WO2015106507A1 - 液晶透镜及三维显示装置 - Google Patents

液晶透镜及三维显示装置 Download PDF

Info

Publication number
WO2015106507A1
WO2015106507A1 PCT/CN2014/076869 CN2014076869W WO2015106507A1 WO 2015106507 A1 WO2015106507 A1 WO 2015106507A1 CN 2014076869 W CN2014076869 W CN 2014076869W WO 2015106507 A1 WO2015106507 A1 WO 2015106507A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
liquid crystal
electrodes
crystal lens
substrate
Prior art date
Application number
PCT/CN2014/076869
Other languages
English (en)
French (fr)
Inventor
吴坤
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/429,514 priority Critical patent/US9638964B2/en
Publication of WO2015106507A1 publication Critical patent/WO2015106507A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Definitions

  • Liquid crystal lens and three-dimensional display device Liquid crystal lens and three-dimensional display device
  • Embodiments of the present invention relate to a liquid crystal lens and a three-dimensional (3D) display device. Background technique
  • the display device for realizing the eye 3D display includes a liquid crystal display panel and a barrier such as a barrier barrier or a liquid crystal lens provided in front of the display panel.
  • a barrier such as a barrier barrier or a liquid crystal lens provided in front of the display panel.
  • the grating barrier or liquid crystal lens forms a plurality of fields of view in front of the display panel, causing the light emitted by the different sub-pixel units on the display panel to fall within different fields of view.
  • the viewer's eyes are located in different fields of view, receive different images and produce a 3D sensation in the viewer's brain.
  • the principle of the liquid crystal lens utilizes the birefringence characteristics of the liquid crystal molecules and the characteristics of the arrangement of the electric field distribution to focus or diverge the light beam, and by controlling the arrangement direction of the liquid crystal molecules by changing the voltage, an effective optical zoom effect can be achieved in a small space.
  • the liquid crystal lens includes a plurality of lens units that are parallel and adjacent to each other, each of which diverges or converges light rays from a left field of view of the display panel and light rays of a right field of view.
  • Each lens unit corresponds to two adjacent columns of sub-pixel units on the display panel, wherein one column of sub-pixel units displays an image corresponding to the left field of view, and the other column of sub-pixel units displays an image corresponding to the right field of view.
  • the liquid crystal lens includes: a first substrate and a second substrate disposed opposite to each other, a liquid crystal layer between the first substrate and the second substrate, and a first substrate and a second substrate are respectively disposed on a side close to the liquid crystal layer Electrode and second electrode. Summary of the invention
  • At least one embodiment of the present invention provides a liquid crystal lens and a three-dimensional display device for eliminating moiré defects when a liquid crystal lens realizes three-dimensional image display.
  • a liquid crystal lens includes: a first substrate and a second substrate disposed opposite to each other, a liquid crystal layer between the first substrate and the second substrate, and at least one of the first substrate and the second substrate
  • a plurality of strip electrodes that are parallel to each other are disposed adjacent to one side of the liquid crystal layer.
  • At least one of the strip electrodes includes a plurality of strip-shaped sub-electrodes connected end to end, and an extension of each of the strip-shaped sub-electrodes The direction is at an angle set to the direction in which the strip electrodes extend.
  • At least one embodiment of the present invention provides a three-dimensional display device including a display panel and a liquid crystal lens on a light exiting side of the display panel.
  • the display panel includes a pixel array;
  • the liquid crystal lens includes: a first substrate and a second substrate disposed opposite to each other, a liquid crystal layer between the first substrate and the second substrate, and at least a first substrate and a second substrate a plurality of mutually parallel strip electrodes arranged on a side of the liquid crystal layer, wherein the strip electrodes extend in a direction parallel to a row direction or a column direction of the pixel array in the display panel; at least one of the strip electrodes includes a plurality of The angle between the first and the last.
  • FIG. 1 is a schematic structural view of a strip electrode in a liquid crystal lens
  • FIG. 2 is a schematic view showing the structure of a strip electrode in a liquid crystal lens
  • FIG. 3 is a schematic view showing a lead structure of a strip electrode in a liquid crystal lens
  • FIG. 4 is a schematic cross-sectional view showing a liquid crystal lens when no voltage is applied, according to at least one embodiment of the present invention.
  • Figure 5 is a top plan view of the strip electrode shown in Figure 4.
  • Figure 6 is a partially enlarged schematic view showing the strip electrode shown in Figure 5;
  • FIG. 7 is a schematic structural view of a strip electrode of a strip electrode and a strip electrode according to at least one embodiment of the present invention.
  • FIG. 9 is a schematic structural view showing one of arrangement manners of strip electrodes according to at least one embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a second embodiment of a strip electrode according to at least one embodiment of the present invention.
  • FIG. 11 is a structural diagram of a third embodiment of a strip electrode according to at least one embodiment of the present invention. Schematic diagram
  • FIG. 12 is a schematic structural diagram of a three-dimensional display device according to at least one embodiment of the present invention. detailed description
  • a 3D display device includes a display panel and a liquid crystal lens disposed in front of the display panel.
  • the first electrode and the second electrode respectively disposed on one side of the first substrate and the second substrate of the liquid crystal lens adjacent to the liquid crystal layer are a plurality of strip electrodes 100 arranged in parallel with each other as shown in FIG. 1; each strip electrode 100
