WO2015102183A1 - Monocrystalline silicon part for plasma-processing device of improved durability, and production method for same - Google Patents

Monocrystalline silicon part for plasma-processing device of improved durability, and production method for same Download PDF

Info

Publication number
WO2015102183A1
WO2015102183A1 PCT/KR2014/005687 KR2014005687W WO2015102183A1 WO 2015102183 A1 WO2015102183 A1 WO 2015102183A1 KR 2014005687 W KR2014005687 W KR 2014005687W WO 2015102183 A1 WO2015102183 A1 WO 2015102183A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
single crystal
ring
electrode plate
manufacturing
Prior art date
Application number
PCT/KR2014/005687
Other languages
French (fr)
Korean (ko)
Inventor
박진경
김용욱
이주언
이병익
최왕기
Original Assignee
하나머티리얼즈(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 하나머티리얼즈(주) filed Critical 하나머티리얼즈(주)
Publication of WO2015102183A1 publication Critical patent/WO2015102183A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/3255Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices

Definitions

  • the present invention relates to a single crystal silicon component used in a plasma processing apparatus and a manufacturing method thereof, and more particularly to a single crystal silicon component used for manufacturing a silicon ring or a silicon electrode plate used in a plasma processing apparatus and a manufacturing method thereof.
  • the present invention by changing the crystal orientation of the single crystal silicon used as a component in the plasma processing apparatus, it is possible to increase the service life and durability of the plasma processing apparatus, And it is an object of the present invention to provide a single crystal silicon component having an effect of reducing component usage.
  • the single crystal silicon component used in the plasma processing apparatus provided in the present invention is different from conventional monocrystalline silicon in that the crystal growth direction is changed, so that durability during use is increased and service life is increased, There is an advantage that process yield is increased because impurities are not generated when the electrode is processed and used in the form of a silicon ring or a silicon electrode plate.
  • a semiconductor device is formed by forming a semiconductor film, a conductive film, or an insulating film on a semiconductor substrate, and repeating etching and deposition processes according to the design structure of the semiconductor device.
  • Plasma equipment used in the thin film forming process and etching process in the manufacturing process of semiconductor devices is an essential core equipment and widely used in semiconductor manufacturing processes.
  • a semiconductor substrate having a thin film deposited thereon is loaded into a plasma etching chamber, a reactive gas is supplied to the etching chamber, a high frequency power is applied to the etching chamber, Let the reaction gas be in a plasma state.
  • the deposited thin film on the semiconductor substrate is etched by the reactive gas in the plasma state.
  • the unetched barrier layer selectively on the thin film by the reactive gas in the plasma state, the deposited thin film can be etched in a desired shape and structure.
  • the plasma processing apparatus used in the plasma etching process includes a lower electrode on which a wafer is placed, a focus ring provided on an edge region of the wafer, and an upper electrode provided on the upper side of the lower electrode and having a showerhead function.
  • the parts such as the focus ring and the upper electrode are generally fabricated using single crystal silicon.
  • Single crystal silicon having a crystal growth direction [100] is generally used. This is because the direction of the single crystal of the silicon wafer used in the semiconductor manufacturing process is generally [100], and since it is most widely used and its physical properties and characteristics are well known, Only silicon parts have been used.
  • single crystal silicon can be produced by growing an ingot by various fabrication methods such as a floatzone (FZ) method and a Czochralski (CZ) method.
  • FZ floatzone
  • CZ Czochralski
  • a raw material including polysilicon is placed in a quartz crucible and heated to melt the polycrystalline silicon.
  • a single crystal seed is brought into contact with the central portion of the melt surface, and the seed is slowly lifted to grow a silicon single crystal ingot.
  • a single-crystal silicon ingot grown in the [100] direction is cut to form a circular silicon plate, a center hole is formed in the center of the circular silicon plate, After grinding the surface of the silicon ring by using a rotary grinder or the like, one surface of the silicon ring is polished through the single-leaf cross-sectional polishing.
  • a plurality of through-holes are uniformly formed in a circular silicon plate, a silicon plate is ground by a grinder or the like, and then one surface exposed when installed in the plasma processing apparatus is polished .
