WO2015111333A1 - 排気管 - Google Patents

排気管 Download PDF

Info

Publication number
WO2015111333A1
WO2015111333A1 PCT/JP2014/083399 JP2014083399W WO2015111333A1 WO 2015111333 A1 WO2015111333 A1 WO 2015111333A1 JP 2014083399 W JP2014083399 W JP 2014083399W WO 2015111333 A1 WO2015111333 A1 WO 2015111333A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
exhaust pipe
exhaust
tube
heat insulating
Prior art date
Application number
PCT/JP2014/083399
Other languages
English (en)
French (fr)
Inventor
好伸 永田
Original Assignee
フタバ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フタバ産業株式会社 filed Critical フタバ産業株式会社
Publication of WO2015111333A1 publication Critical patent/WO2015111333A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • F01N13/141Double-walled exhaust pipes or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/02Branch units, e.g. made in one piece, welded, riveted
    • F16L41/023Y- pieces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/07Arrangements using an air layer or vacuum the air layer being enclosed by one or more layers of insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/143Pre-insulated pipes

Definitions

  • the present invention relates to an exhaust pipe having a double pipe structure.
  • Patent Document 1 discloses an exhaust pipe in which a double pipe is formed by an outer pipe and an inner pipe inserted into the outer pipe.
  • the thickness of the inner pipe is designed to be as thin as possible in order to reduce the heat capacity of the inner pipe forming the exhaust passage.
  • One end of the inner tube is fixed to the outer tube by welding, and the other end is supported by a support member made of wire mesh.
  • the heat capacity of the inner pipe is small, and the air layer formed between the inner pipe and the outer pipe has a heat insulating effect, so the temperature of the exhaust gas tends to rise.
  • the heat insulating layer is provided along the outer surface of the pipe forming the exhaust passage, the heat retention performance of the exhaust gas in a steady state is inferior.
  • the warm-up performance in the initial state is lowered by the amount of heat capacity increased by the heat insulating layer.
  • One aspect of the present invention is an exhaust pipe having a double-pipe structure, and includes an outer pipe, an inner pipe, and a heat insulating layer.
  • the inner pipe is thinner than the outer pipe, and forms an exhaust passage inside the outer pipe.
  • the heat insulating layer is provided along the inner surface of the outer tube so as to leave an air layer between the inner tube and the inner tube.
  • the inner tube is thin and an air layer is formed outside the inner tube (between the inner tube and the heat insulating layer), along the outer surface of the tube forming the exhaust passage.
  • the influence of the heat capacity by the heat insulating layer is small, and the warm-up performance in the initial state is good.
  • the heat insulation layer is provided in the outer side (inner side of an outer tube
  • an interposition member provided in a state of being sandwiched between the inner surface of the outer tube and the outer surface of the inner tube may be further provided, and the inner tube may be fixed to the inside of the outer tube by the interposition member. According to such a configuration, heat transfer from the inner tube to the outer tube can be suppressed as compared with a configuration in which the outer tube and the inner tube are in contact with each other.
  • the interposed member may partition the exhaust flow path and the air layer. According to such a structure, the heat insulation performance by an air layer can be improved by suppressing the penetration
  • a first interposed member that restricts movement of the inner tube in a direction other than a direction parallel to the first axial direction, and a direction parallel to the second axial direction that is not parallel to the first axial direction.
  • a second interposed member that restricts the movement of the inner tube in the removing direction.
