方法でも構わない。
 U字形状等の絶縁電線のコイル(絶縁電線分割セグメント)11は、図2(a)で示されるように、ステータコア20のスロット22に収納されるスロット収容部a(11a)と、収納されずにスロット22からはみ出すコイルエンド部b1、b2(11b1、11b2)からなり、この直線部のスロット収容部が互いに異なるスロット22に収められ、コイルエンド部b1、b2(11b1、11b2)がステータ100の上下部分で、ステータ面からはみ出した状態で配列される。
 従って、使用する絶縁電線を若干長めに切断し、予め、スロット22に収められる部分のみを不活性ガスもしくは液体が浸透しない素材、材料で覆うなどして、コイルエンド部b1、b2(11b1、11b2)とすることが予定されている部分のみむき出しにし、このコイルエンド部b1、b2(11b1、11b2)のみ不活性ガスもしくは液体を浸透させて発泡さるか、または、加工された絶縁電線であるコイル11をステータ100のスロット22に収められた状態で、ステータ100ごと不活性ガス雰囲気下に保存して、ステータ100のスロット22からはみ出した部分のみに、不活性ガスもしくは液体を浸透させ、コイルエンド部b1、b2(11b1、11b2)のみ発泡さることができる。
 このとき、上記の方法1では、発泡された後に、絶縁電線分割セグメント11の開放端部を、折り曲げ加工して異なる絶縁分割セグメント間で接続する。
 本発明の回転電機の製造において、コイルエンド部b1、b2(11b1、11b2)を発泡させることで、絶縁電線、これを加工したコイルの特定部分の絶縁材料の比誘電率を低下させる。
 すなわち、本発明の回転電機の製造方法は、上記のように、導体の周りが、少なくとも1層の絶縁材料で皮膜された絶縁電線を用いた回転電機の製造方法であって、
 前記絶縁電線がコイルに加工され、該コイルが、コイルを収めるステータコアのスロットに収納されるスロット収容部とステータコアのスロットに収納されないコイルエンド部からなり、
 前記ステータコアのスロットに前記コイルを収めて、該コイルを固定する工程もしくはこれ以降の回転電機を組み立てる工程のいずれかで、前記コイルエンド部の絶縁材料の比誘電率を低下させる製造方法であり、好ましくは、上記のように、コイルエンド部の絶縁材料を発泡させる。
 以下に、本発明を実施例に基づいて、さらに詳細に説明するが、これは本発明を制限するものではない。
実施例1
(気泡を含有しない絶縁電線の作製)
 以下のようにして、絶縁電線を作製した。
 断面円形(φ0.5mm)の導体(酸素含有量15ppmの銅)を用い、該導体上に押出被覆樹脂層を形成した。
 押出機のスクリューは、30mmフルフライト、L/D=20、圧縮比3を用いた。熱可塑性樹脂はポリエチレンテレフタレート(PET)(帝人社製、商品名:PET樹脂TR-8550T、比誘電率3.2)を用い、押出被覆樹脂層の断面の外形の形状が導体の形状と相似形になるように、押出ダイを用いてPETの押出被覆を行い、導体の外側に、厚みが32μmの押出被覆樹脂層を形成し、PET押出被覆線からなる絶縁電線を得た。
(発泡させた絶縁電線の作製)
 上記のようにして作製した絶縁電線を、図7に示すように、幅100mm、厚み0.05mmのアルミニウムからなるマスクで絶縁電線の周囲を覆った。
 このようにして、部分的にマスクされた絶縁電線を、炭酸ガスが充填された高圧容器に、1.7MPaの圧力下、温度-30℃の条件で、42時間保管して、マスクされていない部分の皮膜樹脂中に炭酸ガスを浸透させた。
 その後、高圧容器から、絶縁電線を取り出し、温度200℃の条件で1分間加熱し、マスクされていない部分の皮膜樹脂を発泡させた。発泡後のPET押出被覆樹脂層の厚みは39μmであった。
 マスクされていない部分の皮膜樹脂とマスクされた皮膜樹脂をそれぞれ剥がし、走査型電子顕微鏡により、厚み方向、サンプル面積の縦方向、横方向の3種の方向で切断した断面において、断面写真を観察し、マスクされていない部分の皮膜層では、いずれの断面でも、気泡セルを確認した。ここで、気泡の形状は球状であった。一方、マスクされた部分の皮膜層では、気泡セルは確認できなかった。