  • Japanese Patent Application No. 0918076 discloses a method of reducing grinding wheel marks generated on the surface of a silicon plate and a silicon electrode plate using at least two grinding processes to further improve surface flatness and reduce internal damage, And the effect of preventing particle generation during processing is proposed.
  • Japanese Patent No. 0922620 discloses a method of stabilizing the resistance of a single crystal silicon plate by performing a multi-step heat treatment process after a planarization step of processing a silicon ring or a silicon plate used in a plasma processing apparatus.
  • the double side polishing process is used to simultaneously polish both sides of the single crystal silicon plate, thereby improving the productivity of the polishing process and improving the surface flatness, so that the particle source So that the reliability of the plasma process can be improved.
  • both the silicon ring and the silicon electrode plate which are parts for the plasma processing equipment disclosed in the above registered patents, use single crystal silicon having a crystal growth direction of [100], and the production of parts for improving the yield of the plasma process and improving the lifetime of the silicon component There is still a limit to the improvement method in the process.
  • the present invention relates to a single crystal silicon component used in a plasma processing apparatus and a method of manufacturing the same. More particularly, the present invention relates to a single crystal silicon component used for manufacturing a silicon ring or a silicon electrode plate used in a plasma processing apparatus, Thereby reducing the cost and improving the semiconductor process yield.
  • the present invention uses monocrystalline silicon in which a single crystal silicon material used for manufacturing a single crystal silicon component used in a plasma processing apparatus is crystal-grown in the [111] direction, The service life and durability are increased and components replacement cycle is increased as compared with the parts using single crystal silicon grown in the crystal orientation in the [100] direction, thereby reducing the maintenance cost of the plasma equipment and the parts usage.
  • the single crystal silicon component used in the plasma processing apparatus provided in the present invention is different from conventional monocrystalline silicon in that the crystal growth direction is changed, so that durability during use is increased and service life is increased, Impurities are not generated when used in the form of a silicon ring or a silicon electrode plate in the process of the present invention, so that the process yield can be improved.
  • the present invention provides a method of manufacturing a single crystal silicon component for a plasma device having improved durability, comprising: preparing a single crystal silicon ingot having a crystal orientation of [111]; A coring step of fabricating a silicon cylinder and hollow cylinder from the silicon ingot; A slicing step of cutting the silicon cylinder manufactured through the coring step to form a silicon plate, cutting the hollow silicon cylinder to form a hollow silicon ring therein; A multistage grinding step of smoothing a surface of the silicon plate and the silicon ring manufactured in the slicing step; Forming a plurality of through holes in the silicon plate to produce a silicon electrode plate and forming a stepped step inside the silicon ring to produce a silicon ring member; A wet etching step of alkali or acid solution to remove micro-damage in the manufacturing process of the silicon electrode plate and the silicon ring; A heat treatment step of removing impurities present inside the silicon electrode plate and the silicon ring; And a surface polishing step of mirror
  • the step of preparing a single crystal silicon ingot having a crystal orientation of [111] includes arranging a direction of a growth seed in a [111] direction in the step of manufacturing a silicon ingot through silicon single crystal growth, A crystal growth step of growing silicon in a [111] direction; And a step of removing a part of both ends of the single crystal silicon ingot grown in the [111] direction.
  • the step of preparing a single crystal silicon ingot having a crystal orientation of [111] comprises: (1) fixing a silicon ingot grown in the [100] direction with a magnetic block, To produce a plurality of silicon discs in the [111] crystal direction, and then laminating the silicon discs in the [111] crystal direction and wax-bonding them.
  • the silicon ingot grown in the [100] direction is fixed to a precision automatic rotation table, An angle sensor can be used to precisely control the angle of rotation so that the plane to be cut later becomes the [111] direction.
  • it may further include, after the heat treatment step, a further cleaning step using hydrofluoric acid to remove the oxide film formed on the surface of the silicon electrode plate and the silicon ring have.
  • the multi-stage grinding step may include a primary grinding step and a secondary grinding step with a lower roughness, a higher rotation speed and a lower pressure than the primary grinding step, And a multistage heat treatment process which proceeds in a mixed gas atmosphere or in a mixed atmosphere of nitrogen and inert gas and proceeds at least at a first temperature for a first time and then for a second time at a second temperature.
