WO2015107867A1 - モータ駆動装置 - Google Patents

モータ駆動装置 Download PDF

Info

Publication number
WO2015107867A1
WO2015107867A1 PCT/JP2015/000005 JP2015000005W WO2015107867A1 WO 2015107867 A1 WO2015107867 A1 WO 2015107867A1 JP 2015000005 W JP2015000005 W JP 2015000005W WO 2015107867 A1 WO2015107867 A1 WO 2015107867A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage side
side switching
low
power supply
switching element
Prior art date
Application number
PCT/JP2015/000005
Other languages
English (en)
French (fr)
Inventor
田中 秀尚
義典 竹岡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014007496A external-priority patent/JP6303128B2/ja
Priority claimed from JP2014044591A external-priority patent/JP6303129B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201590000243.3U priority Critical patent/CN206041860U/zh
Priority to BR212016016507-7U priority patent/BR212016016507Y1/pt
Publication of WO2015107867A1 publication Critical patent/WO2015107867A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/5381Parallel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • H02P6/21Open loop start
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/03Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation

Definitions

  • the present invention relates to a motor drive device by inverter control.
  • a bootstrap power source constituted by a diode, a resistor and a capacitor is used for a high voltage side switching element driving unit of an inverter circuit.
  • the capacitor of the bootstrap power supply is charged to a stable potential when the low voltage side switching element of the inverter circuit is turned on or off when the motor is started (see, for example, Patent Document 1).
  • FIG. 6 shows a conventional motor driving device described in Patent Document 1.
  • FIG. 6 shows the connection relationship of one-phase (U-phase) inverter, drive circuit, and bootstrap circuit of a motor drive device that drives a three-phase motor.
  • an inverter 102 (only one phase is shown in FIG. 6) that drives a three-phase motor is a three-phase full bridge that uses six circuits in which switching elements and diodes are connected in antiparallel. It is configured.
  • the high-voltage side drive circuit 104 and the low-voltage side drive circuit 105 perform on / off control of the high-voltage side switching element 102a and the low-voltage side switching element 102b in accordance with the states of the input signal Up and the input signal Un, respectively.
  • the U-phase bootstrap circuit 106 is constituted by a series connection of a DC power supply 106a of about 15V, a diode 106b, a resistor 106c, and a capacitor 106d.
  • the negative potential side of the capacitor 106d is connected to the negative potential side of the high-voltage side drive circuit 104, and is commonly connected to the emitter terminal of the high-voltage side switching element 102a.
  • the positive side terminal of the capacitor 106 d is connected to the power source side terminal of the high voltage side drive circuit 104.
  • the low voltage side switching element 102b is intermittently energized with an on / off duty of 50%, so that the capacitor 106d is connected from the DC power source 106a via the diode 106b and the resistor 106c during the time when the low voltage side switching element 102b is in the on state. Is initially charged. Thereby, the power supply of the high voltage side drive circuit 104 is ensured, and the high voltage side switching element 102a is in a drivable state.
  • the high voltage side switching element 102a is PWM-controlled.
  • the charging operation in the bootstrap circuit 106 will be described.
  • the high voltage side switching element 102a is turned off, the accumulated energy of the inductance of the motor (not shown) flows as a regenerative current through the low voltage side diode 102h.
  • the negative terminal of the capacitor 106d of the bootstrap circuit 106 is close to the GND level of the circuit of the inverter 102, and the capacitor 106d is charged. Therefore, when the low-voltage side switching element 102b is turned on and when the high-voltage side switching element 102a is turned off after being turned on, the capacitor 106d is charged, and the bootstrap potential is kept stable.
  • the diode of the bootstrap circuit can be turned on and off at high speed and has a relatively large current rating capable of injecting charge into the capacitor in a short time.
  • a current limiting resistor is required to keep the current below the diode rating.
  • the bootstrap circuit is required for three phases, and each circuit has a high potential difference. Therefore, it is necessary to maintain an insulation distance according to safety regulations, resulting in an increase in circuit area.
  • the diode of the bootstrap circuit is replaced with a MOSFET capable of high-speed switching, and the bootstrap circuit is charged by charging the charge pump power source in which the gate drive of the MOSFET is synchronized with the drive signal of the low-voltage side switching element. Is used.
  • the low-voltage side switching element is continuously energized in the low-speed drive region immediately after the motor is started, and the potential of the charge pump power supply for driving the MOSFET gate is lowered. As a result, the switch portion of the bootstrap power supply is turned off, causing a motor start failure.
  • the present invention has been made in view of the conventional problems, and a motor that can secure a stable voltage in the drive power supply of the switch part of the bootstrap power supply and can reliably turn on and off the switch part of the bootstrap power supply.
  • the motor driving device of the present invention includes a brushless DC motor including a rotor having a permanent magnet and a stator, and an inverter that converts a DC voltage into an AC voltage.
  • the drive voltage of the high voltage side switching element connected to the drive circuit having the high voltage side drive unit for driving the high voltage side switching element of the inverter and the low voltage side drive unit for driving the low voltage side switching element, and the high voltage side of the inverter.
  • the capacitor of the charge pump power supply is charged when a predetermined switching element of the inverter is in an OFF state. Further, the on-state time and off-state time of the predetermined switching element are controlled to charge the capacitor of the charge pump power supply so that the predetermined switching element is not turned on longer than the predetermined time. Is.
  • the charge pump power source that drives the switch portion of the bootstrap power source can stably ensure a certain potential.
  • the switch portion of the bootstrap power supply can be turned on reliably and stably.
  • the drive circuit power supply for the high-voltage side switching element of the inverter stably secures a certain potential or higher, the high-voltage side switching element can be reliably controlled to be turned on and off.
  • FIG. 1 is a block diagram of a motor drive device according to Embodiment 1 and Embodiment 2 of the present invention.
  • FIG. 2 is a timing chart at the time of motor startup in the first and second embodiments of the present invention.
  • FIG. 3 is a timing chart at the time of positioning of the motor drive device according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram of a drive signal generation unit according to Embodiment 2 of the present invention.
  • FIG. 5 is a timing chart at the time of positioning of the motor drive device according to the second embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing a circuit for one phase of a conventional motor drive device.
  • FIG. 1 is a block diagram of a motor drive device according to Embodiment 1 of the present invention.
  • a brushless DC motor 1 includes a rotor 1a having a permanent magnet and a stator 1b having a three-phase winding.
  • the inverter 2 is constituted by a three-phase full bridge in which a circuit in which six switching elements 2a to 2f are connected in series is connected in parallel in three circuits. Note that diodes 2g to 2l are connected in antiparallel to each switching element.
  • Each end of the three-phase winding of the stator 1b of the brushless DC motor 1 is connected to a connection point of series connection of switching elements of the inverter 2.
  • the drive circuit 3 will be described.
  • drive circuit 3 is described only for one phase including high-voltage side switching element 2a and low-voltage side switching element 2b.
  • the other two phases are the same drive circuit as the drive circuit 3 described below. It is connected to the.
  • the drive circuit 3 is a drive circuit for the switching element of the inverter 2.
  • the high voltage side switching element 2 a connected to the high voltage side of the inverter 2 is driven by the high voltage side element driving unit 4 in accordance with a Hin signal input to the high voltage side element driving unit 4 of the drive circuit 3.
  • the low voltage side switching element 2 b connected to the ground side of the inverter 2 is driven by the low voltage side element drive unit 5 in accordance with the Lin signal input to the low voltage side element drive unit 5 of the drive circuit 3.
  • the bootstrap power supply 6 includes a diode 6a, a switch unit 6b, and a capacitor 6c.
  • the bootstrap power supply 6 is a power supply for the high-voltage side element drive unit 4 and serves as a drive voltage for the switch unit 6b.
  • a semiconductor element switch element is preferably used for the switch unit 6b, and for example, a MOSFET or the like is used.
  • the charge pump power supply 7 which is a switch driving unit is composed of a diode 7a, a capacitor 7b and a driving unit 7c.
  • the charge pump power supply 7 turns on the switch unit 6b by supplying a voltage to the switch unit 6b.
  • the drive unit 7c is driven in synchronization with the low-voltage side switching elements 2b, 2d, and 2f because the drive signal Lin for the low-voltage side switching element 2b is input.
  • a high-speed diode is generally used for the series circuit part of the diode 6a and the switch part 6b, but in this embodiment, a high-speed diode is used.
  • a MOSFET capable of switching is used.
  • the diode 6a is inserted in series in a direction that prevents the charge of the capacitor 6c from flowing backward to the VCC side.
  • the switch unit 6b When a MOSFET is used for the switch unit 6b, the high-voltage side element drive unit 4, the low-voltage side element drive unit 5, the diode 6a, the switch unit (MOSFET) 6b, and the charge pump power supply 7 can be configured as a one-chip integrated circuit. It becomes possible. As a result, the number of parts of the drive circuit 3 can be reduced, and the size and cost can be reduced.
  • the capacitor 6c of the bootstrap power supply 6 is connected to VCC when the switch unit 6b is turned on, and is charged when the potential difference between the VCC potential and the capacitor 6c potential is larger than the forward voltage of the diode 6a.
  • first charging mode When the low-voltage side switching element 2b is energized (first charging mode), and the other is immediately after the energization of the high-voltage side switching element 2a (transition from on to off) to the low-voltage side diode 2h. At the time of recirculation (second charging mode).
  • the potential at the connection point A drops to near GND, and from the power supply VCC through the diode 6a and the switch unit 6b.
  • the capacitor 6c is charged by the flowing current.
  • the energy stored in the motor winding of the stator 1b is returned to the reflux mode via the diode 2h. Released at. Accordingly, the potential at the connection point A drops below the GND level, and the capacitor 6c is charged by the current flowing from the power supply VCC.
  • the low signal is input as the Lin signal to the low voltage side element driving unit 5 of the drive circuit 3
  • the low voltage side element driving unit 5 outputs a low signal
  • the low voltage side switching element 2b is in the OFF state.
  • a low signal is input to the drive unit 7c of the charge pump power supply 7, and the drive unit 7c outputs a low signal.
  • the drive unit 7c connection side terminal of the capacitor 7b of the charge pump power supply 7 becomes a potential near GND, and the capacitor 7b is charged by the current flowing from the VCC through the diode 7a.
  • the drive voltage of the switch part 6b becomes a voltage obtained by subtracting the ON voltage of the diode 7a from VCC.
  • the switch unit 6b When the potential difference between this voltage and the capacitor 6c of the bootstrap power supply is greater than or equal to a predetermined potential difference, the switch unit 6b is turned on. That is, when the voltage of the capacitor 6c is lower than a certain level, the switch unit 6b is turned on. Next, when the Lin signal changes from a low signal to a high signal, the output of the drive unit 7c becomes VCC, and the potential of the capacitor 7b rises to a potential obtained by subtracting the forward voltage of the diode 7a from twice the VCC voltage. . At this time, when the potential of the capacitor 6c of the bootstrap power supply 6 is near VCC, the switch unit 6b is turned on.