  • the outer shape of the strip electrode 100 is parallel to the black matrix distributed in the row direction or the column direction of the display panel 20.
  • the strip electrodes 100 of the liquid crystal lens may be disposed at an angle with the black matrix distributed in the row direction or the column direction of the display panel 20, as shown in FIG.
  • the lengths of the strip electrodes 100 become different from each other, which results in signal delay between the different strip electrodes 100, which seriously affects the display effect of 3D.
  • the arrangement of the leads 200 corresponding to the strip electrodes 100 shown in FIG. 2 inevitably has intersecting regions, and all the leads 200 cannot be completed in one patterning process, resulting in FIG.
  • the fabrication process of the lead 200 of the strip electrode 100 shown is relatively complicated.
  • At least one embodiment of the present invention provides a liquid crystal lens and a three-dimensional display device for eliminating moiré defects existing when a liquid crystal lens realizes three-dimensional image display.
  • the liquid crystal lens comprises: a first substrate 1 and a second substrate 2 disposed opposite to each other, a liquid crystal layer 3 between the first substrate 1 and the second substrate 2, and at least one of the first substrate 1 and the second substrate 2 A plurality of strip electrodes 5 which are distributed in parallel with each other near the liquid crystal layer 3 side.
  • the liquid crystal lens package A plurality of lens units are included, and each lens unit may correspond to two strip electrodes, or may correspond to two or more strip electrodes.
  • a first electrode 4 is disposed on the first substrate 1, and a second electrode 5 is disposed on the second substrate 2.
  • the second electrode 5 is disposed in parallel with each other.
  • the strip electrode, the first electrode 4 is a plate electrode.
  • the plate electrode is in the form of a flat plate covering the entire surface of the substrate 1 or a surface of a region i or.
  • the liquid crystal lens shown in Fig. 4 is only used to explain the strip electrodes, and is not intended to limit the specific structure of the liquid crystal lens. That is, the first electrode 4 shown in Fig. 4 is not limited to a plate shape, and may be strip-shaped.
  • the second electrode 5 is not limited to a strip shape and may have a plate shape.
  • one of the first electrode and the second electrode is a plate electrode, and the other is a strip electrode.
  • the electrode strips on the upper and lower sides of the liquid crystal layer may be disposed opposite to each other.
  • Fig. 5 is a schematic plan view showing an example of the strip electrode 5 shown in Fig. 4.
  • the extending direction of the strip electrodes 5 is parallel to the row direction or the column direction of the pixel array in the display panel 6.
  • the line segment with arrows is the extending direction of the strip electrodes 5.
  • the extending direction of the strip electrode 5 may be parallel to the long side or the short side of the liquid crystal lens.
  • Fig. 6 is a partially enlarged schematic view of the strip electrode 5.
  • the exemplary strip electrode 5 includes a plurality of strip-shaped sub-electrodes 51 connected end to end, and each strip-shaped sub-electrode 51 extends in a direction at a predetermined angle ⁇ with the extending direction of the strip-shaped electrodes 5.
  • the angle ⁇ is an acute angle.
  • the line segment with the arrow is the extending direction of the strip electrode 5, which is also the column direction of the pixel array of the display panel.
  • the dotted line indicates the direction in which the strip-shaped sub-electrodes extend.
  • each strip-shaped sub-electrode 51 in the extending direction of the strip electrode 5 is, for example, equal to the length of one sub-pixel of the liquid crystal panel or the sum of the lengths of a plurality of (for example, two) sub-pixels. .
  • the extending direction of the strip electrodes 5 is parallel to the row direction or the column direction of the pixel array in the display panel, and the distribution of the black matrix is displayed at this time.
  • the row direction and the column direction of the pixel array in the panel, that is, the extending direction of the strip electrodes 5 is parallel to the row direction or the column direction of the black matrix in the display panel.
  • the strip electrode 5 includes a plurality of strip-shaped sub-electrodes connected to each other, and each strip-shaped sub-electrode 51 has a set angle ⁇ with respect to the row direction or the column direction of the black matrix.
  • the gap between the black matrix and the strip electrodes is no longer constant, but becomes irregular (uneven), thus, between the black matrix and the strip electrodes Diffraction and/or interference phenomena are attenuated or eliminated, thereby attenuating or eliminating moiré defects in the three-dimensional display device due to diffraction and/or interference.
  • the extending direction of the strip electrodes 5 is parallel to the row direction or the column direction of the pixel array in the display panel, which can achieve the same length and length of the strip electrodes, and solve the problem that the signal delays caused by the inconsistency of the strip electrodes are not equal. .
  • the strip electrodes 52 which are connected to the strip electrodes 5 according to at least one embodiment of the present invention, are regularly arranged, and the lead wires 52 do not need to be crossed, the arrangement structure is simple, and the patterning process can be performed once. Formed on the same film layer, the manufacturing process is simple.
  • the lengths of the strip-shaped sub-electrodes in each strip electrode are equal, that is, the strip-shaped sub-electrodes in each strip-shaped electrode are regularly arranged, so that a better three-dimensional display effect can be achieved.
  • each strip-shaped sub-electrode in each strip electrode is uniform or partially uniform.
  • the strip-shaped sub-electrodes 51 of the strip electrodes 5 shown in Figs. 5 and 6 extend in the same direction, i.e., extend in the same direction.