  • the surface polishing step is performed by a double polishing step of simultaneously polishing the upper surface and the lower surface of the silicon electrode plate and the silicon ring.
  • a plurality of carriers are provided between the upper polishing pad portion and the lower polishing pad portion, And the silicon electrode plate or the silicon ring is fixed to each of the carriers so that the mirror polishing proceeds.
  • Another embodiment of the present invention includes a monocrystalline silicon focus ring and a monocrystalline silicon focus ring for a plasma processing apparatus having improved durability of a monocrystalline silicon material having a [111] crystal orientation, which is produced by the above-described method for producing a silicon part.
  • another embodiment of the present invention is a manufacturing method of a silicon part, comprising: a single crystal silicon upper electrode for a plasma processing apparatus having a [111] crystal orientation and having improved durability of a single crystal silicon material, And a plasma processing apparatus.
  • the single crystal silicon electrode of the [111] direction and the single crystal silicon ring of the [111] direction manufactured by the method for producing a silicon part of the present invention have an increased service life and durability compared to the conventional single crystal silicon component of the [100] ,
  • the parts replacement cycle is increased, and the maintenance cost of the plasma equipment and the parts usage amount can be reduced.
  • the single crystal silicon component used in the plasma processing apparatus provided in the present invention is different from conventional monocrystalline silicon in that the crystal growth direction is changed, so that durability during use is increased and service life is increased, There is an advantage that process yield is increased because impurities are not generated when the electrode is processed and used in the form of a silicon ring or a silicon electrode plate.
  • the single crystal silicon part manufactured by the method of the present invention can prevent the generation of particles during the plasma processing, thereby improving the reliability of the semiconductor element, The process yield can be improved.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a silicon part according to an embodiment of the present invention.
  • FIGS. 2 and 3 schematically show a method for producing single crystal silicon having a [111] crystal orientation by using single crystal silicon grown in the [100] direction.
  • FIG. 4 is a schematic view showing a process of manufacturing the single crystal silicon focus ring and the single crystal silicon upper electrode of the present invention.
  • FIG. 5 is a diagram illustrating a multi-stage grinding apparatus used in the present invention.
  • FIG. 6 is a diagram illustrating the lower side of the double side polishing equipment used in the present invention.
  • FIG. 7 is a diagram schematically showing a plasma processing apparatus equipped with a single-crystal silicon focus ring and a single-crystal silicon upper electrode manufactured by the method of the present invention.
  • FIG. 1 is a process flow chart for explaining a method of manufacturing a silicon part according to an embodiment of the present invention
  • FIGS. 2 to 9 are reference drawings for explaining a method of manufacturing a silicon material according to an embodiment of the present invention .
  • the present invention will be described in detail with reference to the flow chart of FIG. 1 with reference to FIGS. 2 to 9.
  • [100] and [111] directions exist in the crystal direction of the single crystal silicon.
  • the [111] plane of the single crystal silicon has a lower surface energy and higher atom density and effective bonding density than the [100] plane. Therefore, in the present invention, attention is focused on the feature of the [111] crystal direction and the main technical feature is to change the material of the single crystal silicon used in the parts of the plasma processing apparatus.
  • a manufacturing method of removing a sliding potential is known as a method of manufacturing a single crystal silicon ingot grown to have a crystal plane in the [100] or [111] direction. That is, when pulling the seed crystal so that the crystal orientation coincides with the axis direction of the crystal axis, the seed crystal is subjected to a necking treatment in which the diameter of the single crystal silicon is gradually reduced after the seed crystal is melted in the melt, Can be removed.
  • a raw material including polycrystalline silicon is placed in a quartz crucible, and the polycrystalline silicon is melted by heating at a temperature of 1400 to 1500 ° C.
  • a single crystal seed having the same crystal orientation as the target crystal direction is brought into contact with the central portion of the melt surface, and then the seed is slowly lifted to grow a silicon single crystal ingot.
  • the seed and the quartz crucible in the opposite direction.