  • FIG. 2 shows driving signals of the switching elements when the brushless DC motor 1 is started.
  • the shaded portion indicates the timing when the switching element is turned on.
  • Interval B in FIG. 2 is an initial charging interval of the capacitor 6c of the bootstrap circuit.
  • a drive command for the brushless DC motor 1 is transmitted, a high signal is input to the drive signals Lin (Un, Vn, Wn) transmitted to all three low-voltage side switching elements 2b, 2d, 2f of the inverter 2. Is done. Thereby, the low voltage side switching elements 2b, 2d, and 2f are turned on.
  • a high signal is output from the drive unit 7c of the charge pump power supply 7, and the potential of the capacitor 7b becomes a potential that is reduced by the voltage drop of the diode 7a from twice VCC, and the switch unit 6b of the bootstrap power supply 6 Turned on.
  • the connection side terminal of the capacitor 6c of the bootstrap circuit with the switching elements 2a to 2f is at a potential close to the GND level. Accordingly, the capacitor 6c of the bootstrap circuit is charged with the charge injected from VCC, so that the power supply voltage of the high-voltage side element driving unit 4 is secured and the high-voltage side switching element 2a can be driven.
  • section C in FIG. 2 when the high-voltage side switching element is energized in section D, upper and lower switching elements in the same phase (in FIG. 2, for example, W-phase high-voltage side switching element 2e and W-phase low-voltage side switching element 2f ) Is a dead time interval provided so as not to be in the simultaneous energization state.
  • This section is not necessary when an element or the like that logically prohibits simultaneous upper and lower energization by a half-bridge gate driver or the like is used.
  • the section D in FIG. 2 is a “positioning control” section in which the rotational position of the rotor 1a is fixed at a predetermined position by energizing an arbitrary phase of the winding of the stator 1b of the brushless DC motor 1.
  • the high-voltage side switching element 2e and the low-voltage side switching element 2b are in the on state.
  • the magnetic pole position of the rotor 1a is determined to be a predetermined position in the section D, and in the section E, a predetermined switching element driving (that is, winding for starting energization) pattern is switched.
  • the motor can be started and operated stably.
  • the switching element on either the high voltage side or the low voltage side is switched at an arbitrary frequency with an arbitrary on / off time ratio.
  • the voltage applied to the brushless DC motor 1 is adjusted (PWM control).
  • the high-voltage side switching elements 2a, 2c, and 2e While the high-voltage side switching elements 2a, 2c, and 2e are turned on, the voltage across the capacitor 6c is reduced due to the consumption and discharge of the charge of the capacitor 6c of the bootstrap power supply 6. Therefore, when the continuous energization time of the high-voltage side switching elements 2a, 2c, and 2e is long, a large-capacity capacitor capacity is required (parts need to be enlarged and cost increased). For this reason, in the present embodiment, a method is used in which the high voltage side switching elements 2a, 2c, and 2e are turned on and off by PWM control to provide a charging path for the capacitor 6c of the bootstrap power supply 6.
  • the “stator positioning control section” in which the low-side switching elements 2b, 2d, and 2f are in an on-state time is long.
  • the “low-speed drive section after start-up” the high-voltage side switching elements 2a, 2c, and 2e of the high-voltage side energized phase and the low-voltage side switching elements 2b, 2d, and 2f of the low-voltage side energized phase are turned on and off at a predetermined time interval.
  • the time during which the low voltage side switching elements 2b, 2d, 2f are turned on and the time during which the low voltage side switching elements 2b, 2f are turned off is controlled to provide a charging period for the capacitor 7b of the charge pump power supply 7.
  • FIG. 3 is a timing chart of the switching element of the energized phase (current flows from the W-phase winding to the U-phase winding) when the rotor 1a is positioned in the present embodiment.
  • Wp indicates a drive signal for the W-phase high-voltage switching element
  • Un indicates a drive signal for the U-phase low-voltage switching element.
  • time T is a PWM cycle
  • section D1 is an ON section of the W-phase high-voltage side switching element
  • section D2 is an OFF section of the U-phase low-voltage side switching element.
  • the Lin signal in FIG. 1 becomes a low signal, and the output signal of the drive unit 7c of the charge pump power supply 7 is also outputted as a low signal.
  • the high-voltage side switching elements 2a, 2c, and 2e can be reliably turned on, so that the stator 1b can be reliably fixed at a predetermined position in the positioning control at the time of activation. it can. Thereby, it is possible to ensure a stable start-up performance of the brushless DC motor 1.
  • the ON / OFF cycle of the U-phase low-voltage side switching element coincides with the PWM cycle of the W-phase high-voltage side, but is arbitrarily set as the time during which the charge of the capacitor 7b of the charge pump power supply 7 is discharged. It doesn't matter.
  • the motor driving apparatus includes the brushless DC motor 1 including the rotor 1a having a permanent magnet and the stator 1b, the high-voltage side switching element (for example, 2a), and the low-voltage side switching element (
  • the brushless DC motor 1 including the rotor 1a having a permanent magnet and the stator 1b, the high-voltage side switching element (for example, 2a), and the low-voltage side switching element (
  • it has an inverter 2 to which a DC voltage is input and an AC voltage is output at both ends of which three pairs of switching elements connected in series with 2b) are connected in parallel.
  • a bootstrap power source 6 having a capacitor 6c and a switch unit 6b for driving a high-voltage side switching element (for example, 2a) of the inverter 2, and a charge pump power source 7 for driving the switch unit 6b of the bootstrap power source 6.
  • the capacitor 7b of the charge pump power supply 7 is charged when the low voltage side switching elements 2b, 2d, 2f of the inverter 2 are turned off. Further, in the “stator positioning control section” and “low-speed drive section after start-up” in which the low-voltage side switching elements 2b, 2d, and 2f of the inverter 2 are long, the low-voltage side switching elements of the energized phase are also turned on. The capacitor 7b of the charge pump power supply 7 is charged by being controlled so as not to be longer than a predetermined time.
  • the charge pump power supply 7 that drives the switch section 6b of the bootstrap power supply 6 can stably secure a potential higher than a certain level, the switch section 6b of the bootstrap power supply 6 can be turned on reliably and stably. It becomes possible to make it.
  • the power of the drive circuit for the high-voltage side switching elements 2a, 2c, and 2e of the inverter 2 can be stably secured, the high-voltage side switching elements 2a, 2c, and 2e can be reliably turned on and off. It is possible to control off.
  • the brushless DC motor 1 when the brushless DC motor 1 is started, when the winding of an arbitrary stator 1b is energized to fix the rotational position of the rotor 1a, the low-voltage side switching elements 2b, 2d, 2f of the inverter 2 are turned on. Is turned off at an arbitrary frequency, the capacitor 7b of the charge pump power supply 7 is charged. As a result, even when positioning the rotor 1a that needs to be energized for a relatively long time in the same energization winding, the capacitor 7b of the charge pump power supply 7 is sufficiently charged, and the charge pump power supply 7 has a predetermined voltage. Can be held.
  • the switch unit 6b of the bootstrap power supply 6 is reliably turned on, the high-voltage side switching elements 2a, 2c, and 2e of the inverter 2 can be reliably driven. Thereby, the brushless DC motor 1 can be started stably.
  • Embodiment 2 Next, a second embodiment of the present invention will be described. A description of the same configuration as that in Embodiment 1 is omitted.
  • FIG. 1 A block diagram of a motor driving device according to the second embodiment of the present invention is shown in FIG. 1 as in the first embodiment.
  • control at the time of starting the brushless DC motor 1 of the motor drive device in the second embodiment is basically the same control as that of the first embodiment shown in FIG. 2, but in the second embodiment, In addition to the control performed in the first embodiment, the following control is performed. That is, in the second embodiment, the energization time is increased by correcting the on-state time of the high-voltage side switching elements 2a, 2c, and 2e according to the off-state time of the low-voltage side switching elements 2b, 2d, and 2f. Yes.
  • the reason for such a configuration is as follows.
  • the “low-side driving period after startup” and the “low-speed driving period after startup” in which the low-voltage side switching elements 2b, 2d, and 2f are in the on-state time ie, the non-charging period of the capacitor 7b of the charge pump power supply 7)
  • the charging time of the capacitor 7b of the charge pump power supply 7 is provided by turning on and off the low voltage side switching element of the energized phase at a predetermined interval together with the high voltage side switching element of the energized phase. .
  • FIG. 4 is a block diagram of the drive signal generation unit 10 of the switching elements 2a to 2f in the second embodiment. A method for generating an ON signal and an OFF signal for each switching element, including ON time correction for the high-voltage side switching elements 2a, 2c, and 2e, is shown.
  • the output of the drive signal generation unit 10 includes each phase (U phase, V phase, W phase) of the inverter 2, the drive signal Hin of the high voltage side switching elements 2a, 2c, 2e and the low voltage side switching elements 2b, 2d. , 2f drive signal Lin.
  • the switching elements 2a to 2f are turned on or off by these output signals.
  • the low-voltage side drive waveform generation unit 11 has an off state time by the low-voltage side element off time setting unit 12 and a commutation cycle based on the motor drive speed by the second PWM timer 17 and the commutation cycle command unit 14. As a result, driving signals for the low-voltage side switching elements 2b, 2d, and 2f are generated.
  • the voltage command unit 15 instructs a voltage to be applied to the brushless DC motor 1 based on a preset positioning current value, a starting torque when the brushless DC motor 1 is started, and a speed feedback control when the brushless DC motor 1 is driven. To do.
  • the on-time correction unit 16 turns off the low-voltage side switching elements 2b, 2d, and 2f set by the low-voltage side element off-time setting unit 12 to the voltage to be applied to the brushless DC motor 1 instructed by the voltage command unit 15.
  • a correction value that takes time into account is added and input to the high-voltage side drive waveform generator 18.
  • the high voltage side drive waveform generator 18 receives the first PWM timer 13 and the commutation cycle based on the driving speed of the brushless DC motor 1 by the commutation cycle command unit 14, and the high voltage side switching elements 2 a, 2 c, 2 e A drive signal is generated.
  • the output phase selection unit 19 receives the signals of the low-voltage side drive waveform generation unit 11 and the high-voltage side drive waveform generation unit 18 and outputs an ON signal and an OFF signal for each switching element in an output pattern for generating a three-phase AC voltage. A signal is output.
  • FIG. 5 is a timing chart of the switching element of the energized phase (current flows from the W-phase winding to the U-phase winding) during positioning in the second embodiment.
  • Wp is a drive signal for the W-phase high-voltage side switching element
  • Un is a drive signal for the U-phase low-voltage side switching element.
  • Time T is a PWM cycle, and is a cycle of the first PWM timer 13 and the second PWM timer 17.
  • Section D1 is an OFF section of the U-phase low-pressure side switching element at the time of positioning control and motor activation of the motor drive device of the second embodiment.
  • the section D1 is set by the low-voltage side element off time setting unit 12 as the charging time of the capacitor 7b of the charge pump power supply 7.
  • the drive unit 7c of the charge pump power supply outputs a low signal.
  • the capacitor 7b is charged every VCC cycle from VCC, and a sufficient potential can be secured stably.
