WO2015107655A1 - Optical measuring apparatus - Google Patents

Optical measuring apparatus Download PDF

Info

Publication number
WO2015107655A1
WO2015107655A1 PCT/JP2014/050692 JP2014050692W WO2015107655A1 WO 2015107655 A1 WO2015107655 A1 WO 2015107655A1 JP 2014050692 W JP2014050692 W JP 2014050692W WO 2015107655 A1 WO2015107655 A1 WO 2015107655A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting element
optical
measurement
Prior art date
Application number
PCT/JP2014/050692
Other languages
French (fr)
Japanese (ja)
Inventor
望月 学
昭一 藤森
Original Assignee
パイオニア株式会社
株式会社パイオニアFa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 株式会社パイオニアFa filed Critical パイオニア株式会社
Priority to PCT/JP2014/050692 priority Critical patent/WO2015107655A1/en
Priority to JP2015557637A priority patent/JP6277206B2/en
Priority to TW104101581A priority patent/TWI608222B/en
Publication of WO2015107655A1 publication Critical patent/WO2015107655A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0242Control or determination of height or angle information of sensors or receivers; Goniophotometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0254Spectrometers, other than colorimeters, making use of an integrating sphere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0289Field-of-view determination; Aiming or pointing of a spectrometer; Adjusting alignment; Encoding angular position; Size of measurement area; Position tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/505Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors measuring the colour produced by lighting fixtures other than screens, monitors, displays or CRTs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4247Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources
    • G01J2001/4252Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources for testing LED's