  • surface tension is generated between the seed and the surface of the melt so that the thin silicon films continuously stick to the seed surface And cooled at the same time.
  • the silicon atoms in the melt have crystal orientation in the same direction as the seed while the seed surface is cooled.
  • a magnetic field may be applied in order to make the flow of the melt smooth and stable, in order to increase the viscosity of the melt by applying a magnetic field to the melt, thereby suppressing convection in the melt to perform stable crystal growth
  • a raw material containing polysilicon is placed in a quartz crucible and heated at a temperature of about 1,400 to 1,500 ° C to melt the polycrystalline silicon , A single crystal seed having a crystal orientation of [111] is brought into contact with the center of the melt surface, and the seed is slowly lifted to grow a silicon single crystal ingot having a [111] crystal orientation.
  • the silicon atoms in the melt have a [111] direction which is the crystal direction in the same direction as the seed, and thus a single crystal silicon ingot having a [111] crystal direction can be produced.
  • the conventional silicon ingot crystal-grown in the [100] direction is rotated and fixed to the magnetic block 30, 10) to cut in the [111] direction, it is possible to manufacture a silicon disc 20 having an elliptical shape, which is not a conventional circular shape.
  • a single crystal silicon ingot having a [111] crystal orientation can also be produced by wax bonding the original silicon plates cut to have the [111] crystal orientation having the elliptical shape.
  • the rotated [100] silicon ingot is fixed to the [111] crystal plane by using a silicon saw 10 including an abrasive after fixing the rotated angle by using the magnetic block 30
  • the precision automatic rotation table 40 can be used, and it is preferable to control the rotation angle more precisely through the laser angle sensor 50 (see FIG. 3).
  • a single crystal silicon ingot having a [111] crystal orientation prepared in this way may be cored to form a hollow silicon cylinder and a silicon cylinder and then cut to form a silicon focus ring or a silicon plate.
  • a silicon ingot The silicon plate may be cut to form the silicon plate, and then the silicon focus ring or the silicon electrode plate may be formed.
  • the former method will be described as an example.
  • a large-diameter single-crystal silicon ingot of 8 inches or more having a [111] crystal orientation is prepared (S110), and an unnecessary portion of the upper and lower portions of the single crystal ingot is cut through a cropping process, A silicon cylinder 120b having an inner space as shown in FIG. 4 is manufactured, and a silicon cylinder 120c is formed as shown in FIG. (S120).
  • a method of manufacturing a silicon cylinder 120b having an empty portion for producing a silicon ring and a silicon cylinder 120c for manufacturing a silicon electrode plate by coring a single crystal silicon ingot in the [111] direction This will be described in detail.
  • the silicon cylinder 120c can be used as a material for the silicon upper electrode 230 and by re-coring the silicon cylinder 120c, the silicon cylinder and the silicon cylinder with an empty interior for manufacturing a silicon ring can be remanufactured It is possible. That is, it is also possible to repetitively produce a silicon cylinder and a silicon-centered cylinder having a small size by repeatedly coring the silicon-centered cylinder as necessary.
  • the diameter of the silicon cylinder 120c and the inner diameter of the silicon cylinder 120b manufactured through the coring process are adjusted according to the dimensions of the silicon component to be manufactured.
  • the inner diameter of the silicon cylinder is preferably 0.90 to 0.99. This is because the inner diameter may increase when the subsequent grinding process and the inner diameter polishing process are performed. If it is out of the above range, it may be difficult to control the process conditions of the grinding process and the polishing process.
  • the coring may be performed from the top surface to the bottom surface of the silicon ingot at one time, or may be performed at a time from the top surface of the silicon ingot to the bottom surface of the silicon ingot ,
  • the silicon ingot may be inverted to perform the secondary coring in the direction from the lower surface to the upper surface. Further, after the coring step, it is preferable to carry out a cleaning step to remove particles and foreign substances generated in the coring step.