  • FIG. 2A is a cross-sectional view of the exhaust pipe of the first comparative example
  • FIG. 2B is a cross-sectional view of the exhaust pipe of the second comparative example
  • FIG. 2C is a cross-sectional view of the exhaust pipe of the third comparative example.
  • FIG. 3A is a graph showing the change with time of the temperature drop of the exhaust gas in the initial state
  • FIG. 3B is a graph showing the change with time of the temperature of the exhaust gas in the steady state.
  • An exhaust pipe 1 having a double-pipe structure shown in FIG. 1 forms a part of an exhaust passage for guiding exhaust gas discharged from an automobile internal combustion engine and flowing in the direction indicated by arrow F1 to the outside of the automobile.
  • the part of the exhaust passage here is, for example, an exhaust passage upstream of a catalyst (not shown) provided for purifying exhaust gas.
  • the exhaust pipe 1 is formed with a sub flow path that guides the liquid reducing agent injected in the direction indicated by the arrow F2 by an unillustrated injection device to the main flow path.
  • the reducing agent here is for reducing and purifying nitrogen oxides contained in the exhaust gas in a catalyst (for example, SCR type catalyst), for example, urea water is used.
  • the exhaust pipe 1 includes an outer pipe 11, an inner pipe 12, a heat insulating layer 13, and interposed members 14, 15, and 16.
  • the outer tube 11 is a tubular member that forms the outside of the double tube.
  • the outer tube 11 of the present embodiment is a metal circular tube member having a curved shape, and includes a main body portion 111 that forms a main flow path and a branch portion 112 that forms a sub flow path.
  • the outer pipe 11 is designed to have a thickness for ensuring the strength required for the exhaust pipe 1.
  • the inner tube 12 is a tubular member that forms the inside of the double tube.
  • the inner tube 12 of this embodiment is a metal circular tube member that is slightly smaller than the outer tube 11 and has a curved shape similar to the outer tube 11.
  • the inner tube 12 is provided inside the outer tube 11 so that the central axis thereof coincides with the central axis of the outer tube 11 (so that the cross section is concentric), and an exhaust passage (exhaust gas) is formed inside the outer tube 11.
  • a flow path in contact with the liquid crystal Specifically, the central axis C1 of the upstream circular pipe part in each of the outer pipe 11 and the inner pipe 12 is common, and the central axis C2 of the downstream circular pipe part in each of the outer pipe 11 and the inner pipe 12 is also common. It is.
  • the inner tube 12 has a through-hole 121 at a portion facing the branch portion 112 of the outer tube 11 (portion where the sub flow channel joins the main flow channel).
  • the inner pipe 12 is not a member that directly contributes to the strength of the exhaust pipe 1 and is designed to be thinner than the outer pipe 11.
  • the heat insulating layer 13 is formed of a material having a heat insulating property (a material having a thermal conductivity lower than that of at least the outer tube 11).
  • the heat insulating layer 13 is formed using an alumina mat that is a heat insulating material obtained by molding alumina fibers into a mat shape.
  • the heat insulating layer 13 is provided along the inner surface of the outer tube 11 so as to leave an air layer (gap) between the inner tube 12.
  • the interposition members 14, 15, and 16 function as a spacer that forms a space between the outer tube 11 and the inner tube 12, and are sandwiched between the inner surface of the outer tube 11 and the outer surface of the inner tube 12. Provided in a state. Specifically, in this embodiment, since the heat insulating layer 13 is also provided outside the interposed members 14, 15, 16, the interposed members 14, 15, 16 are sandwiched between the heat insulating layer 13 and the inner tube 12. It will be in the state.
  • the interposing members 14 and 15 are cylindrical members (in this embodiment, a linear belt-like and mat-like member is rounded into a cylindrical shape along the outer surface of the inner tube 12).
