WO2015104759A1 - シフト位置検出装置 - Google Patents

シフト位置検出装置 Download PDF

Info

Publication number
WO2015104759A1
WO2015104759A1 PCT/JP2014/006257 JP2014006257W WO2015104759A1 WO 2015104759 A1 WO2015104759 A1 WO 2015104759A1 JP 2014006257 W JP2014006257 W JP 2014006257W WO 2015104759 A1 WO2015104759 A1 WO 2015104759A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
shift position
link
detection element
shift lever
Prior art date
Application number
PCT/JP2014/006257
Other languages
English (en)
French (fr)
Inventor
野添 利幸
巧 大林
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015104759A1 publication Critical patent/WO2015104759A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K20/00Arrangement or mounting of change-speed gearing control devices in vehicles
    • B60K20/02Arrangement or mounting of change-speed gearing control devices in vehicles of initiating means
    • B60K20/04Arrangement or mounting of change-speed gearing control devices in vehicles of initiating means floor mounted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/0204Selector apparatus for automatic transmissions with means for range selection and manual shifting, e.g. range selector with tiptronic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • F16H59/10Range selector apparatus comprising levers
    • F16H59/105Range selector apparatus comprising levers consisting of electrical switches or sensors

Definitions

  • the present invention relates to a shift position detection device that detects the position of a shift lever.
  • the driver of the vehicle moves the shift lever of the vehicle in the shift direction or a select direction orthogonal to the shift direction in order to change the speed change or the driving mode of the vehicle.
  • some shift levers move two-dimensionally in the shift direction and the select direction.
  • the shift position detection device detects the position of the shift lever.
  • the shift position detecting device linearly moves in conjunction with the movement of the shift lever in the first direction and rotates in conjunction with the movement of the shift lever in the second direction.
  • FIG. 1 is an exploded perspective view of the shift position detecting device of the present embodiment.
  • FIG. 2 is a front view of the shift position detection apparatus of the present embodiment.
  • FIG. 3A is a cross-sectional view of the shift position detecting device of the present embodiment (cross-section 3-3 in FIG. 2).
  • FIG. 3B is an enlarged view of a portion B3 in FIG. 3A.
  • FIG. 4 is a layout diagram of detection bodies of the shift position detection apparatus of the present embodiment.
  • FIG. 5 is a front view of an object to be detected of the shift position detection apparatus of the present embodiment.
  • FIG. 6 is a perspective view of a shift box to which the shift position detection device of the present embodiment is attached.
  • FIG. 7A is a diagram illustrating a shift position of the shift lever.
  • FIG. 7A is a diagram illustrating a shift position of the shift lever.
  • FIG. 7B is a diagram for explaining the operation of the shift lever.
  • FIG. 7C is a diagram for explaining the operation of the shift lever.
  • FIG. 8A is a cross-sectional view of a shift lever box provided with a shift position detection device for explaining a shift position of the shift position detection device of the present embodiment.
  • FIG. 8B is an enlarged view of a portion A8 in FIG. 8A.
  • FIG. 9A is a cross-sectional view of a shift lever box provided with a shift position detection device for explaining a shift position of the shift position detection device of the present embodiment.
  • FIG. 9B is an enlarged view of a portion A9 in FIG. 9A.
  • FIG. 10A is a cross-sectional view of a shift lever box provided with a shift position detection device for explaining a shift position of the shift position detection device of the present embodiment.
  • FIG. 10B is an enlarged view of a portion A10 in FIG. 10A.
  • FIG. 11 is a perspective view of the shift position detection device for explaining the shift position of the shift position detection device of the present embodiment.
  • FIG. 12A is a perspective view of the shift position detection device for explaining the shift position of the shift position detection device of the present embodiment.
  • FIG. 12B is a perspective view of the shift position detection device for explaining the shift position of the shift position detection device of the present embodiment.
  • FIG. 12C is a perspective view of the shift position detection device for explaining the shift position of the shift position detection device of the present embodiment.
  • FIG. 13A is a perspective view of the shift position detection device for explaining the shift position of the shift position detection device of the present embodiment.
  • FIG. 13B is a perspective view of the shift position detection device for explaining the shift position of the shift position detection device of the present embodiment.
  • FIG. 13C is a perspective view of the shift position detection device for explaining the shift position of the shift position detection device of the present embodiment.
  • FIG. 14A is a diagram illustrating the relationship between the shift position, the detection object, and the detection object of the shift position detection device of the present embodiment.
  • FIG. 14B is a diagram illustrating the relationship between the shift position, the detection object, and the detection object of the shift position detection device of the present embodiment.
  • FIG. 14C is a diagram for explaining the relationship between the shift position, the detection object, and the detection object of the shift position detection device of the present embodiment.
  • FIG. 15 is an output diagram from the detection body of the shift position detection apparatus of the present embodiment.
  • FIG. 16 is a diagram summarizing outputs from the detection body of the shift position detection device of the present embodiment.
  • the shift position detecting device of this embodiment is attached to a shift lever box of a vehicle of an automatic transmission.
  • the shift lever box is used for a shift operation of the vehicle and a change operation of the travel mode.
  • FIG. 6 is a perspective view of the shift lever box 200 to which the shift position detection device 100 of the present embodiment is attached.
  • the front, rear, left, right, up and down directions of the shift lever box 200 are shown on the paper surface of FIG. This positional relationship is merely a relative positional relationship, and may be replaced with each other depending on the viewing direction or the arranging direction.
  • the shift lever box 200 includes a shift lever 101.
  • FIG. 7A is a schematic diagram showing the shift position of the shift lever 101 when the shift lever box 200 of FIG. 6 is viewed from above.
  • the shift positions include shift position “H” (home), shift position “N” (neutral), shift position “R” (back gear), shift position “D” (drive), and shift position “S”. ”(Sport mode), shift position“ + ”(plus), and shift position“ ⁇ ”(minus). An operator such as a driver moves the shift lever 101 to these shift positions.
  • the direction in which the shift lever 101 moves between the shift position “S”, the shift position “H”, and the shift position “N” is the select direction. Further, the shift lever 101 moves between the shift position “R”, the shift position “N”, and the shift position “D”, the shift position “+”, the shift position “S”, and the shift position. The direction of movement between “ ⁇ ” is the shift direction.
  • the shift position detection device 100 of the present embodiment is a device that detects in which shift position the shift lever 101 is located.
  • FIG. 1 is an exploded perspective view of the shift position detection device 100.
  • the shift position detection apparatus 100 includes a link 24 that holds a magnet 25 as a detection target, and a detection body 41 shown in FIG.
  • the link 24 has a through hole 24A, and the shift lever 101 shown in FIG.
  • the link 24 moves linearly in conjunction with the movement.
  • the link 24 rotates in conjunction with the movement.
  • the position of the magnet 25 changes. By detecting the position of the magnet 25 with the detection body 41, the position of the shift lever 101 can be detected.
  • the shift position detection device 100 of the present embodiment can convert the two-dimensional movement of the shift lever 101 in the selection direction and the shift direction into linear movement and rotation of the link 24, and can detect it by a single system mechanism. Therefore, the configuration of the shift position detection device 100 is simplified as compared with the case where the shift lever 101 is moved in the select direction and the shift direction by different mechanisms.
  • FIG. 8A is a cross-sectional view of the shift lever box 200.
  • the shift lever box 200 of this embodiment includes a shift lever 101, a select direction support shaft 102, a shift direction support shaft 103, and a box 104.
  • the shape of the shift lever 101 is substantially L-shaped.
  • a shift knob 101 ⁇ / b> A is provided above the shift lever 101.
  • the shape of the shift knob 101A is a curved surface assuming that a human touches it directly with his / her hand.
  • the material of the shift lever 101 is metal or resin.
  • the material of the shift knob 101A is metal or resin.
  • the select direction support shaft 102 is rotatably attached to the box 104.
  • the select direction support shaft 102 is inserted into the shift lever 101.
  • the shift lever 101 rotates around the select direction support shaft 102. That is, the select direction support shaft 102 serves as a rotation shaft of the shift lever 101 when the shift lever 101 moves in the select direction.
  • the shift direction support shaft 103 is inserted into the shift lever 101 and the select direction support shaft 102.
  • the shift direction support shaft 103 is rotatably supported by the select direction support shaft 102.
  • the shift lever 101 rotates around the shift direction support shaft 103. That is, the shift direction support shaft 103 becomes a rotation shaft of the shift lever 101 when the shift lever 101 moves in the shift direction.
  • the selection direction support shaft 102 and the shift direction support shaft 103 are orthogonal to each other.
  • the box 104 accommodates the shift lever 101, the shift direction support shaft 103, and the select direction support shaft 102.
  • the upper portions of the shift knob 101A and the shift lever 101 are exposed from the box 104.
  • the shift position detection device 100 is attached to the surface of the box 104. In the present embodiment, the shift position detecting device 100 is attached to the left side surface of the box 104 shown in FIG.
  • FIG. 1 shows front and rear, right and left and up and down directions. These directions may be replaced by a direction in which the shift position detecting device 100 is visually recognized or arranged.
  • the shift position detecting device 100 includes a case 21, a circuit board 22 on which the detection body 41 shown in FIG. 4 is mounted, a high sliding sheet 23, a link 24, a magnet 25, A spring 26 and a dustproof sheet 27 are provided.
  • the case 21 has a left case 31 and a right case 32. Between the left case 31 and the right case 32, a circuit board 22, a high sliding sheet 23, a link 24, and a tension spring 26 are accommodated.
  • a through hole 31 ⁇ / b> A is provided below the center of the left case 31.
  • a guide 31 ⁇ / b> B is provided on the surface of the left case 31 above the through hole 31 ⁇ / b> A and facing the right case 32.
  • the guide 31B is a wall that protrudes from the left case 31 toward the right case 32 (see FIG. 11).
  • the shape of the surface facing the right case 32 surrounded by the guide 31B is a substantially rectangular shape with rounded corners.
  • the left case 31 has a top surface portion 31C on the upper surface.
  • An outer edge portion 31D protruding upward is provided on the entire end portion of the top surface portion 31C opposite to the side combined with the right case 32.
  • the material of the left case 31 is an insulator such as an insulating resin.
  • the shape of the right case 32 is substantially symmetric with the left case 31.
  • a through hole 32 ⁇ / b> A is provided below the center of the right case 32.
  • the upper surface of the right case 32 has a top surface portion 32C.
  • An outer edge portion 32D protruding upward is provided on the entire end portion of the top surface portion 32C opposite to the side combined with the left case 31.
  • the material of the right case 32 is an insulator such as an insulating resin.
  • the circuit board 22 includes a printed circuit board 22A, a connector 22B, a detection body 41 shown in FIG. 4, and various electric circuits for operating the shift position detection device 100.
  • the circuit board 22 is fixed to the right case 32.
  • the printed board 22A is a board such as a glass epoxy board or a paper phenol board.
  • the connector 22B is mounted on the surface facing the left case 31 of the printed circuit board 22A.
  • the connector 22B is for electrically connecting an external electronic circuit and the circuit board 22.
  • FIG. 2 is a front view of the shift position detection device 100 as viewed from the left case 31 side.
  • the connector 22B is connected to the cable 51 shown in FIG.
  • the detection body 41 and various electric circuits are mounted on the surface of the printed board 22A facing the right case 32.
  • FIG. 3A is a cross-sectional view of the shift position detecting device 100 as viewed from the direction 3-3 in FIG.
  • FIG. 3B is an enlarged view of a portion B3 in FIG. 3A.
  • FIG. 4 is a layout diagram of the detection body 41 when the circuit board 22 is viewed from the direction of the right case 32.