Definitions

  • the present invention relates to an optical measuring device.
  • Patent Document 1 discloses an inspection apparatus that performs an optical inspection of a plurality of LEDs (Light Emitting Diodes).
  • an object of the present invention is to solve the above-described problems. That is, an example of the subject of the present invention is to provide an optical measuring device capable of measuring the optical characteristics of a light emitting element with a simple configuration with high accuracy.
  • An optical measurement apparatus includes a light receiving element that detects light emitted from one light emitting element arranged adjacent to another light emitting element, and the light receiving element includes the one light emitting element.
  • the light emitted from the one light emitting element is detected by supplying power to the light, the light emitted from the other light emitting element is emitted by the light emitted from the one light emitting element, and the one light emitting element emits light.
  • the light reflected by the other light emitting element is not detected.
  • FIG. 1 shows a light emission state of a light emitting element measured by an optical measuring device.
  • FIG. 2 schematically shows the configuration of the optical measurement apparatus.
  • FIG. 3A shows an enlarged view of an optical fiber and a light emitting element included in the optical measuring device.
  • FIG. 3B shows a view of the light emitting device shown in FIG. 3A viewed from the direction of the light emission central axis.
  • FIG. 4 is a diagram for explaining Example 1 of the adjusting unit of the optical measuring device.
  • FIG. 5 is a diagram for explaining another example 2 of the adjusting unit of the optical measuring device.
  • FIG. 6 is a diagram for explaining measurement conditions when measuring the optical characteristics of the light-emitting element with an optical measurement device.
  • FIG. 7A is a measurement result relating to the chromaticity of the light emitting element shown in FIG. 6, and shows chromaticity coordinates x in the CIE-XYZ color system.
  • FIG. 7B is a measurement result regarding the chromaticity of the light emitting element shown in FIG. 6, and shows chromaticity coordinates y in the CIE-XYZ color system.
  • FIG. 8 shows a measurement result regarding the amount of light of the light emitting element shown in FIG.
  • FIG. 9A is a diagram for explaining an optical measurement apparatus that simultaneously measures the optical characteristics of a plurality of light emitting elements arranged with a plurality of light emitting elements.
  • FIG. 9B shows a view of the light emitting element shown in FIG. 9A viewed from the direction of the light emission central axis.
  • FIG. 10A is a diagram for explaining a first modification of the optical measuring device.
  • FIG. 10B shows a view of the light emitting element and the bundle fiber shown in FIG. 10A viewed from the direction of the light emission central axis.
  • FIG. 10C shows a view for explaining another cross-sectional shape of the bundle fiber shown in FIGS. 10A and 10B.
  • FIG. 11 is a diagram for explaining a second modification of the optical measuring device.
  • FIG. 12A is a diagram for explaining a third modification of the optical measuring device.
  • FIG. 12B is a view for explaining light refraction in the lens shown in FIG. 12A.
  • FIG. 13A is a diagram for explaining a fourth modification of the optical measuring device.
  • FIG. 13B shows a view of the light emitting element and the bundle fiber shown in FIG. 13A viewed from the direction of the light emission central axis.
  • FIG. 14A is a diagram for explaining a fifth modification of the optical measuring device.
  • FIG. 14B is a diagram for explaining another example 1 in the fifth modification of the optical measuring device.
  • FIG. 14C shows a diagram for explaining another example 2 of the modification 5 of the optical measuring device.
  • FIG. 15A is a diagram for explaining a sixth modification of the optical measuring device.
  • FIG. 15B shows a view of the light receiving element of the photodetector shown in FIG. 15A viewed from the direction of the light emission central axis.
  • FIG. 15B shows a view of the light receiving element of the photodetector shown in FIG. 15A viewed from the direction of the light emission central axis.
  • FIG. 16 is a diagram for explaining a modified example 7 of the optical measuring device.
  • FIG. 17 is a diagram for explaining a modification 8 of the optical measuring device.
  • FIG. 18 is a diagram for explaining a modification 9 of the optical measuring device.
  • FIG. 19A is a diagram for explaining a modified example 10 of the optical measuring device.
  • FIG. 19B shows the shielding plate and the light emitting element shown in FIG. 19A viewed from the direction of the light emission central axis.
  • FIG. 20 is a diagram for explaining another example of the modification 10 of the optical measuring device.
  • FIG. 21 is a diagram for explaining a modification 11 of the optical measuring device 3.
  • FIG. 22 is a flowchart for explaining processing performed by the control unit 151 shown in FIG. 21 when measuring optical characteristics.
  • FIG. 23 is a diagram for explaining another example of the modification 11 of the optical measuring device 3.
  • FIG. 1 shows a light emission state of the light emitting element 101 measured by the optical measuring device 3.
  • the light-emitting element 101 includes at least an electrode and a light-emitting portion, and emits light in a specific wavelength region when power is supplied.
  • the light emitting element 101 is, for example, a light emitting diode. As shown in FIG. 1A, the light emitting element 101 emits light radially from the light emitting surface 101a.
  • the light emitting surface 101 a is located on the surface of the light emitting element 101.
  • the normal line of the light emitting surface 101a of the light emitting element 101 is referred to as a light emission central axis LCA.
  • the light emitting surface 101a is the surface of the light emitting element 101 on the positive direction side of the light emission central axis LCA in FIG.
  • a counterclockwise angle from the x axis on the plane is defined as ⁇ .
  • an angle formed with the light emission center axis LCA when ⁇ is fixed.
  • the intensity of light emitted from the light emitting element 101 and emitted from the light emitting surface 101a varies depending on the angle ⁇ from the light emission center axis LCA and the like.
  • the amount of light is calculated for the back side of the light emitting element 101 by integrating all the intensities of light within the range of ⁇ values of 0 ° to 90 ° for ⁇ values of 0 ° to 360 °. It is the added value. Knowing this amount of light makes it possible to inspect whether or not the light emitting element 101 is suitable for various uses.
  • the intensity of light emitted from the light emitting element 101 has different values for each of ⁇ and ⁇ .
  • a diagram as shown in FIG. 1B is used.
  • FIG. 1C is a cross-sectional view at a position where the value of ⁇ is constant.
  • the light intensity at the same distance from the light emitting element 101 and at the position of the angle ⁇ from the light emission central axis LCA is defined as the light distribution intensity E ( ⁇ ).
  • This light distribution intensity E ( ⁇ ) corresponding to each ⁇ is illustrated as a light distribution intensity distribution.
  • the amount of light on the back side of the light emitting element 101 can be obtained by multiplying K ( ⁇ ) by a constant coefficient ⁇ . Then, the light amount of the light emitting element 101 can be obtained by adding the light amount K ( ⁇ ) on the front surface side and the light amount K ( ⁇ ) ⁇ ⁇ on the back surface side. Note that it is known that the difference between the light amount on the front surface side and the light amount on the back surface side of the light emitting element 101 is substantially constant in the light emitting element 101 manufactured in the same process. For this reason, if the coefficient ⁇ is obtained by actually measuring the light amount of one light emitting element 101, the same value can be applied to the other light emitting elements 101.
  • the light emitting element 101 can be considered as a point by measuring at a position sufficiently far from the light emitting element 101. Since the light emitting element 101 is extremely small as compared with the normal photodetector 105 or the like (see FIG. 2), it can be assumed in this way. The same applies to the description after FIG. 2 unless otherwise specified.
  • FIG. 2 schematically shows the configuration of the optical measuring device 3.
  • the optical measuring device 3 is a device that measures the optical characteristics of the light emitted from the light emitting element 101.
  • the optical characteristics measured by the optical measuring device 3 include at least the light amount, wavelength, and chromaticity of the light emitted from the light emitting element 101.
  • the optical measuring device 3 can be applied to an inspection device used in an inspection process included in the manufacturing process of the light emitting element 101.
  • the optical measuring device 3 can measure electrical characteristics in addition to the optical characteristics of the light emitting element 101.
  • the optical measurement device 3 includes a table 103, a probe needle 109, an optical fiber 117, a signal line 111, a photodetector 105, an amplifier 113, a spectroscope 121, an electrical characteristic measurement unit 125, a control unit 151, And at least an output unit 163.
  • the table 103 is a measurement sample stage on which the light emitting element 101 to be measured is placed.
  • the table 103 has a substantially uniform flat plate shape and is installed substantially horizontally.
  • the table 103 and the light emitting element 101 mounted thereon are substantially parallel to each other.
  • the table 103 includes at least a glass table 103a and a dicing sheet 103b.
  • the glass table 103a is formed in a substantially uniform flat plate shape using a light transmitting material such as sapphire or glass.
  • the dicing sheet 103b has adhesiveness on the surface and is laminated on the glass table 103a.
  • the light emitting element 101 is placed on the dicing sheet 103b.
  • the table 103 having the dicing sheet 103b can easily transfer the light emitting element 101 to the table 103 at the time of measurement, and can suppress displacement.
  • the light emitting element 101 when a plurality of the light emitting elements 101 are arranged in advance on the dicing sheet 103b, the light emitting element 101 and the dicing sheet 103b may be collectively placed on the glass table 103a. Good.
  • the probe needle 109 supplies power to the light emitting element 101 to cause the light emitting element 101 to emit light.
  • the probe needles 109 extend radially in a direction perpendicular to the normal line of the light emitting element 101 substantially parallel to the light emitting surface 101 a of the light emitting element 101.
  • the probe needle 109 in FIG. 2 applies a voltage in contact with the electrode of the light emitting element 101 when measuring the optical characteristics of the light emitting element 101.
  • the probe needle 109 is connected to the electrical characteristic measuring unit 125, and the electrical characteristics of the light emitting element 101 can be measured simultaneously.
  • the probe needle 109 is disposed on the upper surface, the lower surface, or both surfaces of the light emitting element 101 according to the position of the electrode of the light emitting element 101.
  • the probe needle 109 When the probe needle 109 is brought into contact with the light emitting element 101, the probe needle 109 may be moved while the table 103 and the light emitting element 101 are fixed. Conversely, the table 103 and the light emitting element 101 may be moved while the probe needle 109 is fixed.
  • the optical fiber 117 takes in the light emitted from the light emitting element 101 and guides it to the photodetector 105 and the spectroscope 121.
  • the optical fiber 117 takes in light with a predetermined numerical aperture.
  • the optical fiber 117 includes a head 117a, an optical transmission path 117b, and an incident port 117c.
  • the head 117a is a part that captures light.
  • the head 117a is formed in a cylindrical shape.
  • An incident port 117c which is an opening for allowing light to enter, is provided at the tip of the head 117a.
  • the head 117 a is disposed so that the incident port 117 c faces the light emitting surface 101 a of the light emitting element 101.
  • the central axis of the incident port 117c substantially coincides with the light emission central axis LCA of the light emitting element 101 to be measured.
  • the central axis of the head 117a substantially coincides with the central axis of the incident port 117c.
  • the incident port 117c allows light in a range corresponding to a predetermined numerical aperture of the optical fiber 117 to enter.
  • the optical transmission path 117b optically connects the end of the head 117a provided with the incident port 117c on the side opposite to the tip, and the photodetector 105 and the spectroscope 121.
  • the optical transmission path 117 b guides the light incident from the incident port 117 c to the photodetector 105 and the spectroscope 121.
  • the light transmission path 117b totally reflects the light incident from the incident port 117c and guides the light to the photodetector 105 and the spectroscope 121 while suppressing transmission loss as much as possible.
  • the photodetector 105 detects the light emitted from the light emitting element 101 by the light receiving element 105a via the optical fiber 117, and measures the optical characteristics thereof.
  • the optical characteristics measured by the photodetector 105 include at least the amount of light emitted from the light emitting element 101.
  • the light receiving element 105a When light is incident, the light receiving element 105a generates a charge corresponding to the incident light by photoelectric conversion.
  • the light receiving element 105a may be, for example, a photodiode.
  • the photodetector 105 integrates all the light intensities of the incident light incident on the light receiving element 105a to obtain the amount of incident light.
  • the photodetector 105 generates an electrical signal according to the obtained light amount.
  • the photodetector 105 outputs the generated electric signal to the amplifier 113 via the signal line 111. This electric signal corresponds to the light amount information measured by the photodetector 105.
  • the amplifier 113 amplifies the electrical signal output from the photodetector 105 and outputs the amplified signal to the control unit 151.
  • the spectroscope 121 detects the light emitted from the light emitting element 101 by the light receiving element 121a via the optical fiber 117, and measures the optical characteristics thereof.
  • the optical characteristics measured by the spectroscope 121 include at least the light amount, wavelength, and chromaticity of the light emitted from the light emitting element 101.
  • the light receiving element 121a When light is incident, the light receiving element 121a generates a charge corresponding to the incident light by photoelectric conversion.
  • the light receiving element 121a may be, for example, a CCD (Charge Coupled Device), a photodiode array, or the like.
  • the spectroscope 121 wavelength-disperses incident light incident on the light receiving element 121a, and obtains the light intensity for each dispersed wavelength.
  • the light intensity for each wavelength corresponds to the wavelength spectrum information of the incident light.
  • the spectroscope 121 calculates component ratios of tristimulus values of red (R), green (G), and blue (B) from the wavelength spectrum information, and obtains the chromaticity of incident light.
  • the spectroscope 121 integrates the light intensity for each dispersed wavelength to obtain the amount of incident light.
  • the spectroscope 121 can obtain other optical characteristics as necessary.
  • the spectroscope 121 generates an electrical signal corresponding to the obtained various optical characteristics.
  • the spectroscope 121 outputs the generated electrical signal to the control unit 151 via the signal line 111. This electrical signal corresponds to wavelength spectrum information, chromaticity information, light amount information, and the like measured by the spectroscope 121.
  • the electrical property measurement unit 125 includes at least a positioning unit 159, an HV unit 153, an ESD unit 155, and a switching unit 157.
  • the positioning unit 159 positions and fixes the probe needle 109. Specifically, the positioning unit 159 has a function of holding the tip position of the probe needle 109 at a fixed position as long as the table 103 moves. Conversely, if the positioning unit 159 is of a type in which the probe needle 109 moves, the position of the tip of the probe needle 109 is moved to a predetermined position on the table 103 on which the light emitting element 101 is placed, and then the position It has the function to hold.
  • the HV unit 153 applies a rated voltage and detects various electrical characteristics of the light emitting element 101 with respect to the rated voltage.
  • the photodetector 105 and the spectroscope 121 measure the light emitted from the light emitting element 101 in a state where the voltage from the HV unit 153 is applied.
  • Various characteristic information detected by the HV unit 153 is output to the control unit 151.
  • the ESD unit 155 is a unit for inspecting whether or not electrostatic discharge is caused by applying a large voltage to the light emitting element 101 for an instant to cause electrostatic discharge.
  • the electrostatic breakdown information detected by the ESD unit 155 is output to the control unit 151.
  • the switching unit 157 switches between the HV unit 153 and the ESD unit 155.
  • the voltage applied to the light emitting element 101 via the probe needle 109 is changed by the switching unit 157. And by this change, the inspection item of the light emitting element 101 is changed to detect various characteristics at the rated voltage or to detect the presence or absence of electrostatic breakdown.
  • the control unit 151 comprehensively controls the operation of the optical measurement device 3.
  • the control unit 151 receives light amount information measured by the photodetector 105.
  • the control unit 151 receives wavelength spectrum information, chromaticity information, and light amount information measured by the spectroscope 121.
  • the control unit 151 receives various electrical characteristic information output by the HV unit 153.
  • the control unit 151 receives the electrostatic breakdown information detected by the ESD unit 155.
  • the control unit 151 separates and analyzes various characteristics of the light emitting element 101 from these inputs. After analyzing the various characteristics, the control unit 151 outputs the analysis result from the output unit 163 such as image output. Furthermore, the control part 151 controls each component of the optical measuring device 3 as needed based on the analysis result.
  • FIG. 3A shows an enlarged view of the optical fiber 117 and the light emitting element 101 included in the optical measuring device 3.
  • FIG. 3B shows a view of the light emitting element 101 shown in FIG. 3A viewed from the direction of the light emission central axis LCA.
  • the light emitting element 101 is an element that emits light in a specific wavelength region when power is supplied. Light in a specific wavelength region exhibits a specific color.
  • the light emitting element 101 of the present embodiment generates light exhibiting a specific color, converts the wavelength of the generated light into light exhibiting another color, and then emits the light to the outside. That is, the light emitting element 101 of the present embodiment emits light having a color different from the color of the generated light.
  • the light emitting element 101 may be, for example, a pseudo white light emitting diode in which a blue light emitting diode is covered with a yellow phosphor.
  • the light emitting element 101 of the present embodiment includes at least a generation unit 101b and a wavelength conversion unit 101c.
  • the generator 101b generates light in a specific wavelength region when power is supplied.
  • the generation unit 101b emits the generated light.
  • the generation unit 101b may be a member using an electroluminescence phenomenon.
  • the generation unit 101b may be a light emitting diode, for example.
  • the generation unit 101b may be a blue light emitting diode, for example.
  • the wavelength converter 101c converts the wavelength of the incident light.
  • the wavelength conversion unit 101c emits the wavelength-converted light to the outside.
  • the wavelength conversion unit 101c may be a member using a photoluminescence phenomenon.
  • the wavelength conversion unit 101c may be a phosphor, for example.
  • the wavelength conversion unit 101c may be a yellow phosphor, for example.
  • the wavelength conversion unit 101c is provided so as to cover the surface of the generation unit 101b. At this time, the light emitted from the generation unit 101b is incident on the wavelength conversion unit 101c.
  • the wavelength converter 101c converts the wavelength of the incident light and emits it to the outside.
  • the color of the light emitted from the wavelength conversion unit 101c to the outside is different from the color of the light emitted from the generation unit 101b.
  • the blue light emitted from the generation unit 101b is incident on the wavelength conversion unit 101c.
  • the wavelength converting unit 101c absorbs a part of the incident blue light and enters an excited state to emit yellow light when transitioning to the ground state. Then, the wavelength conversion unit 101c emits white light, which is a mixture of the yellow light and the blue light that has not been absorbed, to the outside. That is, the light emitted from the light emitting element 101 is white light emitted from the wavelength conversion unit 101c.
  • a plurality of light emitting elements 101 are arranged in a grid pattern.
  • the light emitting element 101 is manufactured by dicing the semiconductor wear stuck on the dicing sheet and dividing it into a plurality of chips.
  • a plurality of light emitting elements 101 after dicing are arranged in a grid pattern on a dicing sheet.
  • the optical measuring device 3 measures the optical characteristics and the electrical characteristics of the light emitting elements 101 in a plurality of arrayed states, and inspects whether or not they have a desired performance. At the time of inspection, the light emitting elements 101 are transferred in a state where a plurality of light emitting elements 101 are arranged on the table 103 of the optical measuring device 3.
  • the optical measuring device 3 sequentially supplies power to each of the light emitting elements 101 in a plurality of arrayed states, and measures optical characteristics and electrical characteristics.
  • power is supplied to the light emitting element 101 to be measured, most of the light emitted from the light emitting element 101 can enter the optical fiber 117.
  • part of the light emitted from the light emitting element 101 to be measured can be incident on the light emitting element 101 other than the measurement target.
  • part of the light incident on the light emitting element 101 other than the measurement target is absorbed by the wavelength conversion unit 101c of the light emitting element 101 other than the measurement target, and causes the light emitting element 101 other than the measurement target to emit light. Further, part of the light incident on the light emitting element 101 other than the measurement target is reflected by the light emitting element 101 other than the measurement target and is emitted from the light emitting element 101 other than the measurement target.
  • the light emitted from the light emitting element 101 other than the measurement target and the light reflected by the light emitting element 101 other than the measurement target are “light emitting elements 101 other than the measurement target due to light emission of the light emitting element 101 as the measurement target”. "Emitted light”.
  • Light emitted from the light emitting elements 101 other than the measurement target due to light emission of the light emitting elements 101 to be measured is light that is not intended by the measurer.
  • “light emitted from the light emitting element 101 other than the measurement target due to light emission of the light emitting element 101 as the measurement target” is also referred to as “unintended light emitted from the light emitting element 101 other than the measurement target”.
  • the light emitted from the light emitting elements 101 other than the measurement target due to the incidence of the light emitted from the light emitting element 101 to be measured, and the light emitted from the light emitting element 101 as the measurement target are measured.
  • the light reflected by the other light emitting elements 101 is also referred to as “unintended light emitted by the light emitting elements 101 other than the measurement target”.
  • “Unintentional light emitted from the light emitting element 101 other than the measurement target” may be incident on the optical fiber 117 disposed to face the light emitting element 101 as the measurement target.
  • “unintended light emitted from the light emitting element 101 other than the measurement target” enters the optical fiber 117, it is difficult to measure the optical characteristics of the light emitting element 101 as the measurement target with high accuracy.
  • the light emitting element 101 is a pseudo white light emitting diode
  • it is difficult to accurately measure the chromaticity which is a problem. That is, the white light emitted from the light emitting element 101 to be measured is incident on the wavelength conversion unit 101c that is a yellow phosphor of the light emitting element 101 other than the measurement target. Then, the light emitting elements 101 other than the measurement target emit yellow light. This yellow light enters the optical fiber 117 arranged for measuring the chromaticity of the light emitting element 101 to be measured.
  • the yellow light When yellow light emitted from the light emitting element 101 other than the measurement target enters the optical fiber 117, the yellow light is guided to the photodetector 105 and the spectroscope 121, and is detected by the light receiving element 105a and the light receiving element 121a.
  • the yellow component ratio is increased.
  • An increase in the yellow component ratio means that the chromaticity of the light emitting element 101 to be measured cannot be measured with high accuracy. Therefore, there is a demand for a technique capable of measuring the optical characteristics of the light-emitting element 101 to be measured with high accuracy in the plurality of light-emitting elements 101 arranged.
  • the optical measurement device 3 detects light emitted from the light emitting element 101 to be measured among a plurality of light emitting elements 101 and does not detect unintended light emitted from the light emitting elements 101 other than the measurement target. It has a configuration. 3A and 3B, the light emitting element 101 arranged at the center is set as a measurement target. The light emitting elements 101 arranged around the 101 are light emitting elements 101 other than the measurement target.
  • the optical measuring device 3 makes the incident port 117c of the optical fiber 117 and the light emitting element 101 to be measured face each other.
  • the optical measuring device 3 makes the light emission center axis LCA of the light emitting element 101 to be measured substantially coincide with the center axis of the incident port 117c, and opposes both.
  • the distance between the light emitting element 101 to be measured and the optical fiber 117 is L.
  • A be the distance from the center of the light emitting element 101 to be measured to the outer edge.
  • B be the interval between adjacent light emitting elements 101.
  • X be the distance from the center of the light emitting element 101 to be measured to the outer edge of the light emitting element 101 adjacent to the light emitting element 101 to be measured.
  • the numerical aperture of the optical fiber 117 and NA the range indicated by the numerical aperture NA and S 0.
  • D the distance from the center of the light emitting element 101 to the outer edge of the range S 0 when the range S 0 is projected onto the light emitting element 101.
  • NA sin ⁇
  • D Ltan ⁇ .
  • the light emitting element 101 When the light emitting element 101 is in the range S 0 indicated by the numerical aperture NA, the light emitted from the light emitting element 101 can be totally reflected in the optical fiber 117 and guided to the photodetector 105 and the spectroscope 121. If there is no light emitting element 101 in the range S 0 , the light emitting element 101 emits light, and the light is not guided to the photodetector 105 and the spectroscope 121. Therefore, the range S 0 indicated by the numerical aperture NA corresponds to the range of light that can be detected by the light receiving element 105 a included in the photodetector 105 and the light receiving element 121 a included in the spectroscope 121.
  • the range of light detected by the light receiving element 105a and the light receiving element 121a is also referred to as a “detection range”.
  • the detection range of the light receiving element 105a and the light receiving element 121a corresponds to a range of light in which the optical measuring device 3 can measure the optical characteristics.
  • the optical measuring device 3 detects the light emitted from the light emitting element 101 to be measured and does not detect unintentional light emitted from the light emitting elements 101 other than the measurement target, so that the detection range of the light receiving element 105a and the light receiving element 121a is set. Adjust.
  • the detection ranges of the light receiving element 105a and the light receiving element 121a are adjusted by adjusting the distance L between the light emitting element 101 to be measured and the optical fiber 117, for example.
  • the optical measuring device 3 adjusts the distance L as follows in order to detect light emitted from the light emitting element 101 to be measured and not to detect unintended light emitted from the light emitting elements 101 other than the measurement target. That is, the optical measuring apparatus 3 adjusts the distance L so that the light emitting element 101 to be measured is located in the range S 0 and the light emitting elements 101 other than the measurement object are not located in the range S 0 .
  • the distance D may be any distance A above.
  • the distance L when the distance D ⁇ the distance A is L ⁇ A / tan ⁇ .
  • the optical measuring device 3 may adjust the distance L so as to satisfy the relationship L ⁇ A / tan ⁇ , since the light emitting element 101 to be measured is located in the range S 0 . If this relationship is satisfied, the light emitted from the light emitting element 101 to be measured is guided to and detected by the light receiving element 105a and the light receiving element 121a.
  • the distance D may be equal to or less than the distance X.
  • the distance L when the distance D ⁇ the distance X is L ⁇ X / tan ⁇ .
  • the optical measuring device 3 may adjust the distance L so as to satisfy the relationship L ⁇ X / tan ⁇ , since the light emitting elements 101 other than the measurement target are not located within the range S 0 . If this relationship is satisfied, unintended light emitted from the light emitting elements 101 other than the measurement target is not guided to the light receiving elements 105a and 121a and is not detected.
  • the optical measuring apparatus 3 uses the relationship of the following equation for the distance L because the light emitting element 101 to be measured is located in the range S 0 and the light emitting elements 101 other than the measurement object are not located in the range S 0 . Adjust to meet. A / tan ⁇ ⁇ L ⁇ X / tan ⁇ As a result, the optical measurement device 3 does not detect unintended light emitted from the light emitting elements 101 other than the measurement target in a state where the plurality of light emitting elements 101 are arranged, and the light emitted from the measurement light emitting element 101 emits light. Can be detected.
  • the optical measurement device 3 adjusts the distance L so as to satisfy the relationship of the following equation. a / tan ⁇ ⁇ L ⁇ X / tan ⁇ In any case, the optical measurement device 3 may adjust the distance L so as to satisfy at least the relationship of L ⁇ X / tan ⁇ .
  • FIG. 4 is a diagram for explaining an example 1 of the adjusting unit of the optical measuring device 3.
  • FIG. 5 is a diagram for explaining another example 2 of the adjusting unit of the optical measuring device 3.
  • the adjustment unit is means for adjusting a detection range that is a range of light detected by the light receiving element 105a and the light receiving element 121a.
  • the optical measuring device 3 includes, for example, an adjustment mechanism for the distance L as an adjustment unit for adjusting the detection ranges of the light receiving element 105a and the light receiving element 121a.
  • the adjustment mechanism of the distance L can be configured by an actuator (not shown) attached to the optical fiber 117, for example.
  • the adjustment mechanism for the distance L moves the optical fiber 117 along the emission center axis LCA, as shown in FIG.
  • the adjustment mechanism for the distance L may move the table 103 on which the light emitting element 101 is placed instead of moving the optical fiber 117, or move both the table 103 and the optical fiber 117. Also good.
  • the detection ranges of the light receiving element 105a and the light receiving element 121a can be adjusted by a method other than adjusting the distance L between the light emitting element 101 to be measured and the optical fiber 117.
  • the optical measuring device 3 can adjust the detection ranges of the light receiving element 105a and the light receiving element 121a by blocking part of the light emitted from the light emitting element 101 to be measured and limiting the light incident on the optical fiber 117. it can.
  • the optical measurement device 3 may include, for example, a diaphragm 201 as an adjustment unit for adjusting the detection ranges of the light receiving element 105a and the light receiving element 121a.
  • the diaphragm 201 is disposed between the light emitting element 101 to be measured and the optical fiber 117.
  • the diaphragm 201 is formed in a substantially disc shape with the light emission central axis LCA as the central axis.
  • the diaphragm 201 has an opening 201a at the center, and is formed so that the size of the opening 201a can be changed.
  • the diaphragm 201 is designed so that the range S 0 of the optical fiber 117 fixed at the position is within the opening 201a.
  • the range in which the light emitted from the light emitting element 101 to be measured is blocked is changed. Thereby, the light incident on the optical fiber 117 is limited, and the detection ranges of the light receiving element 105a and the light receiving element 121a are adjusted.
  • FIG. 6 is a diagram for explaining measurement conditions when the optical characteristic of the light emitting element 101 is measured by the optical measurement device 3.
  • the light-emitting element 101 to be measured is shown in black, and the light-emitting elements 101 other than the measurement object are shown in white.
  • the measurement conditions for measuring the optical characteristics of the light emitting element 101 with the optical measurement device 3 are measurement conditions 1 to 4. Measurement conditions 1 to 4 differ in the arrangement of the light emitting elements 101.
  • the conditions common to the measurement conditions 1 to 4 are as follows.
  • the light emitting element 101 to be measured and the light emitting elements 101 other than the measurement target are the same light emitting element 101 including the generation unit 101b and the wavelength conversion unit 101c.
  • the light emitting element 101 is a pseudo white light emitting diode in which the generation unit 101b is a blue light emitting diode and the wavelength conversion unit 101c is a yellow phosphor.
  • the light emitting element 101 is formed in a square shape with one side of 1 mm. In both measurement conditions 1 to 4, the interval between adjacent light emitting elements 101 is 0.3 mm.
  • each of the measurement conditions 1 to 4 power is supplied from one light-emitting element 101 as a measurement target to emit light, and the chromaticity and light amount are measured. Both the measurement conditions 1 to 4 are measured using the optical measurement device 3 of the present embodiment and a conventional measurement device.
  • the adjustment unit of the optical measurement apparatus 3 of the present embodiment uses the adjustment unit of Example 2 shown in FIG.
  • the measurement conditions 1 to 4 are common to other conditions.
  • Measurement condition 1 uses one light-emitting element 101.
  • the arrangement mode of the measurement condition 1 is an individual state in which only one light emitting element 101 to be measured is arranged.
  • the total length of the light emitting element 101 is 1 mm.
  • Measurement condition 2 uses five light emitting elements 101.
  • the arrangement mode of the measurement condition 2 is a mode in which the light emitting element 101 to be measured is arranged at the center, and four light emitting elements 101 other than the measurement object are arranged adjacent to the circumference.
  • the total length of the array of the light emitting elements 101 is 3.6 mm.
  • As the measurement condition 3 nine light emitting elements 101 are used.
  • the arrangement mode of the measurement condition 3 is a mode in which the measurement target 101 is arranged at the center, and eight light emitting elements 101 other than the measurement target are arranged adjacent to the measurement target 101.
  • the total length of the array of the light emitting elements 101 is 3.6 mm.
  • Measurement condition 4 uses 25 light emitting elements 101.
  • the arrangement mode of the measurement condition 4 is a mode in which the light emitting element 101 to be measured is arranged in the center, and 24 light emitting elements 101 other than the measurement object are arranged adjacent to the circumference.
  • the entire length of the array of the light emitting elements 101 is 6.2 mm.
  • FIG. 7A is a measurement result regarding the chromaticity of the light-emitting element 101 shown in FIG. 6, and shows chromaticity coordinates x in the CIE-XYZ color system.
  • FIG. 7B is a measurement result regarding the chromaticity of the light-emitting element 101 shown in FIG. 6 and shows chromaticity coordinates y in the CIE-XYZ color system.
  • the wavelength conversion unit 101c of the light emitting element 101 other than the measurement target is yellow.
  • the measurement result of measurement condition 1 is different from the measurement results of measurement conditions 2 to 4.
  • the arrangement of the light emitting elements 101 is in a single piece state.
  • the measurement result of the measurement condition 1 is an ideal result that is not affected by unintended light emitted from the light emitting elements 101 other than the measurement target.
  • Measurement conditions 2 to 4 are an arrangement in which a plurality of light emitting elements 101 other than the measurement target are arranged adjacent to the light emitting element 101 to be measured.
  • the reason why the measurement results of measurement conditions 2 to 4 are different from the measurement result of measurement condition 1 is that the measurement results are affected by unintended light emitted from light emitting elements 101 other than the measurement target. For example, this is because yellow light emitted from the wavelength conversion unit 101 c of the light emitting element 101 other than the measurement target is incident on the optical fiber 117, detected by the light receiving element 121 a, and chromaticity is measured by the spectroscope 121.
  • the measurement result of the conventional measuring apparatus is affected by unintended light emitted from the light emitting elements 101 other than the measurement target, and the measurement accuracy is lowered.
  • the chromaticity coordinate value increases in the order of measurement condition 1, measurement condition 2, measurement condition 3, and measurement condition 4, and yellow chromaticity coordinates (x ⁇ 0.4, y ⁇ 0.5) This is because the more light emitting elements 101 other than the measurement target are arranged, the more yellow light emitted from the light emitting elements 101 other than the measurement target increases, and the component ratio of the yellow light detected by the light receiving element 121a increases. Because it does. That is, in the chromaticity measurement of the light emitting elements 101 arranged in a plurality, the measurement result of the conventional measuring apparatus is not intended that the light emitting elements 101 other than the measurement target emit as the light emitting elements 101 other than the measurement target are arranged. It becomes susceptible to light. As a result, the measurement result of the conventional measurement apparatus is likely to be degraded in measurement accuracy as more light emitting elements 101 other than the measurement target are arranged.
  • the measurement results under the measurement conditions 1 to 4 are substantially constant.
  • the optical measuring device 3 of the present embodiment includes the adjusting unit described above, so that unintended light emitted from the light emitting element 101 other than the measurement target does not enter the optical fiber 117 and is received by the light receiving element 121a. It is because it is not detected. That is, in the chromaticity measurement of the light emitting elements 101 arranged in a plurality, the measurement result of the optical measurement device 3 of the present embodiment is not affected by unintended light emitted from the light emitting elements 101 other than the measurement target. High measurement accuracy equivalent to the measurement result in the state is obtained.
  • FIG. 8 shows a measurement result regarding the light quantity of the light emitting element 101 shown in FIG.
  • the measurement result under measurement condition 1 is different from the measurement results under measurement conditions 2 to 4.
  • the light quantity increases in the order of measurement condition 1, measurement condition 2, measurement condition 3, and measurement condition 4.
  • the reason for this is that the more light emitting elements 101 other than the measurement target are arranged, the more yellow light emitted from the light emitting elements 101 other than the measurement target increases, which is easily detected by the light receiving element 105a and measured by the photodetector 105. This is because the amount of light increases.
  • the measurement result of the conventional measuring apparatus is not intended that the light emitting elements 101 other than the measurement target emit as the light emitting elements 101 other than the measurement target are arranged. It becomes susceptible to light. As a result, the measurement result of the conventional measurement apparatus is likely to be degraded in measurement accuracy as more light emitting elements 101 other than the measurement target are arranged.
  • each measurement result under the measurement conditions 1 to 4 is substantially constant.
  • the optical measuring device 3 of the present embodiment includes the adjusting unit described above, so that unintended light emitted from the light emitting element 101 other than the measurement target does not enter the optical fiber 117, and the light receiving element 105a. It is because it is not detected by. That is, also in the light quantity measurement of the light emitting elements 101 arranged in a plurality, the measurement result of the optical measuring device 3 of the present embodiment is not affected by unintended light emitted from the light emitting elements 101 other than the measurement target, High measurement accuracy equivalent to the measurement result in the state can be obtained.
  • the optical measurement device 3 can measure the optical characteristics of the light emitting element 101 with high measurement accuracy equivalent to the measurement in the individual state regardless of the arrangement mode of the light emitting elements 101. .
  • the light emitting element 101 to be measured is one light emitting element 101 in a state where the plurality of light emitting elements 101 are arranged. That is, the optical measuring device 3 supplies light with one light emitting element 101 as a measurement target to emit light, and measures its optical characteristics. However, the optical measuring device 3 may simultaneously measure a plurality of light emitting elements 101 in a state where the plurality of light emitting elements 101 are arranged. In other words, the optical measuring device 3 may simultaneously measure the optical characteristics of the plurality of light emitting elements 101 by simultaneously supplying power and emitting light.
  • FIG. 9A is a diagram for explaining an optical measurement apparatus 3 that simultaneously measures the optical characteristics of a plurality of light emitting elements 101 with a plurality of light emitting elements 101.
  • FIG. 9B shows a view of the light emitting element 101 shown in FIG. 9A viewed from the direction of the light emission central axis LCA.
  • a plurality of probe needles 109 and a plurality of optical fibers 117 are provided in advance in the optical measurement apparatus 3 that simultaneously measures a plurality of light emitting elements 101 as a measurement target.
  • the photodetector 105, the amplifier 113, the spectroscope 121, the electrical characteristic measurement unit 125, and the control unit 151 are designed in advance so that a plurality of light emitting elements 101 can be measured simultaneously.
  • a plurality of optical fibers 117 are arranged to face each of the plurality of light emitting elements 101 to be measured.
  • a plurality of probe needles 109 are in contact with the respective electrodes of the plurality of light emitting elements 101 to be measured.
  • the optical measuring device 3 supplies power to a plurality of light emitting elements 101 to be measured simultaneously to emit light, and measures their optical characteristics simultaneously.
  • the light of the measurement object is not incident on the optical fiber 117 disposed opposite to the light emission element 101 of one measurement object so that the light emitted from the light emission element 101 of the other measurement object does not enter.
  • An interval between the light emitting elements 101 is determined. For example, as shown in FIGS. 9A and 9B, when each light emitting element 101 is formed in a 1 mm square shape and the interval between adjacent light emitting elements 101 is 0.3 mm, the light emitting element to be measured The interval between 101 is set to 6.2 mm. An interval of 6.2 mm corresponds to an interval of four light emitting elements 101 to be measured.
  • the size of the interval is such that unintended light emitted from the light emitting elements 101 other than the measurement target does not enter the optical fiber 117.
  • the distance is such that light emitted from one light-emitting element 101 to be measured does not enter another light-emitting element 101 to be measured.
  • the optical measuring device 3 can obtain the same measurement accuracy as the case where the plurality of light emitting elements 101 are sequentially measured one by one by measuring the plurality of light emitting elements 101 at the same time with the interval therebetween.
  • FIG. 10A is a diagram for explaining a first modification of the optical measuring device 3.
  • FIG. 10B shows a view of the light emitting element 101 and the bundle fiber 118 shown in FIG. 10A viewed from the direction of the light emission central axis LCA.
  • FIG. 10C shows a view for explaining another cross-sectional shape of the bundle fiber 118 shown in FIGS. 10A and 10B.
  • the optical measurement device 3 according to the first modification includes a bundle fiber 118.
  • the bundle fiber 118 is configured by a bundle of a plurality of optical fibers 117.
  • the bundle fiber 118 is arranged so that the entrance 118 c faces the light emitting surface 101 a of the light emitting element 101 to be measured.
  • the optical fiber 117 on the central axis of the bundle fiber 118 has its central axis substantially coincident with the light emission central axis LCA of the light emitting element 101 to be measured.
  • the plurality of optical fibers 117 constituting the bundle fiber 118 are connected to the photodetector 105 and the spectroscope 121, respectively.
  • the size of the cross section perpendicular to the light emission center axis LCA of the bundle fiber 118 may be larger than the light emitting surface 101a of the light emitting element 101 to be measured, as shown in FIGS. 10A and 10B.
  • the size of the cross section is a size that does not cover the light emitting element 101 adjacent to the light emitting element 101 to be measured, as shown in FIGS. 10A and 10B.
  • the shape of the cross section perpendicular to the light emission central axis LCA of the bundle fiber 118 may be a rectangular shape as shown in FIG. 10B or a circular shape as shown in FIG. 10C.
  • the bundle fiber 118 is fixed in a position that does not include the light emitting device 101 other than the measurement target range S 1 indicated by the numerical aperture of the bundle fiber 118.
  • the range S 1 indicated by the numerical aperture of the bundle fiber 118 is larger than the range S 0 indicated by the numerical aperture NA of one optical fiber 117 included in the bundle fiber 118.
  • the position of the bundle fiber 118 may be a position sufficiently closer to the light emitting element 101 to be measured than the position of the optical fiber 117 in the case of using one optical fiber 117. Therefore, unintended light emitted from the light emitting elements 101 other than the measurement target may be difficult to enter the bundle fiber 118.
  • the optical measuring device 3 of the first modification unintentional light emitted from the light emitting elements 101 other than the measurement target is not detected, and the light emitted from the light emitting elements 101 as the measurement targets is received by the light receiving elements 105a and 121a. Can be detected.
  • the range S 1 is larger than the range S 0, and thus the light emitted from the light emitting element 101 to be measured uses one optical fiber 117 for the bundle fiber 118. More incidents can be made. Therefore, the optical measuring device 3 of the first modification can detect a large amount of light with the light receiving element 105a and the light receiving element 121a, and can measure the light quantity with higher accuracy. The alignment operation of the bundle fiber 118 and the like can be easily performed.
  • the photodetector 105 and the spectroscope 121 are connected to the plurality of optical fibers 117 constituting the bundle fiber 118, respectively, so that the light on the light emitting surface 101a of the light emitting element 101 to be measured is measured. Intensity distribution, chromaticity distribution, and the like can be measured.
  • the optical measuring device 3 of the modification 1 can change the number of the some optical fibers 117 which comprise the bundle fiber 118.
  • FIG. When the number of the plurality of optical fibers 117 constituting the bundle fiber 118 is changed, the range S 1 indicated by the numerical aperture of the bundle fiber 118 is changed.
  • the optical measurement device 3 of the first modification can limit the light incident on the bundle fiber 118 and can adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
  • the means for changing the number of the plurality of optical fibers 117 constituting the bundle fiber 118 constitutes an adjustment unit provided in the optical measurement device 3 of the first modification.
  • the optical measurement device 3 according to the first modification may include a switch that switches the connection between the plurality of optical fibers 117 constituting the bundle fiber 118 and the light receiving elements 105a and 121a to be valid or invalid.
  • the optical measuring device 3 of the modification 1 may change range S1 which the numerical aperture of the bundle fiber 118 shows by controlling the said switch. Thereby, the optical measuring device 3 of the modification 1 can adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
  • the means for switching each connection between the plurality of optical fibers 117 constituting the bundle fiber 118 and the light receiving element 105a and the light receiving element 121a also constitutes an adjustment unit provided in the optical measurement device 3 of the first modification.
  • the optical measuring device 3 of Modification 1 may include the adjusting mechanism described with reference to FIG. 4 and the diaphragm 201 described with reference to FIG. And these adjustment mechanisms and diaphragm 201 may constitute the adjustment part with which optical measurement device 3 of modification 1 is provided.