(嵩密度の測定)
 JIS-K-7112(1999)「プラスチック-非発泡プラスチックの密度および比重の測定方法」のA法(水中置換法)に準拠して求めた。
 メトラー社製電子天秤SX64に付属の密度測定キットを用い、浸漬液はメタノールを使用した。絶縁電線の押出被覆樹脂の発泡した部分であるマスクされていない皮膜樹脂部分および発泡していないマスクされた皮膜樹脂部分をそれぞれ剥がし取って、各試験片とし、該各試験片の密度を下記計算式から算出した。
 試験片の密度ρS,t=(mS,A×ρIL)/(mS,A-ms,IL
 ここで、mS,Aは、空気中で測定した試験片の質量(g)であり、ms,ILは、浸漬液中で測定した試験片の質量(g)であり、ρILは、浸漬液の密度(g/cm)である。
(発泡倍率の測定)
 マスクされていない部分の発泡前後の皮膜樹脂の嵩密度を上記の方法で測定した。マスクされた部分である発泡前の皮膜樹脂の嵩密度を発泡後の同じ部分の被膜樹脂の嵩密度で割り、発泡倍率を求めた。
 この結果、発泡倍率は、1.6であった。
(比誘電率の測定)
 発泡していないマスクされた部分と発泡したマスクされていない部分の皮膜層の樹脂の比誘電率をそれぞれ、以下のようにして測定した。この結果、マスクされた部分の皮膜樹脂の比誘電率は3.3であり、マスクされていない部分の皮膜樹脂の比誘電率は2.4であった。
 比誘電率は、絶縁層の静電容量から算出した。すなわち、絶縁電線の最表面皮膜の全周に金属電極を蒸着し、導体と金属電極間の静電容量を測定し、電極長と絶縁皮膜厚の関係から比誘電率を算出した。ここで、絶縁層の静電容量はLCRハイテスタ(日置電機株式会社製、型式3532-50)を用いて、25℃、100Hzで測定した。
 このようにして部分的に発泡した絶縁電線の耐久性として、部分放電開始電圧を評価した。
(部分放電開始電圧)
 部分放電開始電圧の測定は、菊水電子工業社製の部分放電試験機「KPD2050」(商品名)を用いた。部分放電開始電圧は、2本の絶縁電線の発泡した部分をツイスト状に撚り合わせ、この2本の導体間に50Hz正弦波の交流電圧を加え、昇圧速度50V/秒で昇圧し、10pCの部分放電が発生した時点の電圧を読み取った。なお、測定温度25℃で行った。
 この結果、10pCの部分放電が発生した電圧は0.940kVであった。
 ここで、マスクで覆っていない部分は、国際公開第2011/118717号パンフレットに記載の実施例12と同等の結果であることを確認した。
比較例1
 実施例1において、発泡させる前の絶縁電線を比較例1とした。
 実施例1と同様にして比誘電率を測定した。
 この結果、発泡前の皮膜樹脂の比誘電率は、3.2であった。
 また、2本の絶縁電線の未発泡部分をツイスト状に撚り合わせた試験片を作製し、実施例1と同様にして、放電電荷量が10pCのときの電圧(実効値)を測定した。
 この結果、10pCの部分放電が発生した電圧は0.700kVであった。
実施例2
(気泡を含有しない絶縁電線の作製)
 以下のようにして、絶縁電線を作製した。
 断面円形(φ1.0mm)の導体(酸素含有量15ppmの銅)を用い、該導体上に押出被覆樹脂層を形成した。
 押出機のスクリューは、30mmフルフライト、L/D=20、圧縮比3を用いた。熱可塑性樹脂はポリエチレンナフタレート(PEN)(帝人社製、商品名:テオネックス TN8065S、比誘電率3.0)を用い、押出被覆樹脂層の断面の外形の形状が導体の形状と相似形になるように、押出ダイを用いてPENの押出被覆を行い、導体の外側に、厚みが100μmの押出被覆樹脂層を形成し、PEN押出被覆線からなる絶縁電線を得た。
(発泡させた絶縁電線の作製)
 上記のようにして作製した絶縁電線を、図7に示すように、幅100mm、厚み0.2mmのポリイミドからなるフィルム状のマスクで絶縁電線の周囲を10周分重ねて覆った。