  • the silicon cylinder 120b having a hollow center at its center is sliced to prepare a silicon ring 130 having a center at the center and the silicon cylinder 120c is sliced to produce a silicon plate 140 (S131 and S132)
  • the silicon ring 130 and the silicon plate 140 are manufactured by cutting the silicon cylinder 120b and the silicon cylinder 120c to a thin thickness by a sawing process using a wire or a diamond cutting process,
  • the thicknesses of the silicon ring 130 and the silicon electrode plate 160 can be adjusted in various manners, so that a silicon focus ring and a silicon electrode of various products can be manufactured. That is, not only the silicon ring 130 and the silicon electrode plate 160 of the same thickness can be manufactured in the single silicon ingot 120 but also the silicon ring 130 and the silicon electrode plate 160 of the same thickness can be manufactured by changing the process parameters in the manufacturing process including the slicing step, (130) and the silicon electrode plate (160).
  • the grinding process includes a rotatable table 70, at least three stages 71, 72, and 73 that are provided on the table and can rotate and fix the silicon ring 130 or the silicon plate 140, And at least two grinding wheels 74 and 75 for grinding the silicon ring 130 or the silicon plate 140 fixed on at least two of the stages to different roughnesses.
  • the table is rotatable in the clockwise direction, for example, and is preferably formed in a circular shape.
  • the plurality of stages are provided on the table at equal intervals from each other, and are preferably rotated clockwise.
  • the plurality of stages may be provided with a concave portion formed in a circular shape on a table, and may be provided with a protrusion formed in a circular shape.
  • the plurality of stages may include a relatively rough first grinding process and a relatively fine second grinding process using a grinding wheel rotating clockwise after the silicon ring 130 or the silicon plate 140 for carrying out the grinding process is loaded, And the unloading of the silicon ring 130 or the silicon plate 140 after the grinding process is completed.
  • a plurality of vacuum holes may be formed in each of the plurality of stages, or a porous chuck may be used. After the silicon ring or the silicon plate 140 is loaded on the stage through the vacuum hole, the air between the silicon ring 130 or the silicon plate 140 and the stage is vacuumed by the vacuum pump (not shown) The silicon ring 130 or the silicon plate 140 is vacuum-fixed on the stage.
  • the vacuum hole is formed only in the portion corresponding to the silicon ring 130.
  • the silicon ring 130 or the silicon plate 140 having various sizes can be fixed in a vacuum.
  • the vacuum hole can be fixed by various methods such as mechanical method as well as vacuum fixing.
  • each of the grinding wheels 74 and 75 is provided so as to be in only a partial contact with the stages 72 and 73 and to have a slight inclination.
  • the grinding wheels 74 and 75 may be installed so that the grinding wheels 74 and 75 are in half contact with the center of the stages 72 and 73, and are inclined toward the portions in contact with the stages 72 and 73.
  • the grinding wheels 74 and 75 are provided with diameters smaller than the diameters of the stages 72 and 73 and are preferably rotated, for example, in the clockwise direction.
  • each of the grinding wheels 74 and 75 grinding members of different sizes, for example diamond segments, are provided.
  • fine diamond particles having 1000 to 3000 meshes are attached Segments are preferably provided.
  • a rough grinding process is performed by one grinding wheel 74, and a fine grinding process is performed by another grinding wheel 75.
  • the rough diamond segment has 325 mesh and the fine diamond segment has 2000 mesh.
  • coarse grinding and fine grinding can be performed by two grinding wheels 74 and 75 in one equipment.
  • Each of the grinding wheels is different in rotational speed, removal amount, and pressure, and the respective grinding conditions are as follows.
  • the grinding wheel is rotated at a speed of 2300 to 2700 rpm, and the grinding object, that is, the silicon ring 130 or the silicon plate 140 is removed to a thickness of 50 to 70 mu m.
  • the grinding object that is, the silicon ring 130 or the silicon plate 140 is removed to a thickness of 50 to 70 mu m.
  • a 4.06 mm thick silicon ring 130 or a silicon plate 140 is ground to a thickness of 4 mm.
  • the grinding wheel can be ground at a pressure of two stages. Grinding is performed at a down pressure of 90 to 120 ⁇ ⁇ / min after grinding a predetermined thickness at an initial lowering pressure of 130 to 160 ⁇ ⁇ / min. Speed. Another grinding wheel rotates at a speed of 2800 to 3200 rpm, and the grinding object is removed to a thickness of 10 to 30 mu m.
