WO2015106816A1 - Generating a three-dimensional object - Google Patents

Generating a three-dimensional object Download PDF

Info

Publication number
WO2015106816A1
WO2015106816A1 PCT/EP2014/050841 EP2014050841W WO2015106816A1 WO 2015106816 A1 WO2015106816 A1 WO 2015106816A1 EP 2014050841 W EP2014050841 W EP 2014050841W WO 2015106816 A1 WO2015106816 A1 WO 2015106816A1
Authority
WO
WIPO (PCT)
Prior art keywords
agent
build material
layer
distributor
coalescence modifier
Prior art date
Application number
PCT/EP2014/050841
Other languages
French (fr)
Inventor
Alejandro Manuel De Pena
Esteve COMAS CESPEDES
Luis BALDEZ
Original Assignee
Hewlett-Packard Development Company, L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett-Packard Development Company, L.P. filed Critical Hewlett-Packard Development Company, L.P.
Priority to KR1020167018991A priority Critical patent/KR101872628B1/en
Priority to US15/112,132 priority patent/US10625468B2/en
Priority to EP14702207.3A priority patent/EP3094469B1/en
Priority to MX2016009139A priority patent/MX2016009139A/en
Priority to HUE14702207A priority patent/HUE046415T2/en
Priority to CN201480073354.7A priority patent/CN105916663B/en
Priority to KR1020187017547A priority patent/KR101971413B1/en
Priority to RU2016133260A priority patent/RU2650167C2/en
Priority to EP19200526.2A priority patent/EP3626434A1/en
Priority to DE112014006198.0T priority patent/DE112014006198T5/en
Priority to JP2016546466A priority patent/JP6302077B2/en
Priority to DK14702207.3T priority patent/DK3094469T3/en
Priority to ES14702207T priority patent/ES2761249T3/en
Priority to PCT/EP2014/050841 priority patent/WO2015106816A1/en
Priority to BR112016016401-6A priority patent/BR112016016401B1/en
Priority to PCT/US2014/013517 priority patent/WO2015108544A1/en
Priority to CN201480073352.8A priority patent/CN105899346B/en
Priority to US15/100,584 priority patent/US10583612B2/en
Priority to US15/100,603 priority patent/US10544311B2/en
Priority to EP14878846.6A priority patent/EP3094669B1/en
Priority to EP14878848.2A priority patent/EP3094475B1/en
Priority to PCT/US2014/013511 priority patent/WO2015108543A1/en
Priority to DE112014006185.9T priority patent/DE112014006185B4/en
Priority to CN201910973580.5A priority patent/CN110640948B/en
Priority to US15/110,947 priority patent/US20160325496A1/en
Priority to PL14878652T priority patent/PL3094474T3/en
Priority to RU2016133258A priority patent/RU2650155C2/en
Priority to PCT/US2014/014044 priority patent/WO2015108546A2/en
Priority to US14/787,692 priority patent/US10647059B2/en
Priority to RU2018110358A priority patent/RU2692342C2/en
Priority to US15/111,605 priority patent/US20160332375A1/en
Priority to US15/110,754 priority patent/US10220564B2/en
Priority to CN201480073358.5A priority patent/CN105916664B/en
Priority to PCT/US2014/014076 priority patent/WO2015108547A2/en
Priority to KR1020187018006A priority patent/KR101906127B1/en
Priority to EP14702259.4A priority patent/EP3094470B1/en
Priority to PCT/US2014/014025 priority patent/WO2015108545A1/en
Priority to CN201480073492.5A priority patent/CN105934332B/en
Priority to PCT/EP2014/051938 priority patent/WO2015106832A1/en
Priority to MX2016009288A priority patent/MX2016009288A/en
Priority to GB1611664.2A priority patent/GB2538408B/en
Priority to JP2016546827A priority patent/JP6353547B2/en
Priority to EP19208530.6A priority patent/EP3626435B1/en
Priority to GB1611667.5A priority patent/GB2538411B/en
Priority to ES18210300T priority patent/ES2949385T3/en
Priority to EP18210300.2A priority patent/EP3488994B1/en
Priority to BR112016016402-4A priority patent/BR112016016402B1/en
Priority to DE112014006189.1T priority patent/DE112014006189T5/en
Priority to CN201480073360.2A priority patent/CN105916665B/en
Priority to KR1020187027354A priority patent/KR102123220B1/en
Priority to EP14878652.8A priority patent/EP3094474B1/en
Priority to KR1020167018987A priority patent/KR20160098429A/en
Priority to DE112014006196.4T priority patent/DE112014006196T5/en
Priority to DE112014006179.4T priority patent/DE112014006179T5/en
Priority to GB1611665.9A priority patent/GB2538409B/en
Priority to PCT/US2014/032341 priority patent/WO2015108552A1/en
Priority to JP2016564941A priority patent/JP6570542B2/en
Priority to CN201480073303.4A priority patent/CN105916661B/en
Priority to PCT/US2014/032333 priority patent/WO2015108551A1/en
Priority to PCT/US2014/032328 priority patent/WO2015108550A1/en
Priority to US15/111,949 priority patent/US11167475B2/en
Priority to CN201480073345.8A priority patent/CN105916662B/en
Priority to US15/112,141 priority patent/US10889059B2/en
Priority to US15/110,753 priority patent/US10688772B2/en
Priority to EP14879087.6A priority patent/EP3094476B1/en
Priority to GB1611666.7A priority patent/GB2538410B/en
Priority to GB1611663.4A priority patent/GB2537545B/en
Priority to PCT/US2014/034315 priority patent/WO2015108554A1/en
Priority to US15/112,074 priority patent/US10486373B2/en
Priority to DE112014006181.6T priority patent/DE112014006181T5/en
Priority to US15/111,685 priority patent/US10625469B2/en
Priority to CN201480075551.2A priority patent/CN106061713B/en
Priority to DE112014006177.8T priority patent/DE112014006177B4/en
Priority to GB1612083.4A priority patent/GB2538419B/en
Priority to PCT/US2014/035823 priority patent/WO2015108555A1/en
Priority to US14/888,061 priority patent/US10137644B2/en
Priority to PCT/EP2014/058822 priority patent/WO2015106836A1/en
Priority to CN201480073361.7A priority patent/CN105916666B/en
Priority to EP14722158.4A priority patent/EP3094471B1/en
Priority to PCT/US2014/036001 priority patent/WO2015108556A1/en
Priority to CN201480076295.9A priority patent/CN106061714B/en
Priority to GB1612116.2A priority patent/GB2538420B/en
Priority to PCT/US2014/040212 priority patent/WO2015108560A1/en
Priority to US15/111,752 priority patent/US10252474B2/en
Priority to PCT/EP2014/064870 priority patent/WO2015106838A1/en
Priority to US15/324,944 priority patent/US20170203513A1/en
Priority to CN201480073458.8A priority patent/CN105939837B/en
Priority to EP14755601.3A priority patent/EP3094472B1/en
Priority to PCT/EP2014/066546 priority patent/WO2015106840A1/en
Priority to US15/111,127 priority patent/US10538074B2/en
Priority to US15/111,604 priority patent/US11273594B2/en
Priority to PCT/US2014/053405 priority patent/WO2015108573A1/en
Priority to DE112014006199.9T priority patent/DE112014006199T5/en
Priority to GB1611668.3A priority patent/GB2538412B/en
Priority to PCT/US2014/055788 priority patent/WO2015108574A1/en
Priority to JP2017508048A priority patent/JP6383488B2/en
Priority to CN201810310579.XA priority patent/CN108437470B/en
Priority to JP2016547022A priority patent/JP6298169B2/en
Priority to US15/111,731 priority patent/US10452038B2/en
Priority to CN201480073349.6A priority patent/CN105939836B/en
Priority to EP14790013.8A priority patent/EP3094473B1/en
Priority to PCT/EP2014/070968 priority patent/WO2015106844A1/en
Priority to TW104101338A priority patent/TWI609792B/en
Priority to TW104101340A priority patent/TWI609793B/en
Priority to TW104101339A priority patent/TWI627054B/en
Priority to TW104101341A priority patent/TWI555630B/en
Publication of WO2015106816A1 publication Critical patent/WO2015106816A1/en
Priority to US15/789,830 priority patent/US10730237B2/en
Priority to JP2018027725A priority patent/JP6591584B2/en
Priority to RU2018110566A priority patent/RU2693131C2/en
Priority to JP2018089183A priority patent/JP6580749B2/en
Priority to JP2018121493A priority patent/JP2018161897A/en
Priority to US16/052,313 priority patent/US10518476B2/en
Priority to US16/164,142 priority patent/US10317882B2/en
Priority to US16/253,007 priority patent/US11673314B2/en
Priority to US16/442,363 priority patent/US11679560B2/en
Priority to US16/568,137 priority patent/US11203155B2/en
Priority to US16/844,411 priority patent/US11110652B2/en
Priority to US16/870,132 priority patent/US11059231B2/en
Priority to US17/105,378 priority patent/US11618217B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/02Moulding by agglomerating
    • B29C67/04Sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • G01J5/485Temperature profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0074Radiation pyrometry, e.g. infrared or optical thermometry having separate detection of emissivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Coating Apparatus (AREA)

Abstract

According to one aspect there is provided apparatus for generating a three- dimensional object. The apparatus comprises a first agent distributor to selectively deliver a coalescing agent onto portions of a layer of build material, a second agent distributor to selectively deliver a coalescence modifier agent onto portions of a layer of build material, and a controller to control the agent distributors to selectively deliver each of the agents onto a layer of build material in respective patterns derived from data representing a slice of a three-dimensional object to be generated, so that when energy is applied to the layer the build material coalesces and solidifies to form a slice of the three-dimensional object in accordance the patterns.

