WO2015109779A1 - 基于自馈能式刹车装置的多轮飞机刹车系统及其控制方法 - Google Patents

基于自馈能式刹车装置的多轮飞机刹车系统及其控制方法 Download PDF

Info

Publication number
WO2015109779A1
WO2015109779A1 PCT/CN2014/082137 CN2014082137W WO2015109779A1 WO 2015109779 A1 WO2015109779 A1 WO 2015109779A1 CN 2014082137 W CN2014082137 W CN 2014082137W WO 2015109779 A1 WO2015109779 A1 WO 2015109779A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
brake
aircraft
braking device
wheel
Prior art date
Application number
PCT/CN2014/082137
Other languages
English (en)
French (fr)
Inventor
尚耀星
刘晓超
焦宗夏
黄澄
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to US15/111,129 priority Critical patent/US10093288B2/en
Publication of WO2015109779A1 publication Critical patent/WO2015109779A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1703Braking or traction control means specially adapted for particular types of vehicles for aircrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/42Arrangement or adaptation of brakes
    • B64C25/44Actuating mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D61/00Brakes with means for making the energy absorbed available for use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition

Definitions

  • Multi-wheel aircraft brake system based on self-energy brake device and control method thereof
  • the invention relates to the technical field of an aircraft brake system, and in particular to a multi-wheel aircraft brake system based on a self-feeding brake device and a control method thereof.
  • the aircraft brake system is an important system to ensure the safety of the aircraft. It is mainly used to dissipate the kinetic energy of the aircraft when it is running on the ground, to ensure the braking of the aircraft, to shorten the distance of the aircraft, to prevent excessive wear of the wheel, and to achieve the turning and stopping functions of the aircraft in conjunction with other airborne systems.
  • An important system for the safe take-off and landing of aircraft is an important part of modern aircraft.
  • the invention provides a multi-wheel aircraft braking system based on a self-feeding brake device, comprising: a controller, a self-feeding brake device assembly, a plurality of hydraulic pumps and a plurality of brake actuators;
  • the controller is respectively connected to the self-feeding brake device assembly, and the controller is configured to send a brake command to the self-feeding brake device assembly;
  • Each of the hydraulic pumps is respectively connected to the self-feeding brake device assembly, and one aircraft wheel is correspondingly connected with a hydraulic pump, and the hydraulic pump is used for driving high-pressure oil under the movement of the aircraft wheel connected thereto.
  • Each of the brake actuators is respectively coupled to the self-feeding brake assembly, and an aircraft wheel is coupled to a set of brake actuators for receiving the self-feeding brake assembly
  • the high-pressure oil is delivered and the corresponding aircraft wheels are braked.
  • the present invention also provides a control method for a multi-wheel aircraft brake system based on the self-feeding type brake device described above, including:
  • the high pressure oil is delivered to the self-feeding brake assembly by a plurality of hydraulic pumps driven by the movement of the aircraft wheel connected to the hydraulic pump;
  • the high-pressure oil conveyed by the self-feeding brake device assembly is received by each of the brake actuators, and the correspondingly connected aircraft wheels are braked.
  • the present invention includes the following advantages:
  • the multi-wheel aircraft braking system based on the self-feeding type brake device can convert the kinetic energy of the aircraft wheel on the ground to hydraulic energy through the hydraulic pump, and provide high-pressure oil for the brake actuator to realize the brake. It does not depend on the energy of the aircraft's main engine, which reduces the weight of the aircraft and improves the reliability of the aircraft's braking system.
  • FIG. 1 is a structural block diagram of a multi-wheel aircraft braking system based on a self-feeding type brake device according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a hydraulic actuator of a multi-wheel aircraft brake system according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a multi-wheeled aircraft self-feeding type braking device "4 energizing one tow 4" according to an embodiment of the present invention
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the multi-wheel aircraft braking system based on the self-feeding type braking device in this embodiment may specifically include The controller 10, the plurality of hydraulic pumps 11, the self-feeding brake assembly 12, and the plurality of brake actuators 13 are described by taking one hydraulic pump 11 and two sets of brake actuators 13 as an example. , among them:
  • the controller 10 is coupled to the self-feeding brake assembly 12 for transmitting a brake command to the self-feeding brake assembly 12.
  • Each of the hydraulic pumps 11 is connected to the self-feeding brake assembly 12, and an aircraft wheel 14 is connected to a hydraulic pump 11 for moving in the aircraft wheel 14 connected thereto.
  • the high pressure oil is delivered to the self-feeding brake assembly 12.
  • the hydraulic pump 11 can convert the kinetic energy of the rotation of the aircraft wheel 14 into hydraulic energy supplied to the self-feeding brake device assembly 12.
  • the hydraulic pump 11 can establish the pressure locally through the transmission mechanism, or can establish the pressure locally through the auxiliary motor. This embodiment does not limit this.
  • the method further includes: a transmission mechanism coupled to the hydraulic pump 11 and the aircraft wheel 14, respectively.
  • the hydraulic pump 11 and the self-feeding brake device assembly 12 are connected by a hydraulic pipeline.
  • the transmission mechanism is driven, and the hydraulic pump 11 passes through the transmission mechanism. Pressure is established and the high pressure oil is delivered to the self-feeding brake assembly 12 via a hydraulic line.
