WO2015103900A1 - 一种多核分子化合物、其制备方法及用途 - Google Patents

一种多核分子化合物、其制备方法及用途 Download PDF

Info

Publication number
WO2015103900A1
WO2015103900A1 PCT/CN2014/090267 CN2014090267W WO2015103900A1 WO 2015103900 A1 WO2015103900 A1 WO 2015103900A1 CN 2014090267 W CN2014090267 W CN 2014090267W WO 2015103900 A1 WO2015103900 A1 WO 2015103900A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
molecular compound
methanol
parts
magnolol
Prior art date
Application number
PCT/CN2014/090267
Other languages
English (en)
French (fr)
Inventor
李卫民
袁晓
荣向路
周东斌
Original Assignee
广州牌牌生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州牌牌生物科技有限公司 filed Critical 广州牌牌生物科技有限公司
Publication of WO2015103900A1 publication Critical patent/WO2015103900A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D455/00Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine
    • C07D455/03Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing quinolizine ring systems directly condensed with at least one six-membered carbocyclic ring, e.g. protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Definitions

  • the invention belongs to the field of medicinal chemistry and pharmacotherapy, and particularly relates to a multinuclear molecular compound synthesized from erythromycin and magnolol, a preparation method thereof and the use thereof in preparing a medicament for treating diabetes.
  • Diabetes is a chronic condition that occurs when the pancreas does not produce enough insulin or the body cannot effectively use the insulin produced.
  • Insulin is a hormone that regulates blood sugar. Hyperglycemia or elevated blood sugar is a common result of uncontrolled diabetes, which can cause serious damage to many systems of the body, especially nerves and blood vessels. Diabetes is generally classified into type I diabetes, type 2 diabetes, and gestational diabetes.
  • Impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) are intermediate states in which the body's blood glucose levels are between the normal and diabetic blood glucose levels. Patients with impaired glucose tolerance or patients with impaired fasting blood glucose are at high risk of developing type 2 diabetes, although this is not inevitable.
  • Diabetes develops and can damage the heart, blood vessels, eyes, kidneys and nerves.
  • Diabetes is one of the most important chronic non-communicable diseases currently threatening global human health.
  • IDF International Diabetes Federation
  • the global prevalence of diabetes in adults aged 20-79 in 2013 was 8.3%, and the number of patients has reached 382 million, of which 80% are in middle and low income countries, and in these countries. It is on a fast-rising trend. It is estimated that nearly 592 million people worldwide will have diabetes by 2035. Of the population already suffering from diabetes, 175 million (46%) are not diagnosed. The number of pregnant women with high blood sugar in 2013 was 21 million, accounting for 17% of all women in the current year. In 2013, a total of 79,000 new patients with type 1 diabetes were diagnosed worldwide.
  • ITT impaired glucose tolerance
  • Ob/ob mouse The mouse is hypersexual, obese, and has diabetes. Its obesity is caused by a recessive mutation in the obese gene (ob), hence the name ob/ob mouse (obese mice). . Ob/ob mice have a genetic back Abnormal and phenotypic changes in the landscape, in which the C57B/6J system abnormalities are the most common genetic background.
  • Db/db mice db/db mice (diabetic mice), the chromosome 4 of this model has a malignant mutation, and both male and female mice develop diabetes. Plasma insulin levels began to rise from 2 to 3 weeks of age, and islet cells also had hypertrophy, proliferation, degranulation and other changes, polyphagia, obesity is also very obvious, significant insulin resistance in the obesity hyperglycemia period.
  • KK and KK-Ay mice have properties similar to those of obese diabetes in adults, and are congenital genetically deficient mice. At 16 weeks of age, there may be obvious obesity and polyuria, and hyperglycemia, hyperinsulinemia and dyslipidemia begin to appear.
  • STZ-SHR and SHROB rats Spontozotocin (STZ) was administered to spontaneously hypertensive rats (SHR) in the neonatal period, and type II diabetes with essential hypertension model (STZSHR) was obtained in adulthood.
  • SHR spontaneously hypertensive rats
  • STZSHR type II diabetes with essential hypertension model
  • SHROB obese spontaneously hypertensive rats
  • lean SHR lean SHR
  • SHROB is a mouse species that superimposes obesity on the genetic background of hypertension, with high levels of fasting plasma glucagon and free fatty acids, and The sugar load reaction is abnormal.
  • Zucker obese rats are genetically defective homozygous individuals (fa/fa) characterized by hyperglycemia, hyperinsulinemia, hyperlipidemia, and moderate hypertension.
  • OLETF Rat A spontaneous type II diabetic mouse developed by the Japanese pharmaceutical company in 1984. The expression of cholecystokinin (CCK)-A receptor mRNA was completely absent, and the ODB1 and ODB2 genes carried by it were involved in the pathogenesis of diabetes. The rat developed significant insulin resistance at 12 weeks of age and was used for the evaluation of insulin resistance interventions.
  • CCK cholecystokinin
  • JCR LA-cp rat a metabolic syndrome (MS) model characterized by atherosclerosis.
  • MS metabolic syndrome
  • Male autosomal recessive cp gene homozygotes (cp/cp) often manifest as obesity, insulin resistance, hyperinsulinemia and hypertriglyceridemia, and have typical characteristics of MS.
  • Wistar obese rats Wistar-Kyoto rats with impaired glucose tolerance carry fa obesity genes with hyperglycemia and leptin receptor abnormalities.
  • WOKW rats Wistar Ottawa Karlsburg W (WOKW) rats exhibit obesity, moderate hypertension, dyslipidemia, hyperinsulinemia and impaired glucose tolerance and proteinuria, which are very similar to human MS and can be used for human insulin resistance-related diseases. Research. The genetic loci that affect body weight and cause obesity are located on chromosomes 1 and 5.
  • GK rats are a spontaneous type 2 diabetes model with mildly elevated blood glucose, impaired glucose-stimulated insulin secretion, and decreased pancreatic B-cell mass.
  • A-ZIP/F-1 and aP2-SREBP-1c transgenic mice are similar in phenotype, appearing light at birth Degree of fatty liver, followed by a gradual increase in blood triglyceride levels. Due to adipose tissue dysplasia, such mice often have a series of MS symptoms such as hyperglycemia, hyperinsulinemia, hypertriglyceridemia, elevated levels of free fatty acids, and insulin resistance.
  • TKO-OBR mice Because peripheral adipose tissue leptin resistance can also lead to obesity, TKO-OBR mice can be obtained by gene knockout technique, and the liver and skeletal muscle triglyceride levels are increased by 4 and 2 times, respectively. And there is impaired glucose tolerance and hyperinsulinemia.
  • Insulin receptor knockout model mice with only insulin growth (INSR) gene defects, only mild growth retardation at birth, no metabolic abnormalities, but soon after birth, ketoacidosis After a few days, B cells fail and then die of ketoacidosis. Therefore, INSR knockout mice were unable to analyze the function of INSR in various tissues of adult rats.
  • INSR insulin growth
  • STZ+ high-fat feeding model C57BL/6J mice were injected intraperitoneally with low-dose STZ to slightly destroy islet B cells. After stable, high-fat diet can be used to replicate animal models very similar to clinical type II diabetes. This is a very mature animal model of type 2 diabetes.
  • SD rats After 8 weeks of SD rats fed with high-fat diet for a certain period of time, they showed significant hyperinsulinemia, weight gain and visceral fat accumulation, suggesting that rats have insulin resistance.
  • Gottingen piglets Female Gottingen pigs aged 9-10 months were induced with a high-fat, high-calorie diet. After 5 weeks, intra-abdominal fat content and blood triglyceride levels were significantly elevated, and their metabolic impairment was similar to that of human obesity.
  • Wistar rats are the most common in diet-induced MS animal models. Common methods include high-fat high-salt feeding, high fructose feeding, high-fat feeding, high-fat high-sugar feeding, and high sucrose feeding. Rats develop obesity, accompanied by insulin resistance, hypertension, hypertriglyceridemia, etc., similar to human MS characteristics.
  • Insulin preparations have undergone animal-derived insulin and genetically engineered human insulin stages.
  • the development of insulin analogs and their use and the development of corresponding devices have enabled exogenous insulin to mimic normal human endogenous insulin.
  • Physiological secretion produces a corresponding physiological regulation function with fluctuations in blood glucose.
  • Lilly's Lispro Lilly's Lispro (Humalog).
  • Sulfonylureas contain a sulfonylurea group in the chemical structure, which is characterized by specific binding to the sulfonylurea receptor (SUR) of human pancreatic islet B-cells.
  • SUR sulfonylurea receptor
  • the potassium channel of the cell membrane causes the cell membrane potential to change, opening the calcium ion channel, causing the calcium ion to flow in, which promotes the secretion of insulin.
  • SUD includes the first generation of D-860 and chlorinated phenylurea, the second generation of glibenclamide, gliclazide, gliclazide, glipizide, etc., the third generation of glimepiride and the like.
  • Non-sulfonylureas Insulin-lowering drugs not only have amino acids in the structure, but also appear in the target site, and rapidly promote insulin secretion and reduce type II diabetes by "fast-opening-fast-closing"
  • IPH post-prandial hyperglycemia
  • People with irregular diets show excellent results.
  • mealtime blood sugar regulator Commonly used drugs in clinical practice are repaglinide, nateglinide and mitiglinide.
  • Alpha-glucosidase inhibitor blocks the decomposition of carbohydrates into glucose by inhibiting the activity of small intestinal mucosal ⁇ -glucosidase in the upper small intestine, and the undecomposed carbohydrates are hydrolyzed to glucose in the latter half of the small intestine. Thereby effectively controlling postprandial blood glucose, maintaining a relatively stable level.
  • Such drugs are acarbose, miglitol, voglibose, and the like.
  • Starch insolubles natural human amyloid insolubles (amylin, AC-0137) is a polypeptide hormone with 37 amino acids. It is released from islet B-cells together with insulin, which can effectively inhibit gastric emptying, but is unstable. It is easily hydrolyzed or aggregated in the body. Amylin has developed its analog, pramlintide acetate.
  • Thiazolidinediones The main targets are adipose tissue, skeletal muscle and liver, which can induce adipocytes to differentiate into small insulin-sensitive adipocytes, and regulate transcription of lipoproteinase and other genes in the adipose genetic pathway, for myocardial and blood vessels. Endothelial cells, vascular smooth muscle cells, stimulation of vasodilators, inhibition of calcium uptake and smooth muscle proliferation, protection of the vascular system, lower blood pressure, prevention of vascular damage and atherosclerosis, etc., have a role. Such drugs include rosiglitazone, pioglitazone and the like.
  • Non-thiazolidinediones are double-effect PPAR agonists, such as BMS-298585, JTT-501, LY-818, DRF-2725, NN-622, etc. These drugs are in clinical research stages and have not yet been marketed.
  • new anti-diabetic drugs at home and abroad generally include GLP-1 analogues, DPP-IV inhibitors, SGLT-2 inhibitors, 11 ⁇ -HSD1 inhibitors, G-protein coupled receptors and glucokinase inhibitors.
  • Berberine has anti-pathogenic action: antibacterial, antiviral, anti-protozoal and anti-toxic effects. Effects on the cardiovascular system: antiarrhythmia, lowering blood pressure, positive inotropic and protective effects on ischemic brain damage. Hypoglycemic effect: A large number of pharmacological and clinical studies have confirmed that berberine not only has significant hypoglycemic effect, but also has a good preventive effect on hypertension and thrombosis of comorbidities associated with diabetic patients. Anti-inflammatory effect, inhibit platelet aggregation, enhance immune function, and fight cancer. Other effects: anti-ulcer effect, antipyretic effect and also have central inhibition and choleretic effects.
  • Magnolol has obvious, long-lasting central muscle relaxation, central nervous system inhibition, anti-inflammatory, antibacterial, anti-pathogenic microorganisms, anti-ulcer, anti-oxidation, anti-tumor, inhibition of morphine withdrawal response, inhibition of platelets Aggregation and other pharmacological effects.
  • magnolol has significant antibacterial activity against gram-positive bacteria, acid-tolerant bacteria and filamentous fungi, and has a more significant antibacterial effect against Streptococcus mutans, and has the strongest inhibitory effect against Staphylococcus.
  • it is mainly used to eliminate chest and abdomen fullness, calm central nervous system, athlete muscle relaxation, anti-fungal, anti-ulcer and other drugs.
  • Huanglian and Magnolia form a traditional Chinese medicine pair.
  • the ancient party has “Huanglian Houpu Soup” as a prescription for multiple berberine and Magnolia.
  • the representative component of berberine is berberine (carotene), while the representative component of Magnolia is Magnolol has antibacterial, anti-inflammatory, anti-oxidation, central inhibition, anti-cancer, inhibition of platelet aggregation and ischemic brain damage, relaxation of smooth muscle and antihypertensive effect, synergistic or synergistic effect, can enhance the efficacy.
  • a natural core molecule derived from the evolution of natural organisms in order to defend against certain damage or to obtain certain benefits. It has evolved and evolved (regardless of its molecular weight and complexity, including the structure of primary and secondary metabolites). The core of the role of the molecule, its derivation and evolution is aimed at defending against certain harm or gaining some kind of benefit.
  • New multinuclear molecule An artificial multi-effect new molecule obtained by artificially synthesizing or splicing two or more "natural core molecules".
  • new multi-core molecules which are artificially synthesized or spliced by two or more “natural core molecules” have the characteristics of a single “natural core molecule” and have multiple The pharmacodynamic properties of "natural core molecules”; “new multinuclear molecules” after artificial synthesis or splicing have at least played a synergistic and attenuating role for "natural core molecules”.
  • the mononuclear (or multinuclear) molecules acting on the same or completely different molecules on the arbitrary or designated bonds of the mononuclear molecule change their molecular structure and spatial configuration; the core of the action also changes.
  • the main role is mainly to enhance the efficacy, reduce toxicity and side effects.
  • the compatibility of the drug pairs can be revealed, the compatibility mechanism of the attenuating and increasing effects can be explored, and the compatibility relationship between the Chinese medicine and the seven emotions and the relatives can be deepened.
  • the drug pair can be a traditional Chinese medicine pair, and the compatibility rule between the two drugs can be studied, or the compatibility of the "medicine pairs" between different chemical components in the same drug can be studied.
  • the traditional Chinese medicine theory can guide the compatibility between traditional Chinese medicines (decoction pieces); it can guide the compatibility between the effective parts of traditional Chinese medicines; it can also guide the compatibility application of the active ingredients of traditional Chinese medicines; we extend its development to research Designing and guiding the interaction and influence of the "natural core molecules" of drug molecules, so that the research forms of the complex interactions of traditional Chinese medicines into complex drugs can be transformed into the interaction between drug molecules and "new multinuclear molecules”.
  • the object of the present invention is to provide a novel multi-nuclear molecular compound synthesized from erythromycin and magnolol; another object of the present invention is to provide a method for preparing the multinuclear molecular compound; The object is to provide a use of the multinuclear molecular compound in the preparation of a medicament for treating diabetes.
  • the technical solution adopted by the present invention is: a multinuclear molecular compound synthesized from berberine and magnolol.
  • the inventor of the present application first proposed the concept of a multi-nuclear molecule, and proposed for the first time to synthesize or splicing scutellarin with magnolol to obtain a novel multi-nuclear molecular compound, and the toxicity of the obtained multi-nuclear molecular compound was significantly reduced. It has significant hypoglycemic effect on the diabetic gene mouse model and can be used for hypoglycemic treatment of diabetes, which has a good effect.
  • the structural formula of the multinuclear molecular compound is:
  • n is an integer of 1 ⁇ n ⁇ 30.
  • n is 2 in the structural formula of the above polynuclear molecular compound.
  • the multinuclear molecular compound of the present invention is prepared by the following method:
  • X Y or X ⁇ Y
  • X, Y is O, S, F, Cl, Br or I
  • n is 1 ⁇ n ⁇ 30 The integer.
  • the organic solvent used in the step (1a) is acetonitrile.
  • acetonitrile a suitable material as organic solvents according to the prior art.
  • the reaction process of synthesizing the berberine derivative from the synthesis of berberine in the step (1a) is as follows:
  • n is an integer of 1 ⁇ n ⁇ 30.
  • the step (2a) of reacting a small erythroline derivative with magnolol to form a multinuclear molecular compound is as follows:
  • n is an integer of 1 ⁇ n ⁇ 30.
  • the synthesis process of the saponin derivative in the step (1a) is: weighing 1 part by weight of the erythroline and adding 150 to 200 parts by weight of the organic solvent, 85 °C heating to boiling, adding 20 to 40 parts by weight of 1,2-dibromoethane, refluxing for 3h, the reaction solution is concentrated to 50-100 parts, cooling the crystals, filtering, washing with appropriate amount of organic solvent, washing and filtrate The organic solvent was combined, and the residue was dissolved in 30 parts by weight of methanol, and the crystals were cooled, filtered, and the crystals were washed with methanol, and combined with the above crystals to obtain a saponin derivative.
  • the small saffron base derivative formed by the reaction of the ruthenium with 1,2-dibromoethane is berberine-9 - Oxyethyl bromide, its chemical structural formula is as follows:
  • the step (2a) is: taking 1.2 parts by weight of the crimsonine derivative obtained in the step (1a) and mixing with 1 part by weight of magnolol, adding anhydrous 2 parts by weight of sodium carbonate and 150 parts by weight of an organic solvent, stirred, heated to 85 ° C, refluxed for 8 h, the reaction liquid was filtered while hot, the solvent was recovered from the filtrate, and separated by 5 parts by weight of DMSO solvent, using 30%, 40 in sequence.
  • the obtained multinuclear molecular compound, MS has a molecular weight of 615.3 and a melting point of 145.2 to 146.1.
  • the multinuclear molecular compound of the present invention is prepared by the following method:
  • X Y or X ⁇ Y
  • X, Y is O, S, F, Cl, Br or I
  • n is 1 ⁇ n ⁇ 30 The integer.
  • the reaction process for synthesizing magnolol derivatives from magnolol in the step (1b) is as follows:
  • n is an integer of 1 ⁇ n ⁇ 30.
  • the step (2b) of synthesizing a multinuclear molecular compound from a campanol and a magnolol derivative is as follows:
  • n is an integer of 1 ⁇ n ⁇ 30.
  • the molar ratio of magnolol, anhydrous sodium carbonate, and X(CH 2 ) n Y in the step (1b) is 1:2:16, the magnolia
  • the molar volume ratio of the phenol to the organic solvent is 1/150 mol/L
  • the reaction temperature is 85 ° C
  • the reaction time is 5 h
  • the X(CH 2 ) n Y is 1,2-dibromoethane.
  • the resulting magnolol derivative is magnolol-1-oxyethyl bromide, and its structural formula is as follows:
  • the step (2b) is: taking 1 part by weight of the magnolol derivative obtained in the step (1b), 2 parts by weight of anhydrous sodium carbonate, and 1 aspartic acid.
  • the weight part is added to the reactor, 150 parts of the organic solvent is added, stirred, heated to 85 ° C, refluxed for 8 h, the reaction liquid is filtered while hot, the solvent is recovered, and the column is separated by 5 parts by weight of DMSO solvent, followed by 30%, 40%, 50%, 60% methanol solution elution, HPLC detection, collecting 60% methanol elution part, concentration, concentrate and then using 3 parts by weight of silica gel to mix, silica gel column separation, using 20 times column volume of oil
  • the ether and ethyl acetate mixture was eluted and eluted with methanol to recover methanol, a much more nuclear compound.