Description

GENERATING A THREE-DIMENSIONAL OBJECT
BACKGROUND
[0001 ] Additive manufacturing systems that generate three-dimensional objects on a layer-by-layer basis have been proposed as a potentially convenient way to produce three-dimensional objects in small quantities.
[0002] The quality of objects produced by such systems may vary widely depending on the type of additive manufacturing technology used. Generally, low quality and low strength objects may be producible using lower cost systems, whereas high quality and high-strength objects may be producible using higher cost systems.
BRIEF DESCRIPTION
[0003] Examples will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
[0004] Figure 1 is an illustration of an object model having defined object properties according to one example;
[0005] Figures 2a-2g show a series of cross-sections of a layer or layers of build material according to one example;
[0006] Figure 3 is a flow diagram outlining a method of generating a three- dimensional object according to one example;
[0007] Figure 4 is a simplified isometric illustration of an additive manufacturing system according to one example;
[0008] Figure 5 is a flow diagram outlining a method of operating an additive manufacturing system according to one example; [0009] Figures 6a-6b show a series of simplified isometric views of configurations of portions of an additive manufacturing system according to various examples.
DETAILED DESCRIPTION
[00010] Additive manufacturing techniques may generate a three-dimensional object through the solidification of a build material. The build material can be powder-based and the properties of generated objects are dependent on the type of build material and the type of solidification mechanism used.
[0001 1 ] Additive manufacturing systems may generate objects based on structural design data. This may involve a designer generating a three- dimensional model of an object to be generated, for example using a computer aided design (CAD) application. The model may define the solid portions of the object. To generate a three-dimensional object from the model using an additive manufacturing system the model data can be processed to generate slices of parallel planes of the model. Each slice may define a portion of a respective layer of build material that is to be solidified by the additive manufacturing system. The number of slices generated from a three- dimensional model is related to the thickness of each layer that the additive manufacturing system is able to generate or process. Additive manufacturing systems that generate thinner layers of build material may be able to generate objects of a higher resolution than systems that generate thicker layers of build material. The time taken to generate a three-dimensional object may be highly dependent on the number of layers.
[00012] Variations in some object properties, such as object rigidity, for example, may be obtainable through careful design of the model of the three- dimensional object to be generated. For example, the inclusion of specific design features, such as structural ribs, into an object model may enable the rigidity of an object, or a portion of an object, to be increased compared to an object, or portion of an object, without such a feature. [00013] However, many object properties may depend on the nature of the build materials used and the processes by which build material is solidified to form a desired three-dimensional object. Such properties may include, for example, surface roughness, accuracy, and strength.
[00014] The systems described herein, as will become apparent from the description that follows, may allow three-dimensional objects to be created that may have controllably variable, or different, object properties within a single generated object. This may allow an object to have, for example, one or more variable properties, that may include: variable accuracy properties; variable surface roughness properties; and variable strength or other mechanical or physical properties. For example, a created object may comprise one portion that has a first level of surface roughness, and a second portion that has a second level of surface roughness.
[00015] It should be noted, however, that the systems described herein are not limited to generating three-dimensional objects having variable object properties, but also allow three-dimensional objects to be generated that have substantially uniform or homogenous object properties.
VARIABLE OBJECT PROPERTIES
[00016] Objects having variable object properties may be generated using both data defining a three-dimensional object to be generated and object property data defining one or more object properties. Object property data may, for example, define a portion of an object and a desired object property that the defined portion is to have once the object is generated. Object property data may be defined, for example, for the whole of an object to be generated, or for one or multiple portions of an object to be generated. The object property data may also be used to define multiple object properties for a portion or portions of an object.
[00017] In one example object property data may be defined within an object model 100, as illustrated in Figure 1 . As shown in Figure 1 an object 100 to be generated is illustrated. The object 100 has a first portion 102 that is defined to have first object properties, and has a second portion 104 that is defined to have second object properties.
[00018] In other examples object property data may be defined globally for an object. For example, an object may be defined to have a predetermined surface roughness value. In one such example global object property data may be specified in object design data. In another example, global object property data may be specified by a user, for example through a user interface of an additive manufacturing system, through a software driver, from a memory storing default or predetermined object property data, or in any other suitable manner.
[00019] Although the description herein describes three main variable object properties, in other examples other suitable object properties may be defined. Other object properties may include, for example, object porosity properties, inter-layer strength properties, object elasticity properties, density, and the and the like, and may depend on the type of build material or agents used to generate an object.
PROCESS OVERVIEW
[00020] A process of generating a tangible three-dimensional object according to an example will now be described with reference to Figures 2a-2g and 3. Figures 2a-2g show a series of cross-sections of a layer or layers of build material according to one example. Figure 3 is a flow diagram outlining a method of generating a three-dimensional object according to one example.
[00021 ] In the method of Figure 3, at 302 a first layer 202a of build material may be provided, as shown in Figure 2a. The first layer of build material is provided on a suitable support member (not shown). In one example the thickness of the layer of build material provided is in the range of about 90 to 1 10 microns, although in other examples thinner or thicker layers of build material may be provided. Using thinner layers may enable higher resolution objects to be generated but may increase the time taken to generate an object.
[00022] In the method of Figure 3, at 304, a coalescing agent 204 and a coalescence modifier agent 206 are selectively delivered to one or more portions of the surface of the layer 202a of build material. The selective delivery of the agents 204 and 206 is performed in accordance with data derived from a model of a three-dimensional object to be created.
[00023] By selective delivery is meant that both coalescing agent and coalescence modifier agent may be delivered to selected portions of the surface layer of the build material in respective independent patterns. The patterns are defined by data derived from a model of a three-dimensional object to be created. In some examples, coalescing agent 204 may be selectively delivered to a portion of build material according to a first pattern, and coalescence modifier agent 206 may be selectively delivered to a portion of build material according to a second pattern. In one example the patterns define a bitmap.
[00024] The object properties of any portion of an object may be controllably variable depending on the patterns in which coalescing agent and coalescence modifier agent are delivered to build material.
[00025] In one example the coalescing agent 204 and coalescence modifier agent 206 are fluids that may be delivered using any appropriate fluid delivery mechanism, as will be described in greater detail below. In one example the agents are delivered in droplet form. It should be noted, however, that Figures 2a to 2g show the delivery of the agents in schematic form.
[00026] Figure 2b shows that the agents 204 and 206 delivered to the surface of the build material penetrate into the layer 202a of build material. The degree to which the agents penetrate may differ between the two different agents, or may be substantially the same. The degree of penetration may depend, for example, on the quantity of agent delivered, on the nature of the build material, on the nature of the agent, etc. In the examples shown in Figures 2a-2g the agent is shown to penetrate substantially completely into the layer 202a of build material, although it will be appreciated that this is purely for the purposes of illustration and is in no way limiting. In other examples, one or both of the agents may penetrate less than 100% into the layer 202a. In some examples, one or both of the agents may penetrate completely into the layer 202a of build material. In some examples one or both of the agents may penetrate completely into the layer 202a of build material and may further penetrate into an underlying layer of build material.
[00027] Once coalescing agent and coalescence modifier agent have been delivered in the method of Figure 3, at 306, a predetermined level of energy is temporarily applied to the layer 202a of build material. In one example the energy applied is infra-red or near infra-red energy, although in other examples other types of energy may be applied, such as microwave energy, ultra-violet (UV) light, halogen light, ultra-sonic energy or the like. The length of time the energy is applied for, or energy exposure time, may be dependent, for example, on one or more of: characteristics of the energy source; characteristics of the build material; characteristics of the coalescing agent; and characteristics of the coalescence modifier agent. The type of energy source used may depend on one or more of: characteristics of the build material; characteristics of the coalescing agent; and characteristics of the coalescence modifier agent. In one example the system 400 is configured to apply energy for predetermined length of time.
[00028] The temporary application of energy may cause portions of the build material on which coalescing agent has been delivered or has penetrated to heat up above the melting point of the build material and to coalesce. Upon cooling, the portions which have coalesced become solid and form part of the three-dimensional object being generated. One such portion is shown as portion 208a in Figure 2c.
[00029] Energy absorbed by build material on which coalescing agent has been delivered or has penetrated may also propagate into surrounding build material and may be sufficient to cause surrounding build material to heat up. This may cause, for example, heating of build material beyond its melting point, or may cause, for example, heating of build material below its melting point but to a temperature suitable to cause softening and bonding of build material. This may result in the subsequent solidification of portions of the build material that were not intended to be solidified and this effect is referred to herein as coalescence bleed. Coalescence bleed may result, for example, in a reduction in the overall accuracy of generated three-dimensional objects.
[00030] The effects of coalescence bleed may be managed by delivering coalescence modifier agent on appropriate portions of build material. In the present example the coalescence modifier agent serves to reduce the degree of coalescence of a portion of build material on which the coalescence modifier agent has been delivered or has penetrated.
[00031 ] The quality of generated three-dimensional objects may depend on environmental conditions that exist whilst an object is being generated. For example, the temperature of build material may, in some situations, be carefully controlled or managed. Similarly, other environmental conditions such as ambient temperature, humidity, and the like may also be carefully controller or managed in some situations.
[00032] The coalescence modifier agent may be used for a variety of purposes. In one example, as shown in Figure 2, coalescence modifier agent 206 may be delivered adjacent to where coalescing agent 204 is delivered, as shown in Figure 2a, to help reduce the effects of lateral coalescence bleed. This may be used, for example, to improve the definition or accuracy of object edges or surfaces, and/or to reduce surface roughness. In another example, coalescence modifier agent may be delivered interspersed with coalescing agent (as will be described further below) which may be used to enable object properties to be modified, as mentioned previously.
[00033] The combination of the energy supplied, the build material, and the coalescing and coalescence modifier agent may be selected such that, excluding the effects of any coalescence bleed: i) portions of the build material on which no coalescing agent have been delivered do not coalesce when energy is temporarily applied thereto; ii) portions of the build material on which only coalescing agent has been delivered or has penetrated coalesce when energy is temporarily applied thereto do coalesce; and iii) portions of the build material on which only coalescence modifier agent has been delivered or has penetrated do not coalesce when energy is temporarily applied thereto.
[00034] Portions of the build material on which both coalescing agent and coalescence modifier agent have been delivered or have penetrated may undergo a modified degree of coalescence. The degree of modification may depend, for example, on any one or more of:
the proportions of the coalescing agent and the coalescence modifier agent at any portion of build material;
the pattern in which coalescing agent is delivered to build material;
the pattern in which coalescence modifier agent is delivered to build material;
the chemical properties of the coalescing agent;
the chemical properties of the coalescence modifier agent;
the chemical properties of the build material;
the chemical interaction between the build material and the agents; and the interactions between the build material and agents whilst energy is applied.
[00035] In some examples the degree of modification may be dependent on the order in which coalescing agent and coalescence modifier agent are delivered to the build material. In some examples the degree of modification may be dependent on the timing at which coalescing agent and coalescing modifier agent are delivered to build material.
[00036] After one layer of build material has been processed as described above, a new layer of build material 202b is provided on top of the previously processed layer of build material 202a, as shown in Figure 2d. This is illustrated in block 302 of Figure 3. In this way, the previously processed layer of build material acts as a support for a subsequent layer of build material.
[00037] The process of blocks 304 and 306 of Figure 3 may then be repeated to generate a three-dimensional object layer by layer. For example, Figure 2e illustrates additional coalescing agent and coalescence modifier agent being selectively delivered to the newly provided layer of build material, in accordance with block 304 of Figure 3. For example, Figure 2f illustrates penetration of the agents into the build material 202b. For example, Figure 2g illustrates coalescence and solidification of portions of build material 202b, and build material surrounding build material, where coalescing agent has been delivered or has penetrated, upon the application of energy in accordance with block 306 of Figure 3.
[00038] Heat absorbed during the application of energy from a portion of build material on which coalescing agent has been delivered or has penetrated may propagate to a previously solidified portion, such as portion 208a, causing a portion of that portion to heat up above its melting point. This effect helps creates a portion 210 that has strong interlayer bonding between adjacent layers of solidified build material, as shown in Figure 2g.
[00039] The generation of a three-dimensional object with controllably variable properties, as described above, is possible by modulating the manner in which coalescing agent and coalescence modifier agent are delivered to the layers of build material that are used to generate the object.
[00040] The particular manner in which coalescing agent and coalescence modifier agent are delivered to the layers of build material that are used to generate an object may enable the object to have different object properties.
SYSTEM OVERVIEW
[00041 ] Referring now to Figure 4 there is shown a simplified isometric illustration of an additive manufacturing system 400 according to an example of the present invention. [00042] The system 400 may be operated, as described further below with reference to the flow diagram of Figure 5, to generate a tangible three- dimensional object by causing the selective solidification of portions of successive layers of a build material.
[00043] In one example the build material is a powder-based build material. As used herein the term powder-based materials is intended to encompass both dry and wet powder-based materials, particulate materials, and granular materials.
[00044] It should be understood, however, that the examples described herein are not limited to powder-based materials, and may be used, with suitable modification if appropriate, with other suitable build materials. In other examples the build material may be a paste or a gel, or any other suitable form of build material, for instance.
EXAMPLE SYSTEM CONFIGURATION
[00045] The system 400 comprises a system controller 402 that controls the general operation of the additive manufacturing system 400. In the example shown in Figure 4 the controller 402 is a microprocessor-based controller that is coupled to a memory 404, for example via a communications bus (not shown). The memory stores processor executable instructions 406. The controller 402 may execute the instructions 406 and hence control operation of the system 400 in accordance with those instructions.
[00046] The system 400 further comprises a coalescing agent distributor 408 to selectively deliver coalescing agent to a layer of build material provided on a support member 414. In one example the support member has dimensions in the range of from about 10 cm by 10 cm up to 100 cm by 100 cm. In other examples the support member may have larger or smaller dimensions. [00047] The system 400 also comprises a coalescence modifier agent distributor 410 to selectively deliver coalescence modifier agent to a layer of build material provided on a support member 414.
[00048] The controller 402 controls the selective delivery of coalescing agent and coalescence modifier agent to a layer of provided build material in accordance with agent delivery control data 416.
[00049] In the example shown in Figure 4 the agent distributors 408 and 410 are printheads, such as thermal printheads or piezo inkjet printheads. In one example printheads such as suitable printheads commonly used in commercially available inkjet printers may be used.
[00050] The printheads 408 and 410 may be used to selectively deliver coalescing agent and coalescence modifier agent when in the form of suitable fluids. In one example the printheads may be selected to deliver drops of agent at a resolution of between 300 to 1200 dots per inch (DPI). In other examples the printheads may be selected to be able to deliver drops of agent at a higher or lower resolution. In one example the printheads may have an array of nozzles through which the printhead is able to selectively eject drops of fluid. In one example, each drop may be in the order of about 10 pico liters (pi) per drop, although in other examples printheads that are able to deliver a higher or lower drop size may be used. In some examples printheads that are able to deliver variable size drops may be used.
[00051 ] In some examples the agent distributor 408 may be configured to deliver drops of coalescing agent that are larger than drops of coalescence modifier agent delivered from the agent distributor 410.
[00052] In other examples the agent distributor 408 may be configured to deliver drops of coalescing agent that are the same size as drops of coalescence modifier agent delivered from the agent distributor 410. [00053] In other examples the agent distributor 408 may be configured to deliver drops of coalescing agent that are smaller than drops of coalescence modifier agent delivered from the agent distributor 410.
[00054] In some examples the first and second agents may comprise a liquid carrier, such as water or any other suitable solvent or dispersant, to enable them to be delivered via a printhead.
[00055] In some examples the printheads may be drop-on-demand printheads. In other examples the printheads may becontinuous drop printheads.
[00056] In some examples, the agent distributors 408 and 410 may be an integral part of the system 400. In some examples, the agent distributors 408 and 410 may be user replaceable, in which case they may be removably insertable into a suitable agent distributor receiver or interface module (not shown).
[00057] In some examples a single inkjet printhead may be used to selectively deliver both coalescing agent and coalescence modifier agent. For example, a first set of printhead nozzles of the printhead may be configured to deliver coalescing agent, and a second set of printhead nozzles of the printhead may be configured to deliver coalescence modifier agent.
[00058] In the example illustrated in Figure 4, the agent distributors 408 and 410 have a length that enables them to span the whole width of the support member 414 in a so-called page-wide array configuration. In one example this may be achieved through a suitable arrangement of multiple printheads. In other examples a single printhead having an array of nozzles having a length to enable them to span the width of the support member 414 may be used. In other examples, the agent distributors 408 and 410 may have a shorter length that does not enable them to span the whole width of the support member 414. [00059] The agent distributors 408 and 410 are mounted on a moveable carriage (not shown) to enable them to move bi-directionally across the length of the support 414 along the illustrated y-axis. This enables selective delivery of coalescing agent and coalescence modifier agent across the whole width and length of the support 414 in a single pass. In other examples the agent distributors 408 and 410 may be fixed, and the support member 414 may move relative to the agent distributors 408 and 410.
[00060] It should be noted that the term 'width' used herein is used to generally denote the shortest dimension in the plane parallel to the x and y axes illustrated in Figure 4, whilst the term 'length' used herein is used to generally denote the longest dimension in this plane. However, it will be understood that in other examples the term 'width' may be interchangeable with the term 'length'. For example, in other examples the agent distributors may have a length that enables them to span the whole length of the support member 414 whilst the moveable carriage may move bi-directionally across the width of the support 414.
[00061 ] In another example the agent distributors 408 and 410 do not have a length that enables them to span the whole width of the support member but are additionally movable bi-directionally across the width of the support 414 in the illustrated x-axis. This configuration enables selective delivery of coalescing agent and coalescence modifier agent across the whole width and length of the support 414 using multiple passes. Other configurations, however, such as a page-wide array configuration, may enable three- dimensional objects to be created faster.
[00062] The coalescing agent distributor 408 may include a supply of coalescing agent or may be connectable to a separate supply of coalescing agent. The coalescence modifier agent distributor 410 may include a supply of coalescence modifier agent or may be connectable to a separate supply of coalescing agent. [00063] The system 400 further comprises a build material distributor 418 to provide the layer of build material 202 on the support 414. Suitable build material distributors may include, for example, a wiper blade and a roller. Build material may be supplied to the build material distributor 418 from a hopper or build material store (not shown). In the example shown the build material distributor 418 moves across the length (y-axis) of the support 414 to deposit a layer of build material. As previously described, a first layer of build material will be deposited on the support 414, whereas subsequent layers of build material will be deposited on a previously deposited layer of build material.
[00064] In the example shown the support 414 is moveable in the z-axis such that as new layers of build material are deposited a predetermined gap is maintained between the surface of the most recently deposited layer of build material and lower surface of the agent distributors 408 and 410. In other examples, however, the support 414 may not be movable in the z-axis and the agent distributors 408 and 410 may be movable in the z-axis.
[00065] The system 400 additionally comprises an energy source 420 to apply energy to build material to cause the solidification of portions of the build material according to where coalescing agent has been delivered or has penetrated. In one example the energy source 420 is an infra-red (IR) or near infra-red light source. In one example the energy source 420 may be a single energy source that is able to uniformly apply energy to build material deposited on the support 414. In some examples the energy source 420 may comprise an array of energy sources.
[00066] In some examples the energy source 420 is configured to apply energy in a substantially uniform manner to the whole surface of a layer of build material. In these examples the energy source 420 may be said to be an unfocused energy source. In these examples a whole layer may have energy applied thereto simultaneously, which may help increase the speed at which a three-dimensional object may be generated. [00067] In other examples, the energy source 420 is configured to apply energy in a substantially uniform manner to a portion of the whole surface of a layer of build material. For example, the energy source 420 may be configured to apply energy to a strip of the whole surface of a layer of build material. In these examples the energy source may be moved or scanned across the layer of build material such that a substantially equal amount of energy is ultimately applied across the whole surface of a layer of build material.
[00068] In one example the energy source 420 may be mounted on the moveable carriage.
[00069] In other examples the energy source may apply a variable amount of energy as it is moved across the layer of build material, for example in accordance with agent delivery control data. For example, the controller 402 may control the energy source only to apply energy to portions of build material on which coalescing agent has been applied.
[00070] In further examples, the energy source 420 may be a focused energy source, such as a laser beam. In this example the laser beam may be controlled to scan across the whole or a portion of a layer of build material. In these examples the laser beam may be controlled to scan across a layer of build material in accordance with agent delivery control data. For example, the laser beam may be controlled to apply energy to those portions of a layer of on which coalescing agent is delivered.
[00071 ] Although not shown in Figure 4, in some examples the system 400 may additionally comprise a pre-heater to maintain build material deposited on the support 414 within a predetermined temperature range. Use of a pre- heater may help reduce the amount of energy that has to be applied by the energy source 420 to cause coalescence and subsequent solidification of build material on which coalescing agent has been delivered or has penetrated. [00072] In some examples the support 414 may not be a fixed part of the system 400, but may, for example, be part of a removable module. In some examples both the support 414 and the build material distributor may not be a fixed part of the system 400, but may, for example, be part of a removable module. In other examples other elements of the system 400 may be part of a removable module.
SYSTEM OPERATION
[00073] To generate a three-dimensional object the controller 402 obtains agent delivery control data 416. This is illustrated in block 502 of Figure 5. The agent delivery control data 416 defines for each slice of the three-dimensional object to be generated the portions or the locations on the build material, if any, at which at least one of coalescing agent and coalescence modifier agent is to be delivered.
[00074] The agent delivery control data may be derived, for example, by a suitable three-dimensional object processing system (not shown). In some examples the three-dimensional object processing system may be comprised within the additive manufacturing system 400. For example, the memory 404 may additionally include instructions 406 that, when executed by the controller 402, cause the controller 402 to operate as a three-dimensional object processing system as described herein.
[00075] In other examples the three-dimensional object processing system may be external to the additive manufacturing system 400. For example, the three-dimensional object processing system may be a software application, or part of a software application, executable on a computing device separate from the system 400.
[00076] For example, such an object processing system may obtain object design data representing a three-dimensional model to be generated. The object processing system may additionally obtain object property data. [00077] As previously described, object property data may be obtained from the object design data, or may be obtained, for example, from a user via a user interface, from a software driver, from a software application, or may be obtained from a memory storing default or user-defined global object property data.
[00078] In some examples the object processing system may obtain data relating to characteristics of the additive manufacturing system 400. Such characteristics may include, for example, build material layer thickness, properties of the coalescing agent, properties of the coalescence modifier agent, properties of the build material, and properties of the energy source.
[00079] Using such characteristics, object design data, and object property data, the object processing system may generate agent delivery control data 416 that describes, for each layer of build material to be processed, locations or portions on the build material at which at least one of coalescing agent and coalescence modifier agent are to be delivered. In one example the locations or portions of the build material at which coalescing agent and coalescence modifier agent are to be delivered are defined by way of respective patterns.
[00080] In some examples the object processing system may determine an order in which coalescing agent and coalescence modifier agent are to be delivered to build material.
[00081 ] In some examples the object processing system may determine an order in which coalescing agent and coalescence modifier agent are to be delivered to build material and corresponding timing data. In some examples, the timing data may define a time delay to respect between delivery coalescing agent and coalescence modifier agent.
[00082] In some examples the object processing system may additionally generate volume data indicating a volume of coalescing agent and a volume of coalescence modifier agent to be delivered at each location or portion of the build material. [00083] Depending on the characteristics described above, the density at which coalescing agent and coalescence modifier agent are to be delivered may be varied. For example, when a portion of build material on which coalescing agent has been delivered or has penetrated receives applied energy, the energy absorbed by those portions propagates to other surrounding areas. In one example, the properties of the coalescing agent and the amount of coalescing agent delivered may be chosen such that energy radiates in a sphere in the range of about 1 .5 times the layer thickness. This may help ensure not only sufficient inter-layer bonding, but also sufficient bonding between laterally adjacent portions of build material.
[00084] In this way, the object processing system may, for example, determine that the lateral spacing between adjacent drops of coalescing agent may be increased whilst still ensuring sufficient object strength. Doing so reduces the average density at which coalescing agent may be delivered to a layer of build material, and hence reduces consumption of coalescing agent, but without affecting the object strength.
[00085] In some examples the agent delivery control data may define, for any portion of build material, that coalescing agent is to be delivered before coalescence modifier agent. In other examples the agent delivery control data may define, for any portion of build material, that coalescing agent is to be delivered after coalescence modifier agent.
[00086] Controlling the operation of the system 400 in accordance with the agent delivery control data 416 enables three-dimensional objects to be generated that may have controllably variable object properties, as described above.
[00087] At block 504, the controller 402 controls the build distributor 418 to provide a first layer of build material on the support 414. In some examples the thickness of the layer of build material provided by the build distributor 418 may be fixed. In other examples the thickness of the layer of build material provided by the build distributor 418 may be modifiable, for example under control of the controller 402. To control the delivery of build material the controller 402 may cause the carriage on which the build distributor 418 is mounted to move across the length of the support 414 in the y-axis, for example in a right to left direction as shown in Figure 4.
[00088] In some examples the controller 402 controls the build material distributor 418 to provide a complete layer of build material before controlling the coalescing agent and coalescence modifier agent distributors 408 and 410 to selectively deliver coalescing agent and coalescence modifier agent to the provided layer of build material. In these examples, delivery of coalescing agent and coalescence modifier agent would take place whilst the coalescing agent and coalescence modifier agent distributors are moving left to right along the y-axis as shown in Figure 4.
[00089] In other examples the controller 402 controls the coalescing agent and coalescence modifier agent distributors 408 and 410 to selectively deliver coalescing agent and coalescence modifier agent to build material whilst the build material distributor 418 is providing the layer of build material. In other words, as the build material distributor 418 is providing build material to form a new layer of build material, the coalescing agent and coalescence modifier agent distributors 408 and 410 may deliver coalescing agent and coalescence modifier agent to build material of that layer that has just been provided by the build material distributor 418. In the configuration shown, the coalescing agent and coalescence modifier agent distributors and the build material distributor 418 returns to the right-hand side of the support 414 to distribute a new layer of build material whilst delivering coalescing agent and coalescence modifier agent.
[00090] Increased speed and efficiency may be achievable, for example, by adding additional agent distributors to the carriage, as shown in Figure 6a. In Figure 6a a configuration is shown having a pair of coalescing agent distributors 408a and 408b arranged on either side of a build material distributor 418 and a pair of coalescence modifier agent distributors 410a and 410b arranged on either side of a build material distributor 418. This configuration allows a layer of build material to be deposited and coalescing agent and coalescence modifier agent to be delivered to the deposited layer whilst the carriage is moving in either direction along the y-axis, thereby enabling bi-directional operation.
[00091 ] Figure 6b illustrates another configuration according to a further example. In Figure 6b a configuration is shown having a pair of build material distributors 418a and 418b arranged on either side of coalescing agent distributor 408 and coalescence modifier agent distributor 410. Again, this configuration allows a layer of build material to be deposited and coalescing agent and coalescence modifier agent to be delivered to the deposited layer whilst the carriage is moving in either direction along the y-axis, enabling bidirectional operation.
[00092] Such configurations may enable speed improvements compared to the configuration shown in Figure 4, at the expense of duplication of either a build material distributor or of agent distributors.
[00093] In a further example, the build material distributor 418 may be decoupled from the agent distributors 408 and 410. For example, the build material distributor 418 may be located on a separate carriage from those on which the agent distributors 408 and 410 are located. In another example the build material distributor 418 may be located on the same carriage as the agent distributors 408 and 410 but separated by a short distance.
ALTERNATIVE CONFIGURATIONS
[00094] Although the examples described herein refer to use of a single coalescing agent and a single coalescence modifier agent, in other examples multiple coalescing agents may be used. In other examples multiple coalescence modifier agents may be used.
[00095] For example, in some examples a first coalescing agent may be selectively deliverable from a first coalescing agent distributor and a second coalescing agent may be selectively deliverable from a second coalescing agent distributor. The first coalescing agent may have different chemical properties and/or have a different concentration from the second coalescing agent.
[00096] For example, in some examples a first coalescence modifier agent may be selectively deliverable from a first coalescence modifier agent distributor and a second coalescence modifier agent may be selectively deliverable from a second coalescing agent distributor.
[00097] In some examples, the first coalescence modifier agent may have different chemical properties from the second coalescence modifier agent. In some examples the first coalescence modifier agent may have a different concentration than the second coalescence modifier agent. In some examples the first coalescence modifier agent may have both different chemical properties and a different concentration than the second coalescence modifier agent.
[00098] For example, a first coalescence modifier agent may modify coalescence by a first factor, whereas a second coalescence modifier agent may modify coalescence by a second factor. In some examples both coalescence modifier agents may reduce the degree of coalescence by different amounts. In one example one coalescence modifier agent may reduce the degree of coalescence, and one coalescence modifier agent may increase the degree of coalescence. In one example both coalescence modifier agents may increase the degree of coalescence.
[00099] In further examples further agents may be used in addition to a coalescing agent and a coalescence modifier agent.
[000100] For example, in some examples a further agent distributor may be provided to selectively deliver an agent comprising colorant, such as colored pigment or dye to a layer of build material. [000101 ] In further examples a further agent distributor may be provided to selectively deliver an agent comprising a functional agent to add a predetermined functionality to a generated three-dimensional object. For example, such an agent may comprise electrically conductive elements that enable a portion of a generated three-dimensional object to exhibit electrical conductivity.
[000102] In other examples a coalescing agent may include a suitable colorant to enable portions of a three-dimensional object to have a predetermined color.
[000103] As previously mentioned, the speed at which each layer of build material can be processed has an effect on the speed at which a three- dimensional object can be generated. Use of printheads, for example, enables small droplets of coalescing agent and coalescence modifier agent to be delivered with high accuracy to a layer of build material and at high speed.
[000104] In other examples coalescing agent and coalescing modifier agent may be delivered through spray nozzles rather than through printheads. This may enable, for example, large objects to be generated with a lower accuracy than may be achieved when using inkjet printheads, but in a shorter time. This may be particularly expedient, for example, when processing large layers of build material, for example layers of build material greater than about 200 cm by 100 cm.
DESCRIPTION OF MATERIALS
[000105] To enable the methods and systems to manufacture a three- dimension object as described herein to function as described the properties of the build material, coalescing agent, and coalesce modifier agent need to be carefully chosen.
[000106] Examples of suitable materials are given below.
BUILD MATERIAL [000107] According to one example a suitable build material may be a powdered semi-crystalline thermoplastic material. One suitable material may be Nylon 12, which is available, for example, from Sigma-Aldrich Co. LLC. Another suitable material may be PA 2200 which is available from Electro Optical Systems EOS GmbH.
[000108] In other examples any other suitable build material may be used. Such materials may include, for example, powdered metal materials, powdered composited materials, powder ceramic materials, powdered glass materials, powdered resin material, powdered polymer materials, and the like.
COALESCING AGENT
[000109] According to one non-limiting example, a suitable coalescing agent may be an ink-type formulation comprising carbon black, such as, for example, the ink formulation commercially known as CM997A available from Hewlett-Packard Company. In one example such an ink may additionally comprise an infra-red light absorber. In one example such an ink may additionally comprise a near infra-red light absorber. In one example such an ink may additionally comprise a visible light absorber. Examples of inks comprising visible light enhancers are dye based colored ink and pigment based colored ink, such as inks commercially known as CE039A and CE042A available from Hewlett-Packard Company.
COALESCENCE MODIFIER AGENT
[0001 10] As described above, a coalescence modifier agent acts to modify the effects of a coalescing agent. It has been demonstrated that different physical and/or chemical effects may be used to modify the effects of a coalescing agent.
[0001 1 1 ] For example, and without being bound by any theory, in one example a coalescence modifier agent may act to produce a mechanical separation between individual particles of a build material, for example to prevent such particles from joining together and hence preventing them from solidifying to form a portion of a generated three-dimensional object. An example coalescence modifier agent may comprise a liquid that comprises solids. Such an agent may be, for example, a colloidal ink, a dye-based ink, or a polymer-based ink.
[0001 12] Such an agent may, after being delivered to a layer of build material, cause a thin layer of solids to cover or partially cover a portion of build material, for example after evaporation of any carrier liquid, and hence may act as a coalescence modifier agent as described herein.
[0001 13] In one example such a coalescence modifier agent may comprise solid particles that have an average size less than the average size of particles of the build material on which it is to be delivered. Furthermore, the molecular mass of the coalescence modifier agent and its surface tension should be such that it enables the coalescence modifier agent it to penetrate sufficiently into the build material. In one example such an agent should also have a high solubility such that each drop of agent comprises a high percentage of solids.
[0001 14] In one example a salt solution may be used as a coalescence modifier agent.
[0001 15] In another example an ink commercially known as CM996A ink and available from Hewlett-Packard Company may be used as a coalescence modifier agent. In another example an ink commercially known as CN673A ink and available from Hewlett-Packard Company has also been demonstrated to work as a coalescence modifier agent.
[0001 16] In another example, and without being bound by any theory, a coalescence modifier agent may act to modify the effects of a coalescing agent by preventing build material from reaching temperatures above its melting point. For example, it has been demonstrated that a fluid that exhibits a suitable cooling effect may be used as a coalescence modifier agent. For example, when such an agent is delivered to build material the energy applied to the build material may be absorbed by the coalescence modifier agent causing the evaporation thereof, which may help prevent build material on which the coalescence modifier agent has been delivered or has penetrated from reaching the melting point of the build material.
[0001 17] In one example an agent comprising a high percentage of water has been demonstrated as a suitable coalescence modifier agent.
[0001 18] In other examples other types of coalescence modifier agent may be used.
[0001 19] An example of a coalescence modifier agent that may increase the degree of coalescence may include, for example a suitable plasticizer. Another example of a coalescence modifier agent that may increase the degree of coalescence may include, for example, a surface tension modifier to increase the wettability of particles of build material.
[000120] It will be appreciated that examples described herein can be realized in the form of hardware, or a combination of hardware and software. Any such software may be stored in the form of volatile or non-volatile storage such as, for example, a storage device like a ROM, whether erasable or rewritable or not, or in the form of memory such as, for example, RAM, memory chips, device or integrated circuits or on an optically or magnetically readable medium such as, for example, a CD, DVD, magnetic disk or magnetic tape. It will be appreciated that the storage devices and storage media are example of machine-readable storage that are suitable for storing a program or programs that, when executed, implement examples described herein. Accordingly, examples provide a program comprising code for implementing a system or method as claimed in any preceding claim and a machine readable storage storing such a program.
[000121 ] All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive.
[000122] Each feature disclosed in this specification (including any accompanying claims, abstract and drawings), may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.