  • each strip-shaped sub-electrode 51 in the extending direction of the strip-shaped electrode 5 is, for example, equal to the length of one sub-pixel of the liquid crystal panel or the sum of the lengths of a plurality of (for example, two) sub-pixels. .
  • the set angle ⁇ may be 0 to 45°, and the angle ⁇ may be such that the extending direction of the strip-shaped sub-electrode 51 is substantially the same as the extending direction of the entire strip electrode 5.
  • set the angle ⁇ to be 12.53. , 18.43. 15.53°, at this time, the effect of the moiré defect of the three-dimensional display device due to diffraction and/or interference is weakened or eliminated.
  • the line connecting the center 0 of each strip sub-electrode 51 is parallel to the extending direction of the strip electrode 5, further ensuring that the strip electrodes are distributed in a straight line as a whole, that is, along the sub-pixel as a whole.
  • the sub-pixel has a regular rectangular shape, and the row direction or column direction of the sub-pixel is parallel to the long side or the short side of the sub-pixel.
  • the shape of the sub-pixel provided by some embodiments of the present invention is not limited to a rectangle, and may be a polygon or the like.
  • the strip electrodes are distributed in a direction parallel to the long sides of the sub-pixels in the display panel.
  • the strip electrodes are distributed in a direction parallel to the short sides of the sub-pixels in the display panel.
  • the display panel 6 includes a pixel array including a plurality of sub-pixels 61 arranged in rows and columns, and a region covered by each of the sub-pixels 61 has a rectangular shape.
  • a black matrix 100 is disposed between each sub-pixel.
  • the black matrix 100 includes opaque strips that intersect each other in the direction of the rows and columns, and these opaque strips define an open area for display.
  • the strip electrodes 5 in the liquid crystal lens 7 are distributed in a direction parallel to the long sides of the sub-pixels 61 in the display panel; or the strip electrodes 5 are distributed in a direction parallel to the short sides of the sub-pixels 61 in the display panel 6.
  • the strip electrodes 5 shown in Fig. 9 are distributed in a direction parallel to the long sides of the sub-pixels 61 in the display panel.
  • each sub-pixel 61 of the display panel corresponds to the length of the sub-pixel 61 of the liquid crystal lens.
  • each sub-pixel 61 of the display panel corresponds to three strip electrodes of the liquid crystal lens; between each sub-pixel of the display panel and the strip electrode of the liquid crystal lens in the embodiment of the present invention
  • the correspondence relationship is not limited to the case shown in FIGS. 9 and 10.
  • each strip sub-electrode 51 is located in an area corresponding to one or more sub-pixels.
  • each of the strip-shaped sub-electrodes 51 covers one or a plurality of sub-pixels 61 adjacent to each other in the orthographic projection of the display panel, that is, each strip-shaped sub-electrode 51 is from one side of one sub-pixel 61. Extending to the other side of the sub-pixel or to the other side of the plurality of sub-pixels that are sequentially adjacent.
  • the electrode structure shown in Figs. 9 and 10 corresponds to one sub-pixel 51 for each strip sub-electrode 51.
  • the electrode structure shown in Fig. 11 corresponds to each of the sub-pixels 51 and the two sub-pixels.
  • Fig. 11 is only an embodiment, and an example in which each strip-shaped sub-electrode 51 covers a plurality of sub-pixels 61 adjacent in sequence in the orthographic projection of the display panel is not illustrated.
  • the strip electrodes 5 are distributed in a direction parallel to the long sides of the sub-pixels 61 in the display panel; or the strip electrodes 5 are shorter along the sub-pixels 61 in the display panel 6.
  • the sides are distributed in parallel directions. Since the long side and the short side of the sub-pixel 61 are respectively associated with a pixel row or a pixel column Parallel, the distribution of the black matrix is along the row direction and the column direction of the pixel array in the display panel.
  • the extending direction of the strip electrodes 5 is parallel to the row direction or the column direction of the black matrix in the display panel, and each strip sub-electrode 51 and the black matrix There is a set angle ⁇ in the row direction or the column direction, and the gap between the black matrix and the strip electrodes in the extending direction is irregular. Therefore, the diffraction and/or interference phenomenon between the black matrix and the strip electrodes is attenuated or eliminated, which in turn reduces or eliminates the moiré defects of the three-dimensional display device due to diffraction and/or interference.
  • FIG. 12 is a cross-sectional view showing the structure of a three-dimensional display device according to at least one embodiment of the present invention.
  • the three-dimensional display device includes a display panel 6 and a liquid crystal lens 7 on the light exit side of the display panel.
  • the liquid crystal lens 7 is a liquid crystal lens of any of the modes described in the above embodiments.
  • the display panel is, for example, a liquid crystal display panel, an organic light emitting diode display panel or the like.
  • the liquid crystal display panel is, for example, an in-plane switch (IPS) type, a fringe field switch (FFS) type, a super-dimensional switch (ADS) type, a twisted nematic (TN) type, or the like.
  • the arrows in Figure 12 indicate light.
  • the display device can be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the three-dimensional display device provided with the liquid crystal lens provided by the embodiment of the invention can reduce or eliminate the moiré defect of the three-dimensional display device caused by diffraction and interference, and can also avoid the signal delay caused by the difference between the strip electrodes.
  • the problem is to achieve higher quality 3D image display.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶透镜及三维显示装置。该液晶透镜(7)包括:相对设置的第一基板(1)和第二基板(2),位于第一基板(1)和第二基板(2)之间的液晶层(3),以及位于第一基板(1)和第二基板(2)至少之一上靠近液晶层(3)一侧的多个相互平行分布的条状电极(5)。条状电极(5)包括多个首尾依次相连的条状子电极,每一条状子电极的延伸方向与条状电极(5)的延伸方向呈设定夹角。该液晶透镜用于实现液晶透镜中电极之间信号延迟相等且摩尔纹现象较少或不存在。