  • the method further includes: an auxiliary power connected to the hydraulic pump Machine.
  • the hydraulic pump 11 and the self-feeding brake device assembly 12 are connected by a hydraulic line, the hydraulic pump 11 establishes pressure through the auxiliary motor, and the high-pressure oil is passed through a hydraulic line. It is delivered to the self-feeding brake assembly 12.
  • the auxiliary motor energizes the self-feeding brake assembly 12 when the aircraft is in an abnormal landing brake, or when the kinetic energy of the recovered aircraft wheel is insufficient for use by the self-feeding brake assembly 12. This allows the aircraft to brake smoothly.
  • the self-feeding brake assembly 12 is coupled to the controller 10, the hydraulic pump 11 and the brake actuator 13, respectively; the self-feeding brake assembly 12 is configured to receive at least a portion of the hydraulic pump 11 for delivery
  • the high pressure oil and the brake command sent by the controller 10, and the high pressure oil is delivered to each of the brake actuators 13 according to the brake command.
  • FIG. 2 is a schematic diagram of the structure of the actuator of the multi-wheel aircraft brake system, including the flywheel 14, the brake actuator 13, and the landing gear spindle 15.
  • four aircraft wheels 14 are distributed on the same landing gear, and each aircraft wheel 14 is equipped with a set of brake actuators 13.
  • Each brake actuator 13 is required when braking is required. All need to supply high pressure oil.
  • the brake actuator 13 is connected to the self-feeding brake assembly 12 and the aircraft wheel 14, respectively, and an aircraft wheel 14 corresponds to a set of brake actuators 13, and the brake actuator 13 And receiving high pressure oil delivered by the self-feeding brake device assembly 12 and braking the aircraft wheel 14 . It should be noted that after the brake actuator 13 receives the high-pressure oil delivered by the self-feeding brake device assembly 12, the aircraft wheel 14 can be braked to achieve the braking of the aircraft.
  • the controller 10 is further configured to receive a brake pressure and a wheel speed transmitted by the aircraft wheel 14, generate a brake command according to the brake pressure and the wheel speed, and The brake command is sent to the self-feeding brake assembly 12. It should be noted that the controller 10 can simultaneously send a brake command to each set of self-feeding brake device assembly, and combines the wheel speed of the aircraft wheel 14 with the feedback of the brake pressure to perform a closed loop anti-skid brake.
  • the self-feeding brake assembly 12 includes a brake valve.
  • the self-feeding brake device assembly in the embodiment is further configured to output the high-pressure oil into standard pressure oil by outputting a standard brake pressure through the brake valve, and deliver the standard pressure oil to the The brake actuator 13 is described.
  • a mode of M-powered one-to-n is employed, and M is less than N.
  • Each self-feeding brake device assembly respectively receives high pressure oil delivered by M hydraulic pumps, and each self-feeding brake device assembly respectively delivers the high pressure oil to N brake actuators 13.
  • M power supply one-to-n mode is:
  • M power supply means that the self-feeding brake device assembly can simultaneously The energy is obtained on M wheels;
  • One tow N means that the self-feeding brake device assembly can simultaneously drive N sets of brake actuators 13 to brake.
  • the range of values of M and N is related to the number of aircraft wheels.
  • M is less than N, that is, when N is 4, M can take 1, 1 and 3; when N is 3, M can take 1 or 2; when N is 2, M can take 1.
  • a self-feeding brake device assembly 12 is disposed on each wheel, that is, "1 power supply one drag 1 "mode.
  • the controller 10, the flywheel 4, and the self-feeding brake assembly 12 are provided, that is, each aircraft wheel 14 is equipped with a self-feeding brake assembly 12, each set of self-feeding
  • the energy brake device assembly 12 takes energy from its own corresponding aircraft wheel 14, supplies it to its corresponding brake actuator 13, and the controller 10 simultaneously sends a brake command to each self-feeding brake device assembly 12,
  • the feedback of the wheel speed and brake pressure of the aircraft wheel 14 performs a closed loop anti-skid brake.
  • the "1 Energy One Tow 1" mode is not an optimal solution because the energy obtained from one aircraft wheel 14 is more than enough to supply a set of brake actuators 13, thereby causing waste of excess energy. Therefore, instead of adopting the self-feeding brake device assembly "1 power supply one for one" mode, the aircraft brake system as a whole can be self-feeding the brake device assembly structure configuration, energy management optimization, thereby optimizing the entire aircraft brake The size, weight and reliability of the system.
  • M can take 1, 2, 3, 4
  • N can take 1, 2, 3, 4, and the arrangement can get 16 A self-feeding brake device assembly system configuration scheme. Since the "1 power supply one for one" mode has already caused energy costs, the solution for M > N will cause energy waste, and the M > N solution is not desirable. Excluding 10 solutions, the remaining six solutions are: “1 power supply one drag 2" mode, “1 power supply one drag 3” mode, “1 power supply one drag 4" mode, “2 power supply one drag 3” mode, “2 power supply one drag 4" mode, The "3 energy supply one tow 4" mode, the optimization of these six options needs to be quantitatively calculated for aircraft parameters.
  • the "1 power supply one for 4" mode is the optimal solution, because the four wheels only need to be equipped with a self-feeding brake assembly, compared to "1 power supply one drag 1"