  • the silica gel has a particle size of 400 to 500 mesh; and the petroleum ether and ethyl acetate mixture has a volume ratio of petroleum ether to ethyl acetate of 1:1.
  • the organic solvent in the above steps (1a), (2a), (1b), (2b) can be suitably selected by those skilled in the art according to the prior art.
  • the organic solvent is acetonitrile.
  • the above-mentioned crimsonine can be a small erythroline in the prior art, and can be obtained by a person skilled in the art by a suitable route, such as synthesis or direct purchase from the market.
  • the crimsonine in the present invention is prepared by adding berberine and DMF having a ratio of material to liquid of 1:15 to 30 g/L in a reactor, adding zeolite, and refluxing and condensing at 400 W.
  • the reaction is carried out for 10-20min, the reactor is taken out, diluted with hot water, cooled, and refrigerated overnight, the crystallizing is completed, filtered by suction, and dried to obtain crystal a; the filtrate is separated by a macroporous resin column, followed by 40 %, 45%, 50%, 55%, 60%, 65%, and 70% methanol elution, collecting 70% methanol elution site, and concentrating to obtain crystal b, combining crystal a and crystal b, that is, small ⁇ Red base.
  • the chemical structural formula of the berberine is as follows:
  • Another object of the present invention is to provide a method for preparing a multinuclear molecular compound as described above.
  • the technical solution adopted by the present invention is: a method for preparing a multinuclear molecular compound, comprising the following steps:
  • X Y or X ⁇ Y
  • X, Y is O, S, F, Cl, Br or I
  • n is 1 ⁇ n ⁇ 30 The integer.
  • the synthesis process of the saponin derivative in the step (1a) is: weigh 1 part by weight of the saponin, and add 150 to 200 of the organic solvent. The parts by weight are heated to boiling at 85 ° C, and 20 to 40 parts by weight of 1,2-dibromoethane is added, and the reaction mixture is refluxed for 3 hours, and the reaction liquid is concentrated to 50 to 100 parts, cooled, crystallized, and washed with an appropriate amount of an organic solvent.
  • the washing liquid was combined with the filtrate to recover an organic solvent, and the residue was dissolved in 30 parts by weight of methanol, and the crystals were cooled, filtered, and crystallized with methanol, and combined with the above crystals to obtain a crimsonine derivative.
  • the step (2a) is: mixing 1.2 parts by weight of the crimsonine derivative obtained in the step (1a) with 1 part by weight of magnolol, 2 parts by weight of anhydrous sodium carbonate and 150 parts by weight of an organic solvent were added, stirred, heated to 85 ° C, refluxed for 8 h, and the reaction liquid was filtered while hot, and the solvent was recovered from the filtrate, and separated by 5 parts by weight of DMSO solvent, followed by 30 %, 40%, 50%, 60% methanol solution elution, HPLC detection, collecting 60% methanol elution fraction, concentration, concentrate and then mixing with 3 parts by weight of silica gel, silica gel column separation, using 20 column volume The petroleum ether and ethyl acetate mixture is eluted and eluted with methanol to recover methanol, a much more nuclear compound.
  • Another object of the present invention is to provide a method for preparing a multinuclear molecular compound as described above.
  • the technical solution adopted by the present invention is: a method for preparing a multinuclear molecular compound, comprising the following steps:
  • X Y or X ⁇ Y
  • X, Y is O, S, F, Cl, Br or I
  • n is 1 ⁇ n ⁇ 30 The integer.
  • the molar ratio of magnolol, anhydrous sodium carbonate and X(CH 2 ) n Y in the step (1b) is 1:2:8.
  • the molar volume ratio of the magnolol to the organic solvent is 1/150 mol/L, the reaction temperature is 85 ° C, and the reaction time is 5 h; and the X(CH 2 ) n Y is 1,2-dibromoethane.
  • the step (2b) is: taking 1 part by weight of the magnolol derivative obtained in the step (1b), and 2 parts by weight of anhydrous sodium carbonate. 1 part by weight of berberine was added to the reactor, 150 parts of organic solvent was added, stirred, heated to 85 ° C, refluxed for 8 h, the reaction liquid was filtered while hot, the solvent was recovered from the filtrate, and separated by 5 parts by weight of DMSO solvent.
  • the present invention provides a novel substance multinuclear molecular compound which is also the first concept proposed by the inventors of the present application.
  • the multinuclear molecular compound is synthesized from erythromycin and magnolol, and the single component or two are changed.
  • the absorption, distribution, metabolism and excretion of drug components of the mixture of components, the multinuclear molecular compound obtained compared with berberine, the toxicity is only one tenth of that of berberine, the toxicity is significantly reduced, the absorption is significantly improved, and the absorption is improved.
  • the bioavailability, prolonged the metabolic time can achieve long-lasting effects, and the hypoglycemic effect is enhanced.
  • the preparation method of the multi-nuclear molecular compound provided by the invention has the advantages of simple process, easy operation and large-scale industrial production.
  • the use of the multi-core molecular compound provided by the invention in preparing a medicament for treating diabetes has a significant hypoglycemic effect and is a clinical treatment for diabetes Therapy provides more efficient and safe alternatives to meet the diverse needs of clinical treatment.
  • 1 is a schematic view showing the chemical structure of a multinuclear molecular compound of the present invention.
  • Figure 2 is a 1 H NMR chart of berberine
  • Figure 3 is a 13 C NMR chart of berberine
  • Figure 4 is a 1 H NMR chart of berberine-9-oxoethyl bromide
  • Figure 5 is a 13 C NMR chart of berberine-9-oxoethyl bromide
  • Figure 6 is a 1 H NMR chart of the multinuclear molecular compound of the present invention.
  • Figure 7 is a 13 C NMR chart of the multinuclear molecular compound of the present invention.
  • Figure 8 is a genotype identification map of aP2-SREBP-1c mouse
  • Figure 9 is a graph showing the effect of the multinuclear molecular compound of the present invention on blood glucose of aP2-SREBP-1c mice;
  • Figure 10 is a graph showing the effect of the multinuclear molecular compound of the present invention on AUC of aP2-SREBP-1c mouse;
  • Figure 11 is a graph showing the effect of the multinuclear molecular compound of the present invention on TG of aP2-SREBP-1c mouse;
  • Figure 12 is a graph showing the effect of the multinuclear molecular compound of the present invention on blood glucose of type II diabetic mice caused by STZ+ high fat;
  • Figure 13 is a graph showing the effect of the multinuclear molecular compound of the present invention on AUC of type 2 diabetic mice caused by STZ+ high fat;
  • Figure 14 is a graph showing the effect of the multinuclear molecular compound of the present invention on TG of type II diabetic mice caused by STZ+ high fat.
  • the multinuclear molecular compound of the present embodiment is prepared by the following method:
  • the fractions were eluted, concentrated, and the mixture was mixed with 3 parts by weight of silica gel (400-500 mesh), separated on a silica gel column, and mixed with 20 volumes of petroleum ether and ethyl acetate (petroleum ether and ethyl acetate). The volume ratio is 1:1) eluted, and then eluted with methanol to recover methanol, that is, a multinuclear molecular compound, the yield of the multinuclear molecule is 22-28%, the molecular weight of MS is 615.3, and the melting point is 145.2-146.1.
  • the molecular structure of the obtained polynuclear molecular compound is shown in Fig. 1.
  • the 1 H NMR chart and the 13 C NMR chart of the obtained polynuclear molecular compound are shown in Figures 6 and 7, respectively, wherein in Figure 6, the assignment of H is shown in Table 3. :
  • the cholesteric base in the step (1a) in the present embodiment can be obtained by any one of the prior art methods, or can be directly purchased from the market, etc., preferably, in the step (1a) described in the embodiment.
  • Berberine is prepared by adding berberine and DMF with a ratio of 1:15 to 30 g/L in the reactor, adding zeolite, reflux condensation, and reacting under 400-800 W microwave irradiation. ⁇ 20min, take out the reactor, add heat to the mixture, dilute and cool, refrigerate overnight, complete the crystallization, suction filtration, and dry to obtain crystal a; the filtrate is separated by a macroporous resin column, using 40%, 45%, 50% in sequence.
  • the multinuclear molecular compound of the present embodiment is prepared by the following method:
  • the fractions were eluted, concentrated, and the mixture was mixed with 3 parts by weight of silica gel (400-500 mesh), separated on a silica gel column, and mixed with 20 volumes of petroleum ether and ethyl acetate (petroleum ether and ethyl acetate). The volume ratio is 1:1) eluted, and then eluted with methanol to recover methanol, that is, a multinuclear molecular compound, the yield of the multinuclear molecule is 22-28%, the molecular weight of MS is 615.3, and the melting point is 145.2-146.1.
  • the molecular structural formula of the obtained polynuclear molecular compound is shown in Fig. 1.
  • the cholesteric base in the step (1a) in the present embodiment can be obtained by any one of the prior art methods, or can be directly purchased from the market, etc., preferably, in the step (1a) described in the embodiment.
  • Berberine was prepared by the method described in Example 1.
  • the multinuclear molecular compound of the present embodiment is prepared by the following method:
  • the fractions were eluted, concentrated, and the mixture was mixed with 3 parts by weight of silica gel (400-500 mesh), separated on a silica gel column, and mixed with 20 volumes of petroleum ether and ethyl acetate (petroleum ether and ethyl acetate). The volume ratio is 1:1) eluted, and then eluted with methanol to recover methanol, that is, a multinuclear molecular compound, the yield of the multinuclear molecule is 22-28%, the molecular weight of MS is 615.3, and the melting point is 145.2-146.1.
  • the molecular structural formula of the obtained polynuclear molecular compound is shown in Fig. 1.
  • the cholesteric base in the step (1a) in the present embodiment can be obtained by any one of the prior art methods, or can be directly purchased from the market, etc., preferably, in the step (1a) described in the embodiment.
  • Berberine was prepared by the method described in Example 1.
  • the multinuclear molecular compound of the present embodiment is prepared by the following method:
  • the mixture was eluted with 20 column volumes of petroleum ether and ethyl acetate (volume ratio of petroleum ether and ethyl acetate: 1:1), and then methanol was used to recover methanol. That is, a much more nuclear molecular compound, the yield of the multinuclear molecule is 22-28%, the molecular weight of MS is 615.3, and the melting point is 145.2-146.1.
  • the molecular structural formula of the obtained multinuclear molecular compound is shown in FIG.
  • the cholesteric base in the step (1a) in the present embodiment can be obtained by any one of the prior art methods, or can be directly purchased from the market, etc., preferably, in the step (1a) described in the embodiment.
  • Berberine was prepared by the method described in Example 1.
  • the multinuclear molecular compound of the present embodiment is prepared by the following method:
  • the cholesteric base in the step (2b) in the present embodiment can be obtained by any one of the prior art methods, or can be directly purchased from the market, etc., preferably, in the step (2b) described in the embodiment.
  • Berberine was prepared by the method described in Example 1.
  • the aP2-SREBP-1c transgenic mice were introduced from the Jackson Laboratory in the United States, entrusted to the Institute of Model Animals of Nanjing University, and then transferred to Guangzhou University of Traditional Chinese Medicine for breeding. Certificate No.: J003393 SCXK (Su) 2010-0001. Breeding and breeding conditions: SPF animal room of Experimental Animal Center of Guangzhou University of Traditional Chinese Medicine, temperature 20 ⁇ 25 ° C, humidity 50 ⁇ 80%, 12h: 12h ⁇ nighttime lighting, ordinary feed purchased in Guangdong Medical Laboratory Animal Center.
  • SREBP-1c is an important member of the nuclear transcription factor family, and it is mainly involved in the regulation of the expression of genes involved in fat synthesis and glucose metabolism. It has three forms: SREBP-1C, SREBP-1a, and SREBP-2. SREBP-2 tends to activate cholesterol synthesis, and SREBP-1a and SREBP-1c tend to promote fatty acid synthesis and SREBP-1c is predominantly expressed in liver and adipose tissue.
  • This transgenic mouse utilizes adenovirus technology to overexpress SREBP-1c in adipose tissue, which is similar to another A-ZIP/F-1 mouse in a trans fatal model of the fat developmental disorder. The former is apparent at birth. White fat is atrophied and brown fat is developed. The latter is characterized by an absolute lack of white fat and a significant reduction in brown fat.
  • a series of metabolic syndrome symptoms include insulin resistance, hyperlipidemia, and hyperglycemia.
  • mice Male transgenic and female wild-type mice of similar age and age of 6 weeks old were caged at 1:2. Male rats were individually divided into cages after pregnancy, and pregnant female rats were fed with appropriate nutrition, and the feeding conditions were the same as above. Two weeks after the birth of the mouse, the genotype was identified by cutting about 1 cm, and the wild type and transgenic type were identified.
  • the aP2-SREBP-1c transgenic mice are heterozygous individuals with C57BL/6J and SJL backgrounds.
  • the rat tail DNA extraction and PCR amplification were performed with reference to the Jackson Laboratory genotyping method to identify transgene-type (T) and wild.
  • Type wild-type, W.
  • the dose is 40 mg/kg/10 ml.
  • 40 mg of the multinuclear molecular compound powder obtained in any of Examples 1 to 7 was weighed, and a 5% gum arabic solution was successively added thereto, and while grinding, the final volume was adjusted to 10 ml.
  • mice Eight 12-week-old female wild-type mice (W) and 16 transgenic mice (T) were selected. Divided into normal group (wild type), control group (transgenic type), multi-core molecular compound group (transgenic type), 8 in each group. The body weight, food intake and water intake were measured twice a week, and administered by intragastric administration. The control group was given an equal volume of 5% gum arabic solution, and the administration volume was 10 ml/kg body weight once a day for 13 weeks.
  • Glu glucose
  • TG triglyceride
  • the aP2-SREBP-1c transgenic mouse was constructed by inserting a 5.4 kb DNA fragment driven by the aP2 gene enhancer/promoter specifically expressed in adipose tissue, which encodes the human SREBP1c 1-436 amino acid sequence, ie, the karyotype SREBP- 1c (nSREBP-1c). Genotype identification showed that, in line with Jackson's laboratory, the proportion of newborn transgenic (T) and wild-type (W) mice was approximately 1:1.
  • the PCR target band was (Transgene) 151 bp and the internal positive control was 324 bp (Fig. 8). Shimomura et al. also showed overexpression of human-derived nSREBP-1c mRNA in white fat of transgenic mice by Northern Blot analysis.
  • the multinuclear molecular compounds obtained in Examples 1 to 7 were able to significantly reduce the blood glucose and AUC at 20 min and 60 min in the OGTT test, indicating that the multinuclear molecular compound of the present invention significantly improved the glucose metabolism of aP2-SREBP-1c mice. (See Figure 9, Figure 10)
  • Dosage and preparation of multi-core molecular compound dose 40mg/kg/10ml.
  • 40 mg of the multinuclear molecular compound powder obtained in any of Examples 1 to 7 was weighed, and a 5% gum arabic solution was successively added thereto, and while grinding, the final volume was adjusted to 10 ml.
  • mice were intraperitoneally injected with STZ 120 mg/kg. After 3 weeks, the mice were randomly divided into 3 groups according to body weight and basic biochemical indicators, with 10 rats in each group. They are blank group, model group, and multi-core molecular compound group. In addition to the blank group given basic diet, intraperitoneal injection of STZ mice were fed 60% high fat diet (recipe according to Research Diet D12492 feed). Until the end of the experiment.
  • the body weight, food intake and water intake were measured twice a week, and administered by intragastric administration.
  • the control group was given an equal volume of 5% gum arabic solution, and the administration volume was 10 ml/kg body weight once a day for 13 weeks.
  • ether was lightly anesthetized, Glu (glucose) and TG (triglyceride) were taken from the fundus venous plexus, and oral glucose tolerance (OGTT) was measured after fasting for 12 hours in the 9th week.
  • the former method took blood and measured Glu and TG.
  • Glu and TG are measured according to the kit instructions.
  • OGTT oral glucose tolerance test: After the animal was fasted for 12 hours, the ether was lightly anesthetized, and the fundus venous plexus was taken for blood. Then, glucose was administered by intragastric administration of 2 g/kg body weight, blood was taken, and blood glucose was measured at 0, 20, 60, and 120 minutes. . Make a blood glucose-time curve and calculate the area under the curve (AUC).
  • the multinuclear molecular compounds obtained in Examples 1 to 7 can significantly reduce the blood glucose and AUC at 0 min, 20 min, 60 min, and 120 min in the OGTT test, indicating that the multinuclear molecular compound of the present invention significantly improves the glucose metabolism of type 2 diabetic mice caused by STZ + high fat. , (see Figure 12, Figure 13)
  • the multinuclear molecular compounds obtained in Examples 1 to 7 were able to significantly reduce the TG in the blood of the aP2-SREBP-1c mice at the 8th week and the 13th week, indicating that the multinuclear molecular compound of the present invention has a significant improvement in STZ+ high fat-induced type II diabetic mice. Lipid metabolism, (see Figure 14).
  • mice 18-22 g SPF NIH healthy mice were provided by Guangdong Medical Laboratory Animal Center (mouse certificate number: SCXK (Guangdong) 2008-0002).
  • Mouse breeding environment room temperature 23 ⁇ 2 ° C, relative humidity 65 ⁇ 10%, 12 hours of light per day.
  • the rat feed is a full-price mouse pellet feed provided by the Guangdong Medical Laboratory Animal Center.
  • mice were randomly divided into groups of 10, half male and half female. According to the results of the preliminary test, the test substance was set to 5 dose groups and the vehicle (0.5% Tween-80 aqueous solution) control group. The dosage and grouping are shown in Table 7 and Table 8. The spacing ratio of each dose group was 0.7. The mice were administered in a single intraperitoneal injection at a dose of 10 ml/kg. The LD 50 was calculated using the Modified Karber's method.
  • I the group distance, which is the difference between the two groups of log doses
  • the various reactions of the animals were closely observed for the first 4 hours after the administration, and were observed several times a day (usually two observations in the morning and the afternoon), and the observation was continued for 14 days. Record the animal's toxicity (initiation time, severity, duration, reversibility, etc.) and death of the animal, and immediately perform visual necropsy on the dying and dead animals. If abnormal organs are found Do the appropriate histopathological examination.
  • Eyeball whether the pupil is enlarged, the conjunctival hyperemia, the eyelids are drooping, whether the eyeballs are protruding, and the head is tremor;
  • Respiratory and circulatory system whether shortness of breath, difficulty breathing, wheezing, nose and mouth bleeding, cough, nasal secretions, cold ear shells, pale mucous membranes, mucous membrane purpura, touching the anterior region to determine the heart rate;
  • Digestive system whether it is sputum, bloating, diarrhea, appetite, stool color (black stool, earthy color) and traits (lean stool, constipation, blood in the stool);
  • mice in the 188.7 mg/kg dose group began to die on the 2nd day, and most of the mice in each administration group died within 3 days.
  • Autopsy was performed on the dead mice, and no obvious changes in heart, liver, spleen, lung, kidney, brain, or necrosis were observed by the naked eye.
  • the LD 50 of the intranuclear injection of the multinuclear compound was 279.3 mg/kg, and the 95% confidence limit of the LD 50 of the multinuclear compound injection was 234.6 to 332.5 mg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Diabetes (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明公开了一种多核分子化合物,所述多核分子化合物由小檗红碱与厚朴酚合成。本发明首次提出一种全新的多核分子化合物,该多核分子化合物由小檗红碱与厚朴酚合成得到,改变了单一成分或两个成分混合物的吸收、分布、代谢和排泄的药物代谢环节,所得到的多核分子化合物与小檗碱和厚朴酚相比,毒性只有小檗碱和厚朴酚的十分之一,所得多核分子化合物的毒性得到显著降低,吸收显著提高,提高了生物利用度,延长了代谢时间,可以达到长效的效果,而且降糖效果得到了增强。另外,本发明还公开了所述多核分子化合物的制备方法,及其在制备治疗糖尿病药物中的用途。