Description

液晶透镜及三维显示装置 技术领域
本发明的实施例涉及一种液晶透镜及三维(3D )显示装置。 背景技术
实现棵眼 3D显示的显示装置包括液晶显示面板和在显示面板的前方设 置的光栅屏障 (Barrier )或液晶透镜等遮蔽物。 在显示过程中, 光栅屏障或 液晶透镜在显示面板的前面形成若干视场, 使显示面板上不同子像素单元发 出的光射落在不同的视场内。 观看者的双眼分别位于不同视场内, 接受到不 同的图像并在观看者大脑内产生 3D感觉。
液晶透镜的原理利用了液晶分子双折射特性以及随电场分布变化排列的 特性来使光束聚焦或发散, 通过改变电压来控制液晶分子的排列方向, 可以 在小空间内实现有效的光学变焦效果。
液晶透镜包括多个相互平行且邻接的透镜单元, 每个所述透镜单元对来 自显示面板左视场的光线和右视场的光线起发散或汇聚作用。 每一透镜单元 与显示面板上的相邻两列子像素单元对应, 其中一列子像素单元显示与左视 场对应的图像, 另一列子像素单元显示与右视场对应的图像。 一般地, 液晶 透镜包括: 相对设置的第一基板和第二基板, 位于第一基板和第二基板之间 的液晶层, 第一基板和第二基板靠近液晶层的一侧分别设置有第一电极和第 二电极。 发明内容
本发明至少一个实施例提供了一种液晶透镜及三维显示装置, 用以消除 液晶透镜实现三维图像显示时存在摩尔纹不良。
本发明至少一个实施例提供的液晶透镜包括: 相对设置的第一基板和第 二基板, 位于第一基板和第二基板之间的液晶层, 以及位于第一基板和第二 基板至少之一上靠近液晶层一侧的多个相互平行分布的条状电极。 至少一个 所述条状电极包括多个首尾依次相连的条状子电极, 每一条状子电极的延伸 方向与所述条状电极的延伸方向呈设定夹角。
本发明的至少一个实施例提供一种三维显示装置, 其包括显示面板以及 位于所述显示面板出光侧的液晶透镜。 所述显示面板包括像素阵列; 所述液 晶透镜包括: 相对设置的第一基板和第二基板, 位于第一基板和第二基板之 间的液晶层, 以及位于第一基板和第二基板至少之一上靠近液晶层一侧的多 个相互平行分布的条状电极, 所述条状电极的延伸方向与显示面板中像素阵 列的行方向或列方向平行; 至少一个所述条状电极包括多个首尾依次相连的 夹角。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为一种液晶透镜中的条状电极结构示意图之一;
图 2为一种液晶透镜中的条状电极结构示意图之二;
图 3为一种液晶透镜中的条状电极的引线结构示意图;
图 4为本发明至少一个实施例提供的未施加电压时的液晶透镜截面示意 图;
图 5为图 4所示的条状电极的俯视示意图;
图 6为图 5所示的条状电极的局部放大示意图;
图 7为本发明至少一个实施例提供的条状电极以及条状电极的引线排布 的结构示意图; 置结构示意图;
图 9为本发明至少一个实施例提供的条状电极的设置方式之一的结构示 意图;
图 10 为本发明至少一个实施例提供的条状电极的设置方式之二的结构 示意图;
图 11 为本发明至少一个实施例提供的条状电极的设置方式之三的结构 示意图;
图 12为本发明至少一个实施例提供的三维显示装置结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图, 对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
一种 3D显示装置包括显示面板和设置在显示面板前方的液晶透镜。 该 液晶透镜的第一基板和第二基板靠近液晶层的一侧分别设置的第一电极和第 二电极为如图 1所示的多个相互平行排列的条状电极 100;每一条状电极 100 的外形呈矩形状,各条状电极 100与显示面板 20中沿行方向或列方向分布的 黑矩阵平行。 在进行图像显示时, 来自液晶面板的背光源或外界光源的光线 透过各条状电极 100时, 相互平行分布的黑矩阵和条状电极 100之间会出现 狭缝衍射现象, 显示面板上会出现摩尔纹现象, 所述黑矩阵和条状电极 100 之间的平行度越高, 摩尔纹现象越明显。
为了解决上述显示面板在显示过程中出现摩尔纹现象, 可将液晶透镜的 条状电极 100设置为与显示面板 20沿行方向或列方向分布的黑矩阵具有一定 夹角, 如图 2所示。 针对呈矩形状显示面板, 各条状电极 100的长度变得彼 此不等, 这导致不同条状电极 100之间具有信号延迟, 严重影响 3D的显示 效果。 另外, 如图 3所示, 与图 2所示的条状电极 100——对应相连的引线 200的排布无法避免地存在交叉的区域, 所有引线 200无法在一次构图工艺 中完成, 导致图 2所示的条状电极 100的引线 200的制作过程较复杂。
本发明至少一个实施例提供一种液晶透镜及三维显示装置, 用以消除液 晶透镜实现三维图像显示时存在的摩尔纹不良。
图 4为本发明至少一个实施例提供的未施加电压时的液晶透镜的截面示 意图。 该液晶透镜包括: 相对设置的第一基板 1和第二基板 2, 位于第一基 板 1和第二基板 2之间的液晶层 3, 以及位于第一基板 1和第二基板 2至少 之一上靠近液晶层 3—侧的多个相互平行分布的条状电极 5。 该液晶透镜包 括多个透镜单元, 每一个透镜单元可以对应两条条状电极, 也可以对应两条 以上的条状电极。
对于图 4所示的液晶透镜, 一种实施方式为: 在第一基板 1上设置有第 一电极 4,第二基板 2上设置第二电极 5,第二电极 5为多个相互平行分布的 条状电极, 第一电极 4为板状电极。 例如, 该板状电极为平板状, 覆盖基板 1的全部表面或某个区 i或的表面。