  • Other configurations of the optical measurement device 3 of Modification 1 are the same as the configurations of the optical measurement device 3 shown in FIGS. 2 to 9B.
  • FIG. 11 is a diagram for explaining a second modification of the optical measuring device 3.
  • the optical measurement device 3 according to the second modification has a configuration in which an integrating sphere 108 is added to the optical measurement device 3 according to the first modification.
  • the integrating sphere 108 is formed in a hollow, substantially spherical shape.
  • the integrating sphere 108 includes an inner wall 108a, an inlet 108b, and an outlet 108c.
  • the inner wall 108a forms an internal space of the integrating sphere 108.
  • the inner wall 108a is formed of a material having high reflectivity and excellent diffusibility.
  • the inner wall 108a is provided with an inlet 108b and an outlet 108c.
  • the intake port 108b is an opening for capturing light emitted from the light emitting element 101 to be measured.
  • the opening center axis of the inlet 108b in FIG. 11 substantially coincides with the light emission center axis LCA of the light emitting element 101 to be measured.
  • the opening center axis of the intake port 108b does not have to coincide with the emission center axis LCA of the light emitting element 101 to be measured.
  • 11 is formed in an opening shape similar to the outer peripheral shape of the bundle fiber 118.
  • a bundle fiber 118 is attached to the intake port 108b.
  • the outer peripheral shape of the bundle fiber 118 may be different between the outer peripheral shape in the vicinity of the incident port 118c and the outer peripheral shape in the vicinity of the intake port 108b.
  • the outer peripheral shape of the bundle fiber 118 may be a rectangular shape near the entrance port 118c, and the outer peripheral shape near the intake port 108b may be a circular shape.
  • the inlet 108b in FIG. 11 guides the light guided by the bundle fiber 118 into the integrating sphere 108.
  • the light guided into the integrating sphere 108 from the inlet 108b is repeatedly reflected by the inner wall 108a and reaches the outlet 108c.
  • the outlet 108 c is an opening for taking out the light reflected by the inner wall 108 a to the outside of the integrating sphere 108.
  • the outlet 108c is provided at a position different from the inlet 108b of the inner wall 108a.
  • An optical fiber 117 is provided at the outlet 108c in FIG.
  • the extraction port 108c in FIG. 11 guides the light reflected by the inner wall 108a to the optical fiber 117.
  • the light guided to the optical fiber 117 enters the optical fiber 117, is detected by the light receiving element 105a and the light receiving element 121a, and the optical characteristics are measured by the photodetector 105 and the spectroscope 121.
  • Other configurations of the optical measurement device 3 of Modification 2 are the same as those of the optical measurement device 3 of Modification 1 shown in FIGS. 10A to 10C.
  • FIG. 12A is a diagram for explaining a third modification of the optical measuring device 3.
  • FIG. 12B is a diagram for explaining light refraction in the lens 202 shown in FIG. 12A.
  • the optical measurement device 3 of Modification 3 has a configuration in which a lens 202 is added to the optical measurement device 3 of Modification 1.
  • the lens 202 is a lens for condensing the light emitted from the light emitting element 101 to be measured on the bundle fiber 118.
  • the lens 202 is configured using, for example, a plano-convex lens.
  • the lens 202 is disposed between the bundle fiber 118 and the light emitting element 101 to be measured so as to oppose both.
  • the lens 202 is arranged substantially in parallel with the incident port 118c of the bundle fiber 118 and the light emitting surface 101a of the light emitting element 101 to be measured.
  • the central axis of the lens 202 substantially coincides with the light emission central axis LCA of the light emitting element 101 to be measured.
  • the size of the cross section perpendicular to the light emission central axis LCA of the lens 202 is the same as or larger than the size of the cross section perpendicular to the light emission central axis LCA of the bundle fiber 118, as shown in FIG. 12A.
  • the size of the cross section of the lens 202 is a size that does not cover the light emitting element 101 adjacent to the light emitting element 101 to be measured, as shown in FIG. 12A.
  • the light emitted from the light emitting element 101 to be measured is refracted toward the entrance 118 c of the bundle fiber 118 when entering the lens 202.
  • unintended light emitted from the light emitting element 101 other than the measurement target is not refracted toward the incident port 118c even if it enters the lens 202. Therefore, unintended light emitted from the light emitting elements 101 other than the measurement target may be difficult to enter the bundle fiber 118.
  • the optical measuring device 3 of the third modification condenses the light emitted from the light emitting element 101 to be measured on the bundle fiber 118 by the lens 202. For this reason, the optical measuring device 3 of the modified example 3 can suppress a decrease in measurement accuracy even when the positional deviation of the bundle fiber 118 or the like occurs compared to the case where the lens 202 is not used. The alignment operation of the bundle fiber 118 and the like can be performed more easily.
  • the optical measurement device 3 according to the third modification can limit the light incident on the bundle fiber 118 using the lens 202 and adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
  • the lens 202 constitutes an adjustment unit provided in the optical measurement device 3 according to the third modification.
  • the optical measurement apparatus 3 of Modification 3 may include a moving unit that moves the lens 202 in the vertical direction along the light emission central axis LCA of the light emitting element 101 to be measured.
  • the optical measuring device 3 of the modification 3 can adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
  • the moving means for moving the lens 202 along the light emission center axis LCA also constitutes an adjustment unit provided in the optical measurement device 3 of the third modification.
  • Other configurations of the optical measurement device 3 of Modification 3 are the same as those of the optical measurement device 3 of Modification 1 shown in FIGS. 10A to 10C.
  • FIG. 13A shows a diagram for explaining a fourth modification of the optical measuring device 3.
  • FIG. 13B shows a view of the light emitting element 101 and the bundle fiber 119 shown in FIG. 13A viewed from the direction of the light emission central axis LCA.
  • the optical measurement device 3 of the modification 4 includes a bundle fiber 119 having a configuration different from that of the bundle fiber 118 included in the optical measurement device 3 of the modification 1.
  • the bundle fiber 119 is configured by a plurality of optical fibers 117 being bundled.
  • the bundle fiber 119 is arranged so that the entrance 119c faces the light emitting surface 101a of the light emitting element 101 to be measured.
  • the optical fiber 117 on the central axis of the bundle fiber 119 has its central axis substantially coincident with the light emission central axis LCA of the light emitting element 101 to be measured.
  • One or more optical fibers 117 near the central axis of the bundle fiber 119 are connected to the spectrometer 121.
  • a plurality of optical fibers 117 other than the vicinity of the central axis of the bundle fiber 119 are connected to the photodetector 105.
  • FIGS. 14A to 14C one or more optical fibers 117 in the vicinity of the central axis of the bundle fiber 119 are shown in black.
  • a plurality of optical fibers 117 other than the vicinity of the central axis of the bundle fiber 119 are shown in white. The same applies to FIGS. 14A to 14C.
  • the size of the cross section perpendicular to the light emission central axis LCA of the bundle fiber 119 is larger than the light emitting surface 101a of the measurement target 101 and covers a plurality of light emitting elements 101 other than the measurement target.
  • the size of Range S 2 indicated the numerical aperture of the fiber bundle 119 is enlarged than the range S 1 indicated the numerical aperture of the bundle fiber 118.
  • the light emitting element 101 other than the measurement object in addition to the light emitting element 101 to be measured also included.
  • the optical measuring device 3 of the fourth modification since the range S 2 is enlarged than the range S 1, the bundle fiber 119, the light emitting element 101 emits light to be measured, as compared with the case of using the bundle fiber 118 Many incidents are possible. Therefore, the optical measuring device 3 of the modification 4 can detect more light by the light receiving element 105a and the light receiving element 121a, and can measure the light quantity with higher accuracy. The alignment work of the bundle fiber 119 and the like can be performed more easily.
  • the central axis of the bundle fiber 119 and the light emission center axis LCA of the light emitting element 101 to be measured substantially coincide with each other, and only the optical fiber 117 near the center axis of the bundle fiber 119 is a spectrometer 121 is connected. Therefore, the light receiving element 121a of the spectroscope 121 that measures chromaticity or the like detects light emitted from the light emitting element 101 to be measured without detecting unintended light emitted from the light emitting elements 101 other than the measurement target. obtain. Therefore, the optical measurement device 3 of the modification 4 can measure chromaticity and the like with high accuracy.
  • the optical measuring device 3 of Modification 4 since the plurality of optical fibers 117 other than the vicinity of the central axis of the bundle fiber 119 are connected to the photodetector 105, the light intensity of the light emitting surface 101a of the light emitting element 101 other than the measurement target is measured. Distribution can be measured. Furthermore, the optical measuring device 3 variant 4, the range S 2 of the bundle fiber 119, also located the light emitting element 101 other than the measurement object. For this reason, in the optical measuring device 3 of Modification 4, the light emitting element 101 facing the optical fiber 117 connected to the spectroscope 121 is a measurement target for measuring chromaticity or the like, and the other light emitting elements 101 are light quantities. It can be a measurement object.
  • the optical measuring device 3 of the modification 4 can simultaneously measure the chromaticity and the light amount, although the light emitting element 101 to be measured is different.
  • Other configurations of the optical measurement device 3 of Modification 4 are the same as those of the optical measurement device 3 of Modification 1 shown in FIGS. 10A to 10C.
  • FIG. 14A is a diagram for explaining a fifth modification of the optical measuring device 3.
  • FIG. 14B is a diagram for explaining another example 1 in the modified example 5 of the optical measuring device 3.
  • FIG. 14C is a diagram for explaining another example 2 in the modified example 5 of the optical measuring device 3.
  • the optical measurement device 3 of Modification 5 has a configuration in which a rod lens array 203 or a microlens array 204 is added to the optical measurement device 3 of Modification 4.
  • the rod lens array 203 a plurality of rod lenses 203a are arranged substantially parallel to each other.
  • the rod lens 203a is a lens for internally reflecting the light emitted from the light emitting element 101 and guiding it to the bundle fiber 119.
  • the rod lens 203a is configured using, for example, a lens having birefringence.
  • the rod lens 203a has a refractive index near the central axis that is larger than the refractive index near the outer periphery.
  • the rod lens 203 a is disposed between the bundle fiber 119 and the light emitting element 101.
  • the end surface of the rod lens 203 a faces the incident port 119 c of the bundle fiber 119 and the light emitting surface 101 a of the light emitting element 101.
  • the central axis of the rod lens 203 a is substantially parallel to the light emission central axis LCA of the light emitting element 101.
  • the central axis of the rod lens 203a disposed at the center of the rod lens array 203 substantially coincides with the light emission central axis LCA of the light emitting element 101 to be measured.
  • the size of the cross section perpendicular to the light emission central axis LCA of the rod lens 203 a is smaller than the size of the light emitting surface 101 a of the light emitting element 101.
  • the size of the cross section perpendicular to the light emission central axis LCA of the rod lens array 203 is the same as or slightly larger than the size of the cross section perpendicular to the light emission central axis LCA of the bundle fiber 119.
  • the light emitted from the light emitting element 101 to be measured is incident on the rod lens 203 a disposed at the center of the rod lens array 203.
  • the light incident on the rod lens 203a arranged at the center repeats reflection inside the rod lens 203a arranged at the center.
  • the light incident on the rod lens 203 a disposed at the center is guided toward the incident port 117 c of the optical fiber 117 near the central axis of the bundle fiber 119.
  • unintended light emitted from the light emitting element 101 other than the measurement target may be difficult to enter the rod lens 203a disposed in the center.
  • the optical measuring device 3 of the modified example 5 can measure chromaticity and the like with high accuracy.
  • the optical fiber 117 near the center axis of the bundle fiber 119 is connected to the spectroscope 121 including the light receiving element 121a.
  • the optical measurement device 3 of Modification 5 may use a microlens array 204 instead of the rod lens array 203 as shown in FIG. 14B.
  • the optical measurement device 3 of Modification 5 may be provided with a through hole 204 a in the center of the microlens array 204.
  • An optical fiber 117 in the vicinity of the central axis of the bundle fiber 119 may be inserted into the through hole 204a. Then, only the optical fiber 117 near the center axis of the bundle fiber 119 may be connected to the spectroscope 121 including the light receiving element 121a.
  • the light emitted from the light emitting element 101 to be measured passes through the optical fiber 117 in the vicinity of the center axis of the bundle fiber 119 without passing through the microlens array 204. Directly incident.
  • the optical measurement device 3 of the modification 5 shown in FIG. 14C can measure chromaticity and the like with higher accuracy. Furthermore, the reproducibility of measurement of the chromaticity and the like can be improved.
  • the optical measurement device 3 of Modification 5 uses the rod lens array 203 or the micro lens array 204 to limit the light incident on the bundle fiber 119 and adjust the detection ranges of the light receiving element 105a and the light receiving element 121a. Can do.
  • the rod lens array 203 or the microlens array 204 constitutes an adjustment unit provided in the optical measurement device 3 of Modification 5.
  • the optical measurement device 3 of Modification 5 may include a moving unit that moves the rod lens array 203 or the microlens array 204 in the vertical direction along the light emission central axis LCA of the light emitting element 101 to be measured. .
  • the optical measuring device 3 of the modification 5 can adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
  • the moving means for moving the rod lens array 203 or the microlens array 204 along the light emission center axis LCA also constitutes an adjustment unit provided in the optical measurement device 3 of the fifth modification.
  • Other configurations of the optical measurement device 3 of Modification 5 are the same as those of the optical measurement device 3 of Modification 4 shown in FIGS. 13A and 13B.
  • FIG. 15A is a diagram for explaining a sixth modification of the optical measuring device 3.
  • FIG. 15B shows a view of the light receiving element 105a of the photodetector 105 shown in FIG. 15A viewed from the direction of the light emission central axis LCA.
  • the optical measurement device 3 of Modification 6 has a configuration in which the light receiving element 105a of the photodetector 105 is provided around the tip of the head 117a of the optical fiber 117 included in the optical measurement device 3 shown in FIG.
  • the optical measurement device 3 of Modification 6 is provided with a plurality of light receiving elements 105a so that a gap 105b is formed at the center of the plurality of light receiving elements 105a.
  • the head 117a of the optical fiber 117 is inserted and fixed in the gap 105b.
  • the light receiving surfaces of the four light receiving elements 105 a and the optical fiber 117 are arranged to face the light emitting surface 101 a of the light emitting element 101.
  • the size of the light receiving surfaces of the four light receiving elements 105a may be larger than the light emitting surface 101a of the light emitting element 101 to be measured.
  • the size of the light receiving surfaces of the four light receiving elements 105a is sufficiently larger than the incident port 117c of the optical fiber 117.
  • the optical fiber 117 included in the optical measurement device 3 of Modification 6 is connected only to the spectroscope 121.
  • the optical measurement device 3 of Modification 6 directly detects the light emitted from the light-emitting element 101 to be measured on the light-receiving surfaces of the four light-receiving elements 105a that are sufficiently larger than the incident port 117c of the optical fiber 117. For this reason, the optical measuring device 3 of the modified example 6 can detect more light by the light receiving element 105a and measures the amount of light with higher accuracy than the optical measuring device 3 shown in FIG. be able to.
  • Other configurations of the optical measurement device 3 of Modification 6 are the same as those of the optical measurement device 3 shown in FIG.
  • FIG. 16 is a diagram for explaining a modified example 7 of the optical measuring device 3.
  • the optical measurement device 3 of Modification 7 has a configuration in which an integrating sphere 108 is added to the optical measurement device 3 of Modification 6. Further, the optical measurement device 3 of Modification 7 has a configuration in which the light receiving elements 105a of the optical measurement device of Modification 6 are arranged at different positions.
  • the integrating sphere 108 of the optical measuring device 3 of the modified example 7 has the same configuration as the integrating sphere 108 included in the optical measuring device 3 of the modified example 2 shown in FIG.
  • the entrance port 117c of the optical fiber 117 is disposed at the intake port 108b of the integrating sphere 108.
  • the inlet 108b of the integrating sphere 108 and the incident port 117c of the optical fiber 117 are disposed to face the light emitting surface 101a of the light emitting element 101 to be measured.
  • the size of the inlet 108 b of the integrating sphere 108 is sufficiently larger than the incident port 117 c of the optical fiber 117.
  • the optical fiber 117 included in the optical measurement device 3 of Modification 7 is connected only to the spectroscope 121.
  • the light receiving element 105a is disposed at the outlet 108c of the integrating sphere 108.
  • the optical measurement device 3 of Modification 7 captures the light emitted from the light emitting element 101 to be measured through the intake 108b of the integrating sphere 108 that is sufficiently larger than the incident port 117c of the optical fiber 117. Then, the optical measuring device 3 of the modified example 7 directly detects the light taken in by the integrating sphere 108 by the light receiving element 105a provided at the outlet 108c. For this reason, similarly to the optical measurement device 3 of the modification example 6, the optical measurement device 3 of the modification example 7 can detect more light by the light receiving element 105a and can measure the light amount with higher accuracy. it can.
  • Other configurations of the optical measurement device 3 of Modification 7 are the same as those of the optical measurement device 3 of Modification 6 shown in FIGS. 15A and 15B.
  • FIG. 17 is a diagram for explaining a modified example 8 of the optical measuring device 3.
  • the optical measurement device 3 of Modification 8 has a configuration in which a cylinder 205 is added instead of the diaphragm 201 included in the optical measurement device 3 shown in FIG.
  • the tube 205 blocks a part of the light emitted from the light emitting element 101 to be measured and restricts the light incident on the optical fiber 117.
  • the cylinder 205 is formed of an absorbing member that absorbs light.
  • the tube 205 has the head 117a of the optical fiber 117 as a base end, and the tip extends toward the light emitting element 101 to be measured.
  • An opening 205 a at the tip of the tube 205 faces the light emitting surface 101 a of the light emitting element 101 and the incident port 117 c of the optical fiber 117.
  • the central axes of the cylinder 205 and the opening 205a substantially coincide with the light emission central axis LCA of the light emitting element 101 to be measured.
  • the size of the opening 205 a is the same as or slightly larger than the size of the light emitting surface 101 a of the light emitting element 101. However, the size of the opening 205a is such that it does not cover the light emitting element 101 adjacent to the light emitting element 101 to be measured, as shown in FIG.
  • the cylinder 205 Since the cylinder 205 is formed of an absorbing member, the light incident on the inner peripheral surface of the cylinder 205 is absorbed as it is without being reflected.
  • the light incident on the optical fiber 117 is light that does not enter the inner peripheral surface of the cylinder 205 and goes directly from the opening 205a of the cylinder 205 to the incident port 117c.
  • the range of the light is defined by the size of the angle ⁇ formed by the straight line connecting the periphery of the opening 205a and the incident port 117c and the light emission center axis LCA. That is, the range of light incident on the optical fiber 117 is defined by the angle ⁇ .
  • FIG. 17 shows an example in which the angle ⁇ is smaller than the angle ⁇ that defines the numerical aperture NA of the optical fiber 117.
  • the length of the cylinder 205 defines the vertical position of the opening 205a. For this reason, the length of the cylinder 205 defines the magnitude of the angle ⁇ . Therefore, the length of the tube 205 defines the range of light incident on the optical fiber 117.
  • the cylinder 205 included in the optical measuring device 3 of Modification 8 is formed to have a length of an angle ⁇ such that the light emitting element 101 other than the measurement target is not included in the range of light incident on the inside of the cylinder 205. Yes. For this reason, unintended light emitted from the light-emitting elements 101 other than the measurement target is not incident on the optical fiber 117 of the optical measurement device 3 of Modification 8. Thereby, in the optical measurement device 3 of the modification 8, unintended light emitted from the light emitting elements 101 other than the measurement target is not detected, and the light emitted from the light emitting elements 101 as the measurement targets is received by the light receiving elements 105a and 121a. Can be detected.
  • the optical measurement device 3 according to the modified example 8 can limit the light incident on the optical fiber 117 using the cylinder 205 and adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
  • the cylinder 205 constitutes an adjustment unit provided in the optical measurement device 3 of Modification 8.
  • the optical measurement device 3 of Modification 8 may include a means for changing the length of the cylinder 205.
  • the angle ⁇ is changed, and the range of light that can enter the optical fiber 117 is changed.
  • the optical measuring device 3 of the modification 8 can adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
  • the means for changing the length of the cylinder 205 also constitutes an adjustment unit provided in the optical measurement device 3 of the modification 8.
  • Other configurations of the optical measurement device 3 of Modification 8 are the same as those of the optical measurement device 3 shown in FIG.
  • FIG. 18 is a diagram for explaining a modification 9 of the optical measuring device 3.
  • the optical measurement device 3 of Modification 9 has a configuration in which an integrating sphere 108 is added to the optical measurement device 3 of Modification 8.
  • the cylinder 205 included in the optical measurement device 3 of Modification 9 has a leading end that extends toward the light-emitting element 101 to be measured with the intake port 108b of the integrating sphere 108 as a base end.
  • the optical fiber 117 included in the optical measurement device 3 of Modification 9 is provided at the outlet 108 c of the integrating sphere 108.
  • the light incident on the optical fiber 117 is light that is taken into the integrating sphere 108 from the inlet 108b.
  • the light taken into the integrating sphere 108 from the taking-in port 108b is the light which goes directly from the opening 205a to the taking-in port 108b like the optical measuring device 3 of the modification 8. That is, the light incident on the optical fiber 117 is light that goes directly from the opening 205a to the intake port 108b.
  • the range of the light is defined by the magnitude of the angle ⁇ formed by the straight line connecting the periphery of the intake port 108b and the periphery of the opening 205a and the light emission center axis LCA.
  • FIG. 18 shows an example in which the angle ⁇ is larger than the angle ⁇ that defines the numerical aperture NA of the optical fiber 117.
  • the cylinder 205 included in the optical measuring device 3 of Modification 9 has an angle ⁇ such that unintended light emitted from the light emitting element 101 other than the measurement target is not included in the range of light incident on the inside of the cylinder 205.
  • the length is formed. This is because the length of the tube 205 defines the angle ⁇ and the range of light incident on the optical fiber 117, as in the optical measurement device 3 of the modification 8. Therefore, unintended light emitted from the light emitting element 101 other than the measurement target is not incident on the optical fiber 117 of the optical measurement device 3 of Modification Example 9, and light emitted from the light emitting element 101 as the measurement target is incident.
  • the optical measuring device 3 of the modification 9 unintended light emitted from the light emitting element 101 other than the measurement target is not detected, and the light emitted from the light emitting element 101 as the measurement target is the light receiving element 105a and the light receiving element 121a. Can be detected.
  • the optical measurement device 3 according to the modification 9 can limit the light incident on the optical fiber 117 using the tube 205 and adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
  • the cylinder 205 constitutes an adjustment unit provided in the optical measurement device 3 of the modification 9.
  • the optical measurement device 3 of the modification 9 may also include means for changing the length of the cylinder 205, similarly to the optical measurement device 3 of the modification 8.
  • the means for changing the length of the cylinder 205 also constitutes an adjustment unit provided in the optical measurement device 3 of the modification 9.
  • Other configurations of the optical measurement device 3 of Modification 9 are the same as those of the optical measurement device 3 of Modification 8 shown in FIG.
  • FIG. 19A is a diagram for explaining a modified example 10 of the optical measuring device 3.
  • FIG. 19B shows the shielding plate 206 and the light emitting element 101 shown in FIG. 19A viewed from the direction of the light emission central axis LCA.
  • FIG. 20 is a diagram for explaining another example in the modified example 10 of the optical measuring device 3.
  • the optical measurement device 3 of Modification 10 includes a configuration in which a shielding plate 206 is added instead of the cylinder 205 included in the optical measurement device 3 of Modification 9.
  • the shielding plate 206 is a shielding member that blocks light emitted from the light emitting element 101 to be measured from entering the light emitting elements 101 other than the measurement target.
  • a shielding plate 206 shown in FIG. 19 is a plate that spatially partitions between adjacent light emitting elements 101.
  • the shielding plate 206 is disposed between the intake port 108 b of the integrating sphere 108 and the light emitting element 101.
  • the opening 206a of the shielding plate 206 is in contact with the inlet 108b of the integrating sphere 108 and the table 103 on which the light emitting element 101 is placed.
  • the light emitting element 101 to be measured can be positioned inside a closed space formed by the integrating sphere 108 and the shielding plate 206.
  • the shielding plate 206 blocks light emitted from the light emitting element 101 to be measured from entering the light emitting elements 101 other than the measurement target. Therefore, unintended light emitted from the light emitting elements 101 other than the measurement target cannot be generated. For this reason, the light incident on the optical fiber 117 is limited only to the light emitted from the light emitting element 101 to be measured. As a result, in the optical measurement device 3 of the modification 10, unintentional light emitted from the light emitting element 101 other than the measurement target is not detected, and the light emitted from the light emitting element 101 as the measurement target is received by the light receiving element 105a and the light receiving element 121a. Can be detected.
  • the optical measurement device 3 of Modification 10 may use a reflector 207 instead of the shielding plate 206 as shown in FIG.
  • the reflector 207 is a cylinder that spatially partitions the light emitting element 101 to be measured and the other light emitting elements 101.
  • the reflector 207 is disposed between the inlet 108b of the integrating sphere 108 and the light emitting element 101 to be measured.
  • the reflector 207 is fixed to the inlet 108 b of the integrating sphere 108.
  • the tip of the reflector 207 is in contact with the table 103 on which the light emitting element 101 to be measured is placed.
  • the light emitting element 101 to be measured can be positioned inside the closed space formed by the integrating sphere 108 and the reflector 207. Therefore, also in the optical measurement apparatus 3 of Modification 10 shown in FIG. 20, the light incident on the optical fiber 117 is limited to only the light emitted from the light emitting element 101 to be measured.
  • the reflector 207 is formed in a cylindrical shape whose inner diameter is increased toward the integrating sphere 108.
  • the inner peripheral surface of the reflector 207 is coated with a highly reflective material. For this reason, the light emitted from the light emitting element 101 to be measured can be reflected on the inner peripheral surface of the reflector 207 toward the inlet 108 b of the integrating sphere 108.
  • the optical measurement apparatus 3 according to the modified example 10 using the reflector 207 measures the amount of light with higher accuracy because more light is incident on the optical fiber 117 than when the shielding plate 206 is used. be able to.
  • the optical measurement device 3 according to the modified example 10 can limit the light incident on the optical fiber 117 using the shielding plate 206 or the reflector 207, and can adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
  • the shielding plate 206 and the reflector 207 constitute an adjustment unit provided in the optical measurement device 3 of the modification 10.
  • Other configurations of the optical measurement device 3 of Modification 10 are the same as those of the optical measurement device 3 of Modification 9 shown in FIG.
  • FIG. 21 is a diagram for explaining a modification 11 of the optical measuring device 3.
  • FIG. 22 is a flowchart for explaining processing performed by the control unit 151 shown in FIG. 21 when measuring optical characteristics.
  • FIG. 23 is a diagram for explaining another example of the modification 11 of the optical measuring device 3.
  • the optical measurement device 3 of Modification 11 has a configuration in which an optical waveguide 120 and a light amount adjuster 122 are added to the optical measurement device 3 shown in FIGS. 2 to 9B.
  • the optical transmission line 117 b of the optical fiber 117 may be branched using the optical waveguide 120.
  • the optical waveguide 120 branches the optical transmission path 117 b into a first path 117 d toward the spectroscope 121 and a second path 117 e toward the photodetector 105.
  • the first path 117d is an optical transmission path 117b that connects the optical waveguide 120 and the spectroscope 121.
  • the second path 117 e is an optical transmission path 117 b that connects between the optical waveguide 120 and the photodetector 105.
  • the optical waveguide 120 totally guides incident light inside to suppress transmission loss as much as possible, and guides it to the first path 117d and the second path 117e.
  • the light amount adjuster 122 adjusts the amount of light detected by the light receiving element 121 a of the spectroscope 121.
  • the light amount adjuster 122 is disposed on the first path 117 d of the optical transmission path 117 b that connects the optical waveguide 120 and the spectroscope 121.
  • the light quantity adjuster 122 is configured using an optical filter that attenuates the light quantity, such as an ND filter (Neutral Density Filter).
  • the light amount adjuster 122 may be configured using an electro-optic element, a magneto-optic element, an acousto-optic element, a liquid crystal optical element, or the like.
  • the light amount adjuster 122 is connected to the control unit 151.
  • the light amount adjuster 122 is configured to be able to adjust the amount of attenuation of light passing therethrough.
  • the amount of attenuation adjusted by the light amount adjuster 122 is set by the control unit 151.
  • the attenuation amount adjusted by the light amount adjuster 122 can be appropriately set so that the incident light amount to the spectroscope 121 falls within the dynamic range in the photoelectric conversion characteristics of the spectroscope 121.
  • the attenuation may be set differently mainly depending on the type of the light emitting element 101.
  • the light amount adjuster 122 also has a configuration that can reduce the attenuation amount to zero.
  • the “photoelectric conversion characteristic” of the spectroscope 121 is the relationship between the amount of incident light and the output current in the spectroscope 121.
  • the fact that the input and output are in a proportional relationship is called “linearity”.
  • a range in which a proportional relationship between input and output is established is called “dynamic range”.
  • the dynamic range is a range where linearity is established.
  • the dynamic range in the photoelectric conversion characteristics of the spectroscope 121 is a range in which a proportional relationship between the incident light amount and the output current is established, and is a range in which linearity in the photoelectric conversion characteristics is established.
  • the dynamic range of the photoelectric conversion characteristics of the spectroscope 121 is narrower than that of the photodetector 105. For this reason, when various optical characteristics of the light emitting element 101 are measured by the spectroscope 121, the measurement result of the spectroscope 121 may be inaccurate depending on the amount of light incident on the spectroscope 121. Therefore, a technique capable of measuring the optical characteristics of the light emitting element 101 with high reliability is desired. In addition, the light emitting elements 101 of different types often have different light emission characteristics depending on the type. Therefore, when measuring the optical characteristics of light emitting elements 101 of different varieties, the amount of light incident on the spectroscope 121 is often different.
  • the optical measurement device 3 of the modification 11 includes a light amount adjuster 122.
  • step S ⁇ b> 10 the control unit 151 determines whether the light amount measurement result of the photodetector 105 and the measurement result of the spectroscope 121 are input.
  • the control unit 151 waits until the light amount measurement result of the photodetector 105 and the measurement result of the spectroscope 121 are input.
  • the control unit 151 associates each result and stores them in a predetermined storage area. And the control part 151 transfers to step S20.
  • step S ⁇ b> 20 the control unit 151 verifies the validity of the measurement result of the spectroscope 121 based on the light amount measurement result of the photodetector 105.
  • the control unit 151 can verify the validity of the measurement result of the spectroscope 121 by, for example, the following method.
  • control unit 151 confirms the light quantity measurement result included in the measurement result of the spectroscope 121 input in step S10. And the control part 151 calculates
  • control unit 151 stores in advance a range of the light quantity measurement result of the spectroscope 121 that can be acquired within the dynamic range in the photoelectric conversion characteristics of the spectroscope 121. Then, the control unit 151 determines whether or not the light quantity measurement result of the photodetector 105 input in step S10 is within the range of the light quantity measurement result of the spectroscope 121 stored in advance. Then, if the light amount measurement result of the photodetector 105 input in step S10 is within the range of the light amount measurement result of the spectroscope 121 stored in advance, the control unit 151 of the spectroscope 121 input in step S10. The measurement result is judged to be appropriate.
  • step S10 determines whether the light quantity measurement result of the photodetector 105 input in step S10 is within the range of the light quantity measurement result of the spectroscope 121 stored in advance. If the light quantity measurement result of the photodetector 105 input in step S10 is not within the range of the light quantity measurement result of the spectroscope 121 stored in advance, the control unit 151 of the spectroscope 121 input in step S10. Judge that the measurement results are not valid.
  • step S30 the control unit 151 determines whether or not the measurement result of the spectroscope 121 is valid. If it is determined by the verification in step S20 that the measurement result of the spectroscope 121 is valid, the control unit 151 proceeds to step S40. On the other hand, if it is determined by the verification in step S20 that the measurement result of the spectroscope 121 is not valid, the control unit 151 proceeds to step S60.
  • step S40 the control unit 151 validates the measurement result of the spectroscope 121.
  • step S ⁇ b> 50 the control unit 151 outputs the measurement result of the spectroscope 121 to the output unit 163. And the control part 151 complete
  • step S60 the control unit 151 invalidates the measurement result of the spectroscope 121.
  • step S ⁇ b> 70 the control unit 151 controls the light amount adjuster 122.
  • the control unit 151 confirms the measurement result of the spectroscope 121 invalidated in step S60 and the light amount measurement result of the photodetector 105 associated with the result.
  • the control part 151 calculates
  • the control unit 151 outputs a control signal including the obtained attenuation amount to the light amount adjuster 122 and sets the attenuation amount in the light amount adjuster 122.
  • the control unit 151 can obtain the attenuation amount adjusted by the light amount adjuster 122 by, for example, the following method.
  • control unit 151 obtains and verifies the difference between the light amount measurement result of the spectroscope 121 and the light amount measurement result of the photodetector 105 in the verification in step S20, the difference is within the allowable range of the difference. Find the amount of attenuation that will fit.
  • step S20 when the verification is performed using the range of the light quantity measurement result of the spectroscope 121 that can be acquired within the dynamic range in the photoelectric conversion characteristics of the spectroscope 121, the following is performed. Asking. That is, the control unit 151 obtains the attenuation amount adjusted by the light amount adjuster 122 according to the difference between the threshold value in the range and the light amount measurement result of the photodetector 105.
  • step S80 the control unit 151 instructs the photodetector 105 and the spectroscope 121 to perform measurement again.
  • the control unit 151 outputs a control signal to the photo detector 105 and the spectroscope 121 and instructs the photo detector 105 and the spectroscope 121 to perform measurement again.
  • the spectroscope 121 can detect the light attenuated by the attenuation set in step S70 and measure the optical characteristics. Then, the measurement result of the spectroscope 121 that has been measured again is input to the control unit 151 again and verified in step S20. Thereby, the measurement result of the spectroscope 121 output in step S50 is only the measurement with high reliability.
  • the optical measurement device 3 of the modification 11 selectively validates the measurement result of the spectroscope 121 based on the light amount measurement result measured by the photodetector 105 having a wider dynamic range than the spectroscope 121. For this reason, the optical measuring device 3 of the modified example 11 can output only a reliable measurement result as valid when measuring the optical characteristics of the light emitting element 101. Therefore, the measurement result of the optical characteristics of the optical measurement device 3 of the modification 11 can obtain high reliability.
  • the optical measurement device 3 of the modification 11 can automatically adjust the incident light to the spectroscope 121 to an appropriate light amount. And the optical measurement apparatus 3 of the modification 11 can measure the optical characteristic again by the spectroscope 121 using the incident light adjusted to an appropriate light quantity. For this reason, the optical measurement device 3 of the modification 11 automatically changes the amount of light incident on the spectroscope 121 without changing the measurement environment even when measuring the optical characteristics of the light emitting elements 101 having different emission characteristics. It can be kept appropriate. Therefore, the optical measurement device 3 of Modification 11 can measure the optical characteristics of the light emitting elements 101 of different varieties with high accuracy under the same measurement environment.
  • the optical measurement device 3 of Modification 11 uses the light amount measurement result obtained by measuring the attenuation amount adjusted by the light amount adjuster 122 with the photodetector 105 as in the optical measurement device 3 shown in FIGS. It is not necessary to set based on.
  • the optical measurement device 3 of the modification 11 may set the attenuation amount adjusted by the light amount adjuster 122 based on the light amount measurement result included in the measurement result measured by the spectroscope 121.
  • the optical measurement device 3 of Modification 11 may have a configuration in which the optical waveguide 120, the photodetector 105, and the amplifier 113 are omitted.
  • control unit 151 shown in FIG. 23 may verify the validity of the measurement result measured by the spectroscope 121 by the following method. The verification corresponds to a part of the processing in step S20 in FIG.
  • the control unit 151 determines whether or not the light quantity measurement result measured by the spectroscope 121 is within the range of the light quantity measurement result stored in advance. Then, the control unit 151 determines that the measurement result measured by the spectroscope 121 is appropriate if the light quantity measurement result measured by the spectroscope 121 is within the range of the light quantity measurement result stored in advance. On the other hand, if the light amount measurement result measured by the spectroscope 121 is not within the range of the light amount measurement result stored in advance, the control unit 151 determines that the measurement result measured by the spectroscope 121 is not valid.
  • control unit 151 shown in FIG. 23 may obtain the attenuation adjusted by the light amount adjuster 122 by the following method.
  • the calculation of the attenuation amount corresponds to a part of the process of step S70 in FIG.
  • the control unit 151 illustrated in FIG. 23 includes a threshold of the range of the light quantity measurement result of the spectroscope 121 that can be acquired within the dynamic range in the photoelectric conversion characteristics of the spectroscope 121, and the light quantity measurement result measured by the spectroscope 121.
  • the amount of attenuation is obtained according to the difference between the two.
  • the optical measurement apparatus 3 according to the eleventh modification shown in FIG. 23 does not include the photodetector 105, but the incident light to the spectroscope 121 based on the light quantity measurement result measured by the spectroscope 121. Can be automatically adjusted to an appropriate amount of light.
  • the optical measurement device 3 of the modification 11 shown in FIG. 23 has a simpler configuration and a more reliable measurement result than the optical measurement device 3 of 11 shown in FIGS. Obtainable.
  • Other configurations of the optical measurement device 3 of Modification 11 are the same as the configurations of the optical measurement device 3 shown in FIGS. 2 to 9B.
  • the optical measuring device 3 of this embodiment includes a light receiving element 105a and a light receiving element 121a that detect light emitted from one light emitting element 101 arranged adjacent to another light emitting element 101, and the light receiving element 105a and the light receiving element.
  • 121a detects light emitted from one light emitting element 101 by supplying power to one light emitting element 101, light emitted from another light emitting element 101 by light emitted from one light emitting element 101, and Of the light emitted from one light emitting element 101, the light reflected by the other light emitting element 101 is not detected.
  • the optical measuring device 3 can measure the optical characteristics of the light emitting elements 101 with high accuracy with a simple configuration regardless of the arrangement of the light emitting elements 101.
  • the optical measurement device 3 of the present embodiment may supply power only to one light emitting element 101. With such a configuration, the optical measuring device 3 can measure the optical characteristics of the light emitting element 101 with higher accuracy.
  • the light emitted from one light emitting element 101 is detected by the light receiving element 105a and the light receiving element 121a by supplying power to the one light emitting element 101, and the one light emitting element 101 is detected.
  • the light emitted from the other light emitting element 101 by the light emitted by the light emitting element and the light reflected by the other light emitting element 101 out of the light emitted from the one light emitting element 101 are not detected by the light receiving element 105a and the light receiving element 121a.
  • an adjustment unit that adjusts a detection range that is a range of light detected by the light receiving element 105a and the light receiving element 121a may be provided. With such a configuration, the optical measuring device 3 can measure the optical characteristics of the light emitting elements 101 with high accuracy with a simple configuration regardless of the arrangement of the light emitting elements 101.
  • the optical measurement device 3 of the present embodiment includes an optical fiber 117 that receives light emitted from one light emitting element 101 and guides the incident light to the light receiving element 105a and the light receiving element 121a.
  • the detection range may be adjusted by limiting the light incident on the optical fiber 117. With such a configuration, the optical measuring device 3 can measure the optical measurement of the light emitting element 101 with a simpler configuration.
  • one light emitting element 101 and another light emitting element 101 are configured to generate a light having a specific wavelength region when power is supplied, and a wavelength of incident light.
  • a wavelength conversion unit 101c that converts the wavelength of each of the light-emitting elements, and the adjustment unit emits light emitted from one light-emitting element 101 when the light-emitting element 101 enters the wavelength conversion unit 101c of the other light-emitting element 101.
  • the light and the light reflected by the other light emitting element 101 out of the light emitted from one light emitting element 101 may be restricted from entering the optical fiber 117.
  • the optical measurement apparatus 3 can measure the optical characteristics of the light emitting element 101 including the generation unit 101b and the wavelength conversion unit 101c with high accuracy with a simple configuration regardless of the arrangement mode of the light emitting elements 101. Can do.
  • the incident port 117c of the optical fiber 117 into which the light emitted from the one light emitting element 101 enters is disposed to face the one light emitting element 101, and the adjusting unit is The light incident on the optical fiber 117 may be limited by changing the distance L between the mouth 117 c and the one light emitting element 101 based on the numerical aperture NA of the optical fiber 117.
  • the optical measurement device 3 can measure the optical characteristics of the light emitting element 101 including the generation unit 101b and the wavelength conversion unit 101c with a simpler configuration.
  • the maximum value of the incident angle of light that can be totally reflected within the optical fiber 117 is ⁇ , and the light emitting element 101 is adjacent to the other light emitting element 101 from the center. If the distance to the outer edge of the light emitting element 101 is X, the adjusting unit may change the distance L so that the distance L between the entrance and the one light emitting element 101 satisfies the relationship L ⁇ X / tan ⁇ . Good. With such a configuration, the optical measurement device 3 can measure the optical characteristics of the light emitting element 101 including the generation unit 101b and the wavelength conversion unit 101c with a simpler configuration.
  • the incident port 117c of the optical fiber 117 into which the light emitted from one light emitting element 101 enters is disposed to face the one light emitting element 101, and the adjusting unit is disposed between the incident port 117c and the one light emitting element 101.
  • the light may be disposed and configured by a shielding member that blocks light emitted from one light emitting element 101 from entering another light emitting element 101, and the light incident on the optical fiber 117 may be limited by the shielding member.
  • the optical measurement device 3 can measure the optical characteristics of the light emitting element 101 including the generation unit 101b and the wavelength conversion unit 101c with a simpler configuration.
  • An example of “one light emitting element” of the present invention is a light emitting element 101 to be measured among a plurality of light emitting elements 101 arranged.
  • An example of “another light emitting element” of the present invention is a light emitting element 101 other than a measurement target among a plurality of light emitting elements 101 arranged.
  • the light emitting element 101 to be measured is different for each measurement. That is, the “one light-emitting element” and the “other light-emitting element” of the present invention differ only in whether or not they are objects of measurement, and their configurations can be substantially the same.
  • An example of the “light receiving element” in the present invention is the light receiving element 105a and the light receiving element 121a.
  • An example of the “adjustment unit” of the present invention is a distance L adjustment mechanism and an aperture 201. Others are also described appropriately in the specification.
  • An example of the “light guide tube” of the present invention is an optical fiber 117, a bundle fiber 118, and a bundle fiber 119.
  • An example of the “generation unit” of the present invention is the generation unit 101b.
  • An example of the “wavelength converter” in the present invention is the wavelength converter 101c.
  • An example of the “incident port” of the present invention is the incident port 117c.
  • An example of the “shielding member” of the present invention is the shielding plate 206 and the reflector 207.