Description

一种多核分子化合物、其制备方法及用途 技术领域
本发明属于药物化学和药物治疗学领域,具体涉及一种由小檗红碱与厚朴酚合成得到的多核分子化合物、其制备方法及其在制备治疗糖尿病的药物中的用途。
背景技术
糖尿病是一种慢性疾病,当胰腺产生不了足够的胰岛素或者人体无法有效地利用所产生的胰岛素时,就会出现糖尿病。胰岛素是一种调节血糖的激素。高血糖症或血糖升高,是糖尿病不加控制的一种通常结果,时间一久会对人体的许多系统带来严重损害,特别是神经和血管。糖尿病一般分为Ⅰ型糖尿病、Ⅱ型糖尿病和妊娠期糖尿病。
糖耐量异常(IGT)和空腹血糖异常(IFG)是指人体血糖值介于正常与糖尿病血糖值之间过渡阶段的一种中间状态。糖耐量异常患者或空腹血糖异常患者面临发展为Ⅱ型糖尿病的高度风险,虽然这并非不可避免。
糖尿病发展下去,可能损害心脏、血管、眼睛、肾脏和神经。
糖尿病是当前威胁全球人类健康的最重要的慢性非传染性疾病之一。为了评估糖尿病对全球的影响,为国际社会和各国政府和医疗机构制定针对糖尿病的政策提供依据,国际糖尿病联盟(IDF)定期根据全球糖尿病流行病学和卫生经济学研究的最新数据定期更新“IDF糖尿病地图”。在该份IDF的重要文件中,IDF不但提供了当前最新的糖尿病的全球患病情况和经济负担,还对今后全球糖尿病的发病趋势进行预测。2013年11月14日,IDF借“联合国糖尿病日”全球关注糖尿病之际正式公布了第六版“IDF糖尿病地图”。
根据国际糖尿病联盟(IDF)的最新统计,2013全球糖尿病在20-79岁成人中的患病率为8.3%,患者人数已达3.82亿,其中80%在中等和低收入国家,并且在这些国家呈快速上升的趋势。估计到2035年全球将有近5.92亿人患糖尿病。当前在已经患糖尿病的人群中,有1.75亿(46%)没有得到诊断。2013年怀孕妇女有高血糖的人数为2100万,占全部当年产妇的17%。2013年全球共有79000名新的1型糖尿病患者得到诊断。
2013年全球糖耐量异常(IGT)的患病率为6.9%,共有3.16亿人。预计到2035年将有4.71亿人患糖耐量异常。
2013年全球共有510万人死于与糖尿病相关的疾病,占所有死亡人数的8.39%。该年糖尿病的全球医疗花费达5480亿美元,占全球医疗支出的11%。预计到2035年,与糖尿病相关的全球医疗花费将达到6273亿美元。糖尿病在中国和其他发展中国家中的快速增长,已经给这些国家的社会和经济发展带来了非常沉重的负担。
在对各个国家和地区的发病率和发病趋势的估计中,中国2013年糖尿病的患病人数为9840万,居全球首位,其次是印度(6510万)、美国(2440万)、巴西(1190万)、俄国(1090万)。其他患病人数低于1000万但排在前十位的国家还包括墨西哥、印度尼西亚、德国、埃及和日本。IDF估计,到2035年中国的糖尿病患病人数将达到1.43亿,仍然居于全球首位,而美国仅将达到2970万。
在这份重要文件中,IDF再次提醒世人:糖尿病是一个巨大且不断加重的全球问题,糖尿病给社会带来越来越沉重的负担;在所有的国家,处在社会低层的人反而更容易患糖尿病并承受相对更重的负担。糖尿病已经不仅仅是一个单纯的健康问题,解决糖尿病的问题需要社会多个方面具体的政策和行动。
Ⅱ型糖尿病常用动物模型简介:
(1)自发遗传性模型:
ob/ob小鼠:该小鼠食欲亢进,过度肥胖,且患有糖尿病,其肥胖是由于肥胖基因(ob)发生了隐性突变引起的,因此而得名ob/ob小鼠(obese mice)。ob/ob小鼠同时存在着遗传背 景的异常和表现型改变,其中C57B/6J系统异常是最常见的遗传背景。
db/db小鼠:db/db小鼠(diabetic mice),该种模型的第4号染色体有恶性突变,雌雄小鼠均发生糖尿病。血浆胰岛素水平从2~3周龄起即开始上升,胰岛细胞也有肥大、增殖、脱颗粒等改变,多食、肥胖也非常明显,在其肥胖高血糖期有显著的胰岛素抵抗。
KK和KK-Ay小鼠:KK小鼠具有和成人肥胖性糖尿病相似的性质,属先天遗传缺陷性小鼠。16周龄时可出现明显肥胖、多尿的特点,并开始出现高血糖、高胰岛素血症和血脂紊乱。
STZ-SHR和SHROB大鼠:将自发性高血压大鼠(SHR)在新生期给予streptozotocin(STZ)处理,到成年时便可获得Ⅱ型糖尿病合并原发性高血压模型(STZSHR)。肥胖的自发性高血压大鼠(SHROB)与瘦型SHR的区别在于SHROB是在高血压的遗传背景上叠加肥胖表现的鼠种,具有高水平的空腹血浆胰高血糖素和游离脂肪酸,并对糖负荷反应异常。
Zucker肥胖大鼠:Zucker肥胖大鼠为基因缺陷的纯合子个体(fa/fa),以高血糖、高胰岛素血症、高血脂和中度高血压为特征。
OLETF大鼠:是1984年由日本制药公司开发的自发性Ⅱ型糖尿病鼠种。该鼠胆囊收缩素(CCK)-A受体mRNA的表达完全缺失,其携带的ODB1和ODB2基因与糖尿病的发病有关。该鼠12周龄起出现明显胰岛素抵抗,可用于胰岛素抵抗干预措施的评价。
JCR LA-cp大鼠:是以动脉粥样硬化为表现特征的代谢综合征(MS)模型。雄性常染色体隐性cp基因纯合子(cp/cp)常表现为肥胖、胰岛素抵抗、高胰岛素血症和高甘油三酯血症等,具有MS的典型特征。
Wistar肥胖大鼠:具有糖耐量减低的Wistar-Kyoto大鼠携带有fa肥胖遗传基因,并具有高血糖和leptin受体异常。
WOKW大鼠:Wistar Ottawa Karlsburg W(WOKW)大鼠表现为肥胖、中度高血压、血脂异常、高胰岛素血症和糖耐量减低及蛋白尿,与人类MS极为相似,可用于人类胰岛素抵抗相关疾病的研究。其影响体重并导致肥胖的遗传位点位于1号和5号染色体上。
GK大鼠:GK大鼠是一种自发性Ⅱ型糖尿病模型,具有血糖轻度升高、葡萄糖刺激的胰岛素分泌能力受损、胰腺B细胞团块量减少等特点。
(2)基因改造模型
A-ZIP/F-1和aP2-SREBP-1c转基因小鼠:A-ZIP/F-1转基因小鼠和aP2-SREBP-1c转基因小鼠两者在表型上很相似,出生时即出现轻度脂肪肝,随后血甘油三酯水平逐渐升高。由于脂肪组织发育不良,此类小鼠常常出现高血糖、高胰岛素血症、高甘油三酯血症、游离脂肪酸水平升高以及胰岛素抵抗等一系列的MS症候。
TKO-OBR小鼠:由于外周脂肪组织瘦素抵抗也会导致肥胖,可以应用基因敲除技术获得TKO-OBR小鼠,该小鼠肝和骨骼肌甘油三酯水平分别升高4倍和2倍,并出现糖耐量减低及高胰岛素血症。
胰岛素受体基因敲除模型:小鼠在胰岛素受体(insulin receptor,INSR)基因缺陷时,出生时仅有轻度生长发育迟缓,并没有代谢异常症状,但出生后很快出现酮症酸中毒,几天后B细胞功能衰竭,接着死于酮症酸中毒。因此,INSR基因敲除鼠无法对成年鼠各组织中INSR的功能进行分析。
(3)饮食诱导模型
STZ+高脂喂养模型:C57BL/6J小鼠腹腔注射低剂量STZ,轻微破坏胰岛B细胞,待稳定后喂饲高脂饲料,可以复制与临床Ⅱ型糖尿病非常相似的动物模型。这是一个非常成熟的Ⅱ型糖尿病动物模型。
SD大鼠:8周龄SD大鼠经过高脂饲料喂养一定时间后,表现为明显的高胰岛素血症、体重增加和内脏脂肪堆积,提示大鼠存在胰岛素抵抗。
仓鼠:具有血脂异常的啮齿类动物多为兔和仓鼠,并需要高胆固醇或高脂肪喂养诱导制备。
Gottingen小猪:用高脂肪高热量饮食诱导9~10个月龄雌性Gottingen小猪,5周后,腹内脂肪含量和血甘油三酯水平明显升高,其代谢受损与人类肥胖者相似。
Wistar大鼠:饮食诱导的MS动物模型中以Wistar大鼠最为多见,常用的方法有高脂高盐喂养、高果糖喂养、高脂喂养、高脂高糖喂养以及高蔗糖喂养。大鼠会出现肥胖,伴有胰岛素抵抗、高血压、高甘油三酯血症等,似人类MS特征。
临床上常用的糖尿病治疗药物:
(1)胰岛素及其类似物
胰岛素制剂经历了动物来源的胰岛素和基因工程化的人胰岛素阶段,发展至今的胰岛素类似物加之其使用方法与相应器械的开发,使外源性的胰岛素也能达到模拟正常人内源性胰岛素的生理分泌随血糖的波动情况产生相应的生理调节功能。例如礼来公司的优泌乐(Lispro,Humalog)。
(2)促胰岛素分泌药物
磺酰脲类药:磺酰脲类药物(SUD)化学结构中都含有一个磺酰脲基团,其作用特点为与人体胰岛B-细胞的磺酰脲受体(SUR)特异性结合,关闭细胞膜钾离子通道,导致细胞膜电位改变,开启钙离子通道,使钙离子内流,促使胰岛素的分泌增加。SUD包括第一代的D-860及氯磺苯脲等,第二代优降糖、格列齐特、格列喹酮、格列吡嗪等,第三代的格列美脲等。
非磺酰脲类药:非磺酰脲类促胰岛素降糖药不仅在结构中具有氨基酸,且表现在作用靶位上,以“快开-速闭”快速地促进胰岛素分泌,降低Ⅱ型糖尿病患者的糖化血红蛋白(HbA1c)和餐后血糖(PBG)。其与作用模式互补的二甲双胍、噻唑烷二酮类药联合应用,借以减轻胰岛B-细胞负荷,延迟胰岛细胞的生存,对孤立性餐后高血糖者(IPH)、胰岛素分泌第一时相障碍者和饮食不规律者显示卓越的疗效。被誉为“餐时血糖调节剂”。临床上常用的药物有瑞格列奈、那格列奈和米格列奈等。
(3)降低或延缓碳水化合物代谢与吸收的药物
α-葡萄糖苷酶抑制剂:通过抑制小肠上段的小肠黏膜绒毛膜α-葡萄糖苷酶的活性,阻断碳水化合物分解成葡萄糖,未被分解的碳水化合物到小肠的后半部被水解成葡萄糖。从而有效控制餐后血糖,保持在一个比较平稳的水平。此类药物有阿卡波糖、米格列醇、伏格列波糖等。
淀粉不溶素:天然人淀粉不溶素(amylin,AC-0137)为具有37个氨基酸的多肽激素,与胰岛素一起由胰岛B-细胞释放,能有效地抑制胃排空作用,但不稳定。在体内易被水解或凝集。Amylin公司开发了其类似物醋酸普兰林肽。
(4)胰岛素增敏剂
噻唑烷二酮类:靶点主要为脂肪组织、骨骼肌和肝脏,能诱导脂肪细胞分化成对胰岛素敏感的小的脂肪细胞,而且在脂肪遗传通道上调节脂蛋白酶等基因转录,对心肌和血管的内皮细胞、血管平滑肌细胞,对血管扩张物质的刺激,抑制对钙的摄取及平滑肌的增生,保护血管系统,降低血压,防止血管的损伤及动脉粥样硬化等,都有作用。此类药物有罗格列酮、吡格列酮等。
非噻唑烷二酮类:为双效PPAR激动剂,有BMS-298585、JTT-501、LY-818、DRF-2725、NN-622等,此类药物处于临床各研究阶段,尚未上市。
(5)新型降糖药物
目前国内外新型的抗糖尿病药物大致包括GLP-1类似物、DPP-Ⅳ抑制剂、SGLT-2抑制剂、11β-HSD1抑制剂、G-蛋白偶联受体和葡萄糖激酶抑制剂等。
小檗碱(berberine)具有抗病原微生物作用:抗菌作用、抗病毒作用、抗原虫和抗毒作用。对心血管系统的作用:抗心律失常、降低血压、正性肌力和对缺血性脑损伤有保护作用。降血糖作用:大量的药理及临床研究证实,小檗碱不仅有显著的降血糖作用,而且对糖尿病人伴有的合并症高血压血栓形成等有良好的防治作用。抗炎作用,抑制血小板聚集作用,增强免疫功能,抗癌。其他作用:抗溃疡作用、解热作用和还具有中枢抑制和利胆等作用。
厚朴酚(Magnolol)具有明显的、持久的中枢性肌肉松弛,中枢神经抑制作用,抗炎,抗菌,抗病原微生物,抗溃疡,抗氧化,抗肿瘤,抑制吗啡戒断反应,可抑制血小板聚集等药理作用。用于治疗急性肠炎,细菌性或阿米巴痢疾。慢性胃炎等。其中,在抗菌作用方面,厚朴酚对格兰氏阳性菌、耐酸性菌、丝状真菌有显著的抗菌活性,对变形链球菌有更加显著的抗菌作用,对葡萄球菌的抑制作用最强。临床上主要用作消除胸腹满闷、镇静中枢神经、运动员肌肉松弛、抗真菌、抗溃疡等药。
黄连与厚朴形成一个中药药对,古方有“黄连厚朴汤”为代表多个黄连和厚朴组成的方剂,黄连的代表成分为小檗碱(黄连素),而厚朴的代表成分为厚朴酚,具有抗菌消炎,抗氧化,中枢抑制,抗癌,抑制血小板聚集和缺血性脑损伤有保护作用,松弛平滑肌和降压作用,共同或协同作用,能够增强疗效。
“天然内核分子”和“新多核分子”的定义如下:
天然内核分子:来源于自然界生物在的进化过程中为了防御某种伤害或取得某种利益经过进化、衍生出来(不论其分子量大小,结构如何复杂,包括了原生、次生代谢产物)的有核心作用的分子,其衍生、进化的核心目的是针对防御某种伤害或取得某种利益。
新多核分子:经人工将两个或两个以上的“天然内核分子”合成或拼接得到的人造多效的新分子。
基于上述对“天然内核分子”的定义,由两个以上的“天然内核分子”经过人工合成或拼接而成的“新多核分子”则具有单个“天然内核分子”的特性,同时兼有多个“天然内核分子”的药效特性;经过人工合成或拼接后的“新多核分子”对于“天然内核分子”而言至少起到了增效、减毒的作用。在单核分子的任意键或指定键上连接上作用相同或完全不同的单核(或多核)分子使其分子结构、空间构型改变;作用核心也发生改变。