Claims

1 . Apparatus for generating a three-dimensional object, comprising:
a first agent distributor to selectively deliver a coalescing agent onto portions of a layer of build material;
a second agent distributor to selectively deliver a coalescence modifier agent onto portions of a layer of build material; and
a controller to control the agent distributors to selectively deliver each of the agents onto a layer of build material in respective patterns derived from data representing a slice of a three-dimensional object to be generated, so that when energy is applied to the layer the build material coalesces and solidifies to form a slice of the three-dimensional object in accordance with the patterns.
2. The apparatus of claim 1 , wherein the apparatus is to generate a three- dimensional object having object properties that are related to the patterns in which coalescing agent and coalescence modifier agent are delivered to build material.
3. The apparatus of claim 1 , further comprising a build material distributor to provide a first layer of build material on a build material support, and to provide subsequent layers of build material on a previously provided layer of build material.
4. The apparatus of claim 3, wherein the first and second agent distributors have a length to enable them to span the support and wherein at least one of the support and the distributors are moveable relative to the other to enable coalescing agent and coalescence modifier agent to be selectively deliverable to the surface of any portion of the layer of build material.
5. The apparatus of claim 1 , wherein the first agent distributor is a first printhead, and wherein the second agent distributor is a second, different, printhead.
6. The apparatus of claim 1 , wherein the first agent distributor comprises a first array of nozzles of a printhead, and wherein the second agent distributor comprises a second array of nozzles of the printhead.
7. The apparatus of claim 1 , wherein the controller is to control the agent distributors to selectively deliver the agents onto the surface of the layer of build material in accordance with control data derived from a combination of data representing a slice of a three-dimensional object to be generated and data representing at least one desired object property of at least one portion of the three-dimensional object to be generated.
8. The apparatus of claim 3, wherein the build material distributor is to provide a layer of build material having a layer thickness in the range of about 90 to 1 10 microns, and wherein the agent distributors are to provide drops of agent of about 10 Pico litres per drop.
9. The apparatus of claim 1 , further comprising a third agent distributor to selectively deliver a second coalescing agent onto a layer of build material and/or a fourth agent distributor to selectively deliver a second coalescence modifier agent onto a layer of build material.
10. The apparatus of claim 1 , wherein the controller is to generate control data from data representing a three-dimensional object and object property data.
1 1 . The apparatus of claim 3, further comprising a carriage movable bi- directionally across the support on which are mounted, or on which are mountable, a pair of first agent distributors to selectively deliver a coalescing agent, a pair of second agent distributors to selectively deliver a coalescence modifier agent, and a build material distributor, the agent distributors and the build material distributor being arranged to allow delivery of build material, coalescing agent, and coalescence modifier agent whilst the carriage is moving in either direction.
12. The apparatus of claim 3, further comprising a carriage movable bi- directionally across the support on which are mounted, or on which are mountable, the first agent distributor to selectively deliver coalescing agent, the second agent distributor to selectively deliver coalescence modifier agent, and a pair of build material distributors, the agent distributors and the build material distributor being arranged to allow delivery of build material, the coalescing agent, and the coalescence modifier agent whilst the carriage is moving in either direction.
13. The apparatus of claim 1 , further comprising an unfocused energy source to apply energy to build material to cause a portion of the build material to coalescence and to solidify to form a slice of the three-dimensional object in accordance with where coalescing agent and coalescence modifier agent was delivered.
14. A method of controlling a system to generate a three-dimensional object, comprising:
obtaining control data, the control data derived from data representing a portion of a three-dimensional object to be generated;
depositing a layer of build material;
selectively depositing on the layer of deposited build material, in accordance with the obtained control data, a coalescing agent and a coalescence modifier agent; and
applying energy to deposited build material to cause portions of the build material to coalesce and to solidify to form a portion of the three- dimensional object in accordance with where coalescing agent and coalescence modifier agent were deposited.
15. Apparatus for generating a three-dimensional object, comprising:
an interface to receive a first removably insertable agent distributor to selectively deliver a coalescing agent to a first set of selectable portions on a layer of build material; an interface to receive a second removably insertable agent distributor to selectively deliver a coalescence modifier agent to a second set of selectable portions on a layer of provided build material; and
a controller to:
control the agent distributors, when inserted in their respective interfaces, to selectively deliver the agents onto successive layers of build material at locations determined by control data derived from data representing a portion of a three-dimensional object to be generated; and
control an energy source to apply energy to build material to cause a portion of the build material to coalesce and to solidify to form a slice of the three-dimensional object according to the where coalescing agent and coalescence modifier agent are delivered.
PCT/EP2014/050841 2014-01-16 2014-01-16 Generating a three-dimensional object WO2015106816A1 (en)

Priority Applications (119)

Application Number Priority Date Filing Date Title
KR1020167018991A KR101872628B1 (en) 2014-01-16 2014-01-16 Generating a three-dimensional object
US15/112,132 US10625468B2 (en) 2014-01-16 2014-01-16 Generating a three-dimensional object
EP14702207.3A EP3094469B1 (en) 2014-01-16 2014-01-16 Generating a three-dimensional object
MX2016009139A MX2016009139A (en) 2014-01-16 2014-01-16 Generating a three-dimensional object.
HUE14702207A HUE046415T2 (en) 2014-01-16 2014-01-16 Generating a three-dimensional object
CN201480073354.7A CN105916663B (en) 2014-01-16 2014-01-16 Generate three dimensional object
KR1020187017547A KR101971413B1 (en) 2014-01-16 2014-01-16 Generating a three-dimensional object
RU2016133260A RU2650167C2 (en) 2014-01-16 2014-01-16 Formation of three-dimensional object
EP19200526.2A EP3626434A1 (en) 2014-01-16 2014-01-16 Generating a three dimensional object
DE112014006198.0T DE112014006198T5 (en) 2014-01-16 2014-01-16 Create a three-dimensional object
JP2016546466A JP6302077B2 (en) 2014-01-16 2014-01-16 3D object generation
DK14702207.3T DK3094469T3 (en) 2014-01-16 2014-01-16 GENERATION OF A THREE-DIMENSIONAL ITEM
ES14702207T ES2761249T3 (en) 2014-01-16 2014-01-16 Generation of a three-dimensional object
PCT/EP2014/050841 WO2015106816A1 (en) 2014-01-16 2014-01-16 Generating a three-dimensional object
BR112016016401-6A BR112016016401B1 (en) 2014-01-16 2014-01-16 apparatus and method of controlling a system for the generation of a three-dimensional object
PCT/US2014/013517 WO2015108544A1 (en) 2014-01-16 2014-01-29 Polymeric powder composition for three-dimensional (3d) printing
CN201480073352.8A CN105899346B (en) 2014-01-16 2014-01-29 Three-dimensional (3D) printing process
US15/100,584 US10583612B2 (en) 2014-01-16 2014-01-29 Three-dimensional (3D) printing method
US15/100,603 US10544311B2 (en) 2014-01-16 2014-01-29 Polymeric powder composition for three-dimensional (3D) printing
EP14878846.6A EP3094669B1 (en) 2014-01-16 2014-01-29 Polymeric powder composition for three-dimensional (3d) printing
EP14878848.2A EP3094475B1 (en) 2014-01-16 2014-01-29 Three-dimensional (3d) printing method and a three-dimensional printed object
PCT/US2014/013511 WO2015108543A1 (en) 2014-01-16 2014-01-29 Three-dimensional (3d) printing method
DE112014006185.9T DE112014006185B4 (en) 2014-01-16 2014-01-31 Device for creating three-dimensional objects
CN201910973580.5A CN110640948B (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
US15/110,947 US20160325496A1 (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
PL14878652T PL3094474T3 (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
RU2016133258A RU2650155C2 (en) 2014-01-16 2014-01-31 Formation of three-dimensional objects
PCT/US2014/014044 WO2015108546A2 (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
US14/787,692 US10647059B2 (en) 2014-01-16 2014-01-31 Generating a three-dimensional object
RU2018110358A RU2692342C2 (en) 2014-01-16 2014-01-31 Formation of three-dimensional objects
US15/111,605 US20160332375A1 (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
US15/110,754 US10220564B2 (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
CN201480073358.5A CN105916664B (en) 2014-01-16 2014-01-31 Generate three-dimension object
PCT/US2014/014076 WO2015108547A2 (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
KR1020187018006A KR101906127B1 (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
EP14702259.4A EP3094470B1 (en) 2014-01-16 2014-01-31 Apparatus for generating a three-dimensional object
PCT/US2014/014025 WO2015108545A1 (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
CN201480073492.5A CN105934332B (en) 2014-01-16 2014-01-31 Generate three-dimension object
PCT/EP2014/051938 WO2015106832A1 (en) 2014-01-16 2014-01-31 Generating a three-dimensional object
MX2016009288A MX2016009288A (en) 2014-01-16 2014-01-31 Generating three-dimensional objects.
GB1611664.2A GB2538408B (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
JP2016546827A JP6353547B2 (en) 2014-01-16 2014-01-31 3D object generation
EP19208530.6A EP3626435B1 (en) 2014-01-16 2014-01-31 Apparatus for generating a three-dimensional object
GB1611667.5A GB2538411B (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
ES18210300T ES2949385T3 (en) 2014-01-16 2014-01-31 Generation of three-dimensional objects
EP18210300.2A EP3488994B1 (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
BR112016016402-4A BR112016016402B1 (en) 2014-01-16 2014-01-31 apparatus and methods for generating three-dimensional objects
DE112014006189.1T DE112014006189T5 (en) 2014-01-16 2014-01-31 Create three-dimensional objects
CN201480073360.2A CN105916665B (en) 2014-01-16 2014-01-31 Generate three dimensional object
KR1020187027354A KR102123220B1 (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
EP14878652.8A EP3094474B1 (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
KR1020167018987A KR20160098429A (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
DE112014006196.4T DE112014006196T5 (en) 2014-01-16 2014-01-31 Create three-dimensional objects
DE112014006179.4T DE112014006179T5 (en) 2014-01-16 2014-03-31 Create three-dimensional objects
GB1611665.9A GB2538409B (en) 2014-01-16 2014-03-31 Generating three-dimensional objects
PCT/US2014/032341 WO2015108552A1 (en) 2014-01-16 2014-03-31 Generating three-dimensional objects
JP2016564941A JP6570542B2 (en) 2014-01-16 2014-03-31 3D object generation
CN201480073303.4A CN105916661B (en) 2014-01-16 2014-03-31 Generate three dimensional object
PCT/US2014/032333 WO2015108551A1 (en) 2014-01-16 2014-03-31 Generating three-dimensional objects
PCT/US2014/032328 WO2015108550A1 (en) 2014-01-16 2014-03-31 Generating three-dimensional objects
US15/111,949 US11167475B2 (en) 2014-01-16 2014-03-31 Generating three-dimensional objects
CN201480073345.8A CN105916662B (en) 2014-01-16 2014-03-31 Generate three-dimension object
US15/112,141 US10889059B2 (en) 2014-01-16 2014-03-31 Generating three-dimensional objects
US15/110,753 US10688772B2 (en) 2014-01-16 2014-03-31 Generating three-dimensional objects
EP14879087.6A EP3094476B1 (en) 2014-01-16 2014-03-31 Generating three-dimensional objects
GB1611666.7A GB2538410B (en) 2014-01-16 2014-03-31 Generating three-dimensional objects
GB1611663.4A GB2537545B (en) 2014-01-16 2014-04-16 Penetration barrier for additive manufacturing
PCT/US2014/034315 WO2015108554A1 (en) 2014-01-16 2014-04-16 Penetration barrier for additive manufacturing
US15/112,074 US10486373B2 (en) 2014-01-16 2014-04-16 Penetration barrier for additive manufacturing
DE112014006181.6T DE112014006181T5 (en) 2014-01-16 2014-04-16 Penetration barrier for additive manufacturing
US15/111,685 US10625469B2 (en) 2014-01-16 2014-04-29 Generating three-dimensional objects
CN201480075551.2A CN106061713B (en) 2014-01-16 2014-04-29 Generate three-dimension object
DE112014006177.8T DE112014006177B4 (en) 2014-01-16 2014-04-29 Creation of three-dimensional objects
GB1612083.4A GB2538419B (en) 2014-01-16 2014-04-29 Generating three-dimensional objects
PCT/US2014/035823 WO2015108555A1 (en) 2014-01-16 2014-04-29 Generating three-dimensional objects
US14/888,061 US10137644B2 (en) 2014-01-16 2014-04-30 Processing object data
PCT/EP2014/058822 WO2015106836A1 (en) 2014-01-16 2014-04-30 Processing three-dimensional object data of an object to be generated by an additive manufacturing process
CN201480073361.7A CN105916666B (en) 2014-01-16 2014-04-30 Processing will be by the three-dimension object data for the object that increasing material manufacturing method generates
EP14722158.4A EP3094471B1 (en) 2014-01-16 2014-04-30 Processing three-dimensional object data of an object to be generated by an additive manufacturing process
PCT/US2014/036001 WO2015108556A1 (en) 2014-01-16 2014-04-30 Generating three-dimensional objects
CN201480076295.9A CN106061714B (en) 2014-01-16 2014-05-30 It is determined based on the temperature of radiance
GB1612116.2A GB2538420B (en) 2014-01-16 2014-05-30 Temperature determination based on emissivity
PCT/US2014/040212 WO2015108560A1 (en) 2014-01-16 2014-05-30 Temperature determination based on emissivity
US15/111,752 US10252474B2 (en) 2014-01-16 2014-05-30 Temperature determination based on emissivity
PCT/EP2014/064870 WO2015106838A1 (en) 2014-01-16 2014-07-10 Generating a three-dimensional object
US15/324,944 US20170203513A1 (en) 2014-01-16 2014-07-10 Generating a three-dimensional object
CN201480073458.8A CN105939837B (en) 2014-01-16 2014-07-31 Slice of data for increasing material manufacturing system is handled
EP14755601.3A EP3094472B1 (en) 2014-01-16 2014-07-31 Processing slice data for an additive manufacturing system
PCT/EP2014/066546 WO2015106840A1 (en) 2014-01-16 2014-07-31 Processing slice data for an additive manufacturing system
US15/111,127 US10538074B2 (en) 2014-01-16 2014-07-31 Processing slice data
US15/111,604 US11273594B2 (en) 2014-01-16 2014-08-29 Modifying data representing three-dimensional objects
PCT/US2014/053405 WO2015108573A1 (en) 2014-01-16 2014-08-29 Modifying data representing three-dimensional objects
DE112014006199.9T DE112014006199T5 (en) 2014-01-16 2014-08-29 Modifying data representing three-dimensional objects
GB1611668.3A GB2538412B (en) 2014-01-16 2014-08-29 Modifying data representing three-dimensional objects
PCT/US2014/055788 WO2015108574A1 (en) 2014-01-16 2014-09-16 Reducing surface roughness of three-dimensional objects
JP2017508048A JP6383488B2 (en) 2014-01-16 2014-09-22 Generation of 3D objects
CN201810310579.XA CN108437470B (en) 2014-01-16 2014-09-30 Apparatus and method for generating control data for producing three-dimensional objects
JP2016547022A JP6298169B2 (en) 2014-01-16 2014-09-30 Construction material profile
US15/111,731 US10452038B2 (en) 2014-01-16 2014-09-30 Build material profile
CN201480073349.6A CN105939836B (en) 2014-01-16 2014-09-30 Building material profile
EP14790013.8A EP3094473B1 (en) 2014-01-16 2014-09-30 Build material profile
PCT/EP2014/070968 WO2015106844A1 (en) 2014-01-16 2014-09-30 Build material profile
TW104101338A TWI609792B (en) 2014-01-16 2015-01-15 Generating a three-dimensional object
TW104101340A TWI609793B (en) 2014-01-16 2015-01-15 Generating three-dimensional objects
TW104101339A TWI627054B (en) 2014-01-16 2015-01-15 Generating a three-dimensional object
TW104101341A TWI555630B (en) 2014-01-16 2015-01-15 Generating three-dimensional objects
US15/789,830 US10730237B2 (en) 2014-01-16 2017-10-20 Generating a three-dimensional object
JP2018027725A JP6591584B2 (en) 2014-01-16 2018-02-20 Construction material profile
RU2018110566A RU2693131C2 (en) 2014-01-16 2018-03-26 Formation of three-dimensional object
JP2018089183A JP6580749B2 (en) 2014-01-16 2018-05-07 3D object generation
JP2018121493A JP2018161897A (en) 2014-01-16 2018-06-27 Creation of three-dimensional object
US16/052,313 US10518476B2 (en) 2014-01-16 2018-08-01 Generating a three-dimensional object
US16/164,142 US10317882B2 (en) 2014-01-16 2018-10-18 Processing object data
US16/253,007 US11673314B2 (en) 2014-01-16 2019-01-21 Generating three-dimensional objects
US16/442,363 US11679560B2 (en) 2014-01-16 2019-06-14 Generating a three-dimensional object
US16/568,137 US11203155B2 (en) 2014-01-16 2019-09-11 Build material profile
US16/844,411 US11110652B2 (en) 2014-01-16 2020-04-09 Generating a three-dimensional object
US16/870,132 US11059231B2 (en) 2014-01-16 2020-05-08 Generating three-dimensional objects
US17/105,378 US11618217B2 (en) 2014-01-16 2020-11-25 Generating three-dimensional objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2014/050841 WO2015106816A1 (en) 2014-01-16 2014-01-16 Generating a three-dimensional object