需要说明的是, 图 4所示的液晶透镜仅用于说明条状电极, 并不用于限 制液晶透镜的具体结构。 也就是说, 图 4所示的第一电极 4不限于为板状, 也可以为条状。 第二电极 5不限于条状也可以为板状。 例如, 第一电极和第 二电极之一为板状电极, 另一为条状电极。 当第一电极 4和第二电极 5均为 条状时, 则液晶层上下侧的电极条可以彼此相对设置。
图 5为图 4所示的条状电极 5的一个示例的俯视示意图。 条状电极 5的 延伸方向与显示面板 6中像素阵列的行方向或列方向平行; 如图 5所示, 带 箭头的线段为条状电极 5的延伸方向。 或者, 当液晶透镜整体的外形为矩形 (对应于显示面板的形状) 时, 条状电极 5的延伸方向可以与该液晶透镜的 长边或短边平行。
图 6为条状电极 5的局部放大示意图。 该示例性的条状电极 5包括: 多 个首尾依次相连的条状子电极 51, 每一条状子电极 51的延伸方向与条状电 极 5的延伸方向呈设定夹角 α。 例如, 该夹角 α为锐角。 如图 6所示, 带箭 头的线段为条状电极 5的延伸方向, 该延伸方向也为显示面板的像素阵列的 列方向。虚线段表示条状子电极的延伸方向。 这里,每个条状子电极 51在条 状电极 5延伸方向上的长度 h (如图 6所示)例如等于液晶面板的一个子像 素的长度或多个(例如两个)子像素的长度之和。
由图 4至图 6所示的液晶透镜截面及液晶透镜中的电极结构可知, 条状 电极 5的延伸方向与显示面板中像素阵列的行方向或列方向平行, 此时黑矩 阵的分布沿显示面板中像素阵列的行方向和列方向, 也就是说, 条状电极 5 的延伸方向与显示面板中黑矩阵的行方向或列方向平行。 条状电极 5包括多 个彼此连接的条状子电极,每一条状子电极 51与黑矩阵的行方向或列方向存 在设定夹角 α。 由此, 沿着延伸方向, 黑矩阵和条状电极之间的间隙不再是 不变的, 而是变得不规则 (不均匀) , 因此, 使得黑矩阵和条状电极之间的 衍射和 /或干涉现象减弱或消除, 进而减弱或消除因衍射和 /或干涉引起的三 维显示装置的摩尔纹不良。
另外, 例如, 条状电极 5的延伸方向与显示面板中像素阵列的行方向或 列方向平行, 这可以实现各条状电极长短一致, 解决了条状电极长短不一致 引起的信号延迟不相等的问题。
进一步地, 如图 7所示, 与本发明至少一个实施例提供的条状电极 5— 一对应相连的引线 52规律排布, 各引线 52无需交叉, 排布结构简单, 并且 可以通过一次构图工艺形成在同一膜层上, 因此制作工艺简单。
例如, 所述各条状电极中的条状子电极的长度相等, 即各条状电极中的 条状子电极规律排布, 可以实现更佳的三维显示效果。
例如, 每一条状电极中的各条状子电极的延伸方向一致或者部分一致。 例如,图 5和图 6所示的条状电极 5中的各条状子电极 51的延伸方向一 致, 即朝向同一方向延伸。
参见图 8, 为各条状子电极 51的延伸方向不完全一致的一个实施例。 图 8所示的条状电极 5中第奇数个条状子电极 51的延伸方向一致,第偶数个条 状子电极 51的延伸方向一致。 同样, 每个条状子电极 51在条状电极 5延伸 方向上的长度 h (如图 8所示)例如等于液晶面板的一个子像素的长度或多 个(例如两个)子像素的长度之和。
例如, 所述设定夹角 α可以为 0~45°, 该角度 α可以使得条状子电极 51 的延伸方向与整个条状电极 5的延伸方向大致相同。 例如, 设定夹角 α可以 选择为 12.53。、 18.43。、 15.53°, 此时减弱或消除了因衍射和 /或干涉引起的三 维显示装置的摩尔纹不良的效果较佳。
如图 8所示, 例如, 各条状子电极 51的中心 0的连线与条状电极 5的 延伸方向相平行, 进一步保证所述条状电极在整体上呈直线分布, 即整体上 沿子像素的行方向或列方向。
例如, 子像素的外形呈规则的矩形, 且子像素的行方向或列方向与所述 子像素的长边或短边平行。 本发明一些实施例提供的子像素的形状不限于为 矩形, 也可以为多边形等。
当子像素呈规则图形时, 例如所述条状电极沿与所述显示面板中子像素 的长边平行的方向分布。 例如,所述条状电极沿与所述显示面板中子像素的短边平行的方向分布。 参见图 9, 在一个实施例中, 显示面板 6包括像素阵列, 该像素阵列包 括多个呈行列分布的子像素 61, 每个子像素 61所覆盖的区域呈矩形状。 每 个子像素之间设置有黑矩阵 100。 该黑矩阵 100包括在行列方向上彼此交叉 的不透光条, 这些不透光条限定了用于显示的开口区域。
液晶透镜 7中的条状电极 5沿与显示面板中子像素 61的长边平行的方向 分布; 或者条状电极 5沿与显示面板 6中子像素 61的短边平行的方向分布。
例如,图 9所示的条状电极 5沿与显示面板中子像素 61长边平行的方向 分布。在图 9所示的实施例中,显示面板的每个子像素 61对应于液晶透镜的 子像素 61的长度。
例如, 图 10所示的条状电极 5沿与显示面板中子像素 61短边平行的方 向分布。 图 10中省略了黑矩阵,该实施例中黑矩阵仍然包括在行列方向上彼 此交叉的不透光条,这些不透光条限定了用于显示的开口区域。在图 10所示 的实施例中,显示面板的每个子像素 61对应于液晶透镜的三个条状电极;条 本发明的实施例中显示面板的每个子像素与液晶透镜的条状电极之间的对应 关系不限于图 9和图 10所示出的情形。
参见图 9或图 10所示, 每一条状子电极 51位于与一个或多个子像素对 应的区域。 当液晶透镜与显示面板组合为三维显示装置时, 每一条状子电极 51在显示面板为的正投影覆盖一个或依次相邻的多个子像素 61,即每一条状 子电极 51从一个子像素 61的一边延伸至该子像素的另一边或延伸至依次相 邻的多个子像素的另一边。
图 9和图 10所示的电极结构为每一条状子电极 51与一个子像素对应。 图 11所示的电极结构为每一条状子电极 51与两个子像素对应。 图 11 仅为一个实施例,每一条状子电极 51在显示面板为的正投影覆盖依次相邻的 多个子像素 61的例子不再图示。