中药药对拼接理论的核心思想是指导如何将两个及两个以上的“天然内核分子”经过人工合成或拼接(可能是任意键或指定键)使其相互连接成具有多个核心作用的分子,称为“新多核分子”。它不同于化药的“药效团”和“孪药”概念,“药效团”是指对于活性起重要作用的结构特征的空间排列形式;“孪药”是指将两个相同或不同的先导化合物或药物经共价键连接,缀合成的新分子,在体内代谢生成以上两种药物而产生协同作用,增强活性或产生新的药理活性,或者提高作用的选择性。
中药药对配伍是中医药学的重要研究内容,唐·《神农本草经》从不同角度对两药配伍进行了论述,并将之归纳于“七情和合”中:即言药“有单行者,有相须者,有相使者,有相畏者,有相恶者,有相反者,有相杀者,凡此七情,合和视之;当用相须、相使者良,勿用相恶、相反者;若有毒宜制,可用相畏、相杀者,不尔,勿合用也。”在中药的配伍研究中,往往出现于方剂里的两味药一起相伍运用,就是药对,又称对药。亦即两味药之间一种比较固定的搭配,使用时常成对应用,其主要作用主要是增强疗效、减弱毒性及副作用。通过药对的配伍实验研究,可揭示药对间的配伍作用,探索其减毒增效的配伍机制,深化中药七情相须、相使等配伍关系。药对可以是传统意义上的中药药对,可研究两味药物之间的配伍规律,也可是研究同一药物中不同化学成分之间的“药对”相互配伍作用。
传统中医药的药对理论可指导中药(饮片)之间的配伍应用;可指导中药有效部位之间的配伍应用;也可指导中药有效成分之间的配伍应用;我们将其发展延伸应用于研究、设计和指导药物分子“天然内核分子”间的相互作用与影响,使研究中药药对中复杂药物的配伍相互作用形式转化为研究药物分子间暨“新多核分子”层面的相互作用关系。
目前,关于小檗碱与厚朴酚的化学合成拼接成为新多核分子的专利及相关研究,还未见公开或相关报道。
发明内容
本发明的目的在于提供一种全新的由小檗红碱与厚朴酚合成得到的多核分子化合物;本发明的另一目的在于提供一种所述多核分子化合物的制备方法;本发明的再一目的在于提供一种所述多核分子化合物在制备治疗糖尿病药物中的用途。
为实现上述目的,本发明采取的技术方案为:一种多核分子化合物,所述多核分子化合物由小檗红碱与厚朴酚合成。
本申请发明人首次提出多核分子的概念,并首次提出将小檗红碱与厚朴酚合成或拼接得到一种全新的多核分子化合物,经过验证,所得到的多核分子化合物的毒性显著降低,而对糖尿病基因鼠模型有显著的降糖作用,可以用于糖尿病的降糖治疗,具有较好的效果。
作为本发明所述多核分子化合物的优选实施方式,所述多核分子化合物的结构式为:
Figure PCTCN2014090267-appb-000001
所述n为1≤n≤30的整数。
作为本发明所述多核分子化合物的优选实施方式,上述所述多核分子化合物的结构式中,n为2。
作为本发明所述多核分子化合物的优选实施方式,所述多核分子化合物由以下方法制备而成:
(1a)小檗红碱衍生物的合成:称取小檗红碱,加入有机溶剂,加热至沸腾后加入X(CH2)nY,回流反应,将反应液浓缩,冷却结晶,过滤,得小檗红碱衍生物;
(2a)取步骤(1a)得到的小檗红碱衍生物与厚朴酚混合,加入无水碳酸钠和有机溶剂,搅拌,加热回流反应,将反应液趁热过滤,滤液回收溶剂,用DMSO溶解,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用硅胶拌样,硅胶柱分离,洗脱,即得多核分子化合物;
所述步骤(1a)中所述的X(CH2)nY中,X=Y或X≒Y,X,Y为O、S、F、Cl、Br或I,n为1≤n≤30的整数。
优选地,所述步骤(1a)中采用的有机溶剂为乙腈,当然本领域技术人员也可根据现有技术选择合适的其他物质作为有机溶剂。所述步骤(1a)中由小檗红碱合成得到小檗红碱衍生物的反应过程如下:
Figure PCTCN2014090267-appb-000002
上述反应式中,n为1≤n≤30的整数。
优选地,所述步骤(2a)由小檗红碱衍生物与厚朴酚反应生成多核分子化合物的反应过程如下:
Figure PCTCN2014090267-appb-000003
其中,n为1≤n≤30的整数。
作为本发明所述多核分子化合物的优选实施方式,所述步骤(1a)中小檗红碱衍生物的 合成过程为:称取小檗红碱1重量份,加入有机溶剂150~200重量份,85℃加热至沸腾,加入1,2-二溴乙烷20~40重量份,回流反应3h,将反应液浓缩至50~100份,冷却结晶,过滤,用适量有机溶剂洗涤结晶,洗涤液与滤液合并,回收有机溶剂,残渣用30重量份的甲醇溶解,冷却结晶,过滤,用甲醇洗涤结晶,与上述结晶合并,即得小檗红碱衍生物。当所述X(CH2)nY为1,2-二溴乙烷时,小檗红碱与1,2-二溴乙烷反应生成的小檗红碱衍生物为小檗红碱-9-氧乙基溴,其化学结构式如下:
Figure PCTCN2014090267-appb-000004
作为本发明所述多核分子化合物优选实施方式,所述所述步骤(2a)为:取步骤(1a)得到的小檗红碱衍生物1.2重量份与厚朴酚1重量份混合,加入无水碳酸钠2重量份、有机溶剂150重量份,搅拌,加热至85℃,回流8h,将反应液趁热过滤,滤液回收溶剂,用5重量份的DMSO溶剂,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用3重量份的硅胶拌样,硅胶柱分离,用20倍柱体积的石油醚和乙酸乙酯混合液洗脱,再用甲醇洗脱,回收甲醇,即得多核分子化合物。优选地,采用C18柱进行分离;所述硅胶的颗粒大小为400-500目;所述石油醚和乙酸乙酯混合液中,石油醚和乙酸乙酯的体积比为1:1。所得到的多核分子化合物,MS得到分子量为615.3,熔点为145.2~146.1。
作为本发明所述多核分子化合物的另优选实施方式,所述多核分子化合物由以下方法制备而成:
(1b)厚朴酚衍生物的合成:取厚朴酚,与无水碳酸钠混合,加入有机溶剂,再加入X(CH2)nY,加热反应,得厚朴酚衍生物;
(2b)取步骤(1b)得到的厚朴酚衍生物、无水碳酸钠、小檗红碱混合,加入有机溶剂,搅拌,加热回流反应,将反应液趁热过滤,滤液回收溶剂,用DMSO溶解,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用硅胶拌样,硅胶柱分离,洗脱,即得多核分子化合物;
所述步骤(1b)中所述的X(CH2)nY中,X=Y或X≒Y,X,Y为O、S、F、Cl、Br或I,n为1≤n≤30的整数。
所述步骤(1b)中由厚朴酚合成厚朴酚衍生物的反应过程如下:
Figure PCTCN2014090267-appb-000005
上述反应式中,n为1≤n≤30的整数。
所述步骤(2b)由小檗红碱与厚朴酚衍生物合成多核分子化合物的反应过程如下:
Figure PCTCN2014090267-appb-000006
其中,n为1≤n≤30的整数。
作为本发明所述多核分子化合物的优选实施方式,所述步骤(1b)中厚朴酚、无水碳酸钠、X(CH2)nY的摩尔比为1:2:16,所述厚朴酚与有机溶剂的摩尔体积比为1/150mol/L,反应温度为85℃,反应时间为5h;所述X(CH2)nY为1,2-二溴乙烷。当所述X(CH2)nY为1,2-二溴乙烷时,所生成的厚朴酚衍生物为厚朴酚-1-氧乙基溴,其结构式如下所示:
Figure PCTCN2014090267-appb-000007
作为本发明所述多核分子化合物的优选实施方式,所述步骤(2b)为:取步骤(1b)得到的厚朴酚衍生物1重量份、无水碳酸钠2重量份、小檗红碱1重量份加入反应器中,加入有机溶剂150份,搅拌,加热至85℃,回流8h,将反应液趁热过滤,滤液回收溶剂,用5重量份的DMSO溶剂,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用3重量份的硅胶拌样,硅胶柱分离,用20倍柱体积的石油醚和乙酸乙酯混合液洗脱,再用甲醇洗脱,回收甲醇,即得多核分子化合物。优选地,所述硅胶的颗粒大小为400-500目;所述石油醚和乙酸乙酯混合液中,石油醚和乙酸乙酯的体积比为1:1。
上述所述步骤(1a)、(2a)、(1b)、(2b)中的有机溶剂,本领域技术人员可根据现有技术进行合适的选择,优选地,所述有机溶剂为乙腈。
上述所述的小檗红碱可为现有技术中的小檗红碱,本领域技术人员可采取合适的途径获得,例如合成或直接购于市场。优选地,本发明中的小檗红碱采用以下方法制备而成:在反应器中加入料液比为1:15~30g/L的小檗碱和DMF,加入沸石,回流冷凝,在400W~800W微波辐射下,反应10~20min,取出反应器,趁热加入水稀释冷却,冷藏过夜,使析晶完全,抽滤,干燥,得结晶a;滤液另用大孔树脂柱分离,依次用40%、45%、50%、55%、60%、65%及70%的甲醇洗脱,收集70%甲醇洗脱部位,浓缩,得结晶b,将结晶a和结晶b合并,即得小檗红碱。所述小檗红碱的化学结构式如下所示:
Figure PCTCN2014090267-appb-000008
本发明的另一目的在于提供一种如上所述多核分子化合物的制备方法,为实现此目的,本发明采取的技术方案为:一种多核分子化合物的制备方法,包括以下步骤:
(1a)小檗红碱衍生物的合成:称取小檗红碱,加入有机溶剂,加热至沸腾后加入X(CH2)nY,回流反应,将反应液浓缩,冷却结晶,过滤,得小檗红碱衍生物;
(2a)取步骤(1a)得到的小檗红碱衍生物与厚朴酚混合,加入无水碳酸钠和有机溶剂,搅拌,加热回流反应,将反应液趁热过滤,滤液回收溶剂,用DMSO溶解,柱分离,依次用 30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用硅胶拌样,硅胶柱分离,洗脱,即得多核分子化合物;
所述步骤(1a)中所述的X(CH2)nY中,X=Y或X≒Y,X,Y为O、S、F、Cl、Br或I,n为1≤n≤30的整数。
作为本发明上述所述多核分子化合物的制备方法的优选实施方式,所述步骤(1a)中小檗红碱衍生物的合成过程为:称取小檗红碱1重量份,加入有机溶剂150~200重量份,85℃加热至沸腾,加入1,2-二溴乙烷20~40重量份,回流反应3h,将反应液浓缩至50~100份,冷却结晶,过滤,用适量有机溶剂洗涤结晶,洗涤液与滤液合并,回收有机溶剂,残渣用30重量份的甲醇溶解,冷却结晶,过滤,用甲醇洗涤结晶,与上述结晶合并,即得小檗红碱衍生物。
作为本发明上述所述多核分子化合物的制备方法的优选实施方式,所述步骤(2a)为:取步骤(1a)得到的小檗红碱衍生物1.2重量份与厚朴酚1重量份混合,加入无水碳酸钠2重量份、有机溶剂150重量份,搅拌,加热至85℃,回流8h,将反应液趁热过滤,滤液回收溶剂,用5重量份的DMSO溶剂,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用3重量份的硅胶拌样,硅胶柱分离,用20倍柱体积的石油醚和乙酸乙酯混合液洗脱,再用甲醇洗脱,回收甲醇,即得多核分子化合物。
本发明的又一目的在于提供另一种如上所述多核分子化合物的制备方法,为实现此目的,本发明采取的技术方案为:一种多核分子化合物的制备方法,包括以下步骤:
(1b)厚朴酚衍生物的合成:取厚朴酚,与无水碳酸钠混合,加入有机溶剂,再加入X(CH2)nY,加热反应,得厚朴酚衍生物;
(2b)取步骤(1b)得到的厚朴酚衍生物、无水碳酸钠、小檗红碱混合,加入有机溶剂,搅拌,加热回流反应,将反应液趁热过滤,滤液回收溶剂,用DMSO溶解,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用硅胶拌样,硅胶柱分离,洗脱,即得多核分子化合物;
所述步骤(1b)中所述的X(CH2)nY中,X=Y或X≒Y,X,Y为O、S、F、Cl、Br或I,n为1≤n≤30的整数。
作为本发明所述多核分子化合物另一种制备方法的优选实施方式,所述步骤(1b)中厚朴酚、无水碳酸钠、X(CH2)nY的摩尔比为1:2:8,所述厚朴酚与有机溶剂的摩尔体积比为1/150mol/L,反应温度为85℃,反应时间为5h;所述X(CH2)n Y为1,2-二溴乙烷。
作为本发明所述多核分子化合物另一种制备方法的优选实施方式,所述步骤(2b)为:取步骤(1b)得到的厚朴酚衍生物1重量份、无水碳酸钠2重量份、小檗红碱1重量份加入反应器中,加入有机溶剂150份,搅拌,加热至85℃,回流8h,将反应液趁热过滤,滤液回收溶剂,用5重量份的DMSO溶剂,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用3重量份的硅胶拌样,硅胶柱分离,用20倍柱体积的石油醚和乙酸乙酯混合液洗脱,再用甲醇洗脱,回收甲醇,即得多核分子化合物。