Abstract

Provided is an optical measuring apparatus for a light emitting element, said optical measuring apparatus being capable of performing highly accurate measurement with a simple configuration. This optical measuring apparatus is provided with a light receiving element and a light receiving element, which detect light emitted from one light emitting element that is disposed adjacent to other light emitting elements. The light receiving elements detect light that the one light emitting element emitted when the one light emitting element is supplied with power, and do not detect light emitted from other light emitting elements due to the light emitted from the one light emitting element, and light reflected by means of other light emitting elements, said light being among the light emitted from the one light emitting element.

Description

光学測定装置Optical measuring device
 本発明は、光学測定装置に関する。 The present invention relates to an optical measuring device.
 特許文献1には、複数配列されたLED(Light Emitting Diode)の光学的な検査を行う検査装置が開示されている。 Patent Document 1 discloses an inspection apparatus that performs an optical inspection of a plurality of LEDs (Light Emitting Diodes).
特開2013-11542号公報JP 2013-11542 A
 しかしながら、特許文献1に記載の装置においては、検査対象のLEDの発光により他のLEDから出射された光まで検出される場合があり、測定精度に改善の余地があった。 However, in the apparatus described in Patent Document 1, light emitted from other LEDs may be detected by the light emission of the LED to be inspected, and there is room for improvement in measurement accuracy.
 本発明は、上記事情に鑑みてなされたものであり、上述のような問題点を解決することを課題の一例とするものである。すなわち、本発明の課題の一例は、簡単な構成で高精度に発光素子の光学特性を測定し得る光学測定装置を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to solve the above-described problems. That is, an example of the subject of the present invention is to provide an optical measuring device capable of measuring the optical characteristics of a light emitting element with a simple configuration with high accuracy.
 本発明の請求項1に係る光学測定装置は、他の発光素子と隣接して配列された一の発光素子が発光した光を検出する受光素子を備え、前記受光素子は、前記一の発光素子に電力を供給することによって前記一の発光素子が発光した光を検出し、前記一の発光素子が発光した光によって前記他の発光素子が発光した光、及び、前記一の発光素子が発光した光のうち前記他の発光素子で反射された光を検出しない。 An optical measurement apparatus according to claim 1 of the present invention includes a light receiving element that detects light emitted from one light emitting element arranged adjacent to another light emitting element, and the light receiving element includes the one light emitting element. The light emitted from the one light emitting element is detected by supplying power to the light, the light emitted from the other light emitting element is emitted by the light emitted from the one light emitting element, and the one light emitting element emits light. The light reflected by the other light emitting element is not detected.
 本発明のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、光学測定装置で測定する発光素子の発光状況を示す。 図2は、光学測定装置の構成を概略的に示す。 図3Aは、光学測定装置に含まれる光ファイバと発光素子とを拡大した図を示す。 図3Bは、図3Aに示された発光素子を発光中心軸の方向から視た図を示す。 図4は、光学測定装置の調節部の例1を説明するための図を示す。 図5は、光学測定装置の調節部の他の例2を説明するための図を示す。 図6は、発光素子の光学特性を光学測定装置で測定する際の測定条件を説明するための図を示す。 図7Aは、図6に示された発光素子の色度に関する測定結果であって、CIE-XYZ表色系での色度座標xを示す。 図7Bは、図6に示された発光素子の色度に関する測定結果であって、CIE-XYZ表色系での色度座標yを示す。 図8は、図6に示された発光素子の光量に関する測定結果を示す。 図9Aは、複数配列された発光素子の光学特性を複数の発光素子で同時に測定する光学測定装置を説明するための図を示す。 図9Bは、図9Aに示された発光素子を発光中心軸の方向から視た図を示す。 図10Aは、光学測定装置の変形例1を説明するための図を示す。 図10Bは、図10Aに示された発光素子及びバンドルファイバを発光中心軸の方向から視た図を示す。 図10Cは、図10A及び図10Bに示されたバンドルファイバの他の断面形状を説明するための図を示す。 図11は、光学測定装置の変形例2を説明するための図を示す。 図12Aは、光学測定装置の変形例3を説明するための図を示す。 図12Bは、図12Aに示されたレンズにおける光の屈折を説明するための図を示す。 図13Aは、光学測定装置の変形例4を説明するための図を示す。 図13Bは、図13Aに示された発光素子及びバンドルファイバを発光中心軸の方向から視た図を示す。 図14Aは、光学測定装置の変形例5を説明するための図を示す。 図14Bは、光学測定装置の変形例5における他の例1を説明するための図を示す。 図14Cは、光学測定装置の変形例5における他の例2を説明するための図を示す。 図15Aは、光学測定装置の変形例6を説明するための図を示す。 図15Bは、図15Aに示されたフォトディテクタの受光素子を発光中心軸の方向から視た図を示す。 図16は、光学測定装置の変形例7を説明するための図を示す。 図17は、光学測定装置の変形例8を説明するための図を示す。 図18は、光学測定装置の変形例9を説明するための図を示す。 図19Aは、光学測定装置の変形例10を説明するための図を示す。 図19Bは、図19Aに示された遮蔽板及び発光素を発光中心軸の方向から視た図を示す。 図20は、光学測定装置の変形例10における他の例を説明するための図を示す。 図21は、光学測定装置3の変形例11を説明するための図を示す。 図22は、図21に示された制御部151が光学特性測定時に行う処理を説明するためのフローチャートを示す。 図23は、光学測定装置3の変形例11における他の例を説明するための図を示す。
Several embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings.
FIG. 1 shows a light emission state of a light emitting element measured by an optical measuring device. FIG. 2 schematically shows the configuration of the optical measurement apparatus. FIG. 3A shows an enlarged view of an optical fiber and a light emitting element included in the optical measuring device. FIG. 3B shows a view of the light emitting device shown in FIG. 3A viewed from the direction of the light emission central axis. FIG. 4 is a diagram for explaining Example 1 of the adjusting unit of the optical measuring device. FIG. 5 is a diagram for explaining another example 2 of the adjusting unit of the optical measuring device. FIG. 6 is a diagram for explaining measurement conditions when measuring the optical characteristics of the light-emitting element with an optical measurement device. FIG. 7A is a measurement result relating to the chromaticity of the light emitting element shown in FIG. 6, and shows chromaticity coordinates x in the CIE-XYZ color system. FIG. 7B is a measurement result regarding the chromaticity of the light emitting element shown in FIG. 6, and shows chromaticity coordinates y in the CIE-XYZ color system. FIG. 8 shows a measurement result regarding the amount of light of the light emitting element shown in FIG. FIG. 9A is a diagram for explaining an optical measurement apparatus that simultaneously measures the optical characteristics of a plurality of light emitting elements arranged with a plurality of light emitting elements. FIG. 9B shows a view of the light emitting element shown in FIG. 9A viewed from the direction of the light emission central axis. FIG. 10A is a diagram for explaining a first modification of the optical measuring device. FIG. 10B shows a view of the light emitting element and the bundle fiber shown in FIG. 10A viewed from the direction of the light emission central axis. FIG. 10C shows a view for explaining another cross-sectional shape of the bundle fiber shown in FIGS. 10A and 10B. FIG. 11 is a diagram for explaining a second modification of the optical measuring device. FIG. 12A is a diagram for explaining a third modification of the optical measuring device. FIG. 12B is a view for explaining light refraction in the lens shown in FIG. 12A. FIG. 13A is a diagram for explaining a fourth modification of the optical measuring device. FIG. 13B shows a view of the light emitting element and the bundle fiber shown in FIG. 13A viewed from the direction of the light emission central axis. FIG. 14A is a diagram for explaining a fifth modification of the optical measuring device. FIG. 14B is a diagram for explaining another example 1 in the fifth modification of the optical measuring device. FIG. 14C shows a diagram for explaining another example 2 of the modification 5 of the optical measuring device. FIG. 15A is a diagram for explaining a sixth modification of the optical measuring device. FIG. 15B shows a view of the light receiving element of the photodetector shown in FIG. 15A viewed from the direction of the light emission central axis. FIG. 16 is a diagram for explaining a modified example 7 of the optical measuring device. FIG. 17 is a diagram for explaining a modification 8 of the optical measuring device. FIG. 18 is a diagram for explaining a modification 9 of the optical measuring device. FIG. 19A is a diagram for explaining a modified example 10 of the optical measuring device. FIG. 19B shows the shielding plate and the light emitting element shown in FIG. 19A viewed from the direction of the light emission central axis. FIG. 20 is a diagram for explaining another example of the modification 10 of the optical measuring device. FIG. 21 is a diagram for explaining a modification 11 of the optical measuring device 3. FIG. 22 is a flowchart for explaining processing performed by the control unit 151 shown in FIG. 21 when measuring optical characteristics. FIG. 23 is a diagram for explaining another example of the modification 11 of the optical measuring device 3.
 以下、本発明の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本発明のいくつかの例を示すものであって、本発明の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本発明の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Embodiment described below shows some examples of the present invention, and does not limit the contents of the present invention. In addition, all the configurations and operations described in the embodiments are not necessarily essential as the configurations and operations of the present invention. In addition, the same referential mark is attached | subjected to the same component and the overlapping description is abbreviate | omitted.
<発光素子の発光状況について>
 図1を用いて、光学測定装置3で測定する発光素子101の発光状況について説明する。
 図1は、光学測定装置3で測定する発光素子101の発光状況を示す。
<About the light emission state of the light emitting element>
The light emission state of the light emitting element 101 measured by the optical measuring device 3 will be described with reference to FIG.
FIG. 1 shows a light emission state of the light emitting element 101 measured by the optical measuring device 3.
 発光素子101は、少なくとも電極及び発光部を含み、電力が供給されると特定の波長領域の光を発光する素子である。発光素子101は、例えば発光ダイオードである。
 図1(a)に示すように、発光素子101は、発光面101aから光を放射状に出射する。
 発光面101aは、発光素子101の表面に位置する。発光素子101の発光面101aの法線を発光中心軸LCAという。発光面101aは、図1(a)において発光中心軸LCAの正方向側にある発光素子101の表面である。
 発光面101aを含む平面上の一方向を基準軸(x軸)とした場合に、当該平面上のx軸からの反時計回りの角度をφと定義する。また、φを固定した場合における、発光中心軸LCAとなす角度をθと定義する。
 発光素子101が発光して、発光面101aから出射される光の強度は、発光中心軸LCAからの角度θ等によって異なる。
The light-emitting element 101 includes at least an electrode and a light-emitting portion, and emits light in a specific wavelength region when power is supplied. The light emitting element 101 is, for example, a light emitting diode.
As shown in FIG. 1A, the light emitting element 101 emits light radially from the light emitting surface 101a.
The light emitting surface 101 a is located on the surface of the light emitting element 101. The normal line of the light emitting surface 101a of the light emitting element 101 is referred to as a light emission central axis LCA. The light emitting surface 101a is the surface of the light emitting element 101 on the positive direction side of the light emission central axis LCA in FIG.
When one direction on a plane including the light emitting surface 101a is defined as a reference axis (x axis), a counterclockwise angle from the x axis on the plane is defined as φ. In addition, an angle formed with the light emission center axis LCA when φ is fixed is defined as θ.
The intensity of light emitted from the light emitting element 101 and emitted from the light emitting surface 101a varies depending on the angle θ from the light emission center axis LCA and the like.
 光量は、φの値が0°から360°について、θの値が0°から90°までの範囲内にある光の強度を全て積算し、発光素子101の裏面側についても算出し、両者を加算した値である。
 この光量を知ることによって、その発光素子101が各種の使用に適切であるか否かを検査することが可能となる。
The amount of light is calculated for the back side of the light emitting element 101 by integrating all the intensities of light within the range of θ values of 0 ° to 90 ° for φ values of 0 ° to 360 °. It is the added value.
Knowing this amount of light makes it possible to inspect whether or not the light emitting element 101 is suitable for various uses.
 発光素子101から出射される光の強度は、θ及びφ毎に異なる値となる。光の強度を視覚的に表わすために、図1(b)のような図が用いられる。
 図1(b)において、x軸とy軸との交点部分がθ=0°を表わしている。円上の各点がθ=90°の各φの位置をそれぞれ表わしている。
 図1(c)は、φの値が一定の位置における断面図である。
The intensity of light emitted from the light emitting element 101 has different values for each of θ and φ. In order to visually express the light intensity, a diagram as shown in FIG. 1B is used.
In FIG. 1B, the intersection of the x-axis and the y-axis represents θ = 0 °. Each point on the circle represents the position of each φ at θ = 90 °.
FIG. 1C is a cross-sectional view at a position where the value of φ is constant.
 ここで、発光素子101からの同一の距離、かつ、発光中心軸LCAからの角度θの位置における、光の強度を配光強度E(θ)と定義する。この配光強度E(θ)を各θに応じて図示したものが配光強度分布である。 Here, the light intensity at the same distance from the light emitting element 101 and at the position of the angle θ from the light emission central axis LCA is defined as the light distribution intensity E (θ). This light distribution intensity E (θ) corresponding to each θ is illustrated as a light distribution intensity distribution.
 なお、配光強度分布が分かると、次のようにして発光素子101の光量を求めることができる。
 すなわち、配光強度E(θ)を、発光中心軸LCA周りの円周で積分して(φ=0°から360°まで積分)、周配光強度J(θ)を求める。周配光強度J(θ)は、J(θ)=E(θ)・2πr・sinθで表される。この周配光強度J(θ)を、θ=0°からθ°積分して、発光素子101の表面側の光量K(θ)を求めることができる。
 また、発光素子101の裏面側の光量は、K(θ)に一定の係数κを乗算することで求めることができる。
 すると、発光素子101の光量は、表面側の光量K(θ)と裏面側の光量K(θ)・κとを加算することで求めることができる。
 なお、発光素子101の表面側の光量と裏面側の光量との差は、同一工程で製造された発光素子101では略一定となることが分かっている。このため、係数κは、1つの発光素子101について光量を実測して求めておけば、他の発光素子101についても同じ値を適用することができる。
If the light distribution intensity distribution is known, the light amount of the light emitting element 101 can be obtained as follows.
That is, the light distribution intensity E (θ) is integrated on the circumference around the emission center axis LCA (integration from φ = 0 ° to 360 °) to obtain the peripheral light distribution intensity J (θ). The circumferential light distribution intensity J (θ) is represented by J (θ) = E (θ) · 2πr · sin θ. The circumferential light distribution intensity J (θ) is integrated from θ = 0 ° to θ °, and the light amount K (θ) on the surface side of the light emitting element 101 can be obtained.
Further, the amount of light on the back side of the light emitting element 101 can be obtained by multiplying K (θ) by a constant coefficient κ.
Then, the light amount of the light emitting element 101 can be obtained by adding the light amount K (θ) on the front surface side and the light amount K (θ) · κ on the back surface side.
Note that it is known that the difference between the light amount on the front surface side and the light amount on the back surface side of the light emitting element 101 is substantially constant in the light emitting element 101 manufactured in the same process. For this reason, if the coefficient κ is obtained by actually measuring the light amount of one light emitting element 101, the same value can be applied to the other light emitting elements 101.
 図1の説明では、発光素子101から十分に遠い位置で測定することによって、発光素子101がほぼ点として考えることができると仮定している。発光素子101は、通常フォトディテクタ105等(図2参照)と比較すると極めて小さいことから、このように仮定することが可能である。図2以降の説明においても、特に記載のない限り、同様とする。 In the description of FIG. 1, it is assumed that the light emitting element 101 can be considered as a point by measuring at a position sufficiently far from the light emitting element 101. Since the light emitting element 101 is extremely small as compared with the normal photodetector 105 or the like (see FIG. 2), it can be assumed in this way. The same applies to the description after FIG. 2 unless otherwise specified.
<光学測定装置の構成について>
 図2を用いて、光学測定装置3の構成について説明する。
 図2は、光学測定装置3の構成を概略的に示す。
<Configuration of optical measuring device>
The configuration of the optical measurement device 3 will be described with reference to FIG.
FIG. 2 schematically shows the configuration of the optical measuring device 3.
 光学測定装置3は、発光素子101が発光した光の光学特性を測定する装置である。光学測定装置3が測定する光学特性には、発光素子101が発光した光の光量、波長、色度が少なくとも含まれる。
 また、光学測定装置3は、発光素子101の製造工程に含まれる検査工程で使用する検査装置に適用され得る。光学測定装置3は、発光素子101の光学特性に加えて電気特性も測定可能である。
The optical measuring device 3 is a device that measures the optical characteristics of the light emitted from the light emitting element 101. The optical characteristics measured by the optical measuring device 3 include at least the light amount, wavelength, and chromaticity of the light emitted from the light emitting element 101.
The optical measuring device 3 can be applied to an inspection device used in an inspection process included in the manufacturing process of the light emitting element 101. The optical measuring device 3 can measure electrical characteristics in addition to the optical characteristics of the light emitting element 101.
 光学測定装置3は、テーブル103と、プローブ針109と、光ファイバ117と、信号線111と、フォトディテクタ105と、アンプ113と、分光器121と、電気特性計測部125と、制御部151と、出力部163と、を少なくとも備える。 The optical measurement device 3 includes a table 103, a probe needle 109, an optical fiber 117, a signal line 111, a photodetector 105, an amplifier 113, a spectroscope 121, an electrical characteristic measurement unit 125, a control unit 151, And at least an output unit 163.
 テーブル103は、測定対象の発光素子101を載置する測定試料台である。
 テーブル103は、略一様な平板形状を有し、略水平に設置されている。
 テーブル103と、これに載置された発光素子101とは、互いに略平行となる。
The table 103 is a measurement sample stage on which the light emitting element 101 to be measured is placed.
The table 103 has a substantially uniform flat plate shape and is installed substantially horizontally.
The table 103 and the light emitting element 101 mounted thereon are substantially parallel to each other.
 テーブル103は、ガラステーブル103aと、ダイシングシート103bとを少なくとも有する。
 ガラステーブル103aは、サファイアやガラス等の光透過材料を用いて、略一様な平板形状に形成されている。
 ダイシングシート103bは、表面に粘着性を有し、ガラステーブル103a上に積層されている。発光素子101は、このダイシングシート103b上に載置される。
 ダイシングシート103bを有するテーブル103は、測定時に発光素子101をテーブル103に移載し易く、位置ズレを抑制することができる。
 なお、発光素子101の製造工程において、発光素子101がダイシングシート103b上に予め複数配列されている場合には、発光素子101及びダイシングシート103bを一括してガラステーブル103a上に載置させてもよい。
The table 103 includes at least a glass table 103a and a dicing sheet 103b.
The glass table 103a is formed in a substantially uniform flat plate shape using a light transmitting material such as sapphire or glass.
The dicing sheet 103b has adhesiveness on the surface and is laminated on the glass table 103a. The light emitting element 101 is placed on the dicing sheet 103b.
The table 103 having the dicing sheet 103b can easily transfer the light emitting element 101 to the table 103 at the time of measurement, and can suppress displacement.
In the manufacturing process of the light emitting element 101, when a plurality of the light emitting elements 101 are arranged in advance on the dicing sheet 103b, the light emitting element 101 and the dicing sheet 103b may be collectively placed on the glass table 103a. Good.
 プローブ針109は、発光素子101に電力を供給して発光素子101を発光させる。プローブ針109は、発光素子101の発光面101aと略平行に、発光素子101の法線と直角方向に放射状に延在している。
 図2のプローブ針109は、発光素子101の光学特性測定時、発光素子101の電極に接触して電圧を印加する。また、プローブ針109は、電気特性計測部125と接続されており、発光素子101の電気特性も同時に測定することができる。プローブ針109は、発光素子101の電極の位置に応じて、発光素子101の上面、下面、又は両面に配置される。
The probe needle 109 supplies power to the light emitting element 101 to cause the light emitting element 101 to emit light. The probe needles 109 extend radially in a direction perpendicular to the normal line of the light emitting element 101 substantially parallel to the light emitting surface 101 a of the light emitting element 101.
The probe needle 109 in FIG. 2 applies a voltage in contact with the electrode of the light emitting element 101 when measuring the optical characteristics of the light emitting element 101. In addition, the probe needle 109 is connected to the electrical characteristic measuring unit 125, and the electrical characteristics of the light emitting element 101 can be measured simultaneously. The probe needle 109 is disposed on the upper surface, the lower surface, or both surfaces of the light emitting element 101 according to the position of the electrode of the light emitting element 101.
 プローブ針109を発光素子101に接触させる際、テーブル103及び発光素子101が固定されている状態で、プローブ針109を移動させてもよい。逆に、プローブ針109が固定されている状態で、テーブル103及び発光素子101を移動させてもよい。 When the probe needle 109 is brought into contact with the light emitting element 101, the probe needle 109 may be moved while the table 103 and the light emitting element 101 are fixed. Conversely, the table 103 and the light emitting element 101 may be moved while the probe needle 109 is fixed.
 光ファイバ117は、発光素子101が発光した光を取り込み、フォトディテクタ105及び分光器121に導光する。光ファイバ117は、予め定められた開口数で光を取り込む。
 光ファイバ117は、ヘッド117aと、光伝送路117b、入射口117cとを含む。
The optical fiber 117 takes in the light emitted from the light emitting element 101 and guides it to the photodetector 105 and the spectroscope 121. The optical fiber 117 takes in light with a predetermined numerical aperture.
The optical fiber 117 includes a head 117a, an optical transmission path 117b, and an incident port 117c.
 ヘッド117aは、光を取り込む部分である。
 ヘッド117aは、筒形状に形成されている。ヘッド117aの先端には、光を入射させるための開口である入射口117cが設けられている。ヘッド117aは、入射口117cが発光素子101の発光面101aに対向するように配置される。入射口117cの中心軸は、測定対象の発光素子101の発光中心軸LCAと略一致する。ヘッド117aの中心軸は、入射口117cの中心軸と略一致する。
 入射口117cは、予め定められた光ファイバ117の開口数に応じた範囲の光を入射させる。
 光伝送路117bは、入射口117cが設けられたヘッド117aの先端とは反対側の端部と、フォトディテクタ105及び分光器121とを光学的に接続する。
 光伝送路117bは、入射口117cから入射した光をフォトディテクタ105及び分光器121に導光する。光伝送路117bは、入射口117cから入射した光を内部で全反射させ、伝送損失を極力抑制してフォトディテクタ105及び分光器121に導光する。
The head 117a is a part that captures light.
The head 117a is formed in a cylindrical shape. An incident port 117c, which is an opening for allowing light to enter, is provided at the tip of the head 117a. The head 117 a is disposed so that the incident port 117 c faces the light emitting surface 101 a of the light emitting element 101. The central axis of the incident port 117c substantially coincides with the light emission central axis LCA of the light emitting element 101 to be measured. The central axis of the head 117a substantially coincides with the central axis of the incident port 117c.
The incident port 117c allows light in a range corresponding to a predetermined numerical aperture of the optical fiber 117 to enter.
The optical transmission path 117b optically connects the end of the head 117a provided with the incident port 117c on the side opposite to the tip, and the photodetector 105 and the spectroscope 121.
The optical transmission path 117 b guides the light incident from the incident port 117 c to the photodetector 105 and the spectroscope 121. The light transmission path 117b totally reflects the light incident from the incident port 117c and guides the light to the photodetector 105 and the spectroscope 121 while suppressing transmission loss as much as possible.
 フォトディテクタ105は、発光素子101が発光した光を、光ファイバ117を介して受光素子105aにて検出し、その光学特性を測定する。
 フォトディテクタ105が測定する光学特性には、発光素子101が発光した光の光量が少なくとも含まれる。
 受光素子105aは、光が入射すると、光電変換によって入射光に応じた電荷を生成する。受光素子105aは、例えばフォトダイオード等であってもよい。
The photodetector 105 detects the light emitted from the light emitting element 101 by the light receiving element 105a via the optical fiber 117, and measures the optical characteristics thereof.
The optical characteristics measured by the photodetector 105 include at least the amount of light emitted from the light emitting element 101.
When light is incident, the light receiving element 105a generates a charge corresponding to the incident light by photoelectric conversion. The light receiving element 105a may be, for example, a photodiode.
 フォトディテクタ105は、受光素子105aに入射した入射光の全ての光強度を積算し、入射光の光量を求める。フォトディテクタ105は、求めた光量に応じて、電気信号を生成する。フォトディテクタ105は、生成した電気信号を、信号線111を介してアンプ113に出力する。この電気信号は、フォトディテクタ105によって測定された光量情報に相当する。 The photodetector 105 integrates all the light intensities of the incident light incident on the light receiving element 105a to obtain the amount of incident light. The photodetector 105 generates an electrical signal according to the obtained light amount. The photodetector 105 outputs the generated electric signal to the amplifier 113 via the signal line 111. This electric signal corresponds to the light amount information measured by the photodetector 105.
 アンプ113は、フォトディテクタ105から出力された電気信号を増幅し、制御部151に出力する。 The amplifier 113 amplifies the electrical signal output from the photodetector 105 and outputs the amplified signal to the control unit 151.
 分光器121は、発光素子101が発光した光を、光ファイバ117を介して受光素子121aにて検出し、その光学特性を測定する。
 分光器121が測定する光学特性には、発光素子101が発光した光の光量、波長、色度が少なくとも含まれる。
 受光素子121aは、光が入射すると、光電変換によって入射光に応じた電荷を生成する。受光素子121aは、例えばCCD(Charge Coupled Device)やフォトダイオードアレイ等であってもよい。
The spectroscope 121 detects the light emitted from the light emitting element 101 by the light receiving element 121a via the optical fiber 117, and measures the optical characteristics thereof.
The optical characteristics measured by the spectroscope 121 include at least the light amount, wavelength, and chromaticity of the light emitted from the light emitting element 101.
When light is incident, the light receiving element 121a generates a charge corresponding to the incident light by photoelectric conversion. The light receiving element 121a may be, for example, a CCD (Charge Coupled Device), a photodiode array, or the like.
 分光器121は、受光素子121aに入射した入射光を波長分散し、分散した波長ごとの光強度を求める。波長ごとの光強度は、入射光の波長スペクトル情報に相当する。分光器121は、この波長スペクトル情報から、赤(R)、緑(G)、青(B)の3刺激値の成分比率を計算し、入射光の色度を求める。また、分光器121は、分散した波長ごとの光強度を積算し、入射光の光量を求める。分光器121は、必要に応じて他の光学特性を求めることができる。
 分光器121は、求めた各種光学特性に応じた電気信号を生成する。分光器121は、生成した電気信号を、信号線111を介して制御部151に出力する。この電気信号は、分光器121によって測定された波長スペクトル情報、色度情報、及び光量情報等に相当する。
The spectroscope 121 wavelength-disperses incident light incident on the light receiving element 121a, and obtains the light intensity for each dispersed wavelength. The light intensity for each wavelength corresponds to the wavelength spectrum information of the incident light. The spectroscope 121 calculates component ratios of tristimulus values of red (R), green (G), and blue (B) from the wavelength spectrum information, and obtains the chromaticity of incident light. In addition, the spectroscope 121 integrates the light intensity for each dispersed wavelength to obtain the amount of incident light. The spectroscope 121 can obtain other optical characteristics as necessary.
The spectroscope 121 generates an electrical signal corresponding to the obtained various optical characteristics. The spectroscope 121 outputs the generated electrical signal to the control unit 151 via the signal line 111. This electrical signal corresponds to wavelength spectrum information, chromaticity information, light amount information, and the like measured by the spectroscope 121.
 電気特性計測部125は、位置決めユニット159と、HVユニット153と、ESDユニット155と、切替えユニット157と、を少なくとも有する。 The electrical property measurement unit 125 includes at least a positioning unit 159, an HV unit 153, an ESD unit 155, and a switching unit 157.
 位置決めユニット159は、プローブ針109を位置決め固定する。具体的には、位置決めユニット159は、テーブル103が移動する形式のものであれば、プローブ針109の先端位置を一定の位置に保持する機能を有する。逆に、位置決めユニット159は、プローブ針109が移動する形式のものであれば、プローブ針109の先端位置を発光素子101が載置されるテーブル103上の所定の位置に移動させ、その後その位置に保持する機能を有する。 The positioning unit 159 positions and fixes the probe needle 109. Specifically, the positioning unit 159 has a function of holding the tip position of the probe needle 109 at a fixed position as long as the table 103 moves. Conversely, if the positioning unit 159 is of a type in which the probe needle 109 moves, the position of the tip of the probe needle 109 is moved to a predetermined position on the table 103 on which the light emitting element 101 is placed, and then the position It has the function to hold.
 HVユニット153は、定格電圧を印加して、定格電圧に対する発光素子101での各種電気特性を検出する。
 通常、このHVユニット153からの電圧の印加状態で、発光素子101が発光する光をフォトディテクタ105及び分光器121が測定を行う。
 HVユニット153が検出した各種特性情報は制御部151に出力される。
The HV unit 153 applies a rated voltage and detects various electrical characteristics of the light emitting element 101 with respect to the rated voltage.
Usually, the photodetector 105 and the spectroscope 121 measure the light emitted from the light emitting element 101 in a state where the voltage from the HV unit 153 is applied.
Various characteristic information detected by the HV unit 153 is output to the control unit 151.
 ESDユニット155は、発光素子101に一瞬の間大きな電圧をかけて静電気放電させ静電気破壊されないか等の検査を行うユニットである。
 ESDユニット155が検出した静電破壊情報は制御部151に出力される。
The ESD unit 155 is a unit for inspecting whether or not electrostatic discharge is caused by applying a large voltage to the light emitting element 101 for an instant to cause electrostatic discharge.
The electrostatic breakdown information detected by the ESD unit 155 is output to the control unit 151.
 切替えユニット157は、HVユニット153とESDユニット155との切替えを行う。
 切替えユニット157によって、プローブ針109を介して発光素子101に印加される電圧が変更される。そして、この変更によって、発光素子101の検査項目が、定格電圧での各種特性を検出、又は、静電破壊の有無を検出にそれぞれ変更される。
The switching unit 157 switches between the HV unit 153 and the ESD unit 155.
The voltage applied to the light emitting element 101 via the probe needle 109 is changed by the switching unit 157. And by this change, the inspection item of the light emitting element 101 is changed to detect various characteristics at the rated voltage or to detect the presence or absence of electrostatic breakdown.
 制御部151は、光学測定装置3の動作を統括的に制御する。
 制御部151は、フォトディテクタ105によって測定された光量情報が入力される。制御部151は、分光器121によって測定された波長スペクトル情報、色度情報、及び光量情報が入力される。制御部151は、HVユニット153によって出力された各種電気特性情報が入力される。制御部151は、ESDユニット155が検出した静電破壊情報が入力される。
 制御部151は、これらの入力から発光素子101の各種特性を分別・分析を行う。各種特性の分析後、制御部151は、その分析結果を出力部163から画像出力等の情報出力を行う。更に、制御部151は、その分析結果に基づき必要に応じて、光学測定装置3の各構成要素を制御する。
The control unit 151 comprehensively controls the operation of the optical measurement device 3.
The control unit 151 receives light amount information measured by the photodetector 105. The control unit 151 receives wavelength spectrum information, chromaticity information, and light amount information measured by the spectroscope 121. The control unit 151 receives various electrical characteristic information output by the HV unit 153. The control unit 151 receives the electrostatic breakdown information detected by the ESD unit 155.
The control unit 151 separates and analyzes various characteristics of the light emitting element 101 from these inputs. After analyzing the various characteristics, the control unit 151 outputs the analysis result from the output unit 163 such as image output. Furthermore, the control part 151 controls each component of the optical measuring device 3 as needed based on the analysis result.
<発光素子の構成について>
 図3A及び図3Bを用いて、本実施形態の発光素子101の構成について説明する。
 図3Aは、光学測定装置3に含まれる光ファイバ117と発光素子101とを拡大した図を示す。図3Bは、図3Aに示された発光素子101を発光中心軸LCAの方向から視た図を示す。
<About the structure of the light emitting element>
The configuration of the light-emitting element 101 of this embodiment will be described with reference to FIGS. 3A and 3B.
FIG. 3A shows an enlarged view of the optical fiber 117 and the light emitting element 101 included in the optical measuring device 3. FIG. 3B shows a view of the light emitting element 101 shown in FIG. 3A viewed from the direction of the light emission central axis LCA.
 発光素子101は、上述したように、電力が供給されると特定の波長領域の光を発光する素子である。特定の波長領域の光は、特定の色を呈する。
 本実施形態の発光素子101は、特定の色を呈する光を生成し、生成した光を別の色を呈する光に波長変換した後、外部に出射する。すなわち、本実施形態の発光素子101は、生成した光の色とは別の色を呈する光を発光する。発光素子101は、例えば青色発光ダイオードを黄色蛍光体で覆った疑似白色発光ダイオードであってもよい。
 本実施形態の発光素子101は、生成部101bと、波長変換部101cとを少なくとも含む。
As described above, the light emitting element 101 is an element that emits light in a specific wavelength region when power is supplied. Light in a specific wavelength region exhibits a specific color.
The light emitting element 101 of the present embodiment generates light exhibiting a specific color, converts the wavelength of the generated light into light exhibiting another color, and then emits the light to the outside. That is, the light emitting element 101 of the present embodiment emits light having a color different from the color of the generated light. The light emitting element 101 may be, for example, a pseudo white light emitting diode in which a blue light emitting diode is covered with a yellow phosphor.
The light emitting element 101 of the present embodiment includes at least a generation unit 101b and a wavelength conversion unit 101c.
 生成部101bは、電力が供給されると特定の波長領域の光を生成する。生成部101bは、生成した光を出射する。
 生成部101bは、エレクトロルミネセンス現象を利用した部材であってもよい。生成部101bは、例えば発光ダイオードであってもよい。生成部101bは、例えば青色発光ダイオードであってもよい。
The generator 101b generates light in a specific wavelength region when power is supplied. The generation unit 101b emits the generated light.
The generation unit 101b may be a member using an electroluminescence phenomenon. The generation unit 101b may be a light emitting diode, for example. The generation unit 101b may be a blue light emitting diode, for example.
 波長変換部101cは、入射した光の波長を波長変換する。波長変換部101cは、波長変換した光を外部に出射する。
 波長変換部101cは、フォトルミネセンス現象を利用した部材であってもよい。波長変換部101cは、例えば蛍光体であってもよい。波長変換部101cは、例えば黄色蛍光体であってもよい。
 波長変換部101cは、生成部101bの表面を覆うように設けられている。このとき、波長変換部101cには、生成部101bが出射した光が入射する。波長変換部101cは、入射した光の波長を波長変換し、外部に出射する。波長変換部101cが外部に出射した光の色は、生成部101bが出射した光の色と異なる色を呈する。
The wavelength converter 101c converts the wavelength of the incident light. The wavelength conversion unit 101c emits the wavelength-converted light to the outside.
The wavelength conversion unit 101c may be a member using a photoluminescence phenomenon. The wavelength conversion unit 101c may be a phosphor, for example. The wavelength conversion unit 101c may be a yellow phosphor, for example.
The wavelength conversion unit 101c is provided so as to cover the surface of the generation unit 101b. At this time, the light emitted from the generation unit 101b is incident on the wavelength conversion unit 101c. The wavelength converter 101c converts the wavelength of the incident light and emits it to the outside. The color of the light emitted from the wavelength conversion unit 101c to the outside is different from the color of the light emitted from the generation unit 101b.
 生成部101bが青色発光ダイオードであり波長変換部101cが黄色蛍光体であるとき、波長変換部101cには、生成部101bが出射した青色の光が入射する。波長変換部101cは、入射した青色の光の一部を吸収して励起状態となり基底状態に遷移する際に黄色の光を放射する。そして、波長変換部101cは、当該黄色の光と、吸収しなかった青色の光とが混合した白色の光を外部に出射する。すなわち、発光素子101が発光する光は、波長変換部101cが出射する白色の光である。 When the generation unit 101b is a blue light emitting diode and the wavelength conversion unit 101c is a yellow phosphor, the blue light emitted from the generation unit 101b is incident on the wavelength conversion unit 101c. The wavelength converting unit 101c absorbs a part of the incident blue light and enters an excited state to emit yellow light when transitioning to the ground state. Then, the wavelength conversion unit 101c emits white light, which is a mixture of the yellow light and the blue light that has not been absorbed, to the outside. That is, the light emitted from the light emitting element 101 is white light emitted from the wavelength conversion unit 101c.
<検査工程での発光素子の配列態様について>
 発光素子101の製造工程の一つである検査工程では、発光素子101は、図3A及び図3Bに示すように、格子状に複数並べる態様で配列されている。発光素子101は、ダイシングシート上に貼着された半導体ウェアをダイシングして複数のチップに分割することによって製造される。ダイシング後の発光素子101は、ダイシングシート上に格子状に複数配列された状態となる。
<About the arrangement | sequence aspect of the light emitting element in an inspection process>
In the inspection process which is one of the manufacturing processes of the light emitting element 101, as shown in FIGS. 3A and 3B, a plurality of light emitting elements 101 are arranged in a grid pattern. The light emitting element 101 is manufactured by dicing the semiconductor wear stuck on the dicing sheet and dividing it into a plurality of chips. A plurality of light emitting elements 101 after dicing are arranged in a grid pattern on a dicing sheet.
 光学測定装置3は、複数配列された状態の発光素子101の光学特性及び電気特性を測定し、所望の性能を有しているかを検査する。検査の際、発光素子101は、光学測定装置3のテーブル103に複数配列された状態で移載される。光学測定装置3は、複数配列された状態の発光素子101のそれぞれに順次電力を供給し、光学特性及び電気特性を測定する。測定対象の発光素子101に電力が供給されると、当該発光素子101が発光した光の大部分は、光ファイバ117に入射し得る。一方、測定対象の発光素子101が発光した光の一部分は、測定対象以外の発光素子101に入射し得る。 The optical measuring device 3 measures the optical characteristics and the electrical characteristics of the light emitting elements 101 in a plurality of arrayed states, and inspects whether or not they have a desired performance. At the time of inspection, the light emitting elements 101 are transferred in a state where a plurality of light emitting elements 101 are arranged on the table 103 of the optical measuring device 3. The optical measuring device 3 sequentially supplies power to each of the light emitting elements 101 in a plurality of arrayed states, and measures optical characteristics and electrical characteristics. When power is supplied to the light emitting element 101 to be measured, most of the light emitted from the light emitting element 101 can enter the optical fiber 117. On the other hand, part of the light emitted from the light emitting element 101 to be measured can be incident on the light emitting element 101 other than the measurement target.
 測定対象以外の発光素子101に入射する光の一部は、上述のように、測定対象以外の発光素子101の波長変換部101cに吸収され、測定対象以外の発光素子101を発光させる。また、測定対象以外の発光素子101に入射する光の一部は、測定対象以外の発光素子101で反射し、測定対象以外の発光素子101から出射される。この測定対象以外の発光素子101が発光した光、及び、この測定対象以外の発光素子101で反射された光は、「測定対象の発光素子101の発光に起因して測定対象以外の発光素子101が出射する光」である。 As described above, part of the light incident on the light emitting element 101 other than the measurement target is absorbed by the wavelength conversion unit 101c of the light emitting element 101 other than the measurement target, and causes the light emitting element 101 other than the measurement target to emit light. Further, part of the light incident on the light emitting element 101 other than the measurement target is reflected by the light emitting element 101 other than the measurement target and is emitted from the light emitting element 101 other than the measurement target. The light emitted from the light emitting element 101 other than the measurement target and the light reflected by the light emitting element 101 other than the measurement target are “light emitting elements 101 other than the measurement target due to light emission of the light emitting element 101 as the measurement target”. "Emitted light".
 「測定対象の発光素子101の発光に起因して測定対象以外の発光素子101が出射する光」は、測定者が意図していない光である。このため、本実施形態では、「測定対象の発光素子101の発光に起因して測定対象以外の発光素子101が出射する光」を「測定対象以外の発光素子101が出射する意図しない光」ともいう。
 言い換えると、本実施形態では、測定対象の発光素子101が発光した光が入射することよって測定対象以外の発光素子101が発光した光、及び、測定対象の発光素子101が発光した光が測定対象以外の発光素子101で反射された光を、「測定対象以外の発光素子101が出射する意図しない光」ともいう。
“Light emitted from the light emitting elements 101 other than the measurement target due to light emission of the light emitting elements 101 to be measured” is light that is not intended by the measurer. For this reason, in this embodiment, “light emitted from the light emitting element 101 other than the measurement target due to light emission of the light emitting element 101 as the measurement target” is also referred to as “unintended light emitted from the light emitting element 101 other than the measurement target”. Say.
In other words, in the present embodiment, the light emitted from the light emitting elements 101 other than the measurement target due to the incidence of the light emitted from the light emitting element 101 to be measured, and the light emitted from the light emitting element 101 as the measurement target are measured. The light reflected by the other light emitting elements 101 is also referred to as “unintended light emitted by the light emitting elements 101 other than the measurement target”.
 「測定対象以外の発光素子101が出射する意図しない光」は、測定対象の発光素子101と対向して配置された光ファイバ117に入射することがあり得る。「測定対象以外の発光素子101が出射する意図しない光」が光ファイバ117に入射すると、測定対象の発光素子101の光学特性を高精度で測定することが困難となる。 “Unintentional light emitted from the light emitting element 101 other than the measurement target” may be incident on the optical fiber 117 disposed to face the light emitting element 101 as the measurement target. When “unintended light emitted from the light emitting element 101 other than the measurement target” enters the optical fiber 117, it is difficult to measure the optical characteristics of the light emitting element 101 as the measurement target with high accuracy.
 特に、発光素子101が疑似白色発光ダイオードであるとき、その色度を精度よく測定することが困難であり問題となる。すなわち、測定対象の発光素子101が発光した白色の光は、測定対象以外の発光素子101の黄色蛍光体である波長変換部101cに入射する。すると、測定対象以外の発光素子101は、黄色の光を発光する。この黄色の光は、測定対象の発光素子101の色度を測定するために配置された光ファイバ117に入射してしまう。
 測定対象以外の発光素子101が発光した黄色の光が光ファイバ117に入射すると、当該黄色の光はフォトディテクタ105及び分光器121に導光され、受光素子105a及び受光素子121aによって検出される。結果的に、測定対象の発光素子101の色度に関する測定結果では、黄色の成分比率が上昇してしまう。黄色の成分比率が上昇することは、測定対象の発光素子101の色度を高精度で測定できなかったことを意味する。
 よって、複数配列された発光素子101において、測定対象の発光素子101の光学特性を高精度で測定し得る技術が望まれている。
In particular, when the light emitting element 101 is a pseudo white light emitting diode, it is difficult to accurately measure the chromaticity, which is a problem. That is, the white light emitted from the light emitting element 101 to be measured is incident on the wavelength conversion unit 101c that is a yellow phosphor of the light emitting element 101 other than the measurement target. Then, the light emitting elements 101 other than the measurement target emit yellow light. This yellow light enters the optical fiber 117 arranged for measuring the chromaticity of the light emitting element 101 to be measured.
When yellow light emitted from the light emitting element 101 other than the measurement target enters the optical fiber 117, the yellow light is guided to the photodetector 105 and the spectroscope 121, and is detected by the light receiving element 105a and the light receiving element 121a. As a result, in the measurement result regarding the chromaticity of the light emitting element 101 to be measured, the yellow component ratio is increased. An increase in the yellow component ratio means that the chromaticity of the light emitting element 101 to be measured cannot be measured with high accuracy.
Therefore, there is a demand for a technique capable of measuring the optical characteristics of the light-emitting element 101 to be measured with high accuracy in the plurality of light-emitting elements 101 arranged.
<光学測定装置における光の検出範囲について>
 本実施形態の光学測定装置3は、複数配列された発光素子101のうち測定対象の発光素子101が発光した光を検出すると共に、測定対象以外の発光素子101が出射する意図しない光を検出しない構成を備える。
 図3A及び図3Bにおいて、中央に配置された発光素子101を測定対象とする。当該101の周囲に配置された発光素子101は、測定対象以外の発光素子101である。
 測定対象の発光素子101の光学特性を測定するとき、光学測定装置3は、光ファイバ117の入射口117cと測定対象の発光素子101とを対向させる。好適には、光学測定装置3は、測定対象の発光素子101の発光中心軸LCAと入射口117cの中心軸とを略一致させて、両者を対向させる。
<About the light detection range in the optical measuring device>
The optical measurement device 3 according to the present embodiment detects light emitted from the light emitting element 101 to be measured among a plurality of light emitting elements 101 and does not detect unintended light emitted from the light emitting elements 101 other than the measurement target. It has a configuration.
3A and 3B, the light emitting element 101 arranged at the center is set as a measurement target. The light emitting elements 101 arranged around the 101 are light emitting elements 101 other than the measurement target.