由图 9至图 11所示条状电极结构可知,条状电极 5沿与显示面板中子像 素 61的长边平行的方向分布; 或者条状电极 5沿与显示面板 6中子像素 61 的短边平行的方向分布。由于子像素 61的长边和短边分别与像素行或像素列 平行, 黑矩阵的分布沿显示面板中像素阵列的行方向和列方向, 因此, 条状 电极 5的延伸方向与显示面板中黑矩阵的行方向或列方向平行, 每一条状子 电极 51与黑矩阵的行方向或列方向存在设定夹角 α,沿延伸方向黑矩阵和条 状电极之间的间隙不规则。 因此, 黑矩阵和条状电极之间的衍射和 /或干涉现 象减弱或消除,这进而减弱或消除了因衍射和 /或干涉引起的三维显示装置的 摩尔纹不良。
以下将具体说明本发明至少一个实施例提供的三维显示装置的具体结 构。
图 12为本发明至少一个实施例提供的三维显示装置结构截面示意图。该 三维显示装置包括显示面板 6以及位于显示面板出光侧的液晶透镜 7。
该液晶透镜 7为上述实施例提供的任一方式的液晶透镜。 该显示面板例 如为液晶显示面板、 有机发光二极管显示面板等。 该液晶显示面板例如为面 内开关(IPS )型、 边缘场开关(FFS )型、 超维开关(ADS )型、 扭转向列 ( TN )型等。
图 12中的箭头表示光线。该显示装置可以为:手机、平板电脑、 电视机、 显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
设置有本发明实施例提供的液晶透镜的三维显示装置, 可以减弱或消除 因衍射和干涉引起的三维显示装置的摩尔纹不良, 同时还可以避免因条状电 极之间长短不一引起信号延迟不等的问题, 实现更高品质的三维图像显示。
本申请要求于 2014年 1月 17日递交的中国专利申请第 201410022634.7 号的优先权, 在此全文引用上述中国专利申请公开的内容以作为本申请的一 部分。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
1、 一种液晶透镜, 包括:
相对设置的第一基板和第二基板,
位于第一基板和第二基板之间的液晶层, 以及
位于第一基板和第二基板至少之一上靠近液晶层一侧的多个相互平行分 布的条状电极,
其中, 至少一个所述条状电极包括多个首尾依次相连的条状子电极, 每
2、根据权利要求 1所述的液晶透镜, 其中, 所述条状电极中的各条状子 电极的长度相等。
3、根据权利要求 1或 2所述的液晶透镜, 其中, 所述各条状子电极的延 伸方向一致。
4、 根据权利要求 1-3 任一所述的液晶透镜, 其中, 所述设定夹角为 0。~45。。
5、根据权利要求 4所述的液晶透镜,其中,所述设定夹角为 18.43°、 15.53° 或 12.53°。
6、 根据权利要求 1-5任一所述的液晶透镜, 其中, 所述各条状子电极的 中心连线与所述条状电极的延伸方向相平行。
7、 根据权利要求 1-6任一所述的液晶透镜, 其中, 所述液晶透镜的外形 为矩形, 所述条状电极沿与所述液晶透镜的长边平行的方向分布。
8、 根据权利要求 1-6任一所述的液晶透镜, 其中, 所述液晶透镜的外形 为矩形, 所述条状电极沿与所述液晶透镜的短边平行的方向分布。
9、一种三维显示装置, 包括显示面板以及位于所述显示面板出光侧的液 曰曰
其中, 所述显示面板包括像素阵列,
所述液晶透镜包括: 相对设置的第一基板和第二基板, 位于第一基板和 第二基板之间的液晶层, 以及位于第一基板和第二基板至少之一上靠近液晶 层一侧的多个相互平行分布的条状电极,
所述条状电极的延伸方向与显示面板中像素阵列的行方向或列方向平 行;
至少一个所述条状电极包括多个首尾依次相连的条状子电极, 每一条状
10、 根据权利要求 9所述的三维显示装置, 其中, 所述条状电极中的各 条状子电极的长度相等。
11、根据权利要求 9或 10所述的三维显示装置, 其中, 所述各条状子电 极的延伸方向一致。
12、 根据权利要求 9-11任一所述的三维显示装置, 其中, 所述设定夹角 为 0~45。。
13、 根据权利要求 12 所述的三维显示装置, 其中, 所述设定夹角为 18.43°、 15.53°或 12.53。。
14、 根据权利要求 9-13任一所述的三维显示装置, 其中, 所述各条状子 电极的中心连线与所述条状电极的延伸方向相平行。
15、 根据权利要求 9-14任一所述的三维显示装置, 其中, 所述条状电极 沿与所述显示面板的像素阵列中的子像素的短边平行的方向分布。
16、 根据权利要求 9-14任一所述的三维显示装置, 其中, 所述条状电极 沿与所述显示面板的像素阵列中的子像素的长边平行的方向分布。
17、 根据权利要求 15或 16所述的三维显示装置, 其中, 所述每一条状 子电极位于与一个或多个子像素对应的区域内。
PCT/CN2014/076869 2014-01-17 2014-05-06 液晶透镜及三维显示装置 WO2015106507A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/429,514 US9638964B2 (en) 2014-01-17 2014-05-06 Liquid crystal lens and three-dimensional display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410022634.7A CN103777416B (zh) 2014-01-17 2014-01-17 一种液晶透镜及三维显示装置
CN201410022634.7 2014-01-17