  • the primary grinding 4 mm thick silicon ring 130 or silicon plate 140 is ground to a thickness of 3.98 mm.
  • the grinding wheel is grinding at a pressure of three steps, grinding to a predetermined thickness at an initial falling pressure of 25 to 35 ⁇ m / min, grinding at a falling pressure of 15 to 20 ⁇ m / min, To grind the grinding surface.
  • the stage rotates at a speed of 100 to 130 rpm.
  • the step of grinding the grinding surface without applying pressure is performed for about 10 seconds, and after grinding, the grinding wheel is raised at a speed of 50 to 70 mu m / min for about 10 seconds.
  • the grinding conditions of the other grinding wheels can be variously modified. That is, considering the thickness of the silicon ring 130 or the silicon plate 140, the rotational speed, the removal amount, and the grinding pressure can be adjusted according to the thickness to be removed by grinding.
  • the surfaces of the upper and lower surfaces of the silicon ring 140 and the silicon ring 140 cut by the wire are planarized by at least two grinding processes using the above-described grinding equipment. That is, a wire saw mark by wire sawing is removed by a rough grinding process using a grinding wheel to improve surface flatness, and a grinding process that can be generated by a rough grinding process by a fine grinding process using a grinding wheel The grinding wheel mark is removed to reduce the surface roughness.
  • a cleaning process for removing particles and sludge generated in the grinding process can be further performed.
  • a double scrubber process or a roller type scrubber brush can be used for the cleaning process. That is, in the double scrubber process, impurities on the upper and lower surfaces of the wafer can be simultaneously removed by using a double scrubber device provided with brushes in the upper and lower areas.
  • the silicon ring member 150 is fabricated by processing the inner wall surface and / or the outer wall surface of the silicon ring 130 and the silicon electrode plate 160 having the plurality of through holes 141 (S151, S152).
  • the silicon ring member 150 may be manufactured by various types of processing processes depending on the application in which the silicon focus ring is used.
  • a part of the inner wall surface of the silicon ring 130 is removed to produce the silicon ring member 150 having the stepped step (A). That is, the silicon ring member 150 according to the present embodiment includes a through-hole having a first diameter at an inner center thereof and a groove having a second diameter larger than the first diameter at an upper side of the through-hole.
  • the present invention is not limited to this, and the silicone ring member 150 may include various patterns including extended protrusions and recessed grooves as required, by a processing step. It is preferable that the processing of the inner and outer sides of the center-free silicon ring 130 is performed through a grinding process.
  • CNC Machine Numerical Control
  • MCT Machining Center Tool
  • a plurality of through holes 141 are formed in the silicon plate 140 to regrind the outer diameter of the silicon plate 140 before forming the silicon electrode plate 160.
  • the grinding of the outer diameter of the silicon plate 140 may be performed in the step of the silicon cylinder 120c after the coring process.
  • the outer diameter of the silicon plate 140 is preferably CNC equipment.
  • the silicon plate 140 can be cleaned and the inspection can be performed. After machining the outer diameter of the silicon plate 140, the silicon plate 140 is bonded onto the substrate of the perforation equipment. That is, the silicon plate 140 is bonded onto the glass substrate for hole punching. A plurality of through holes 141 are formed through a drilling process using a drill or an ultrasonic wave.
  • the productivity can be improved and holes can be formed in the entire silicon plate 140 through the drilling process.
  • the silicon plate 140 may be divided into a plurality of regions, and then a perforation process may be performed for each region. Thereafter, a cleaning process is performed to remove particles and sludge generated in the perforation process after the perforation process, and a defect inspection of the silicon electrode plate 160 having a plurality of through holes 141 may be performed.
  • the etching step is an acidic chemical, such as alkali chemical or HNO 3 containing KOH and / or NaOH. Then, the etching step after the cleaning step is performed using SC1 (NH 4 OH + H 2 O 2 + H 2 O). In addition, it is preferable to perform a rinsing process between the etching process and the cleaning process. By this etching process and the cleaning process, the grinding wheel marks of the silicon ring member 150 or the silicon electrode plate 160 are further relaxed, do.