When measuring the optical characteristics of the light emitting element 101 to be measured, the optical measuring device 3 makes the incident port 117c of the optical fiber 117 and the light emitting element 101 to be measured face each other. Preferably, the optical measuring device 3 makes the light emission center axis LCA of the light emitting element 101 to be measured substantially coincide with the center axis of the incident port 117c, and opposes both.
 ここで、図3Aに示すように、測定対象の発光素子101と光ファイバ117との距離をLとする。測定対象の発光素子101の中心から外縁までの距離をAとする。隣接する発光素子101同士の間隔をBとする。測定対象の発光素子101の中心から、測定対象の発光素子101と隣接する発光素子101の外縁までの距離をXとする。
 また、光ファイバ117内で全反射し得る光の入射角の最大値をαとする。光ファイバ117と発光素子101との間の媒質は空気であるとし、屈折率=1であるとする。光ファイバ117の開口数をNAとし、開口数NAが示す範囲をSとする。範囲Sを発光素子101に投影したときの、発光素子101の中心から範囲Sの外縁までの距離をDとする。
 このとき、開口数NAは、NA=sinαである。距離Xは、X=A+Bである。距離Dは、D=Ltanαである。
Here, as shown in FIG. 3A, the distance between the light emitting element 101 to be measured and the optical fiber 117 is L. Let A be the distance from the center of the light emitting element 101 to be measured to the outer edge. Let B be the interval between adjacent light emitting elements 101. Let X be the distance from the center of the light emitting element 101 to be measured to the outer edge of the light emitting element 101 adjacent to the light emitting element 101 to be measured.
Further, the maximum value of the incident angle of light that can be totally reflected in the optical fiber 117 is α. It is assumed that the medium between the optical fiber 117 and the light emitting element 101 is air and the refractive index = 1. The numerical aperture of the optical fiber 117 and NA, the range indicated by the numerical aperture NA and S 0. Let D be the distance from the center of the light emitting element 101 to the outer edge of the range S 0 when the range S 0 is projected onto the light emitting element 101.
At this time, the numerical aperture NA is NA = sin α. The distance X is X = A + B. The distance D is D = Ltanα.
 開口数NAが示す範囲Sに発光素子101が有ると、発光素子101が発光した光は、光ファイバ117内で全反射を繰り返し、フォトディテクタ105及び分光器121に導光され得る。範囲S内に発光素子101が無いと、発光素子101が発光し光は、フォトディテクタ105及び分光器121に導光されない。
 このため、開口数NAが示す範囲Sは、フォトディテクタ105に含まれる受光素子105a及び分光器121に含まれる受光素子121aによって検出可能な光の範囲に相当する。
 本実施形態では、受光素子105a及び受光素子121aによって検出される光の範囲を、「検出範囲」ともいう。
 また、受光素子105a及び受光素子121aの検出範囲は、光学測定装置3が光学特性を測定可能な光の範囲に相当する。
When the light emitting element 101 is in the range S 0 indicated by the numerical aperture NA, the light emitted from the light emitting element 101 can be totally reflected in the optical fiber 117 and guided to the photodetector 105 and the spectroscope 121. If there is no light emitting element 101 in the range S 0 , the light emitting element 101 emits light, and the light is not guided to the photodetector 105 and the spectroscope 121.
Therefore, the range S 0 indicated by the numerical aperture NA corresponds to the range of light that can be detected by the light receiving element 105 a included in the photodetector 105 and the light receiving element 121 a included in the spectroscope 121.
In the present embodiment, the range of light detected by the light receiving element 105a and the light receiving element 121a is also referred to as a “detection range”.
The detection range of the light receiving element 105a and the light receiving element 121a corresponds to a range of light in which the optical measuring device 3 can measure the optical characteristics.
 光学測定装置3は、測定対象の発光素子101が発光した光を検出すると共に測定対象以外の発光素子101が出射する意図しない光を検出しないために、受光素子105a及び受光素子121aの検出範囲を調節する。
 受光素子105a及び受光素子121aの検出範囲は、例えば、測定対象の発光素子101と光ファイバ117との距離Lを調節することによって、調節される。
 光学測定装置3は、測定対象の発光素子101が発光した光を検出すると共に測定対象以外の発光素子101が出射する意図しない光を検出しないために、次のように距離Lを調節する。すなわち、光学測定装置3は、測定対象の発光素子101が範囲S内に位置し、且つ、測定対象以外の発光素子101が範囲S内に位置しないように距離Lを調節する。
The optical measuring device 3 detects the light emitted from the light emitting element 101 to be measured and does not detect unintentional light emitted from the light emitting elements 101 other than the measurement target, so that the detection range of the light receiving element 105a and the light receiving element 121a is set. Adjust.
The detection ranges of the light receiving element 105a and the light receiving element 121a are adjusted by adjusting the distance L between the light emitting element 101 to be measured and the optical fiber 117, for example.
The optical measuring device 3 adjusts the distance L as follows in order to detect light emitted from the light emitting element 101 to be measured and not to detect unintended light emitted from the light emitting elements 101 other than the measurement target. That is, the optical measuring apparatus 3 adjusts the distance L so that the light emitting element 101 to be measured is located in the range S 0 and the light emitting elements 101 other than the measurement object are not located in the range S 0 .
 測定対象の発光素子101が範囲S内に位置する条件は、距離Dが距離A以上であればよい。距離D≧距離Aであるときの距離Lは、L≧A/tanαとなる。光学測定装置3は、測定対象の発光素子101が範囲S内に位置するために、距離LをL≧A/tanαという関係を満たすように調節すればよい。この関係を満たせば、測定対象の発光素子101が発光した光は、受光素子105a及び受光素子121aに導光され検出される。 Condition the light emitting element 101 to be measured is positioned within the range S 0, the distance D may be any distance A above. The distance L when the distance D ≧ the distance A is L ≧ A / tan α. The optical measuring device 3 may adjust the distance L so as to satisfy the relationship L ≧ A / tan α, since the light emitting element 101 to be measured is located in the range S 0 . If this relationship is satisfied, the light emitted from the light emitting element 101 to be measured is guided to and detected by the light receiving element 105a and the light receiving element 121a.
 測定対象以外の発光素子101が範囲S内に位置しない条件は、距離Dが距離X以下であればよい。距離D≦距離Xであるときの距離Lは、L≦X/tanαとなる。光学測定装置3は、測定対象以外の発光素子101が範囲S内に位置しないために、距離LをL≦X/tanαという関係を満たすように調節すればよい。この関係を満たせば、測定対象以外の発光素子101が出射する意図しない光は、受光素子105a及び受光素子121aに導光されず検出されない。 Condition the light emitting element 101 other than the measurement object is not located within the range S 0, the distance D may be equal to or less than the distance X. The distance L when the distance D ≦ the distance X is L ≦ X / tan α. The optical measuring device 3 may adjust the distance L so as to satisfy the relationship L ≦ X / tan α, since the light emitting elements 101 other than the measurement target are not located within the range S 0 . If this relationship is satisfied, unintended light emitted from the light emitting elements 101 other than the measurement target is not guided to the light receiving elements 105a and 121a and is not detected.
 すなわち、光学測定装置3は、測定対象の発光素子101が範囲S内に位置し、且つ、測定対象以外の発光素子101が範囲S内に位置しないために、距離Lを次式の関係を満たすように調節する。
  A/tanα≦L≦X/tanα
 これにより、光学測定装置3は、複数の発光素子101が配列された状態において、測定対象以外の発光素子101が出射する意図しない光を検出せずに、測定対象の発光素子101が発光した光を検出することができる。
That is, the optical measuring apparatus 3 uses the relationship of the following equation for the distance L because the light emitting element 101 to be measured is located in the range S 0 and the light emitting elements 101 other than the measurement object are not located in the range S 0 . Adjust to meet.
A / tan α ≦ L ≦ X / tan α
As a result, the optical measurement device 3 does not detect unintended light emitted from the light emitting elements 101 other than the measurement target in a state where the plurality of light emitting elements 101 are arranged, and the light emitted from the measurement light emitting element 101 emits light. Can be detected.
 なお、測定する光学特性によっては、測定対象の発光素子101の生成部101b及び波長変換部101cが全て範囲S内に位置しなくても測定精度を十分に確保できる場合がある。
 例えば、測定対象の発光素子101の生成部101bが範囲S内に位置すれば測定精度を十分に確保できる場合がある。この場合、測定対象の発光素子101の中心から生成部101bの外縁までの距離をa(<A)とすると、光学測定装置3は、距離Lを次式の関係を満たすように調節する。
  a/tanα≦L≦X/tanα
 いずれにしても、光学測定装置3は、少なくともL≦X/tanαの関係を満たすように距離Lを調節すればよい。
Depending on the optical characteristics to be measured, there are cases where generation unit 101b and the wavelength conversion portion 101c of the light emitting element 101 to be measured can be sufficiently ensured measurement accuracy without all located in a range S in 0.
For example, a sufficiently capable of ensuring measurement accuracy if located in generator 101b is in a range S 0 of the light emitting element 101 to be measured. In this case, if the distance from the center of the light emitting element 101 to be measured to the outer edge of the generation unit 101b is a (<A), the optical measurement device 3 adjusts the distance L so as to satisfy the relationship of the following equation.
a / tan α ≦ L ≦ X / tan α
In any case, the optical measurement device 3 may adjust the distance L so as to satisfy at least the relationship of L ≦ X / tan α.
<光学測定装置の調節部について>
 図4及び図5を用いて、光学測定装置3が備える調節部について説明する。
 図4は、光学測定装置3の調節部の例1を説明するための図を示す。図5は、光学測定装置3の調節部の他の例2を説明するための図を示す。
 調節部は、受光素子105a及び受光素子121aによって検出される光の範囲である検出範囲を調節する手段である。
<Regulation section of optical measuring device>
The adjustment part with which the optical measuring device 3 is provided is demonstrated using FIG.4 and FIG.5.
FIG. 4 is a diagram for explaining an example 1 of the adjusting unit of the optical measuring device 3. FIG. 5 is a diagram for explaining another example 2 of the adjusting unit of the optical measuring device 3.
The adjustment unit is means for adjusting a detection range that is a range of light detected by the light receiving element 105a and the light receiving element 121a.
 上述のように、受光素子105a及び受光素子121aの検出範囲は、測定対象の発光素子101と光ファイバ117との距離Lを調節することによって、調節される。
 光学測定装置3は、受光素子105a及び受光素子121aの検出範囲を調節するための調節部として、例えば距離Lの調節機構を備える。
 距離Lの調節機構は、例えば光ファイバ117に取り付けられた図示しないアクチュエータによって構成することができる。距離Lの調節機構は、図4に示すように、光ファイバ117を発光中心軸LCAに沿って移動させる。よって、距離Lの調節機構によって光ファイバ117が移動されても、光ファイバ117の入射口117c、発光素子101、及びテーブル103は、互いに略平行な配置関係が維持される。
 調節機構によって光ファイバ117を移動させると、光ファイバ117の入射口117cと発光素子101とが近接・離間し、距離Lが変更される。それにより、光ファイバ117に入射する光は制限され、受光素子105a及び受光素子121aの検出範囲は調節される。
 なお、距離Lの調節機構は、光ファイバ117を移動させるのではなく、発光素子101が載置されたテーブル103を移動させてもよいし、当該テーブル103及び光ファイバ117の両者を移動させてもよい。
As described above, the detection ranges of the light receiving element 105a and the light receiving element 121a are adjusted by adjusting the distance L between the light emitting element 101 to be measured and the optical fiber 117.
The optical measuring device 3 includes, for example, an adjustment mechanism for the distance L as an adjustment unit for adjusting the detection ranges of the light receiving element 105a and the light receiving element 121a.
The adjustment mechanism of the distance L can be configured by an actuator (not shown) attached to the optical fiber 117, for example. The adjustment mechanism for the distance L moves the optical fiber 117 along the emission center axis LCA, as shown in FIG. Therefore, even when the optical fiber 117 is moved by the adjustment mechanism of the distance L, the incident port 117c, the light emitting element 101, and the table 103 of the optical fiber 117 are maintained in a substantially parallel arrangement relationship.
When the optical fiber 117 is moved by the adjusting mechanism, the incident port 117c of the optical fiber 117 and the light emitting element 101 are moved closer to and away from each other, and the distance L is changed. Thereby, the light incident on the optical fiber 117 is limited, and the detection ranges of the light receiving element 105a and the light receiving element 121a are adjusted.
Note that the adjustment mechanism for the distance L may move the table 103 on which the light emitting element 101 is placed instead of moving the optical fiber 117, or move both the table 103 and the optical fiber 117. Also good.
 また、受光素子105a及び受光素子121aの検出範囲は、測定対象の発光素子101と光ファイバ117との距離Lを調節する以外の方法によっても調節され得る。
 光学測定装置3は、測定対象の発光素子101が発光した光の一部を遮断し光ファイバ117に入射する光を制限することによって、受光素子105a及び受光素子121aの検出範囲を調節することができる。
 光学測定装置3は、図5に示すように、受光素子105a及び受光素子121aの検出範囲を調節するための調節部として、例えば絞り201を備えてもよい。
In addition, the detection ranges of the light receiving element 105a and the light receiving element 121a can be adjusted by a method other than adjusting the distance L between the light emitting element 101 to be measured and the optical fiber 117.
The optical measuring device 3 can adjust the detection ranges of the light receiving element 105a and the light receiving element 121a by blocking part of the light emitted from the light emitting element 101 to be measured and limiting the light incident on the optical fiber 117. it can.
As shown in FIG. 5, the optical measurement device 3 may include, for example, a diaphragm 201 as an adjustment unit for adjusting the detection ranges of the light receiving element 105a and the light receiving element 121a.
 絞り201は、測定対象の発光素子101と光ファイバ117との間に配置されている。絞り201は、発光中心軸LCAを中心軸とする略円板形状に形成されている。絞り201は、中央に開口部201aを有し、開口部201aの大きさが変更可能に形成されている。
 図5の光学測定装置3では、光ファイバ117の位置が、測定対象以外の発光素子101が範囲S内に含まれないような位置に固定されている。すなわち、光ファイバ117の位置は、距離LがL=X/tanαとなる位置に固定されている。そして、絞り201は、当該位置に固定された光ファイバ117の範囲Sが開口部201a内に収まるように設計されている。
 絞り201の開口部201aの大きさを変更すると、測定対象の発光素子101が発光した光を遮断する範囲が変更される。それにより、光ファイバ117に入射する光は制限され、受光素子105a及び受光素子121aの検出範囲は調節される。
The diaphragm 201 is disposed between the light emitting element 101 to be measured and the optical fiber 117. The diaphragm 201 is formed in a substantially disc shape with the light emission central axis LCA as the central axis. The diaphragm 201 has an opening 201a at the center, and is formed so that the size of the opening 201a can be changed.
In the optical measuring device 3 in FIG. 5, the position of the optical fiber 117 is secured in a position such that the light emitting element 101 other than the measurement object is not included in the range S 0. That is, the position of the optical fiber 117 is fixed at a position where the distance L is L = X / tanα. The diaphragm 201 is designed so that the range S 0 of the optical fiber 117 fixed at the position is within the opening 201a.
When the size of the opening 201a of the diaphragm 201 is changed, the range in which the light emitted from the light emitting element 101 to be measured is blocked is changed. Thereby, the light incident on the optical fiber 117 is limited, and the detection ranges of the light receiving element 105a and the light receiving element 121a are adjusted.
<測定結果について>
 図6~図8を用いて、発光素子101の光学特性を光学測定装置3で測定した測定結果について説明する。
 まず、図6を用いて、測定条件について説明する。
 図6は、発光素子101の光学特性を光学測定装置3で測定する際の測定条件を説明するための図を示す。
 図6では、測定対象の発光素子101は、黒色で示され、測定対象以外の発光素子101は、白色で示されている。
 発光素子101の光学特性を光学測定装置3で測定する際の測定条件を、測定条件1~4とする。測定条件1~4は、発光素子101の配列態様が異なる。
<About measurement results>
The measurement results obtained by measuring the optical characteristics of the light emitting element 101 with the optical measuring device 3 will be described with reference to FIGS.
First, measurement conditions will be described with reference to FIG.
FIG. 6 is a diagram for explaining measurement conditions when the optical characteristic of the light emitting element 101 is measured by the optical measurement device 3.
In FIG. 6, the light-emitting element 101 to be measured is shown in black, and the light-emitting elements 101 other than the measurement object are shown in white.
The measurement conditions for measuring the optical characteristics of the light emitting element 101 with the optical measurement device 3 are measurement conditions 1 to 4. Measurement conditions 1 to 4 differ in the arrangement of the light emitting elements 101.
 測定条件1~4の共通する条件は、次の通りである。
 測定条件1~4共に、測定対象の発光素子101及び測定対象以外の発光素子101は、生成部101b及び波長変換部101cを含む同一の発光素子101である。この発光素子101は、生成部101bが青色発光ダイオードであり波長変換部101cが黄色蛍光体である疑似白色発光ダイオードとする。そして、発光素子101は、1辺が1mmの正方形形状に形成されている。
 測定条件1~4共に、隣接する発光素子101同士の間隔は、0.3mmである。
 測定条件1~4共に、1つの発光素子101を測定対象として電力を供給して発光させ、その色度及び光量を測定する。
 測定条件1~4共に、本実施形態の光学測定装置3と、従来の測定装置とを用いて測定する。本実施形態の光学測定装置3の調節部は、図5に示された例2の調節部を用いる。
 その他の条件においても、測定条件1~4で共通である。
The conditions common to the measurement conditions 1 to 4 are as follows.
In both measurement conditions 1 to 4, the light emitting element 101 to be measured and the light emitting elements 101 other than the measurement target are the same light emitting element 101 including the generation unit 101b and the wavelength conversion unit 101c. The light emitting element 101 is a pseudo white light emitting diode in which the generation unit 101b is a blue light emitting diode and the wavelength conversion unit 101c is a yellow phosphor. The light emitting element 101 is formed in a square shape with one side of 1 mm.
In both measurement conditions 1 to 4, the interval between adjacent light emitting elements 101 is 0.3 mm.
In each of the measurement conditions 1 to 4, power is supplied from one light-emitting element 101 as a measurement target to emit light, and the chromaticity and light amount are measured.
Both the measurement conditions 1 to 4 are measured using the optical measurement device 3 of the present embodiment and a conventional measurement device. The adjustment unit of the optical measurement apparatus 3 of the present embodiment uses the adjustment unit of Example 2 shown in FIG.
The measurement conditions 1 to 4 are common to other conditions.
 測定条件1~4の異なる条件は、次の通りである。
 測定条件1は、1個の発光素子101が用いられる。測定条件1の配列態様は、測定対象の発光素子101が1個だけ配置された個片状態の態様である。発光素子101の配列全体の長さは、1mmである。
 測定条件2は、5個の発光素子101が用いられる。測定条件2の配列態様は、測定対象の発光素子101が中央に配置され、その周囲に測定対象以外の発光素子101が4個隣接して配置された態様である。発光素子101の配列全体の長さは、3.6mmである。
 測定条件3は、9個の発光素子101が用いられる。測定条件3の配列態様は、測定対象の101が中央に配置され、その周囲に測定対象以外の発光素子101が8個隣接して配置された態様である。発光素子101の配列全体の長さは、3.6mmである。
 測定条件4は、25個の発光素子101が用いられる。測定条件4の配列態様は、測定対象の発光素子101が中央に配置され、その周囲に測定対象以外の発光素子101が24個隣接して配置された態様である。発光素子101の配列全体の長さは、6.2mmである。
The different conditions of the measurement conditions 1 to 4 are as follows.
Measurement condition 1 uses one light-emitting element 101. The arrangement mode of the measurement condition 1 is an individual state in which only one light emitting element 101 to be measured is arranged. The total length of the light emitting element 101 is 1 mm.
Measurement condition 2 uses five light emitting elements 101. The arrangement mode of the measurement condition 2 is a mode in which the light emitting element 101 to be measured is arranged at the center, and four light emitting elements 101 other than the measurement object are arranged adjacent to the circumference. The total length of the array of the light emitting elements 101 is 3.6 mm.
As the measurement condition 3, nine light emitting elements 101 are used. The arrangement mode of the measurement condition 3 is a mode in which the measurement target 101 is arranged at the center, and eight light emitting elements 101 other than the measurement target are arranged adjacent to the measurement target 101. The total length of the array of the light emitting elements 101 is 3.6 mm.
Measurement condition 4 uses 25 light emitting elements 101. The arrangement mode of the measurement condition 4 is a mode in which the light emitting element 101 to be measured is arranged in the center, and 24 light emitting elements 101 other than the measurement object are arranged adjacent to the circumference. The entire length of the array of the light emitting elements 101 is 6.2 mm.
 続いて、図7A及び図7Bを用いて、色度に関する測定結果について説明する。
 図7Aは、図6に示された発光素子101の色度に関する測定結果であって、CIE-XYZ表色系での色度座標xを示す。図7Bは、図6に示された発光素子101の色度に関する測定結果であって、CIE-XYZ表色系での色度座標yを示す。
Subsequently, measurement results regarding chromaticity will be described with reference to FIGS. 7A and 7B.
FIG. 7A is a measurement result regarding the chromaticity of the light-emitting element 101 shown in FIG. 6, and shows chromaticity coordinates x in the CIE-XYZ color system. FIG. 7B is a measurement result regarding the chromaticity of the light-emitting element 101 shown in FIG. 6 and shows chromaticity coordinates y in the CIE-XYZ color system.
 上述したように、測定対象の発光素子101が発光した白色の光が測定対象以外の発光素子101の波長変換部101cに入射し、当該測定対象以外の発光素子101の波長変換部101cが黄色の光を発光し得る。
 図7A及び図7Bに示すように、従来の測定装置を用いて色度を測定した場合、測定条件1の測定結果と、測定条件2~4の各測定結果とは乖離している。
 測定条件1では、発光素子101の配列態様が個片状態である。測定条件1の測定結果は、測定対象以外の発光素子101が出射する意図しない光の影響を受けない理想的な結果である。
 測定条件2~4では、測定対象の発光素子101に隣接して、測定対象以外の複数の発光素子101が配置された配列態様である。測定条件2~4の測定結果と測定条件1の測定結果とが乖離した理由は、測定対象以外の発光素子101が出射する意図しない光の影響を受けたからである。例えば、測定対象以外の発光素子101の波長変換部101cが発光した黄色の光が光ファイバ117に入射し、受光素子121aで検出され、分光器121で色度が測定されたからである。
 すなわち、複数配列された発光素子101の色度測定において、従来の測定装置の測定結果は、測定対象以外の発光素子101が出射する意図しない光の影響を受けて、測定精度が低下する。
As described above, white light emitted from the light emitting element 101 to be measured is incident on the wavelength conversion unit 101c of the light emitting element 101 other than the measurement target, and the wavelength conversion unit 101c of the light emitting element 101 other than the measurement target is yellow. Can emit light.
As shown in FIGS. 7A and 7B, when the chromaticity is measured using a conventional measuring apparatus, the measurement result of measurement condition 1 is different from the measurement results of measurement conditions 2 to 4.
Under measurement condition 1, the arrangement of the light emitting elements 101 is in a single piece state. The measurement result of the measurement condition 1 is an ideal result that is not affected by unintended light emitted from the light emitting elements 101 other than the measurement target.
Measurement conditions 2 to 4 are an arrangement in which a plurality of light emitting elements 101 other than the measurement target are arranged adjacent to the light emitting element 101 to be measured. The reason why the measurement results of measurement conditions 2 to 4 are different from the measurement result of measurement condition 1 is that the measurement results are affected by unintended light emitted from light emitting elements 101 other than the measurement target. For example, this is because yellow light emitted from the wavelength conversion unit 101 c of the light emitting element 101 other than the measurement target is incident on the optical fiber 117, detected by the light receiving element 121 a, and chromaticity is measured by the spectroscope 121.
That is, in the chromaticity measurement of the light emitting elements 101 arranged in a plurality, the measurement result of the conventional measuring apparatus is affected by unintended light emitted from the light emitting elements 101 other than the measurement target, and the measurement accuracy is lowered.
 また、図7A及び図7Bに示すように、測定条件1、測定条件2、測定条件3、測定条件4の順に色度座標値が増加し、黄色の色度座標(x≒0.4、y≒0.5)に接近している。
 この理由は、測定対象以外の発光素子101が多く配置される程、測定対象以外の発光素子101が発光する黄色の光が増加し、受光素子121aで検出される黄色の光の成分比率が増加するからである。
 すなわち、複数配列された発光素子101の色度測定において、従来の測定装置の測定結果は、測定対象以外の発光素子101が多く配置される程、測定対象以外の発光素子101が出射する意図しない光の影響を受け易くなる。それにより、従来の測定装置の測定結果は、測定対象以外の発光素子101が多く配置される程、測定精度が低下し易くなる。
Further, as shown in FIGS. 7A and 7B, the chromaticity coordinate value increases in the order of measurement condition 1, measurement condition 2, measurement condition 3, and measurement condition 4, and yellow chromaticity coordinates (x≈0.4, y ≈0.5)
This is because the more light emitting elements 101 other than the measurement target are arranged, the more yellow light emitted from the light emitting elements 101 other than the measurement target increases, and the component ratio of the yellow light detected by the light receiving element 121a increases. Because it does.
That is, in the chromaticity measurement of the light emitting elements 101 arranged in a plurality, the measurement result of the conventional measuring apparatus is not intended that the light emitting elements 101 other than the measurement target emit as the light emitting elements 101 other than the measurement target are arranged. It becomes susceptible to light. As a result, the measurement result of the conventional measurement apparatus is likely to be degraded in measurement accuracy as more light emitting elements 101 other than the measurement target are arranged.
 一方、図7A及び図7Bに示すように、本実施形態の光学測定装置3を用いて色度を測定した場合、測定条件1~4での各測定結果は略一定である。
 この理由は、本実施形態の光学測定装置3は、上述の調節部を備えることで、測定対象以外の発光素子101が出射する意図しない光は、光ファイバ117に入射せず、受光素子121aで検出されないからである。
 すなわち、複数配列された発光素子101の色度測定において、本実施形態の光学測定装置3の測定結果は、測定対象以外の発光素子101が出射する意図しない光の影響を受けずに、個片状態での測定結果と同等の高い測定精度が得られている。
On the other hand, as shown in FIGS. 7A and 7B, when the chromaticity is measured using the optical measurement device 3 of the present embodiment, the measurement results under the measurement conditions 1 to 4 are substantially constant.
This is because the optical measuring device 3 of the present embodiment includes the adjusting unit described above, so that unintended light emitted from the light emitting element 101 other than the measurement target does not enter the optical fiber 117 and is received by the light receiving element 121a. It is because it is not detected.
That is, in the chromaticity measurement of the light emitting elements 101 arranged in a plurality, the measurement result of the optical measurement device 3 of the present embodiment is not affected by unintended light emitted from the light emitting elements 101 other than the measurement target. High measurement accuracy equivalent to the measurement result in the state is obtained.
 続いて、図8を用いて、光量に関する測定結果について説明する。
 図8は、図6に示された発光素子101の光量に関する測定結果を示す。
 図8に示すように、従来の測定装置を用いて光量を測定した場合、測定条件1の測定結果と、測定条件2~4の各測定結果とは乖離している。そして、測定条件1、測定条件2、測定条件3、測定条件4の順に光量が増加している。
 この理由は、測定対象以外の発光素子101が多く配置される程、測定対象以外の発光素子101が発光する黄色の光が増加し、受光素子105aで検出され易くなり、フォトディテクタ105で測定された光量が増加するからである。
 すなわち、複数配列された発光素子101の光量測定においても、従来の測定装置の測定結果は、測定対象以外の発光素子101が多く配置される程、測定対象以外の発光素子101が出射する意図しない光の影響を受け易くなる。それにより、従来の測定装置の測定結果は、測定対象以外の発光素子101が多く配置される程、測定精度が低下し易くなる。
Subsequently, a measurement result regarding the light amount will be described with reference to FIG.
FIG. 8 shows a measurement result regarding the light quantity of the light emitting element 101 shown in FIG.
As shown in FIG. 8, when the amount of light is measured using a conventional measuring apparatus, the measurement result under measurement condition 1 is different from the measurement results under measurement conditions 2 to 4. The light quantity increases in the order of measurement condition 1, measurement condition 2, measurement condition 3, and measurement condition 4.
The reason for this is that the more light emitting elements 101 other than the measurement target are arranged, the more yellow light emitted from the light emitting elements 101 other than the measurement target increases, which is easily detected by the light receiving element 105a and measured by the photodetector 105. This is because the amount of light increases.
That is, also in the light quantity measurement of the light emitting elements 101 arranged in a plurality, the measurement result of the conventional measuring apparatus is not intended that the light emitting elements 101 other than the measurement target emit as the light emitting elements 101 other than the measurement target are arranged. It becomes susceptible to light. As a result, the measurement result of the conventional measurement apparatus is likely to be degraded in measurement accuracy as more light emitting elements 101 other than the measurement target are arranged.
 一方、図8に示すように、本実施形態の光学測定装置3を用いて光量を測定した場合、測定条件1~4での各測定結果は略一定である。
 この理由は、本実施形態の光学測定装置3は、上述の調節部を備えることで、測定対象以外の発光素子101が出射する意図しない光は、光ファイバ117に入射せずに、受光素子105aで検出されないからである。
 すなわち、複数配列された発光素子101の光量測定においても、本実施形態の光学測定装置3の測定結果は、測定対象以外の発光素子101が出射する意図しない光の影響を受けずに、個片状態での測定結果と同等の高い測定精度が得られる。
On the other hand, as shown in FIG. 8, when the amount of light is measured using the optical measuring device 3 of the present embodiment, each measurement result under the measurement conditions 1 to 4 is substantially constant.
The reason for this is that the optical measuring device 3 of the present embodiment includes the adjusting unit described above, so that unintended light emitted from the light emitting element 101 other than the measurement target does not enter the optical fiber 117, and the light receiving element 105a. It is because it is not detected by.
That is, also in the light quantity measurement of the light emitting elements 101 arranged in a plurality, the measurement result of the optical measuring device 3 of the present embodiment is not affected by unintended light emitted from the light emitting elements 101 other than the measurement target, High measurement accuracy equivalent to the measurement result in the state can be obtained.
 このように、本実施形態の光学測定装置3は、発光素子101の配列態様に関わらず、個片状態での測定と同等の高い測定精度で、発光素子101の光学特性を測定することができる。 As described above, the optical measurement device 3 according to the present embodiment can measure the optical characteristics of the light emitting element 101 with high measurement accuracy equivalent to the measurement in the individual state regardless of the arrangement mode of the light emitting elements 101. .
 なお、図7A~図8に示された測定結果では、複数の発光素子101が配列された状態において、測定対象の発光素子101は1つの発光素子101であった。すなわち、光学測定装置3は、1つの発光素子101を測定対象として電力を供給して発光させ、その光学特性を測定した。
 しかしながら、光学測定装置3は、複数の発光素子101が配列された状態において、複数の発光素子101を同時に測定対象としてもよい。すなわち、光学測定装置3は、複数の発光素子101を測定対象として同時に電力を供給して発光させ、その光学特性を同時に測定してもよい。
In the measurement results shown in FIGS. 7A to 8, the light emitting element 101 to be measured is one light emitting element 101 in a state where the plurality of light emitting elements 101 are arranged. That is, the optical measuring device 3 supplies light with one light emitting element 101 as a measurement target to emit light, and measures its optical characteristics.
However, the optical measuring device 3 may simultaneously measure a plurality of light emitting elements 101 in a state where the plurality of light emitting elements 101 are arranged. In other words, the optical measuring device 3 may simultaneously measure the optical characteristics of the plurality of light emitting elements 101 by simultaneously supplying power and emitting light.
 図9Aは、複数配列された発光素子101の光学特性を複数の発光素子101で同時に測定する光学測定装置3を説明するための図を示す。図9Bは、図9Aに示された発光素子101を発光中心軸LCAの方向から視た図を示す。
 複数の発光素子101を測定対象として同時に測定する光学測定装置3には、プローブ針109及び光ファイバ117が予め複数設けられる。また、この光学測定装置3では、フォトディテクタ105、アンプ113、分光器121、電気特性計測部125、及び制御部151が、複数の発光素子101を同時に測定可能なように予め設計されている。
 そして、この光学測定装置3では、測定対象となる複数の発光素子101のそれぞれに複数の光ファイバ117が対向して配置されている。更に、この光学測定装置3では、測定対象となる複数の発光素子101のそれぞれの電極に複数のプローブ針109が接触されている。光学測定装置3は、測定対象となる複数の発光素子101に同時に電力を供給して発光させ、それらの光学特性を同時に測定する。
 但し、この光学測定装置3では、1つの測定対象の発光素子101に対向配置された光ファイバ117に対して他の測定対象の発光素子101から発光された光が入射しないように、測定対象の発光素子101同士の間隔が定められている。
 例えば、図9A及び図9Bに示すように、各発光素子101が1mm角の正方形形状に形成され、隣接する発光素子101同士の間隔が0.3mmで配列されている場合、測定対象の発光素子101同士の間隔は6.2mmに定められている。6.2mmの間隔は、測定対象の発光素子101が4個分の間隔に相当する。この間隔の大きさは、測定対象以外の発光素子101が出射する意図しない光が、光ファイバ117に入射しないような大きさである。同時に、この間隔の大きさは、1つの測定対象の発光素子101が発光した光が、他の測定対象の発光素子101に入射しないような大きさである。
 光学測定装置3は、この間隔を空けて複数の発光素子101を同時に測定することで、複数の発光素子101を1つずつ順次測定する場合と同様の測定精度を得ることができる。
FIG. 9A is a diagram for explaining an optical measurement apparatus 3 that simultaneously measures the optical characteristics of a plurality of light emitting elements 101 with a plurality of light emitting elements 101. FIG. 9B shows a view of the light emitting element 101 shown in FIG. 9A viewed from the direction of the light emission central axis LCA.
A plurality of probe needles 109 and a plurality of optical fibers 117 are provided in advance in the optical measurement apparatus 3 that simultaneously measures a plurality of light emitting elements 101 as a measurement target. In the optical measurement device 3, the photodetector 105, the amplifier 113, the spectroscope 121, the electrical characteristic measurement unit 125, and the control unit 151 are designed in advance so that a plurality of light emitting elements 101 can be measured simultaneously.
In the optical measuring device 3, a plurality of optical fibers 117 are arranged to face each of the plurality of light emitting elements 101 to be measured. Furthermore, in this optical measuring device 3, a plurality of probe needles 109 are in contact with the respective electrodes of the plurality of light emitting elements 101 to be measured. The optical measuring device 3 supplies power to a plurality of light emitting elements 101 to be measured simultaneously to emit light, and measures their optical characteristics simultaneously.
However, in this optical measuring device 3, the light of the measurement object is not incident on the optical fiber 117 disposed opposite to the light emission element 101 of one measurement object so that the light emitted from the light emission element 101 of the other measurement object does not enter. An interval between the light emitting elements 101 is determined.
For example, as shown in FIGS. 9A and 9B, when each light emitting element 101 is formed in a 1 mm square shape and the interval between adjacent light emitting elements 101 is 0.3 mm, the light emitting element to be measured The interval between 101 is set to 6.2 mm. An interval of 6.2 mm corresponds to an interval of four light emitting elements 101 to be measured. The size of the interval is such that unintended light emitted from the light emitting elements 101 other than the measurement target does not enter the optical fiber 117. At the same time, the distance is such that light emitted from one light-emitting element 101 to be measured does not enter another light-emitting element 101 to be measured.
The optical measuring device 3 can obtain the same measurement accuracy as the case where the plurality of light emitting elements 101 are sequentially measured one by one by measuring the plurality of light emitting elements 101 at the same time with the interval therebetween.
<光学測定装置の変形例について>
 図10A~図23を用いて、光学測定装置3の変形例について説明する。
 図10A~図23に示す光学測定装置3の構成において、図2~図9Bに示された光学測定装置3と同様の構成については説明を省略する。
<Modification of Optical Measuring Device>
A modification of the optical measuring device 3 will be described with reference to FIGS. 10A to 23.
In the configuration of the optical measurement device 3 shown in FIGS. 10A to 23, the description of the same configuration as the optical measurement device 3 shown in FIGS. 2 to 9B is omitted.
 図10A~図10Cを用いて、光学測定装置3の変形例1について説明する。
 図10Aは、光学測定装置3の変形例1を説明するための図を示す。図10Bは、図10Aに示された発光素子101及びバンドルファイバ118を発光中心軸LCAの方向から視た図を示す。図10Cは、図10A及び図10Bに示されたバンドルファイバ118の他の断面形状を説明するための図を示す。
 変形例1の光学測定装置3は、バンドルファイバ118を備える。
A modification example 1 of the optical measuring device 3 will be described with reference to FIGS. 10A to 10C.
FIG. 10A is a diagram for explaining a first modification of the optical measuring device 3. FIG. 10B shows a view of the light emitting element 101 and the bundle fiber 118 shown in FIG. 10A viewed from the direction of the light emission central axis LCA. FIG. 10C shows a view for explaining another cross-sectional shape of the bundle fiber 118 shown in FIGS. 10A and 10B.
The optical measurement device 3 according to the first modification includes a bundle fiber 118.
 バンドルファイバ118は、複数の光ファイバ117が束になって構成されている。
 バンドルファイバ118は、その入射口118cが測定対象の発光素子101の発光面101aに対向するように配置されている。バンドルファイバ118の中心軸上にある光ファイバ117は、その中心軸が測定対象の発光素子101の発光中心軸LCAと略一致している。
 バンドルファイバ118を構成する複数の光ファイバ117は、図示していないが、フォトディテクタ105及び分光器121にそれぞれ接続されている。
The bundle fiber 118 is configured by a bundle of a plurality of optical fibers 117.
The bundle fiber 118 is arranged so that the entrance 118 c faces the light emitting surface 101 a of the light emitting element 101 to be measured. The optical fiber 117 on the central axis of the bundle fiber 118 has its central axis substantially coincident with the light emission central axis LCA of the light emitting element 101 to be measured.
Although not shown, the plurality of optical fibers 117 constituting the bundle fiber 118 are connected to the photodetector 105 and the spectroscope 121, respectively.
 バンドルファイバ118の発光中心軸LCAに垂直な断面の大きさは、図10A及び図10Bに示すように、測定対象の発光素子101の発光面101aよりも大きくてもよい。但し、当該断面の大きさは、図10A及び図10Bに示すように、測定対象の発光素子101に隣接する発光素子101を覆わない程度の大きさである。
 なお、バンドルファイバ118の発光中心軸LCAに垂直な断面の形状は、図10Bに示すように矩形形状であってもよいし、図10Cに示すように円形形状であってもよい。
The size of the cross section perpendicular to the light emission center axis LCA of the bundle fiber 118 may be larger than the light emitting surface 101a of the light emitting element 101 to be measured, as shown in FIGS. 10A and 10B. However, the size of the cross section is a size that does not cover the light emitting element 101 adjacent to the light emitting element 101 to be measured, as shown in FIGS. 10A and 10B.
Note that the shape of the cross section perpendicular to the light emission central axis LCA of the bundle fiber 118 may be a rectangular shape as shown in FIG. 10B or a circular shape as shown in FIG. 10C.
 変形例1の光学測定装置3は、バンドルファイバ118が、バンドルファイバ118の開口数が示す範囲S内に測定対象以外の発光素子101が含まれないような位置に固定されている。
 バンドルファイバ118の開口数が示す範囲Sは、バンドルファイバ118に含まれる1本の光ファイバ117の開口数NAが示す範囲Sよりも拡大される。
 このため、バンドルファイバ118の位置は、1本の光ファイバ117を用いる場合の光ファイバ117の位置よりも、測定対象の発光素子101に十分に近接した位置でよい。そのため、測定対象以外の発光素子101が出射する意図しない光は、バンドルファイバ118に入射することが困難となり得る。それにより、変形例1の光学測定装置3では、測定対象以外の発光素子101が出射する意図しない光が検出されずに、測定対象の発光素子101が発光した光が受光素子105a及び受光素子121aで検出され得る。
Optical measuring device 3 of the first modification, the bundle fiber 118 is fixed in a position that does not include the light emitting device 101 other than the measurement target range S 1 indicated by the numerical aperture of the bundle fiber 118.
The range S 1 indicated by the numerical aperture of the bundle fiber 118 is larger than the range S 0 indicated by the numerical aperture NA of one optical fiber 117 included in the bundle fiber 118.
For this reason, the position of the bundle fiber 118 may be a position sufficiently closer to the light emitting element 101 to be measured than the position of the optical fiber 117 in the case of using one optical fiber 117. Therefore, unintended light emitted from the light emitting elements 101 other than the measurement target may be difficult to enter the bundle fiber 118. Thereby, in the optical measuring device 3 of the first modification, unintentional light emitted from the light emitting elements 101 other than the measurement target is not detected, and the light emitted from the light emitting elements 101 as the measurement targets is received by the light receiving elements 105a and 121a. Can be detected.
 変形例1の光学測定装置3は、範囲Sが範囲Sよりも拡大されるため、バンドルファイバ118には、測定対象の発光素子101が発光する光が、1本の光ファイバ117を用いる場合よりも多く入射し得る。そのため、変形例1の光学測定装置3は、受光素子105a及び受光素子121aで多くの光を検出することができ、より高い精度で光量を測定することができる。バンドルファイバ118等の位置合わせ作業も容易に行うことができる。
 更に、変形例1の光学測定装置3は、バンドルファイバ118を構成する複数の光ファイバ117にフォトディテクタ105及び分光器121がそれぞれ接続されているため、測定対象の発光素子101の発光面101aの光強度分布や色度分布等を測定することができる。
In the optical measuring device 3 of the first modification, the range S 1 is larger than the range S 0, and thus the light emitted from the light emitting element 101 to be measured uses one optical fiber 117 for the bundle fiber 118. More incidents can be made. Therefore, the optical measuring device 3 of the first modification can detect a large amount of light with the light receiving element 105a and the light receiving element 121a, and can measure the light quantity with higher accuracy. The alignment operation of the bundle fiber 118 and the like can be easily performed.
Further, in the optical measuring device 3 of the first modification, the photodetector 105 and the spectroscope 121 are connected to the plurality of optical fibers 117 constituting the bundle fiber 118, respectively, so that the light on the light emitting surface 101a of the light emitting element 101 to be measured is measured. Intensity distribution, chromaticity distribution, and the like can be measured.
 なお、変形例1の光学測定装置3は、バンドルファイバ118を構成する複数の光ファイバ117の数を変更することができる。バンドルファイバ118を構成する複数の光ファイバ117の数を変更すると、バンドルファイバ118の開口数が示す範囲Sが変更される。それにより、変形例1の光学測定装置3は、バンドルファイバ118に入射する光を制限し、受光素子105a及び受光素子121aの検出範囲を調節し得る。
 バンドルファイバ118を構成する複数の光ファイバ117の数を変更する手段は、変形例1の光学測定装置3が備える調節部を構成する。
 或いは、変形例1の光学測定装置3は、バンドルファイバ118を構成する複数の光ファイバ117と受光素子105a及び受光素子121aとの間の各接続を有効又は無効に切り替えるスイッチを備えてもよい。そして、変形例1の光学測定装置3は、当該スイッチを制御することにより、バンドルファイバ118の開口数が示す範囲Sを変更してもよい。それにより、変形例1の光学測定装置3は、受光素子105a及び受光素子121aの検出範囲を調節することができる。
 バンドルファイバ118を構成する複数の光ファイバ117と受光素子105a及び受光素子121aとの各接続を切り替える手段も、変形例1の光学測定装置3が備える調節部を構成する。
 更には、変形例1の光学測定装置3は、図4を用いて説明した調節機構や図5を用いて説明した絞り201を備えてもよい。そして、これらの調節機構や絞り201が、変形例1の光学測定装置3が備える調節部を構成してもよい。
 変形例1の光学測定装置3の他の構成については、図2~図9Bに示された光学測定装置3の構成と同様である。
In addition, the optical measuring device 3 of the modification 1 can change the number of the some optical fibers 117 which comprise the bundle fiber 118. FIG. When the number of the plurality of optical fibers 117 constituting the bundle fiber 118 is changed, the range S 1 indicated by the numerical aperture of the bundle fiber 118 is changed. Thereby, the optical measurement device 3 of the first modification can limit the light incident on the bundle fiber 118 and can adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
The means for changing the number of the plurality of optical fibers 117 constituting the bundle fiber 118 constitutes an adjustment unit provided in the optical measurement device 3 of the first modification.
Alternatively, the optical measurement device 3 according to the first modification may include a switch that switches the connection between the plurality of optical fibers 117 constituting the bundle fiber 118 and the light receiving elements 105a and 121a to be valid or invalid. And the optical measuring device 3 of the modification 1 may change range S1 which the numerical aperture of the bundle fiber 118 shows by controlling the said switch. Thereby, the optical measuring device 3 of the modification 1 can adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
The means for switching each connection between the plurality of optical fibers 117 constituting the bundle fiber 118 and the light receiving element 105a and the light receiving element 121a also constitutes an adjustment unit provided in the optical measurement device 3 of the first modification.