Publications (1)

Publication Number Publication Date
WO2015106507A1 true WO2015106507A1 (zh) 2015-07-23

Family

ID=50569835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076869 WO2015106507A1 (zh) 2014-01-17 2014-05-06 液晶透镜及三维显示装置

Country Status (3)

Country Link
US (1) US9638964B2 (zh)
CN (1) CN103777416B (zh)
WO (1) WO2015106507A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013322130B2 (en) 2012-09-30 2017-03-09 Optica Amuka (A.A.) Ltd. Lenses with electrically-tunable power and alignment
US11126040B2 (en) 2012-09-30 2021-09-21 Optica Amuka (A.A.) Ltd. Electrically-tunable lenses and lens systems
CN103777416B (zh) * 2014-01-17 2017-11-24 京东方科技集团股份有限公司 一种液晶透镜及三维显示装置
ES2726005T3 (es) * 2014-06-05 2019-10-01 Optica Amuka A A Ltd Lentes dinámicas y método de fabricación de las mismas
CN104656337A (zh) * 2015-03-20 2015-05-27 京东方科技集团股份有限公司 一种液晶透镜及显示装置
CN106959528B (zh) * 2016-01-08 2023-09-19 京东方科技集团股份有限公司 一种显示装置
US11221500B2 (en) 2016-04-17 2022-01-11 Optica Amuka (A.A.) Ltd. Liquid crystal lens with enhanced electrical drive
CN105739212B (zh) * 2016-05-09 2018-10-16 京东方科技集团股份有限公司 光栅、显示装置及其驱动方法
CN105759528B (zh) * 2016-05-19 2019-01-18 京东方科技集团股份有限公司 显示面板组件、显示装置及其驱动方法
US11360330B2 (en) 2016-06-16 2022-06-14 Optica Amuka (A.A.) Ltd. Tunable lenses for spectacles
CN106773233B (zh) * 2016-12-12 2019-07-26 宁波万维显示科技有限公司 立体显示装置及切换单元
US11953764B2 (en) 2017-07-10 2024-04-09 Optica Amuka (A.A.) Ltd. Tunable lenses with enhanced performance features
US11747619B2 (en) 2017-07-10 2023-09-05 Optica Amuka (A.A.) Ltd. Virtual reality and augmented reality systems with dynamic vision correction
KR102056677B1 (ko) 2017-09-07 2019-12-17 엘지디스플레이 주식회사 배리어 패널을 포함하는 입체 영상 표시 장치
US11556012B2 (en) 2017-10-16 2023-01-17 Optica Amuka (A.A.) Ltd. Spectacles with electrically-tunable lenses controllable by an external system
KR20210066797A (ko) * 2018-08-29 2021-06-07 피씨엠에스 홀딩스, 인크. 모자이크 주기적 층에 기반한 광 필드 디스플레이를 위한 광학 방법 및 시스템
CN111443542A (zh) * 2020-05-06 2020-07-24 京东方科技集团股份有限公司 一种阵列基板、显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253563A (zh) * 2011-08-15 2011-11-23 南京中电熊猫液晶显示科技有限公司 一种视角优化的电驱动液晶透镜及其立体显示装置
CN102866528A (zh) * 2012-09-07 2013-01-09 深圳超多维光电子有限公司 显示装置
CN102902127A (zh) * 2012-05-23 2013-01-30 友达光电股份有限公司 电驱动液晶透镜面板与立体显示面板
US20130208196A1 (en) * 2012-02-09 2013-08-15 Samsung Display Co., Ltd. Liquid crystal lens panel and display apparatus having the same
CN103278958A (zh) * 2013-05-31 2013-09-04 易志根 一种液晶光栅及具有该液晶光栅的显示系统
CN103777416A (zh) * 2014-01-17 2014-05-07 京东方科技集团股份有限公司 一种液晶透镜及三维显示装置
CN203673193U (zh) * 2014-01-17 2014-06-25 京东方科技集团股份有限公司 一种液晶透镜及三维显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6671019B1 (en) * 1999-11-12 2003-12-30 Case Western Reserve University Electrode patterns for liquid crystal cells
JP4911167B2 (ja) * 2008-12-19 2012-04-04 ソニー株式会社 液晶パネル及び電子機器
CN102439516B (zh) * 2010-01-20 2013-01-23 深圳超多维光电子有限公司 扭曲向列液晶盒及包含该液晶盒的2d-3d立体显示装置
TWI439730B (zh) * 2010-07-16 2014-06-01 Au Optronics Corp 視差控制元件及其應用