  • the interposed members 14 and 15 are provided at both ends of the inner tube 12, and divide an exhaust passage formed inside the inner tube 12 and an air layer formed outside the inner tube 12.
  • the interposition member 16 is an annular member (in the present embodiment, an annular belt-like and mat-like member), is provided so as to surround the through-hole 121, and has an exhaust passage formed inside the inner tube 12, And an air layer formed outside the tube 12.
  • the inner tube 12 is not in contact with the outer tube 11 and is fixed inside the outer tube 11 by intervening members 14, 15, 16 (mainly intervening members 14, 15).
  • the upstream interposed member 14 restricts the movement of the inner tube 12 in a direction other than a direction parallel to the central axis C1 (first axial direction) of the upstream circular tube portion.
  • the intermediate member 15 on the downstream side is the inner pipe 12 in a direction excluding a direction parallel to the central axis C2 (second axial direction) of the downstream circular pipe portion that is not parallel to the central axis C1 of the upstream circular pipe portion.
  • the interposed members 14, 15, and 16 are preferably formed of a material having elasticity and heat insulation. In the present embodiment, the same material (alumina mat) as that of the heat insulation layer 13 is used.
  • the thickness of the inner pipe 12 that forms the exhaust passage is designed to be thinner than the thickness of the outer pipe 11, and the outside of the inner pipe 12 (the inner pipe 12 and the heat insulating layer 13 An air layer is formed between the two). For this reason, the exhaust pipe 1 is less affected by the heat capacity of the heat insulating layer 13 than the configuration in which the heat insulating layer is provided along the outer surface of the pipe forming the exhaust flow path, and has a warm-up performance in the initial state. It becomes good.
  • a heat insulating layer 13 is provided outside the air layer (inside the outer pipe 11).
  • the exhaust pipe 1 becomes favorable in the heat retention performance in a steady state. Therefore, according to the exhaust pipe 1, it is possible to improve both the warm-up performance in the initial state and the heat retention performance in the steady state.
  • the exhaust pipe 21 of the first comparative example shown in FIG. 2A is different from the exhaust pipe 1 of the above embodiment in that the inner pipe 12, the heat insulating layer 13, and the interposition members 14, 15, 16 are not provided. That is, the exhaust pipe 21 of the first comparative example is different from the exhaust pipe 1 of the above embodiment in that it is not a double pipe structure and is not a heat insulating structure.
  • the exhaust pipe 22 of the second comparative example shown in FIG. 2B does not include the inner pipe 12, the heat insulating layer 13, and the interposition members 14, 15, 16. Is different in that a heat insulating layer 221 is provided on the outer side. That is, the exhaust pipe 22 of the second comparative example is different from the exhaust pipe 1 of the above-described embodiment in that it has a heat insulating structure with a heat insulating layer 221 instead of a double pipe structure.
  • the exhaust pipe 23 of the third comparative example shown in FIG. 2C is different from the exhaust pipe 1 of the above embodiment in that the heat insulating layer 13 is not provided. That is, the exhaust pipe 23 of the third comparative example has a double pipe structure, but is different from the exhaust pipe 1 of the above embodiment in that the heat insulating layer 13 is not provided. 2C is the same as the interposed members 14, 15, and 16 of the above-described embodiment, and is different in that the thickness is large because the heat insulating layer 13 does not exist.
  • the exhaust gas temperature drop in the initial state is the largest in the exhaust pipe 22 of the second comparative example (the heat of the exhaust gas is most easily deprived), and the exhaust pipe 23 of the third comparative example is the most. Small (the heat of exhaust gas is most difficult to be taken away).