  • the detector 41 is a magnetic detector.
  • the detection body 41 includes a linear direction detection element unit 42 and a rotation direction detection element unit 43. Each of the linear direction detection element unit 42 and the rotation direction detection element unit 43 includes a plurality of magnetic detection elements.
  • the linear direction detection element unit 42 detects the position of the magnet 25 reached by the link 24 moving linearly. As shown in FIG. 4, the linear direction detection element unit 42 includes two first linear direction detection elements 44 and two second linear direction detection elements 45.
  • the first linear direction detection element 44 and the second linear direction detection element 45 are arranged on the printed circuit board 22A with an interval in the vertical direction of FIG.
  • the first linear direction detection element 44 and the second linear direction detection element 45 are both magnetic detection elements, and are Hall switches in the present embodiment.
  • the hall switch of the present embodiment is turned on (ON) when the magnetic force passing through the hall switch is larger than a predetermined threshold, and is turned off (OFF) when the magnetic force is small.
  • the rotation direction detecting element unit 43 detects the position of the magnet 25 that the link 24 has rotated and reached.
  • the rotation direction detection element unit 43 includes a first rotation direction detection element 46 and a second rotation direction detection element 47.
  • the first rotation direction detection element 46 and the second rotation direction detection element 47 are arranged side by side on the printed circuit board 22A with an interval in the horizontal direction of the paper surface of FIG.
  • the first rotation direction detection element 46 and the second rotation direction detection element 47 are both magnetic detection elements, and in the present embodiment, are Hall elements.
  • the Hall element outputs a voltage corresponding to the magnitude of the magnetic force passing through the Hall element. That is, the Hall element outputs the strength of the nearby magnetic field as a voltage value.
  • the high sliding sheet 23 shown in FIG. 1 is a resin sheet made of polyether ether ketone or the like.
  • the high sliding sheet 23 is disposed between the link 24 and the circuit board 22 and is attached to the surface of the circuit board 22.
  • the high sliding sheet 23 prevents the link 24 from coming into direct contact with the circuit board 22, and helps the link 24 smoothly move linearly or rotate.
  • the link 24 is provided with a through hole 24A.
  • the link 24 has an engagement column 24B.
  • the through hole 24 ⁇ / b> A is provided in the lower part of the link 24.
  • the lower end of the shift lever 101 is inserted into the through hole 24A, and the through hole 24A and the shift lever 101 are connected.
  • the shift lever 101 can turn inside and out of the through hole 24A.
  • the lower surface 241A has a gentle diameter of the through hole 24A from the side where the shift lever 101 is disposed to the opposite side. It is tilted while curving so as to spread.
  • the engagement column 24B is a cylindrical projection.
  • the engaging column 24 ⁇ / b> B is provided on the upper portion of the link 24.
  • the engaging column 24B is inserted into the guide 31B.
  • the diameter of the engagement column 24B is substantially equal to the width in the horizontal direction of the region surrounded by the guide 31B, and is smaller than the width in the vertical direction of the region surrounded by the guide 31B.
  • the above-described vertical direction refers to the vertical direction in FIG.
  • the horizontal direction refers to a direction orthogonal to the vertical direction on the surface of the region surrounded by the guide 31B that faces the engagement column 24B. That is, the horizontal direction refers to the front-rear direction in FIG.
  • the range in which the engagement column 24B can be moved by inserting the engagement column 24B into the guide 31B that is a wall is the range of the shape of the guide 31B. That is, the range of movement of the engagement column 24B is only linear movement in the vertical direction and rotation. Therefore, the link 24 is also restricted by the moving direction.
  • the specific movement direction of the link 24 is a linear direction in the vertical direction in FIG. 2 and a rotation direction about the engagement column 24B.
  • the movement range of the link 24 is restricted.
  • the link 24 linearly moves from one end (first end) to the other end (second end) within a predetermined range in accordance with the shape of the guide 31B. That is, the link 24 moves linearly from the first end to the second end.
  • the predetermined range is rotated from one end (first rotation end) to the other end (second rotation end). That is, the link 24 rotates from the first rotation end to the second rotation end.
  • the magnet 25 is a magnetic generator as an object to be detected. As shown in FIG. 5, on the surface facing the detection body 41, the central portion of the magnet 25 is a first magnetic pole, and both sides of the first magnetic pole are second magnetic poles.
  • the first magnetic pole is an S pole and the second magnetic pole is an N pole.
  • the first magnetic pole may be an N pole and the second magnetic pole may be an S pole.
  • the boundary position between the S pole in FIG. 5 and the left N pole is defined as a first boundary position 25A.
  • the boundary position between the S pole and the right N pole in FIG. 5 is defined as a second boundary position 25B.
  • the first boundary position 25A and the second boundary position 25B are straight lines parallel to each other.
  • the magnet 25 is attached to the link 24 so that the direction connecting the N pole and the S pole is perpendicular to the straight line connecting the center of the through hole 24A of the link 24 and the center of the engagement column 24B.
  • the tension spring 26 is held by the link 24 and the left case 31 and expands and contracts by the movement or rotation of the link 24.
  • the dustproof sheet 27 is a resin sheet made of polyethylene terephthalate or the like.
  • the dustproof sheet 27 is affixed to the right case 32 so as to close the through hole 32 ⁇ / b> A of the right case 32.
  • the dustproof sheet 27 prevents dust and dirt from entering the shift position detection device 100.
  • the shift position detection device 100 including the above components is combined as shown in FIG. 3A.
  • a part of each of the top surface portion 31C and the top surface portion 32C of the shift position detecting device 100 is overlapped. Accordingly, even if the top surface portion 31C and the top surface portion 32C are flooded, it is difficult for water to enter the shift position detection device 100.
  • grooves are formed between the outer edge portion 31D and the outer edge portion 32D of the outer edge on the surfaces of the top surface portion 31C and the top surface portion 32C. This groove can rectify the wet water and prevent scattering.
  • the top surface portion 31C and the top surface portion 32C are provided with a gentle inclination in the left-right direction of the paper surface of FIG. Due to this inclination, the wet water can be quickly discharged toward the side surface of the shift position detecting device 100.
  • the shift position detecting device 100 is attached to the shift lever box 200 so that the left case 31 faces the surface of the shift lever box 200 as shown in FIG.
  • FIG. 7B shows the movement of the shift lever 101 as viewed from the front of the shift lever box 200 of FIG.
  • FIG. 7C shows the movement of the shift lever 101 as viewed from the right side of the shift lever box 200 of FIG. 7A
  • FIG. 7B, and FIG. 7C are all schematic views, and the shift lever 101, the select direction support shaft 102, and the shift direction support shaft 103 are shown in a simplified manner.
  • Shift position “H” is the home position.
  • the shift lever 101 When the shift lever 101 is moved to the shift position “R”, the shift position “N”, or the shift position “D”, the shift lever 101 does not stop at that position and returns to the shift position “H”.
  • the shift position “R” corresponds to the back gear position of the vehicle
  • the shift position “N” corresponds to the neutral gear position of the vehicle
  • the shift position “D” corresponds to the drive gear position of the vehicle.
  • the shift position “S” represents a sports mode for the operator to drive in a desired gear state.
  • the shift lever 101 is tilted to the shift position “+”, the gear of the vehicle is raised by one step.
  • the shift lever 101 is tilted to the shift position “ ⁇ ”, the gear of the vehicle is lowered by one step.
  • the shift lever 101 is moved to the shift position “+” or the shift position “ ⁇ ” via the shift position “S”, the shift lever 101 returns to the shift position “S”.
  • the direction in which the shift lever 101 moves between the shift positions “H”, “S”, and “N” is the select direction that is the first direction.
  • the direction in which the shift lever 101 moves between the shift positions “N”, “R”, “D” and the direction in which the shift lever 101 moves between the shift positions “+”, “S”, “ ⁇ ” are the second directions. It is a certain shift direction.
  • the mechanism for returning the shift position to the shift position “H” or the shift position “S” is a function of the shift lever box 200 itself, not the function of the shift position detection device 100.
  • the tension spring 26 of the shift position detecting device 100 is for suppressing backlash of the link 24 and does not have a function of returning the shift position to “H” or the shift position “S”.
  • the shift lever 101 can be moved in the select direction by the select direction support shaft 102 and can be moved in the shift direction by the shift direction support shaft 103.
  • FIG. 8A, FIG. 8B, FIG. 9A, FIG. 9B, FIG.10A, and FIG.10B are all cross-sectional views of the shift lever box 200 including the shift position detecting device 100 in the left-right direction in FIG. It is the figure seen from the front side of the shift lever box 200 shown in FIG. 11, FIG. 12A to FIG. 12C, and FIG. 13A to FIG. 13C are perspective views of the shift position detection device 100 as viewed from the left case 31 side.
  • a guide 31B provided in the left case 31 is shown for convenience in order to explain the movement of the link 24.
  • FIG. 8A, FIG. 8B, and FIG. 11 show the state of the shift position detection device 100 when the shift position of the shift lever 101 is the shift position “H”.
  • the engagement column 24B of the link 24 is positioned substantially at the center of the guide 31B, and the center of the through hole 24A and the engagement column 24B.
  • a straight line connecting the centers is directed in the vertical direction of the drawing in FIG.
  • FIG. 9A, FIG. 9B, and FIG. 12A show the state of the shift position detection device 100 when the shift position of the shift lever 101 is the shift position “N”.
  • FIG. 12B shows the state of the shift position detection device 100 when the shift lever 101 is further moved from the shift position “H” in the shift direction and moved to the shift position “D”.
  • FIG. 12C shows the state of the shift position detection device 100 when the shift position of the shift lever 101 is the shift position “R”.
  • 10A, 10B, and 13A show the state of the shift position detection device 100 when the shift position of the shift lever 101 is the shift position “S”.
  • FIG. 13B shows the state of the shift position detection device 100 when the shift lever 101 is moved further in the shift direction from the shift position “S” and moved to the shift position “ ⁇ ”.
  • FIG. 13C shows the state of the shift position detection device 100 when the shift position is the shift position “+”.
  • the shift position of the shift lever 101 can be detected.
  • FIG. 14A to 14C are diagrams for explaining the positional relationship between the detection body 41 and the magnet 25 that is the detection target at each shift position of the shift position detection device 100.
  • FIG. 14A to 14C are views of the magnet 25 and the detection body 41 as viewed from the left case 31 side.
  • the first linear direction detection element 44, the second linear direction detection element 45, the first rotation direction detection element 46, and the second rotation direction detection element 47 constituting the detection body 41 are as follows. In some cases, they may be hidden by the magnet 25 depending on the shift position, but for the sake of explanation, these are also shown in solid lines without being hidden.
  • FIG. 14A shows a state where the shift position of the shift position detection device 100 is the shift position “H”.
  • the magnet 25 is positioned away from both the first linear direction detection element 44 and the second linear direction detection element 45.
  • the first linear direction detection element 44 and the second linear direction detection element 45 which are Hall switches, are both in the OFF state because the magnetic field is weak.
  • both the first rotation direction detection element 46 and the second rotation direction detection element 47 which are Hall elements are located on the first boundary position 25A and the second boundary position 25B of the magnet 25, Both outputs take intermediate values.
  • FIG. 14B shows a state when the shift lever 101 is moved in the direction of the shift position “N”.
  • a magnet 25 indicated by a solid line indicates a position of the magnet 25 at the shift position “N”.
  • a magnet 25 indicated by a broken line indicates the position of the magnet 25 at the shift position “D”.