US8817199B2 (en) * 2010-10-18 2014-08-26 Superd Co. Ltd. Twisted nematic (TN) based 3D display system and method
JP5659878B2 (ja) * 2011-03-07 2015-01-28 ソニー株式会社 表示装置およびその駆動方法、ならびにバリア装置およびその製造方法
WO2014054578A1 (ja) * 2012-10-03 2014-04-10 シャープ株式会社 液晶表示装置
US8953108B2 (en) * 2012-11-06 2015-02-10 Shenzhen China Star Optoelectronics Technology Co., Ltd Stereoscopic display apparatus and liquid crystal lens
CN102944961B (zh) * 2012-11-15 2016-03-30 深圳市华星光电技术有限公司 裸眼3d显示装置及其液晶透镜
US9176347B2 (en) * 2012-12-07 2015-11-03 Vastview Technology Inc. Lateral electric field type liquid crystal display device having non-uniform spacings between two electrodes
CN103926748B (zh) * 2013-06-28 2016-12-07 天马微电子股份有限公司 液晶透镜及其制作方法、立体显示装置及其制作方法
CN103645590B (zh) * 2013-12-12 2016-10-05 京东方科技集团股份有限公司 一种阵列基板及其制备方法、液晶显示装置
CN103913908A (zh) * 2013-12-25 2014-07-09 厦门天马微电子有限公司 电极结构、显示面板和显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253563A (zh) * 2011-08-15 2011-11-23 南京中电熊猫液晶显示科技有限公司 一种视角优化的电驱动液晶透镜及其立体显示装置
US20130208196A1 (en) * 2012-02-09 2013-08-15 Samsung Display Co., Ltd. Liquid crystal lens panel and display apparatus having the same
CN102902127A (zh) * 2012-05-23 2013-01-30 友达光电股份有限公司 电驱动液晶透镜面板与立体显示面板
CN102866528A (zh) * 2012-09-07 2013-01-09 深圳超多维光电子有限公司 显示装置
CN103278958A (zh) * 2013-05-31 2013-09-04 易志根 一种液晶光栅及具有该液晶光栅的显示系统
CN103777416A (zh) * 2014-01-17 2014-05-07 京东方科技集团股份有限公司 一种液晶透镜及三维显示装置
CN203673193U (zh) * 2014-01-17 2014-06-25 京东方科技集团股份有限公司 一种液晶透镜及三维显示装置

Also Published As

Publication number Publication date
US20160004128A1 (en) 2016-01-07
CN103777416B (zh) 2017-11-24
CN103777416A (zh) 2014-05-07
US9638964B2 (en) 2017-05-02

Similar Documents

Publication Publication Date Title
WO2015106507A1 (zh) 液晶透镜及三维显示装置
US9897816B2 (en) Glasses-free 3D liquid crystal display device and manufacturing method thereof
TWI472802B (zh) 顯示裝置
JP5596625B2 (ja) 表示装置
JP5877979B2 (ja) 回折素子を用いた映像表示装置
KR101370416B1 (ko) 입체영상 표시장치 및 그 제조 방법
JP5612646B2 (ja) 偏光メガネ方式の立体映像表示装置
WO2017020473A1 (zh) 三维显示装置及其显示方法
US9075241B2 (en) Liquid crystal lens and stereo display using the same
JP5039055B2 (ja) 切り替え可能な自動立体表示装置
TWI674440B (zh) 自動立體顯示裝置
TW201500805A (zh) 液晶透鏡、立體顯示裝置與其顯示方法
JP5612647B2 (ja) 偏光メガネ方式の立体映像表示装置
JP2014095900A (ja) 液晶スリット格子および立体表示装置
US10890810B2 (en) Display device and head-mounted display
JPWO2014196125A1 (ja) 画像表示装置及び液晶レンズ
JP6010375B2 (ja) 表示装置
US9316844B2 (en) 3D display apparatus and method for manufacturing the same
JP2013231745A (ja) 立体表示装置
WO2017049884A1 (zh) 一种阵列基板、曲面显示面板、曲面显示装置
WO2018223788A1 (zh) 彩膜基板、显示面板及显示装置
US20140085719A1 (en) Dipslay panel and display apparatus having the same
US9658483B2 (en) Liquid crystal lens and display including the same
TWI432782B (zh) 立體顯示器以及用於立體顯示器之切換面板
JP5816573B2 (ja) 液晶レンズ及び表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14429514

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.12.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14878445

Country of ref document: EP

Kind code of ref document: A1