  • the mode greatly reduces the number of self-feeding brake components, reduces the size of the aircraft brake system, reduces the weight of the aircraft, and greatly improves the reliability and safety of the aircraft brake system.
  • the following is an example of the "2 power supply one drag 2" mode.
  • FIG. 4 it is a structural configuration diagram of a multi-wheel self-feeding type braking device "2 energizing one tow 2", including a controller 10, an aircraft wheel 14, a hydraulic pump 11, and a self-feeding brake device assembly 12 .
  • the self-feeding brake device assembly refers to a part of the self-feeding brake device assembly except the transmission mechanism, the hydraulic pump and the auxiliary motor.
  • the solid line indicates the electric signal command line
  • the broken line indicates the hydraulic line.
  • a transmission mechanism, a hydraulic pump and an auxiliary motor are arranged near each aircraft wheel 14. The hydraulic pump establishes pressure locally on the wheel through a transmission mechanism (or an auxiliary motor), and delivers high-pressure oil to the self-feeding energy through the hydraulic line.
  • Brake assembly when braking is required, the self-feeding brake assembly outputs standard brake pressure through the brake valve, and then delivers standard pressure oil to the brake actuator 13 through the hydraulic line to perform anti-skid braking. It can be seen that the brake system shown in FIG.
  • each self-feeding brake assembly can simultaneously obtain energy from two aircraft wheels 14, each set of self-feeding energy.
  • the brake assembly can be used simultaneously with two sets of aircraft brake actuators 13, namely the "2 Energy One Tow 2" mode.
  • FIG. 5 it is a structural configuration diagram of a multi-wheel self-feeding energy brake device "4 power supply one for 4", including a controller 10, an aircraft wheel 14, a hydraulic pump 11, and a self-feeding brake device assembly 12.
  • the self-feeding brake device assembly refers to a portion of the self-feeding brake device other than the transmission mechanism, the hydraulic pump, and the auxiliary motor.
  • the solid line indicates the electric signal command line
  • the broken line indicates the hydraulic line.
  • a transmission mechanism, a hydraulic pump and an auxiliary motor are arranged near each wheel.
  • the hydraulic pump establishes pressure locally in the wheel through the transmission mechanism (or auxiliary motor), and delivers high-pressure oil to the self-feeding brake through the hydraulic line.
  • the device assembly when braking is required, the self-feeding brake device outputs a standard brake pressure through the brake valve, and then delivers the standard pressure oil to the brake actuator 13 through the hydraulic line to perform the anti-skid brake.
  • the whole brake system shown in Fig. 5 is equipped with a self-feeding brake device assembly, which can simultaneously obtain energy from four aircraft wheels 14, which can simultaneously supply four sets of aircraft brakes.
  • the actuator 13 is used, that is, the "4 power supply one for 4" mode.
  • the multi-wheel aircraft braking system based on the self-feeding type brake device provided by the embodiment can convert the kinetic energy of the aircraft wheel to the hydraulic energy when the ground is slid by the hydraulic pump, and provide the high pressure oil for the brake actuator.
  • the brakes which do not depend on the energy of the aircraft's main engine, reduce the weight of the aircraft and improve the reliability of the aircraft's braking system.
  • FIG. 6 is a flowchart of a method for controlling a multi-wheel aircraft braking system based on a self-feeding type brake device according to an embodiment of the present invention.
  • the embodiment may specifically include the following steps: Step 100: Passing multiple hydraulic pumps The high pressure oil is delivered to the self-feeding brake assembly by the movement of the aircraft wheel connected to the hydraulic pump.
  • the step 100 is to deliver high-pressure oil to the self-feeding brake device assembly by a hydraulic pump, which may specifically include: driving a transmission mechanism connected thereto when the aircraft wheel is in motion.
  • the hydraulic pump establishes pressure through a transmission mechanism coupled thereto and delivers high pressure oil to the self-feeding brake assembly through a hydraulic line.
  • the step 100 is to deliver high-pressure oil to the self-feeding brake device assembly by the hydraulic pump, and further comprising: the auxiliary pump connected to the hydraulic pump Pressure is established and the high pressure oil is delivered to the self-feeding brake assembly via a hydraulic line.
  • Step 101 Send a brake command to the self-feeding brake device assembly by the controller.
  • the method before the sending the brake command to the self-feeding brake device component by the controller, the method further includes: the controller adopting a pressure sensor respectively connected to the aircraft wheel And the speed sensor acquires the brake pressure and the wheel speed of the aircraft wheel, and generates a brake command according to the brake pressure and the wheel speed.
  • Step 102 receiving, by the self-feeding brake device assembly, at least a portion of the high pressure oil delivered by the hydraulic pump and a brake command sent by the controller, and delivering the high pressure oil to each according to the brake command.
  • Brake actuator receiving, by the self-feeding brake device assembly, at least a portion of the high pressure oil delivered by the hydraulic pump and a brake command sent by the controller, and delivering the high pressure oil to each according to the brake command.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种基于自馈能式刹车装置的多轮飞机刹车系统及其控制方法。其中,基于自馈能式刹车装置的多轮飞机刹车系统包括:控制器(10)、自馈能式刹车装置组件(12)、多个液压泵(11)和多套刹车作动器(13);控制器(10)与自馈能式刹车装置组件(12)相连,用于发送刹车指令给自馈能式刹车装置组件(12);各液压泵(11)分别与自馈能式刹车装置组件(12)相连,用于在与其连接的飞机机轮(14)运动的带动下将高压油液输送到自馈能式刹车装置组件(12);自馈能式刹车装置组件(12)用于接收至少部分液压泵(11)输送的高压油液和控制器(10)发送的刹车指令,并依据刹车指令将高压油液输送到各刹车作动器(13);各刹车作动器(13)分别与自馈能式刹车装置组件(12)相连。自馈能式刹车装置的多轮飞机刹车系统能够提高多轮飞机刹车系统的可靠性。