Related Child Applications (6)

Application Number Title Priority Date Filing Date
US15/112,132 A-371-Of-International US10625468B2 (en) 2014-01-16 2014-01-16 Generating a three-dimensional object
PCT/US2014/014025 Continuation-In-Part WO2015108545A1 (en) 2014-01-16 2014-01-31 Generating three-dimensional objects
PCT/EP2014/064870 Continuation-In-Part WO2015106838A1 (en) 2014-01-16 2014-07-10 Generating a three-dimensional object
US15/324,944 Continuation-In-Part US20170203513A1 (en) 2014-01-16 2014-07-10 Generating a three-dimensional object
US16/052,313 Continuation US10518476B2 (en) 2014-01-16 2018-08-01 Generating a three-dimensional object
US16/442,363 Continuation US11679560B2 (en) 2014-01-16 2019-06-14 Generating a three-dimensional object

Publications (1)

Publication Number Publication Date
WO2015106816A1 true WO2015106816A1 (en) 2015-07-23

Family

ID=50031307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/050841 WO2015106816A1 (en) 2014-01-16 2014-01-16 Generating a three-dimensional object

Country Status (15)

Country Link
US (3) US10625468B2 (en)
EP (2) EP3094469B1 (en)
JP (3) JP6302077B2 (en)
KR (2) KR101872628B1 (en)
CN (3) CN105916663B (en)
BR (1) BR112016016401B1 (en)
DE (1) DE112014006198T5 (en)
DK (1) DK3094469T3 (en)
ES (2) ES2761249T3 (en)
GB (3) GB2538410B (en)
HU (1) HUE046415T2 (en)
MX (1) MX2016009139A (en)
RU (3) RU2650167C2 (en)
TW (1) TWI609792B (en)
WO (1) WO2015106816A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105057669A (en) * 2015-08-17 2015-11-18 王海英 Three-dimensional printing device and composite spraying head thereof
WO2016165747A1 (en) * 2015-04-14 2016-10-20 Hewlett-Packard Development Company L.P. Marking build material
CN106426946A (en) * 2016-10-13 2017-02-22 河南龙璟科技有限公司 Real-time visual 3D printing device
WO2017086995A1 (en) 2015-11-20 2017-05-26 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing
WO2017163834A1 (en) * 2016-03-23 2017-09-28 コニカミノルタ株式会社 Powder material and method for producing three-dimensional model
WO2017196330A1 (en) 2016-05-12 2017-11-16 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing
WO2017194126A1 (en) * 2016-05-12 2017-11-16 Hewlett-Packard Development Company, L P 3d print definition procedures
WO2017196353A1 (en) 2016-05-12 2017-11-16 Hewlett-Packard Development Company, L.P. Three dimensional (3d) printing
CN108025503A (en) * 2015-10-30 2018-05-11 惠普发展公司,有限责任合伙企业 Three-dimensional body generation parameter description
KR20180099847A (en) * 2016-04-28 2018-09-05 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Three-dimensional printing
EP3271146A4 (en) * 2015-05-15 2018-12-05 Hewlett-Packard Development Company, L.P. Coalescing agent concentrations and contone densities for three-dimensional objects
EP3271153A4 (en) * 2015-07-31 2018-12-05 Hewlett-Packard Development Company, L.P. Photonic fusing
WO2019013751A1 (en) * 2017-07-10 2019-01-17 Hewlett-Packard Development Company, L.P. Temperature control in 3d object formation
EP3445516A1 (en) * 2016-07-26 2019-02-27 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing
US20190091936A1 (en) * 2016-03-24 2019-03-28 Hewlett-Packard Development Company, L.P. Accuracy improvement and surface finishing using fusing agent and detailing agent
KR20190039664A (en) * 2016-05-12 2019-04-15 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 3D printing heat sink
WO2019125449A1 (en) * 2017-12-20 2019-06-27 Hewlett-Packard Development Company, L.P. Additive manufacturing devices and methods
JP2020514115A (en) * 2017-01-18 2020-05-21 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Deviation control in additive manufacturing
WO2020127830A1 (en) 2018-12-19 2020-06-25 L'oreal Applicator for applying a cosmetic product to the eyelashes and/or eyebrows
WO2020127741A1 (en) 2018-12-19 2020-06-25 L'oreal Applicator for applying a cosmetic product to eyelashes and/or eyebrows
WO2020127826A1 (en) 2018-12-19 2020-06-25 L'oreal Applicator comprising an applicator member produced by additive manufacturing
WO2020127756A1 (en) 2018-12-19 2020-06-25 L'oreal Applicator for applying a cosmetic product to eyelashes and/or eyebrows
WO2020127727A1 (en) 2018-12-19 2020-06-25 L'oreal Applicator comprising an open-branch application member
WO2020127799A1 (en) 2018-12-19 2020-06-25 L'oreal Method for generating a digital model of a cosmetic product applicator
WO2020127845A1 (en) 2018-12-19 2020-06-25 L'oreal Application device for applying a cosmetic product to the eyelashes and/or eyebrows
WO2020127707A1 (en) 2018-12-19 2020-06-25 L'oreal Spiral cosmetic applicator
WO2021107917A1 (en) * 2019-11-25 2021-06-03 Hewlett-Packard Development Company, L.P. Additive manufacturing with uniform property distributions
US11179894B2 (en) 2016-05-12 2021-11-23 Hewlett-Packard Development Company, L.P. Managing thermal contributions between layers during additive manufacturing
US11427725B2 (en) 2016-04-28 2022-08-30 Hewlett-Packard Development Company, L.P. Photoluminescent material sets
US11465341B2 (en) 2016-04-28 2022-10-11 Hewlett-Packard Development Company, L.P. 3-dimensional printed parts
WO2023149874A1 (en) * 2022-02-02 2023-08-10 Hewlett-Packard Development Company, L.P. Additive manufacturing with fusing and warming energy sources
US11981075B2 (en) 2022-08-19 2024-05-14 Hewlett-Packard Development Company, L.P. 3-dimensional printed parts

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10220564B2 (en) 2014-01-16 2019-03-05 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
KR101872628B1 (en) 2014-01-16 2018-06-28 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Generating a three-dimensional object
JP6570542B2 (en) 2014-01-16 2019-09-04 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 3D object generation
SG11201807870QA (en) * 2016-03-30 2018-10-30 Applied Materials Inc Methods of additive manufacturing for ceramics using microwaves
KR102331443B1 (en) * 2017-07-28 2021-11-25 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Adjust the 3D printer system based on the selected mode
US11340582B2 (en) 2017-10-14 2022-05-24 Hewlett-Packard Development Company, L.P. Processing 3D object models
JP7466456B2 (en) * 2018-03-23 2024-04-12 ヒタチ・エナジー・リミテッド How to manufacture electrical components using additive manufacturing techniques
WO2020068065A1 (en) * 2018-09-26 2020-04-02 Hewlett-Packard Development Company, L.P. Three dimensional (3d) printed molds having breakaway features
US10926460B2 (en) * 2018-09-28 2021-02-23 The Boeing Company Methods and apparatus for additively manufacturing a structure with in-situ reinforcement
US10926325B2 (en) * 2018-09-28 2021-02-23 The Boeing Company Methods and apparatus for additively manufacturing a structure with in-situ reinforcement
US10926461B2 (en) * 2018-09-28 2021-02-23 The Boeing Company Methods and apparatus for additively manufacturing a structure with in-situ reinforcement
US20220032508A1 (en) * 2018-12-17 2022-02-03 Hewlett-Packard Development Company, L.P. Breakable three dimensional (3d) printed molds
JP7312601B2 (en) 2019-04-26 2023-07-21 株式会社日立製作所 Additive manufacturing condition generation method, additive manufacturing support software, and additive manufacturing support system
WO2021006897A1 (en) * 2019-07-10 2021-01-14 Hewlett-Packard Development Company, L.P. Fusing lamps with varied output power
US20220305734A1 (en) * 2019-10-22 2022-09-29 Hewlett-Packard Development Company, L.P. Recoater operation adjustments based on layer structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1452298A1 (en) * 2003-02-28 2004-09-01 Hewlett-Packard Development Company, L.P. Methods and systems for producing an object through solid freeform fabrication using immiscible fluids
US6799959B1 (en) * 1999-09-14 2004-10-05 Minolta Co., Ltd. Apparatus for forming a three-dimensional product
WO2006091842A1 (en) * 2005-02-25 2006-08-31 Hewlett-Packard Development Company, L.P. Core-shell solid freeform fabrication method and apparatus
WO2008151063A2 (en) * 2007-05-31 2008-12-11 Milton Meisner High definition versatile stereolithic method and material
WO2013030064A1 (en) * 2011-08-26 2013-03-07 Swerea Ivf Ab Layered manufacturing of free-form multi-material micro-components