Furthermore, the optical measuring device 3 of Modification 1 may include the adjusting mechanism described with reference to FIG. 4 and the diaphragm 201 described with reference to FIG. And these adjustment mechanisms and diaphragm 201 may constitute the adjustment part with which optical measurement device 3 of modification 1 is provided.
Other configurations of the optical measurement device 3 of Modification 1 are the same as the configurations of the optical measurement device 3 shown in FIGS. 2 to 9B.
 図11を用いて、光学測定装置3の変形例2について説明する。
 図11は、光学測定装置3の変形例2を説明するための図を示す。
 変形例2の光学測定装置3は、変形例1の光学測定装置3に積分球108を追加した構成を備える。
A second modification of the optical measuring device 3 will be described with reference to FIG.
FIG. 11 is a diagram for explaining a second modification of the optical measuring device 3.
The optical measurement device 3 according to the second modification has a configuration in which an integrating sphere 108 is added to the optical measurement device 3 according to the first modification.
 積分球108は、中空の略球形状に形成されている。
 積分球108は、内壁108aと、取込口108bと、取出口108cとを備えている。
 内壁108aは、積分球108の内部空間を形成する。内壁108aは、高反射率の拡散性に優れた材料で形成されている。
 内壁108aには、取込口108b及び取出口108cが設けられている。
The integrating sphere 108 is formed in a hollow, substantially spherical shape.
The integrating sphere 108 includes an inner wall 108a, an inlet 108b, and an outlet 108c.
The inner wall 108a forms an internal space of the integrating sphere 108. The inner wall 108a is formed of a material having high reflectivity and excellent diffusibility.
The inner wall 108a is provided with an inlet 108b and an outlet 108c.
 取込口108bは、測定対象の発光素子101が発光した光を取り込むための開口である。
 図11の取込口108bの開口中心軸は、測定対象の発光素子101の発光中心軸LCAと略一致する。但し、バンドルファイバ118は曲げ得るため、取込口108bの開口中心軸を、測定対象の発光素子101の発光中心軸LCAと一致させなくてもよい。
 図11の取込口108bは、バンドルファイバ118の外周形状と同様の開口形状に形成されている。取込口108bには、バンドルファイバ118が取り付けられている。
 なお、バンドルファイバ118の外周形状は、その入射口118c付近の外周形状と、その取込口108b付近の外周形状とで異なっていてもよい。例えば、バンドルファイバ118の外周形状は、その入射口118c付近の外周形状は矩形形状であり、その取込口108b付近の外周形状は円形形状であってもよい。
 図11の取込口108bは、バンドルファイバ118によって導光された光を積分球108の内部に導く。取込口108bから積分球108の内部に導かれた光は、内壁108aで反射を繰り返し、取出口108cに到達する。
The intake port 108b is an opening for capturing light emitted from the light emitting element 101 to be measured.
The opening center axis of the inlet 108b in FIG. 11 substantially coincides with the light emission center axis LCA of the light emitting element 101 to be measured. However, since the bundle fiber 118 can be bent, the opening center axis of the intake port 108b does not have to coincide with the emission center axis LCA of the light emitting element 101 to be measured.
11 is formed in an opening shape similar to the outer peripheral shape of the bundle fiber 118. A bundle fiber 118 is attached to the intake port 108b.
The outer peripheral shape of the bundle fiber 118 may be different between the outer peripheral shape in the vicinity of the incident port 118c and the outer peripheral shape in the vicinity of the intake port 108b. For example, the outer peripheral shape of the bundle fiber 118 may be a rectangular shape near the entrance port 118c, and the outer peripheral shape near the intake port 108b may be a circular shape.
The inlet 108b in FIG. 11 guides the light guided by the bundle fiber 118 into the integrating sphere 108. The light guided into the integrating sphere 108 from the inlet 108b is repeatedly reflected by the inner wall 108a and reaches the outlet 108c.
 取出口108cは、内壁108aで反射された光を積分球108の外部に取り出すための開口である。
 取出口108cは、内壁108aの取込口108bとは異なる位置に設けられている。
 図11の取出口108cには、光ファイバ117が設けられている。
 図11の取出口108cは、内壁108aで反射された光を光ファイバ117に導く。光ファイバ117に導かれた光は、光ファイバ117に入射し、受光素子105a及び受光素子121aで検出され、フォトディテクタ105及び分光器121で光学特性が測定される。
 変形例2の光学測定装置3の他の構成については、図10A~図10Cに示された変形例1の光学測定装置3の構成と同様である。
The outlet 108 c is an opening for taking out the light reflected by the inner wall 108 a to the outside of the integrating sphere 108.
The outlet 108c is provided at a position different from the inlet 108b of the inner wall 108a.
An optical fiber 117 is provided at the outlet 108c in FIG.
The extraction port 108c in FIG. 11 guides the light reflected by the inner wall 108a to the optical fiber 117. The light guided to the optical fiber 117 enters the optical fiber 117, is detected by the light receiving element 105a and the light receiving element 121a, and the optical characteristics are measured by the photodetector 105 and the spectroscope 121.
Other configurations of the optical measurement device 3 of Modification 2 are the same as those of the optical measurement device 3 of Modification 1 shown in FIGS. 10A to 10C.
 図12A及び図12Bを用いて、光学測定装置3の変形例3について説明する。
 図12Aは、光学測定装置3の変形例3を説明するための図を示す。図12Bは、図12Aに示されたレンズ202における光の屈折を説明するための図を示す。
 変形例3の光学測定装置3は、変形例1の光学測定装置3にレンズ202を追加した構成を備える。
Modification 3 of the optical measuring device 3 will be described with reference to FIGS. 12A and 12B.
FIG. 12A is a diagram for explaining a third modification of the optical measuring device 3. FIG. 12B is a diagram for explaining light refraction in the lens 202 shown in FIG. 12A.
The optical measurement device 3 of Modification 3 has a configuration in which a lens 202 is added to the optical measurement device 3 of Modification 1.
 レンズ202は、測定対象の発光素子101が発光した光をバンドルファイバ118に集光させるためのレンズである。
 レンズ202は、例えば平凸レンズを用いて構成される。
 レンズ202は、バンドルファイバ118と測定対象の発光素子101との間で両者に対向して配置されている。レンズ202は、バンドルファイバ118の入射口118c及び測定対象の発光素子101の発光面101aと、略平行に配置されている。
 レンズ202の中心軸は、測定対象の発光素子101の発光中心軸LCAと略一致する。
The lens 202 is a lens for condensing the light emitted from the light emitting element 101 to be measured on the bundle fiber 118.
The lens 202 is configured using, for example, a plano-convex lens.
The lens 202 is disposed between the bundle fiber 118 and the light emitting element 101 to be measured so as to oppose both. The lens 202 is arranged substantially in parallel with the incident port 118c of the bundle fiber 118 and the light emitting surface 101a of the light emitting element 101 to be measured.
The central axis of the lens 202 substantially coincides with the light emission central axis LCA of the light emitting element 101 to be measured.
 レンズ202の発光中心軸LCAに垂直な断面の大きさは、図12Aに示すように、バンドルファイバ118の発光中心軸LCAに垂直な断面の大きさと同程度か大きい。但し、レンズ202の当該断面の大きさは、図12Aに示すように、測定対象の発光素子101に隣接する発光素子101を覆わない程度の大きさである。 The size of the cross section perpendicular to the light emission central axis LCA of the lens 202 is the same as or larger than the size of the cross section perpendicular to the light emission central axis LCA of the bundle fiber 118, as shown in FIG. 12A. However, the size of the cross section of the lens 202 is a size that does not cover the light emitting element 101 adjacent to the light emitting element 101 to be measured, as shown in FIG. 12A.
 図12Bに示すように、測定対象の発光素子101が発光した光は、レンズ202に入射するとバンドルファイバ118の入射口118cに向かって屈折される。しかし、測定対象以外の発光素子101が出射する意図しない光は、レンズ202に入射しても入射口118cに向かって屈折されない。そのため、測定対象以外の発光素子101が出射する意図しない光は、バンドルファイバ118に入射することが困難となり得る。それにより、変形例3の光学測定装置3では、測定対象以外の発光素子101が出射する意図しない光が検出されずに、測定対象の発光素子101が発光した光が受光素子105a及び受光素子121aで検出され得る。
 更に、変形例3の光学測定装置3は、測定対象の発光素子101が発光した光をレンズ202でバンドルファイバ118に集光させる。このため、変形例3の光学測定装置3は、バンドルファイバ118等の位置ズレが発生しても、レンズ202を用いない場合より測定精度の低下を抑止することができる。バンドルファイバ118等の位置合わせ作業も更に容易に行うことができる。
As shown in FIG. 12B, the light emitted from the light emitting element 101 to be measured is refracted toward the entrance 118 c of the bundle fiber 118 when entering the lens 202. However, unintended light emitted from the light emitting element 101 other than the measurement target is not refracted toward the incident port 118c even if it enters the lens 202. Therefore, unintended light emitted from the light emitting elements 101 other than the measurement target may be difficult to enter the bundle fiber 118. Thereby, in the optical measurement device 3 of the third modification, unintended light emitted from the light emitting element 101 other than the measurement target is not detected, and the light emitted from the light emitting element 101 as the measurement target is received by the light receiving element 105a and the light receiving element 121a. Can be detected.
Furthermore, the optical measuring device 3 of Modification 3 condenses the light emitted from the light emitting element 101 to be measured on the bundle fiber 118 by the lens 202. For this reason, the optical measuring device 3 of the modified example 3 can suppress a decrease in measurement accuracy even when the positional deviation of the bundle fiber 118 or the like occurs compared to the case where the lens 202 is not used. The alignment operation of the bundle fiber 118 and the like can be performed more easily.
 このように、変形例3の光学測定装置3は、レンズ202を用いて、バンドルファイバ118に入射する光を制限し、受光素子105a及び受光素子121aの検出範囲を調節し得る。
 レンズ202は、変形例3の光学測定装置3が備える調節部を構成する。
As described above, the optical measurement device 3 according to the third modification can limit the light incident on the bundle fiber 118 using the lens 202 and adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
The lens 202 constitutes an adjustment unit provided in the optical measurement device 3 according to the third modification.
 なお、変形例3の光学測定装置3は、レンズ202を、測定対象の発光素子101の発光中心軸LCAに沿って上下方向に移動させる移動手段を備えていてもよい。レンズ202の上下方向での位置が変更されると、バンドルファイバ118の入射口118cに入射可能な光の範囲が変更される。それにより、変形例3の光学測定装置3は、受光素子105a及び受光素子121aの検出範囲を調節することができる。
 レンズ202を発光中心軸LCAに沿って移動させる移動手段も、変形例3の光学測定装置3が備える調節部を構成する。
 変形例3の光学測定装置3の他の構成については、図10A~図10Cに示された変形例1の光学測定装置3の構成と同様である。
Note that the optical measurement apparatus 3 of Modification 3 may include a moving unit that moves the lens 202 in the vertical direction along the light emission central axis LCA of the light emitting element 101 to be measured. When the position of the lens 202 in the vertical direction is changed, the range of light that can enter the incident port 118c of the bundle fiber 118 is changed. Thereby, the optical measuring device 3 of the modification 3 can adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
The moving means for moving the lens 202 along the light emission center axis LCA also constitutes an adjustment unit provided in the optical measurement device 3 of the third modification.
Other configurations of the optical measurement device 3 of Modification 3 are the same as those of the optical measurement device 3 of Modification 1 shown in FIGS. 10A to 10C.
 図13A及び図13Bを用いて、光学測定装置3の変形例4について説明する。
 図13Aは、光学測定装置3の変形例4を説明するための図を示す。図13Bは、図13Aに示された発光素子101及びバンドルファイバ119を発光中心軸LCAの方向から視た図を示す。
 変形例4の光学測定装置3は、変形例1の光学測定装置3に含まれるバンドルファイバ118とは異なる構成のバンドルファイバ119を備える。
Modification 4 of the optical measuring device 3 will be described with reference to FIGS. 13A and 13B.
FIG. 13A shows a diagram for explaining a fourth modification of the optical measuring device 3. FIG. 13B shows a view of the light emitting element 101 and the bundle fiber 119 shown in FIG. 13A viewed from the direction of the light emission central axis LCA.
The optical measurement device 3 of the modification 4 includes a bundle fiber 119 having a configuration different from that of the bundle fiber 118 included in the optical measurement device 3 of the modification 1.
 バンドルファイバ119は、バンドルファイバ118と同様に、複数の光ファイバ117が束になって構成されている。
 バンドルファイバ119は、その入射口119cが測定対象の発光素子101の発光面101aに対向するように配置されている。バンドルファイバ119の中心軸上にある光ファイバ117は、その中心軸が測定対象の発光素子101の発光中心軸LCAと略一致している。
 バンドルファイバ119の中心軸近傍にある一又は複数の光ファイバ117は、分光器121に接続されている。バンドルファイバ119の中心軸近傍以外にある複数の光ファイバ117は、フォトディテクタ105に接続されている。
 図13A及び図13Bでは、バンドルファイバ119の中心軸近傍にある一又は複数の光ファイバ117は、黒色で示されている。バンドルファイバ119の中心軸近傍以外にある複数の光ファイバ117は、白色で示されている。図14A~図14Cでも同様である。
Like the bundle fiber 118, the bundle fiber 119 is configured by a plurality of optical fibers 117 being bundled.
The bundle fiber 119 is arranged so that the entrance 119c faces the light emitting surface 101a of the light emitting element 101 to be measured. The optical fiber 117 on the central axis of the bundle fiber 119 has its central axis substantially coincident with the light emission central axis LCA of the light emitting element 101 to be measured.
One or more optical fibers 117 near the central axis of the bundle fiber 119 are connected to the spectrometer 121. A plurality of optical fibers 117 other than the vicinity of the central axis of the bundle fiber 119 are connected to the photodetector 105.
In FIG. 13A and FIG. 13B, one or more optical fibers 117 in the vicinity of the central axis of the bundle fiber 119 are shown in black. A plurality of optical fibers 117 other than the vicinity of the central axis of the bundle fiber 119 are shown in white. The same applies to FIGS. 14A to 14C.
 バンドルファイバ119の発光中心軸LCAに垂直な断面の大きさは、図13A及び図13Bに示すように、測定対象の101の発光面101aより大きく、測定対象以外の複数の発光素子101を覆う程度の大きさである。
 バンドルファイバ119の開口数が示す範囲Sは、バンドルファイバ118の開口数が示す範囲Sよりも拡大される。範囲S内には、測定対象の発光素子101に加えて測定対象以外の発光素子101も含まれる。
As shown in FIGS. 13A and 13B, the size of the cross section perpendicular to the light emission central axis LCA of the bundle fiber 119 is larger than the light emitting surface 101a of the measurement target 101 and covers a plurality of light emitting elements 101 other than the measurement target. Is the size of
Range S 2 indicated the numerical aperture of the fiber bundle 119 is enlarged than the range S 1 indicated the numerical aperture of the bundle fiber 118. Included within the scope S 2, the light emitting element 101 other than the measurement object in addition to the light emitting element 101 to be measured also included.
 変形例4の光学測定装置3は、範囲Sが範囲Sよりも拡大されるため、バンドルファイバ119には、測定対象の発光素子101が発光する光が、バンドルファイバ118を用いる場合よりも多く入射し得る。そのため、変形例4の光学測定装置3は、受光素子105a及び受光素子121aで更に多くの光を検出することができ、更に高い精度で光量を測定することができる。バンドルファイバ119等の位置合わせ作業も更に容易に行うことができる。
 変形例4の光学測定装置3は、バンドルファイバ119の中心軸と測定対象の発光素子101の発光中心軸LCAとが略一致し、バンドルファイバ119の中心軸近傍にある光ファイバ117のみが分光器121に接続されている。そのため、色度等の測定を行う分光器121の受光素子121aは、測定対象以外の発光素子101が出射する意図しない光を検出せずに、測定対象の発光素子101が発光した光を検出し得る。よって、変形例4の光学測定装置3は、高い精度で色度等を測定することができる。
 変形例4の光学測定装置3は、バンドルファイバ119の中心軸近傍以外にある複数の光ファイバ117がフォトディテクタ105にそれぞれ接続されているため、測定対象以外の発光素子101の発光面101aの光強度分布を測定することができる。
 更に、変形例4の光学測定装置3は、バンドルファイバ119の範囲S内には、測定対象以外の発光素子101も位置する。このため、変形例4の光学測定装置3は、分光器121に接続された光ファイバ117に対向する発光素子101は色度等の測定の測定対象とし、それ以外の複数の発光素子101は光量測定の測定対象とすることができる。すなわち、変形例4の光学測定装置3は、測定対象の発光素子101が異なるが、色度等の測定及び光量測定を同時に行うことができる。
 変形例4の光学測定装置3の他の構成については、図10A~図10Cに示された変形例1の光学測定装置3の構成と同様である。
Optical measuring device 3 of the fourth modification, since the range S 2 is enlarged than the range S 1, the bundle fiber 119, the light emitting element 101 emits light to be measured, as compared with the case of using the bundle fiber 118 Many incidents are possible. Therefore, the optical measuring device 3 of the modification 4 can detect more light by the light receiving element 105a and the light receiving element 121a, and can measure the light quantity with higher accuracy. The alignment work of the bundle fiber 119 and the like can be performed more easily.
In the optical measuring device 3 of Modification 4, the central axis of the bundle fiber 119 and the light emission center axis LCA of the light emitting element 101 to be measured substantially coincide with each other, and only the optical fiber 117 near the center axis of the bundle fiber 119 is a spectrometer 121 is connected. Therefore, the light receiving element 121a of the spectroscope 121 that measures chromaticity or the like detects light emitted from the light emitting element 101 to be measured without detecting unintended light emitted from the light emitting elements 101 other than the measurement target. obtain. Therefore, the optical measurement device 3 of the modification 4 can measure chromaticity and the like with high accuracy.
In the optical measurement device 3 of Modification 4, since the plurality of optical fibers 117 other than the vicinity of the central axis of the bundle fiber 119 are connected to the photodetector 105, the light intensity of the light emitting surface 101a of the light emitting element 101 other than the measurement target is measured. Distribution can be measured.
Furthermore, the optical measuring device 3 variant 4, the range S 2 of the bundle fiber 119, also located the light emitting element 101 other than the measurement object. For this reason, in the optical measuring device 3 of Modification 4, the light emitting element 101 facing the optical fiber 117 connected to the spectroscope 121 is a measurement target for measuring chromaticity or the like, and the other light emitting elements 101 are light quantities. It can be a measurement object. That is, the optical measuring device 3 of the modification 4 can simultaneously measure the chromaticity and the light amount, although the light emitting element 101 to be measured is different.
Other configurations of the optical measurement device 3 of Modification 4 are the same as those of the optical measurement device 3 of Modification 1 shown in FIGS. 10A to 10C.
 図14A~図14Cを用いて、光学測定装置3の変形例5について説明する。
 図14Aは、光学測定装置3の変形例5を説明するための図を示す。図14Bは、光学測定装置3の変形例5における他の例1を説明するための図を示す。図14Cは、光学測定装置3の変形例5における他の例2を説明するための図を示す。
 変形例5の光学測定装置3は、変形例4の光学測定装置3にロッドレンズアレイ203又はマイクロレンズアレイ204を追加した構成を備える。
A modified example 5 of the optical measuring device 3 will be described with reference to FIGS. 14A to 14C.
FIG. 14A is a diagram for explaining a fifth modification of the optical measuring device 3. FIG. 14B is a diagram for explaining another example 1 in the modified example 5 of the optical measuring device 3. FIG. 14C is a diagram for explaining another example 2 in the modified example 5 of the optical measuring device 3.
The optical measurement device 3 of Modification 5 has a configuration in which a rod lens array 203 or a microlens array 204 is added to the optical measurement device 3 of Modification 4.
 ロッドレンズアレイ203は、複数のロッドレンズ203aが互いに略平行に配列されている。
 ロッドレンズ203aは、発光素子101が発光した光を内部で反射させバンドルファイバ119に導光するためのレンズである。
 ロッドレンズ203aは、例えば複屈折性を有するレンズを用いて構成されている。ロッドレンズ203aは、中心軸付近の屈折率が外周付近の屈折率よりも大きい。
 ロッドレンズ203aは、バンドルファイバ119と発光素子101との間に配置されている。ロッドレンズ203aの端面は、バンドルファイバ119の入射口119c及び発光素子101の発光面101aに対向する。
 ロッドレンズ203aの中心軸は、発光素子101の発光中心軸LCAと略平行である。ロッドレンズアレイ203の中央に配置されたロッドレンズ203aの中心軸は、測定対象の発光素子101の発光中心軸LCAと略一致する。
In the rod lens array 203, a plurality of rod lenses 203a are arranged substantially parallel to each other.
The rod lens 203a is a lens for internally reflecting the light emitted from the light emitting element 101 and guiding it to the bundle fiber 119.
The rod lens 203a is configured using, for example, a lens having birefringence. The rod lens 203a has a refractive index near the central axis that is larger than the refractive index near the outer periphery.
The rod lens 203 a is disposed between the bundle fiber 119 and the light emitting element 101. The end surface of the rod lens 203 a faces the incident port 119 c of the bundle fiber 119 and the light emitting surface 101 a of the light emitting element 101.
The central axis of the rod lens 203 a is substantially parallel to the light emission central axis LCA of the light emitting element 101. The central axis of the rod lens 203a disposed at the center of the rod lens array 203 substantially coincides with the light emission central axis LCA of the light emitting element 101 to be measured.
 ロッドレンズ203aの発光中心軸LCAに垂直な断面の大きさは、発光素子101の発光面101aの大きさより小さい。
 ロッドレンズアレイ203の発光中心軸LCAに垂直な断面の大きさは、バンドルファイバ119の発光中心軸LCAに垂直な断面の大きさと同程度かやや大きい。
The size of the cross section perpendicular to the light emission central axis LCA of the rod lens 203 a is smaller than the size of the light emitting surface 101 a of the light emitting element 101.
The size of the cross section perpendicular to the light emission central axis LCA of the rod lens array 203 is the same as or slightly larger than the size of the cross section perpendicular to the light emission central axis LCA of the bundle fiber 119.
 測定対象の発光素子101が発光した光は、ロッドレンズアレイ203の中央に配置されたロッドレンズ203aに入射する。当該中央に配置されたロッドレンズ203aに入射した光は、当該中央に配置されたロッドレンズ203aの内部で反射を繰り返す。そして、当該中央に配置されたロッドレンズ203aに入射した光は、バンドルファイバ119の中心軸近傍にある光ファイバ117の入射口117cに向かって導光される。しかし、測定対象以外の発光素子101が出射する意図しない光は、当該中央に配置されたロッドレンズ203aに入射することが困難であり得る。それにより、変形例5の光学測定装置3では、測定対象以外の発光素子101が出射する意図しない光は検出されずに、測定対象の発光素子101が発光した光が、受光素子121aで検出され得る。よって、図14Aに示された変形例5の光学測定装置3は、高い精度で色度等を測定することができる。なお、上述のように、バンドルファイバ119の中心軸近傍にある光ファイバ117のみが、受光素子121aを含む分光器121に接続されている。 The light emitted from the light emitting element 101 to be measured is incident on the rod lens 203 a disposed at the center of the rod lens array 203. The light incident on the rod lens 203a arranged at the center repeats reflection inside the rod lens 203a arranged at the center. Then, the light incident on the rod lens 203 a disposed at the center is guided toward the incident port 117 c of the optical fiber 117 near the central axis of the bundle fiber 119. However, unintended light emitted from the light emitting element 101 other than the measurement target may be difficult to enter the rod lens 203a disposed in the center. Thereby, in the optical measuring device 3 of the modified example 5, unintentional light emitted from the light emitting element 101 other than the measurement target is not detected, and the light emitted from the light emitting element 101 as the measurement target is detected by the light receiving element 121a. obtain. Therefore, the optical measurement device 3 of Modification 5 shown in FIG. 14A can measure chromaticity and the like with high accuracy. As described above, only the optical fiber 117 near the center axis of the bundle fiber 119 is connected to the spectroscope 121 including the light receiving element 121a.
 なお、変形例5の光学測定装置3は、図14Bに示すように、ロッドレンズアレイ203の代りにマイクロレンズアレイ204を用いてもよい。
 また、変形例5の光学測定装置3は、図14Cに示すように、マイクロレンズアレイ204の中央に貫通孔204aが設けられていてもよい。当該貫通孔204aには、バンドルファイバ119の中心軸近傍にある光ファイバ117が挿入されていてもよい。そして、バンドルファイバ119の中心軸近傍にある光ファイバ117のみが、受光素子121aを含む分光器121に接続されていてもよい。
 図14Cに示された変形例5の光学測定装置3では、測定対象の発光素子101が発光した光が、マイクロレンズアレイ204を介さずに、バンドルファイバ119の中心軸近傍にある光ファイバ117に直接入射する。そのため、図14Cに示された変形例5の光学測定装置3では、より高い精度で色度等を測定することができる。更に、当該色度等の測定の再現性も向上させることができる。
Note that the optical measurement device 3 of Modification 5 may use a microlens array 204 instead of the rod lens array 203 as shown in FIG. 14B.
Moreover, as shown in FIG. 14C, the optical measurement device 3 of Modification 5 may be provided with a through hole 204 a in the center of the microlens array 204. An optical fiber 117 in the vicinity of the central axis of the bundle fiber 119 may be inserted into the through hole 204a. Then, only the optical fiber 117 near the center axis of the bundle fiber 119 may be connected to the spectroscope 121 including the light receiving element 121a.
In the optical measuring device 3 of Modification 5 shown in FIG. 14C, the light emitted from the light emitting element 101 to be measured passes through the optical fiber 117 in the vicinity of the center axis of the bundle fiber 119 without passing through the microlens array 204. Directly incident. For this reason, the optical measurement device 3 of the modification 5 shown in FIG. 14C can measure chromaticity and the like with higher accuracy. Furthermore, the reproducibility of measurement of the chromaticity and the like can be improved.
 このように、変形例5の光学測定装置3は、ロッドレンズアレイ203又はマイクロレンズアレイ204を用いて、バンドルファイバ119に入射する光を制限し、受光素子105a及び受光素子121aの検出範囲を調節し得る。
 ロッドレンズアレイ203又はマイクロレンズアレイ204は、変形例5の光学測定装置3が備える調節部を構成する。
As described above, the optical measurement device 3 of Modification 5 uses the rod lens array 203 or the micro lens array 204 to limit the light incident on the bundle fiber 119 and adjust the detection ranges of the light receiving element 105a and the light receiving element 121a. Can do.
The rod lens array 203 or the microlens array 204 constitutes an adjustment unit provided in the optical measurement device 3 of Modification 5.
 なお、変形例5の光学測定装置3は、ロッドレンズアレイ203又はマイクロレンズアレイ204を、測定対象の発光素子101の発光中心軸LCAに沿って上下方向に移動させる移動手段を備えていてもよい。ロッドレンズアレイ203又はマイクロレンズアレイ204の上下方向での位置が変更されると、バンドルファイバ119の入射口119cに入射可能な光の範囲が変更される。それにより、変形例5の光学測定装置3は、受光素子105a及び受光素子121aの検出範囲を調節することができる。
 ロッドレンズアレイ203又はマイクロレンズアレイ204を発光中心軸LCAに沿って移動させる移動手段も、変形例5の光学測定装置3が備える調節部を構成する。
 変形例5の光学測定装置3の他の構成については、図13A及び図13Bに示された変形例4の光学測定装置3の構成と同様である。
Note that the optical measurement device 3 of Modification 5 may include a moving unit that moves the rod lens array 203 or the microlens array 204 in the vertical direction along the light emission central axis LCA of the light emitting element 101 to be measured. . When the position in the vertical direction of the rod lens array 203 or the micro lens array 204 is changed, the range of light that can enter the incident port 119c of the bundle fiber 119 is changed. Thereby, the optical measuring device 3 of the modification 5 can adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
The moving means for moving the rod lens array 203 or the microlens array 204 along the light emission center axis LCA also constitutes an adjustment unit provided in the optical measurement device 3 of the fifth modification.
Other configurations of the optical measurement device 3 of Modification 5 are the same as those of the optical measurement device 3 of Modification 4 shown in FIGS. 13A and 13B.
 図15A及び図15Bを用いて、光学測定装置3の変形例6について説明する。
 図15Aは、光学測定装置3の変形例6を説明するための図を示す。図15Bは、図15Aに示されたフォトディテクタ105の受光素子105aを発光中心軸LCAの方向から視た図を示す。
 変形例6の光学測定装置3は、図4に示された光学測定装置3に含まれる光ファイバ117のヘッド117aの先端周辺に、フォトディテクタ105の受光素子105aが設けられた構成を備える。
Modification 6 of the optical measuring device 3 will be described with reference to FIGS. 15A and 15B.
FIG. 15A is a diagram for explaining a sixth modification of the optical measuring device 3. FIG. 15B shows a view of the light receiving element 105a of the photodetector 105 shown in FIG. 15A viewed from the direction of the light emission central axis LCA.
The optical measurement device 3 of Modification 6 has a configuration in which the light receiving element 105a of the photodetector 105 is provided around the tip of the head 117a of the optical fiber 117 included in the optical measurement device 3 shown in FIG.
 変形例6の光学測定装置3には、図15Bに示すように、複数の受光素子105aの中央に間隙105bが形成されるように、複数の受光素子105aが設けられている。
 間隙105bには、光ファイバ117のヘッド117aが挿入され固定される。
As shown in FIG. 15B, the optical measurement device 3 of Modification 6 is provided with a plurality of light receiving elements 105a so that a gap 105b is formed at the center of the plurality of light receiving elements 105a.
The head 117a of the optical fiber 117 is inserted and fixed in the gap 105b.
 4枚の受光素子105aの受光面及び光ファイバ117は、発光素子101の発光面101aに対向して配置される。4枚の受光素子105aの受光面の大きさは、測定対象の発光素子101の発光面101aより大きくてもよい。4枚の受光素子105aの受光面の大きさは、光ファイバ117の入射口117cよりも十分に大きい。
 変形例6の光学測定装置3に含まれる光ファイバ117は、分光器121にのみ接続されている。
The light receiving surfaces of the four light receiving elements 105 a and the optical fiber 117 are arranged to face the light emitting surface 101 a of the light emitting element 101. The size of the light receiving surfaces of the four light receiving elements 105a may be larger than the light emitting surface 101a of the light emitting element 101 to be measured. The size of the light receiving surfaces of the four light receiving elements 105a is sufficiently larger than the incident port 117c of the optical fiber 117.
The optical fiber 117 included in the optical measurement device 3 of Modification 6 is connected only to the spectroscope 121.
 測定対象の発光素子101が発光した光の一部は、光ファイバ117に入射し、受光素子121aで検出され、分光器121で色度等が測定される。
 また、測定対象の発光素子101が発光した光のうち光ファイバ117に入射しなかった光の大部分は、光ファイバ117を介さずに受光素子105aで直接検出され、フォトディテクタ105で光量が測定される。
A part of the light emitted from the light emitting element 101 to be measured enters the optical fiber 117, is detected by the light receiving element 121a, and the spectroscope 121 measures chromaticity and the like.
Further, most of the light emitted from the light emitting element 101 to be measured that has not entered the optical fiber 117 is directly detected by the light receiving element 105 a without passing through the optical fiber 117, and the light quantity is measured by the photodetector 105. The
 変形例6の光学測定装置3は、測定対象の発光素子101が発光した光を、光ファイバ117の入射口117cよりも十分に大きい4枚の受光素子105aの受光面で直接検出する。このため、変形例6の光学測定装置3は、図4に示された光学測定装置3に比べて、受光素子105aでより多くの光を検出することができ、より高い精度で光量を測定することができる。
 変形例6の光学測定装置3の他の構成については、図4に示された光学測定装置3の構成と同様である。
The optical measurement device 3 of Modification 6 directly detects the light emitted from the light-emitting element 101 to be measured on the light-receiving surfaces of the four light-receiving elements 105a that are sufficiently larger than the incident port 117c of the optical fiber 117. For this reason, the optical measuring device 3 of the modified example 6 can detect more light by the light receiving element 105a and measures the amount of light with higher accuracy than the optical measuring device 3 shown in FIG. be able to.
Other configurations of the optical measurement device 3 of Modification 6 are the same as those of the optical measurement device 3 shown in FIG.
 図16を用いて、光学測定装置3の変形例7について説明する。
 図16は、光学測定装置3の変形例7を説明するための図を示す。
 変形例7の光学測定装置3は、変形例6の光学測定装置3に積分球108を追加した構成を備える。また、変形例7の光学測定装置3は、変形例6の光学測定装置の受光素子105aを異なる位置に配置した構成を備える。
A modified example 7 of the optical measuring device 3 will be described with reference to FIG.
FIG. 16 is a diagram for explaining a modified example 7 of the optical measuring device 3.
The optical measurement device 3 of Modification 7 has a configuration in which an integrating sphere 108 is added to the optical measurement device 3 of Modification 6. Further, the optical measurement device 3 of Modification 7 has a configuration in which the light receiving elements 105a of the optical measurement device of Modification 6 are arranged at different positions.
 変形例7の光学測定装置3の積分球108は、図11に示された変形例2の光学測定装置3に含まれる積分球108と同様の構成を備える。
 変形例7の光学測定装置3は、光ファイバ117の入射口117cが、積分球108の取込口108bに配置されている。積分球108の取込口108b及び光ファイバ117の入射口117cは、測定対象の発光素子101の発光面101aに対向して配置される。積分球108の取込口108bの大きさは、光ファイバ117の入射口117cよりも十分に大きい。
 変形例7の光学測定装置3に含まれる光ファイバ117は、分光器121にのみ接続されている。
 変形例7の光学測定装置3は、受光素子105aが、積分球108の取出口108cに配置されている。
The integrating sphere 108 of the optical measuring device 3 of the modified example 7 has the same configuration as the integrating sphere 108 included in the optical measuring device 3 of the modified example 2 shown in FIG.
In the optical measurement device 3 of Modification 7, the entrance port 117c of the optical fiber 117 is disposed at the intake port 108b of the integrating sphere 108. The inlet 108b of the integrating sphere 108 and the incident port 117c of the optical fiber 117 are disposed to face the light emitting surface 101a of the light emitting element 101 to be measured. The size of the inlet 108 b of the integrating sphere 108 is sufficiently larger than the incident port 117 c of the optical fiber 117.
The optical fiber 117 included in the optical measurement device 3 of Modification 7 is connected only to the spectroscope 121.
In the optical measurement device 3 of Modification 7, the light receiving element 105a is disposed at the outlet 108c of the integrating sphere 108.
 測定対象の発光素子101が発光した光の一部は、光ファイバ117に入射し、受光素子121aで検出され、分光器121で色度等が測定される。
 また、測定対象の発光素子101が発光した光のうち光ファイバ117に入射しなかった光の大部分は、取込口108bから積分球108の内部に導かれる。取込口108bから積分球108の内部に導かれた光は、内壁108aで反射を繰り返し、取出口108cに到達する。そして、取出口108cに到達した光は、受光素子105aで検出され、フォトディテクタ105で光量が測定される。
A part of the light emitted from the light emitting element 101 to be measured enters the optical fiber 117, is detected by the light receiving element 121a, and the spectroscope 121 measures chromaticity and the like.
Further, most of the light emitted from the light emitting element 101 to be measured that has not entered the optical fiber 117 is guided into the integrating sphere 108 from the intake 108b. The light guided into the integrating sphere 108 from the inlet 108b is repeatedly reflected by the inner wall 108a and reaches the outlet 108c. Then, the light reaching the outlet 108c is detected by the light receiving element 105a, and the light amount is measured by the photodetector 105.
 変形例7の光学測定装置3は、測定対象の発光素子101が発光した光を、光ファイバ117の入射口117cよりも十分に大きい積分球108の取込口108bで取り込む。そして、変形例7の光学測定装置3は、積分球108で取り込んだ光を取出口108cに設けられた受光素子105aで直接検出する。このため、変形例7の光学測定装置3は、変形例6の光学測定装置3と同様に、受光素子105aでより多くの光を検出することができ、より高い精度で光量を測定することができる。
 変形例7の光学測定装置3の他の構成については、図15A及び図15Bに示された変形例6の光学測定装置3の構成と同様である。
The optical measurement device 3 of Modification 7 captures the light emitted from the light emitting element 101 to be measured through the intake 108b of the integrating sphere 108 that is sufficiently larger than the incident port 117c of the optical fiber 117. Then, the optical measuring device 3 of the modified example 7 directly detects the light taken in by the integrating sphere 108 by the light receiving element 105a provided at the outlet 108c. For this reason, similarly to the optical measurement device 3 of the modification example 6, the optical measurement device 3 of the modification example 7 can detect more light by the light receiving element 105a and can measure the light amount with higher accuracy. it can.
Other configurations of the optical measurement device 3 of Modification 7 are the same as those of the optical measurement device 3 of Modification 6 shown in FIGS. 15A and 15B.
 図17を用いて、光学測定装置3の変形例8について説明する。
 図17は、光学測定装置3の変形例8を説明するための図を示す。
 変形例8の光学測定装置3は、図5に示された光学測定装置3に含まれる絞り201の代りに筒205を追加した構成を備える。
A modified example 8 of the optical measuring device 3 will be described with reference to FIG.
FIG. 17 is a diagram for explaining a modified example 8 of the optical measuring device 3.
The optical measurement device 3 of Modification 8 has a configuration in which a cylinder 205 is added instead of the diaphragm 201 included in the optical measurement device 3 shown in FIG.
 筒205は、測定対象の発光素子101が発光した光の一部を遮断して光ファイバ117に入射する光を制限する。
 筒205は、光を吸収する吸収部材で形成されている。
 筒205は、光ファイバ117のヘッド117aを基端として、先端が測定対象の発光素子101に向かって延びている。筒205の先端にある開口205aは、発光素子101の発光面101a及び光ファイバ117の入射口117cに対向する。
 筒205及び開口205aの中心軸は、測定対象の発光素子101の発光中心軸LCAと略一致する。
 開口205aの大きさは、発光素子101の発光面101aの大きさと同程度かやや大きい。但し、開口205aの大きさは、図17に示すように、測定対象の発光素子101に隣接する発光素子101を覆わない程度の大きさである。
The tube 205 blocks a part of the light emitted from the light emitting element 101 to be measured and restricts the light incident on the optical fiber 117.
The cylinder 205 is formed of an absorbing member that absorbs light.
The tube 205 has the head 117a of the optical fiber 117 as a base end, and the tip extends toward the light emitting element 101 to be measured. An opening 205 a at the tip of the tube 205 faces the light emitting surface 101 a of the light emitting element 101 and the incident port 117 c of the optical fiber 117.
The central axes of the cylinder 205 and the opening 205a substantially coincide with the light emission central axis LCA of the light emitting element 101 to be measured.
The size of the opening 205 a is the same as or slightly larger than the size of the light emitting surface 101 a of the light emitting element 101. However, the size of the opening 205a is such that it does not cover the light emitting element 101 adjacent to the light emitting element 101 to be measured, as shown in FIG.
 筒205は吸収部材で形成されているため、筒205の内周面に入射した光は反射されずにそのまま吸収される。光ファイバ117に入射する光は、筒205の内周面に入射しせず、筒205の開口205aから入射口117cに直接向かう光である。当該光の範囲は、開口205aの周縁及び入射口117cを結ぶ直線と、発光中心軸LCAとが成す角度βの大きさによって規定される。すなわち、光ファイバ117に入射する光の範囲は、角度βによって規定される。なお、図17では、角度βが光ファイバ117の開口数NAを規定する角度αより小さい例が示されている。
 一方、筒205の長さは、開口205aの上下方向の位置を規定する。このため、筒205の長さは、角度βの大きさを規定する。
 よって、筒205の長さは、光ファイバ117に入射する光の範囲を規定する。
Since the cylinder 205 is formed of an absorbing member, the light incident on the inner peripheral surface of the cylinder 205 is absorbed as it is without being reflected. The light incident on the optical fiber 117 is light that does not enter the inner peripheral surface of the cylinder 205 and goes directly from the opening 205a of the cylinder 205 to the incident port 117c. The range of the light is defined by the size of the angle β formed by the straight line connecting the periphery of the opening 205a and the incident port 117c and the light emission center axis LCA. That is, the range of light incident on the optical fiber 117 is defined by the angle β. FIG. 17 shows an example in which the angle β is smaller than the angle α that defines the numerical aperture NA of the optical fiber 117.
On the other hand, the length of the cylinder 205 defines the vertical position of the opening 205a. For this reason, the length of the cylinder 205 defines the magnitude of the angle β.
Therefore, the length of the tube 205 defines the range of light incident on the optical fiber 117.
 変形例8の光学測定装置3に含まれる筒205は、筒205の内部に入射する光の範囲内に測定対象以外の発光素子101が含まれないような角度βとなる長さに形成されている。
 このため、変形例8の光学測定装置3の光ファイバ117には、測定対象以外の発光素子101が出射する意図しない光が入射されない。それにより、変形例8の光学測定装置3では、測定対象以外の発光素子101が出射する意図しない光が検出されずに、測定対象の発光素子101が発光した光が受光素子105a及び受光素子121aで検出され得る。
The cylinder 205 included in the optical measuring device 3 of Modification 8 is formed to have a length of an angle β such that the light emitting element 101 other than the measurement target is not included in the range of light incident on the inside of the cylinder 205. Yes.
For this reason, unintended light emitted from the light-emitting elements 101 other than the measurement target is not incident on the optical fiber 117 of the optical measurement device 3 of Modification 8. Thereby, in the optical measurement device 3 of the modification 8, unintended light emitted from the light emitting elements 101 other than the measurement target is not detected, and the light emitted from the light emitting elements 101 as the measurement targets is received by the light receiving elements 105a and 121a. Can be detected.
 このように、変形例8の光学測定装置3は、筒205を用いて、光ファイバ117に入射する光を制限し、受光素子105a及び受光素子121aの検出範囲を調節し得る。
 筒205は、変形例8の光学測定装置3が備える調節部を構成する。
As described above, the optical measurement device 3 according to the modified example 8 can limit the light incident on the optical fiber 117 using the cylinder 205 and adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
The cylinder 205 constitutes an adjustment unit provided in the optical measurement device 3 of Modification 8.
 なお、変形例8の光学測定装置3は、筒205の長さを変更する手段を備えていてもよい。筒205の長さが変更されると角度βが変更され、光ファイバ117に入射可能な光の範囲が変更される。それにより、変形例8の光学測定装置3は、受光素子105a及び受光素子121aの検出範囲を調節することができる。
 筒205の長さを変更する手段も、変形例8の光学測定装置3が備える調節部を構成する。
 変形例8の光学測定装置3の他の構成については、図4に示された光学測定装置3の構成と同様である。
Note that the optical measurement device 3 of Modification 8 may include a means for changing the length of the cylinder 205. When the length of the tube 205 is changed, the angle β is changed, and the range of light that can enter the optical fiber 117 is changed. Thereby, the optical measuring device 3 of the modification 8 can adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
The means for changing the length of the cylinder 205 also constitutes an adjustment unit provided in the optical measurement device 3 of the modification 8.
Other configurations of the optical measurement device 3 of Modification 8 are the same as those of the optical measurement device 3 shown in FIG.
 図18を用いて、光学測定装置3の変形例9について説明する。
 図18は、光学測定装置3の変形例9を説明するための図を示す。
 変形例9の光学測定装置3は、変形例8の光学測定装置3に積分球108を追加した構成を備える。
A modified example 9 of the optical measuring device 3 will be described with reference to FIG.
FIG. 18 is a diagram for explaining a modification 9 of the optical measuring device 3.
The optical measurement device 3 of Modification 9 has a configuration in which an integrating sphere 108 is added to the optical measurement device 3 of Modification 8.
 変形例9の光学測定装置3に含まれる筒205は、積分球108の取込口108bを基端として、先端が測定対象の発光素子101に向かって延びている。
 変形例9の光学測定装置3に含まれる光ファイバ117は、積分球108の取出口108cに設けられている。
The cylinder 205 included in the optical measurement device 3 of Modification 9 has a leading end that extends toward the light-emitting element 101 to be measured with the intake port 108b of the integrating sphere 108 as a base end.
The optical fiber 117 included in the optical measurement device 3 of Modification 9 is provided at the outlet 108 c of the integrating sphere 108.
 光ファイバ117に入射する光は、取込口108bから積分球108の内部に取り込まれる光である。そして、取込口108bから積分球108の内部に取り込まれる光は、変形例8の光学測定装置3と同様に、開口205aから取込口108bに直接向かう光である。すなわち、光ファイバ117に入射する光は、開口205aから取込口108bに直接向かう光である。当該光の範囲は、取込口108bの周縁及び開口205aの周縁を結ぶ直線と、発光中心軸LCAとが成す角度γの大きさによって規定される。なお、図18では、角度γが光ファイバ117の開口数NAを規定する角度αより大きい例が示されている。 The light incident on the optical fiber 117 is light that is taken into the integrating sphere 108 from the inlet 108b. And the light taken into the integrating sphere 108 from the taking-in port 108b is the light which goes directly from the opening 205a to the taking-in port 108b like the optical measuring device 3 of the modification 8. That is, the light incident on the optical fiber 117 is light that goes directly from the opening 205a to the intake port 108b. The range of the light is defined by the magnitude of the angle γ formed by the straight line connecting the periphery of the intake port 108b and the periphery of the opening 205a and the light emission center axis LCA. FIG. 18 shows an example in which the angle γ is larger than the angle α that defines the numerical aperture NA of the optical fiber 117.
 変形例9の光学測定装置3に含まれる筒205は、筒205の内部に入射する光の範囲内に、測定対象以外の発光素子101が出射する意図しない光が含まれないような角度γとなる長さに形成されている。変形例8の光学測定装置3と同様に、筒205の長さが角度γの大きさを規定し、光ファイバ117に入射する光の範囲を規定するためである。
 よって、変形例9の光学測定装置3の光ファイバ117には、測定対象以外の発光素子101が出射する意図しない光が入射せず、測定対象の発光素子101が発光した光が入射する。それにより、変形例9の光学測定装置3では、測定対象以外の発光素子101が出射する意図しない光が検出されずに、測定対象の発光素子101が発光した光が受光素子105a及び受光素子121aで検出され得る。
The cylinder 205 included in the optical measuring device 3 of Modification 9 has an angle γ such that unintended light emitted from the light emitting element 101 other than the measurement target is not included in the range of light incident on the inside of the cylinder 205. The length is formed. This is because the length of the tube 205 defines the angle γ and the range of light incident on the optical fiber 117, as in the optical measurement device 3 of the modification 8.