  • the charge pump power supply 7 can be provided by providing a periodic off section of the low-voltage side switching element even in a section where a specific winding is energized for a long time, such as during motor positioning control or low-speed driving immediately after startup. A sufficient predetermined potential is secured. Thereby, the state which can drive the switch part 6b of the bootstrap power supply 6 reliably is ensured.
  • Section D2 is an ON section of the high-voltage side switching element set by the voltage command unit 15.
  • the section D2 is based on the current necessary for securely fixing the position of the rotor 1a of the motor to a predetermined position in the positioning control, and based on the starting torque (that is, the starting current) in the starting after the positioning.
  • the voltage to be applied (that is, the PWM on-duty) is set in advance.
  • the section D2 is configured to be adjusted by the input voltage (VDC in FIG. 1) of the inverter 2, or when the AC power supply is rectified and smoothed to generate VDC, the section D2 is adjusted by the AC power supply voltage. A more reliable startability of the motor can be ensured without affecting the input voltage fluctuation of the inverter 2.
  • the section D3 is a correction section for the on-time of the high-voltage side switching elements 2a, 2c, and 2e.
  • the section D3 is set by the on-time correction unit 16 based on the time set by the low-voltage side element off-time setting unit 12. Specifically, for example, when the off-duty of the low-voltage side switching elements 2b, 2d, 2f is 1%, the on-time correction unit sets the correction amount of the on-duty of the high-voltage side switching elements 2a, 2c, 2e to 1 Set the correction amount to add%.
  • the low-voltage side switching elements 2b, 2d , 2f is provided to suppress a decrease in current flowing in the motor winding.
  • the sum of the section D2 and the section D3 becomes the ON section of the high-voltage side switching elements 2a, 2c, 2e, the ON section of the high-voltage side switching elements 2a, 2c, 2e and the OFF state of the low-voltage side switching elements 2b, 2d, 2f.
  • the difference between the sections is lengthened by a predetermined time, the current at the time of positioning control and the torque at the time of starting are secured, and the starting performance of the brushless DC motor 1 is maintained.
  • the section D2 and the section D3 are sections in which the low-voltage side switching elements 2b, 2d, and 2f are also turned on.
  • the capacitor 7b of the charge pump power supply 7 is sufficiently charged by the section D1, so that the switch unit 6b of the bootstrap power supply 6 is in a driveable state. Therefore, in the section D2 and the section D3, the low-voltage side switching elements 2b, 2d, and 2f are turned on, and the capacitor 6c of the bootstrap power supply 6 is charged in the first charging mode.
  • Section D4 is a section in which the high-voltage side switching elements 2a, 2c, 2e are off and the low-voltage side switching elements 2b, 2d, 2f are on.
  • This section is a section in which the energy stored in the motor winding is released through a diode connected in reverse parallel to the W-phase low-voltage switching element by turning off the high-voltage switching elements 2a, 2c, and 2e.
  • the capacitor 6c of the bootstrap power supply 6 is charged in the second charging mode.
  • the drive signal Lin of the low-voltage side switching elements 2b, 2d, 2f is a high signal, and the capacitor 7b of the charge pump power supply 7 is not charged, but the potential drops due to charge discharge due to internal leakage current or the like. I will do it.
  • the off-period (time T in FIG. 5) of the low-voltage side switching elements 2b, 2d, and 2f is discharged below the potential required for driving the switch section 6b of the bootstrap power supply 6 by the capacitor 7b of the charge pump power supply 7. Make it shorter than time. Thereby, the capacitor 7b potential of the charge pump power supply 7 can be stably secured at a predetermined potential or higher.
  • the bootstrap power supply 6 can be reliably operated, and the drive voltages of the high-voltage side switching elements 2a, 2c, 2e can be stably secured.
  • reliable positioning of the rotor 1a of the brushless DC motor 1 and proper starting torque are ensured, and the brushless DC motor 1 can be started reliably and stably.
  • the ON and OFF cycles of the U-phase low-voltage side switching element are made to coincide with the PWM cycle of the W-phase high-voltage side, but are arbitrarily set as the time for discharging the capacitor 7 b of the charge pump power supply 7. It doesn't matter.
  • the motor driving apparatus includes the brushless DC motor 1 including the rotor 1a having a permanent magnet and the stator 1b, the high-voltage side switching element (for example, 2a), and the low-voltage side switching element (for example, an inverter 2 to which a DC voltage is input and an AC voltage is output is provided at both ends of a pair of switching elements connected in series with 2b) and connected in parallel with 3 pairs.
  • the brushless DC motor 1 including the rotor 1a having a permanent magnet and the stator 1b, the high-voltage side switching element (for example, 2a), and the low-voltage side switching element (
  • an inverter 2 to which a DC voltage is input and an AC voltage is output is provided at both ends of a pair of switching elements connected in series with 2b) and connected in parallel with 3 pairs.
  • a bootstrap power source 6 having a capacitor 6c and a switch unit 6b for driving a high-voltage side switching element (for example, 2a) of the inverter 2, a charge pump power source 7 for driving the switch unit 6b of the bootstrap power source 6, and a high voltage
  • an on-time correction unit 16 that corrects the on-state time of the side switching element (for example, 2a).
  • the capacitor 7b of the charge pump power supply 7 is charged when the low-voltage side switching elements 2b, 2d, 2f of the inverter 2 are in the off state.
  • the capacitor 7b of the charge pump power supply 7 is connected to the low-voltage side when energizing the winding of an arbitrary stator 1b and fixing the magnetic pole position of the rotor 1a to a predetermined position when the brushless DC motor 1 is started.
  • the switching elements 2b, 2d, 2f are charged by turning off the low voltage side switching elements 2b, 2d, 2f in the on state of the inverter 2 at an arbitrary frequency so that the on state time of the switching elements 2b, 2d, 2f does not become longer than a predetermined time.
  • the on-time correction unit 16 corrects the time during which the high-voltage side switching elements 2a, 2c, and 2e are on. By correcting the on-state time of the high-voltage side switching elements 2a, 2c, 2e, the low-side switching elements 2b, 2d, 2f are turned off. Reduction of motor current is suppressed.
  • the charge pump power supply 7 can be used even during positioning control in which a predetermined winding is energized for a certain period of time to fix the magnetic pole position of the brushless DC motor 1 or during operation immediately after the brushless DC motor 1 is started.
  • the capacitor 7b is charged with a sufficient charge and can hold a predetermined voltage.
  • a predetermined positioning current can be ensured, and the rotor 1a of the brushless DC motor 1 can be reliably positioned and a predetermined starting torque can be ensured. Thereby, reliable starting of the brushless DC motor 1 is realizable.
  • the charge pump power supply 7 is charged by synchronizing the gate drive of the MOSFET with the drive signals of the low-voltage side switching elements 2b, 2d, 2f. It can also be set as the structure performed by. As a result, it is possible to use an element in which the bootstrap circuit and the switching element driving unit (the high-voltage side element driving unit 4 and the low-voltage side element driving unit 5) of the inverter 2 are integrated into one chip. The number of parts can be reduced, and the size and cost can be reduced.
  • the motor driving apparatus includes the brushless DC motor 1 including the rotor 1a having the permanent magnet and the stator 1b, the high-voltage side switching element (for example, 2a), and the low-pressure
  • An inverter 2 to which a DC voltage is input and an AC voltage is output is provided at both ends of a pair of switching elements connected in series with side switching elements (for example, 2b) connected in parallel.
  • a bootstrap power source 6 having a capacitor 6c and a switch unit 6b for driving a high-voltage side switching element (for example, 2a) of the inverter 2, and a charge pump power source 7 for driving the switch unit 6b of the bootstrap power source 6.
  • the capacitor 7b of the charge pump power supply 7 is charged when the low-voltage side switching elements 2b, 2d, 2f of the inverter 2 are in the off state. Further, the on-state time and the off-state time of the low-voltage side switching elements 2b, 2d, 2f are controlled so that the on-time of the low-voltage side switching elements 2b, 2d, 2f does not become longer than a predetermined time.
  • the capacitor 7b of the charge pump power supply 7 is charged. With such a configuration, the capacitor 7b of the charge pump power supply 7 is charged regularly, and the voltage of the charge pump power supply 7 can stably hold a predetermined voltage.
  • the switch part 6b of the bootstrap power supply 6 is reliably turned on. For this reason, the high voltage side switching elements 2a, 2c, and 2e of the inverter 2 can be reliably driven. Thereby, the brushless DC motor 1 can be driven stably.
  • the motor driving apparatus is configured to energize the windings of an arbitrary stator 1b and fix the rotational position of the rotor 1a to a predetermined position when the brushless DC motor 1 is started.
  • the capacitor 7b of the charge pump power supply 7 is charged by performing control to turn off the low-voltage side switching elements 2b, 2d, 2f in the ON state of the inverter 2 at an arbitrary frequency.
  • the switch part 6b of the bootstrap power supply 6 is reliably turned on. For this reason, the high voltage side switching elements 2a, 2c, 2e of the inverter 2 can be reliably driven, and the brushless DC motor 1 can be started stably.
  • the motor driving apparatus includes a brushless DC motor 1 including a rotor 1a having a permanent magnet and a stator 1b, a high-voltage side switching element (for example, 2a), and a low-voltage side switching element (for example, an inverter 2 to which a DC voltage is input and an AC voltage is output is provided at both ends of a pair of switching elements connected in series with 2b) and connected in parallel with 3 pairs.
  • a brushless DC motor 1 including a rotor 1a having a permanent magnet and a stator 1b, a high-voltage side switching element (for example, 2a), and a low-voltage side switching element (
  • an inverter 2 to which a DC voltage is input and an AC voltage is output is provided at both ends of a pair of switching elements connected in series with 2b) and connected in parallel with 3 pairs.
  • a bootstrap power source 6 having a capacitor 6c and a switch unit 6b for driving a high-voltage side switching element (for example, 2a) of the inverter 2, a charge pump power source 7 for driving the switch unit 6b of the bootstrap power source 6, and a high voltage And an on-time correction unit 16 that corrects the on-state time of the side switching element (for example, 2a).
  • the capacitor 7b of the charge pump power supply 7 is charged when the low voltage side switching elements 2b, 2d, and 2f of the inverter 2 are in an off state.
  • the capacitor 7b of the charge pump power supply 7 is connected to the inverter 2 when the winding of an arbitrary stator 1b is energized and the magnetic pole position of the rotor 1a is fixed at a predetermined position when the brushless DC motor 1 is started.
  • the low voltage side switching elements 2b, 2d, and 2f of the low voltage side switching elements 2b, 2d, and 2f are charged by turning off the low voltage side switching elements 2b, 2d, and 2f in the on state at an arbitrary frequency so as not to be longer than a predetermined time.
  • the on-time correction unit 16 corrects the on-time of the high-voltage side switching elements 2a, 2c, and 2e.
  • the capacitor 7b of the charge pump power supply 7 is charged with a predetermined voltage. Can hold.
  • a decrease in positioning current due to the low voltage side switching elements 2b, 2d, 2f being turned off can be suppressed by correcting the time of the on state of the high voltage side switching elements 2a, 2c, 2e. For this reason, since the rotor 1a of the brushless DC motor 1 can be reliably fixed at a predetermined position, the brushless DC motor 1 can be reliably started.
  • a MOSFET capable of high-speed switching is used as the diode 6a of the bootstrap circuit, and the gate drive of the MOSFET is synchronized with the drive signals of the low-voltage side switching elements 2b, 2d, 2f.
  • a configuration in which the charge pump power supply 7 is charged can be used.
  • the motor driving device can be applied to various devices for driving a three-phase brushless DC motor by inverter control, such as a washing machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