  • the exhaust pipe 1 of the present embodiment exhibits performance that is substantially similar to the exhaust pipe 23 of the third comparative example, and greatly increases the warm-up performance in the initial state as compared with the exhaust pipe 22 of the second comparative example. Can do.
  • the exhaust gas temperature in the steady state is the lowest in the exhaust pipe 21 of the first comparative example (the heat of the exhaust gas is most easily deprived), and the exhaust pipe 22 of the second comparative example is the most. Does not drop (heat of exhaust gas is most difficult to be taken away).
  • the exhaust pipe 1 of the present embodiment exhibits performance that is almost similar to the exhaust pipe 22 of the second comparative example, and can significantly increase the heat retention performance in the steady state as compared with the exhaust pipe 23 of the third comparative example. it can.
  • the inner tube 12 is fixed to the inner side of the outer tube 11 by interposition members 14 and 15. Therefore, according to the exhaust pipe 1, heat transfer from the inner pipe 12 to the outer pipe 11 can be suppressed as compared with a configuration in which the outer pipe 11 and the inner pipe 12 are in contact with each other.
  • the interposing members 14, 15, and 16 partition the exhaust passage and the air layer. Therefore, according to the exhaust pipe 1, the heat insulation performance by the air layer can be enhanced by suppressing the intrusion of the exhaust gas into the air layer.
  • the interposed member 14 restricts the movement of the inner tube 12 in a direction other than the direction parallel to the first axial direction. Further, the interposition member 15 restricts the movement of the inner tube 12 in a direction other than the direction parallel to the second axial direction. Therefore, according to the exhaust pipe 1, it is possible to make it difficult for the inner pipe 12 to be displaced with respect to the outer pipe 11, as compared with a case where the inner pipe 12 is a simple straight pipe, for example.
  • the heat insulating layer 13 is also provided outside the interposed members 14, 15, 16, and the interposed members 14, 15, 16 are sandwiched between the heat insulating layer 13 and the inner tube 12 (
  • the intervening members 14, 15, and 16 are illustrated as being sandwiched between the inner surface of the outer tube 11 and the outer surface of the inner tube 12 via the heat insulating layer 13, but are not limited thereto.
  • the heat insulating layer 33 is not provided outside the interposed members 34, 35, 36, and the interposed members 34, 35, 36 are directly formed by the outer tube 11 and the inner tube 12. It may be a sandwiched configuration.
  • the outer tube and the inner tube forming the double tube may have a shape other than the circular tube. Further, the outer tube and the inner tube may have a shape that is not curved.
  • the heat insulating layer may be formed using a heat insulating material (for example, glass wool) other than alumina mat. The heat insulating layer may be provided on at least a part of the inner surface of the outer tube.
  • the number, shape, material, and the like of the interposed members are not particularly limited.
  • the material of the interposed member may be other than the heat insulating material.
  • the exhaust pipe may be configured not to include an interposed member.
  • the installation location of the exhaust pipe is not particularly limited.
  • the exhaust pipe may be configured without a reducing agent flow path.
  • the installation location of the exhaust pipe may be other than the upstream side of the catalyst.
  • the exhaust pipe may be used other than an automobile.
  • the present invention can be realized in various forms such as the exhaust pipe manufacturing method in addition to the exhaust pipe described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust Silencers (AREA)
  • Thermal Insulation (AREA)