  • a magnet 25 indicated by a one-dot chain line indicates a position of the magnet 25 at the shift position “R”.
  • the link 24 is located at one end (first end) in a predetermined range of linear movement. Then, the magnet 25 approaches the first linear direction detection element 44 and moves away from the second linear direction detection element 45. Therefore, the output from the first linear direction detection element 44 is ON, and the output from the second linear direction detection element 45 is OFF.
  • the first rotation direction detection element 46 and the second rotation direction detection element 47 are both the first boundary of the magnet 25 as in the shift position “H”. It is located on the position 25A and the second boundary position 25B. Therefore, both the outputs of the first rotation direction detection element 46 and the second rotation direction detection element 47 take an intermediate value.
  • the link 24 is positioned at one end (first rotation end) in a predetermined range of rotation. Since the first rotation direction detection element 46 is located on the N pole side of the magnet 25, the output is high, and the second rotation direction detection element 47 is located on the S pole side of the magnet 25, so the output is low. .
  • the link 24 is located at the other end (second rotation end) in a predetermined range of rotation. Since the first rotation direction detection element 46 is located on the south pole side of the magnet 25, the output is low, and the second rotation direction detection element 47 is located on the north pole side of the magnet 25, so that the output is high. .
  • FIG. 14C shows a state when the shift lever 101 is moved in the direction of the shift position “S”.
  • the magnet 25 indicated by a solid line indicates the position of the magnet 25 at the shift position “S”.
  • a magnet 25 indicated by a broken line indicates the position of the magnet 25 at the shift position “ ⁇ ”.
  • a magnet 25 indicated by a one-dot chain line indicates a position of the magnet 25 at the shift position “+”.
  • the link 24 is located at the other end (second end) in a predetermined range of linear movement. Then, the magnet 25 moves away from the first linear direction detection element 44 and approaches the second linear direction detection element 45. Therefore, the output from the first linear direction detection element 44 is OFF, and the output from the second linear direction detection element 45 is ON.
  • the link 24 is positioned at one end (first rotation end) in a predetermined range of rotation. Since the first rotation direction detection element 46 is located on the N pole side of the magnet 25, the output is high, and the second rotation direction detection element 47 is located on the S pole side of the magnet 25, so the output is low. .
  • the link 24 is positioned at the other end (second rotation end) in a predetermined range of rotation.
  • the 1st rotation direction detection element 46 is located in the S pole side of the magnet 25, the output from the 1st rotation direction detection element 46 becomes low, and the 2nd rotation direction detection element 47 is the magnet 25's Since it is located on the N pole side, the output becomes high.
  • the link 24 linearly moves between one end (first end) and the other end (second end) within a predetermined range.
  • the first linear direction detection element 44 detects the position of the magnet 25 when the link 24 is positioned at one end (first end) in the linear movement.
  • the second linear direction detection element 45 detects the position of the magnet 25 when the link 24 is positioned at the other end (second end) in the linear movement.
  • the link 24 rotates between one end (first rotation end) and the other end (second rotation end) within a predetermined range.
  • the first rotation direction detection element 46 is higher when the link 24 is positioned at one end (first rotation end) in rotation than when the link 24 is positioned at the other end (second rotation end).
  • the second rotation direction detection element 47 has a lower output when the link is rotated and positioned at one end (first rotation end) than when the link is positioned at the other end (second rotation end). Is generated.
  • FIG. 15 is a diagram illustrating an output from the detection body 41 that detects the shift direction of the shift position detection apparatus 100.
  • FIG. 15 shows the output of the detection body 41 when the shift position of the shift position detection device 100 moves between the shift positions “D”, “N”, and “R”.
  • the first shift output 61 is an output from the first rotation direction detection element 46.
  • the first shift output 61 has the highest output when the magnet 25 is positioned at the shift position “D”, the output decreases toward the shift position “R”, and when the magnet 25 is at the shift position “R”.
  • the output is the lowest.
  • the output value at the shift position “N” is an intermediate value.
  • the second shift output 62 is an output from the second rotation direction detection element 47.
  • the second shift output 62 has the lowest output when the magnet 25 is positioned at the shift position “D”, the output increases toward the position of the shift position “R”, and is at the shift position “R” position.
  • the output is the highest.
  • the shift position can be detected by obtaining an output from at least one of the first shift output 61 and the second shift output 62. Since the first shift output 61 and the second shift output 62 have substantially opposite output changes, when the differential output between them is obtained, twice the output fluctuation can be obtained, which is practically useful. is there.
  • the magnet 25 and the first rotation direction detecting element 46 are in the shift position “D” and the shift position “ ⁇ ”.
  • the positional relationship and the positional relationship between the magnet 25 and the second rotation direction detecting element 47 are strictly different. The same applies to the shift position “R” and the shift position “+”. Therefore, it is preferable to reduce both the output difference between the shift position “D” and the shift position “ ⁇ ”, and the output difference between the shift position “R” and the shift position “+”.
  • the distance from the first boundary position 25A of the magnet 25 to the first rotation direction detecting element 46 is substantially the same between the shift position “R” and the shift position “+”.
  • the linear direction detection element unit 42 and the rotation direction detection element unit 43 may be arranged.
  • the distance of linear movement of the link 24, the turning angle, the positional relationship between the detection body 41 and the magnet 25, and the like may be adjusted.
  • the distance from the first boundary position 25A of the magnet 25 to the first rotation direction detecting element 46 is substantially the same between the shift position “D” and the shift position “ ⁇ ”.
  • the detection body 41, the link 24, and the like may be configured.
  • the detection is performed so that the distance from the second boundary position 25B of the magnet 25 to the second rotation direction detecting element 47 is substantially the same at the shift position “R” and the shift position “+”.
  • the body 41, the link 24, etc. may be configured.
  • the detection body is such that the distance from the second boundary position 25B of the magnet 25 to the second rotation direction detecting element 47 is substantially the same at the shift position “D” and at the shift position “ ⁇ ”. 41, link 24, etc. may be configured.
  • FIG. 16 is a diagram summarizing outputs corresponding to the shift positions of the shift position detection apparatus 100.
  • FIG. 16 the first linear direction detection element 44, the second linear direction detection element 45, the first rotation direction detection element 46, and the second rotation direction detection element 47
  • the shift position can be detected by detecting the output of.
  • the link 24 moves linearly in conjunction with the movement of the shift lever 101 in the select direction (first direction), and the shift direction of the shift lever 101 (second direction).
  • the link 24 rotates in conjunction with the movement of.
  • the link 24 holds a magnet 25. That is, the movement of the shift lever 101 in the select direction and the movement in the shift direction can be detected using the detection body 41 as the linear movement and rotation of the magnet 25. Therefore, the shift position is compared with a case where a total of two mechanisms, that is, a mechanism of one system interlocked with the movement of the shift lever 101 in the select direction and a mechanism of another system interlocked with the movement of the shift direction are provided.
  • the configuration of the detection apparatus 100 is simplified.
  • the magnet 25 has a S-pole central portion and N poles on both sides thereof, and further includes a first rotation direction detection element 46 and a second rotation direction detection.
  • the distance from the element 47 is the same as the distance between the first boundary position 25A and the second boundary position 25B.
  • the second rotation direction detection element 47 is on the second boundary position 25B.
  • the first rotation direction detection element 46 is on the south pole
  • the second rotation direction detection element 47 is on the north pole.
  • the first rotation direction detection element 46 is on the N pole
  • the second rotation direction detection element 47 is on the S pole. Accordingly, since the output change of the first rotation direction detection element 46 and the output change of the second rotation direction detection element 47 are in the opposite direction, output signal processing such as obtaining a differential output can be easily performed.
  • first linear direction detecting elements 44 and a plurality of second linear direction detecting elements 45 are arranged. Therefore, even if one of them fails, it can be operated by the remaining elements, and safety can be improved.
  • first rotation direction detection element 46 and a second rotation direction detection element 47 are arranged. Therefore, even when one of them breaks down, it can operate by the other, and safety can be improved.
  • many shift positions can be detected by using a Hall element as the detection body 41.
  • the cost of the shift position detecting device 100 can be reduced by combining a hall switch that is less expensive than the hall element.
  • the arrangement direction of the N pole and the S pole of the magnet 25 is a direction orthogonal to a straight line connecting the center of the through hole 24A and the center of the engagement column 24B. That is, the shape of the magnet 25 is a horizontally long rectangular parallelepiped.
  • the vertical dimension of the shift position detection apparatus 100 can be shortened. Further, the area in which the magnet 25 rotates can be reduced. Therefore, the shift position detecting device 100 can be reduced in size.
  • the surface 241A of the through hole 24A is curved. Further, the surface 241A is inclined so that the diameter of the through-hole 24A increases in the insertion direction of the shift lever 101. Thereby, in this embodiment, the shift lever 101 moves smoothly. As a result, the output from the detection body 41 is stabilized.
  • the shift position detection device 100 of the present embodiment can be separated from the shift lever box 200. Therefore, compared with the shift lever box 200 itself having a mechanism for detecting the shift position, the same design can be used even if the vehicle type is different.
  • the shift positions are 7 positions of shift positions “H”, “N”, “D”, “R”, “S”, “+”, and “ ⁇ ”.
  • the shift position to be performed is not limited to these.
  • the shift position detection device 100 may be configured to move in the shift direction from the shift position “H”. In that case, the outputs of the first linear direction detection element 44 and the second linear direction detection element 45 are both OFF, and the outputs of the first rotational direction detection element 46 and the second rotational direction detection element 47 are OFF.
  • the shift position can be detected when one of the two is high and the other is low.
  • the number of magnetic detection elements constituting the linear direction detection element unit 42 may be three or more.
  • the number of detection positions in the first direction can be increased by using a magnetic detection element having a narrow magnetic detection range and using three or more magnetic detection elements.
  • the number of magnetic detection elements constituting the rotation direction detection element unit 43 may be three or more. As a result, the number of detection positions in the second direction can be increased.
  • the number of magnetic detection elements constituting the linear direction detection element unit may be one.
  • the first movement direction of the shift lever 101 is the selection direction and the second direction is the shift direction, but the reverse may be possible.
  • the shift position detection apparatus 100 of the present embodiment uses a magnetic detection method, but may use a capacitance method in which the detection object and the detection body 41 are electrodes.
  • the shift position detection device 100 in an automatic transmission vehicle is taken as an example, but the present invention can also be applied to a shift position detection device in a manual transmission vehicle.
  • the above-described shift position detecting device has a simplified configuration and is mainly useful for in-vehicle use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Arrangement Or Mounting Of Control Devices For Change-Speed Gearing (AREA)