モータ駆動装置は、ブラシレスDCモータ(1)と、インバータ(2)と、インバータ(2)の高圧側スイッチング素子(2a,2c,2e)を駆動させるブートストラップ電源(6)と、ブートストラップ電源(6)のスイッチ部(6b)の駆動電源であるチャージポンプ電源(7)とを有する。さらに、チャージポンプ電源(7)のコンデンサ(7b)は、インバータ(2)の低圧側スイッチング素子(2b,2d,2f)のオフ時に充電され、低圧側スイッチング素子(2b,2d,2f)は、オンされている時間が所定の時間より長くならないように、オン時間およびオフ時間が制御される。

Description

モータ駆動装置
 本発明は、インバータ制御によるモータ駆動装置に関する。
 従来のモータ駆動装置においては、インバータ回路の高圧側スイッチング素子駆動部に、ダイオード、抵抗およびコンデンサにより構成されたブートストラップ電源が用いられている。ブートストラップ電源のコンデンサは、モータの起動時には、インバータ回路の低圧側スイッチング素子がオンされたり、オフされたりすることにより、安定した電位に充電される(例えば特許文献1参照)。
 図6に、特許文献1に記載された従来のモータ駆動装置を示す。図6は、3相モータを駆動するモータ駆動装置の1相分(U相)のインバータ、駆動回路およびブートストラップ回路の接続関係を示している。
 図6において、3相モータを駆動するインバータ102(図6には1相分だけが示されている)は、スイッチング素子およびダイオードを逆並列接続した回路が6個用いられた3相フルブリッジで構成されている。
 高圧側駆動回路104および低圧側駆動回路105はそれぞれ、入力信号Upおよび入力信号Unの状態に応じて、高圧側スイッチング素子102aおよび低圧側スイッチング素子102bのオンおよびオフ制御を行う。
 U相ブートストラップ回路106は、15V程度の直流電源106a、ダイオード106b、抵抗106cおよびコンデンサ106dの直列接続により構成されている。コンデンサ106dの負電位側は、高圧側駆動回路104の負電位側に接続され、高圧側スイッチング素子102aのエミッタ端子に共通接続される。コンデンサ106dの正側端子は、高圧側駆動回路104の電源側端子に接続される。
 モータを起動させる直前に、低圧側スイッチング素子102bをオンオフデューティ50%で断続通電させることにより、低圧側スイッチング素子102bがオン状態の時間中、直流電源106aよりダイオード106bおよび抵抗106cを介してコンデンサ106dが初期充電される。これにより、高圧側駆動回路104の電源が確保され、高圧側スイッチング素子102aは駆動可能な状態となる。
 つぎに、モータを回転起動させるにあたり、高圧側スイッチング素子102aがPWM制御される。ここで、ブートストラップ回路106における充電の動作について説明する。高圧側スイッチング素子102aがオフされたとき、モータ(図示せず)のインダクタンスの蓄積エネルギーが、低圧側ダイオード102hを介して回生電流として流れる。このとき、ブートストラップ回路106のコンデンサ106dの負側端子は、インバータ102の回路のGNDレベル近くとなり、コンデンサ106dが充電される。よって、低圧側スイッチング素子102bがオンされた場合、および、高圧側スイッチング素子102aがオン後にオフされた場合に、コンデンサ106dが充電され、ブートストラップ電位は安定した電位が保たれる。
 上記従来の構成では、ブートストラップ回路のダイオードには、高速でオンおよびオフが可能で、かつ、短時間でコンデンサに充電電荷を注入可能な比較的大きな電流定格を有する高速ダイオードと、コンデンサの充電電流をダイオード定格以下に抑えるための電流制限抵抗とが必要である。さらに、ブートストラップ回路は3相分必要であり、各回路は高い電位差を持つため安全規制に応じた絶縁距離を保つ必要があり、回路面積が大きくなってしまう。
 そこで、近年では、ブートストラップ回路のダイオードを高速スイッチング可能なMOSFETに置き換え、MOSFETのゲート駆動を低圧側スイッチング素子の駆動信号と同期させたチャージポンプ電源の充電により、ブートストラップ回路の充電を行う構成が用いられている。また、ブートストラップ回路とインバータのスイッチング素子の駆動部とが1チップの集積回路化された素子を用いることによる、回路部品点数の削減および小型化が提案されている。
 しかし、このような従来の構成では、モータ起動直後の低速駆動領域において、低圧側スイッチング素子は連続通電となり、MOSFETゲート駆動のチャージポンプ電源の電位が低下する。これにより、ブートストラップ電源のスイッチ部がオフ状態となり、モータの起動不良が発生してしまう。
特開2000-23484号公報
 本発明は、従来の課題に鑑みてなされたものであり、ブートストラップ電源のスイッチ部の駆動電源において安定した電圧が確保され、ブートストラップ電源のスイッチ部を確実にオンおよびオフさせることができるモータ駆動装置である。すなわち、本発明のモータ駆動装置は、永久磁石を有する回転子と、固定子とからなるブラシレスDCモータと、直流電圧を交流電圧に変換するインバータとを備える。さらに、インバータの高圧側スイッチング素子を駆動させる高圧側駆動部および低圧側スイッチング素子を駆動させる低圧側駆動部を有するドライブ回路と、インバータの高圧側に接続された高圧側スイッチング素子の駆動電圧であるコンデンサ、および、スイッチ部を有するブートストラップ電源とを備える。さらに、ブートストラップ電源のスイッチ部を駆動させるチャージポンプ電源とを有し、チャージポンプ電源のコンデンサは、インバータの所定のスイッチング素子がオフ状態のときに充電される。また、所定のスイッチング素子のオンされている時間が所定の時間より長くならないように、所定のスイッチング素子のオン状態の時間およびオフ状態の時間が制御されて、チャージポンプ電源のコンデンサが充電されるものである。
 このような構成により、モータ起動直後等の低速駆動時においても、ブートストラップ電源のスイッチ部を駆動させるチャージポンプ電源において、安定して一定以上の電位が確保される。これにより、ブートストラップ電源のスイッチ部を確実かつ安定的にオンさせることが可能となる。また、インバータの高圧側スイッチング素子の駆動回路電源において、安定して一定以上の電位が確保されるので、高圧側スイッチング素子を確実にオンおよびオフ制御させることが可能となる。
図1は、本発明の実施の形態1および実施の形態2におけるモータ駆動装置のブロック図である。 図2は、本発明の実施の形態1および実施の形態2におけるモータ起動時のタイミングチャートである。 図3は、本発明の実施の形態1におけるモータ駆動装置の位置決め時のタイミングチャートである。 図4は、本発明の実施の形態2における駆動信号生成部のブロック図である。 図5は、本発明の実施の形態2におけるモータ駆動装置の位置決め時のタイミングチャートである。 図6は、従来のモータ駆動装置の1相分の回路を示す回路図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、以下の実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 図1は、本発明の実施の形態1におけるモータ駆動装置のブロック図である。
 図1において、ブラシレスDCモータ1は、永久磁石を有する回転子1aと、3相巻線を有する固定子1bとにより構成されている。インバータ2は、6個のスイッチング素子2a~2fを直列接続した回路が3回路並列に接続された3相フルブリッジにより構成されている。なお、各スイッチング素子には逆並列にダイオード2g~2lが接続されている。
 ブラシレスDCモータ1の固定子1bの3相巻線の各端は、インバータ2のスイッチング素子の直列接続の接続点に結線されている。ここで、ドライブ回路3について説明する。なお、図1および本実施の形態においては、簡略化のため、ドライブ回路3は、高圧側スイッチング素子2aおよび低圧側スイッチング素子2bを含む1相分のみについて記載されている。他の2相(高圧側スイッチング素子2cと低圧側スイッチング素子2dを含む相、および、高圧側スイッチング素子2eと低圧側スイッチング素子2fを含む相)も以下に説明するドライブ回路3と同様のドライブ回路に接続されている。
 ドライブ回路3は、インバータ2のスイッチング素子の駆動回路である。インバータ2の高圧側に接続された高圧側スイッチング素子2aは、ドライブ回路3の高圧側素子駆動部4に入力されるHin信号に応じて、高圧側素子駆動部4により駆動される。また、インバータ2のグランド側に接続された低圧側スイッチング素子2bは、ドライブ回路3の低圧側素子駆動部5に入力されるLin信号に応じて、低圧側素子駆動部5により駆動される。
 ブートストラップ電源6は、ダイオード6a、スイッチ部6bおよびコンデンサ6cにより構成されている。ブートストラップ電源6は、高圧側素子駆動部4の電源であり、スイッチ部6bの駆動電圧となる。なお、スイッチ部6bには、好ましくは半導体素子スイッチ素子が用いられ、例えばMOSFETなどが用いられる。
 スイッチ駆動部であるチャージポンプ電源7は、ダイオード7a、コンデンサ7bおよび駆動部7cにより構成されている。チャージポンプ電源7は、スイッチ部6bに電圧を供給することにより、スイッチ部6bをオンさせる。駆動部7cは、低圧側スイッチング素子2bの駆動信号Linが入力されるため、低圧側スイッチング素子2b,2d,2fと同期して駆動する。
 また、ブートストラップ電源6の回路(ブートストラップ回路)においては、ダイオード6aとスイッチ部6bとの直列回路部に、高速ダイオードが使用されるのが一般的であるが、本実施の形態では、高速スイッチングが可能なMOSFETが用いられている。また、ダイオード6aは、コンデンサ6cの充電電荷がVCC側へ逆流することを阻止する向きに直列に挿入されている。