 このようにして、部分的にマスクされた絶縁電線を、炭酸ガスが充填された高圧容器に、1.7MPaの圧力下、温度-25℃の条件で、168時間保管して、皮膜樹脂中に炭酸ガスを浸透させた。
 その後、高圧容器から、絶縁電線を取り出し、温度100℃の条件で1分間加熱し、皮膜樹脂を発泡させた。マスクで覆っていない部分の発泡後のPET押出被覆樹脂層の厚みは142μmであった。マスクで覆った部分は、132μmであった。
 マスクされていない部分の皮膜樹脂とマスクされた皮膜樹脂をそれぞれ剥がし、走査型電子顕微鏡により、厚み方向、サンプル面積の縦方向、横方向の3種の方向で切断した断面において、断面写真を観察し、マスクされていない部分の皮膜層、マスクされた部分の皮膜層ともに、いずれの断面でも、気泡セルを確認した。ここで、気泡の形状は球状であった。
(嵩密度の測定)
 絶縁電線の押出被覆樹脂のマスクされていない皮膜樹脂部分およびマスクされた部分の絶縁電線の皮膜樹脂部分をそれぞれ剥がし取って、各試験片とし、実施例1と同様に密度を算出した。
(発泡倍率の測定)
 発泡前の絶縁電線の皮膜樹脂部分も同様に密度を算出し、発泡前の皮膜樹脂の嵩密度を発泡後の皮膜樹脂の嵩密度で割り、発泡倍率を求めた。
 この結果、マスクされてない部分の発泡倍率は、3.0であった。また、マスクされた部分の発泡倍率は、1.4であった。
(比誘電率の測定)
 マスクされた部分とマスクされていない部分の皮膜層の樹脂の比誘電率をそれぞれ、実施例1と同様にして測定した。この結果、マスクされた部分の皮膜樹脂の比誘電率は2.4であり、マスクされていない部分の皮膜樹脂の比誘電率は1.6であった。
(部分放電開始電圧)
 マスクされた部分とマスクされていない部分について、それぞれ2本をツイスト状に撚り合わせ試験片を作製し、実施例1と同様に部分放電開始電圧を測定した。
 この結果、マスクされてない部分は1.75kVであった。また、マスクされた部分は、1.45kVであった。
 ここで、マスクで覆っていない部分は、国際公開第2011/118717号パンフレットに記載の実施例3と同等の結果であることを確認した。
比較例2
 実施例2において、発泡させる前の絶縁電線を比較例2とした。
 実施例2と同様にして比誘電率を測定した。
 この結果、発泡前の皮膜樹脂の比誘電率は、3.0であった。
 また、発泡前の2本の絶縁電線をツイスト状に撚り合わせた試験片を作製し、実施例2と同様にして、部分放電開始電圧を測定した。
 この結果、1.10kVであった。
実施例3
(気泡を含有しない絶縁電線の作製)
 以下のようにして、絶縁電線を作製した。
 断面矩形(長辺3.2mm×短辺2.4mmで、四隅の面取りの曲率半径r=0.3mm)の平角導体(酸素含有量15ppmの銅)を用い、該導体上に、エナメル焼付け層を形成した。
 エナメル焼付け層の形成は、導体と相似形のダイスを使用して、ポリアミドイミド樹脂(PAI)ワニス(日立化成社製、商品名:HI406)を導体へコーティングし、450℃に設定した炉長8mの焼付炉内を、焼き付け時間15秒となる速度で通過させ、これを数回繰り返すことで、厚み40μmのエナメル焼付け層を形成し、エナメル線を得た。
 得られたエナメル線を心線とし、以下のようにして、押出被覆樹脂層を形成した。
 押出機のスクリューは、30mmフルフライト、L/D=20、圧縮比3を用いた。熱可塑性樹脂はポリフェニレンスルフィド(PPS)(DIC社製、商品名:FZ-2100、比誘電率3.3)を用い、押出被覆樹脂層の断面の外形の形状が導体の形状と相似形になるように、押出ダイを用いてPPSの押出被覆を行い、エナメル焼付け層の外側に、厚みが41μmの押出被覆樹脂層を形成し、PPS押出被覆エナメル線からなる絶縁電線を得た。
(皮膜層の長さ方向で比誘電率が異なる部分を有する絶縁電線の作製)
 上記のようにして作製した絶縁電線を、回転電機で使用するステータのスロットに収めるため、切断およびU字形状に加工し、図2のように、ステータの各スロットに収納し、最終的に、図5のように全てのスロットにU字形状のコイル巻加工した絶縁電線(コイル)を装着した。