Abstract

シフト位置検出装置(100)は、シフトレバーの位置を検出する。シフト位置検出装置(100)は、シフトレバーの第一の方向の移動に連動して直線移動し、シフトレバーの第二の方向の移動に連動して回動するリンク(24)と、リンク(24)に保持されて、リンク(24)と共に移動する被検出体(25)と、被検出体(25)の位置を検出する検出体と、を備えている。シフト位置検出装置(100)は、シフトレバーの二次元の移動を、一系統の機構によって検出できる。したがって、シフト位置検出装置(100)の構成が簡易となる。

Description

シフト位置検出装置
 本発明は、シフトレバーの位置を検出するシフト位置検出装置に関するものである。
 車両の運転者は、車両の変速や走行モードを変更するために、車両のシフトレバーを、シフト方向もしくはシフト方向と直交するセレクト方向へ移動させる。このようにシフトレバーには、シフト方向とセレクト方向との二次元的に移動するものがある。
 シフトレバーの位置を検出するために、シフトレバーのシフト方向の動きに連動する機構と、セレクト方向の動きに連動する機構との二系統の機構とを備えるシフトレバー位置検出装置が知られている(特許文献1、特許文献2参照)。
特開2007-331504号公報 特開2003-327002号公報
 シフト位置検出装置は、シフトレバーの位置を検出する。シフト位置検出装置は、シフトレバーの第一の方向の移動に連動して直線移動し、シフトレバーの第二の方向の移動に連動して回動するリンクと、リンクに保持されて、リンクと共に移動する被検出体と、被検出体の位置を検出する検出体と、を備える。
図1は、本実施形態のシフト位置検出装置の分解斜視図である。 図2は、本実施形態のシフト位置検出装置の正面図である。 図3Aは、本実施形態のシフト位置検出装置の断面図である(図2の3-3断面)。 図3Bは、図3Aの部分B3の拡大図である。 図4は、本実施形態のシフト位置検出装置の検出体の配置図である。 図5は、本実施形態のシフト位置検出装置の被検出体の正面図である。 図6は、本実施形態のシフト位置検出装置が取り付けられたシフトボックスの斜視図である。 図7Aは、シフトレバーのシフトポジションを示す図である。 図7Bは、シフトレバーの動作を説明するための図である。 図7Cは、シフトレバーの動作を説明するための図である。 図8Aは、本実施形態のシフト位置検出装置のシフトポジションを説明するための、シフト位置検出装置を備えたシフトレバーボックスの断面図である。 図8Bは、図8Aの部分A8における拡大図である。 図9Aは、本実施形態のシフト位置検出装置のシフトポジションを説明するための、シフト位置検出装置を備えたシフトレバーボックスの断面図である。 図9Bは、図9Aの部分A9における拡大図である。 図10Aは、本実施形態のシフト位置検出装置のシフトポジションを説明するための、シフト位置検出装置を備えたシフトレバーボックスの断面図である。 図10Bは、図10Aの部分A10における拡大図である。 図11は、本実施形態のシフト位置検出装置のシフトポジションを説明するための、シフト位置検出装置の透視図である。 図12Aは、本実施形態のシフト位置検出装置のシフトポジションを説明するための、シフト位置検出装置の透視図である。 図12Bは、本実施形態のシフト位置検出装置のシフトポジションを説明するための、シフト位置検出装置の透視図である。 図12Cは、本実施形態のシフト位置検出装置のシフトポジションを説明するための、シフト位置検出装置の透視図である。 図13Aは、本実施形態のシフト位置検出装置のシフトポジションを説明するための、シフト位置検出装置の透視図である。 図13Bは、本実施形態のシフト位置検出装置のシフトポジションを説明するための、シフト位置検出装置の透視図である。 図13Cは、本実施形態のシフト位置検出装置のシフトポジションを説明するための、シフト位置検出装置の透視図である。 図14Aは、本実施形態のシフト位置検出装置のシフトポジションと検出体と被検出体との関係を説明する図である。 図14Bは、本実施形態のシフト位置検出装置のシフトポジションと検出体と被検出体との関係を説明する図である。 図14Cは、本実施形態のシフト位置検出装置のシフトポジションと検出体と被検出体との関係を説明する図である。 図15は、本実施形態のシフト位置検出装置の検出体からの出力図である。 図16は、本実施形態のシフト位置検出装置の検出体からの出力をまとめた図である。
 以下に本発明の実施形態(以下、「本実施形態」と記す)について、適宜図面を用いて説明する。なお、以下に示す本実施形態は、本発明の一例であり、本発明の範囲を限定するものではない。
 (1.実施形態)
 (1-1.概要)
 本実施形態のシフト位置検出装置は、オートマチックトランスミッションの車両のシフトレバーボックスに取り付けられている。シフトレバーボックスは、車両の変速操作や走行モードの変更操作に用いられる。
 図6は、本実施形態のシフト位置検出装置100が取り付けられたシフトレバーボックス200の斜視図である。説明の便宜上、図6の紙面上に、シフトレバーボックス200の前後左右上下方向を示す。この位置関係は、相対的な位置関係に過ぎず、視認する方向や配置する方向によって互いに置き換わってもよい。シフトレバーボックス200は、シフトレバー101を備えている。
 図7Aは、図6のシフトレバーボックス200を上面から見た、シフトレバー101のシフトポジションを示す模式図である。シフトポジションには、シフトポジション「H」(ホーム)と、シフトポジション「N」(ニュートラル)と、シフトポジション「R」(バックギア)と、シフトポジション「D」(ドライブ)と、シフトポジション「S」(スポーツモード)と、シフトポジション「+」(プラス)と、シフトポジション「-」(マイナス)とがある。運転者などの操作者は、シフトレバー101をこれらのシフトポジションへ移動させる。
 シフトレバー101が、シフトポジション「S」と、シフトポジション「H」と、シフトポジション「N」との間を移動する方向をセレクト方向とする。またシフトレバー101が、シフトポジション「R」と、シフトポジション「N」と、シフトポジション「D」との間を移動する方向と、シフトポジション「+」と、シフトポジション「S」と、シフトポジション「-」との間を移動する方向とを、シフト方向とする。
 本実施形態のシフト位置検出装置100は、シフトレバー101がいずれのシフトポジションに位置するかを検出する装置である。図1に、シフト位置検出装置100の分解斜視図を示す。シフト位置検出装置100は、被検出体としての磁石25を保持するリンク24と、図4に示す検出体41と、を備えている。リンク24は貫通孔24Aを有していて、リンク24には、図6に示すシフトレバー101が挿入されている。シフトレバー101がセレクト方向に移動すると、その移動に連動してリンク24は直線移動する。そしてシフトレバー101がシフト方向に移動すると、その移動に連動してリンク24は回動する。リンク24の直線移動および回動に伴い、磁石25の位置は変化する。磁石25の位置を検出体41で検出することにより、シフトレバー101の位置を検出できる。すなわち本実施形態のシフト位置検出装置100は、シフトレバー101のセレクト方向およびシフト方向の二次元の移動を、リンク24の直線移動および回動に変換し、一系統の機構によって検出できる。したがって、シフトレバー101のセレクト方向およびシフト方向の移動を、それぞれ別の機構で検出する場合と比べて、シフト位置検出装置100の構成が簡易となる。
 (1-2.構成)
 (1-2-1.シフトレバーボックスの構成)
 以下、本実施形態のシフトレバーボックス200の構成について、図6、図8Aを用いて説明する。図8Aはシフトレバーボックス200の断面図である。図6、図8Aに示すように、本実施形態のシフトレバーボックス200は、シフトレバー101と、セレクト方向支軸102と、シフト方向支軸103と、ボックス104と、を備えている。
 シフトレバー101の形状は、略L字形である。シフトレバー101の上部には、シフトノブ101Aが設けられている。シフトノブ101Aの形状は、人が直接手で触る事を想定して、曲面からなる形状である。シフトレバー101の材料は、金属または樹脂である。シフトノブ101Aの材料は、金属または樹脂である。
 セレクト方向支軸102は、ボックス104に回動自在に取り付けられている。セレクト方向支軸102は、シフトレバー101へ挿入されている。シフトレバー101がセレクト方向へ移動する時に、シフトレバー101はセレクト方向支軸102を中心に回動する。すなわちセレクト方向支軸102は、シフトレバー101がセレクト方向へ移動する時に、シフトレバー101の回動軸となる。
 シフト方向支軸103は、シフトレバー101およびセレクト方向支軸102へ挿入されている。そしてシフト方向支軸103は、セレクト方向支軸102に回動自在に支持されている。シフトレバー101がシフト方向へ移動する時に、シフトレバー101はシフト方向支軸103を中心に回動する。すなわちシフト方向支軸103は、シフトレバー101がシフト方向へ移動する時に、シフトレバー101の回動軸となる。セレクト方向支軸102とシフト方向支軸103とは、直交する。
 ボックス104は、シフトレバー101と、シフト方向支軸103と、セレクト方向支軸102と、を収容する。シフトノブ101Aおよびシフトレバー101の上部は、ボックス104から露出している。ボックス104の表面には、シフト位置検出装置100が取り付けられる。なお、本実施形態では、図6に示すボックス104の左側の面にシフト位置検出装置100が取り付けられる。
 (1-2-2.シフト位置検出装置の構成)
 以下、本実施形態のシフト位置検出装置100の構成について、主に図1を用いて説明する。また詳細な部分については、適宜、図2、図3A、図3B、図4、図5、図6を参照する。なお、説明の便宜上、図1に前後左右上下方向を示す。これらの方向は、シフト位置検出装置100を視認する方向や配置する方向によって置換されてもよい。
 図1に示すように、シフト位置検出装置100は、ケース21と、図4に示す検出体41が実装された回路基板22と、高摺動シート23と、リンク24と、磁石25と、引張バネ26と、防塵シート27と、を備えている。
 ケース21は、左ケース31と、右ケース32と、を有する。左ケース31と右ケース32の間には、回路基板22と、高摺動シート23と、リンク24と、引張バネ26とが収容されている。