Therefore, unintended light emitted from the light emitting element 101 other than the measurement target is not incident on the optical fiber 117 of the optical measurement device 3 of Modification Example 9, and light emitted from the light emitting element 101 as the measurement target is incident. Thereby, in the optical measuring device 3 of the modification 9, unintended light emitted from the light emitting element 101 other than the measurement target is not detected, and the light emitted from the light emitting element 101 as the measurement target is the light receiving element 105a and the light receiving element 121a. Can be detected.
 このように、変形例9の光学測定装置3は、筒205を用いて光ファイバ117に入射する光を制限し、受光素子105a及び受光素子121aの検出範囲を調節し得る。
 筒205が、変形例9の光学測定装置3が備える調節部を構成する。
 なお、変形例9の光学測定装置3も、変形例8の光学測定装置3と同様に、筒205の長さを変更する手段を備えていてもよい。
 筒205の長さを変更する手段も、変形例9の光学測定装置3が備える調節部を構成する。
 変形例9の光学測定装置3の他の構成については、図17に示された変形例8の光学測定装置3の構成と同様である。
As described above, the optical measurement device 3 according to the modification 9 can limit the light incident on the optical fiber 117 using the tube 205 and adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
The cylinder 205 constitutes an adjustment unit provided in the optical measurement device 3 of the modification 9.
Note that the optical measurement device 3 of the modification 9 may also include means for changing the length of the cylinder 205, similarly to the optical measurement device 3 of the modification 8.
The means for changing the length of the cylinder 205 also constitutes an adjustment unit provided in the optical measurement device 3 of the modification 9.
Other configurations of the optical measurement device 3 of Modification 9 are the same as those of the optical measurement device 3 of Modification 8 shown in FIG.
 図19A~図20を用いて、光学測定装置3の変形例10について説明する。
 図19Aは、光学測定装置3の変形例10を説明するための図を示す。図19Bは、図19Aに示された遮蔽板206及び発光素子101を発光中心軸LCAの方向から視た図を示す。図20は、光学測定装置3の変形例10における他の例を説明するための図を示す。
 変形例10の光学測定装置3は、変形例9の光学測定装置3に含まれる筒205の代りに遮蔽板206を追加した構成を備える。
A modification 10 of the optical measurement device 3 will be described with reference to FIGS. 19A to 20.
FIG. 19A is a diagram for explaining a modified example 10 of the optical measuring device 3. FIG. 19B shows the shielding plate 206 and the light emitting element 101 shown in FIG. 19A viewed from the direction of the light emission central axis LCA. FIG. 20 is a diagram for explaining another example in the modified example 10 of the optical measuring device 3.
The optical measurement device 3 of Modification 10 includes a configuration in which a shielding plate 206 is added instead of the cylinder 205 included in the optical measurement device 3 of Modification 9.
 遮蔽板206は、測定対象の発光素子101が発光した光が、測定対象以外の発光素子101に入射することを遮る遮蔽部材である。
 図19に示す遮蔽板206は、隣接する発光素子101同士の間を空間的に仕切る板である。
 遮蔽板206は、積分球108の取込口108bと発光素子101との間に配置されている。遮蔽板206の開口206aは、積分球108の取込口108b及び発光素子101が載置されたテーブル103と接している。測定対象の発光素子101は、積分球108及び遮蔽板206で形成された閉空間の内部に位置され得る。
The shielding plate 206 is a shielding member that blocks light emitted from the light emitting element 101 to be measured from entering the light emitting elements 101 other than the measurement target.
A shielding plate 206 shown in FIG. 19 is a plate that spatially partitions between adjacent light emitting elements 101.
The shielding plate 206 is disposed between the intake port 108 b of the integrating sphere 108 and the light emitting element 101. The opening 206a of the shielding plate 206 is in contact with the inlet 108b of the integrating sphere 108 and the table 103 on which the light emitting element 101 is placed. The light emitting element 101 to be measured can be positioned inside a closed space formed by the integrating sphere 108 and the shielding plate 206.
 遮蔽板206は、測定対象の発光素子101が発光した光が測定対象以外の発光素子101に入射することを遮る。よって、測定対象以外の発光素子101が出射する意図しない光は、発生し得ない。このため、光ファイバ117に入射する光は、測定対象の発光素子101が発光した光のみに制限される。それにより、変形例10の光学測定装置3では、測定対象以外の発光素子101が出射する意図しない光が検出されずに、測定対象の発光素子101が発光した光が受光素子105a及び受光素子121aで検出され得る。 The shielding plate 206 blocks light emitted from the light emitting element 101 to be measured from entering the light emitting elements 101 other than the measurement target. Therefore, unintended light emitted from the light emitting elements 101 other than the measurement target cannot be generated. For this reason, the light incident on the optical fiber 117 is limited only to the light emitted from the light emitting element 101 to be measured. As a result, in the optical measurement device 3 of the modification 10, unintentional light emitted from the light emitting element 101 other than the measurement target is not detected, and the light emitted from the light emitting element 101 as the measurement target is received by the light receiving element 105a and the light receiving element 121a. Can be detected.
 なお、変形例10の光学測定装置3は、図20に示すように、遮蔽板206の代りにリフレクタ207を用いてもよい。
 リフレクタ207は、測定対象の発光素子101とそれ以外の発光素子101とを空間的に仕切る筒である。
 リフレクタ207は、積分球108の取込口108bと測定対象の発光素子101との間に配置されている。リフレクタ207は、積分球108の取込口108bに固定されている。リフレクタ207の先端は、測定対象の発光素子101が載置されたテーブル103と接している。測定対象の発光素子101は、積分球108及びリフレクタ207で形成された閉空間の内部に位置され得る。
 よって、図20に示された変形例10の光学測定装置3においても、光ファイバ117に入射する光は、測定対象の発光素子101が発光した光のみに制限される。
Note that the optical measurement device 3 of Modification 10 may use a reflector 207 instead of the shielding plate 206 as shown in FIG.
The reflector 207 is a cylinder that spatially partitions the light emitting element 101 to be measured and the other light emitting elements 101.
The reflector 207 is disposed between the inlet 108b of the integrating sphere 108 and the light emitting element 101 to be measured. The reflector 207 is fixed to the inlet 108 b of the integrating sphere 108. The tip of the reflector 207 is in contact with the table 103 on which the light emitting element 101 to be measured is placed. The light emitting element 101 to be measured can be positioned inside the closed space formed by the integrating sphere 108 and the reflector 207.
Therefore, also in the optical measurement apparatus 3 of Modification 10 shown in FIG. 20, the light incident on the optical fiber 117 is limited to only the light emitted from the light emitting element 101 to be measured.
 また、リフレクタ207は、積分球108に向かうに従って内径が拡大される筒状に形成されている。リフレクタ207の内周面は、高反射材料がコーティングされている。このため、測定対象の発光素子101が発光した光は、リフレクタ207の内周面で積分球108の取込口108bに向かって反射され得る。それにより、リフレクタ207を用いた変形例10の光学測定装置3は、遮蔽板206を用いた場合と比べて、光ファイバ117により多くの光が入射されるため、より高い精度で光量を測定することができる。 Further, the reflector 207 is formed in a cylindrical shape whose inner diameter is increased toward the integrating sphere 108. The inner peripheral surface of the reflector 207 is coated with a highly reflective material. For this reason, the light emitted from the light emitting element 101 to be measured can be reflected on the inner peripheral surface of the reflector 207 toward the inlet 108 b of the integrating sphere 108. As a result, the optical measurement apparatus 3 according to the modified example 10 using the reflector 207 measures the amount of light with higher accuracy because more light is incident on the optical fiber 117 than when the shielding plate 206 is used. be able to.
 このように、変形例10の光学測定装置3は、遮蔽板206又はリフレクタ207を用いて、光ファイバ117に入射する光を制限し、受光素子105a及び受光素子121aの検出範囲を調節し得る。
 遮蔽板206及びリフレクタ207は、変形例10の光学測定装置3が備える調節部を構成する。
 変形例10の光学測定装置3の他の構成については、図18に示された変形例9の光学測定装置3の構成と同様である。
As described above, the optical measurement device 3 according to the modified example 10 can limit the light incident on the optical fiber 117 using the shielding plate 206 or the reflector 207, and can adjust the detection ranges of the light receiving element 105a and the light receiving element 121a.
The shielding plate 206 and the reflector 207 constitute an adjustment unit provided in the optical measurement device 3 of the modification 10.
Other configurations of the optical measurement device 3 of Modification 10 are the same as those of the optical measurement device 3 of Modification 9 shown in FIG.
 図21~図23を用いて、光学測定装置3の変形例11について説明する。
 図21は、光学測定装置3の変形例11を説明するための図を示す。図22は、図21に示された制御部151が光学特性測定時に行う処理を説明するためのフローチャートを示す。図23は、光学測定装置3の変形例11における他の例を説明するための図を示す。
 変形例11の光学測定装置3は、図2~図9Bに示された光学測定装置3に光導波路120及び光量調節器122を追加した構成を備える。
A modification 11 of the optical measuring device 3 will be described with reference to FIGS.
FIG. 21 is a diagram for explaining a modification 11 of the optical measuring device 3. FIG. 22 is a flowchart for explaining processing performed by the control unit 151 shown in FIG. 21 when measuring optical characteristics. FIG. 23 is a diagram for explaining another example of the modification 11 of the optical measuring device 3.
The optical measurement device 3 of Modification 11 has a configuration in which an optical waveguide 120 and a light amount adjuster 122 are added to the optical measurement device 3 shown in FIGS. 2 to 9B.
 変形例11の光学測定装置3は、光ファイバ117の光伝送路117bが、光導波路120を用いて分岐されてもよい。
 光導波路120は、光伝送路117bを、分光器121に向かう第1経路117dとフォトディテクタ105に向かう第2経路117eとに分岐する。第1経路117dは、光導波路120と分光器121との間を接続する光伝送路117bである。第2経路117eは、光導波路120とフォトディテクタ105との間を接続する光伝送路117bである。
 光導波路120は、入射した光を内部で全反射させて伝送損失を極力抑制して、第1経路117d及び第2経路117eに導光する。
In the optical measuring device 3 of Modification 11, the optical transmission line 117 b of the optical fiber 117 may be branched using the optical waveguide 120.
The optical waveguide 120 branches the optical transmission path 117 b into a first path 117 d toward the spectroscope 121 and a second path 117 e toward the photodetector 105. The first path 117d is an optical transmission path 117b that connects the optical waveguide 120 and the spectroscope 121. The second path 117 e is an optical transmission path 117 b that connects between the optical waveguide 120 and the photodetector 105.
The optical waveguide 120 totally guides incident light inside to suppress transmission loss as much as possible, and guides it to the first path 117d and the second path 117e.
 光量調節器122は、分光器121の受光素子121aが検出する光の光量を調節する。
 光量調節器122は、光導波路120と分光器121との間を接続する光伝送路117bの第1経路117d上に配置されている。
 光量調節器122は、例えば、NDフィルタ(Neutral Density Filter)等の光量を減衰させる光学フィルタを用いて構成されている。或いは、光量調節器122は、電気光学素子、磁気光学素子、音響光学素子、又は液晶光学素子等を用いて構成されていてもよい。
 光量調節器122は、制御部151と接続されている。
The light amount adjuster 122 adjusts the amount of light detected by the light receiving element 121 a of the spectroscope 121.
The light amount adjuster 122 is disposed on the first path 117 d of the optical transmission path 117 b that connects the optical waveguide 120 and the spectroscope 121.
The light quantity adjuster 122 is configured using an optical filter that attenuates the light quantity, such as an ND filter (Neutral Density Filter). Alternatively, the light amount adjuster 122 may be configured using an electro-optic element, a magneto-optic element, an acousto-optic element, a liquid crystal optical element, or the like.
The light amount adjuster 122 is connected to the control unit 151.
 また、光量調節器122は、通過する光の減衰量を調節可能に構成されている。
 光量調節器122で調節される減衰量は、制御部151によって設定される。
 光量調節器122で調節される減衰量は、分光器121の光電変換特性におけるダイナミックレンジ内に分光器121への入射光量が収まるように、適宜設定され得る。主として、発光素子101の品種に応じて異なる減衰量に設定され得る。なお、光量調節器122は、減衰量をゼロにし得る構成も備えている。
The light amount adjuster 122 is configured to be able to adjust the amount of attenuation of light passing therethrough.
The amount of attenuation adjusted by the light amount adjuster 122 is set by the control unit 151.
The attenuation amount adjusted by the light amount adjuster 122 can be appropriately set so that the incident light amount to the spectroscope 121 falls within the dynamic range in the photoelectric conversion characteristics of the spectroscope 121. The attenuation may be set differently mainly depending on the type of the light emitting element 101. The light amount adjuster 122 also has a configuration that can reduce the attenuation amount to zero.
 ここで、分光器121の「光電変換特性」とは、分光器121における入射光量と出力電流との関係のことである。
 また、入力と出力とが比例関係にあることを、「直線性」という。更に、入力と出力との比例関係が成立する範囲のことを「ダイナミックレンジ」という。ダイナミックレンジは、直線性が成立する範囲のことである。
 分光器121の光電変換特性におけるダイナミックレンジは、入射光量と出力電流との比例関係が成立する範囲であり、光電変換特性における直線性が成立する範囲である。
Here, the “photoelectric conversion characteristic” of the spectroscope 121 is the relationship between the amount of incident light and the output current in the spectroscope 121.
The fact that the input and output are in a proportional relationship is called “linearity”. Further, a range in which a proportional relationship between input and output is established is called “dynamic range”. The dynamic range is a range where linearity is established.
The dynamic range in the photoelectric conversion characteristics of the spectroscope 121 is a range in which a proportional relationship between the incident light amount and the output current is established, and is a range in which linearity in the photoelectric conversion characteristics is established.
 分光器121の光電変換特性におけるダイナミックレンジは、フォトディテクタ105に比べて狭い。このため、発光素子101の各種光学特性を分光器121で測定する際、分光器121への入射光量の如何によっては、分光器121の測定結果は不正確である場合がある。
 よって、発光素子101の光学特性を高い信頼性で測定し得る技術が望まれている。
 また、品種の異なる発光素子101は、その発光特性が品種毎で異なることが多い。そのため、品種の異なる発光素子101の光学特性を測定する場合、分光器121への入射光量は異なることが多い。よって、発光素子101の品種毎で、適切な入射光量となるよう調整する必要がある。しかし、発光素子101の品種毎で測定環境を変えることによって、分光器121への入射光量を調整することは負荷が大きい。
 よって、品種の異なる発光素子101の光学特性を測定する場合であっても、同じ測定環境下で高精度に測定し得る技術が望まれている。
 そのために、変形例11の光学測定装置3は、光量調節器122を備えている。
The dynamic range of the photoelectric conversion characteristics of the spectroscope 121 is narrower than that of the photodetector 105. For this reason, when various optical characteristics of the light emitting element 101 are measured by the spectroscope 121, the measurement result of the spectroscope 121 may be inaccurate depending on the amount of light incident on the spectroscope 121.
Therefore, a technique capable of measuring the optical characteristics of the light emitting element 101 with high reliability is desired.
In addition, the light emitting elements 101 of different types often have different light emission characteristics depending on the type. Therefore, when measuring the optical characteristics of light emitting elements 101 of different varieties, the amount of light incident on the spectroscope 121 is often different. Therefore, it is necessary to adjust the amount of incident light appropriately for each type of light emitting element 101. However, adjusting the amount of light incident on the spectroscope 121 by changing the measurement environment for each type of the light emitting element 101 has a heavy load.
Therefore, there is a demand for a technique capable of measuring with high accuracy under the same measurement environment even when measuring the optical characteristics of light emitting elements 101 of different varieties.
For this purpose, the optical measurement device 3 of the modification 11 includes a light amount adjuster 122.
 図22を用いて、光学特性測定時に、変形例11の光学測定装置3に含まれる制御部151が行う処理について説明する。 The process performed by the control unit 151 included in the optical measurement device 3 of Modification 11 will be described with reference to FIG.
 ステップS10において、制御部151は、フォトディテクタ105の光量測定結果及び分光器121の測定結果が入力されたか否かを判定する。
 制御部151は、フォトディテクタ105の光量測定結果及び分光器121の測定結果が入力されるまで待機する。一方、制御部151は、フォトディテクタ105の光量測定結果及び分光器121の測定結果が入力されたと判定されたならば、各結果を対応付けて所定の記憶領域に記憶する。そして、制御部151は、ステップS20に移行する。
In step S <b> 10, the control unit 151 determines whether the light amount measurement result of the photodetector 105 and the measurement result of the spectroscope 121 are input.
The control unit 151 waits until the light amount measurement result of the photodetector 105 and the measurement result of the spectroscope 121 are input. On the other hand, if it is determined that the light amount measurement result of the photodetector 105 and the measurement result of the spectroscope 121 are input, the control unit 151 associates each result and stores them in a predetermined storage area. And the control part 151 transfers to step S20.
 ステップS20において、制御部151は、フォトディテクタ105の光量測定結果に基づいて、分光器121の測定結果の妥当性を検証する。
 制御部151は、分光器121の測定結果の妥当性を、例えば、次のような方法で検証し得る。
In step S <b> 20, the control unit 151 verifies the validity of the measurement result of the spectroscope 121 based on the light amount measurement result of the photodetector 105.
The control unit 151 can verify the validity of the measurement result of the spectroscope 121 by, for example, the following method.
 例えば、制御部151は、ステップS10で入力された分光器121の測定結果に含まれる光量測定結果を確認する。そして、制御部151は、分光器121の当該光量測定結果と、ステップS10で入力されたフォトディテクタ105の光量測定結果との差分を求める。そして、制御部151は、当該差分が所定の許容範囲内にあるか否かを判定する。そして、制御部151は、当該差分が、所定の許容範囲内にあれば、ステップS10で入力された分光器121の測定結果は妥当であると判断する。一方、制御部151は、当該差分が、所定の許容範囲内に無ければ、ステップS10で入力された分光器121の測定結果は妥当ではないと判断する。 For example, the control unit 151 confirms the light quantity measurement result included in the measurement result of the spectroscope 121 input in step S10. And the control part 151 calculates | requires the difference of the said light quantity measurement result of the spectroscope 121, and the light quantity measurement result of the photodetector 105 input by step S10. Then, the control unit 151 determines whether or not the difference is within a predetermined allowable range. And the control part 151 will judge that the measurement result of the spectroscope 121 input by step S10 is appropriate if the said difference exists in the predetermined | prescribed tolerance | permissible_range. On the other hand, the control unit 151 determines that the measurement result of the spectroscope 121 input in step S10 is not valid if the difference is not within the predetermined allowable range.
 また例えば、制御部151は、分光器121の光電変換特性におけるダイナミックレンジ内で取得し得る分光器121の光量測定結果の範囲を予め記憶している。そして、制御部151は、ステップS10で入力されたフォトディテクタ105の光量測定結果が、予め記憶された当該分光器121の光量測定結果の範囲内にあるか否かを判定する。そして、制御部151は、ステップS10で入力されたフォトディテクタ105の光量測定結果が、予め記憶された当該分光器121の光量測定結果の範囲内にあれば、ステップS10で入力された分光器121の測定結果は妥当であると判断する。一方、制御部151は、ステップS10で入力されたフォトディテクタ105の光量測定結果が、予め記憶された当該分光器121の光量測定結果の範囲内に無ければ、ステップS10で入力された分光器121の測定結果は妥当ではないと判断する。 For example, the control unit 151 stores in advance a range of the light quantity measurement result of the spectroscope 121 that can be acquired within the dynamic range in the photoelectric conversion characteristics of the spectroscope 121. Then, the control unit 151 determines whether or not the light quantity measurement result of the photodetector 105 input in step S10 is within the range of the light quantity measurement result of the spectroscope 121 stored in advance. Then, if the light amount measurement result of the photodetector 105 input in step S10 is within the range of the light amount measurement result of the spectroscope 121 stored in advance, the control unit 151 of the spectroscope 121 input in step S10. The measurement result is judged to be appropriate. On the other hand, if the light quantity measurement result of the photodetector 105 input in step S10 is not within the range of the light quantity measurement result of the spectroscope 121 stored in advance, the control unit 151 of the spectroscope 121 input in step S10. Judge that the measurement results are not valid.
 ステップS30において、制御部151は、分光器121の測定結果が妥当であったか否かを判定する。
 制御部151は、ステップS20での検証により、分光器121の測定結果が妥当であると判定されたならば、ステップS40に移行する。一方、制御部151は、ステップS20での検証によって、分光器121の測定結果が妥当ではないと判定されたならば、ステップS60に移行する。
In step S30, the control unit 151 determines whether or not the measurement result of the spectroscope 121 is valid.
If it is determined by the verification in step S20 that the measurement result of the spectroscope 121 is valid, the control unit 151 proceeds to step S40. On the other hand, if it is determined by the verification in step S20 that the measurement result of the spectroscope 121 is not valid, the control unit 151 proceeds to step S60.
 ステップS40において、制御部151は、分光器121の測定結果を有効にする。 In step S40, the control unit 151 validates the measurement result of the spectroscope 121.
 ステップS50において、制御部151は、分光器121の測定結果を出力部163に出力する。そして、制御部151は、光学特性の測定を終了する。
 分光器121の測定結果は、出力部163にて情報出力される。
In step S <b> 50, the control unit 151 outputs the measurement result of the spectroscope 121 to the output unit 163. And the control part 151 complete | finishes the measurement of an optical characteristic.
Information on the measurement result of the spectroscope 121 is output by the output unit 163.
 ステップS60において、制御部151は、分光器121の測定結果を無効にする。 In step S60, the control unit 151 invalidates the measurement result of the spectroscope 121.
 ステップS70において、制御部151は、光量調節器122を制御する。
 制御部151は、ステップS60で無効にされた分光器121の測定結果と、当該結果に対応付けられたフォトディテクタ105の光量測定結果とを確認する。そして、制御部151は、当該光量測定結果に基づいて、光量調節器122で調節される減衰量を求める。制御部151は、求めた減衰量を含む制御信号を光量調節器122に出力し、光量調節器122に減衰量を設定する。
 制御部151は、光量調節器122で調節される減衰量を、例えば、次のような方法で求め得る。
In step S <b> 70, the control unit 151 controls the light amount adjuster 122.
The control unit 151 confirms the measurement result of the spectroscope 121 invalidated in step S60 and the light amount measurement result of the photodetector 105 associated with the result. And the control part 151 calculates | requires the attenuation amount adjusted with the light quantity regulator 122 based on the said light quantity measurement result. The control unit 151 outputs a control signal including the obtained attenuation amount to the light amount adjuster 122 and sets the attenuation amount in the light amount adjuster 122.
The control unit 151 can obtain the attenuation amount adjusted by the light amount adjuster 122 by, for example, the following method.
 例えば、制御部151は、ステップS20での検証において、分光器121の光量測定結果とフォトディテクタ105の光量測定結果との差分を求めて検証した場合には、当該差分の許容範囲内に当該差分が収まるような減衰量を求める。 For example, when the control unit 151 obtains and verifies the difference between the light amount measurement result of the spectroscope 121 and the light amount measurement result of the photodetector 105 in the verification in step S20, the difference is within the allowable range of the difference. Find the amount of attenuation that will fit.
 また例えば、制御部151は、ステップS20での検証において、分光器121の光電変換特性におけるダイナミックレンジ内で取得し得る分光器121の光量測定結果の範囲を用いて検証した場合には、次のように求める。すなわち、制御部151は、当該範囲の閾値と、フォトディテクタ105の光量測定結果との差分に応じて光量調節器122で調節される減衰量を求める。 Further, for example, in the verification in step S20, when the verification is performed using the range of the light quantity measurement result of the spectroscope 121 that can be acquired within the dynamic range in the photoelectric conversion characteristics of the spectroscope 121, the following is performed. Asking. That is, the control unit 151 obtains the attenuation amount adjusted by the light amount adjuster 122 according to the difference between the threshold value in the range and the light amount measurement result of the photodetector 105.
 ステップS80において、制御部151は、フォトディテクタ105及び分光器121に再び測定を行うことを指示する。
 制御部151は、フォトディテクタ105及び分光器121に制御信号を出力して、フォトディテクタ105及び分光器121に再度測定するよう指示する。
 再測定の際、分光器121は、ステップS70で設定された減衰量で減衰された光を検出し、光学特性を測定することができる。そして、再測定した分光器121の測定結果は、再び制御部151に入力されて、ステップS20で検証されることとなる。それにより、ステップS50で出力される分光器121の測定結果は、信頼性の高い測定だけとなる。
In step S80, the control unit 151 instructs the photodetector 105 and the spectroscope 121 to perform measurement again.
The control unit 151 outputs a control signal to the photo detector 105 and the spectroscope 121 and instructs the photo detector 105 and the spectroscope 121 to perform measurement again.
In the remeasurement, the spectroscope 121 can detect the light attenuated by the attenuation set in step S70 and measure the optical characteristics. Then, the measurement result of the spectroscope 121 that has been measured again is input to the control unit 151 again and verified in step S20. Thereby, the measurement result of the spectroscope 121 output in step S50 is only the measurement with high reliability.
 このように、変形例11の光学測定装置3は、分光器121よりもダイナミックレンジの広いフォトディテクタ105で測定された光量測定結果に基づいて、分光器121の測定結果を選択的に有効する。
 このため、変形例11の光学測定装置3は、発光素子101の光学特性測定時に、信頼性の高い測定結果のみを有効として出力することができる。
 よって、変形例11の光学測定装置3の光学特性の測定結果は、高い信頼性を得ることができる。
As described above, the optical measurement device 3 of the modification 11 selectively validates the measurement result of the spectroscope 121 based on the light amount measurement result measured by the photodetector 105 having a wider dynamic range than the spectroscope 121.
For this reason, the optical measuring device 3 of the modified example 11 can output only a reliable measurement result as valid when measuring the optical characteristics of the light emitting element 101.
Therefore, the measurement result of the optical characteristics of the optical measurement device 3 of the modification 11 can obtain high reliability.
 更に、変形例11の光学測定装置3は、分光器121の測定結果が妥当でなければ、分光器121への入射光を、適正な光量に自動で調節することができる。そして、変形例11の光学測定装置3は、適正な光量に調節された入射光を用いて分光器121が再度光学特性を測定することができる。
 このため、変形例11の光学測定装置3は、発光特性の異なる発光素子101の光学特性を測定する場合であっても、測定環境を変えずに、分光器121への入射光量を自動的に適正に保つことができる。
 よって、変形例11の光学測定装置3は、品種の異なる発光素子101の光学特性を、同じ測定環境下で高精度に測定することができる。
Furthermore, if the measurement result of the spectroscope 121 is not appropriate, the optical measurement device 3 of the modification 11 can automatically adjust the incident light to the spectroscope 121 to an appropriate light amount. And the optical measurement apparatus 3 of the modification 11 can measure the optical characteristic again by the spectroscope 121 using the incident light adjusted to an appropriate light quantity.
For this reason, the optical measurement device 3 of the modification 11 automatically changes the amount of light incident on the spectroscope 121 without changing the measurement environment even when measuring the optical characteristics of the light emitting elements 101 having different emission characteristics. It can be kept appropriate.
Therefore, the optical measurement device 3 of Modification 11 can measure the optical characteristics of the light emitting elements 101 of different varieties with high accuracy under the same measurement environment.
 なお、変形例11の光学測定装置3は、光量調節器122で調節される減衰量を、図21及び図22に示された光学測定装置3のように、フォトディテクタ105で測定された光量測定結果に基づいて設定しなくてもよい。
 変形例11の光学測定装置3は、光量調節器122で調節される減衰量を、分光器121で測定された測定結果に含まれる光量測定結果に基づいて設定してもよい。
 このとき、変形例11の光学測定装置3は、図23に示すように、光導波路120、フォトディテクタ105、及びアンプ113を省いた構成であってもよい。
Note that the optical measurement device 3 of Modification 11 uses the light amount measurement result obtained by measuring the attenuation amount adjusted by the light amount adjuster 122 with the photodetector 105 as in the optical measurement device 3 shown in FIGS. It is not necessary to set based on.
The optical measurement device 3 of the modification 11 may set the attenuation amount adjusted by the light amount adjuster 122 based on the light amount measurement result included in the measurement result measured by the spectroscope 121.
At this time, as shown in FIG. 23, the optical measurement device 3 of Modification 11 may have a configuration in which the optical waveguide 120, the photodetector 105, and the amplifier 113 are omitted.
 フォトディテクタ105が省略された場合、図23に示された制御部151は、分光器121で測定された測定結果の妥当性を、次のような方法で検証してもよい。当該検証は、図22のステップS20の処理の一部に相当する。 When the photo detector 105 is omitted, the control unit 151 shown in FIG. 23 may verify the validity of the measurement result measured by the spectroscope 121 by the following method. The verification corresponds to a part of the processing in step S20 in FIG.
 図23に示された制御部151は、分光器121の光電変換特性におけるダイナミックレンジ内で取得し得る分光器121の光量測定結果の範囲を予め記憶している。そして、制御部151は、分光器121で測定された光量測定結果が、予め記憶された光量測定結果の範囲内にあるか否かを判定する。そして、制御部151は、分光器121で測定された光量測定結果が、予め記憶された光量測定結果の範囲内にあれば、分光器121で測定された測定結果は妥当であると判断する。一方、制御部151は、分光器121で測定された光量測定結果が、予め記憶された光量測定結果の範囲内に無ければ、分光器121で測定された測定結果は妥当ではないと判断する。 23 stores in advance a range of the light quantity measurement result of the spectroscope 121 that can be acquired within the dynamic range of the photoelectric conversion characteristics of the spectroscope 121. Then, the control unit 151 determines whether or not the light quantity measurement result measured by the spectroscope 121 is within the range of the light quantity measurement result stored in advance. Then, the control unit 151 determines that the measurement result measured by the spectroscope 121 is appropriate if the light quantity measurement result measured by the spectroscope 121 is within the range of the light quantity measurement result stored in advance. On the other hand, if the light amount measurement result measured by the spectroscope 121 is not within the range of the light amount measurement result stored in advance, the control unit 151 determines that the measurement result measured by the spectroscope 121 is not valid.
 また、フォトディテクタ105が省略された場合、図23に示された制御部151は、光量調節器122で調節される減衰量を、次のような方法で求めてもよい。当該減衰量の計算は、図22のステップS70の処理の一部に相当する。 Further, when the photodetector 105 is omitted, the control unit 151 shown in FIG. 23 may obtain the attenuation adjusted by the light amount adjuster 122 by the following method. The calculation of the attenuation amount corresponds to a part of the process of step S70 in FIG.
 図23に示された制御部151は、分光器121の光電変換特性におけるダイナミックレンジ内で取得し得る分光器121の光量測定結果の範囲の閾値と、分光器121で測定された光量測定結果との差分に応じて減衰量を求める。 The control unit 151 illustrated in FIG. 23 includes a threshold of the range of the light quantity measurement result of the spectroscope 121 that can be acquired within the dynamic range in the photoelectric conversion characteristics of the spectroscope 121, and the light quantity measurement result measured by the spectroscope 121. The amount of attenuation is obtained according to the difference between the two.
 このような構成により、図23に示された変形例11の光学測定装置3は、フォトディテクタ105を省いても、分光器121で測定された光量測定結果に基づいて、分光器121への入射光を、適正な光量に自動で調節することができる。
 このため、図23に示された変形例11の光学測定装置3は、図21及び図22に示された11の光学測定装置3と比べて、より簡単な構成で信頼性の高い測定結果を得ることができる。
 変形例11の光学測定装置3の他の構成については、図2~図9Bに示された光学測定装置3の構成と同様である。
With such a configuration, the optical measurement apparatus 3 according to the eleventh modification shown in FIG. 23 does not include the photodetector 105, but the incident light to the spectroscope 121 based on the light quantity measurement result measured by the spectroscope 121. Can be automatically adjusted to an appropriate amount of light.
For this reason, the optical measurement device 3 of the modification 11 shown in FIG. 23 has a simpler configuration and a more reliable measurement result than the optical measurement device 3 of 11 shown in FIGS. Obtainable.
Other configurations of the optical measurement device 3 of Modification 11 are the same as the configurations of the optical measurement device 3 shown in FIGS. 2 to 9B.
 上記で説明した実施形態は、変形例を含めて各実施形態同士で互いの技術を適用し得ることは、当業者には明らかであろう。 It will be apparent to those skilled in the art that the embodiments described above can be applied to each other's techniques, including modifications.
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本発明の実施形態に変更を加えることができることは、当業者には明らかであろう。 The above description is intended to be illustrative only and not limiting. Thus, it will be apparent to one skilled in the art that modifications may be made to the embodiments of the present invention without departing from the scope of the appended claims.
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。 Terms used throughout this specification and the appended claims should be construed as "non-limiting" terms. For example, the terms “include” or “included” should be interpreted as “not limited to those described as included”. The term “comprising” should be interpreted as “not limited to what is described as having”. Also, the indefinite article “a” or “an” in the specification and the appended claims should be interpreted to mean “at least one” or “one or more”.
<実施形態の構成及び効果>
 本実施形態の光学測定装置3は、他の発光素子101と隣接して配列された一の発光素子101が発光した光を検出する受光素子105a及び受光素子121aを備え、受光素子105a及び受光素子121aは、一の発光素子101に電力を供給することによって一の発光素子101が発光した光を検出し、一の発光素子101が発光した光によって他の発光素子101が発光した光、及び、一の発光素子101が発光した光のうち他の発光素子101で反射された光を検出しないことを特徴とする。
 このような構成により、光学測定装置3は、発光素子101の光学特性を、発光素子101の配列態様に関わらず、簡単な構成で高精度に測定することができる。
<Configuration and Effect of Embodiment>
The optical measuring device 3 of this embodiment includes a light receiving element 105a and a light receiving element 121a that detect light emitted from one light emitting element 101 arranged adjacent to another light emitting element 101, and the light receiving element 105a and the light receiving element. 121a detects light emitted from one light emitting element 101 by supplying power to one light emitting element 101, light emitted from another light emitting element 101 by light emitted from one light emitting element 101, and Of the light emitted from one light emitting element 101, the light reflected by the other light emitting element 101 is not detected.
With such a configuration, the optical measuring device 3 can measure the optical characteristics of the light emitting elements 101 with high accuracy with a simple configuration regardless of the arrangement of the light emitting elements 101.
 また、本実施形態の光学測定装置3は、一の発光素子101にのみ電力を供給してもよい。
 このような構成により、光学測定装置3は、発光素子101の光学特性を、より高精度に測定することができる。
Further, the optical measurement device 3 of the present embodiment may supply power only to one light emitting element 101.
With such a configuration, the optical measuring device 3 can measure the optical characteristics of the light emitting element 101 with higher accuracy.
 また、本実施形態の光学測定装置3は、一の発光素子101に電力を供給することによって一の発光素子101が発光した光が受光素子105a及び受光素子121aで検出され、一の発光素子101が発光した光によって他の発光素子101が発光した光、及び、一の発光素子101が発光した光のうち他の発光素子101で反射された光が受光素子105a及び受光素子121aで検出されないように、受光素子105a及び受光素子121aが検出する光の範囲である検出範囲を調節する調節部を備えてもよい。
 このような構成により、光学測定装置3は、発光素子101の光学特性を、発光素子101の配列態様に関わらず、簡単な構成で高精度に測定することができる。
Further, in the optical measuring device 3 of the present embodiment, the light emitted from one light emitting element 101 is detected by the light receiving element 105a and the light receiving element 121a by supplying power to the one light emitting element 101, and the one light emitting element 101 is detected. The light emitted from the other light emitting element 101 by the light emitted by the light emitting element and the light reflected by the other light emitting element 101 out of the light emitted from the one light emitting element 101 are not detected by the light receiving element 105a and the light receiving element 121a. In addition, an adjustment unit that adjusts a detection range that is a range of light detected by the light receiving element 105a and the light receiving element 121a may be provided.
With such a configuration, the optical measuring device 3 can measure the optical characteristics of the light emitting elements 101 with high accuracy with a simple configuration regardless of the arrangement of the light emitting elements 101.
 また、本実施形態の光学測定装置3は、一の発光素子101が発光した光が入射し、入射した光を受光素子105a及び受光素子121aに導光する光ファイバ117を備え、調節部は、光ファイバ117に入射する光を制限することによって、検出範囲を調節してもよい。
 このような構成により、光学測定装置3は、発光素子101の光学測定を、より簡単な構成で測定することができる。
The optical measurement device 3 of the present embodiment includes an optical fiber 117 that receives light emitted from one light emitting element 101 and guides the incident light to the light receiving element 105a and the light receiving element 121a. The detection range may be adjusted by limiting the light incident on the optical fiber 117.
With such a configuration, the optical measuring device 3 can measure the optical measurement of the light emitting element 101 with a simpler configuration.
 また、本実施形態の光学測定装置3は、一の発光素子101及び他の発光素子101は、電力が供給されると特定の波長領域の光を生成する生成部101bと、入射した光の波長を波長変換する波長変換部101cと、をそれぞれ含み、調節部は、一の発光素子101が発光した光が他の発光素子101の波長変換部101cに入射することによって他の発光素子が発光した光、及び、一の発光素子101が発光した光のうち他の発光素子101で反射された光が、光ファイバ117に入射することを制限してもよい。
 このような構成により、光学測定装置3は、生成部101b及び波長変換部101cを含む発光素子101の光学特性を、発光素子101の配列態様に関わらず、簡単な構成で高精度に測定することができる。
Further, in the optical measuring device 3 according to the present embodiment, one light emitting element 101 and another light emitting element 101 are configured to generate a light having a specific wavelength region when power is supplied, and a wavelength of incident light. A wavelength conversion unit 101c that converts the wavelength of each of the light-emitting elements, and the adjustment unit emits light emitted from one light-emitting element 101 when the light-emitting element 101 enters the wavelength conversion unit 101c of the other light-emitting element 101. The light and the light reflected by the other light emitting element 101 out of the light emitted from one light emitting element 101 may be restricted from entering the optical fiber 117.
With such a configuration, the optical measurement apparatus 3 can measure the optical characteristics of the light emitting element 101 including the generation unit 101b and the wavelength conversion unit 101c with high accuracy with a simple configuration regardless of the arrangement mode of the light emitting elements 101. Can do.
 また、本実施形態の光学測定装置3は、一の発光素子101が発光した光が入射する光ファイバ117の入射口117cは、一の発光素子101に対向して配置され、調節部は、入射口117cと一の発光素子101との距離Lを光ファイバ117の開口数NAに基づいて変更することによって、光ファイバ117に入射する光を制限してもよい。
 このような構成により、光学測定装置3は、生成部101b及び波長変換部101cを含む発光素子101の光学特性を、より簡単な構成で測定することができる。
Further, in the optical measuring device 3 of the present embodiment, the incident port 117c of the optical fiber 117 into which the light emitted from the one light emitting element 101 enters is disposed to face the one light emitting element 101, and the adjusting unit is The light incident on the optical fiber 117 may be limited by changing the distance L between the mouth 117 c and the one light emitting element 101 based on the numerical aperture NA of the optical fiber 117.
With such a configuration, the optical measurement device 3 can measure the optical characteristics of the light emitting element 101 including the generation unit 101b and the wavelength conversion unit 101c with a simpler configuration.
 また、本実施形態の光学測定装置3は、光ファイバ117内で全反射し得る光の入射角の最大値をαとし、一の発光素子101の中心から、一の発光素子101と隣接する他の発光素子101の外縁までの距離をXとすると、調節部は、入射口と一の発光素子101との距離Lが、L≦X/tanαの関係を満たすように距離Lを変更してもよい。
 このような構成により、光学測定装置3は、生成部101b及び波長変換部101cを含む発光素子101の光学特性を、より簡単な構成で測定することができる。
In the optical measuring device 3 of the present embodiment, the maximum value of the incident angle of light that can be totally reflected within the optical fiber 117 is α, and the light emitting element 101 is adjacent to the other light emitting element 101 from the center. If the distance to the outer edge of the light emitting element 101 is X, the adjusting unit may change the distance L so that the distance L between the entrance and the one light emitting element 101 satisfies the relationship L ≦ X / tan α. Good.
With such a configuration, the optical measurement device 3 can measure the optical characteristics of the light emitting element 101 including the generation unit 101b and the wavelength conversion unit 101c with a simpler configuration.
 一の発光素子101が発光した光が入射する光ファイバ117の入射口117cは、一の発光素子101に対向して配置され、調節部は、入射口117cと一の発光素子101との間に配置され、一の発光素子101が発光した光が他の発光素子101に入射することを遮る遮蔽部材で構成され、遮蔽部材によって光ファイバ117に入射する光を制限してもよい。
 このような構成により、光学測定装置3は、生成部101b及び波長変換部101cを含む発光素子101の光学特性を、より簡単な構成で測定することができる。
The incident port 117c of the optical fiber 117 into which the light emitted from one light emitting element 101 enters is disposed to face the one light emitting element 101, and the adjusting unit is disposed between the incident port 117c and the one light emitting element 101. The light may be disposed and configured by a shielding member that blocks light emitted from one light emitting element 101 from entering another light emitting element 101, and the light incident on the optical fiber 117 may be limited by the shielding member.
With such a configuration, the optical measurement device 3 can measure the optical characteristics of the light emitting element 101 including the generation unit 101b and the wavelength conversion unit 101c with a simpler configuration.
<定義等>
 本発明の「一の発光素子」の一例は、複数配列された発光素子101のうち、測定対象の発光素子101である。
 本発明の「他の発光素子」の一例は、複数配列された発光素子101のうち、測定対象以外の発光素子101である。
 通常、測定対象の発光素子101は、測定毎に異なる。すなわち、本発明の「一の発光素子」と「他の発光素子」とは、測定対象か否かが異なるだけであって、その構成は実質的に同じであり得る。
 本発明の「受光素子」の一例は、受光素子105a及び受光素子121aである。
 本発明の「調節部」の一例は、距離Lの調節機構及び絞り201である。これ以外についても明細書中に適宜記載されている。
 本発明の「導光管」の一例は、光ファイバ117、バンドルファイバ118、及びバンドルファイバ119である。
 本発明の「生成部」の一例は、生成部101bである。
 本発明の「波長変換部」の一例は、波長変換部101cである。
 本発明の「入射口」の一例は、入射口117cである。
 本発明の「遮蔽部材」の一例は、遮蔽板206及びリフレクタ207である。
<Definition etc.>
An example of “one light emitting element” of the present invention is a light emitting element 101 to be measured among a plurality of light emitting elements 101 arranged.
An example of “another light emitting element” of the present invention is a light emitting element 101 other than a measurement target among a plurality of light emitting elements 101 arranged.
Usually, the light emitting element 101 to be measured is different for each measurement. That is, the “one light-emitting element” and the “other light-emitting element” of the present invention differ only in whether or not they are objects of measurement, and their configurations can be substantially the same.
An example of the “light receiving element” in the present invention is the light receiving element 105a and the light receiving element 121a.
An example of the “adjustment unit” of the present invention is a distance L adjustment mechanism and an aperture 201. Others are also described appropriately in the specification.
An example of the “light guide tube” of the present invention is an optical fiber 117, a bundle fiber 118, and a bundle fiber 119.
An example of the “generation unit” of the present invention is the generation unit 101b.
An example of the “wavelength converter” in the present invention is the wavelength converter 101c.
An example of the “incident port” of the present invention is the incident port 117c.
An example of the “shielding member” of the present invention is the shielding plate 206 and the reflector 207.
    3   光学測定装置
  101   発光素子
  101a  発光面
  101b  生成部
  101c  波長変換部
  105   フォトディテクタ
  105a  受光素子
  117   光ファイバ
  117a  ヘッド
  117b  光伝送路
  117c  入射口
  121   分光器
  121a  受光素子
  206   遮蔽板
  207   リフレクタ
DESCRIPTION OF SYMBOLS 3 Optical measuring device 101 Light emitting element 101a Light emitting surface 101b Generation | occurrence | production part 101c Wavelength conversion part 105 Photo detector 105a Light receiving element 117 Optical fiber 117a Head 117b Optical transmission line 117c Incident port 121 Spectrometer 121a Light receiving element 206 Shielding board 207 Reflector