Description

基于自»能式刹车装置的多轮飞机刹车系统及其控制方法
本申请要求申请号为 CN201410038142.7、 名称为 "基于自馈能式刹 车装置的多轮飞机刹车系统及其控制方法" 的中国专利申请的优先权。
技术领域
本发明涉及飞机刹车系统的技术领域,特别涉及一种基于自馈能式刹 车装置的多轮飞机刹车系统及其控制方法。
背景技术
飞机刹车系统是保障飞机安全的重要系统。主要用于耗散飞机在地面 滑跑时的动能, 保证飞机制动停止, 缩短飞机滑跑距离, 防止机轮过度磨 损,并且能协同其它机载系统实现飞机的转弯和停驻功能,是保障飞机安 全起飞、 着陆的重要系统, 是现代飞机的一个重要组成部分。
飞机刹车系统是否安全可靠直接关系到飞机整体是否安全可靠,目前 飞机刹车系统大多采用液压刹车系统,但是液压刹车系统需^赖飞机主 机能源, 并且存在泄露、 管路振动、 液压管路重量等问题。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些 方面的基本理解。 应当理解, 这个概述并不是关于本发明的穷举性概述。 它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范 围。其目的仅仅是以简化的形式给出某些概念, 以此作为稍后论述的更详 细描述的前序。 本发明提供一种基于自馈能式刹车装置的多轮飞机刹车系统及其控 制方法, 以提高多轮飞机刹车系统的可靠性。
本发明提供了一种基于自馈能式刹车装置的多轮飞机刹车系统, 包 括: 控制器、 自馈能式刹车装置组件、 多个液压泵和多套刹车作动器; 所述控制器分别与所述自馈能式刹车装置组件相连,所述控制器用于 发送刹车指令给所述自馈能式刹车装置组件;
各所述液压泵分别与所述自馈能式刹车装置组件相连,且一个飞机机 轮对应连接一个液压泵,所述液压泵用于在与其连接的飞机机轮运动的带 动下将高压油液输送到所述自馈能式刹车装置组件; 所述自馈能式刹车装置组件分别与所述控制器、液压泵和刹车作动器 相连;所述自馈能式刹车装置组件用于接收至少部分所述液压泵输送的高 压油液和所述控制器发送的刹车指令,并依据所述刹车指令将所述高压油 液输送到各所述刹车作动器;
各所述刹车作动器分别与所述自馈能式刹车装置组件,且一个飞机机 轮对应连接一套刹车作动器,所述刹车作动器用于接收所述自馈能式刹车 装置组件输送的高压油液, 并对相应连接的飞机机轮进行刹车处理。
本发明还提供了一种基于上述自馈能式刹车装置的多轮飞机刹车系 统的控制方法, 包括:
通过多个液压泵在与所述液压泵连接的飞机机轮运动的带动下将高 压油液输送到自馈能式刹车装置组件;
通过控制器发送刹车指令给自馈能式刹车装置组件;
通过所述自馈能式刹车装置组件接收至少部分所述液压泵输送的高 压油液和所述控制器发送的刹车指令,并依据所述刹车指令将所述高压油 液输送到各刹车作动器;
通过各所述刹车作动器接收所述自馈能式刹车装置组件输送的高压 油液, 并对相应连接的飞机机轮进行刹车处理。
与现有技术相比, 本发明包括以下优点:
本发明提供的基于自馈能式刹车装置的多轮飞机刹车系统,可以通过 液压泵将飞机机轮在地面滑跑时的动能转换成液压能,为刹车作动器提供 高压油液, 实现刹车, 不依赖于飞机主机的能源, 减轻了飞机重量, 提高 了飞机刹车系统的可靠性。
附图说明 本发明可以通过参考下文中结合附图所给出的描述而得到更好的理 解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似 的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本 说明书的一部分,而且用来进一步举例说明本发明的优选实施例和解释本 发明的原理和优点。 在附图中:
图 1 为本发明实施例提供的一种基于自馈能式刹车装置的多轮飞机 刹车系统的结构框图;
图 2 为本发明实施例提供的多轮飞机刹车系统液压作动器结构布局 示意图;
图 3为本发明实施例提供的多轮飞机自馈能式刹车装置 "1供能一拖 1" 结构配置示意图;
图 4为本发明实施例提供的多轮飞机自馈能式刹车装置 "2供能一拖 2" 结构配置示意图;
图 5为本发明实施例提供的多轮飞机自馈能式刹车装置 "4供能一拖 4" 结构配置示意图;
图 6 为本发明实施例提供的一种基于自馈能式刹车装置的多轮飞机 刹车系统的控制方法的流程图。
本领域技术人员应当理解,附图中的元件仅仅是为了简单和清楚起见 而示出的, 而且不一定是按比例绘制的。 例如, 附图中某些元件的尺寸可 能相对于其他元件放大了, 以便有助于提高对本发明实施例的理解。
具体实施方式
在下文中将结合附图对本发明的示范性实施例进行详细描述。为了清 楚和简明起见, 在说明书中并未描述实际实施方式的所有特征。 然而, 应 该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方 式的决定, 以便实现开发人员的具体目标, 例如, 符合与系统及业务相关 的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改 变。 此外, 还应该了解, 虽然开发工作有可能是非常复杂和费时的, 但对 得益于 开内容的本领域技术人员来说,这种开发工作仅仅是例行的任 务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本发 明,在附图和说明中仅仅描述了与根据本发明的方案密切相关的装置结构 和 /或处理步骤, 而省略了对与本发明关系不大的、 本领域普通技术人员 已知的部件和处理的表示和描述。
为使本发明实施例的目的、技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描 述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。 在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或 更多个其它附图或实施方式中示出的元素和特征相结合。应当注意, 为了 清楚的目的, 附图和说明中省略了与本发明无关的、本领域普通技术人员 已知的部件和处理的表示和描述。基于本发明中的实施例,本领域普通技 本发明保护的范围。 ' 一 ' " ' '
实施例一:
参照图 1,是本发明实施例提供的一种基于自馈能式刹车装置的多轮 飞机刹车系统的结构框图,本实施例中基于自馈能式刹车装置的多轮飞机 刹车系统具体可以包括: 控制器 10、 多个液压泵 11、 自馈能式刹车装置 组件 12和多套刹车作动器 13, 本实施例以包括 1个液压泵 11和 2套刹 车作动器 13为例进行说明, 其中:
所述控制器 10与所述自馈能式刹车装置组件 12相连, 所述控制器 10用于发送刹车指令给所述自馈能式刹车装置组件 12。
各所述液压泵 11分别与所述自馈能式刹车装置组件 12相连,且一个 飞机机轮 14对应连接一个液压泵 11, 所述液压泵 11用于在与其连接的 飞机机轮 14运动的带动下将高压油液输送到所述自馈能式刹车装置组件 12。 需要说明的是, 液压泵 11可以将飞机机轮 14转动的动能转换为液压 能供给自馈能式刹车装置组件 12。 液压泵 11可以通过传动机构在本地建 立压力, 也可以通过辅助电机在本地建立压力, 本实施例对此不做限制。
在本发明的一种优选实施例中, 还包括: 分别与所述液压泵 11和飞 机机轮 14相连的传动机构。本实施例中所述液压泵 11与所述自馈能式刹 车装置组件 12通过液压管路相连,所述飞机机轮 14运动时带动所述传动 机构, 所述液压泵 11通过所述传动机构建立压力, 并通过液压管路将所 述高压油液输送到所述自馈能式刹车装置组件 12。
在本发明的一种优选实施例中,还包括: 与所述液压泵相连的辅助电 机。本实施例中所述液压泵 11与所述自馈能式刹车装置组件 12通过液压 管路相连, 所述液压泵 11通过所述辅助电机建立压力, 并通过液压管路 将所述高压油液输送到所述自馈能式刹车装置组件 12。 需要说明的是, 辅助电机在飞机处于异常着陆刹车时,或者回收的飞机机轮的动能不足以 供自馈能式刹车装置组件 12使用时,对自馈能式刹车装置组件 12进行能 量补充, 使得飞机可以顺利刹车。
所述自馈能式刹车装置组件 12分别与所述控制器 10、 液压泵 11和 刹车作动器 13相连;所述自馈能式刹车装置组件 12用于接收至少部分所 述液压泵 11输送的高压油液和所述控制器 10发送的刹车指令,并依据所 述刹车指令将所述高压油液输送到各所述刹车作动器 13。 需要说明的是, 图 2是多轮飞机刹车系统 作动器结构布局示意图, 包括飞 轮 14、 刹车作动器 13、 起落架主轴 15。 对于四轮起落架飞机, 即同一个起落架 上分布有四个飞机机轮 14, 每个飞机机轮 14都配备一套刹车作动器 13, 需要刹车时, 每一套刹车作动器 13都需要供给高压油液。
所述刹车作动器 13分别与所述自馈能式刹车装置组件 12和所述飞机 机轮 14相连, 且一个飞机机轮 14对应一套刹车作动器 13, 所述刹车作 动器 13用于接收所述自馈能式刹车装置组件 12输送的高压油液,并对所 述飞机机轮 14进行刹车处理。需要说明的是,刹车作动器 13接收到所述 自馈能式刹车装置组件 12输送的高压油液之后, 就可以对飞机机轮 14 进行刹车, 实现飞机的刹车。 在本发明的一种优选实施例中, 所述控制器 10还用于接收所述飞机 机轮 14发送的刹车压力和机轮转速, 依据所述刹车压力和机轮转速生成 刹车指令, 并将所述刹车指令发送至所述自馈能式刹车装置组件 12。 需 要说明的是, 控制器 10可以同时发送刹车指令到每一套自馈能式刹车装 置组件, 结合飞机机轮 14的机轮转速和刹车压力的反馈进行闭环防滑刹 车。
在本发明的一种优选实施例中, 所述自馈能式刹车装置组件 12包括 刹车阀。本实施例中所述自馈能式刹车装置组件还用于通过所述刹车阀输 出标准刹车压力,将所述高压油液转化为标准压力油液,并将所述标准压 力油液输送到所述刹车作动器 13。
在本发明的一种优选实施例中,采用 M供能一拖 N的模式,且 M小 于 N。每个自馈能式刹车装置组件分别接收 M个液压泵输送的高压油液, 每个自馈能式刹车装置组件分别将所述高压油液输送到 N个刹车作动器 13。 需要说明的是, "M供能一拖 N" 模式的意义是: 对于一套自馈能式 刹车装置组件来说, "M供能" 是指这套自馈能式刹车装置组件可以同时 从 M个机轮上获取能量; "一拖 N"是指这套自馈能式刹车装置组件可以 同时带动 N套刹车作动器 13进行刹车。 需要说明的是, M和 N的取值 范围与飞机机轮的数量有关,例如: 对于包含四个飞机机轮的四轮飞机来 说, 因为 M > N的方案会造成能量浪费, 所以需要满足 M小于 N, 即当 N取 4的时候, M可取 1、 1、 3; 当 N取 3的时候, M可取 1或 2; 当 N 取 2的时候, M可取 1。
如图 3所示, 对于同一个起落架上的多个飞机机轮 14, 首先容易想 到的就是每个机轮上配置一套自馈能式刹车装置组件 12, 即 "1供能一拖 1"模式。 图 3中, 包括控制器 10、 飞积 4几轮 14、 自馈能式刹车装置组件 12, 即每一个飞机机轮 14都配备一套自馈能式刹车装置组件 12, 每一套 自馈能式刹车装置组件 12从自己对应的飞机机轮 14上获取能量,供给自 己对应的刹车作动器 13使用,控制器 10同时发送刹车指令到每一套自馈 能式刹车装置组件 12, 结合飞机机轮 14的机轮转速和刹车压力的反馈进 行闭环防滑刹车。
但是 "1供能一拖 1" 模式并不是最优化方案, 因为从一个飞机机轮 14获取的能量供给一套刹车作动器 13使用綽綽有余, 从而造成获取的多 余能量浪费。 于是, 可以不采用自馈能式刹车装置组件 "1供能一拖 1" 模式, 而是对飞机刹车系统整体进行自馈能式刹车装置组件结构配置,进 行能量管理优化, 从而优化整个飞机刹车系统的体积、 重量和可靠性。
需要说明的是, 对于四轮起落架飞机, 理论上, "M供能一拖 N" 模 式中 M可取 1、 2、 3、 4, N可取 1、 2、 3、 4, 排列组合可以得到 16种 自馈能式刹车装置组件系统结构配置方案。 既然 "1供能一拖 1" 模式已 经造成能源量费,那么对于 M > N的方案都会造成能量浪费, M > N的方 案都不可取, 排除 10种方案, 剩下的六种方案为: "1供能一拖 2"模式、 "1供能一拖 3" 模式、 "1供能一拖 4" 模式、 "2供能一拖 3" 模式、 "2 供能一拖 4"模式、 "3供能一拖 4"模式, 这六种方案的优化取舍需要针 对飞机参数进行定量计算。