 挿入されたU字形状のコイルの2つの末端部分を、各々のスロットからの出口近傍で折り曲げ加工し、異なったコイル間でこの末端部分を溶接し、スロットを横から見て図6(b)のように配線した。ここで、図6(a)は、スロットに収められたコイルのU字形状部分である。
 このようにして作製したコイルが装着されたステータを、炭酸ガスが充填された高圧容器に、1.2MPaの圧力下、温度-32℃の条件で、24時間保管して、コイルエンド部の皮膜樹脂中に炭酸ガスを浸透させた。
 その後、高圧容器から、ステータを取り出し、温度200℃の条件で1分間加熱し、コイルエンド部の皮膜樹脂を発泡させた。発泡後のPPS押出被覆樹脂層の厚みは45μmであった。
 スロット収容部の皮膜層の樹脂とコイルエンド部であるU字形状部分の皮膜層の樹脂をそれぞれ剥がし、走査型電子顕微鏡により、厚み方向、サンプル面積の縦方向、横方向の3種の方向で切断した断面において、断面写真を観察し、コイルエンド部であるU字形状部分の皮膜層では、いずれの断面でも、気泡セルを確認した。ここで、気泡の形状は球状であった。
(嵩密度の測定)
 絶縁電線の押出被覆樹脂の発泡した部分であるコイルエンド部であるU字形状部分および発泡していないスロット収容部をそれぞれ剥がし取って、各試験片とし、実施例1と同様にして求めた。
(発泡倍率の測定)
 コイルエンド部であるU字形状部分の発泡前後での皮膜層の樹脂の嵩密度を上記の方法で測定した。発泡前コイルエンド部のU字形状部分の皮膜樹脂の嵩密度を発泡後の同じ部分の被膜樹脂の嵩密度で割り、発泡倍率を求めた。
 この結果、発泡倍率は、1.5であった。
(比誘電率の測定)
 発泡していないスロット収容部と発泡したコイルエンド部であるU字形状部分の皮膜層の樹脂の比誘電率をそれぞれ、実施例1と同様にして測定した。この結果、スロット収容部の皮膜樹脂の比誘電率は3.3であり、発泡前の樹脂と同じ比誘電率であった。一方、発泡したコイルエンド部の皮膜樹脂の比誘電率は2.4であった。
比較例3
 実施例3において作製した発泡前の絶縁電線を比較例3とした。
 実施例3と同様にして、実施例3で測定した部分の比誘電率を実施例3と同様にして測定した。
 この結果、スロット収容部の皮膜樹脂およびコイルエンド部の被膜樹脂の比誘電率は、いずれも3.3であった。
 実施例3でも、発泡していない部分の比誘電率と比較し、発泡した部分の比誘電率が低下していることから、10pCの部分放電が発生する電圧は、発泡前と比較して高くなって、耐久性に優れていることが示唆される。
 実施例1、2および3と対応する比較例1、2および3の比較から明らかなように、発泡させることで、耐久性が大きく向上し、しかも、実施例1、2および3で作製した製造方法からも明らかなように、複雑な工程を経ることなく、簡便でコスト的にも安価に、耐久性の優れた絶縁電線、回転電機を得ることができた。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2014年1月22日に日本国で特許出願された特願2014-009913に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
  10  絶縁電線
   1  導体
   2  第一の皮膜層(エナメル層)
   3  第二の皮膜層(押出被覆樹脂層)
   3’ 発泡した第二の皮膜層(発泡した押出被覆樹脂層)
  pf  発泡した部分
  pnf 非発泡部分
  11  コイル(絶縁電線分割セグメント)
    a スロット収容部(スロット直線部)
   b1 コイルエンド部のU字形状ターン部
   b2 コイルエンド部の開放端部
  11α 第一のコイル(第一の絶縁電線分割セグメント)
  11β 第二のコイル(第二の絶縁電線分割セグメント)
 100  ステータ
  20  ステータコア
  21  ティース
  22  スロット
   M  マスク