  • SC1 NH 4 OH + H 2 O 2 + H 2 O
  • the silicone ring member 150 and the silicon electrode plate 160 are rinsed at room temperature for about 300 seconds using deionized water, and KOH, H 2 O 2, and ultrapure water are mixed at a ratio of about 1: 1: 15
  • the mixed solution is used to perform a primary etching process at a temperature of 65 to 75 ° C for about 300 seconds.
  • the first etching solution is rinsed at a room temperature for about 300 seconds using ultrapure water, and then a secondary etching process is performed at a temperature of 60 to 70 ° C. for about 300 seconds using a 45% KOH solution.
  • the secondary etching solution was rinsed at a room temperature for about 300 seconds using ultrapure water, and the SC1 solution mixed with NH 4 OH, H 2 O 2, and H 2 O at a ratio of 1: 1: The cleaning process is performed for about 300 seconds.
  • the cleaning solution was rinsed at room temperature for about 300 seconds using ultra-pure water, and the silicone ring member 150 or the silicon electrode plate 160 was immersed in ultrapure water at 35 to 55 ° C. for about 30 seconds, The air drying process is then performed at a temperature of 70 to 90 DEG C for about 100 seconds. It is preferable that the etching process and the cleaning process are performed in a clean room where no fine dust is generated.
  • the heat treatment process may be a multi-stage heat treatment process, The heat treatment may be performed at step S170.
  • the donor killing process is a process for removing impurities, particularly oxygen, from the inside through the heat treatment of the silicon ring member 150 and the silicon electrode plate 160.
  • Various types of heat treatment apparatuses including a furnace type, an oven type or a belt type can be used as the heat treatment.
  • the heat treatment apparatus enables a precise heat treatment using a programmable mechanism capable of setting the temperature and time. It is preferable that the heat treatment temperature and the time can record the result by digital or analog etc. by a program.
  • the multistage heat treatment process is carried out in multiple steps while raising the temperature.
  • the temperature is raised in three steps. That is, the temperature is raised to a first temperature at a temperature rise rate of 1 to 100 ° C / min at room temperature, and then heat-treated for 1 to 60 minutes. Thereafter, the temperature is raised from the first temperature to the second temperature at a rate of 1 to 100 ° C / After the heat treatment is performed for 1 to 60 minutes, the temperature is increased from the second temperature to the third temperature at a rate of 1 to 100 ° C / min, and then the heat treatment is performed for 1 to 180 minutes. Then, the temperature is lowered to room temperature at a temperature lowering rate of 1 to 100 ° C / min at the third temperature.
  • the first temperature is preferably 100 to 300 ° C
  • the second temperature is preferably 300 to 500 ° C
  • the third temperature is preferably 600 to 1000 ° C.
  • the annealing process is preferably performed by supplying oxygen and an inert gas or nitrogen and an inert gas. After the annealing process, an oxide film or a nitride film is formed on the silicon ring member 150 or the silicon electrode plate 160, and the grown oxide film or nitride film is removed by grinding, wet etching or polishing using hydrogen fluoride, which can be performed later.
  • the heat treatment may be performed not only in a multistage heat treatment process but also in a high temperature heat treatment process.
  • the temperature is raised to 600 to 1000 ° C at a temperature rise rate of 1 to 100 ° C / min at room temperature and then heat treated for 1 to 180 minutes. Then, the temperature is lowered to room temperature at a temperature lowering rate of 1 to 100 ° C / min.
  • the resistances of the silicon ring member 150 and the silicon electrode plate 160 are stabilized by the donor killing process such as the multistage heat treatment process and then the resistance of the silicon ring member 150 and the silicon electrode plate 160 is measured, Laser marking is performed for the history management of the material.
  • the double side polishing process is performed to planarize both surfaces of the silicon ring member 150 and the silicon electrode plate 160 to reduce the surface roughness, thereby manufacturing the single crystal silicon focus ring 220 and the silicon upper electrode 230 (S180).
  • the polishing process can first improve the flatness of the stepped region of the silicon ring member 150 by the stepwise polishing process and maintain the surface roughness at 5 ⁇ or less. That is, the inner surface and the stepped surface (through-hole and groove region) of the silicone ring member 150 are polished, and then a cleaning process is performed. After the cleaning process, the upper and lower surfaces of the silicon ring member 150 or the silicon electrode plate 160 are simultaneously polished using a double side polishing apparatus (see FIG. 6).