Abstract

二重管構造の排気管であって、外管と、前記外管よりも肉厚が薄く、前記外管の内側において排気流路を形成する内管と、前記内管との間に空気層を残す形で前記外管の内面に沿って設けられた断熱層と、を備える。

Description

排気管 関連出願の相互参照
 本国際出願は、2014年1月22日に日本国特許庁に出願された日本国特許出願第2014-009462号に基づく優先権を主張するものであり、日本国特許出願第2014-009462号の全内容を本国際出願に援用する。
 本発明は、二重管構造の排気管に関する。
 内燃機関の排気系において排ガスの温度低下を抑制するための排気管として、二重管構造の排気管が知られている。例えば特許文献1には、外管と、外管に内挿された内管と、により二重管を形成した排気管が開示されている。この排気管では、排気流路を形成する内管の熱容量を小さくするために、内管の肉厚が極力薄く設計されている。内管は、一端が溶接により外管に固定され、他端がワイヤメッシュ製の支持部材により支持されている。
特開2008-63958号公報
 前述した特許文献1に記載の排気管によれば、内管の熱容量が小さく、かつ、内管と外管との間に形成された空気層が断熱効果を奏するため、排ガスの温度が上昇傾向にある初期状態において、排ガスの熱を奪われにくくする(暖機性能を高くする)ことができる。しかしながら、排気流路を形成する管の外面に沿って断熱層が設けられた構成と比較すると、定常状態での排ガスの保温性能が劣る。かといって、このような断熱層が設けられた構成では、断熱層により熱容量が増加する分、初期状態での暖機性能が低くなる。
 本発明の一側面においては、初期状態での暖機性能及び定常状態での保温性能が共に良好な排気管を提供することが望ましい。
 本発明の一側面は、二重管構造の排気管であって、外管と、内管と、断熱層と、を備える。内管は、外管よりも肉厚が薄く、外管の内側において排気流路を形成する。断熱層は、内管との間に空気層を残す形で外管の内面に沿って設けられている。このように、内管の肉厚が薄く、かつ、内管の外側(内管と断熱層との間)に空気層が形成されているため、排気流路を形成する管の外面に沿って断熱層が設けられた構成と比較して、断熱層による熱容量の影響が小さく、初期状態での暖機性能が良好となる。しかも、空気層の外側(外管の内側)に断熱層が設けられているため、断熱層が設けられていない構成と比較して、定常状態での保温性能が良好となる。したがって、このような構成によれば、初期状態での暖機性能及び定常状態での保温性能を共に良好にすることができる。
 上記構成において、外管の内面と内管の外面との間に挟まれた状態で設けられる介在部材を更に備え、内管は、介在部材によって外管の内側に固定されていてもよい。このような構成によれば、外管と内管とが接触している構成と比較して、内管から外管への伝熱を抑えることができる。
 上記構成において、介在部材は、排気流路と空気層とを区画してもよい。このような構成によれば、空気層への排ガスの侵入を抑制することで、空気層による断熱性能を高めることができる。
 上記構成において、第1の軸方向と平行な方向を除く方向への内管の移動を規制する第1の介在部材と、第1の軸方向と平行でない第2の軸方向と平行な方向を除く方向への内管の移動を規制する第2の介在部材と、を備えてもよい。このような構成によれば、例えば内管が単なる直管である場合と比較して、外管に対する内管の位置ずれを生じにくくすることができる。
実施形態の排気管の断面図である。 図2Aは第1比較例の排気管の断面図、図2Bは第2比較例の排気管の断面図、図2Cは第3比較例の排気管の断面図である。 図3Aは初期状態での排ガスの温度低下代の経時変化を示すグラフ、図3Bは定常状態での排ガスの温度の経時変化を示すグラフである。 変形例の排気管の断面図である。
 1…排気管、11…外管、12…内管、13…断熱層、14,15,16…介在部材。
 以下、本発明が適用された実施形態について、図面を用いて説明する。
 [1.構成]
 図1に示す二重管構造の排気管1は、自動車の内燃機関から排出されて矢印F1に示す方向へ流れる排ガスを、自動車の外部へ導くための排気流路の一部を形成する。ここでいう排気流路の一部とは、例えば、排ガスを浄化するために設けられた図示しない触媒よりも上流側の排気流路である。排気管1には、内燃機関からの排ガスが流れる主流路とは別に、図示しない噴射装置により矢印F2に示す方向へ噴射された液状の還元剤を主流路へ導く副流路が形成されている。なお、ここでいう還元剤とは、排ガス中に含まれる窒素酸化物を、触媒(例えばSCR方式の触媒)において還元浄化するためのものであり、例えば尿素水が用いられる。