Claims (15)

  1.  導体の周りが、少なくとも1層の絶縁材料で皮膜された絶縁電線であって、同一皮膜層の長さ方向または周方向で、比誘電率が異なる部分を有することを特徴とする絶縁電線。
  2.  前記絶縁材料が樹脂であり、前記比誘電率の異なる部分の比誘電率が、該樹脂材料の比誘電率より低いことを特徴とする請求項1に記載の絶縁電線。
  3.  前記皮膜層の嵩密度の差で、該皮膜層の比誘電率が異なっていることを特徴とする請求項1または2に記載の絶縁電線。
  4.  前記皮膜層が、気泡を含むことで、前記比誘電率が異なっていることを特徴とする請求項1~3のいずれか1項に記載の絶縁電線。
  5.  前記同一皮膜層の長さ方向または周方向で、前記比誘電率の異なる部分が、発泡されてなることを特徴とする請求項1~4のいずれか1項に記載の絶縁電線。
  6.  前記比誘電率が異なる部分を有する皮覆層を構成する絶縁材料が、少なくともポリフェニレンスルフィド、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルエーテルケトン、ポリエーテルサルホン、ポリエーテルイミド、ポリイミドおよびポリアミドイミドから選択される樹脂を含むことを特徴とする請求項1~5のいずれか1項に記載の絶縁電線。
  7.  前記導体の断面形状が、円形または矩形であることを特徴とする請求項1~6のいずれか1項に記載の絶縁電線。
  8.  請求項1~7のいずれか1項に記載の絶縁電線を用いてなることを特徴とする回転電機。
  9.  前記絶縁電線が、巻線加工されてコイルに加工され、該コイルがコイルを収めるステータコアのスロットに収納されるスロット収容部とステータコアのスロットに収納されないコイルエンド部からなることを特徴とする請求項8に記載の回転電機。
  10.  前記コイルにおいて、ステータコアのスロットに収納されていない絶縁電線皮膜の前記コイルエンド部の比誘電率が、ステータコアのスロットに収納されている絶縁電線皮膜の前記スロット収容部の比誘電率より低いことを特徴とする請求項9に記載の回転電機。
  11.  導体の周りが、少なくとも1層の絶縁材料で皮膜された絶縁電線の製造方法であって、
     前記絶縁電線が、同一皮膜層の長さ方向または周方向で、比誘電率が異なる部分を有する絶縁電線であり、
     前記絶縁材料を発泡させることで、前記比誘電率の異なる部分を形成することを特徴とする絶縁電線の製造方法。
  12.  前記絶縁材料で皮膜された絶縁材料が発泡していない絶縁電線を製造した後に、該絶縁材料を発泡させることを特徴とする請求項11に記載の絶縁電線の製造方法。
  13.  前記発泡が、絶縁材料を気体または液体に浸透させた後、発泡させる方法であって、該絶縁材料を固体でかつ発泡工程時の加熱温度でも変形しない材料で覆い、覆われていない部分は、覆われている部分より比誘電率が低いことを特徴とする請求項11または12に記載の絶縁電線の製造方法。
  14.  導体の周りが、少なくとも1層の絶縁材料で皮膜された絶縁電線を用いた回転電機の製造方法であって、
     前記絶縁電線がコイルに加工され、該コイルが、コイルを収めるステータコアのスロットに収納されるスロット収容部とステータコアのスロットに収納されないコイルエンド部からなり、
     前記ステータコアのスロットに前記コイルを収めて、該コイルを固定する工程もしくはこれ以降の回転電機を組み立てる工程のいずれかで、前記コイルエンド部の絶縁材料の比誘電率を低下させることを特徴とする回転電機の製造方法。
  15.  ステータコアのスロットに収納されていない前記コイルエンド部の絶縁材料を発泡させることを特徴とする請求項14に記載の回転電機の製造方法。
PCT/JP2015/050540 2014-01-22 2015-01-09 絶縁電線およびその製造方法、ならびに回転電機およびその製造方法 WO2015111453A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167022006A KR20160111414A (ko) 2014-01-22 2015-01-09 절연전선 및 그의 제조방법과, 회전 전기기기 및 그의 제조방법
CN201580005131.1A CN106062890B (zh) 2014-01-22 2015-01-09 绝缘电线及其制造方法、以及旋转电机及其制造方法
EP15740870.9A EP3098818A4 (en) 2014-01-22 2015-01-09 Insulated wire and method for manufacturing same, and rotating electrical machine and method for manufacturing same
US15/216,093 US10601277B2 (en) 2014-01-22 2016-07-21 Insulated wire and method of producing the same, and rotating electrical machine and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-009913 2014-01-22
JP2014009913A JP5931097B2 (ja) 2014-01-22 2014-01-22 絶縁電線およびその製造方法、ならびに回転電機およびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/216,093 Continuation US10601277B2 (en) 2014-01-22 2016-07-21 Insulated wire and method of producing the same, and rotating electrical machine and method of producing the same