当然, 如果能量许可, "1供能一拖 4"模式是最优的方案, 因为四个 机轮只需要配备一套自馈能式刹车装置组件, 相比于 "1供能一拖 1" 模 式大大减少自馈能式刹车装置组件数量、减小飞机刹车系统体积、减轻飞 机重量, 大大提高飞机刹车系统可靠性和安全性。 下面以 "2供能一拖 2" 模式为例进行说明。 如图 4所示, 为多轮飞 机自馈能式刹车装置 "2供能一拖 2" 结构配置示意图, 包括控制器 10、 飞机机轮 14、 液压泵 11、 自馈能式刹车装置组件 12。 需要说明的是, 自 馈能式刹车装置组件是指自馈能式刹车装置组件除传动机构、液压泵和辅 助电机以外的部分。图 4中,实线表示电信号指令线,虚线表示液压管路。 在每个飞机机轮 14附近配置一套传动机构、 液压泵和辅助电机, 液压泵 通过传动机构(或者辅助电机)在机轮本地建立压力, 通过液压管路将高 压油液输送到自馈能式刹车装置组件, 需要刹车时, 自馈能式刹车装置组 件通过刹车阀输出标准刹车压力,再通过液压管路将标准压力油液输送到 刹车作动器 13, 进行防滑刹车。 可以看出, 图 4所示的刹车系统中配备 两套自馈能式刹车装置组件,每套自馈能式刹车装置组件可以同时从两个 飞机机轮 14获取能量, 每套自馈能式刹车装置组件可以同时供给两套飞 机刹车作动器 13使用, 即 "2供能一拖 2" 模式。
下面以 "4供能一拖 4"模式为例进行说明。 如图 5所示, 为多轮飞 机自馈能式刹车装置 "4供能一拖 4" 结构配置示意图, 包括控制器 10、 飞机机轮 14、 液压泵 11、 自馈能式刹车装置组件 12。 需要说明的是, 自 馈能式刹车装置组件是指自馈能式刹车装置除传动机构、液压泵和辅助电 机以外的部分。 图 5中, 实线表示电信号指令线, 虚线表示液压管路。 在 每个机轮附近配置一套传动机构、液压泵和辅助电机, 液压泵通过传动机 构(或者辅助电机)在机轮本地建立压力, 通过液压管路将高压油液输送 到自馈能式刹车装置组件, 需要刹车时, 自馈能式刹车装置通过刹车阀输 出标准刹车压力, 再通过液压管路将标准压力油液输送到刹车作动器 13, 进行防滑刹车。可以看出, 图 5所示的整刹车系统中配备一套自馈能式刹 车装置组件, 该套装置可以同时从四个飞机机轮 14获取能量, 该套装置 可以同时供给四套飞机刹车作动器 13使用, 即 "4供能一拖 4" 模式。
其他模式工作方式类似,本实施例在此不作赞述。对于不同参数的飞 机, "M供能一拖 N" 模式的最优方案也不一样, 需要针对飞机具体参数 进行定量计算才能得到最优配置模式。
本实施例提供的基于自馈能式刹车装置的多轮飞机刹车系统,可以通 过液压泵将飞机机轮在地面滑跑时的动能转换成液压能,为刹车作动器提 供高压油液, 实现刹车, 不依赖于飞机主机的能源, 减轻了飞机重量, 提 高了飞机刹车系统的可靠性。
实施例二: 参照图 6,是本发明实施例提供的一种基于自馈能式刹车装置的多轮 飞机刹车系统的控制方法的流程图, 本实施例具体可以包括以下步骤: 步骤 100,通过多个液压泵在与所述液压泵连接的飞机机轮运动的带 动下将高压油液输送到自馈能式刹车装置组件。在本发明的一种优选实施 例中,所述步骤 100通过液压泵将高压油液输送到所述自馈能式刹车装置 组件, 具体可以包括: 飞机机轮运动时带动与其相连的传动机构, 所述液 压泵通过与其连接的传动机构建立压力,并通过液压管路将高压油液输送 到所述自馈能式刹车装置组件。在本发明的另一种优选实施例中, 所述步 骤 100通过所述液压泵将高压油液输送到所述自馈能式刹车装置组件,还 包括: 所述液压泵通过与其连接的辅助电机建立压力,并通过液压管路将 所述高压油液输送到所述自馈能式刹车装置组件。 步骤 101, 通过控制器发送刹车指令给自馈能式刹车装置组件。 在本 发明的一种优选实施例中,所述通过所述控制器发送刹车指令给自馈能式 刹车装置组件之前,还包括: 所述控制器通过与所述飞机机轮分别连接的 压力传感器和转速传感器获取所述飞机机轮的刹车压力和机轮转速,并依 据所述刹车压力和机轮转速生成刹车指令。
步骤 102,通过所述自馈能式刹车装置组件接收至少部分所述液压泵 输送的高压油液和所述控制器发送的刹车指令,并依据所述刹车指令将所 述高压油液输送到各刹车作动器。
步骤 103,通过各所述刹车作动器接收所述自馈能式刹车装置组件输 送的高压油液, 并对相应连接的飞机机轮进行刹车处理。 本实施例是与实施例一对应的方法实施例,可以参见实施例一中的相 关内容, 本实施例在此不做赞述。 本实施例提供的基于自馈能式刹车装置的多轮飞机刹车系统的控制 方法,可以通过液压泵将飞机机轮在地面滑跑时的动能转换成液压能, 为 刹车作动器提供高压油液, 实现刹车, 不依赖于飞机主机的能源, 减轻了 飞机重量, 提高了飞机刹车系统的可靠性。
在本发明上述各实施例中, 实施例的序号和 /或先后顺序仅仅便于描 述, 不代表实施例的优劣。对各个实施例的描述都各有侧重, 某个实施例 中没有详述的部分, 可以参见其他实施例的相关描述。
虽然已经详细说明了本发明及其优点,但是应当理解在不脱离由所附 的权利要求所限定的本发明的精神和范围的情况下可以进行各种改变、替 代和变换。
最后, 还需要说明的是, 在本文中, 诸如第一和第二等之类的关系术 语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定 要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而 且, 术语"包括"、 "包含"或者其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素, 而且还包括没有明确列出的其他要素, 或者是还包括为这种过程、 方法、 物品或者设备所固有的要素。 在没有更多限制的情况下, 由语句"包括一 个 ...... "限定的要素, 并不排除在包括所述要素的过程、 方法、 物品或者 设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面 所描述的实施方式只是用于说明本发明, 而并不构成对本发明的限制。对 于本领域的技术人员来说,可以在不偏离本发明的精神和范围的情况下对 上述实施方式作出各种修改和变更。 因此,本发明的范围仅由所附的权利 要求及其等效内容来限定。