 左ケース31の中央より下方には、貫通孔31Aが設けられている。また、左ケース31の貫通孔31Aより上方であって、右ケース32と対向する面には、ガイド31Bが設けられている。ガイド31Bは、左ケース31から右ケース32側へ突出する壁である(図11参照)。ガイド31Bで囲われた、右ケース32と対向する面の形状は、角が丸められた略長方形である。さらに左ケース31は、上面に天面部31Cを有する。天面部31Cにおける、右ケース32と組み合わさる側と反対側の端部全体には、上方へ突出する外縁部31Dが設けられている。左ケース31の材料は、絶縁樹脂等の絶縁体である。
 右ケース32の形状は、左ケース31と概ね対称の形状である。右ケース32の中央より下方には、貫通孔32Aが設けられている。右ケース32の上面には、天面部32Cを有する。天面部32Cにおける、左ケース31と組み合わさる側と反対側の端部全体には、上方へ突出する外縁部32Dが設けられている。右ケース32の材料は、絶縁樹脂等の絶縁体である。
 回路基板22は、プリント基板22Aと、コネクタ22Bと、図4に示す検出体41と、シフト位置検出装置100を動作させるための種々の電気回路と、を有する。回路基板22は、右ケース32に固定されている。
 プリント基板22Aは、ガラスエポキシ基板、紙フェノール基板等の基板である。コネクタ22Bは、プリント基板22Aの左ケース31と対向する面に実装されている。コネクタ22Bは、外部の電子回路と回路基板22とを電気的に接続するためものである。ここで図2は、シフト位置検出装置100を左ケース31側から見た正面図である。コネクタ22Bは、図2に示すケーブル51と接続されている。検出体41と種々の電気回路とは、プリント基板22Aの右ケース32と対向する面に実装されている。
 ここで図3A、図3B、図4を用いて検出体41の構成について説明する。図3Aは、シフト位置検出装置100を、図2の3-3方向から見た断面図である。図3Bは、図3Aの部分B3を拡大した図である。図4は、回路基板22を右ケース32の方向から見た検出体41の配置図である。検出体41は磁気検出器である。検出体41は、直線方向検出素子部42と、回動方向検出素子部43と、を有する。直線方向検出素子部42と、回動方向検出素子部43とは、それぞれ複数の磁気検出素子で構成されている。
 直線方向検出素子部42は、リンク24が直線移動して到達した磁石25の位置を検出する。図4に示すように直線方向検出素子部42は、二つの第一の直線方向検出素子44と、二つの第二の直線方向検出素子45と、を含む。第一の直線方向検出素子44と、第二の直線方向検出素子45とは、プリント基板22A上において、図4の縦方向に間隔を空けて配置されている。第一の直線方向検出素子44と第二の直線方向検出素子45とは、いずれも磁気検出素子であり、本実施形態では、ホールスイッチである。本実施形態のホールスイッチは、ホールスイッチを通過する磁力が所定の閾値よりも大きい時にオン(ON)となり、小さい時にオフ(OFF)となる。
 回動方向検出素子部43は、リンク24が回動して到達した磁石25の位置を検出する。図4に示すように回動方向検出素子部43は、第一の回動方向検出素子46と、第二の回動方向検出素子47と、を含む。第一の回動方向検出素子46と、第二の回動方向検出素子47とは、プリント基板22A上において、図4の紙面の横方向に間隔を空けて、並べて配置されている。第一の回動方向検出素子46と第二の回動方向検出素子47とは、いずれも磁気検出素子であり、本実施形態では、ホール素子である。ホール素子は、ホール素子を通過する磁力の大きさに応じた電圧を出力する。すなわちホール素子は、近傍の磁場の強さを電圧値として出力する。
 図1に示す高摺動シート23は、ポリエーテルエーテルケトン等を材料とする樹脂シートである。高摺動シート23は、リンク24と回路基板22との間に配置され、回路基板22の表面に貼り付けられている。高摺動シート23は、リンク24が回路基板22と直接接触することを抑制し、リンク24が円滑に直線移動または回動することを助ける。
 リンク24には、貫通孔24Aが設けられている。またリンク24は、係合柱24Bを有する。貫通孔24Aは、リンク24の下部に設けられている。貫通孔24Aには、シフトレバー101の下端部が挿入され、貫通孔24Aとシフトレバー101とは接続される。シフトレバー101は、貫通孔24Aの内部で回動したり、出入りしたりすることができる。本実施形態では、図8Bに示すように、貫通孔24Aを構成する面のうち、下方側の面241Aは、シフトレバー101が配置されている側から反対側へ、貫通孔24Aの直径がなだらかに広がるように、湾曲しながら傾斜している。係合柱24Bは、円柱形状の突起である。係合柱24Bは、リンク24の上部に設けられている。係合柱24Bはガイド31Bに挿入される。係合柱24Bの直径は、ガイド31Bで囲われた領域の横方向の幅と略等しく、ガイド31Bで囲われた領域の縦方向の幅よりも小さい。なお、前述の縦方向とは、図1の上下方向を指す。また横方向とは、ガイド31Bで囲われた領域の、係合柱24Bと対向する面において、縦方向と直交する方向を指す。つまり、横方向とは図1の前後方向を指す。壁であるガイド31Bの内部へ係合柱24Bが挿入されることにより、係合柱24Bが移動できる範囲は、ガイド31Bの形状の範囲となる。すなわち係合柱24Bの移動範囲は、縦方向への直線移動と、回動のみである。したがって、リンク24も、移動方向に制約を受ける。具体的なリンク24の移動方向は、図2における紙面上下方向の直線方向と、係合柱24Bを中心とする回動方向となる。
 またリンク24の移動範囲も、制約を受ける。リンク24は、ガイド31Bの形状に合わせて、所定の範囲の一端(第1端部)から他端(第2端部)までを直線移動する。つまり、リンク24は、第1端部から第2端部までを直線移動する。またシフトレバー101の回動範囲に合わせて、所定の範囲の一端(第1回動端部)から他端(第2回動端部)までを回動する。つまり、リンク24は、第1回動端部から第2回動端部までを回動する。
 磁石25は、被検出体としての磁気発生器である。図5に示すように、検出体41と対向する面において、磁石25の中央部分は第一の磁極であり、第一の磁極の両隣はそれぞれ第二の磁極である。本実施形態では、第一の磁極がS極であり、第二の磁極がN極である。第一の磁極がN極であり、第二の磁極がS極であってもよい。図5のS極と、左側のN極との境界位置を第一の境界位置25Aとする。図5のS極と右側のN極との境界位置を第二の境界位置25Bとする。第一の境界位置25Aと第二の境界位置25Bとは、互いに平行な直線である。磁石25は、N極とS極とを結ぶ方向が、リンク24の貫通孔24Aの中心と係合柱24Bの中心とを結ぶ直線に対して直角となるようにリンク24に取り付けられている。
 引張バネ26は、リンク24と左ケース31とに保持され、リンク24の移動または回動により伸縮する。
 防塵シート27はポリエチレンテレフタレート等を材料とする樹脂シートである。防塵シート27は、右ケース32の貫通孔32Aを塞ぐように右ケース32に貼り付けられる。防塵シート27は、シフト位置検出装置100の内部に塵や埃等が入ることを防止する。
 以上の構成要素を備えるシフト位置検出装置100は、図3Aに示すように、組み合わされる。シフト位置検出装置100の天面部31Cと天面部32Cのそれぞれの一部は、重なっている。これにより天面部31Cと天面部32Cとが被水しても、シフト位置検出装置100の内部に水が浸入し難くなる。また、天面部31Cと天面部32Cとの表面において、外縁の外縁部31Dと外縁部32Dとの間に溝が形成されている。この溝により、被水した水分を整流し、飛散を防ぐことができる。また、天面部31Cと天面部32Cとは、図2に示すように、図2の紙面の左右方向に緩い傾斜を備えている。この傾斜により、被水した水分を速やかにシフト位置検出装置100の側面に向けて排出できる。
 なお、上記のシフト位置検出装置100は、図6に示すように、左ケース31がシフトレバーボックス200の表面と対向するように、シフトレバーボックス200に取り付けられる。
 (1-3.動作)
 (1-3-1.シフトレバーの動作)
 以下、シフトレバー101の動作を図7A、図7B、図7Cを用いて説明する。図7Bは、図6のシフトレバーボックス200の前面から見た、シフトレバー101の動きを示す。図7Cは、図6のシフトレバーボックス200の右側から見たシフトレバー101の動きを示す。なお、図7Aと、図7Bと、図7Cとは、いずれも模式図であり、シフトレバー101と、セレクト方向支軸102と、シフト方向支軸103とを、簡略化して記載している。
 シフトポジション「H」は、ホームポジションである。シフトレバー101を、シフトポジション「R」、あるいはシフトポジション「N」、あるいはシフトポジション「D」にそれぞれ移動させると、シフトレバー101は、その位置で停止せず、シフトポジション「H」へ戻る。なお、シフトポジション「R」は車両のバックギア位置、シフトポジション「N」は車両のニュートラルギア位置、シフトポジション「D」は車両のドライブギア位置に対応する。
 シフトポジション「S」は、操作者が所望のギアの状態で運転するためのスポーツモードを表す。シフトレバー101を、シフトポジション「+」へ倒すと、車両のギアが1ステップ上がり、シフトポジション「-」へ倒すと、車両のギアが1ステップ下がる。シフトレバー101を、シフトポジション「S」を経由して、シフトポジション「+」へ、あるいはシフトポジション「-」へ移動させると、シフトレバー101は、シフトポジション「S」へ戻る。
 シフトレバー101がシフトポジション「H」、「S」、「N」間を移動する方向が、第一の方向であるセレクト方向である。また、シフトレバー101がシフトポジション「N」、「R」、「D」間を移動する方向およびシフトポジション「+」、「S」、「-」間を移動する方向が、第二の方向であるシフト方向である。
 なお、シフトポジションがシフトポジション「H」へ、またはシフトポジション「S」へ戻る仕組みは、シフトレバーボックス200自体の機能であり、シフト位置検出装置100の機能ではない。シフト位置検出装置100の引張バネ26は、リンク24のガタツキを抑えるためのものであり、シフトポジションを「H」へまたはシフトポジション「S」へ戻す機能はない。
 なお、シフトレバー101は、セレクト方向支軸102によってセレクト方向に移動可能となり、シフト方向支軸103によってシフト方向に移動可能となる。
 (1-3-2.シフト位置検出装置の動作)
 次に、シフト位置検出装置100の動作について説明する。図8Aと、図8Bと、図9Aと、図9Bと、図10Aと、図10Bとは、いずれもシフト位置検出装置100を備えたシフトレバーボックス200の、図6の左右方向の断面を、図6に示すシフトレバーボックス200の前面側から見た図である。図11と、図12A~図12Cと、図13A~図13Cとは、シフト位置検出装置100を左ケース31側から見た透視図である。なお、図11と、図12A~図12Cと、図13A~図13Cとにおいて、リンク24の移動を説明するために、便宜上、左ケース31に設けられたガイド31Bを記載している。