 スイッチ部6bにMOSFETが用いられた場合、高圧側素子駆動部4、低圧側素子駆動部5、ダイオード6a、スイッチ部(MOSFET)6bおよびチャージポンプ電源7を1チップの集積回路として構成することが可能となる。これにより、ドライブ回路3の部品点数の削減、小型化および低コスト化が可能となる。
 ここで、ブートストラップ電源6の動作について説明する。
 図1において、ブートストラップ電源6のコンデンサ6cは、スイッチ部6bがオンされたときVCCと接続され、VCC電位とコンデンサ6c電位との電位差がダイオード6aの順方向電圧より大きいとき、充電される。
 なお、コンデンサ6cの充電には2つの経路がある。1つは、低圧側スイッチング素子2bの通電時(第1の充電モード)であり、もう1つは、高圧側スイッチング素子2aの通電直後(オンからオフへの移行)の低圧側のダイオード2hへの還流時(第2の充電モード)である。
 まず、第1の充電モードでは、低圧側スイッチング素子2bが導通されたとき、接続点A(図1に図示)の電位はGND近くまで低下し、電源VCCからダイオード6aおよびスイッチ部6bを介して流れた電流により、コンデンサ6cは充電される。
 次に、第2の充電モードでは、高圧側スイッチング素子2aが通電されている状態からオフ状態に変移されたとき、固定子1bのモータ巻線に蓄えられたエネルギーがダイオード2hを介して還流モードで放出される。従って、接続点Aの電位はGNDレベルより低下し、コンデンサ6cは電源VCCから流れた電流により、充電される。
 つぎに、チャージポンプ電源7の動作について説明する。
 ドライブ回路3の低圧側素子駆動部5に、Lin信号としてロー信号が入力されている間、低圧側素子駆動部5はロー信号を出力し、低圧側スイッチング素子2bはオフ状態にある。同時に、チャージポンプ電源7の駆動部7cにもロー信号が入力され、駆動部7cはロー信号を出力する。これにより、チャージポンプ電源7のコンデンサ7bの駆動部7c接続側端子は、GND近くの電位となり、コンデンサ7bは、ダイオード7aを介してVCCから流れた電流により充電される。これにより、スイッチ部6bの駆動電圧は、VCCからダイオード7aのオン電圧を引いた電圧となる。この電圧とブートストラップ電源のコンデンサ6cとの電位差が所定の電位差以上のとき、スイッチ部6bはオンされる。すなわち、コンデンサ6cの電圧が一定レベルより低いとき、スイッチ部6bはオンされる。つぎに、Lin信号がロー信号からハイ信号に変化したとき、駆動部7cの出力はVCCとなり、コンデンサ7bの電位は、VCC電圧の2倍からダイオード7aの順方向電圧を引いた電位に上昇する。このとき、ブートストラップ電源6のコンデンサ6cの電位がVCC近辺のとき、スイッチ部6bはオンされる。
 図2は、ブラシレスDCモータ1の起動時の各スイッチング素子の駆動信号を示している。図2において、斜線部は、スイッチング素子がオンされるタイミングを示している。
 ブラシレスDCモータ1の起動時の制御について、図2を用いて説明する。ブラシレスDCモータ1が停止状態にあるとき、駆動信号Lin(図2におけるUn,Vn,Wn)にはロー信号が入力(区間A)されており、駆動部7cはGNDレベルに近い出力状態にある。また、コンデンサ7bはVCC電圧近くに充電されている。
 図2における区間Bは、ブートストラップ回路のコンデンサ6cの初期充電区間である。ブラシレスDCモータ1の駆動指令が発信されたとき、インバータ2の3相全ての低圧側スイッチング素子2b,2d,2fに発信される駆動信号Lin(Un,Vn,Wn)には、ハイ信号が入力される。これにより、低圧側スイッチング素子2b,2d,2fがオンされる。このとき、チャージポンプ電源7の駆動部7cからはハイ信号が出力され、コンデンサ7bの電位は、VCCの2倍からダイオード7aの電圧降下分低下した電位となり、ブートストラップ電源6のスイッチ部6bはオンされる。このとき、低圧側スイッチング素子2b,2d,2fはオン状態にあるため、ブートストラップ回路のコンデンサ6cの、スイッチング素子2a~2fとの結線側端子は、GNDレベルに近い電位となっている。従って、ブートストラップ回路のコンデンサ6cには、VCCから電荷が注入され充電されることで、高圧側素子駆動部4の電源電圧が確保され、高圧側スイッチング素子2aが駆動可能な状態となる。
 図2における区間Cは、区間Dで高圧側スイッチング素子を通電させるにあたり、同一相上下のスイッチング素子(図2においては、例えば、W相の高圧側スイッチング素子2eおよびW相の低圧側スイッチング素子2f)が同時通電状態にならないように設けられているデッドタイム区間である。この区間は、ハーフブリッジ構成のゲートドライバ等により上下同時通電を論理的に禁止する素子等が用いられる場合は不要である。
 図2における区間Dは、ブラシレスDCモータ1の、固定子1bの巻線の任意の相を通電させることにより、回転子1aの回転位置を所定の位置に固定させる「位置決め制御」区間である。この区間は、高圧側スイッチング素子2eおよび低圧側スイッチング素子2bがオン状態にある。
 このようにして、区間Dで回転子1aの磁極位置を所定の位置に決め、区間Eでは、あらかじめ定められたスイッチング素子の駆動(すなわち、通電を開始する巻線)パターンを切換えていくことにより、安定してモータを起動させ、運転させることができる。
 ブラシレスDCモータ1の巻線への通電が電気角150度以下の矩形波駆動では、高圧側または低圧側のどちらか一方のスイッチング素子を任意の周波数で任意のオンおよびオフ時間比率でスイッチングすることにより、ブラシレスDCモータ1への印加電圧が調整(PWM制御)される。
 高圧側スイッチング素子2a,2c,2eがオンされている間は、ブートストラップ電源6のコンデンサ6cの充電電荷の消費および放電により、コンデンサ6cの両端電圧の低下が伴う。従って、高圧側スイッチング素子2a,2c,2eの連続通電時間が長い場合、大容量のコンデンサ容量が必要(部品の大型化およびコストアップが必要)となる。このため、本実施の形態では、高圧側スイッチング素子2a,2c,2eをPWM制御によりオンおよびオフさせ、ブートストラップ電源6のコンデンサ6cの充電経路を設ける方式が用いられている。
 しかし、低圧側スイッチング素子2b,2d,2fのオン時間が長くなれば、チャージポンプ電源7のコンデンサ7bの非充電期間が長くなり、内部漏れ電流等による影響で電圧が低下する。
 従って、本実施の形態では、特に低圧側スイッチング素子2b,2d,2fのオン状態の時間(すなわち、チャージポンプ電源7のコンデンサ7bの非充電期間)が長い、「固定子の位置決め制御区間」および「起動後の低速駆動区間」では、高圧側の通電相の高圧側スイッチング素子2a,2c,2eとともに、低圧側の通電相の低圧側スイッチング素子2b,2d,2fも所定の時間間隔でオンおよびオフされるように、低圧側スイッチング素子2b,2d,2fがオン状態の時間およびオフ状態の時間が制御されて、チャージポンプ電源7のコンデンサ7bの充電期間が設けられている。
 図3は、本実施の形態における回転子1aの位置決め時の通電相(W相巻線からU相巻線に電流が流れる)のスイッチング素子のタイミングチャートである。Wpは、W相の高圧側スイッチング素子の駆動信号を示し、Unは、U相の低圧側スイッチング素子の駆動信号を示している。
 図3において、時間TはPWM周期、区間D1はW相高圧側スイッチング素子のオン区間、および、区間D2はU相低圧側スイッチング素子のオフ区間である。
 図3において、区間D2は、図1におけるLin信号がロー信号となり、チャージポンプ電源7の駆動部7cの出力信号もロー信号が出力される。これにより、コンデンサ7bは、VCCからの電流により充電されるため、位置決め制御中でも安定した電圧を確保できる。従って、ブートストラップ電源6のスイッチ部6bの駆動電源において安定した電圧が確保され、ブートストラップ電源6のスイッチ部6bを確実にオンおよびオフさせることができる。
 このように、位置決め制御において、高圧側スイッチング素子2a,2c,2eを確実にオン状態にすることができるため、起動時の位置決め制御において、確実に固定子1bを所定の位置に固定させることができる。これにより、ブラシレスDCモータ1の安定した起動性能を確保することが可能となる。
 なお、図3において、U相低圧側スイッチング素子のオンオフ周期は、W相高圧側のPWM周期と一致させているが、チャージポンプ電源7のコンデンサ7bの電荷が放電される時間として任意に設定しても構わない。
 以上のように、本実施の形態のモータ駆動装置は、永久磁石を有する回転子1aと、固定子1bとからなるブラシレスDCモータ1と、高圧側スイッチング素子(例えば2a)および低圧側スイッチング素子(例えば2b)を直列に接続させた1対のスイッチング素子を3対並列に接続させた両端に、直流電圧が入力され交流電圧が出力されるインバータ2とを有する。さらに、インバータ2の高圧側スイッチング素子(例えば2a)を駆動させるためのコンデンサ6cおよびスイッチ部6bを有するブートストラップ電源6と、ブートストラップ電源6のスイッチ部6bを駆動させるチャージポンプ電源7とを有する。
 本実施の形態のモータ駆動装置において、チャージポンプ電源7のコンデンサ7bは、インバータ2の低圧側スイッチング素子2b,2d,2fがオフされたときに充電される。また、インバータ2の低圧側スイッチング素子2b,2d,2fのオン時間が長い「固定子の位置決め制御区間」および「起動後の低速駆動区間」では、通電相の低圧側スイッチング素子も、オンされている時間が所定の時間より長くならないように制御されて、チャージポンプ電源7のコンデンサ7bが充電される。
 このような構成により、ブートストラップ電源6のスイッチ部6bを駆動させるチャージポンプ電源7は、安定して一定以上の電位を確保できるため、ブートストラップ電源6のスイッチ部6bを確実かつ安定的にオンさせることが可能となる。