Claims

权利 要求 书
1、 一种基于自馈能式刹车装置的多轮飞机刹车系统, 其特征在于, 包括: 控制器、 自馈能式刹车装置组件、 多个液压泵和多套刹车作动器; 所述控制器与所述自馈能式刹车装置组件相连,所述控制器用于发送 刹车指令给所述自馈能式刹车装置组件; 各所述液压泵分别与所述自馈能式刹车装置组件相连,且一个飞机机 轮对应连接一个液压泵,所述液压泵用于在与其连接的飞机机轮运动的带 动下将高压油液输送到所述自馈能式刹车装置组件; 所述自馈能式刹车装置组件分别与所述控制器、液压泵和刹车作动器 相连;所述自馈能式刹车装置组件用于接收至少部分所述液压泵输送的高 压油液和所述控制器发送的刹车指令,并依据所述刹车指令将所述高压油 液输送到各所述刹车作动器;
各所述刹车作动器分别与所述自馈能式刹车装置组件,且一个飞机机 轮对应连接一套刹车作动器,所述刹车作动器用于接收所述自馈能式刹车 装置组件输送的高压油液, 并对相应连接的飞机机轮进行刹车处理。
1、 根据权利要求 1所述的基于自馈能式刹车装置的多轮飞机刹车系 统, 其特征在于, 还包括: 多个传动机构, 每个传动机构与一所述液压泵 和一所述飞 轮相连;
所述液压泵与所述自馈能式刹车装置组件通过液压管路相连,所述飞 机机轮运动时带动所述传动机构,所述液压泵通过与其连接的传动机构建 立压力, 并通过液压管路将高压油液输送到所述自馈能式刹车装置组件。
3、 根据权利要求 1所述的基于自馈能式刹车装置的多轮飞机刹车系 统, 其特征在于, 还包括: 多个辅助电机, 每个辅助电机连接一所述液压 泵;
所述液压泵与所述自馈能式刹车装置组件通过液压管路相连,所述液 压泵通过与其连接的辅助电机建立压力,并通过液压管路将高压油液输送 到所述自馈能式刹车装置组件。
4、 根据权利要求 1所述的基于自馈能式刹车装置的多轮飞机刹车系 统, 其特征在于:
所述飞机机轮中设置有分别与所述控制器相连的压力传感器和转速 传感器;
所述控制器还用于分别通过所述压力传感器和所述转速传感器获取 所述飞机机轮的刹车压力和机轮转速,依据所述刹车压力和机轮转速生成 刹车指令, 并将所述刹车指令发送至所述自馈能式刹车装置组件。
5、 根据权利要求 1所述的基于自馈能式刹车装置的多轮飞机刹车系 统, 其特征在于: 所述自馈能式刹车装置组件包括刹车阀;
所述自馈能式刹车装置组件还用于通过所述刹车阀输出标准刹车压 力,将所述至少部分所述液压泵输送的高压油液转化为标准压力油液,并 将所述标准压力油液输送到各所述刹车作动器。
6、 根据权利要求 1所述的基于自馈能式刹车装置的多轮飞机刹车系 统, 其特征在于: 采用 M供能一拖 N的模式, 且 M小于 N; 每个自馈能式刹车装置组件分别接收 M个液压泵输送的高压油液, 每个自馈能式刹车装置组件分别将所述高压油液输送到 N个刹车作动器。
7、 一种基于如权利要求 1-6任一所述的自馈能式刹车装置的多轮飞 机刹车系统的控制方法, 其特征在于, 包括:
通过多个液压泵在与所述液压泵连接的飞机机轮运动的带动下将高 压油液输送到自馈能式刹车装置组件;
通过控制器发送刹车指令给自馈能式刹车装置组件;
通过所述自馈能式刹车装置组件接收至少部分所述液压泵输送的高 压油液和所述控制器发送的刹车指令,并依据所述刹车指令将所述高压油 液输送到各刹车作动器;
通过各所述刹车作动器接收所述自馈能式刹车装置组件输送的高压 油液, 并对相应连接的飞机机轮进行刹车处理。
8、 根据权利要求 7所述的基于自馈能式刹车装置的多轮飞机刹车系 统的控制方法,其特征在于,所述通过液压泵将高压油液输送到所述自馈 能式刹车装置组件, 包括:
飞机机轮运动时带动与其相连的传动机构,所述液压泵通过与其连接 的传动机构建立压力,并通过液压管路将高压油液输送到所述自馈能式刹 车装置组件。
9、 根据权利要求 8所述的基于自馈能式刹车装置的多轮飞机刹车系 统的控制方法,其特征在于,所述通过所述液压泵将高压油液输送到所述 自馈能式刹车装置组件, 还包括:
所述液压泵通过与其连接的辅助电机建立压力,并通过液压管路将所 述高压油液输送到所述自馈能式刹车装置组件。
10、根据权利要求 7所述的基于自馈能式刹车装置的多轮飞机刹车系 统的控制方法,其特征在于,所述通过所述控制器发送刹车指令给自馈能 式刹车装置组件之前, 还包括:
所述控制器通过与所述飞机机轮分别连接的压力传感器和转速传感 器获取所述飞机机轮的刹车压力和机轮转速,并依据所述刹车压力和机轮 转速生成刹车指令。
PCT/CN2014/082137 2014-01-26 2014-07-14 基于自馈能式刹车装置的多轮飞机刹车系统及其控制方法 WO2015109779A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/111,129 US10093288B2 (en) 2014-01-26 2014-07-14 Multi-wheel aeroplane braking system based on self-energy-regenerative braking device and controlling method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410038142.7 2014-01-26
CN201410038142.7A CN103786877B (zh) 2014-01-26 2014-01-26 基于自馈能式刹车装置的多轮飞机刹车系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2015109779A1 true WO2015109779A1 (zh) 2015-07-30

Family

ID=50663042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082137 WO2015109779A1 (zh) 2014-01-26 2014-07-14 基于自馈能式刹车装置的多轮飞机刹车系统及其控制方法

Country Status (3)