 排気管1は、外管11と、内管12と、断熱層13と、介在部材14,15,16と、を備える。
 外管11は、二重管の外側を形成する管状部材である。本実施形態の外管11は、湾曲した形状の金属製の円管部材であって、主流路を形成する本体部111と、副流路を形成する枝部112と、を備える。外管11は、排気管1に要求される強度を確保するための肉厚に設計されている。
 内管12は、二重管の内側を形成する管状部材である。本実施形態の内管12は、外管11よりも一回り小さく、外管11と同様に湾曲した形状の金属製の円管部材である。内管12は、その中心軸が外管11の中心軸と一致するように(断面が同心円状となるように)外管11の内側に設けられ、外管11の内側において排気流路(排ガスと接触する流路)を形成する。具体的には、外管11及び内管12のそれぞれにおける上流側円管部の中心軸C1は共通であり、外管11及び内管12のそれぞれにおける下流側円管部の中心軸C2も共通である。また、内管12には、外管11の枝部112を臨む部分(副流路が主流路に合流する部分)に、貫通孔121が形成されている。内管12は、排気管1の強度に直接寄与する部材ではなく、外管11よりも肉厚が薄く設計されている。
 断熱層13は、断熱性を有する材料(少なくとも外管11よりも熱伝導率の低い材料)で形成されている。本実施形態では、アルミナ繊維をマット状に成形した断熱材であるアルミナマットを用いて断熱層13が形成されている。断熱層13は、内管12との間に空気層(隙間)を残す形で外管11の内面に沿って設けられている。
 介在部材14,15,16は、外管11と内管12との間の空間を形成するスペーサとして機能するものであり、外管11の内面と内管12の外面との間に挟まれた状態で設けられる。具体的には、本実施形態では、断熱層13が介在部材14,15,16の外側にも設けられているため、介在部材14,15,16は、断熱層13と内管12とにより挟まれた状態となる。
 介在部材14,15は、円筒状(本実施形態では、直線帯状かつマット状の部材を内管12の外面に沿って円筒状に丸めた形状)の部材である。介在部材14,15は、内管12の両端部に設けられ、内管12の内側に形成された排気流路と、内管12の外側に形成された空気層と、を区画する。
 介在部材16は、環状(本実施形態では、環帯状かつマット状)の部材であり、貫通孔121の周囲を囲むように設けられ、内管12の内側に形成された排気流路と、内管12の外側に形成された空気層と、を区画する。
 内管12は、外管11に接触しておらず、介在部材14,15,16(主として介在部材14,15)によって、外管11の内側に固定されている。具体的には、上流側の介在部材14は、上流側円管部の中心軸C1(第1の軸方向)と平行な方向を除く方向への内管12の移動を規制する。また、下流側の介在部材15は、上流側円管部の中心軸C1と平行でない下流側円管部の中心軸C2(第2の軸方向)と平行な方向を除く方向への内管12の移動を規制する。したがって、外管11と内管12とを溶接等で接合しなくても、介在部材14,15により、外管11に対する内管12の移動が規制される。介在部材14,15,16は、弾性及び断熱性を有する材料で形成されることが好ましく、本実施形態では、断熱層13と同じ材料(アルミナマット)が用いられている。
 [2.効果]
 以上詳述した実施形態によれば、以下の効果が得られる。
 [2A]排気管1では、排気流路を形成する内管12の肉厚が外管11の肉厚よりも薄く設計され、かつ、内管12の外側(内管12と断熱層13との間)に空気層が形成されている。このため、排気管1は、排気流路を形成する管の外面に沿って断熱層が設けられた構成と比較して、断熱層13による熱容量の影響が小さく、初期状態での暖機性能が良好となる。しかも、排気管1では、空気層の外側(外管11の内側)に断熱層13が設けられている。このため、排気管1は、断熱層が設けられていない構成と比較して、定常状態での保温性能が良好となる。したがって、排気管1によれば、初期状態での暖機性能及び定常状態での保温性能を共に良好にすることができる。
 図2Aに示す第1比較例の排気管21は、上記実施形態の排気管1と比較すると、内管12、断熱層13及び介在部材14,15,16を備えていない点で相違する。つまり、第1比較例の排気管21は、二重管構造ではなく、断熱構造でない点で、上記実施形態の排気管1と相違する。