Family Cites Families (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120630A (en) 1976-03-12 1978-10-17 Phillips Petroleum Company Automatic control of extrusion rate
US4430012A (en) 1981-04-06 1984-02-07 Zenith Radio Corporation Paper guide for line printer
US4579461A (en) 1983-02-14 1986-04-01 United States Steel Corporation Dual sensor radiation pyrometer
US4835737A (en) 1986-07-21 1989-05-30 American Telephone And Telegraph Company, At&T Bell Laboratories Method and apparatus for controlled removal and insertion of circuit modules
DE68929352T2 (en) * 1988-04-18 2002-09-19 3D Systems Inc Stereolithographic supports
US5182056A (en) 1988-04-18 1993-01-26 3D Systems, Inc. Stereolithography method and apparatus employing various penetration depths
US4956538A (en) * 1988-09-09 1990-09-11 Texas Instruments, Incorporated Method and apparatus for real-time wafer temperature measurement using infrared pyrometry in advanced lamp-heated rapid thermal processors
US5204055A (en) 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5111236A (en) 1990-03-27 1992-05-05 Lo Allen K W Multiple-print 3-D printer and process
JPH0493228A (en) 1990-08-08 1992-03-26 Fujitsu Ltd Method for forming three-dimensional matter
US5999184A (en) 1990-10-30 1999-12-07 3D Systems, Inc. Simultaneous multiple layer curing in stereolithography
DE4112695C3 (en) * 1990-12-21 1998-07-23 Eos Electro Optical Syst Method and device for producing a three-dimensional object
US6175422B1 (en) 1991-01-31 2001-01-16 Texas Instruments Incorporated Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data
KR960006787B1 (en) 1991-03-28 1996-05-23 타켓트 인코포레이팃드 Inlaid sheet materials having a selectively applied decorative adhesive matrix and method of production thereof
US5156461A (en) * 1991-05-17 1992-10-20 Texas Instruments Incorporated Multi-point pyrometry with real-time surface emissivity compensation
US5252264A (en) 1991-11-08 1993-10-12 Dtm Corporation Apparatus and method for producing parts with multi-directional powder delivery
US5527877A (en) 1992-11-23 1996-06-18 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
DE69312894T2 (en) * 1992-12-29 1998-02-12 Philips Electronics Nv Pyrometer with emission meter
US5427733A (en) 1993-10-20 1995-06-27 United Technologies Corporation Method for performing temperature-controlled laser sintering
US5393482A (en) * 1993-10-20 1995-02-28 United Technologies Corporation Method for performing multiple beam laser sintering employing focussed and defocussed laser beams
WO1995034468A1 (en) 1994-06-14 1995-12-21 Soligen, Inc. Powder handling apparatus for additive fabrication equipment
AU3241795A (en) 1994-08-09 1996-03-07 Encad, Inc. Printer ink cartridge
US5748483A (en) 1994-12-13 1998-05-05 Check Technology Corporation Printing system
CN1204277A (en) 1995-09-27 1999-01-06 3D系统公司 Method and apparatus for data manipulation and system control in selective deposition modeling system
US5764521A (en) 1995-11-13 1998-06-09 Stratasys Inc. Method and apparatus for solid prototyping
US5690430A (en) 1996-03-15 1997-11-25 Bethlehem Steel Corporation Apparatus and method for measuring temperature and/or emissivity of steel strip during a coating process
DE19622230A1 (en) 1996-06-03 1997-12-04 Schenk Gmbh Device for printing on materials, in particular textile materials, ceramics, paper or the like
US6438639B1 (en) 1996-08-27 2002-08-20 International Business Machines Corporation Computer system bus network providing concurrent communication and connection transition of peripheral devices
US6989115B2 (en) 1996-12-20 2006-01-24 Z Corporation Method and apparatus for prototyping a three-dimensional object
US7037382B2 (en) 1996-12-20 2006-05-02 Z Corporation Three-dimensional printer
US6066206A (en) 1997-02-21 2000-05-23 Speedline Technologies, Inc. Dual track stenciling system with solder gathering head
US5866058A (en) 1997-05-29 1999-02-02 Stratasys Inc. Method for rapid prototyping of solid models
US6316948B1 (en) 1998-07-01 2001-11-13 Setra Systems, Inc. Charge balance network with floating ground capacitive sensing
US6363606B1 (en) 1998-10-16 2002-04-02 Agere Systems Guardian Corp. Process for forming integrated structures using three dimensional printing techniques
US6162378A (en) 1999-02-25 2000-12-19 3D Systems, Inc. Method and apparatus for variably controlling the temperature in a selective deposition modeling environment
US6658314B1 (en) * 1999-10-06 2003-12-02 Objet Geometries Ltd. System and method for three dimensional model printing
DE19948591A1 (en) 1999-10-08 2001-04-19 Generis Gmbh Rapid prototyping method and device
WO2001038061A1 (en) 1999-10-26 2001-05-31 University Of Southern California Process of making a three-dimensional object
US20050104241A1 (en) 2000-01-18 2005-05-19 Objet Geometried Ltd. Apparatus and method for three dimensional model printing
DE10007711C1 (en) 2000-02-19 2001-08-16 Daimler Chrysler Ag Apparatus for sintering a powder used in rapid prototyping process comprises device for producing laser beam, device for determining powder temperature, device for regulating laser beam, and device for compensating position-dependent errors
US7300619B2 (en) 2000-03-13 2007-11-27 Objet Geometries Ltd. Compositions and methods for use in three dimensional model printing
US6280785B1 (en) 2000-03-28 2001-08-28 Nanotek Instruments, Inc. Rapid prototyping and fabrication method for 3-D food objects
SE521124C2 (en) * 2000-04-27 2003-09-30 Arcam Ab Device and method for making a three-dimensional product
JP2001334581A (en) 2000-05-24 2001-12-04 Minolta Co Ltd Three-dimensional molding apparatus
US20020020945A1 (en) 2000-08-18 2002-02-21 Uichung Cho Forming three dimensional objects through bulk heating of layers with differential material properties
DE10047614C2 (en) 2000-09-26 2003-03-27 Generis Gmbh Device for building up models in layers
US6746814B2 (en) 2000-10-09 2004-06-08 Dorsey D. Coe Method and system for colorizing a stereolithographically generated model
US6899777B2 (en) 2001-01-02 2005-05-31 Advanced Ceramics Research, Inc. Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same
US20020090410A1 (en) 2001-01-11 2002-07-11 Shigeaki Tochimoto Powder material removing apparatus and three dimensional modeling system
US6376148B1 (en) 2001-01-17 2002-04-23 Nanotek Instruments, Inc. Layer manufacturing using electrostatic imaging and lamination
US6896839B2 (en) 2001-02-07 2005-05-24 Minolta Co., Ltd. Three-dimensional molding apparatus and three-dimensional molding method
DE10114290B4 (en) * 2001-03-23 2004-08-12 Ivoclar Vivadent Ag Desktop process for manufacturing dental products using 3D plotting
US6939489B2 (en) * 2001-03-23 2005-09-06 Ivoclar Vivadent Ag Desktop process for producing dental products by means of 3-dimensional plotting
JP2002292748A (en) 2001-03-29 2002-10-09 Minolta Co Ltd Colored three-dimensional forming system and method, data processing device for colored three-dimensional forming and method, data processing program for colored three-dimensional forming, and recording medium having data processing program recorded thereon
US6780368B2 (en) 2001-04-10 2004-08-24 Nanotek Instruments, Inc. Layer manufacturing of a multi-material or multi-color 3-D object using electrostatic imaging and lamination
JP4039008B2 (en) 2001-06-19 2008-01-30 セイコーエプソン株式会社 Detection of printing recording material container
JP4611629B2 (en) * 2001-09-27 2011-01-12 ゼット コーポレーション 3D printer
US7509240B2 (en) 2001-10-15 2009-03-24 The Regents Of The University Of Michigan Solid freeform fabrication of structurally engineered multifunctional devices
US20030151167A1 (en) 2002-01-03 2003-08-14 Kritchman Eliahu M. Device, system and method for accurate printing of three dimensional objects
JP2003231182A (en) * 2002-02-07 2003-08-19 Minolta Co Ltd Three-dimensional molding machine and powder removing device
US6822194B2 (en) 2002-05-29 2004-11-23 The Boeing Company Thermocouple control system for selective laser sintering part bed temperature control
US6802581B2 (en) 2002-07-30 2004-10-12 Hewlett-Packard Development Company, L.P. Method, program product and system for ink management control
FI20021428A (en) 2002-07-31 2004-02-01 Metso Minerals Tampere Oy Method of controlling a sieving machine and sieving machine
EP1539500A4 (en) 2002-09-12 2006-03-29 Objet Geometries Ltd Device, system and method for calibration in three-dimensional model printing
EP1400340B1 (en) 2002-09-21 2008-01-16 Evonik Degussa GmbH Method for manufacturing a three dimensional object
DE10311446A1 (en) 2002-09-21 2004-04-01 Degussa Ag Polymer powder for SIV processes
TWI239888B (en) 2002-09-30 2005-09-21 Matsushita Electric Works Ltd Method of making three-dimensional object
CA2504368C (en) 2002-10-31 2012-07-10 Ehsan Toyserkani System and method for closed-loop control of laser cladding by powder injection
US20040084814A1 (en) 2002-10-31 2004-05-06 Boyd Melissa D. Powder removal system for three-dimensional object fabricator
US6948901B2 (en) 2002-11-12 2005-09-27 Metso Paper Ag Paper roll storage and handling installation and method for storing and handling paper rolls
ATE393009T1 (en) 2002-11-12 2008-05-15 Objet Geometries Ltd METHOD AND SYSTEM FOR PRINTING A THREE-DIMENSIONAL OBJECT
DE60324332D1 (en) 2002-12-03 2008-12-04 Objet Geometries Ltd METHOD AND DEVICE FOR THREE-DIMENSIONAL PRINTING
US7589868B2 (en) * 2002-12-11 2009-09-15 Agfa Graphics Nv Method and apparatus for creating 3D-prints and a 3-D printing system
EP1583652B1 (en) 2002-12-20 2011-02-09 University Of Southern California Methods for reduction of powder waste in selective inhibition sintering (sis)
AU2003900180A0 (en) 2003-01-16 2003-01-30 Silverbrook Research Pty Ltd Method and apparatus (dam001)
WO2005021247A1 (en) 2003-08-28 2005-03-10 Fuji Photo Film Co., Ltd. Process for producing three-dimensional shaped article
EP1459871B1 (en) * 2003-03-15 2011-04-06 Evonik Degussa GmbH Method and apparatus for manufacturing three dimensional objects using microwave radiation and shaped body produced according to this method
US20050079132A1 (en) 2003-04-08 2005-04-14 Xingwu Wang Medical device with low magnetic susceptibility
US6815636B2 (en) * 2003-04-09 2004-11-09 3D Systems, Inc. Sintering using thermal image feedback
FR2853853B1 (en) 2003-04-15 2005-07-15 Inov Media METHOD AND SYSTEM FOR PRINTING A PLURALITY OF MEDIA
JP2005007572A (en) 2003-04-22 2005-01-13 Fuji Photo Film Co Ltd Method for manufacturing three-dimensional shaped article
AU2003266608A1 (en) 2003-06-03 2005-01-04 Lattice Technology, Inc. Process animation automatic generation method and system
US20040251581A1 (en) 2003-06-16 2004-12-16 Jang Bor Z. Micro- and nano-fabrication using focused plasma assisted vapor deposition
WO2005007390A1 (en) 2003-07-14 2005-01-27 Therics, Inc. Three-dimensional printing apparatus and methods of manufacture including sterilization or disinfection, for example, using ultraviolet light
GB0317387D0 (en) 2003-07-25 2003-08-27 Univ Loughborough Method and apparatus for combining particulate material
US7790074B2 (en) 2003-07-30 2010-09-07 Houston-Packard Development Company, L.P. Stereolithographic method for forming three-dimensional structure
US7120512B2 (en) 2003-08-25 2006-10-10 Hewlett-Packard Development Company, L.P. Method and a system for solid freeform fabricating using non-reactive powder
DE10342880A1 (en) 2003-09-15 2005-04-14 Trumpf Werkzeugmaschinen Gmbh + Co. Kg substrate plate
US7220380B2 (en) 2003-10-14 2007-05-22 Hewlett-Packard Development Company, L.P. System and method for fabricating a three-dimensional metal object using solid free-form fabrication
US20050087902A1 (en) 2003-10-28 2005-04-28 Isaac Farr Alginate-based materials, methods of application thereof, and systems for using the alginate-based materials
DE102004012682A1 (en) * 2004-03-16 2005-10-06 Degussa Ag Process for the production of three-dimensional objects by means of laser technology and application of an absorber by inkjet method
US7261542B2 (en) 2004-03-18 2007-08-28 Desktop Factory, Inc. Apparatus for three dimensional printing using image layers
WO2005097476A2 (en) 2004-04-02 2005-10-20 Z Corporation Methods and apparatus for 3d printing
TWI253379B (en) 2004-04-08 2006-04-21 Wei-Hsiang Lai Method and apparatus for rapid prototyping using computer-printer aided to object realization
DE102004020452A1 (en) * 2004-04-27 2005-12-01 Degussa Ag Method for producing three-dimensional objects by means of electromagnetic radiation and applying an absorber by inkjet method
DE102004020453A1 (en) 2004-04-27 2005-11-24 Degussa Ag Polymer powder with polyamide, use in a molding process and molding, made from this polymer powder
JP4561187B2 (en) 2004-05-26 2010-10-13 パナソニック電工株式会社 Method for producing three-dimensional shaped object and powder material recycling apparatus for producing three-dimensional shaped object
US6930278B1 (en) 2004-08-13 2005-08-16 3D Systems, Inc. Continuous calibration of a non-contact thermal sensor for laser sintering
US7387359B2 (en) 2004-09-21 2008-06-17 Z Corporation Apparatus and methods for servicing 3D printers
US7824001B2 (en) * 2004-09-21 2010-11-02 Z Corporation Apparatus and methods for servicing 3D printers
JP4556617B2 (en) 2004-10-29 2010-10-06 株式会社デンソーウェーブ Automatic work system
US20060091199A1 (en) 2004-10-29 2006-05-04 Loughran Stephen A Retrieving information on material used in solid freeform fabrication
US7521652B2 (en) 2004-12-07 2009-04-21 3D Systems, Inc. Controlled cooling methods and apparatus for laser sintering part-cake
GB2422344B (en) 2005-01-24 2008-08-20 Univ Montfort Rapid prototyping method using infrared sintering
US7357629B2 (en) 2005-03-23 2008-04-15 3D Systems, Inc. Apparatus and method for aligning a removable build chamber within a process chamber
US7790096B2 (en) 2005-03-31 2010-09-07 3D Systems, Inc. Thermal management system for a removable build chamber for use with a laser sintering system
DE102005015870B3 (en) 2005-04-06 2006-10-26 Eos Gmbh Electro Optical Systems Device and method for producing a three-dimensional object
US7665819B2 (en) 2005-04-21 2010-02-23 Tonerhead, Inc. Method and apparatus for a printer cartridge tester
US7906061B2 (en) * 2005-05-03 2011-03-15 3D Systems, Inc. Bubble-free cross-sections for use in solid imaging
US7433627B2 (en) 2005-06-28 2008-10-07 Xerox Corporation Addressable irradiation of images
JP4856908B2 (en) 2005-07-12 2012-01-18 株式会社イマジオム Powder sintering modeling apparatus and powder sintering modeling method
US20070063372A1 (en) 2005-09-19 2007-03-22 Nielsen Jeffrey A Systems and methods of solid freeform fabrication with interchangeable powder bins
JP2009508723A (en) 2005-09-20 2009-03-05 ピーティーエス ソフトウェア ビーブイ Apparatus for constructing three-dimensional article and method for constructing three-dimensional article
US7520740B2 (en) 2005-09-30 2009-04-21 3D Systems, Inc. Rapid prototyping and manufacturing system and method
US20070158411A1 (en) 2005-11-28 2007-07-12 Eye Q Development, Inc. Method and system for storing, retrieving and updating information from an information card
CN100340844C (en) * 2005-12-07 2007-10-03 西安交通大学 Resin level detection method for ultraviolet curing quick forming process
KR100750161B1 (en) 2006-02-02 2007-08-17 삼성전자주식회사 Method and apparatus for compensating defective nozzle of ink jet image forming device
JP2007219628A (en) 2006-02-14 2007-08-30 Three M Innovative Properties Co Sample sheet preparation system and method
US7604470B2 (en) 2006-04-03 2009-10-20 Stratasys, Inc. Single-motor extrusion head having multiple extrusion lines
US7680555B2 (en) 2006-04-03 2010-03-16 Stratasys, Inc. Auto tip calibration in an extrusion apparatus
EP2001656B1 (en) 2006-04-06 2014-10-15 3D Systems Incorporated KiT FOR THE PRODUCTION OF THREE-DIMENSIONAL OBJECTS BY USE OF ELECTROMAGNETIC RADIATION
ATE466720T1 (en) 2006-06-20 2010-05-15 Univ Leuven Kath METHOD AND DEVICE FOR IN-SITU MONITORING AND FEEDBACK CONTROL OF SELECTIVE LASER POWDER PROCESSING
DE102006030350A1 (en) 2006-06-30 2008-01-03 Voxeljet Technology Gmbh Method for constructing a layer body
PT2083992T (en) 2006-11-10 2016-09-02 Envisiontec Gmbh Continuous, generative method and apparatus for the production of a three-dimensional object
DE102006055054A1 (en) 2006-11-22 2008-05-29 Eos Gmbh Electro Optical Systems Apparatus for layering a three-dimensional object
US7722151B2 (en) 2007-01-30 2010-05-25 Hewlett-Packard Development Company, L.P. Printing apparatus
WO2008103985A2 (en) 2007-02-23 2008-08-28 The Exone Company, Llc Replaceable build box for three dimensional printer
JP2008250164A (en) * 2007-03-30 2008-10-16 Suzuka Fuji Xerox Co Ltd Method for manufacturing rubber roller
US8784723B2 (en) 2007-04-01 2014-07-22 Stratasys Ltd. Method and system for three-dimensional fabrication
US7515986B2 (en) 2007-04-20 2009-04-07 The Boeing Company Methods and systems for controlling and adjusting heat distribution over a part bed
JP5272519B2 (en) * 2007-07-17 2013-08-28 セイコーエプソン株式会社 3D modeling apparatus and 3D modeling method
US7862320B2 (en) 2007-07-17 2011-01-04 Seiko Epson Corporation Three-dimensional object forming apparatus and method for forming three dimensional object