 図8Aと、図8Bと、図11とは、シフトレバー101のシフトポジションが、シフトポジション「H」の時のシフト位置検出装置100の状態を示す。シフトレバー101がシフトポジション「H」に位置する時には、図11に示すように、リンク24の係合柱24Bは、ガイド31Bの略中央に位置し、貫通孔24Aの中心と係合柱24Bの中心を結ぶ直線は、図11の紙面縦方向を向いている。
 次に、シフトレバー101のシフトポジションを、シフトポジション「N」、「D」、「R」へ移動させる場合について説明する。シフト位置検出装置100のリンク24は、上述のシフトレバー101に連動して動作する。図9Aと、図9Bと、図12Aとは、シフトレバー101のシフトポジションがシフトポジション「N」の時のシフト位置検出装置100の状態を示す。図12Bは、シフトレバー101をシフトポジション「H」からさらにシフト方向へ移動させ、シフトポジション「D」に移動させた時のシフト位置検出装置100の状態を示す。図12Cは、シフトレバー101のシフトポジションが、シフトポジション「R」の時のシフト位置検出装置100の状態を示す。
 シフトレバー101を、シフトポジション「H」からシフトポジション「N」へ移動させると、シフトレバー101は、図7Bの一点鎖線で示すように、セレクト方向支軸102を中心に時計回りに傾く。そしてシフト位置検出装置100は、図8A、図8Bのシフトポジション「H」の状態から、図9A、図9Bに示す状態となる。シフトレバー101がシフトポジション「N」へ移動すると、図9Bに示すように、シフトレバー101の先端部が挿入されている貫通孔24Aは、上方へ押し上げられる。貫通孔24Aが押し上げられると、リンク24も同様に、上方へ押し上げられる。そしてガイド31Bに挿入されている係合柱24Bは、図12Aに示すように、ガイド31Bで囲われた範囲内で、上方へ押し上げられる。このようなリンク24の上方への直線移動に伴い、磁石25も上方へ直線移動する。
 次に、シフトレバー101を、シフトポジション「N」からシフトポジション「D」へ移動させると、シフトレバー101は、図7Cの破線で示すように、シフト方向支軸103を中心に傾く。これにより貫通孔24Aは、図12Bの紙面右方向へ押しやられる。しかしリンク24は、ガイド31Bにより図12Bの紙面の左右方向の直線移動を制限されている。したがってリンク24は、係合柱24Bを中心に、図12Aに示す状態から、図12Aの紙面の反時計回りに回動し、図12Bに示す状態となる。このようなリンク24の回動に伴い、磁石25も反時計回りに回動する。
 一方、シフトレバー101を、シフトポジション「N」からシフトポジション「R」へ移動させると、シフトレバー101は、図7Cの一点鎖線で示すように、シフト方向支軸103を中心に傾く。これにより貫通孔24Aは、図12Aの紙面左方向へ押しやられる。しかしリンク24は、ガイド31Bにより図12Aの紙面の左右方向の直線移動を制限されている。したがってリンク24は、係合柱24Bを中心に図12Aの紙面の時計回りに回動し、図12Cに示す状態となる。このようなリンク24の回動に伴い、磁石25も時計回りに回動する。
 次に、シフトレバー101をシフトポジション「S」、「-」、「+」へ移動させる場合について説明する。図10A、図10Bと、図13Aとは、シフトレバー101のシフトポジションがシフトポジション「S」の時の、シフト位置検出装置100の状態を示す。図13Bは、シフトレバー101をシフトポジション「S」からさらにシフト方向へ移動させ、シフトポジション「-」に移動させた時のシフト位置検出装置100の状態を示す。図13Cは、シフトポジションがシフトポジション「+」の時のシフト位置検出装置100の状態を示す。
 シフトレバー101を、シフトポジション「H」からシフトポジション「S」へ移動させると、シフトレバー101は、図7Bの破線で示すように、セレクト方向支軸102を中心に反時計回りに傾く。そしてシフト位置検出装置100は、図8A、図8Bのシフトポジション「H」の状態から、図10A、図10Bに示す状態となる。シフトレバー101がシフトポジション「S」へ移動すると、図10Bに示すように、シフトレバー101の先端部が挿入されている貫通孔24Aは、紙面の下方へ押し下げられようとする。貫通孔24Aが押し下げられると、リンク24も同様に、下方へ押し下げられる。すると、係合柱24Bは、図13Aに示すように、ガイド31Bで囲われた範囲内で、下方へ押し下げられる。このようなリンク24の下方への直線移動に伴い、磁石25も下方へ直線移動する。
 次に、シフトレバー101を、シフトポジション「S」からシフトポジション「-」へ移動させると、シフトポジション「N」からシフトポジション「D」へ移動させる時と同様に、シフトレバー101は、シフト方向支軸103を中心に傾く。これによりシフトレバー101の先端部が挿入された貫通孔24Aは、図13Bの紙面右方向へ押しやられる。しかしリンク24は、ガイド31Bにより図13Bの紙面の左右方向の直線移動を制限されている。したがってリンク24は、係合柱24Bを中心に、図13Aに示す状態から、図13Aの紙面の反時計回りに回動し、図13Bに示す状態となる。このようなリンク24の回動に伴い、磁石25も反時計回りに回動する。
 一方、シフトレバー101を、シフトポジション「S」からシフトポジション「+」へ移動させると、シフトポジション「N」からシフトポジション「R」へ移動させる時と同様に、シフトレバー101は、シフト方向支軸103を中心に傾く。これによりシフトレバー101の先端部が挿入された貫通孔24Aは、図13Aの紙面の左方向へ押しやられる。しかしリンク24は、ガイド31Bにより図12Aの紙面の左右方向の直線移動を制限されている。したがってリンク24は、係合柱24Bを中心に図13Aの紙面の時計回りに回動し、図13Cに示す状態となる。このようなリンク24の回動に伴い、磁石25も時計回りに回動する。
 磁石25の回動や直線移動を検出すれば、シフトレバー101のシフトポジションを検出できる。
 (1-4.シフト位置検出方法)
 次に、磁石25の直線移動および回動を検出し、シフトレバー101のシフトポジションを検出する方法について説明する。
 図14A~14Cは、シフト位置検出装置100の各シフトポジションにおける検出体41と被検出体である磁石25との位置関係を説明する図である。図14A~図14Cは、磁石25および検出体41を左ケース31側から見た図である。なお、検出体41を構成する第一の直線方向検出素子44と、第二の直線方向検出素子45と、第一の回動方向検出素子46と、第二の回動方向検出素子47とは、それぞれシフトポジションによって磁石25に隠れる場合があるが、説明のため、そのような場合も、これらを隠さず実線で記載している。
 図14Aは、シフト位置検出装置100のシフトポジションが、シフトポジション「H」の時の状態を示す。この時、磁石25は、第一の直線方向検出素子44と第二の直線方向検出素子45の双方から離れた場所に位置する。この時、ホールスイッチである第一の直線方向検出素子44および第二の直線方向検出素子45は、ともに磁界が弱いのでOFF状態になる。またホール素子である第一の回動方向検出素子46と第二の回動方向検出素子47の双方は、磁石25の第一の境界位置25Aと第二の境界位置25B上に位置するため、いずれの出力も中間値をとる。
 図14Bは、シフトレバー101をシフトポジション「N」の方向へ移動させた時の状態を示す。図14Bにおいて、実線で記載されている磁石25は、シフトポジション「N」の時の磁石25の位置を示している。破線で示されている磁石25は、シフトポジション「D」の時の磁石25の位置を示している。一点鎖線で示されている磁石25は、シフトポジション「R」の時の磁石25の位置を示している。
 シフトポジション「N」、「D」、「R」のいずれの場合も、リンク24は、直線移動する所定範囲における一端(第1端部)に位置する。そして磁石25は、第一の直線方向検出素子44に近づき、第二の直線方向検出素子45から遠ざかる。したがって、第一の直線方向検出素子44からの出力はONとなり、第二の直線方向検出素子45からの出力はOFFとなる。
 そしてシフトポジション「N」の時は、シフトポジション「H」の時と同様に、第一の回動方向検出素子46および第二の回動方向検出素子47は、ともに磁石25の第一の境界位置25Aと第二の境界位置25B上に位置する。したがって、第一の回動方向検出素子46および第二の回動方向検出素子47のいずれの出力も中間値をとる。
 またシフトポジション「D」の時には、リンク24は、回動する所定範囲における一端(第1回動端部)に位置する。そして第一の回動方向検出素子46は磁石25のN極側に位置するので出力が高くなり、第二の回動方向検出素子47は磁石25のS極側に位置するので出力が低くなる。
 これに対し、シフトポジション「R」の時には、リンク24は、回動する所定範囲における他端(第2回動端部)に位置する。そして第一の回動方向検出素子46は磁石25のS極側に位置するので出力が低くなり、第二の回動方向検出素子47は磁石25のN極側に位置するので出力が高くなる。
 図14Cは、シフトレバー101をシフトポジション「S」の方向へ移動させた時の状態を示す。図14Cにおいて、実線で記載されている磁石25は、シフトポジション「S」の時の磁石25の位置を示している。破線で示されている磁石25は、シフトポジション「-」の時の磁石25の位置を示している。一点鎖線で示されている磁石25は、シフトポジション「+」の時の磁石25の位置を示している。
 シフトポジション「S」、「-」、「+」のいずれの場合も、リンク24は、直線移動する所定範囲における他端(第2端部)に位置する。そして磁石25は、第一の直線方向検出素子44から遠ざかり、第二の直線方向検出素子45に近づく。したがって、第一の直線方向検出素子44からの出力はOFFとなり、第二の直線方向検出素子45からの出力はONとなる。
 そしてシフトポジション「S」の時は、シフトポジション「H」の時と同様に、第一の回動方向検出素子46および第二の回動方向検出素子47はともに磁石25の第一の境界位置25Aと第二の境界位置25B上に位置する。したがって、第一の回動方向検出素子46および第二の回動方向検出素子47のいずれの出力も中間値をとる。
 またシフトポジション「-」の時には、リンク24は、回動する所定範囲における一端(第1回動端部)に位置する。そして第一の回動方向検出素子46は磁石25のN極側に位置するので出力が高くなり、第二の回動方向検出素子47は磁石25のS極側に位置するので出力が低くなる。