本发明的再一目的在于提供一种上述所述多核分子化合物在制备治疗糖尿病的药物中的用途。
本发明提供了一种全新的物质多核分子化合物,所述多核分子化合物也是本申请发明人首次提出的概念,该多核分子化合物由小檗红碱与厚朴酚合成得到,改变了单一成分或两个成分混合物的吸收、分布、代谢和排泄的药物代谢环节,所得的到多核分子化合物与小檗碱相比,毒性只有小檗碱的十分之一,毒性得到显著降低,吸收显著提高,提高了生物利用度,延长了代谢时间,可以达到长效的效果,而且降糖效果得到了增强。本发明提供的所述多核分子化合物的制备方法,工艺简单,易于操作,便于大规模工业化生产。本发明提供的所述多核分子化合物在制备治疗糖尿病药物中的用途,具有显著的降糖效果,为糖尿病的临床治 疗提供更多高效、安全的备选药物,以满足临床治疗的多方面需求。
附图说明
图1为本发明多核分子化合物的化学结构示意图。
图2为小檗红碱的1H NMR图;
图3为小檗红碱的13C NMR图;
图4为小檗红碱-9-氧乙基溴的1H NMR图;
图5为小檗红碱-9-氧乙基溴的13C NMR图;
图6为本发明所述多核分子化合物的1H NMR图;
图7为本发明所述多核分子化合物的13C NMR图;
图8为aP2-SREBP-1c小鼠基因型鉴定图;
图9为本发明所述多核分子化合物对aP2-SREBP-1c小鼠血糖的影响;
图10为本发明所述多核分子化合物对aP2-SREBP-1c小鼠AUC的影响;
图11为本发明所述多核分子化合物对aP2-SREBP-1c小鼠TG的影响;
图12为本发明所述多核分子化合物对STZ+高脂引起的Ⅱ型糖尿病小鼠血糖的影响;
图13为本发明所述多核分子化合物对STZ+高脂引起的Ⅱ型糖尿病小鼠AUC的影响;
图14为本发明所述多核分子化合物对STZ+高脂引起的Ⅱ型糖尿病小鼠TG的影响。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合附图和具体实施例对本发明作进一步说明。
实施例1
本发明多核分子化合物的一种实施例,本实施例所述多核分子化合物采用以下方法制备而成:
(1a)小檗红碱衍生物的合成:称取小檗红碱1重量份,加入乙腈150重量份,85℃加热至沸腾,加入X(CH2)nY 40重量份,回流反应3h,将反应液浓缩至50份,冷却结晶,过滤,用适量乙腈洗涤结晶,洗涤液与滤液合并,回收乙腈,残渣用30重量份的甲醇溶解,冷却结晶,过滤,用甲醇洗涤结晶,与上述结晶合并,得到样品得率为56.34%、纯度95%以上的小檗红碱衍生物,其中所述X(CH2)nY中,X、Y均为Br,n=2,所得小檗红碱衍生物为小檗红碱-9-氧乙基溴,其1H NMR图和13C NMR图分别如附图4和5所示,其中图4中,H的归属见表1:
表1
Figure PCTCN2014090267-appb-000009
图5中,C的归属见表2:
表2
Figure PCTCN2014090267-appb-000010
Figure PCTCN2014090267-appb-000011
(2a)取步骤(1a)得到的小檗红碱衍生物1.2重量份与厚朴酚1重量份混合,加入无水碳酸钠2重量份、乙腈150重量份,搅拌,加热至85℃,回流8h,将反应液趁热过滤,滤液回收溶剂,用5重量份的DMSO溶剂,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用3重量份的硅胶(400-500目)拌样,硅胶柱分离,用20倍柱体积的石油醚和乙酸乙酯混合液(石油醚和乙酸乙酯的体积比为1:1)洗脱,再用甲醇洗脱,回收甲醇,即得多核分子化合物,所述多核分子的得率为22~28%,MS得到分子量为615.3,熔点为145.2~146.1,所得多核分子化合物的分子结构式如附图1所示,所得多核分子化合物的1H NMR图和13C NMR图分别如附图6和7所示,其中附图6中,H的归属如表3:
表3
Figure PCTCN2014090267-appb-000012
Figure PCTCN2014090267-appb-000013
附图7中,C的归属见表4:
表4
Figure PCTCN2014090267-appb-000014
Figure PCTCN2014090267-appb-000015
本实施例中所述步骤(1a)中的小檗红碱可采用现有技术中任一方法获得,也可直接从市场购买等,优选地,本实施例中所述步骤(1a)中的小檗红碱采用以下方法制备而成:在反应器中加入料液比为1:15~30g/L的小檗碱和DMF,加入沸石,回流冷凝,在400W~800W微波辐射下,反应10~20min,取出反应器,趁热加入水稀释冷却,冷藏过夜,使析晶完全,抽滤,干燥,得结晶a;滤液另用大孔树脂柱分离,依次用40%、45%、50%、55%、60%、65%及70%的甲醇洗脱,收集70%甲醇洗脱部位,浓缩,得结晶b,将结晶a和结晶b合并,即得小檗红碱,产品总收率为80~95%,所得小檗红碱的纯度≥98%,MS得到分子量为321.2,其1H NMR图和13C NMR图分别如附图2和3所示,其中附图2中,H的归属见表5:
表5
Figure PCTCN2014090267-appb-000016
附图3中,C的归属见表6:
表6
Figure PCTCN2014090267-appb-000017
实施例2
本发明多核分子化合物的一种实施例,本实施例所述多核分子化合物采用以下方法制备而成:
(1a)小檗红碱衍生物的合成:称取小檗红碱1重量份,加入乙腈200重量份,85℃加 热至沸腾,加入X(CH2)nY 20重量份,回流反应3h,将反应液浓缩至100份,冷却结晶,过滤,用适量乙腈洗涤结晶,洗涤液与滤液合并,回收乙腈,残渣用30重量份的甲醇溶解,冷却结晶,过滤,用甲醇洗涤结晶,与上述结晶合并,得到样品得率为56.34%、纯度95%以上的小檗红碱衍生物,其中所述X(CH2)nY中,X、Y均为Cl,n=3;
(2a)取步骤(1a)得到的小檗红碱衍生物1.2重量份与厚朴酚1重量份混合,加入无水碳酸钠2重量份、乙腈150重量份,搅拌,加热至85℃,回流8h,将反应液趁热过滤,滤液回收溶剂,用5重量份的DMSO溶剂,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用3重量份的硅胶(400-500目)拌样,硅胶柱分离,用20倍柱体积的石油醚和乙酸乙酯混合液(石油醚和乙酸乙酯的体积比为1:1)洗脱,再用甲醇洗脱,回收甲醇,即得多核分子化合物,所述多核分子的得率为22~28%,MS得到分子量为615.3,熔点为145.2~146.1,所得多核分子化合物的分子结构式如附图1所示。
本实施例中所述步骤(1a)中的小檗红碱可采用现有技术中任一方法获得,也可直接从市场购买等,优选地,本实施例中所述步骤(1a)中的小檗红碱采用实施例1所述的方法制备而成。
实施例3
本发明多核分子化合物的一种实施例,本实施例所述多核分子化合物采用以下方法制备而成:
(1a)小檗红碱衍生物的合成:称取小檗红碱1重量份,加入乙腈160重量份,85℃加热至沸腾,加入X(CH2)nY 30重量份,回流反应3h,将反应液浓缩至80份,冷却结晶,过滤,用适量乙腈洗涤结晶,洗涤液与滤液合并,回收乙腈,残渣用30重量份的甲醇溶解,冷却结晶,过滤,用甲醇洗涤结晶,与上述结晶合并,得到样品得率为56.34%、纯度95%以上的小檗红碱衍生物,其中所述X(CH2)nY中,X、Y均为S,n=4;
(2a)取步骤(1a)得到的小檗红碱衍生物1.2重量份与厚朴酚1重量份混合,加入无水碳酸钠2重量份、乙腈150重量份,搅拌,加热至85℃,回流8h,将反应液趁热过滤,滤液回收溶剂,用5重量份的DMSO溶剂,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用3重量份的硅胶(400-500目)拌样,硅胶柱分离,用20倍柱体积的石油醚和乙酸乙酯混合液(石油醚和乙酸乙酯的体积比为1:1)洗脱,再用甲醇洗脱,回收甲醇,即得多核分子化合物,所述多核分子的得率为22~28%,MS得到分子量为615.3,熔点为145.2~146.1,所得多核分子化合物的分子结构式如附图1所示。
本实施例中所述步骤(1a)中的小檗红碱可采用现有技术中任一方法获得,也可直接从市场购买等,优选地,本实施例中所述步骤(1a)中的小檗红碱采用实施例1所述的方法制备而成。
实施例4
本发明多核分子化合物的一种实施例,本实施例所述多核分子化合物采用以下方法制备而成:
(1a)小檗红碱衍生物的合成:称取小檗红碱1重量份,加入乙腈180重量份,85℃加热至沸腾,加入X(CH2)nY 35重量份,回流反应3h,将反应液浓缩至60份,冷却结晶,过滤,用适量乙腈洗涤结晶,洗涤液与滤液合并,回收乙腈,残渣用30重量份的甲醇溶解,冷却结晶,过滤,用甲醇洗涤结晶,与上述结晶合并,得到样品得率为56.34%、纯度95%以上的小檗红碱衍生物,其中所述X(CH2)nY中,X、Y均为O,n=1;
(2a)取步骤(1a)得到的小檗红碱衍生物1.2重量份与厚朴酚1重量份混合,加入无水碳酸钠2重量份、乙腈150重量份,搅拌,加热至85℃,回流8h,将反应液趁热过滤,滤液回收溶剂,用5重量份的DMSO溶剂,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用3重量份的硅胶(400-500 目)拌样,硅胶柱分离,用20倍柱体积的石油醚和乙酸乙酯混合液(石油醚和乙酸乙酯的体积比为1:1)洗脱,再用甲醇洗脱,回收甲醇,即得多核分子化合物,所述多核分子的得率为22~28%,MS得到分子量为615.3,熔点为145.2~146.1,所得多核分子化合物的分子结构式如附图1所示。
本实施例中所述步骤(1a)中的小檗红碱可采用现有技术中任一方法获得,也可直接从市场购买等,优选地,本实施例中所述步骤(1a)中的小檗红碱采用实施例1所述的方法制备而成。
实施例5
本发明多核分子化合物的一种实施例,本实施例所述多核分子化合物采用以下方法制备而成:
(1b)厚朴酚衍生物的合成:取厚朴酚1摩尔份,与无水碳酸钠2摩尔份混合,加入乙腈,所述乙腈与厚朴酚的体积摩尔比为150:1(L/mol),再加入X(CH2)nY 16摩尔份,85℃反应5h得收率为28%、纯度为95%的厚朴酚衍生物,其中所述X(CH2)nY中,X、Y均为I,n=10;
(2b)取步骤(1b)得到的厚朴酚衍生物1重量份、无水碳酸钠2重量份、小檗红碱1重量份加入反应器中,加入乙腈150份,搅拌,加热至85℃,回流8h,将反应液趁热过滤,滤液回收溶剂,用5重量份的DMSO溶剂,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用3重量份的硅胶(400-500目)拌样,硅胶柱分离,用20倍柱体积的石油醚和乙酸乙酯混合液(石油醚和乙酸乙酯的体积比为1:1)洗脱,再用甲醇洗脱,回收甲醇,即得多核分子化合物,所述多核分子的得率为22~28%,MS得到分子量为615.3,熔点为145.2~146.1,所得多核分子化合物的分子结构式如附图1所示。
本实施例中所述步骤(2b)中的小檗红碱可采用现有技术中任一方法获得,也可直接从市场购买等,优选地,本实施例中所述步骤(2b)中的小檗红碱采用实施例1所述的方法制备而成。
实施例6
本发明多核分子化合物的一种实施例,本实施例所述多核分子化合物采用与实施例5相同的方法制备而成,除所述X(CH2)nY中,X、Y均为F,n=30外,其余均与实施例5相同。
实施例7
本发明多核分子化合物的一种实施例,本实施例所述多核分子化合物采用与实施例5相同的方法制备而成,除所述X(CH2)nY中,X、Y均为Br,n=18外,其余均与实施例5相同。
实施例8
本发明多核分子化合物对aP2-SREBP-1c转基因小鼠血糖、血脂的影响
1 材料与方法
1.1 动物引进
aP2-SREBP-1c转基因小鼠由美国Jackson实验室引进,委托南京大学模式动物研究所净化,然后转至广州中医药大学饲养繁殖。合格证号:J003393 SCXK(苏)2010-0001。饲养繁殖条件:广州中医药大学实验动物中心SPF级动物房,温度20~25℃,湿度50~80%,12h:12h昼夜间断照明,普通饲料购买于广东省医学实验动物中心。
1.2 动物特点
SREBP-1c是核转录因子家族的重要一员,它主要参与调控脂肪合成和葡萄糖代谢相关酶基因的表达。其有三种形式:SREBP-1C、SREBP-1a和SREBP-2。SREBP-2倾向于激活胆固醇的合成,SREBP-1a和SREBP-1c倾向于促进脂肪酸的合成且SREBP-1c在肝和脂肪组织中优势表达。此转基因小鼠系利用腺病毒技术令SREBP-1c在脂肪组织中过度表达,它与另一种脂肪发育障碍转基因模型小鼠A-ZIP/F-1小鼠相似,前者出生时即表现出明显白色脂肪萎缩,褐色脂肪发达。后者则表现为白色脂肪绝对缺乏,褐色脂肪大幅度减少,二者 均出现一系列代谢综合征症候包括胰岛素抵抗、高脂血症、高血糖等。