 図2Bに示す第2比較例の排気管22は、上記実施形態の排気管1と比較すると、内管12、断熱層13及び介在部材14,15,16を備えていない代わりに、外管11の外側に断熱層221を備える点で相違する。つまり、第2比較例の排気管22は、二重管構造ではなく、断熱層221による断熱構造とされている点で、上記実施形態の排気管1と相違する。
 図2Cに示す第3比較例の排気管23は、上記実施形態の排気管1と比較すると、断熱層13を備えていない点で相違する。つまり、第3比較例の排気管23は、二重管構造であるが、断熱層13を備えていない点で、上記実施形態の排気管1と相違する。なお、図2Cに示す介在部材231,232,233は、上記実施形態の介在部材14,15,16と同様のものであり、断熱層13が存在しない分、肉厚が厚い点が相違する。
 図3Aに示すように、初期状態での排ガスの温度低下代は、第2比較例の排気管22が最も大きく(排ガスの熱が最も奪われやすく)、第3比較例の排気管23が最も小さい(排ガスの熱が最も奪われにくい)。本実施形態の排気管1は、第3比較例の排気管23にほぼ近い性能を発揮し、第2比較例の排気管22と比較すると、初期状態での暖機性能を大幅に高くすることができる。
 また、図3Bに示すように、定常状態での排ガスの温度は、第1比較例の排気管21が最も下がり(排ガスの熱が最も奪われやすく)、第2比較例の排気管22が最も下がらない(排ガスの熱が最も奪われにくい)。本実施形態の排気管1は、第2比較例の排気管22にほぼ近い性能を発揮し、第3比較例の排気管23と比較すると、定常状態での保温性能を大幅に高くすることができる。
 [2B]内管12は、介在部材14,15によって外管11の内側に固定されている。したがって、排気管1によれば、外管11と内管12とが接触している構成と比較して、内管12から外管11への伝熱を抑えることができる。
 [2C]介在部材14,15,16は、排気流路と空気層とを区画する。したがって、排気管1によれば、空気層への排ガスの侵入を抑制することで、空気層による断熱性能を高めることができる。
 [2D]介在部材14は、第1の軸方向と平行な方向を除く方向への内管12の移動を規制する。また、介在部材15は、第2の軸方向と平行な方向を除く方向への内管12の移動を規制する。したがって、排気管1によれば、例えば内管12が単なる直管である場合と比較して、外管11に対する内管12の位置ずれを生じにくくすることができる。
 [3.他の実施形態]
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されることなく、種々の形態を採り得ることは言うまでもない。
 [3A]上記実施形態では、断熱層13が介在部材14,15,16の外側にも設けられ、介在部材14,15,16が断熱層13と内管12との間に挟まれた構成(介在部材14,15,16が断熱層13を介して外管11の内面と内管12の外面との間に挟まれた構成)を例示したが、これに限定されるものではない。例えば図4に示す排気管3のように、断熱層33が介在部材34,35,36の外側に設けられておらず、介在部材34,35,36が外管11と内管12とにより直接挟まれた構成であってもよい。
 [3B]二重管を形成する外管及び内管は、円管以外の形状であってもよい。また、外管及び内管は、湾曲していない形状であってもよい。
 [3C]断熱層は、アルミナマット以外の断熱材(例えばグラスウール等)を用いて形成されていてもよい。また、断熱層は、外管の内面における少なくとも一部に設けられていてもよい。
 [3D]介在部材の数、形状、材質等は特に限定されない。例えば、介在部材の材質は、断熱材以外であってもよい。また、排気管は、介在部材を備えない構成であってもよい。
 [3E]排気管の設置場所は特に限定されない。例えば、排気管は、還元剤の流路を有しない構成であってもよい。また例えば、排気管の設置場所は、触媒の上流側以外であってもよい。また例えば、排気管は、自動車以外に用いられるものであってもよい。
 [3F]上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。また、上記実施形態の構成の一部を、課題を解決できる限りにおいて省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本発明の実施形態である。
 [3G]本発明は、前述した排気管の他、排気管の製造方法など、種々の形態で実現することができる。