 これに対し、シフトポジション「+」の時には、リンク24は、回動する所定範囲における他端(第2回動端部)に位置する。そして第一の回動方向検出素子46は磁石25のS極側に位置するので第一の回動方向検出素子46からの出力が低くなり、第二の回動方向検出素子47は磁石25のN極側に位置するので出力が高くなる。
 以上のように、本実施形態では、リンク24は、所定範囲の一端(第1端部)と他端(第2端部)との間を直線移動する。そして、第一の直線方向検出素子44によって、リンク24が直線移動における一端(第1端部)に位置した時の、磁石25の位置を検出する。また第二の直線方向検出素子45によって、リンク24が直線移動における他端(第2端部)に位置した時の、磁石25の位置を検出する。
 またリンク24は、所定範囲の一端(第1回動端部)と他端(第2回動端部)との間を回動する。そして、第一の回動方向検出素子46は、リンク24が回動における一端(第1回動端部)に位置した時に、他端(第2回動端部)に位置した時よりも高い出力を発生する。また第二の回動方向検出素子47は、リンクが回動して一端(第1回動端部)に位置する時に、他端(第2回動端部)に位置する時よりも低い出力を発生する。
 図15は、シフト位置検出装置100のシフト方向を検出する検出体41からの出力を示す図である。なお、図15では、シフト位置検出装置100のシフトポジションが、シフトポジション「D」、「N」、「R」間を移動する時の検出体41の出力を示す。第一のシフト出力61は、第一の回動方向検出素子46からの出力である。第一のシフト出力61は、磁石25がシフトポジション「D」に位置する時に最も出力が高く、シフトポジション「R」の位置に向かうに従い出力が低下し、シフトポジション「R」位置にあるときに出力が最も低くなっている。シフトポジション「N」の時の出力値は中間値である。第二のシフト出力62は、第二の回動方向検出素子47からの出力である。第二のシフト出力62は、磁石25がシフトポジション「D」に位置するときに最も出力が低く、シフトポジション「R」の位置に向かうに従い出力が増加し、シフトポジション「R」位置にあるときに出力が最も高くなっている。
 シフト位置検出装置100のシフトポジションが、シフトポジション「S」、「+」間を移動する場合も同様であり、図15の「D」を「-」に、「N」を「S」に、「R」を「+」にそれぞれ置き換えればよい。
 第一のシフト出力61と第二のシフト出力62の少なくとも一方からの出力を求めることで、シフトポジションを検出できる。なお、第一のシフト出力61と第二のシフト出力62とが概ね逆の出力変化をするので、両者の差動出力を求めると、二倍の出力変動を得ることができ、実用上有用である。
 ここで、図14Bと図14Cとを比較すれば分るように、シフトポジション「D」の時とシフトポジション「-」の時とでは、磁石25と第一の回動方向検出素子46との位置関係および磁石25と第二の回動方向検出素子47との位置関係が、厳密には異なっている。シフトポジション「R」の時とシフトポジション「+」の時も同様である。従って、シフトポジション「D」のときとシフトポジション「-」のときの出力差、およびシフトポジション「R」のときとシフトポジション「+」のときの出力差をともに小さくすることが好ましい。このためには、磁石25の第一の境界位置25Aから第一の回動方向検出素子46までの距離が、シフトポジション「R」の時とシフトポジション「+」の時とでほぼ同一になるように、直線方向検出素子部42および回動方向検出素子部43を配置してもよい。あるいは、リンク24の直線移動の距離や、回動する角度、検出体41と磁石25との位置関係などを調整してもよい。また磁石25の第一の境界位置25Aから第一の回動方向検出素子46までの距離が、シフトポジション「D」の時とシフトポジション「-」の時とで、ほぼ同一になるように、検出体41やリンク24等を構成してもよい。さらに磁石25の第二の境界位置25Bから第二の回動方向検出素子47までの距離が、シフトポジション「R」の時とシフトポジション「+」の時とでほぼ同一になるように、検出体41やリンク24等を構成してもよい。また磁石25の第二の境界位置25Bから第二の回動方向検出素子47までの距離が、シフトポジション「D」の時とシフトポジション「-」の時とでほぼ同一となるように検出体41やリンク24等を構成してもよい。
 図16は、シフト位置検出装置100のシフト位置に対応した出力をまとめた図である。図16からも分るように、第一の直線方向検出素子44と、第二の直線方向検出素子45と、第一の回動方向検出素子46とおよび第二の回動方向検出素子47との出力を検出することでシフトポジションを検出できる。
 (1-5.まとめ)
 本実施形態のシフト位置検出装置100では、シフトレバー101のセレクト方向(第一の方向)の移動に連動して、リンク24が直線移動を行い、シフトレバー101のシフト方向(第二の方向)の移動に連動して、リンク24が回動する。そしてリンク24は、磁石25を保持している。すなわち、シフトレバー101の、セレクト方向の移動とシフト方向の移動とを、磁石25の直線移動および回動として検出体41を用いて検出できる。したがって、シフトレバー101のセレクト方向の移動に連動する一つの系統の機構と、シフト方向の移動に連動するもう一つの系統の機構との、合計二系統の機構を備える場合と比べて、シフト位置検出装置100の構成が簡易となる。
 また本実施形態のシフト位置検出装置100では、磁石25の中央部分がS極で、その両隣にN極を有する構成とし、さらに第一の回動方向検出素子46と第二の回動方向検出素子47との間隔を第一の境界位置25Aと第二の境界位置25Bとの間隔と同じにしている。これにより、第一の回動方向検出素子46が第一の境界位置25A上にある時には、第二の回動方向検出素子47が第二の境界位置25B上にある。また第一の回動方向検出素子46がS極上にある時には、第二の回動方向検出素子47がN極上にある。また第一の回動方向検出素子46がN極上にある時には、第二の回動方向検出素子47がS極上にある。従って、第一の回動方向検出素子46の出力変化と第二の回動方向検出素子47の出力変化とが逆方向になるので、差動出力を求めるなどの出力信号処理が容易にできる。
 また本実施形態のシフト位置検出装置100では、第一の直線方向検出素子44と第二の直線方向検出素子45とがそれぞれ複数個ずつ配置されている。したがって、いずれかが故障した場合も、残りの素子によって動作でき、安全性を向上できる。また第一の回動方向検出素子46と第二の回動方向検出素子47とが配置されている。したがって、いずれか一方が故障した場合も、他方によって動作でき、安全性を向上できる。
 また本実施形態では、検出体41としてホール素子を用いることで、多くのシフトポジションを検出できる。またホール素子と比べて安価なホールスイッチも組み合わせることで、シフト位置検出装置100のコストダウンを図れる。
 さらに本実施形態では、磁石25のN極とS極との配列方向が、貫通孔24Aの中心と係合柱24Bの中心とを結ぶ直線と直交する方向としている。すなわち磁石25の形状は、横長の直方体である。これにより本実施形態では、シフト位置検出装置100の縦寸法を短くできる。また磁石25が回動する面積を小さくできる。したがって、シフト位置検出装置100を小型化できる。
 また本実施形態では、貫通孔24Aの面241Aは湾曲している。またシフトレバー101の挿入方向に貫通孔24Aの直径が広がるように、面241Aは傾斜している。これにより本実施形態では、シフトレバー101が滑らかに移動する。そしてその結果、検出体41からの出力が安定する。
 また本実施形態のシフト位置検出装置100は、シフトレバーボックス200と分離可能である。したがってシフトレバーボックス200自体にシフト位置を検出する機構を有するものと比べて、車種が違っても同じ設計で対応できる。
 なお、本実施形態においては、シフトポジションが、シフトポジション「H」、「N」、「D」、「R」、「S」、「+」および「-」の7ポジションであったが、検出するシフトポジションはこれらに限定されるものではない。またシフト位置検出装置100は、シフトポジション「H」からシフト方向に移動させる構成でもよい。その場合には、第一の直線方向検出素子44および第二の直線方向検出素子45の出力はともにOFFで、第一の回動方向検出素子46および第二の回動方向検出素子47の出力の一方が高、他方が低となることでシフトポジションの検出が可能である。
 また、第一の回動方向検出素子46および第二の回動方向検出素子47からのアナログ出力を利用することで、シフト方向の検出を3ポジションのみではなく、4ポジション以上の検出も可能である。
 直線方向検出素子部42を構成する磁気検出素子の数は3個以上でもよい。磁気の検出範囲が狭い磁気検出素子を用い、磁気検出素子を3個以上用いることで、第一の方向の検出位置数を増加させることもできる。
 同様に、回動方向検出素子部43を構成する磁気検出素子の数も3個以上にしてもよい。これにより第二の方向の検出位置数を増加させることもできる。
 なお、検出するシフトポジションの数が少ない場合は、直線方向検出素子部を構成する磁気検出素子の数は、一つでもよい。
 本実施形態において、シフトレバー101の第一の移動方向をセレクト方向とし、第二の方向をシフト方向としたが、逆であってもよい。
 本実施形態のシフト位置検出装置100は磁気式の検出方式を用いたが、被検出体および検出体41を電極にした静電容量方式を用いてもよい。
 なお、本実施形態では、オートマチックトランスミッションの車両におけるシフト位置検出装置100を例に挙げたが、マニュアルトランスミッションの車両におけるシフト位置検出装置にも応用可能である。
 上述のシフト位置検出装置は、構成を簡単にしたものが得られ、主に車載用として有用である。
 21 ケース
 22 回路基板
 22A プリント基板
 22B コネクタ
 23 高摺動シート
 24 リンク
 24A 貫通孔
 24B 係合柱
 25 磁石
 25A 第一の境界位置
 25B 第二の境界位置
 26 引張バネ
 27 防塵シート
 31 左ケース
 31A 貫通孔
 31B ガイド
 32 右ケース
 32A 貫通孔
 41 検出体
 42 直線方向検出素子部
 43 回動方向検出素子部
 44 第一の直線方向検出素子
 45 第二の直線方向検出素子
 46 第一の回動方向検出素子
 47 第二の回動方向検出素子
 51 ケーブル
 61 第一のシフト出力
 62 第二のシフト出力
 100 シフト位置検出装置
 101 シフトレバー
 101A シフトノブ
 102 セレクト方向支軸
 103 シフト方向支軸
 104 ボックス
 200 シフトレバーボックス