1.3 动物繁殖
6周龄以上、年龄相近的雄性转基因型和雌性野生型小鼠以1:2合笼,雌鼠怀孕后雄鼠单独分笼,怀孕母鼠适当添加营养喂饲,饲养条件同上。小鼠出生2周后剪尾约1cm行基因型鉴定,辨别野生型和转基因型。
1.4 基因型鉴定
aP2-SREBP-1c转基因小鼠是C57BL/6J和SJL背景的杂合子个体,参照Jackson实验室基因型鉴定方法进行鼠尾DNA提取和PCR扩增,鉴定转基因型(transgene-type,T)和野生型(wild-type,W)。
1.5 多核分子化合物剂量及配制
剂量40mg/kg/10ml。称取40mg实施例1~7任一所得的多核分子化合物粉末,逐次加入5%阿拉伯树胶溶液,边加边研磨,最终定容到10ml,即得。
1.6 动物分组及处理
选12周龄同窝雌性野生型小鼠(W)8只,转基因型小鼠(T)16只。分为正常组(野生型)、对照组(转基因型)、多核分子化合物组(转基因型),每组8只。每周测体重及进食量、进水量各2次,灌胃给药,对照组给予等容积5%阿拉伯树胶溶液,给药体积为10ml/kg体重,每天一次,连续13周。于第8周禁食12h,乙醚轻麻,眼底静脉丛取血测Glu(葡萄糖),TG(甘油三酯),第9周禁食12h后测口服糖耐量(OGTT),最后实验结束时按前法取血测Glu、TG。
1.7 主要仪器及试剂
BS110S电子分析天平,德国Sartorius;MG96G基因扩增仪,杭州朗基科学仪器有限公司;全波长酶标仪,Multiskan GO,1510,Thermo Fisher Scientific Oy Ratastie 2.Fi-01620Vantaa,Finland;HITACHI CR22G高速冷冻离心机,日本日立;D-无水葡萄糖,BIOSHARP。Glu、TG试剂盒,20130201、20130301,上海荣盛生物药业有限公司。
1.8 检测指标及方法
(1)血液生化:Glu、TG的测定均按试剂盒说明书进行。(2)OGTT(口服葡萄糖耐量实验):动物禁食12h后,乙醚浅麻,眼底静脉丛取血,然后以2g/kg体重灌胃给予葡萄糖,取血,测0、20、60、120min血糖。制作血糖-时间曲线,并计算曲线下面积(AUC)。
1.9 统计学处理方法
全部数据均以
Figure PCTCN2014090267-appb-000018
表示,各项结果采用StatView软件进行ANOVA检验分析。
2 结果
2.1 基因型鉴定显示外源性nSREBP-1c表达
aP2-SREBP-1c转基因小鼠的构建是通过插入脂肪组织特异表达的aP2基因增强子/启动子驱动的一个5.4kb的DNA片段,该片段编码人SREBP1c 1-436氨基酸序列,即核型SREBP-1c(nSREBP-1c)。基因型鉴定显示与Jackson实验室一致,新生转基因型(T)和野生型(W)小鼠比例约为1:1。PCR目标条带为(Transgene)151bp,内参(Internal positive control)为324bp(图8)。Shimomura等用Northern Blot分析也显示转基因型小鼠白色脂肪中源自人的nSREBP-1c mRNA过度表达。
2.2 多核分子化合物对aP2-SREBP-1c小鼠糖代谢的影响
实施例1~7所得多核分子化合物均能够显著降低OGTT实验中第20min、60min血糖及AUC,说明本发明多核分子化合物具有显著改善aP2-SREBP-1c小鼠糖代谢作用。(见图9、图10)
2.3 多核分子化合物对aP2-SREBP-1c小鼠脂代谢的影响
实施例1~7所得多核分子化合物均能够显著降低第8周、第13周aP2-SREBP-1c小鼠血中TG,说明本发明多核分子化合物具有显著改善aP2-SREBP-1c小鼠脂代谢作用。(见图11)
实施例9
本发明多核分子化合物对STZ+高脂引起的Ⅱ型糖尿病小鼠血糖、血脂的影响
1 材料与方法
1.1 实验动物 C57BL/6N小鼠,SPF级,由北京维通利华实验动物技术有限公司提供,动物合格证号为SCXR(京)2012-0001;高脂饲料由广东省医学实验动物中心加工,加工批号:No.0116860,配方组成:酪蛋白26.17%,L-胱氨酸0.39%,麦芽糖糊精16.35%,蔗糖9.00%,纤维素6.54%,豆油3.27%,猪油32.06%,矿物质AIN-934.58%,维生素AIN-931.31%,氯化胆碱0.33%,胆固醇1.0%,胆盐0.15%,饲料合格证证号为SCXK(粤)2008-0002;基础饲料由广东省医学实验动物中心提供。动物饲养于广州中医药大学实验动物中心SPF级动物房,饲养温度与湿度:20~25℃、40~70%,采用12h:12h昼夜间断照明,自由进食饮水。
1.2 多核分子化合物剂量及配制:剂量40mg/kg/10ml。称取40mg实施例1~7任一所得的多核分子化合物粉末,逐次加入5%阿拉伯树胶溶液,边加边研磨,最终定容到10ml,即得。
1.3 动物分组及处理 C57BL/6N小鼠适应性饲养1周后,参照文献方法(Kusakabe T,et al.Diabetologia,2009,52(4):675-683),在禁食4小时后,除10只小鼠腹腔注射溶媒外,其余小鼠均腹腔注射STZ 120mg/kg,3周后,按体重和基础生化指标将小鼠随机分为3组,每组10只。分别为空白组、模型组、多核分子化合物组。除空白组给予基础饲料外,腹腔注射STZ小鼠喂饲60%高脂饲料(配方参照Research Diet公司D12492饲料)。直至实验结束。每周测体重及进食量、进水量各2次,灌胃给药,对照组给予等容积5%阿拉伯树胶溶液,给药体积为10ml/kg体重,每天一次,连续13周。于第8周禁食12h,乙醚轻麻,眼底静脉丛取血测Glu(葡萄糖),TG(甘油三酯),第9周禁食12h后测口服糖耐量(OGTT),最后实验结束时按前法取血测Glu、TG。
1.4 主要仪器及试剂 BS110S电子分析天平,德国Sartorius;全波长酶标仪,Multiskan GO,1510,Thermo Fisher Scientific Oy Ratastie 2.Fi-01620Vantaa,Finland;HITACHICR22G高速冷冻离心机,日本日立;D-无水葡萄糖,BIOSHARP。Glu、TG试剂盒:20120801、20121001,上海荣盛生物药业有限公司。链脉佐菌素(STZ),Sigma公司,用时用柠檬酸盐缓冲液溶解,按10ml/kg腹腔注射。
1.5 检测指标及方法 (1)血液生化:Glu、TG的测定均按试剂盒说明书进行。(2)OGTT(口服葡萄糖耐量实验):动物禁食12h后,乙醚浅麻,眼底静脉丛取血,然后以2g/kg体重灌胃给予葡萄糖,取血,测0、20、60、120min血糖。制作血糖-时间曲线,并计算曲线下面积(AUC)。
1.6 统计学处理方法 全部数据均以
Figure PCTCN2014090267-appb-000019
表示,各项结果采用StatView软件进行ANOVA检验分析。
2.结果
2.1 多核分子化合物对STZ+高脂引起的Ⅱ型糖尿病小鼠糖代谢的影响
实施例1~7所得多核分子化合物均能够显著降低OGTT实验中第0min、20min、60min、120min血糖及AUC,说明本发明多核分子化合物具有显著改善STZ+高脂引起的Ⅱ型糖尿病小鼠糖代谢作用,(见图12、图13)
2.2 多核分子化合物对STZ+高脂引起的Ⅱ型糖尿病小鼠血脂的影响
实施例1~7所得多核分子化合物均能够显著降低第8周、第13周aP2-SREBP-1c小鼠血中TG,说明本发明多核分子化合物具有显著改善STZ+高脂引起的Ⅱ型糖尿病小鼠脂代谢作用,(见图14)。
实施例10
本发明多核分子化合物的急性毒性试验
1 实验材料
1.1 供试品
(1)名称:实施例1~7任一所得的多核分子化合物(密闭存放在4℃冰箱中)。
(2)性状:粉末
(3)所用溶媒:0.5%吐温-80水溶液
(4)配制方法:用0.5%吐温-80水溶液乳化成所需浓度的乳浊液。
(5)保存条件:一次配制品最长两天用完(4℃冰箱保存)。
1.2 实验动物
18~22克SPF级NIH健康小鼠,由广东省医学实验动物中心提供(小鼠合格证号:SCXK(粤)2008-0002)。小鼠饲养环境:室温23±2℃,相对湿度65±10%,每天光照12小时。鼠饲料为广东省医学实验动物中心提供的全价鼠颗粒饲料。
1.3 所用试剂
吐温-80,Biosharp生物科技 批号:Amre500 0442。
2 方法与结果
2.1 实验方法
试验前12小时禁食(不禁水)。NIH健康小鼠,随机分组,每组10只,雌雄各半。根据预试结果,受试物设5个剂量组以及溶媒(0.5%吐温-80水溶液)对照组,剂量及分组等情况见表7、表8。各剂量组间距比值为0.7。小鼠单次腹腔注射给药,给药体积为10ml/kg。采用改良寇式法(Modified Karber‘s method)计算LD50
表7 多核分子化合物单次腹腔注射给药急性毒性试验小鼠死亡情况
Figure PCTCN2014090267-appb-000020
表8 多核分子化合物单次腹腔注射给药急性毒性试验结果
Figure PCTCN2014090267-appb-000021
Figure PCTCN2014090267-appb-000022
logLD50=Xm-i(∑P-0.5)
LD50的95%可信限=log-1(log LD50±1.96×Sx50)
其中
Figure PCTCN2014090267-appb-000023
i—组距,即相邻两组对数剂量之差
Xm—最大剂量对数
P—各剂量组死亡率(死亡率均用小数表示)
Pm—最高死亡率
Pn—最低死亡率
Σp—各剂量组死亡率之和
n—各组动物数
Sx50—logLD50的标准误
2.2 观察方法
给药后最初4小时严密观察动物的各种反应情况,以后每天不定时观察多次(一般为上、下午各观察2次),连续观察14天。记录动物的毒性反应情况(中毒症状及中毒反应的起始时间、严重程度、持续时间、是否可逆等)及死亡情况,对濒临死亡和已经死亡动物立即进行肉眼剖检,如发现脏器异常则做相应的组织病理学检查。
2.3 观察指标
主要是肉眼可见的外观、行为(精神)、运动、呼吸及心血管、消化系统及泌尿生殖系统功能及分泌物、排泄物等具体观察指标见下。每天称量食量和体重,绘出体重增长曲线。
(1)毛发:是否蓬松成团、无光泽、污秽不洁、掉毛、耸毛;
(2)皮肤:是否出汗、皮下是否出血、皮疹;
(3)外眼:是否分泌物多、流流泪、眼睑下垂、眼球突出;
(4)眼球:是否瞳孔扩大、结膜充血、眼睑有无下垂、是否眼球突出及头部震颤;
(5)中枢神经系统:
①兴奋作用:活动增多、反应过敏、烦躁不安、往返跑动、易怒、好斗、尖叫、震颤、跳跃、惊厥、粪便失禁、强直;
②抑制作用:活动减少、反应迟钝、精神萎靡、步态不稳、共济失调、静卧不动、反射(瞳孔、翻正、牵张、惊跳)消失、踡卧、昏睡、昏迷;
(6)躯体运动:是否肌肉僵硬、四肢麻痹、强迫运动、肌肉抽搐;
(7)呼吸及循环系统:是否呼吸急促、呼吸困难、喘息、口鼻出血、咳嗽、鼻分泌物、耳壳冰冷、粘膜苍白、粘膜紫绀、触摸心前区以判断心率快慢;
(8)消化系统:是否流涎、腹胀、腹泻、食欲、大便颜色(黑便、土色便)及性状(稀便、便秘、便血);
(9)泌尿生殖系统:是否尿少色深、血尿、阴囊下垂;
(10)其他:是否抓耳挠腮、消瘦、体温升高或体温降低。
2.4.实验结果
溶媒对照组在14天的观察期间,上述观察指标均正常,动物无死亡,未出现毒性反应。
受试物多核分子化合物腹腔注射给药后1小时左右,受试动物开始出现毒性反应:行走摇摆,蜷缩,倦怠,腹部内凹,呼吸困难。188.7mg/kg剂量组小鼠第2天开始出现死亡,各给药组小鼠多数在3天内死亡。未死亡小鼠精神状态差,活动减少,反应迟钝,背毛蓬松,无光泽,在第6天后逐渐恢复。对死亡小鼠进行尸检,肉眼未见心、肝、脾、肺、肾、脑明显出血、坏死等改变。
14天的观察期结束后处死所有小鼠进行尸检,各剂量组小鼠脏器未见明显的病理变化。
从实验结果来看,多核分子化合物腔注射给药的LD50为279.3mg/kg,多核分子化合物注射给药LD50的95%可信限为234.6~332.5mg。
实验结果表明本发明多核分子化合物对于动物脏器的损伤不明显,毒性较低。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (17)