EP2188114B1 (en) 2007-07-25 2018-09-12 Stratasys Ltd. Solid freeform fabrication using a plurality of modeling materials
DE102007056984A1 (en) * 2007-11-27 2009-05-28 Eos Gmbh Electro Optical Systems Method for producing a three-dimensional object by means of laser sintering
US8050884B2 (en) * 2007-12-06 2011-11-01 The Boeing Company Method and apparatus for determining the emissivity, area and temperature of an object
US8070473B2 (en) 2008-01-08 2011-12-06 Stratasys, Inc. System for building three-dimensional objects containing embedded inserts, and method of use thereof
US7711870B2 (en) 2008-02-06 2010-05-04 Panasonic Corporation Interface detecting circuit and interface detecting method
US8567578B2 (en) 2008-03-13 2013-10-29 Targus Group International, Inc. Portable computer case
WO2009125381A1 (en) 2008-04-10 2009-10-15 Objet Geometries Ltd. System and method for three dimensional model printing
DE102008024731B4 (en) 2008-05-19 2020-08-20 BAM Bundesanstalt für Materialforschung und -prüfung Method and device for sintering an object by determining the geometric surface profile of the object
DE102008024281A1 (en) * 2008-05-20 2009-12-03 Eos Gmbh Electro Optical Systems Producing a three-dimensional object by selectively sintering a polymer powder comprises using a polymer that has a branching group in the main chain, has a modified terminal group and/or has a bulky group in the main chain
US7962237B2 (en) 2008-08-06 2011-06-14 Objet Geometries Ltd. Method and apparatus for optimizing a scanning plan in three-dimensional printing
JP2010090350A (en) * 2008-10-10 2010-04-22 Jsr Corp Resin powder for molding laser sintering laminated layer
US8048359B2 (en) 2008-10-20 2011-11-01 3D Systems, Inc. Compensation of actinic radiation intensity profiles for three-dimensional modelers
US8666142B2 (en) 2008-11-18 2014-03-04 Global Filtration Systems System and method for manufacturing
US20100155985A1 (en) 2008-12-18 2010-06-24 3D Systems, Incorporated Apparatus and Method for Cooling Part Cake in Laser Sintering
US8178265B2 (en) 2008-12-29 2012-05-15 Lexmark International, Inc. Electrophotographic photoreceptor having a spectral marker and electrophotographic printer using the same
CN102164735A (en) 2009-01-23 2011-08-24 Eos有限公司电镀光纤系统 Method and system for reusing residual powder from an installation for the rapid prototyping of three-dimensional objects
EP2251185A1 (en) 2009-05-11 2010-11-17 Ivoclar Vivadent AG Method and device for generative production of a mould with non-planar layers
US20100327479A1 (en) 2009-06-23 2010-12-30 Stratasys, Inc. Consumable materials having customized characteristics
US20100323301A1 (en) 2009-06-23 2010-12-23 Huey-Ru Tang Lee Method and apparatus for making three-dimensional parts
US9399321B2 (en) 2009-07-15 2016-07-26 Arcam Ab Method and apparatus for producing three-dimensional objects
US8880909B2 (en) 2009-07-20 2014-11-04 Texas Instruments Incorporated Auto-detect polling for correct handshake to USB client
DE102009036153A1 (en) 2009-08-05 2011-02-17 Modellbau Robert Hofmann Gmbh Device, preferably laser sintering or laser melting device for producing three-dimensional molded parts from powdered material, comprises space, in which exchangeable container is introduced
DE102009037815B4 (en) 2009-08-18 2016-06-09 Sintermask Gmbh Method and device for producing a three-dimensional object
GB0917936D0 (en) 2009-10-13 2009-11-25 3D Printer Aps Three-dimensional printer
GB0918362D0 (en) 2009-10-20 2009-12-02 Surface Generation Ltd Zone control of tool temperature
JP2011099023A (en) * 2009-11-05 2011-05-19 Techno Polymer Co Ltd Laser sintering rubber strengthened vinyl resin powder and shaped article thereof
WO2011065920A1 (en) 2009-11-26 2011-06-03 Yu En Tan Process for building three-dimensional objects
DE102009056696B4 (en) 2009-12-02 2011-11-10 Prometal Rct Gmbh Construction box for a rapid prototyping system
WO2011082152A1 (en) * 2009-12-30 2011-07-07 Synthes Usa, Llc Intergrated multi-material implants and methods of manufacture
US9066028B1 (en) 2010-01-08 2015-06-23 The United States Of America As Represented By The Administator Of The National Aeronautics And Space Administration Methods and systems for measurement and estimation of normalized contrast in infrared thermography
EP2383622B1 (en) 2010-04-19 2013-05-29 Siemens Aktiengesellschaft Connection device for connecting field devices
JP6132352B2 (en) 2010-05-02 2017-05-24 エックスジェット エルティーディー. Printing system with self-purge, precipitation prevention, and gas removal structure
WO2012012610A2 (en) * 2010-07-21 2012-01-26 Xenon Corporation Reduction of stray light during sintering
JP5471939B2 (en) * 2010-07-28 2014-04-16 セイコーエプソン株式会社 Modeling method
DE202010010771U1 (en) * 2010-07-28 2011-11-14 Cl Schutzrechtsverwaltungs Gmbh Laser melting apparatus for producing a three-dimensional component
US8414280B2 (en) 2010-08-18 2013-04-09 Makerbot Industries, Llc Networked three-dimensional printing
US20120092724A1 (en) 2010-08-18 2012-04-19 Pettis Nathaniel B Networked three-dimensional printing
DE102011012412A1 (en) 2011-02-25 2012-08-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for producing three-dimensional structures in layers, comprises a print head assembly, a radiation source assembly, and a heat source, where the print head assembly is positioned in a controlled manner relative to a working plane
PL2632696T3 (en) * 2010-10-27 2021-03-08 Rize Inc. Process and apparatus for fabrication of three-dimensional objects
DE102010043166A1 (en) * 2010-10-29 2012-05-03 Eos Gmbh Electro Optical Systems Device for treating powder for a device for producing a three-dimensional object and device for producing a three-dimensional object
JP5615667B2 (en) 2010-11-01 2014-10-29 株式会社キーエンス Setting data creation device for 3D modeling apparatus, setting data creation method for 3D modeling apparatus, setting data creation program for 3D modeling apparatus, and computer-readable recording medium
WO2012061945A1 (en) 2010-11-10 2012-05-18 Ambercore Software Inc. System and method for object searching using spatial data
EP3034282A1 (en) * 2010-11-28 2016-06-22 Stratasys Ltd. System and method for additive manufacturing of an object
EP2463081A1 (en) 2010-12-09 2012-06-13 3M Innovative Properties Co. A system comprising a rapid prototyping device and a material cartridge, a cartridge, and a method of using the system
WO2012085914A1 (en) 2010-12-21 2012-06-28 Objet Ltd. Method and system for reuse of materials in additive manufacturing systems
JP2012131094A (en) 2010-12-21 2012-07-12 Sony Corp Three-dimensional molding device, three-dimensional molding method, and mold
WO2012088253A1 (en) 2010-12-22 2012-06-28 Stratasys, Inc. Print head assembly for use in fused deposition modeling system
RU2553796C2 (en) * 2011-01-28 2015-06-20 Аркам Аб Production of 3d body
DE102011009624A1 (en) 2011-01-28 2012-08-02 Mtu Aero Engines Gmbh Method and device for process monitoring
FR2970887B1 (en) 2011-02-01 2013-12-20 Snecma SINKING DEVICE AND LASER FUSION COMPRISING A INDUCED POWDER HEATING MEANS
US8919950B2 (en) 2011-02-10 2014-12-30 Hewlett-Packard Industrial Printing Ltd. Pallet transfer device
WO2012115654A1 (en) 2011-02-25 2012-08-30 Hewlett-Packard Development Company, L.P. Printing system and related methods
ITVI20110099A1 (en) * 2011-04-20 2012-10-21 Dws Srl METHOD FOR THE PRODUCTION OF A THREE-DIMENSIONAL OBJECT AND A STEREOLITHOGRAPHIC MACHINE USING THIS METHOD
GB2493398B (en) 2011-08-05 2016-07-27 Univ Loughborough Methods and apparatus for selectively combining particulate material
US20130053995A1 (en) 2011-08-25 2013-02-28 Konica Minolta Business Technologies, Inc. Three-dimensional object molding apparatus and control program
US9231926B2 (en) 2011-09-08 2016-01-05 Lexmark International, Inc. System and method for secured host-slave communication
CA2847351C (en) 2011-09-23 2017-02-21 Stratasys, Inc. Layer transfusion for additive manufacturing
US20130186549A1 (en) 2011-09-23 2013-07-25 Stratasys, Inc. Layer transfusion for additive manufacturing
JP6017906B2 (en) 2011-10-19 2016-11-02 株式会社Kelk Temperature control device
US9073259B2 (en) 2011-11-29 2015-07-07 Xerox Corporation Media-based system for forming three-dimensional objects
EP2797730B2 (en) 2011-12-28 2020-03-04 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
WO2013113372A1 (en) 2012-01-31 2013-08-08 Hewlett-Packard Development Company, L.P. Techniques for three-dimensional printing
FR2987293B1 (en) 2012-02-27 2014-03-07 Michelin & Cie METHOD AND APPARATUS FOR REALIZING THREE-DIMENSIONAL OBJECTS WITH IMPROVED PROPERTIES
US20130220572A1 (en) 2012-02-29 2013-08-29 Ford Motor Company Molding assembly with heating and cooling system
GB201204752D0 (en) 2012-03-19 2012-05-02 Bae Systems Plc Additive layer manufacturing
DE102012009071A1 (en) 2012-05-09 2013-11-14 Cl Schutzrechtsverwaltungs Gmbh Device for production of three-dimensional objects by sequential solidification of powdered layers, has frames that are movable reciprocally by adjusting device rotation in building and removal positions
GB2502294B (en) * 2012-05-22 2015-12-09 Mcor Technologies Ltd Colour 3-Dimensional printing
US9481134B2 (en) 2012-06-08 2016-11-01 Makerbot Industries, Llc Build platform leveling with tactile feedback
US9533526B1 (en) 2012-06-15 2017-01-03 Joel Nevins Game object advances for the 3D printing entertainment industry
US20140025529A1 (en) 2012-07-23 2014-01-23 Atlatl Software, Llc Systems and Methods for Generating Three-Dimensional Product Configuration
US9694389B2 (en) 2012-07-24 2017-07-04 Integrated Deposition Solutions, Inc. Methods for producing coaxial structures using a microfluidic jet
US11110648B2 (en) 2012-07-31 2021-09-07 Makerbot Industries, Llc Build material switching
EP2892708B1 (en) 2012-09-05 2018-10-10 Aprecia Pharmaceuticals LLC Three-dimensional printing system and equipment assembly
US8888480B2 (en) 2012-09-05 2014-11-18 Aprecia Pharmaceuticals Company Three-dimensional printing system and equipment assembly
US9168699B2 (en) 2012-09-07 2015-10-27 Makerbot Industries, Llc Color switching for three-dimensional printing
US10394195B2 (en) 2012-10-26 2019-08-27 Board Of Regents, The University Of Texas System Systems and methods for manufacturing optimization
KR20150081446A (en) 2012-11-05 2015-07-14 스트라타시스 엘티디. System and method for direct inkjet printing of 3d objects
WO2014071968A1 (en) 2012-11-06 2014-05-15 Arcam Ab Powder pre-processing for additive manufacturing
US9592530B2 (en) 2012-11-21 2017-03-14 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
DE112013006045T5 (en) 2012-12-17 2015-09-17 Arcam Ab Additive manufacturing method and device
US9389315B2 (en) 2012-12-19 2016-07-12 Basf Se Detector comprising a transversal optical sensor for detecting a transversal position of a light beam from an object and a longitudinal optical sensor sensing a beam cross-section of the light beam in a sensor region
US10204178B2 (en) 2013-02-04 2019-02-12 Authentise Inc. System, method, and program product for digital production management
US20140255666A1 (en) 2013-03-06 2014-09-11 University Of Louisville Research Foundation, Inc. Powder Bed Fusion Systems, Apparatus, and Processes for Multi-Material Part Production
WO2014144482A1 (en) 2013-03-15 2014-09-18 Matterfab Corp. Apparatus and methods for manufacturing
US9023566B2 (en) 2013-07-17 2015-05-05 Stratasys, Inc. ABS part material for electrophotography-based additive manufacturing
US20150044383A1 (en) 2013-08-07 2015-02-12 U.S.A. Represented By The Administrator Of The National Aeronautics And Space Administration Resistive Heating Assisted Infiltration and Cure (RHAIC) For Polymer/Carbon Nanotube Structural Composites
US9855698B2 (en) 2013-08-07 2018-01-02 Massachusetts Institute Of Technology Automatic process control of additive manufacturing device
WO2015022572A2 (en) 2013-08-13 2015-02-19 Fabulonia Ou Optimized virtual 3d printing build tray allocation
US9636871B2 (en) 2013-08-21 2017-05-02 Microsoft Technology Licensing, Llc Optimizing 3D printing using segmentation or aggregation
CN104416902B (en) 2013-08-23 2017-03-01 三纬国际立体列印科技股份有限公司 Three-dimensional printing device
CN203713074U (en) 2013-08-28 2014-07-16 熙尔科技有限公司 Desktop robot
EP3038785B1 (en) 2013-08-29 2019-09-25 Hexcel Corporation Method for analytically determining sls bed temperatures
US9931791B2 (en) 2013-09-29 2018-04-03 Makerbot Industries, Llc Three-dimensional printing with multi-material support
DE102013017792A1 (en) 2013-10-28 2015-04-30 Cl Schutzrechtsverwaltungs Gmbh Method for producing a three-dimensional component
DE102013223411A1 (en) 2013-11-15 2015-05-21 Eos Gmbh Electro Optical Systems Apparatus for layering a three-dimensional object
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
GB2538409B (en) 2014-01-16 2020-02-26 Hewlett Packard Development Co Generating three-dimensional objects
CN106061714B (en) 2014-01-16 2019-07-12 惠普发展公司,有限责任合伙企业 It is determined based on the temperature of radiance
WO2015108547A2 (en) 2014-01-16 2015-07-23 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
US10220564B2 (en) * 2014-01-16 2019-03-05 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
KR101872628B1 (en) 2014-01-16 2018-06-28 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Generating a three-dimensional object
GB2538411B (en) 2014-01-16 2020-09-16 Hewlett Packard Development Co Lp Generating three-dimensional objects
JP6570542B2 (en) 2014-01-16 2019-09-04 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 3D object generation
WO2015118552A1 (en) 2014-02-10 2015-08-13 Stratasys Ltd. Composition and method for additive manufacturing of an object
US9747394B2 (en) 2014-03-18 2017-08-29 Palo Alto Research Center Incorporated Automated design and manufacturing feedback for three dimensional (3D) printability
JP2015174427A (en) 2014-03-18 2015-10-05 セイコーエプソン株式会社 Three-dimensional shaped object production apparatus, three-dimensional shaped object production method, and three-dimensional shaped object
US20140236773A1 (en) 2014-04-16 2014-08-21 Madison A. Hamilton 3D Printer Based Product Delivery System and Methods
WO2015175651A1 (en) 2014-05-13 2015-11-19 Massachusetts Institute Of Technology Systems, devices, and methods for three-dimensional printing
US9311131B2 (en) 2014-08-04 2016-04-12 International Business Machines Corporation Monitoring and dynamically reconfiguring virtual machine patterns
CN104210110B (en) 2014-09-17 2016-10-05 北京智谷技术服务有限公司 3D prints householder method, device and 3D printing device
CN107000321A (en) 2014-10-01 2017-08-01 瑞尼斯豪公司 Increasing material manufacturing apparatus and method
CN106794633A (en) 2014-10-01 2017-05-31 惠普发展公司有限责任合伙企业 For the control data of the production of three-dimensional body
US20160096326A1 (en) 2014-10-03 2016-04-07 Tyco Electronics Corporation Selective zone temperature control build plate
US20160096327A1 (en) 2014-10-03 2016-04-07 Tyco Electronics Corporation Apparatus and method for producing objects utilizing three-dimensional printing
JP2016083774A (en) 2014-10-21 2016-05-19 株式会社ソディック Laminate molding apparatus
KR101655818B1 (en) 2014-12-11 2016-09-08 현대자동차주식회사 Wearable glass, control method thereof and vehicle control system
WO2016109012A1 (en) 2014-12-31 2016-07-07 Bridgestone Americas Tire Operations, Llc Methods and apparatuses for additively manufacturing rubber
JP6841769B2 (en) 2015-01-30 2021-03-10 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Detector that optically detects at least one object
DE102015207158A1 (en) 2015-04-20 2016-10-20 Eos Gmbh Electro Optical Systems Method and device for producing a three-dimensional object
DE102015213106A1 (en) 2015-07-13 2017-01-19 Eos Gmbh Electro Optical Systems Method and apparatus for building material metering in a generative manufacturing process
US10946588B2 (en) 2016-03-04 2021-03-16 President And Fellows Of Harvard University Systems and methods for automated nozzle design and 3D printing
US11027332B2 (en) 2016-04-15 2021-06-08 United States Of America As Represented By The Administrator Of Nasa System and method for in-situ characterization and inspection of additive manufacturing deposits using transient infrared thermography
JP6875835B2 (en) 2016-11-28 2021-05-26 株式会社ミマキエンジニアリング Three-dimensional model manufacturing equipment
US20180200791A1 (en) 2017-01-13 2018-07-19 General Electric Company Dynamically damped recoater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6799959B1 (en) * 1999-09-14 2004-10-05 Minolta Co., Ltd. Apparatus for forming a three-dimensional product
EP1452298A1 (en) * 2003-02-28 2004-09-01 Hewlett-Packard Development Company, L.P. Methods and systems for producing an object through solid freeform fabrication using immiscible fluids
WO2006091842A1 (en) * 2005-02-25 2006-08-31 Hewlett-Packard Development Company, L.P. Core-shell solid freeform fabrication method and apparatus
WO2008151063A2 (en) * 2007-05-31 2008-12-11 Milton Meisner High definition versatile stereolithic method and material
WO2013030064A1 (en) * 2011-08-26 2013-03-07 Swerea Ivf Ab Layered manufacturing of free-form multi-material micro-components