 よって、インバータ2の高圧側スイッチング素子2a,2c,2eの駆動回路の電源において、一定以上の電位を安定して確保することができるため、高圧側スイッチング素子2a,2c,2eを確実にオンおよびオフ制御させることが可能となる。
 また、ブートストラップ電源6におけるダイオード6aに、高速スイッチング可能なMOSFETを用いた場合、MOSFETのゲート駆動を、低圧側スイッチング素子2b,2d,2fの駆動信号と同期させたチャージポンプ電源7の充電により行う構成とする。これにより、ブートストラップ回路とインバータ2のスイッチング素子の駆動部(高圧側素子駆動部4、低圧側素子駆動部5)とを1チップの集積回路化した素子を使用することが可能となる。これにより、回路の部品点数の削減、小型化および低コスト化を図ることができる。
 また、ブラシレスDCモータ1の起動時に、任意の固定子1bの巻線を通電させて回転子1aの回転位置を固定させる際に、インバータ2の、オン状態の低圧側スイッチング素子2b,2d,2fを任意の頻度でオフさせることにより、チャージポンプ電源7のコンデンサ7bが充電される。これにより、同一通電巻線を比較的長時間通電する必要がある回転子1aの位置決め時においても、チャージポンプ電源7のコンデンサ7bには十分な電荷がチャージされ、チャージポンプ電源7は所定の電圧を保持できる。従って、ブートストラップ電源6のスイッチ部6bは確実にオンされるため、インバータ2の高圧側スイッチング素子2a,2c,2eを確実に駆動させることができる。これにより、ブラシレスDCモータ1を安定して起動させることができる。
 (実施の形態2)
 つぎに、本発明の実施の形態2について説明する。実施の形態1と同様の構成についての説明は省略する。
 本発明の実施の形態2におけるモータ駆動装置のブロック図は、実施の形態1と同様、図1に示されている。
 また、実施の形態2におけるモータ駆動装置のブラシレスDCモータ1の起動時の制御は、基本的には図2に示される実施の形態1と同様の制御が行われるが、実施の形態2においては、実施の形態1で行なわれる制御に加えて、以下の制御が行われる。すなわち、実施の形態2ではさらに、低圧側スイッチング素子2b,2d,2fのオフ状態の時間に応じて高圧側スイッチング素子2a,2c,2eのオン状態の時間を補正して、通電時間を増やしている。このような構成とする理由は以下のとおりである。すなわち、低圧側スイッチング素子2b,2d,2fのオン状態の時間(すなわち、チャージポンプ電源7のコンデンサ7bの非充電期間)が長い、「固定子の位置決め制御区間」および「起動後の低速駆動区間」では、通電相の高圧側スイッチング素子とともに、通電相の低圧側スイッチング素子も所定の間隔でオンおよびオフされるようにすることにより、チャージポンプ電源7のコンデンサ7bの充電時間が設けられている。
 しかし、低圧側の通電相のスイッチング素子にオフ状態の時間を設けることは、ブラシレスDCモータ1の起動時の位置決め制御および低速駆動時のモータ巻線電流の低下を伴う。このため、低圧側スイッチング素子2b,2d,2fのオフ時間に応じて高圧側スイッチング素子2a,2c,2eのオン時間を補正して、通電時間を増やしている。このような制御により、起動時および低速駆動時の電流の低下を抑制することが可能となる。
 図4は、実施の形態2におけるスイッチング素子2a~2fの駆動信号生成部10のブロック図である。高圧側スイッチング素子2a,2c,2eのオン時間補正を含め、各スイッチング素子のオン信号およびオフ信号の生成方法を示している。
 図4において、駆動信号生成部10の出力は、インバータ2の各相(U相、V相、W相)、高圧側スイッチング素子2a,2c,2eの駆動信号Hinおよび低圧側スイッチング素子2b,2d,2fの駆動信号Linである。これらの出力信号により、スイッチング素子2a~2fがオンまたはオフされる。
 図4において、低圧側駆動波形生成部11は、低圧側素子オフ時間設定部12によるオフ状態の時間と、第2PWMタイマ17および転流周期指令部14によるモータ駆動速度に基づく転流周期とが入力されて、低圧側スイッチング素子2b,2d,2fの駆動信号が生成される。
 電圧指令部15は、あらかじめ設定された位置決め電流値、ブラシレスDCモータ1の起動時の起動トルクおよびブラシレスDCモータ1駆動時の速度フィードバック制御に基づいて、ブラシレスDCモータ1に印加すべき電圧を指示する。
 オン時間補正部16では、電圧指令部15により指示されたブラシレスDCモータ1に印加すべき電圧に、低圧側素子オフ時間設定部12で設定された、低圧側スイッチング素子2b,2d,2fのオフ時間を加味した補正値が付加されて、高圧側駆動波形生成部18に入力される。
 高圧側駆動波形生成部18では、第1PWMタイマ13と、転流周期指令部14によるブラシレスDCモータ1の駆動速度に基づく転流周期とが入力されて、高圧側スイッチング素子2a,2c,2eの駆動信号が生成される。
 出力相選択部19は、低圧側駆動波形生成部11と高圧側駆動波形生成部18の信号とが入力されて、3相交流電圧を生成するための出力パターンで各スイッチング素子のオン信号およびオフ信号が出力される。
 なお、図4において、第1PWMタイマおよび第2PWMタイマには、異なるタイマが使用されるように記載されているが、両タイマに共通のPWMタイマを用いても構わない。
 図5は、実施の形態2における位置決め時の通電相(W相巻線からU相巻線に電流を流す)のスイッチング素子のタイミングチャートである。WpがW相高圧側スイッチング素子、UnがU相低圧側スイッチング素子の駆動信号を示している。
 図5において、第1PWMタイマ13と第2PWMタイマ17は同じ周波数を有するものとしているが、異なる周波数を有するものとしても構わない。時間TはPWM周期であり、第1PWMタイマ13と第2PWMタイマ17の周期である。
 区間D1は、実施の形態2のモータ駆動装置の位置決め制御時およびモータ起動時におけるU相低圧側スイッチング素子のオフ区間である。区間D1は、チャージポンプ電源7のコンデンサ7bの充電時間として、低圧側素子オフ時間設定部12で設定される。区間D1では、図1におけるLin信号がロー信号となるため、チャージポンプ電源の駆動部7cはロー信号が出力される。このとき、コンデンサ7bは、VCCからPWM周期ごとに充電され、安定して十分な電位を確保できる。つまり、モータ位置決め制御時や起動直後の低速駆動時など、特定の巻線が長時間通電される区間であっても、低圧側スイッチング素子の定期的なオフ区間を設けることで、チャージポンプ電源7は十分な所定の電位が確保される。これにより、ブートストラップ電源6のスイッチ部6bを確実に駆動できる状態が確保される。
 区間D2は、電圧指令部15により設定された高圧側スイッチング素子のオン区間である。区間D2は、位置決め制御ではモータの回転子1aの位置を所定の位置に確実に固定させるために必要な電流をもとに、また位置決め後の起動では起動トルク(すなわち起動電流)をもとに、印加する電圧(すなわちPWMのオンデューティ)を予め設定しておく。また、区間D2は、インバータ2の入力電圧(図1におけるVDC)により調整する構成、あるいは、交流電源を整流平滑してVDCを生成している場合は交流電源電圧により調整する構成とすれば、インバータ2の入力電圧変動に影響せず、より確実なモータの起動性を確保できる。
 区間D3は、高圧側スイッチング素子2a,2c,2eのオン時間の補正区間である。区間D3は、低圧側素子オフ時間設定部12により設定された時間をもとに、オン時間補正部16において設定される。具体的には例えば、低圧側スイッチング素子2b,2d,2fのオフデューティが1%とされていた場合、オン時間補正部は、高圧側スイッチング素子2a,2c,2eのオンデューティの補正量を1%付加するよう補正量を設定する。このように、低圧側スイッチング素子2b,2d,2fのオフ区間に応じて、高圧側スイッチング素子2a,2c,2eのオン状態の時間に補正量を付加することで、低圧側スイッチング素子2b,2d,2fのオフ区間を設けることによる、モータ巻線に流れる電流の低下を抑制する。
 従って、区間D2と区間D3との和が高圧側スイッチング素子2a,2c,2eのオン区間となり、高圧側スイッチング素子2a,2c,2eのオン区間と、低圧側スイッチング素子2b,2d,2fのオフ区間の差を所定の時間だけ長くして、位置決め制御時の電流および起動時のトルクを確保し、ブラシレスDCモータ1の起動性を保持している。また、区間D2および区間D3は、低圧側スイッチング素子2b,2d,2fもオンされる区間である。区間D2および区間D3では、区間D1によりチャージポンプ電源7のコンデンサ7bが十分に充電されているため、ブートストラップ電源6のスイッチ部6bが駆動可能な状態にある。よって、区間D2および区間D3では、低圧側スイッチング素子2b,2d,2fがオンされて、ブートストラップ電源6のコンデンサ6cは第1の充電モードにより充電されることになる。
 区間D4は、高圧側スイッチング素子2a,2c,2eがオフ、低圧側スイッチング素子2b,2d,2fがオンの区間である。この区間は、高圧側スイッチング素子2a,2c,2eのターンオフにより、モータ巻線に蓄えられたエネルギーがW相低圧側スイッチング素子に逆並列で接続したダイオードを介して放出される区間である。ブートストラップ電源6のコンデンサ6cは、第2の充電モードにより充電される。