  1. 一种多核分子化合物,其特征在于,所述多核分子化合物由小檗红碱与厚朴酚合成。
  2. 如权利要求1所述的多核分子化合物,其特征在于,所述多核分子化合物结构式为:
    Figure PCTCN2014090267-appb-100001
    所述n为1≤n≤30的整数。
  3. 如权利要求2所述的多核分子化合物,其特征在于,所述多核分子化合物的结构式中,n为2。
  4. 如权利要求1所述的多核分子化合物,其特征在于,所述多核分子化合物由以下方法制备而成:
    (1a)小檗红碱衍生物的合成:称取小檗红碱,加入有机溶剂,加热至沸腾后加入X(CH2)n Y,回流反应,将反应液浓缩,冷却结晶,过滤,得小檗红碱衍生物;
    (2a)取步骤(1a)得到的小檗红碱衍生物与厚朴酚混合,加入无水碳酸钠和有机溶剂,搅拌,加热回流反应,将反应液趁热过滤,滤液回收溶剂,用DMSO溶解,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用硅胶拌样,硅胶柱分离,洗脱,即得多核分子化合物;
    所述步骤(1a)中所述的X(CH2)n Y中,X=Y或
    Figure PCTCN2014090267-appb-100002
    ,X,Y为O、S、F、Cl、Br或I,n为1≤n≤30的整数。
  5. 如权利要求4所述的多核分子化合物,其特征在于,所述步骤(1a)中小檗红碱衍生物的合成过程为:称取小檗红碱1重量份,加入有机溶剂150~200重量份,85℃加热至沸腾,加入1,2-二溴乙烷20~40重量份,回流反应3h,将反应液浓缩至50~100份,冷却结晶,过滤,用适量有机溶剂洗涤结晶,洗涤液与滤液合并,回收有机溶剂,残渣用30重量份的甲醇溶解,冷却结晶,过滤,用甲醇洗涤结晶,与上述结晶合并,即得小檗红碱衍生物。
  6. 如权利要求4所述的多核分子化合物,其特征在于,所述步骤(2a)为:取步骤(1a)得到的小檗红碱衍生物1.2重量份与厚朴酚1重量份混合,加入无水碳酸钠2重量份、有机溶剂150重量份,搅拌,加热至85℃,回流8h,将反应液趁热过滤,滤液回收溶剂,用5重量份的DMSO溶剂,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用3重量份的硅胶拌样,硅胶柱分离,用20倍柱体积的石油醚和乙酸乙酯混合液洗脱,再用甲醇洗脱,回收甲醇,即得多核分子化合物。
  7. 如权利要求1所述的多核分子化合物,其特征在于,所述多核分子化合物由以下方法制备而成:
    (1b)厚朴酚衍生物的合成:取厚朴酚,与无水碳酸钠混合,加入有机溶剂,再加入X(CH2)n Y,加热反应,得厚朴酚衍生物;
    (2b)取步骤(1b)得到的厚朴酚衍生物、无水碳酸钠、小檗红碱混合,加入有机溶剂,搅拌,加热回流反应,将反应液趁热过滤,滤液回收溶剂,用DMSO溶解,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓 缩液再用硅胶拌样,硅胶柱分离,洗脱,即得多核分子化合物;
    所述步骤(1b)中所述的X(CH2)n Y中,X=Y或
    Figure PCTCN2014090267-appb-100003
    ,X,Y为O、S、F、Cl、Br或I,n为1≤n≤30的整数。
  8. 如权利要求7所述的多核分子化合物,其特征在于,所述步骤(1b)中厚朴酚、无水碳酸钠、X(CH2)n Y的摩尔比为1:2:16,所述厚朴酚与有机溶剂的摩尔体积比为1/150mol/L,反应温度为85℃,反应时间为5h;所述X(CH2)n Y为1,2-二溴乙烷。
  9. 如权利要求7所述的多核分子化合物,其特征在于,所述步骤(2b)为:取步骤(1b)得到的厚朴酚衍生物1重量份、无水碳酸钠2重量份、小檗红碱1重量份加入反应器中,加入有机溶剂150份,搅拌,加热至85℃,回流8h,将反应液趁热过滤,滤液回收溶剂,用5重量份的DMSO溶剂,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用3重量份的硅胶拌样,硅胶柱分离,用20倍柱体积的石油醚和乙酸乙酯混合液洗脱,再用甲醇洗脱,回收甲醇,即得多核分子化合物。
  10. 如权利要求1所述的多核分子化合物,其特征在于,所述小檗红碱采用以下方法制备而成:在反应器中加入料液比为1:15~30g/L的小檗碱和DMF,加入沸石,回流冷凝,在400W~800W微波辐射下,反应10~20min,取出反应器,趁热加入水稀释冷却,冷藏过夜,使析晶完全,抽滤,干燥,得结晶a;滤液另用大孔树脂柱分离,依次用40%、45%、50%、55%、60%、65%及70%的甲醇洗脱,收集70%甲醇洗脱部位,浓缩,得结晶b,将结晶a和结晶b合并,即得小檗红碱。
  11. 一种多核分子化合物的制备方法,其特征在于,包括以下步骤:
    (1a)小檗红碱衍生物的合成:称取小檗红碱,加入有机溶剂,加热至沸腾后加入X(CH2)n Y,回流反应,将反应液浓缩,冷却结晶,过滤,得小檗红碱衍生物;
    (2a)取步骤(1a)得到的小檗红碱衍生物与厚朴酚混合,加入无水碳酸钠和有机溶剂,搅拌,加热回流反应,将反应液趁热过滤,滤液回收溶剂,用DMSO溶解,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用硅胶拌样,硅胶柱分离,洗脱,即得多核分子化合物;
    所述步骤(1a)中所述的X(CH2)n Y中,X=Y或
    Figure PCTCN2014090267-appb-100004
    ,X,Y为O、S、F、Cl、Br或I,n为1≤n≤30的整数。
  12. 如权利要求11所述的多核分子化合物的制备方法,其特征在于,所述步骤(1a)中小檗红碱衍生物的合成过程为:称取小檗红碱1重量份,加入有机溶剂150~200重量份,85℃加热至沸腾,加入1,2-二溴乙烷20~40重量份,回流反应3h,将反应液浓缩至50~100份,冷却结晶,过滤,用适量有机溶剂洗涤结晶,洗涤液与滤液合并,回收有机溶剂,残渣用30重量份的甲醇溶解,冷却结晶,过滤,用甲醇洗涤结晶,与上述结晶合并,即得小檗红碱衍生物。
  13. 如权利要求11所述的多核分子化合物的制备方法,其特征在于,所述步骤(2a)为:取步骤(1a)得到的小檗红碱衍生物1.2重量份与厚朴酚1重量份混合,加入无水碳酸钠2重量份、有机溶剂150重量份,搅拌,加热至85℃,回流8h,将反应液趁热过滤,滤液回收溶剂,用5重量份的DMSO溶剂,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用3重量份的硅胶拌样,硅胶柱分离,用20倍柱体积的石油醚和乙酸乙酯混合液洗脱,再用甲醇洗脱,回收甲醇,即得多核分子化合物。
  14. 一种多核分子化合物的制备方法,其特征在于,包括以下步骤:
    (1b)厚朴酚衍生物的合成:取厚朴酚,与无水碳酸钠混合,加入有机溶剂,再加入X(CH2)n Y,加热反应,得厚朴酚衍生物;
    (2b)取步骤(1b)得到的厚朴酚衍生物、无水碳酸钠、小檗红碱混合,加入有机溶剂,搅拌,加热回流反应,将反应液趁热过滤,滤液回收溶剂,用DMSO溶解,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用硅胶拌样,硅胶柱分离,洗脱,即得多核分子化合物;
    所述步骤(1b)中所述的X(CH2)n Y中,X=Y或
    Figure PCTCN2014090267-appb-100005
    ,X,Y为O、S、F、Cl、Br或I,n为1≤n≤30的整数。
  15. 如权利要求14所述的多核分子化合物的制备方法,其特征在于,所述步骤(1b)中厚朴酚、无水碳酸钠、X(CH2)n Y的摩尔比为1:2:8,所述厚朴酚与有机溶剂的摩尔体积比为1/150mol/L,反应温度为85℃,反应时间为5h;所述X(CH2)n Y为1,2-二溴乙烷。
  16. 如权利要求14所述的多核分子化合物的制备方法,其特征在于,所述步骤(2b)为:取步骤(1b)得到的厚朴酚衍生物1重量份、无水碳酸钠2重量份、小檗红碱1重量份加入反应器中,加入有机溶剂150份,搅拌,加热至85℃,回流8h,将反应液趁热过滤,滤液回收溶剂,用5重量份的DMSO溶剂,柱分离,依次用30%、40%、50%、60%的甲醇溶液洗脱,HPLC检测,收集60%甲醇洗脱部分,浓缩,浓缩液再用3重量份的硅胶拌样,硅胶柱分离,用20倍柱体积的石油醚和乙酸乙酯混合液洗脱,再用甲醇洗脱,回收甲醇,即得多核分子化合物。
  17. 一种如权利要求1~10任一所述多核分子化合物在制备治疗糖尿病的药物中的用途。
PCT/CN2014/090267 2014-01-13 2014-11-04 一种多核分子化合物、其制备方法及用途 WO2015103900A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410015130.2 2014-01-13
CN201410015130.2A CN103709157B (zh) 2014-01-13 2014-01-13 一种多核分子化合物、其制备方法及用途