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016165747A1 (en) * 2015-04-14 2016-10-20 Hewlett-Packard Development Company L.P. Marking build material
EP3271146A4 (en) * 2015-05-15 2018-12-05 Hewlett-Packard Development Company, L.P. Coalescing agent concentrations and contone densities for three-dimensional objects
US11338507B2 (en) 2015-05-15 2022-05-24 Hewlett-Packard Development Company, L.P. Coalescing agent concentrations and contone densities for three-dimensional objects
US10974322B2 (en) 2015-07-31 2021-04-13 Hewlett-Packard Development Company, L.P. Photonic fusing
EP3271153A4 (en) * 2015-07-31 2018-12-05 Hewlett-Packard Development Company, L.P. Photonic fusing
CN105057669B (en) * 2015-08-17 2017-05-03 王海英 Three-dimensional printing device and composite spraying head thereof
CN105057669A (en) * 2015-08-17 2015-11-18 王海英 Three-dimensional printing device and composite spraying head thereof
EP3368276A4 (en) * 2015-10-30 2019-06-12 Hewlett-Packard Development Company, L.P. Three-dimensional object generation parameter descriptions
US11222153B2 (en) 2015-10-30 2022-01-11 Hewlett-Packard Development Company, L.P. Three-dimensional object generation parameter descriptions
CN108025503A (en) * 2015-10-30 2018-05-11 惠普发展公司,有限责任合伙企业 Three-dimensional body generation parameter description
WO2017086995A1 (en) 2015-11-20 2017-05-26 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing
CN108136673A (en) * 2015-11-20 2018-06-08 惠普发展公司,有限责任合伙企业 It is three-dimensional(3D)Printing
US10759085B2 (en) 2015-11-20 2020-09-01 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing
EP3337651A4 (en) * 2015-11-20 2019-03-06 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing
WO2017163834A1 (en) * 2016-03-23 2017-09-28 コニカミノルタ株式会社 Powder material and method for producing three-dimensional model
US20210237363A1 (en) * 2016-03-24 2021-08-05 Hewlett-Packard Development Company, L.P. Accuracy improvement and surface finishing using fusing agent and detailing agent
US11020905B2 (en) * 2016-03-24 2021-06-01 Hewlett-Packard Development Company, L.P. Accuracy improvement and surface finishing using fusing agent and detailing agent
US20190091936A1 (en) * 2016-03-24 2019-03-28 Hewlett-Packard Development Company, L.P. Accuracy improvement and surface finishing using fusing agent and detailing agent
US11639032B2 (en) 2016-03-24 2023-05-02 Hewlett-Packard Development Company, L.P. Accuracy improvement and surface finishing using fusing agent and detailing agent
JP2019507691A (en) * 2016-04-28 2019-03-22 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. 3D printing
EP3448655A4 (en) * 2016-04-28 2019-12-11 Hewlett-Packard Development Company, L.P. 3-dimensional printing
KR20180099847A (en) * 2016-04-28 2018-09-05 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Three-dimensional printing
KR102142253B1 (en) * 2016-04-28 2020-08-07 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 3-dimensional printing
US11427725B2 (en) 2016-04-28 2022-08-30 Hewlett-Packard Development Company, L.P. Photoluminescent material sets
US11241828B2 (en) 2016-04-28 2022-02-08 Hewlett-Packard Development Company, L.P. 3-dimensional printing
US11465341B2 (en) 2016-04-28 2022-10-11 Hewlett-Packard Development Company, L.P. 3-dimensional printed parts
US10647053B2 (en) 2016-05-12 2020-05-12 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing
EP3455055A4 (en) * 2016-05-12 2020-01-08 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing
KR20190039664A (en) * 2016-05-12 2019-04-15 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 3D printing heat sink
EP3426467A4 (en) * 2016-05-12 2019-11-20 Hewlett-Packard Development Company, L.P. 3d printing heat sinks
US11220061B2 (en) 2016-05-12 2022-01-11 Hewlett-Packard Development Company, L.P. 3D print definition procedures
CN109070464A (en) * 2016-05-12 2018-12-21 惠普发展公司,有限责任合伙企业 3D printing definition procedure
US11179894B2 (en) 2016-05-12 2021-11-23 Hewlett-Packard Development Company, L.P. Managing thermal contributions between layers during additive manufacturing
US11155029B2 (en) 2016-05-12 2021-10-26 Hewlett-Packard Development Company, L.P. Three dimensional (3D) printing using fusing and detailing agents
EP3429828A4 (en) * 2016-05-12 2019-05-29 Hewlett-Packard Development Company, L.P. Three dimensional (3d) printing
WO2017196353A1 (en) 2016-05-12 2017-11-16 Hewlett-Packard Development Company, L.P. Three dimensional (3d) printing
WO2017194126A1 (en) * 2016-05-12 2017-11-16 Hewlett-Packard Development Company, L P 3d print definition procedures
KR102207405B1 (en) 2016-05-12 2021-01-26 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 3D printing heat sink
WO2017196330A1 (en) 2016-05-12 2017-11-16 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing
EP3445516A1 (en) * 2016-07-26 2019-02-27 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing
EP3445516A4 (en) * 2016-07-26 2019-12-11 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing
US11167374B2 (en) 2016-07-26 2021-11-09 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing
CN106426946A (en) * 2016-10-13 2017-02-22 河南龙璟科技有限公司 Real-time visual 3D printing device
JP2020514115A (en) * 2017-01-18 2020-05-21 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Deviation control in additive manufacturing
EP3625031A4 (en) * 2017-07-10 2021-01-13 Hewlett-Packard Development Company, L.P. Temperature control in 3d object formation
US11511479B2 (en) 2017-07-10 2022-11-29 Hewlett-Packard Development Company, L.P. Temperature control in 3D object formation
WO2019013751A1 (en) * 2017-07-10 2019-01-17 Hewlett-Packard Development Company, L.P. Temperature control in 3d object formation
WO2019125449A1 (en) * 2017-12-20 2019-06-27 Hewlett-Packard Development Company, L.P. Additive manufacturing devices and methods
WO2020127830A1 (en) 2018-12-19 2020-06-25 L'oreal Applicator for applying a cosmetic product to the eyelashes and/or eyebrows
WO2020127741A1 (en) 2018-12-19 2020-06-25 L'oreal Applicator for applying a cosmetic product to eyelashes and/or eyebrows
WO2020127845A1 (en) 2018-12-19 2020-06-25 L'oreal Application device for applying a cosmetic product to the eyelashes and/or eyebrows
WO2020127799A1 (en) 2018-12-19 2020-06-25 L'oreal Method for generating a digital model of a cosmetic product applicator
FR3090298A1 (en) 2018-12-19 2020-06-26 L'oreal Applicator for applying a cosmetic product (F) to the eyelashes and / or eyebrows.
WO2020127727A1 (en) 2018-12-19 2020-06-25 L'oreal Applicator comprising an open-branch application member
WO2020127756A1 (en) 2018-12-19 2020-06-25 L'oreal Applicator for applying a cosmetic product to eyelashes and/or eyebrows
FR3090296A1 (en) 2018-12-19 2020-06-26 L'oreal Applicator for applying a cosmetic product to the eyelashes and / or eyebrows.
WO2020127826A1 (en) 2018-12-19 2020-06-25 L'oreal Applicator comprising an applicator member produced by additive manufacturing
WO2020127707A1 (en) 2018-12-19 2020-06-25 L'oreal Spiral cosmetic applicator
FR3090299A1 (en) 2018-12-19 2020-06-26 L'oreal Applicator comprising an application member produced by additive synthesis
FR3090297A1 (en) 2018-12-19 2020-06-26 L'oreal Spiral cosmetic applicator
FR3090301A1 (en) 2018-12-19 2020-06-26 L'oreal Applicator comprising an application member with open branch
FR3090294A1 (en) 2018-12-19 2020-06-26 L'oreal Applicator for applying a cosmetic product to the eyelashes and / or eyebrows
FR3090295A1 (en) 2018-12-19 2020-06-26 L'oreal Method for generating a digital model of cosmetic product applicator
FR3090300A1 (en) 2018-12-19 2020-06-26 L'oreal Applicator for applying a cosmetic product to the eyelashes and / or eyebrows.
WO2021107917A1 (en) * 2019-11-25 2021-06-03 Hewlett-Packard Development Company, L.P. Additive manufacturing with uniform property distributions
WO2023149874A1 (en) * 2022-02-02 2023-08-10 Hewlett-Packard Development Company, L.P. Additive manufacturing with fusing and warming energy sources
US11981075B2 (en) 2022-08-19 2024-05-14 Hewlett-Packard Development Company, L.P. 3-dimensional printed parts