Claims (8)

  1.  他の発光素子と隣接して配列された一の発光素子が発光した光を検出する受光素子を備え、
     前記受光素子は、
      前記一の発光素子に電力を供給することによって前記一の発光素子が発光した光
     を検出し、
      前記一の発光素子が発光した光によって前記他の発光素子が発光した光、
      及び、前記一の発光素子が発光した光のうち前記他の発光素子で反射された光
     を検出しない
     光学測定装置。
    A light receiving element that detects light emitted by one light emitting element arranged adjacent to another light emitting element,
    The light receiving element is
    Detecting light emitted from the one light emitting element by supplying power to the one light emitting element;
    The light emitted from the other light emitting element by the light emitted from the one light emitting element;
    An optical measuring device that does not detect light reflected by the other light emitting element among the light emitted by the one light emitting element.
  2.  前記一の発光素子にのみ電力を供給する
     請求項1に記載の光学測定装置。
    The optical measurement apparatus according to claim 1, wherein power is supplied only to the one light emitting element.
  3.  前記一の発光素子に電力を供給することによって前記一の発光素子が発光した光
     が前記受光素子で検出され、
     前記一の発光素子が発光した光によって前記他の発光素子が発光した光、
     及び、前記一の発光素子が発光した光のうち前記他の発光素子で反射された光
     が前記受光素子で検出されないように、
     前記受光素子が検出する光の範囲である検出範囲を調節する調節部
     を備える請求項2に記載の光学測定装置。
    By supplying power to the one light emitting element, light emitted from the one light emitting element is detected by the light receiving element,
    The light emitted from the other light emitting element by the light emitted from the one light emitting element;
    And, the light reflected by the other light emitting element among the light emitted by the one light emitting element is not detected by the light receiving element.
    The optical measurement apparatus according to claim 2, further comprising: an adjustment unit that adjusts a detection range that is a range of light detected by the light receiving element.
  4.  前記一の発光素子が発光した光が入射し、入射した光を前記受光素子に導光する導光管を備え、
     前記調節部は、前記導光管に入射する光を制限することによって、前記検出範囲を調節する
     請求項3に記載の光学測定装置。
    The light emitted from the one light emitting element is incident, and includes a light guide tube that guides the incident light to the light receiving element,
    The optical measurement apparatus according to claim 3, wherein the adjustment unit adjusts the detection range by limiting light incident on the light guide tube.
  5.  前記一の発光素子及び前記他の発光素子は、
      電力が供給されると特定の波長領域の光を生成する生成部と、
      入射した光の波長を波長変換する波長変換部と、
     をそれぞれ含み、
     前記調節部は、
      前記一の発光素子が発光した光が前記他の発光素子の前記波長変換部に入射することによって前記他の発光素子が発光した光、
      及び、前記一の発光素子が発光した光のうち前記他の発光素子で反射された光
     が、前記導光管に入射することを制限する
     請求項4に記載の光学測定装置。
    The one light emitting element and the other light emitting element are:
    A generator that generates light in a specific wavelength region when power is supplied;
    A wavelength converter that converts the wavelength of incident light;
    Each
    The adjusting unit is
    The light emitted from the other light emitting element by the light emitted from the one light emitting element entering the wavelength conversion unit of the other light emitting element;
    The optical measurement device according to claim 4, wherein light that is reflected by the other light emitting element among light emitted by the one light emitting element is restricted from entering the light guide tube.
  6.  前記一の発光素子が発光した光が入射する前記導光管の入射口は、前記一の発光素子に対向して配置され、
     前記調節部は、前記入射口と前記一の発光素子との距離を前記導光管の開口数に基づいて変更することによって、前記導光管に入射する光を制限する
     請求項5に記載の光学測定装置。
    The entrance of the light guide tube into which the light emitted from the one light emitting element is incident is disposed to face the one light emitting element,
    The said adjustment | control part restrict | limits the light which injects into the said light guide tube by changing the distance of the said entrance and the said one light emitting element based on the numerical aperture of the said light guide tube. Optical measuring device.
  7.  前記導光管内で全反射し得る光の入射角の最大値をαとし、
     前記一の発光素子の中心から、前記一の発光素子と隣接する前記他の発光素子の外縁までの距離をXとすると、
     前記調節部は、
      前記入射口と前記一の発光素子との距離Lが、
       L≦X/tanα
      の関係を満たすように前記距離Lを変更する
     請求項6に記載の光学測定装置。
    The maximum value of the incident angle of light that can be totally reflected in the light guide tube is α,
    When the distance from the center of the one light emitting element to the outer edge of the other light emitting element adjacent to the one light emitting element is X,
    The adjusting unit is
    The distance L between the entrance and the one light emitting element is:
    L ≦ X / tan α
    The optical measurement apparatus according to claim 6, wherein the distance L is changed so as to satisfy the relationship.
  8.  前記一の発光素子が発光した光が入射する前記導光管の入射口は、前記一の発光素子に対向して配置され、
     前記調節部は、
      前記入射口と前記一の発光素子との間に配置され、前記一の発光素子が発光した光が前記他の発光素子に入射することを遮る遮蔽部材で構成され、
      前記遮蔽部材によって前記導光管に入射する光を制限する
     請求項5に記載の光学測定装置。
     
    The entrance of the light guide tube into which the light emitted from the one light emitting element is incident is disposed to face the one light emitting element,
    The adjusting unit is
    It is disposed between the incident port and the one light emitting element, and is configured by a shielding member that blocks light emitted from the one light emitting element from entering the other light emitting element.
    The optical measurement apparatus according to claim 5, wherein the light that enters the light guide tube is limited by the shielding member.
PCT/JP2014/050692 2014-01-16 2014-01-16 Optical measuring apparatus WO2015107655A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/050692 WO2015107655A1 (en) 2014-01-16 2014-01-16 Optical measuring apparatus
JP2015557637A JP6277206B2 (en) 2014-01-16 2014-01-16 Optical measuring device
TW104101581A TWI608222B (en) 2014-01-16 2015-01-16 Optical measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050692 WO2015107655A1 (en) 2014-01-16 2014-01-16 Optical measuring apparatus

Publications (1)

Publication Number Publication Date
WO2015107655A1 true WO2015107655A1 (en) 2015-07-23

Family

ID=53542574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050692 WO2015107655A1 (en) 2014-01-16 2014-01-16 Optical measuring apparatus

Country Status (3)

Country Link
JP (1) JP6277206B2 (en)
TW (1) TWI608222B (en)
WO (1) WO2015107655A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019507953A (en) * 2016-02-11 2019-03-22 ツェットカーヴェー グループ ゲーエムベーハー Method and ICT apparatus for inspecting a module of a lighting device comprising at least two LEDs

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102648838B1 (en) * 2021-09-01 2024-03-18 주식회사 무선테크윈 Apparatus For Inspecting And Adjusting lantern

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628005U (en) * 1985-07-01 1987-01-19
JPS63248141A (en) * 1987-04-03 1988-10-14 Mitsubishi Electric Corp Measuring device for optical semiconductor characteristic
JPH05183192A (en) * 1991-12-27 1993-07-23 Oki Electric Ind Co Ltd Inspecting device for surface light emitting/receiving element
JPH07226535A (en) * 1994-02-09 1995-08-22 Omron Corp Semiconductor light-emitting element, optical detecting device, optical information detecting device, projector and optical fiber module
JP2004273948A (en) * 2003-03-11 2004-09-30 Daido Steel Co Ltd Device for evaluating semiconductor light emitting element and method of evaluating the semiconductor light emitting element
JP2010101728A (en) * 2008-10-23 2010-05-06 Ricoh Co Ltd Inspection device
JP2010249718A (en) * 2009-04-17 2010-11-04 Micronics Japan Co Ltd Photodetector used for testing led
JP2013011542A (en) * 2011-06-30 2013-01-17 Panasonic Corp Inspection apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119644U (en) * 1986-01-23 1987-07-29
JPH05181392A (en) * 1991-12-27 1993-07-23 Matsushita Electric Ind Co Ltd Electrophotographic device
US6501542B2 (en) * 1998-06-30 2002-12-31 Lj Laboratories, Llc Apparatus and method for measuring optical characteristics of an object
IES20000322A2 (en) * 2000-04-28 2001-11-14 Viveen Ltd Apparatus for testing a light source
EP2047219B1 (en) * 2006-06-15 2011-10-26 Koninklijke Philips Electronics N.V. Angle selective photo sensor structures for accurate color control, out coupling and background rejection, in led luminaries
CN102645276A (en) * 2011-02-16 2012-08-22 台湾超微光学股份有限公司 Spectrum sensing equipment, system and method
US20120326060A1 (en) * 2011-06-22 2012-12-27 Boaz Kenane Testing method for led wafer
TW201331560A (en) * 2013-04-02 2013-08-01 Hauman Technologies Corp Light-receiving apparatus capable of increasing light-receiving magnitude and angle
TW201333499A (en) * 2013-04-16 2013-08-16 Hauman Technologies Corp Optical detection apparatus of light emission element to be tested and method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628005U (en) * 1985-07-01 1987-01-19
JPS63248141A (en) * 1987-04-03 1988-10-14 Mitsubishi Electric Corp Measuring device for optical semiconductor characteristic
JPH05183192A (en) * 1991-12-27 1993-07-23 Oki Electric Ind Co Ltd Inspecting device for surface light emitting/receiving element
JPH07226535A (en) * 1994-02-09 1995-08-22 Omron Corp Semiconductor light-emitting element, optical detecting device, optical information detecting device, projector and optical fiber module
JP2004273948A (en) * 2003-03-11 2004-09-30 Daido Steel Co Ltd Device for evaluating semiconductor light emitting element and method of evaluating the semiconductor light emitting element
JP2010101728A (en) * 2008-10-23 2010-05-06 Ricoh Co Ltd Inspection device
JP2010249718A (en) * 2009-04-17 2010-11-04 Micronics Japan Co Ltd Photodetector used for testing led
JP2013011542A (en) * 2011-06-30 2013-01-17 Panasonic Corp Inspection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019507953A (en) * 2016-02-11 2019-03-22 ツェットカーヴェー グループ ゲーエムベーハー Method and ICT apparatus for inspecting a module of a lighting device comprising at least two LEDs

Also Published As

Publication number Publication date
TWI608222B (en) 2017-12-11
TW201531673A (en) 2015-08-16
JP6277206B2 (en) 2018-02-07
JPWO2015107655A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
CN101784872B (en) Lighting device with adaptable color
US20180120157A1 (en) Optoelectronic arrangement
JP2010281808A (en) Illumination apparatus and reflective characteristic measuring apparatus employing the same
TWI451073B (en) Measuring the optical system and the use of its brightness meter, color brightness meter and color meter
KR101417565B1 (en) Optical system for measurements, and luminance colorimeter and colorimeter using same
TWI460405B (en) Light amount measuring device and light amount measuring method
US9127979B2 (en) Optical measuring system and optical measuring device thereof
US10600174B2 (en) Optical inspection apparatus
JP6277207B2 (en) Optical measuring device
CN106415241B (en) ATR infrared spectrometer
JP6277206B2 (en) Optical measuring device
WO2018070179A1 (en) Test apparatus and production method for light-emitting device
JP6277208B2 (en) Optical measuring device
JP2006202665A (en) Light source device
JP2016534337A (en) Method for manufacturing a light emitter
JP2013174546A (en) Light emission-inspecting device and light emission-inspecting method
TW202043769A (en) Fluorescent microscopic imaging device
KR101327308B1 (en) Concentrating Mirror for Measurement of Cathodoluminescence and Photoluminescence
TWI442031B (en) Optical measurement system and the device thereof
US11686669B2 (en) Optical measurement device including a light splitting module comprising light splitters and a light inspecting module comprising a plurality of inspecting cameras
KR101535660B1 (en) The light intensity measuring device having relocatable sockets for light receiving
KR101535658B1 (en) The light intensity measuring device having optical fiber
KR20130092805A (en) Light test apparatus
JPWO2014020978A1 (en) Light quantity measuring device and light quantity measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557637

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878497

Country of ref document: EP

Kind code of ref document: A1