Publications (1)

Publication Number Publication Date
WO2015103900A1 true WO2015103900A1 (zh) 2015-07-16

Family

ID=50402546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090267 WO2015103900A1 (zh) 2014-01-13 2014-11-04 一种多核分子化合物、其制备方法及用途

Country Status (2)

Country Link
CN (1) CN103709157B (zh)
WO (1) WO2015103900A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709157B (zh) * 2014-01-13 2015-01-21 广州牌牌生物科技有限公司 一种多核分子化合物、其制备方法及用途
CN105622603A (zh) * 2015-05-28 2016-06-01 广州牌牌生物科技有限公司 多核化合物、其制备方法以及其应用
CN105693713B (zh) * 2015-05-28 2017-10-24 广州牌牌生物科技有限公司 一种双黄素、其制备方法及其应用
CN105566317B (zh) * 2016-01-13 2018-01-09 北京宜生堂医药科技研究有限公司 一种化合物及其制备方法
CN105566353A (zh) * 2016-01-13 2016-05-11 北京宜生堂医药科技研究有限公司 一种化合物及其制备方法
CN106146488B (zh) * 2016-06-29 2019-02-05 合肥华方医药科技有限公司 9-位取代的双功能团小檗碱衍生物的制备方法及用途
CN106146489B (zh) * 2016-06-30 2019-02-05 合肥华方医药科技有限公司 9-位取代的双功能团小檗碱衍生物的制备方法及用途
CN106977467A (zh) * 2017-03-22 2017-07-25 北京宜生堂医药科技研究有限公司 一种化合物及其制备方法与用途
CN108033927A (zh) * 2017-10-27 2018-05-15 北京宜生堂医药科技研究有限公司 一种化合物及其制备方法和用途
CN110964039A (zh) * 2019-12-06 2020-04-07 重庆华邦胜凯制药有限公司 一种化合物及其制备方法
CN113845410B (zh) * 2021-10-29 2023-09-29 深圳市真兴医药技术有限公司 厚朴酚衍生物及其中间体的合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102086197A (zh) * 2011-01-27 2011-06-08 贵阳医学院 具胰岛素增敏活性的原小檗碱衍生物及用途
CN102342935A (zh) * 2011-07-22 2012-02-08 中国人民解放军第三军医大学 黄连素-苯乙酸类衍生物和其在药学上可接受的盐以及应用
CN103709157A (zh) * 2014-01-13 2014-04-09 广州牌牌生物科技有限公司 一种多核分子化合物、其制备方法及用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030746A (zh) * 2009-09-30 2011-04-27 中山大学 9-位取代的双功能团小檗碱衍生物的制备方法及用途
CN102229607A (zh) * 2011-05-12 2011-11-02 中国人民解放军第三军医大学 黄连素-苯乙酸类衍生物及在药学上可接受的盐和合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102086197A (zh) * 2011-01-27 2011-06-08 贵阳医学院 具胰岛素增敏活性的原小檗碱衍生物及用途
CN102342935A (zh) * 2011-07-22 2012-02-08 中国人民解放军第三军医大学 黄连素-苯乙酸类衍生物和其在药学上可接受的盐以及应用
CN103709157A (zh) * 2014-01-13 2014-04-09 广州牌牌生物科技有限公司 一种多核分子化合物、其制备方法及用途

Also Published As

Publication number Publication date
CN103709157B (zh) 2015-01-21
CN103709157A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2015103900A1 (zh) 一种多核分子化合物、其制备方法及用途
WO2001015717A1 (fr) Agents contenant du ginseng destines a proteger les cellules cerebrales ou les cellules nerveuses
TWI522109B (zh) 蕨素化合物用於治療糖尿病及肥胖之用途
US20130172414A1 (en) Pharmaceutical composition comprising levocarnitine and dobesilate
WO2020086816A1 (en) Polymorphic compounds and uses thereof
AU2016207118A1 (en) Diphenyl derivative and uses thereof
KR20130020623A (ko) 유홍초 추출물을 함유하는 당뇨합병증 예방 또는 치료용 조성물
KR20180100152A (ko) 비알코올성 지방간 질환의 치료 또는 예방용 의약의 제조에서의 트리아세틸-3-하이드록시페닐아데노신의 용도
CN104546809B (zh) 3,3’,5,5’-四异丙基-4,4’-二联苯酚在预防及治疗缺血性脑卒中中的应用
JP2018513204A (ja) 神経保護および神経変性の治療のための組成物および方法
CA2369908C (en) Protein/polypeptide-k obtained from momordica charantia and a process for the extraction thereof
CN111067900B (zh) 治疗或预防肥胖或其相关疾病的化合物及其应用
WO2018166494A1 (zh) 苦参碱衍生物在治疗糖尿病中的用途
Zhang et al. Neuritin inhibits astrogliosis to ameliorate diabetic cognitive dysfunction
CN104096218B (zh) 重组人源细胞珠蛋白在制备治疗高血脂症及动脉粥样硬化药物中的应用
US20160024118A1 (en) Copper (i) complexes with glycine, pyruvate, and succinate
US11643428B2 (en) Therapeutic drug for neurodegenerative disease and application thereof
ES2909387T3 (es) Extractos de plantas enriquecidos con derivados de ipolamiida como inmunosupresores para tratar trastornos inmunológicos
CN105622603A (zh) 多核化合物、其制备方法以及其应用
US10596193B2 (en) Copper (I) complexes with glycine, pyruvate, and succinate
CN111840331A (zh) 一种熊胆外泌体在制备治疗ii型糖尿病药物中的应用
CN112263583B (zh) 一种治疗帕金森疾病的药物及其制备方法
CN114099493B (zh) 一种抑制胰岛素抵抗的活性化合物及其应用
EP2332530B1 (en) The use of potassium 2-(hydroxypentyl) benzoate in the manufacture of medicaments for preventing and/or treating senile dementia
KR20080094466A (ko) 대사증후군 치료용 약제 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23/11/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14877630

Country of ref document: EP

Kind code of ref document: A1