Also Published As

Publication number Publication date
KR101872628B1 (en) 2018-06-28
TW201536533A (en) 2015-10-01
RU2650167C2 (en) 2018-04-09
KR20180073709A (en) 2018-07-02
DK3094469T3 (en) 2019-12-16
US20160339636A1 (en) 2016-11-24
EP3094469A1 (en) 2016-11-23
JP2018138389A (en) 2018-09-06
CN105916663B (en) 2019-03-05
ES2949385T3 (en) 2023-09-28
GB2537545B (en) 2020-09-23
US20190299535A1 (en) 2019-10-03
JP6302077B2 (en) 2018-03-28
GB201612116D0 (en) 2016-08-24
GB2538410A (en) 2016-11-16
US11679560B2 (en) 2023-06-20
RU2016133260A (en) 2018-02-21
GB201611663D0 (en) 2016-08-17
RU2018110566A3 (en) 2019-02-27
CN110640948A (en) 2020-01-03
RU2018110358A (en) 2019-02-27
US20180339458A1 (en) 2018-11-29
GB201611666D0 (en) 2016-08-17
US10625468B2 (en) 2020-04-21
RU2692342C2 (en) 2019-06-24
BR112016016401B1 (en) 2021-02-23
ES2761249T3 (en) 2020-05-19
TWI609792B (en) 2018-01-01
CN110640948B (en) 2022-01-25
US10518476B2 (en) 2019-12-31
JP2018134866A (en) 2018-08-30
EP3626434A1 (en) 2020-03-25
GB2538420A (en) 2016-11-16
EP3094469B1 (en) 2019-11-13
RU2018110566A (en) 2019-02-27
JP6580749B2 (en) 2019-09-25
RU2693131C2 (en) 2019-07-01
CN108437470A (en) 2018-08-24
KR20160098432A (en) 2016-08-18
HUE046415T2 (en) 2020-03-30
GB2538410B (en) 2020-06-03
JP2017510475A (en) 2017-04-13
GB2537545A (en) 2016-10-19
RU2018110358A3 (en) 2019-02-27
KR101971413B1 (en) 2019-04-22
JP6591584B2 (en) 2019-10-16
CN105916663A (en) 2016-08-31
DE112014006198T5 (en) 2016-10-27
GB2538420B (en) 2019-01-30
CN108437470B (en) 2021-01-08
MX2016009139A (en) 2017-03-06

Similar Documents

Publication Publication Date Title
US11679560B2 (en) Generating a three-dimensional object
US11059231B2 (en) Generating three-dimensional objects
US11097472B2 (en) Generating three-dimensional objects
US10800153B2 (en) Generating three-dimensional objects
US10730237B2 (en) Generating a three-dimensional object
US20180071988A1 (en) Three-dimensional printing systems
US11014306B2 (en) Generating three-dimensional objects with target surface roughness
JP6546306B2 (en) Generation of three-dimensional object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14702207

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014702207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014702207

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016546466

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/009139

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20167018991

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15112132

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006198

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2016133260

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016016401

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016016401

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160714