Publications (1)

Publication Number Publication Date
WO2015111453A1 true WO2015111453A1 (ja) 2015-07-30

Family

ID=53681261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050540 WO2015111453A1 (ja) 2014-01-22 2015-01-09 絶縁電線およびその製造方法、ならびに回転電機およびその製造方法

Country Status (7)

Country Link
US (1) US10601277B2 (ja)
EP (1) EP3098818A4 (ja)
JP (1) JP5931097B2 (ja)
KR (1) KR20160111414A (ja)
CN (1) CN106062890B (ja)
TW (1) TW201546834A (ja)
WO (1) WO2015111453A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462755A (zh) * 2017-04-03 2019-11-15 住友电气工业株式会社 绝缘电线
US10505426B2 (en) * 2017-06-27 2019-12-10 Hitachi Automotive Systems, Ltd. Dynamo-electric machine
WO2019131848A1 (ja) 2017-12-28 2019-07-04 古河電気工業株式会社 電線用外装体及び外装体付きワイヤーハーネス
KR102618459B1 (ko) * 2019-01-07 2023-12-27 엘지마그나 이파워트레인 주식회사 회전전기기계의 스테이터
DE102019206663A1 (de) * 2019-05-09 2020-11-12 Audi Ag Stator für eine elektrische Maschine
JP6817487B1 (ja) 2020-03-03 2021-01-20 東京特殊電線株式会社 絶縁電線及びコイル
DE102020133307A1 (de) 2020-12-14 2022-06-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Statoranordnung und Verfahren zu seiner Herstellung
JP2022144359A (ja) * 2021-03-19 2022-10-03 本田技研工業株式会社 回転電機
CN113789106A (zh) * 2021-08-19 2021-12-14 南通百川新材料有限公司 一种低毒环保聚酯漆的制备方法
KR20230171012A (ko) 2022-06-12 2023-12-19 정지훈 1인 가구를 위한 식재료 소분 판매 서비스