Claims (4)

  1.  二重管構造の排気管であって、
     外管と、
     前記外管よりも肉厚が薄く、前記外管の内側において排気流路を形成する内管と、
     前記内管との間に空気層を残す形で前記外管の内面に沿って設けられた断熱層と、
     を備える排気管。
  2.  請求項1に記載の排気管であって、
     前記外管の内面と前記内管の外面との間に挟まれた状態で設けられる介在部材を更に備え、
     前記内管は、前記介在部材によって前記外管の内側に固定されている、排気管。
  3.  請求項2に記載の排気管であって、
     前記介在部材は、前記排気流路と前記空気層とを区画する、排気管。
  4.  請求項2又は請求項3に記載の排気管であって、
     第1の軸方向と平行な方向を除く方向への前記内管の移動を規制する第1の前記介在部材と、
     前記第1の軸方向と平行でない第2の軸方向と平行な方向を除く方向への前記内管の移動を規制する第2の前記介在部材と、
     を備える排気管。
PCT/JP2014/083399 2014-01-22 2014-12-17 排気管 WO2015111333A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014009462A JP2015137584A (ja) 2014-01-22 2014-01-22 排気管
JP2014-009462 2014-01-22

Publications (1)

Publication Number Publication Date
WO2015111333A1 true WO2015111333A1 (ja) 2015-07-30

Family

ID=53681151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083399 WO2015111333A1 (ja) 2014-01-22 2014-12-17 排気管

Country Status (2)

Country Link
JP (1) JP2015137584A (ja)
WO (1) WO2015111333A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002288A1 (fr) * 2016-06-30 2018-01-04 Interver Management S.A. Système de calorifugeage

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6442745B2 (ja) * 2015-11-06 2018-12-26 ヤンマー株式会社 トラクタ
JP2022098111A (ja) * 2020-12-21 2022-07-01 株式会社クボタ ディーゼルエンジンの排気処理装置およびディーゼルエンジン

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084481A (ja) * 2002-08-22 2004-03-18 Toyota Motor Corp 排気管
JP2008063958A (ja) * 2006-09-05 2008-03-21 Toyota Motor Corp 車両排気管
JP2011064192A (ja) * 2009-08-21 2011-03-31 Nichias Corp 自動車用排気管

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2979845B2 (ja) * 1992-06-24 1999-11-15 トヨタ自動車株式会社 内燃機関の排気管
JPH08246863A (ja) * 1995-01-13 1996-09-24 Toyota Motor Corp 内燃機関の排気管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084481A (ja) * 2002-08-22 2004-03-18 Toyota Motor Corp 排気管
JP2008063958A (ja) * 2006-09-05 2008-03-21 Toyota Motor Corp 車両排気管
JP2011064192A (ja) * 2009-08-21 2011-03-31 Nichias Corp 自動車用排気管

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002288A1 (fr) * 2016-06-30 2018-01-04 Interver Management S.A. Système de calorifugeage

Also Published As

Publication number Publication date
JP2015137584A (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
EP2685061B1 (en) Exhaust gas purification apparatus of an internal combustion engine
JP4670835B2 (ja) 車載エンジンの排気管
US9060387B2 (en) Electric heating catalyst
WO2015111333A1 (ja) 排気管
CN102844537A (zh) 电加热式催化剂装置
JP2015132256A (ja) 内燃機関の触媒装置
US11047289B2 (en) Support structure for exhaust system part
JP2013185573A (ja) 電気加熱式触媒
US9131535B2 (en) Electric heating catalyst
US20190078477A1 (en) Exhaust gas purifying device of internal combustion engine
EP2614878A1 (en) Electrically heated catalyst
US8763379B2 (en) Electrically heated catalyst
JP2013181413A (ja) 触媒コンバータ装置
KR102265870B1 (ko) 가열 가능한 매체 라인
JP2015098834A (ja) 内燃機関の触媒装置
JP5673683B2 (ja) 電気加熱式触媒
US9670815B2 (en) Catalytic converter
US9371761B2 (en) Electric heating catalyst
JP2018059425A (ja) 二重管構造及び二重管構造の製造方法
JPH0636271Y2 (ja) エンジン用二重排気パイプ
US20180149068A1 (en) Internal combustion engine
JP2021071050A (ja) 排気浄化構造
US9046020B2 (en) Electrically heated catalyst
JP2015140711A (ja) エキゾーストマニホールド
WO2017126125A1 (ja) 排気合流管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879422

Country of ref document: EP

Kind code of ref document: A1