Country Link
US (1) US10093288B2 (zh)
CN (1) CN103786877B (zh)
WO (1) WO2015109779A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103786877B (zh) 2014-01-26 2016-01-13 北京航空航天大学 基于自馈能式刹车装置的多轮飞机刹车系统及其控制方法
CN107140189B (zh) * 2017-05-23 2019-03-29 北京航空航天大学 一种功率电传余度自馈能刹车装置
FR3079494A1 (fr) * 2018-03-29 2019-10-04 Safran Landing Systems Atterrisseur d'aeronef a bogie portant des roues freinees et au moins une roue motorisee
US10744985B2 (en) 2018-04-19 2020-08-18 Goodrich Corporation Electro-hydrostatic brake control
US11492103B2 (en) * 2019-04-08 2022-11-08 Goodrich Corporation Distributed brake control systems and methods for high efficiency antiskid performance
CN110588959A (zh) * 2019-10-16 2019-12-20 中国商用飞机有限责任公司 飞机局部液压源刹车系统
GB2601359A (en) 2020-11-27 2022-06-01 Airbus Operations Ltd Aircraft power system
GB2602157A (en) * 2020-12-21 2022-06-22 Airbus Operations Ltd Braking system
CN114314401B (zh) * 2022-03-07 2022-06-14 徐州徐工基础工程机械有限公司 一种闭式卷扬紧急刹车控制系统、设备及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1205369A1 (fr) * 2000-11-10 2002-05-15 Messier Bugatti Architecture de système hydraulique de freinage d'aéronef
CN2928680Y (zh) * 2006-06-02 2007-08-01 江西洪都航空工业集团有限责任公司 飞机刹车系统液压余度控制装置
CN102092472A (zh) * 2011-01-20 2011-06-15 北京航空航天大学 一种飞机自馈能式刹车装置
US20110303785A1 (en) * 2010-06-10 2011-12-15 Messier-Bugatti-Dowty Aircraft fitted with an independent drive device
CN203111499U (zh) * 2013-01-29 2013-08-07 中国航空工业集团公司西安飞机设计研究所 一种飞机故障-安全刹车控制系统
CN103786877A (zh) * 2014-01-26 2014-05-14 北京航空航天大学 基于自馈能式刹车装置的多轮飞机刹车系统及其控制方法
CN103803063A (zh) * 2014-01-26 2014-05-21 北京航空航天大学 基于自馈能式刹车装置的飞机刹车系统及其控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881783A (en) * 1974-02-08 1975-05-06 Ron Benjamin Fixed slip hydraulic anti-lock braking system
US3881732A (en) 1974-05-17 1975-05-06 Louis M Winslow Ring, post and loop puzzle with individual post anchors
US5042750A (en) * 1989-11-16 1991-08-27 Datron, Inc. Aircraft arresting system
US7387182B2 (en) * 2002-04-08 2008-06-17 Patrick Fleming Turbine generator regenerative braking system
CN2928880Y (zh) 2006-07-17 2007-08-01 乔炳理 扣盖式打壳机连接座
JP5066004B2 (ja) * 2008-06-06 2012-11-07 日立オートモティブシステムズ株式会社 ブレーキシステム
EP2733030B1 (en) * 2011-07-11 2017-10-18 Toyota Jidosha Kabushiki Kaisha Brake system and actuator control device
CN202244077U (zh) * 2011-08-15 2012-05-30 中国航空工业集团公司西安飞机设计研究所 一种飞机刹车双余度防偏航控制系统
JP5908779B2 (ja) * 2012-05-01 2016-04-26 日立オートモティブシステムズ株式会社 ブレーキ制御装置、ブレーキ制御方法
CN102991491B (zh) * 2012-11-19 2016-06-29 西安航空制动科技有限公司 一种无人机机电刹车系统
JP5983871B2 (ja) * 2013-05-21 2016-09-06 トヨタ自動車株式会社 ブレーキ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1205369A1 (fr) * 2000-11-10 2002-05-15 Messier Bugatti Architecture de système hydraulique de freinage d'aéronef
CN2928680Y (zh) * 2006-06-02 2007-08-01 江西洪都航空工业集团有限责任公司 飞机刹车系统液压余度控制装置
US20110303785A1 (en) * 2010-06-10 2011-12-15 Messier-Bugatti-Dowty Aircraft fitted with an independent drive device
CN102092472A (zh) * 2011-01-20 2011-06-15 北京航空航天大学 一种飞机自馈能式刹车装置
CN203111499U (zh) * 2013-01-29 2013-08-07 中国航空工业集团公司西安飞机设计研究所 一种飞机故障-安全刹车控制系统
CN103786877A (zh) * 2014-01-26 2014-05-14 北京航空航天大学 基于自馈能式刹车装置的多轮飞机刹车系统及其控制方法
CN103803063A (zh) * 2014-01-26 2014-05-21 北京航空航天大学 基于自馈能式刹车装置的飞机刹车系统及其控制方法

Also Published As

Publication number Publication date
US10093288B2 (en) 2018-10-09
CN103786877A (zh) 2014-05-14
CN103786877B (zh) 2016-01-13
US20160347290A1 (en) 2016-12-01

Similar Documents

Publication Publication Date Title
WO2015109779A1 (zh) 基于自馈能式刹车装置的多轮飞机刹车系统及其控制方法
CN103158867B (zh) 一种飞机电传刹车防滑控制系统
EP2475576B1 (en) Device and method for a rotation of the wheels of the landing gear of aircraft
JP2020533933A (ja) マイクロコンピュータ制御の電気機械制動システム
CN103062242B (zh) 电动操作驱动器的动力传递装置
CN102795344A (zh) 给飞机的自主驱动马达提供动力的方法
CN103791002B (zh) 无人机旋翼刹车装置
CN106828445B (zh) 一种汽车应急辅助制动装置及方法
CN105109470A (zh) 节能型车辆制动装置
CN105774562A (zh) 轮边电机驱动车辆刹车防抱死系统及刹车防抱死方法
CN206265016U (zh) 一种失效保护解耦型制动机构
CN106741877B (zh) 一种多轮起落架电液地面滑行推动与自馈能刹车组合装置
CN106741878B (zh) 一种单轮起落架电液地面滑行推动与自馈能刹车组合装置
CN103183018B (zh) 液力缓速器
CN104290905B (zh) 一种直升机旋翼电动刹车系统
KR101579672B1 (ko) 무인자동차용 조향 및 브레이킹장치
WO2022152299A1 (zh) 一种用于汽车的制动系统、制动装置及制动方法
CN108045851A (zh) 一种线摩擦起制动带式输送机及其控制方法
CN105082979A (zh) 一种自动导引零件输送装置
CN203996187U (zh) 矿用运输车辆限速自动制动装置
CN104228808B (zh) 具有自动点刹功能的制动泵
CN202357871U (zh) 一种取力装置
CN202107294U (zh) 一种运行可靠的带式输送机
CN104389921B (zh) 助力器
CN105425705B (zh) 座舱姿态控制系统、方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880008

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15111129

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880008

Country of ref document: EP

Kind code of ref document: A1