 なお、区間D4では、低圧側スイッチング素子2b,2d,2fの駆動信号Linはハイ信号であり、チャージポンプ電源7のコンデンサ7bは充電されない一方で、内部の漏れ電流等による電荷放出により電位が下降していく。しかし、低圧側スイッチング素子2b,2d,2fのオフ周期(図5における時間T)を、チャージポンプ電源7のコンデンサ7bがブートストラップ電源6のスイッチ部6bの駆動に必要な電位以下に放電される時間より短くする。これにより、チャージポンプ電源7のコンデンサ7b電位を、安定して所定の電位以上で確保することができる。このようなオンおよびオフ制御により、ブートストラップ電源6を確実に動作させ、高圧側スイッチング素子2a,2c,2eの駆動電圧を安定的に確保することができる。これにより、ブラシレスDCモータ1の回転子1aの確実な位置決めの実現および適正な起動トルクが確保され、ブラシレスDCモータ1を確実かつ安定的に起動させることができる。
 なお、図5において、U相低圧側スイッチング素子のオンおよびオフ周期をW相高圧側のPWM周期と一致させているが、チャージポンプ電源7のコンデンサ7bの電荷が放電される時間として任意に設定しても構わない。
 以上のように、本実施の形態のモータ駆動装置は、永久磁石を有する回転子1aと、固定子1bとからなるブラシレスDCモータ1と、高圧側スイッチング素子(例えば2a)および低圧側スイッチング素子(例えば2b)を直列に接続させた1対のスイッチング素子を3対並列に接続させた両端に、直流電圧が入力されて交流電圧が出力されるインバータ2とをそなえる。さらに、インバータ2の高圧側スイッチング素子(例えば2a)を駆動させるためのコンデンサ6cおよびスイッチ部6bを有するブートストラップ電源6と、ブートストラップ電源6のスイッチ部6bを駆動させるチャージポンプ電源7と、高圧側スイッチング素子(例えば2a)のオン状態の時間を補正するオン時間補正部16とを有する。
 本実施の形態のモータ駆動装置において、チャージポンプ電源7のコンデンサ7bは、インバータ2の低圧側スイッチング素子2b,2d,2fがオフ状態のときに充電される。また、チャージポンプ電源7のコンデンサ7bは、ブラシレスDCモータ1の起動時の、任意の固定子1bの巻線を通電して回転子1aの磁極位置を所定の位置に固定させる際に、低圧側スイッチング素子2b,2d,2fのオン状態の時間が所定の時間より長くならないように、インバータ2のオン状態の低圧側スイッチング素子2b,2d,2fを任意の頻度でオフさせることにより充電される。これとともに、本実施の形態のモータ駆動装置においては、オン時間補正部16により、高圧側スイッチング素子2a,2c,2eのオン状態の時間が補正される。高圧側スイッチング素子2a,2c,2eのオン状態の時間が補正されることにより、低圧側スイッチング素子2b,2d,2fがオフ状態になることに伴う、モータ起動時の位置決め制御および低速駆動時のモータ電流の低下が抑制される。
 このような構成により、所定の巻線を一定時間通電させて、ブラシレスDCモータ1の磁極位置を固定させる位置決め制御時や、ブラシレスDCモータ1の起動直後の運転時においても、チャージポンプ電源7のコンデンサ7bには十分な電荷がチャージされ所定の電圧を保持できる。また、所定の位置決め電流を確保することができ、ブラシレスDCモータ1の回転子1aの確実な位置決めおよび所定の起動トルクの確保が可能となる。これにより、ブラシレスDCモータ1の確実な起動を実現できる。
 さらに、ブートストラップ回路に用いられるダイオード6aに、高速スイッチングが可能なMOSFETを用いた場合、MOSFETのゲート駆動を低圧側スイッチング素子2b,2d,2fの駆動信号と同期させたチャージポンプ電源7の充電により行う構成とすることもできる。これにより、ブートストラップ回路とインバータ2のスイッチング素子の駆動部(高圧側素子駆動部4、低圧側素子駆動部5)とを1チップの集積回路化した素子を使用することが可能となり、回路の部品点数の削減、小型化および低コスト化を図ることができる。
 以上述べたように、本発明の実施の形態1のモータ駆動装置は、永久磁石を有する回転子1aと、固定子1bとからなるブラシレスDCモータ1と、高圧側スイッチング素子(例えば2a)および低圧側スイッチング素子(例えば2b)を直列に接続させた1対のスイッチング素子を3対並列に接続させた両端に、直流電圧が入力されて交流電圧が出力されるインバータ2とを備える。さらに、インバータ2の高圧側スイッチング素子(例えば2a)を駆動させるためのコンデンサ6cおよびスイッチ部6bを有するブートストラップ電源6と、ブートストラップ電源6のスイッチ部6bを駆動させるチャージポンプ電源7とを有する。
 本発明の実施の形態1のモータ駆動装置においては、チャージポンプ電源7のコンデンサ7bは、インバータ2の低圧側スイッチング素子2b,2d,2fがオフ状態のときに充電される。さらに、低圧側スイッチング素子2b,2d,2fのオンされている時間が所定の時間より長くならないように、低圧側スイッチング素子2b,2d,2fのオン状態の時間およびオフ状態の時間が制御されて、チャージポンプ電源7のコンデンサ7bが充電される構成となっている。このような構成により、チャージポンプ電源7のコンデンサ7bには、定期的に電荷がチャージされ、チャージポンプ電源7の電圧は、所定の電圧を安定的に保持できる。従って、ブートストラップ電源6のスイッチ部6bは確実にオンされる。このため、インバータ2の高圧側スイッチング素子2a,2c,2eを確実に駆動できるようになる。これにより、ブラシレスDCモータ1を安定して駆動することができる。
 さらに、本発明の実施の形態1のモータ駆動装置は、ブラシレスDCモータ1の起動時に、任意の固定子1bの巻線を通電させて、回転子1aの回転位置を所定の位置に固定させる際に、インバータ2のオン状態の低圧側スイッチング素子2b,2d,2fを任意の頻度でオフさせる制御を行うことにより、チャージポンプ電源7のコンデンサ7bを充電させている。これにより、同一通電巻線を比較的長時間通電する必要がある回転子1aの位置決め時においても、チャージポンプ電源7のコンデンサ7bには十分な電荷がチャージされ、チャージポンプ電源7は所定の電圧を保持できる。従って、ブートストラップ電源6のスイッチ部6bは確実にオンされる。このため、インバータ2の高圧側スイッチング素子2a,2c,2eを確実に駆動できるようになり、ブラシレスDCモータ1を安定して起動させることができる。
 また、本発明の実施の形態2のモータ駆動装置は、永久磁石を有する回転子1aと、固定子1bとからなるブラシレスDCモータ1と、高圧側スイッチング素子(例えば2a)および低圧側スイッチング素子(例えば2b)を直列に接続させた1対のスイッチング素子を3対並列に接続させた両端に、直流電圧が入力されて交流電圧が出力されるインバータ2とを備える。さらに、インバータ2の高圧側スイッチング素子(例えば2a)を駆動させるためのコンデンサ6cおよびスイッチ部6bを有するブートストラップ電源6と、ブートストラップ電源6のスイッチ部6bを駆動させるチャージポンプ電源7と、高圧側スイッチング素子(例えば2a)のオン状態の時間を補正するオン時間補正部16とを有する。チャージポンプ電源7のコンデンサ7bは、インバータ2の低圧側スイッチング素子2b,2d,2fがオフ状態のときに充電される。また、チャージポンプ電源7のコンデンサ7bは、ブラシレスDCモータ1の起動時の、任意の固定子1bの巻線を通電させて回転子1aの磁極位置を所定の位置に固定させる際に、インバータ2の低圧側スイッチング素子2b,2d,2fのオンされている時間が所定の時間より長くならないように、オン状態の低圧側スイッチング素子2b,2d,2fを任意の頻度でオフさせることにより、充電される。また、オン時間補正部16により、高圧側スイッチング素子2a,2c,2eのオン時間が補正される。
 これにより、所定の巻線を一定期間通電して、ブラシレスDCモータ1の磁極位置を固定させる位置決め制御時においても、チャージポンプ電源7のコンデンサ7bには、十分な電荷がチャージされ所定の電圧を保持できる。とともに、低圧側スイッチング素子2b,2d,2fがオフ状態になることに伴う位置決め電流の低下を、高圧側スイッチング素子2a,2c,2eのオン状態の時間を補正することにより抑制できる。このため、ブラシレスDCモータ1の回転子1aを確実に所定の位置に固定させることができるので、ブラシレスDCモータ1の確実な起動を実現できる。
 さらに、本発明の実施の形態2のモータ駆動装置は、ブートストラップ回路のダイオード6aとして高速スイッチングが可能なMOSFETを用い、MOSFETのゲート駆動を低圧側スイッチング素子2b,2d,2fの駆動信号と同期させたチャージポンプ電源7の充電により行う構成とすることもできる。この場合、ブートストラップ回路およびインバータ2のスイッチング素子の駆動部(高圧側素子駆動部4、低圧側素子駆動部5)を集積回路化した半導体素子を使用することが可能となり、回路の部品点数の削減、小型化および低コスト化を図ることができる。
 以上のように、本発明によるモータ駆動装置は、3相ブラシレスDCモータをインバータ制御により駆動させるあらゆる機器、例えば洗濯機などの制御の用途に適用できる。
 1  ブラシレスDCモータ
 1a  回転子
 1b  固定子
 2  インバータ
 2a  高圧側スイッチング素子
 2b  低圧側スイッチング素子
 2c  高圧側スイッチング素子
 2d  低圧側スイッチング素子
 2e  高圧側スイッチング素子
 2f  低圧側スイッチング素子
 2h  ダイオード
 3  ドライブ回路
 4  高圧側素子駆動部
 5  低圧側素子駆動部
 6  ブートストラップ電源
 6a  ダイオード
 6b  スイッチ部
 6c  コンデンサ
 7  チャージポンプ電源
 7a  ダイオード
 7b  コンデンサ
 7c  駆動部
 10  駆動信号生成部
 11  低圧側駆動波形生成部
 12  低圧側素子オフ時間設定部
 13  第1PWMタイマ
 14  転流周期指令部
 15  電圧指令部
 16  オン時間補正部
 17  第2PWMタイマ
 18  高圧側駆動波形生成部
 19  出力相選択部