Claims (7)

  1. シフトレバーの位置を検出するシフト位置検出装置であって、
    前記シフトレバーの第一の方向の移動に連動して直線移動し、前記シフトレバーの第二の方向の移動に連動して回動するリンクと、
    前記リンクに保持されて、前記リンクと共に移動する被検出体と、
    前記被検出体の位置を検出する検出体と、
    を備えるシフト位置検出装置。
  2. 前記被検出体は磁気発生器であり、
    前記検出体は磁気検出器である請求項1記載のシフト位置検出装置。
  3. 前記磁気検出器は、
     前記リンクが直線移動して到達した前記被検出体の位置を検出する直線方向検出素子部と、
     前記リンクが回動して到達した前記被検出体の位置を検出する回動方向検出素子部と、を有する請求項2記載のシフト位置検出装置。
  4. 前記リンクは、所定範囲の第1端部と第2端部との間を直線移動し、
    前記直線方向検出素子部は、
     前記リンクが前記第1端部に位置する時の、前記被検出体の位置を検出する第一の直線方向検出素子と、
     前記リンクが前記第2端部に位置する時の、前記被検出体の位置を検出する第二の直線方向検出素子と、を含む請求項3記載のシフト位置検出装置。
  5. 前記リンクは、所定範囲の第1回動端部と第2回動端部との間を回動し、
    前記回動方向検出素子部は、
     前記リンクが前記第1回動端部に位置する時に、前記第2回動端部に位置する時よりも高い出力を発生する第一の回動方向検出素子と、
     前記リンクが前記第1回動端部に位置する時に、前記第2回動端部に位置する時よりも低い出力を発生する第二の回動方向検出素子と、を含む請求項3記載のシフト位置検出装置。
  6. 前記磁気発生器は、
     前記検出体と対向する面に、第一の磁極と、前記第一の磁極の両隣に複数の第二の磁極のそれぞれが配置された磁石である請求項5記載のシフト位置検出装置。
  7. 前記磁石は、前記第一の磁極と前記複数の第二の磁極のそれぞれとが切り替わる第一の境界位置と第二の境界位置とを有し、
    前記第一の回動方向検出素子と前記第二の回動方向検出素子との間隔は、前記第一の境界位置と第二の境界位置との間隔と同じである、請求項6記載のシフト位置検出装置。
PCT/JP2014/006257 2014-01-08 2014-12-16 シフト位置検出装置 WO2015104759A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014001326 2014-01-08
JP2014-001326 2014-01-08

Publications (1)

Publication Number Publication Date
WO2015104759A1 true WO2015104759A1 (ja) 2015-07-16

Family

ID=53523618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006257 WO2015104759A1 (ja) 2014-01-08 2014-12-16 シフト位置検出装置

Country Status (1)

Country Link
WO (1) WO2015104759A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218094A (ja) * 2016-06-09 2017-12-14 株式会社東海理化電機製作所 シフト装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138235A (ja) * 2002-08-20 2004-05-13 Tokai Rika Co Ltd シフトレバー装置
JP2007062664A (ja) * 2005-09-01 2007-03-15 Tokai Rika Co Ltd シフト装置
JP2007331504A (ja) * 2006-06-14 2007-12-27 Mannoh Co Ltd Atシフトレバー装置
JP2012153301A (ja) * 2011-01-27 2012-08-16 Tokai Rika Co Ltd 車両変速機用操作装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138235A (ja) * 2002-08-20 2004-05-13 Tokai Rika Co Ltd シフトレバー装置
JP2007062664A (ja) * 2005-09-01 2007-03-15 Tokai Rika Co Ltd シフト装置
JP2007331504A (ja) * 2006-06-14 2007-12-27 Mannoh Co Ltd Atシフトレバー装置
JP2012153301A (ja) * 2011-01-27 2012-08-16 Tokai Rika Co Ltd 車両変速機用操作装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218094A (ja) * 2016-06-09 2017-12-14 株式会社東海理化電機製作所 シフト装置

Similar Documents

Publication Publication Date Title
EP1530121A2 (en) Force-feedback input device
JP2009117201A (ja) 入力装置
JP2004138235A (ja) シフトレバー装置
JP2007203976A (ja) シフト装置
JP2009115645A (ja) 移動体位置検出装置
JP2007099258A (ja) シフトセレクタ
CN101809529A (zh) 输入装置以及搭载有该输入装置的电子设备
KR102603759B1 (ko) 차량용 멀티 오퍼레이팅 스위치 유니트
KR101096925B1 (ko) 복합 스위치 유니트 및 이를 구비하는 복합 스위치 장치
JP2011027627A (ja) 位置検出装置
JP6302805B2 (ja) 位置検出装置
JP5033105B2 (ja) 位置検出装置
WO2015104759A1 (ja) シフト位置検出装置
WO2010026947A1 (ja) シフト装置
CN110100220B (zh) 位置传感器以及变速杆装置
US10703258B2 (en) Transmission mechanism, lever mechanism, and contactless lever switch
JP4624973B2 (ja) シフト装置
JP2017178060A (ja) シフト装置
JP6041437B2 (ja) ロータリーアクチュエータ
JP5643137B2 (ja) シフトレバー装置
JP4921398B2 (ja) 操作位置検出装置及びシフト装置
JP6148646B2 (ja) ポジション切替装置
EP1530120A1 (en) Force-feedback input device
US20200173540A1 (en) Operating device
WO2019207899A1 (ja) シフト装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14878321

Country of ref document: EP

Kind code of ref document: A1