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236924A (ja) 2007-03-22 2008-10-02 Hitachi Ltd 回転電機及び電気自動車
JP4177295B2 (ja) 2003-12-17 2008-11-05 古河電気工業株式会社 耐インバータサージ絶縁ワイヤおよびその製造方法
WO2011118717A1 (ja) 2010-03-25 2011-09-29 古河電気工業株式会社 発泡電線及びその製造方法
JP2011238384A (ja) 2010-05-06 2011-11-24 Furukawa Electric Co Ltd:The 絶縁電線、電気機器及び絶縁電線の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1283271A (en) * 1970-06-30 1972-07-26 Standard Telephones Cables Ltd Cables
DE2458754A1 (de) * 1974-12-12 1976-06-16 Felten & Guilleaume Kabelwerk Fernmeldekabel mit einer isolierung aus geschaeumtem kunststoff
JPS601891B2 (ja) * 1981-08-28 1985-01-18 株式会社 潤工社 発泡プラスチックの製造方法
JPS59226641A (ja) * 1983-06-01 1984-12-19 Mitsubishi Electric Corp 回転電機のコロナ防止被覆の製造方法
JPS63186540A (ja) * 1987-01-27 1988-08-02 Toshiba Corp 回転電機
TW297798B (ja) 1989-03-15 1997-02-11 Sumitomo Electric Industries
US6951985B1 (en) * 1995-05-08 2005-10-04 Lemelson Jerome H Superconducting electrical cable
JP2004229460A (ja) * 2003-01-27 2004-08-12 Mitsubishi Electric Corp 回転電機の固定子
US7470863B2 (en) * 2006-01-24 2008-12-30 International Business Machines Corporation Microelectronic device with mixed dielectric
WO2008132978A1 (ja) * 2007-04-12 2008-11-06 Sumitomo Electric Industries, Ltd. 絶縁電線、電機コイル及びモータ
CN101291086B (zh) * 2007-04-18 2011-09-28 上海磁浮交通工程技术研究中心 直线电机定子绕组电缆的防晕方法
JP2009245652A (ja) * 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The 絶縁電線
JP5227077B2 (ja) * 2008-05-16 2013-07-03 株式会社日本自動車部品総合研究所 3相回転電機
JP5227104B2 (ja) * 2008-07-25 2013-07-03 トヨタ自動車株式会社 相間絶縁部材
JP5581722B2 (ja) * 2010-02-12 2014-09-03 日立金属株式会社 発泡絶縁電線の製造方法
JP5972375B2 (ja) * 2013-02-07 2016-08-17 古河電気工業株式会社 絶縁電線及びモータ
TWI601535B (zh) * 2016-06-23 2017-10-11 台灣利得生物科技股份有限公司 牛樟段木栽培牛樟芝子實體及固態培養菌絲體水及乙醇萃取物之組合物應用於抗癌藥輔助劑

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4177295B2 (ja) 2003-12-17 2008-11-05 古河電気工業株式会社 耐インバータサージ絶縁ワイヤおよびその製造方法
JP2008236924A (ja) 2007-03-22 2008-10-02 Hitachi Ltd 回転電機及び電気自動車
WO2011118717A1 (ja) 2010-03-25 2011-09-29 古河電気工業株式会社 発泡電線及びその製造方法
JP2011238384A (ja) 2010-05-06 2011-11-24 Furukawa Electric Co Ltd:The 絶縁電線、電気機器及び絶縁電線の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3098818A4 *

Also Published As

Publication number Publication date
JP5931097B2 (ja) 2016-06-08
CN106062890B (zh) 2020-04-14
US10601277B2 (en) 2020-03-24
JP2015138678A (ja) 2015-07-30
KR20160111414A (ko) 2016-09-26
CN106062890A (zh) 2016-10-26
US20160329770A1 (en) 2016-11-10
EP3098818A1 (en) 2016-11-30
EP3098818A4 (en) 2017-12-06
TW201546834A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
JP6614758B2 (ja) 絶縁電線、絶縁電線の製造方法、回転電機用ステータの製造方法および回転電機
WO2015111453A1 (ja) 絶縁電線およびその製造方法、ならびに回転電機およびその製造方法
US9728296B2 (en) Insulated wire, electrical equipment, and method of producing insulated wire
EP3089167B1 (en) Insulating wire and method for manufacturing insulating wire
US10566109B2 (en) Insulated wire, coil and electrical or electronic equipment
EP3093855B1 (en) Insulated electric wire, coil and electric/electronic device, and cracking prevention method for insulated electric wire
EP2955725A1 (en) Insulated electric wire and motor
EP3093854A1 (en) Flat insulated wire and electric generator coil
CN107077922B (zh) 绝缘电线和旋转电机
EP3239989B1 (en) Insulated electric wire and coil
EP3780015A1 (en) Insulated electric wire
WO2018186259A1 (ja) 絶縁電線
CN114051644B (zh) 绝缘电线、线圈和电气/电子设备
JP2023538532A (ja) 熱可塑性絶縁体を有するマグネットワイヤ
JP2021157956A (ja) 絶縁電線、コイル、及び電気・電子機器
JPWO2019138971A1 (ja) 絶縁電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015740870

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015740870

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167022006

Country of ref document: KR

Kind code of ref document: A