Claims (3)

  1. 永久磁石を有する回転子と、固定子とからなるブラシレスDCモータと、
    高圧側スイッチング素子および低圧側スイッチング素子を直列に接続させた1対のスイッチング素子を3対並列に接続させた両端に、直流電圧を入力させ交流電圧を出力させるインバータと、
    前記インバータの前記高圧側スイッチング素子を駆動させるためのコンデンサ、および、スイッチ部を有するブートストラップ電源と、
    前記ブートストラップ電源の前記スイッチ部を駆動させるチャージポンプ電源とを有し、
    前記チャージポンプ電源の前記コンデンサは、前記インバータの前記低圧側スイッチング素子がオフ状態のときに充電され、
    前記低圧側スイッチング素子のオンされている時間が所定の時間より長くならないように、前記低圧側スイッチング素子のオン状態の時間およびオフ状態の時間が制御されて、前記チャージポンプ電源の前記コンデンサが充電されるモータ駆動装置。
  2. 前記ブラシレスDCモータの起動時に、前記固定子の任意の巻線を通電させ、前記インバータのオン状態の前記低圧側スイッチング素子を任意の頻度でオフさせて、前記チャージポンプ電源の前記コンデンサを充電させる請求項1に記載のモータ駆動装置。
  3. 前記インバータの前記高圧側スイッチング素子のオン状態の時間を補正するオン時間補正部をさらに有し、
    前記オン時間補正部により前記インバータの前記高圧側スイッチング素子の前記オン状態の時間が補正される請求項1または2に記載のモータ駆動装置。
PCT/JP2015/000005 2014-01-20 2015-01-05 モータ駆動装置 WO2015107867A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201590000243.3U CN206041860U (zh) 2014-01-20 2015-01-05 电机驱动装置
BR212016016507-7U BR212016016507Y1 (pt) 2014-01-20 2015-01-05 dispositivo de acionamento de motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-007496 2014-01-20
JP2014007496A JP6303128B2 (ja) 2014-01-20 2014-01-20 モータ駆動装置
JP2014044591A JP6303129B2 (ja) 2014-03-07 2014-03-07 モータ駆動装置
JP2014-044591 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015107867A1 true WO2015107867A1 (ja) 2015-07-23

Family

ID=53542764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000005 WO2015107867A1 (ja) 2014-01-20 2015-01-05 モータ駆動装置

Country Status (3)

Country Link
CN (1) CN206041860U (ja)
BR (1) BR212016016507Y1 (ja)
WO (1) WO2015107867A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602900A (zh) * 2015-10-19 2017-04-26 中兴通讯股份有限公司 一种高低边自举驱动控制方法及装置
US11139770B2 (en) 2020-01-30 2021-10-05 Chicony Power Technology Co., Ltd. Gate driving circuit applied to motor inverter and gate driving method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646632A (zh) * 2018-06-25 2018-10-12 湖北三江航天红峰控制有限公司 一种舵伺服系统驱动控制电路及控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078305A (ja) * 2009-09-29 2011-04-14 Stmicroelectronics Srl トランジスタハーフブリッジ回路の中点電圧検知装置
JP2011234594A (ja) * 2010-04-30 2011-11-17 Daikin Ind Ltd 多相モータ駆動方法、多相モータ駆動システム及びヒートポンプ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078305A (ja) * 2009-09-29 2011-04-14 Stmicroelectronics Srl トランジスタハーフブリッジ回路の中点電圧検知装置
JP2011234594A (ja) * 2010-04-30 2011-11-17 Daikin Ind Ltd 多相モータ駆動方法、多相モータ駆動システム及びヒートポンプ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602900A (zh) * 2015-10-19 2017-04-26 中兴通讯股份有限公司 一种高低边自举驱动控制方法及装置
US11139770B2 (en) 2020-01-30 2021-10-05 Chicony Power Technology Co., Ltd. Gate driving circuit applied to motor inverter and gate driving method

Also Published As

Publication number Publication date
BR212016016507Y1 (pt) 2020-06-30
BR212016016507U2 (pt) 2018-05-15
CN206041860U (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
KR101266733B1 (ko) 발전 전동기 구동 장치 및 발전 전동기 구동 장치의 커패시터의 전하 방전 방법
US8860344B2 (en) Method for implementing bootstrap-supply charging in a motor controller at energized motor and motor controller using such a method
JP2010081786A (ja) パワースイッチング回路
KR101853600B1 (ko) 충전 공용 인버터
JPH118910A (ja) ハイブリッド電気自動車の電源装置
KR20070042401A (ko) 인버터 압축기의 예열 장치 및 그 방법
JP2014236556A (ja) スイッチトリラクタンスモータのpam駆動装置
WO2015107867A1 (ja) モータ駆動装置
JP6303129B2 (ja) モータ駆動装置
JP4300209B2 (ja) インバータ装置
US9407168B2 (en) Power converting circuit
JP2003259689A (ja) 電力変換装置
JP2011010380A (ja) 直流電力変換装置
JP6303128B2 (ja) モータ駆動装置
US9407180B2 (en) Power converting circuit
Dahmane et al. A novel boost capacitor circuit to enhance the performance of the switched reluctance motor
JP2003324986A (ja) 三相ブラシレスdcモータの制御方法
JP4622435B2 (ja) インバータ制御装置および密閉型電動圧縮機
JP2020150711A (ja) 洗濯機
JP2010104076A (ja) 電力変換回路
WO2017133786A1 (en) Dual unipolar and bipolar double or triple brushless dc motor inverter topology
KR100259805B1 (ko) 단상에스알엠및그구조
KR20070065695A (ko) 에스알엠 인버터 및 그 구동 방법
JP6792971B2 (ja) 双方向dc‐dcコンバータ装置及びその制御方法
JPH08149896A (ja) 直流発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15736955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15736955

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 212016016507

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 212016016507

Country of ref document: BR

Effective date: 20160715