  • the double side polishing equipment includes an upper polishing pad portion and a lower polishing pad portion 90.
  • the lower polishing pad portion includes a circular lower plate 91, a lower polishing pad 92 provided on the lower plate, and a plurality of carriers 93 having predetermined through holes on the lower polishing pad.
  • the silicon ring member 150 or the silicon electrode plate 140 is positioned and fixed in the through hole 94 of the carrier 93 to prevent them from escaping.
  • the upper polishing pad (not shown) and the lower plate 91 are rotated in different directions to simultaneously polish the upper surface and the lower surface of the silicon ring member 150 or the silicon electrode plate 160. It is also preferable that the plurality of carriers 93 rotate as well.
  • a plurality of through holes 94 may be formed in one carrier 93. That is, two to four through holes 94 may be formed in one carrier 93 to increase the number of the silicon ring member 150 or the silicon electrode plate 160 that performs the double side polishing process at one time.
  • the apparatus for double side polishing process can perform polishing by changing only the carrier 93 regardless of the shape, size or thickness of the silicon ring member 150 or the silicon electrode plate 160.
  • the surface roughness of the upper surface and the lower surface of the silicon ring member 150 or the silicon electrode plate 160 can be controlled by controlling the slurry and the surfactant injected during the polishing process.
  • the upper polishing pad portion (not shown) rotates counterclockwise at a rotation speed of about 10 to 20 rpm at a pressure of 0.1 to 1.0 kg / cm 2,
  • the polishing pad portion 90 rotates clockwise at a rotation speed of about 30 to 40 rpm.
  • the carrier 93 also rotates clockwise at a rotation speed of about 10 to 20 rpm.
  • the first slurry is introduced at an amount of 3 to 5 L / min and polished, and if necessary, the second slurry is introduced at an amount of 2 to 3 L / min to polish.
  • the first slurry is a slurry having a larger size of abrasive grains than the second slurry.
  • the silicon ring member 150 or the silicon electrode plate 160 is polished by polishing using the first slurry, and polishing using the second slurry The surface roughness of the silicon ring member 150 or the silicon electrode plate 160 is further improved. In addition, it is also possible to introduce the chemical after the polishing using the second slurry, which prevents particles from adhering to the surface of the silicon ring member 150 or the silicon electrode plate 160 so that the cleaning process can be completed later.
  • the double side polishing process can improve the flatness of the upper surface and the lower surface of the silicon ring member 150 or the silicon electrode plate 160 and maintain the surface roughness to 5 ⁇ or less.
  • the surface roughness can be maintained at 1 to 5 angstroms and can be maintained similar to the surface roughness of the silicon wafer of 2 angstroms. In this way, the surface roughness of the silicon ring is made similar to the surface roughness of the wafer, and the plasma uniformity on the upper side of the wafer is increased to improve the plasma processing efficiency.
  • a cleaning process is performed to remove slurry and particles.
  • a silicon focus ring according to the present embodiment is fabricated.
  • the standard of the manufactured silicon focus ring is measured, and final cleaning is performed. It is preferable to perform a 3D inspection to measure the size of the silicon focus ring.
  • visual inspection is performed after final cleaning. Visual inspection includes surface inspection and edge chipping inspection, which allows inspection of particles and deep scratches.
  • the silicon electrode according to an embodiment of the present invention is not limited to this, and when the total diameter of the silicon electrode is larger than the diameter of the silicon cylinder, the silicon electrode can be manufactured using a plurality of bodies.
  • the grinding step and the etching step and the cleaning step are performed at least two times in the above embodiment, the etching and cleaning steps may be selectively performed. This may be performed after the grinding step by etching and cleaning according to surface planarization and defect patterns Quot; can be selectively performed.
  • the donor killing process by the multi-stage heat treatment is performed after the plurality of through holes 141 are formed in the silicon ring member 150 and the silicon plate 140.
  • the silicon cylinder 120c may be cut, or may be performed after the planarization process.
  • the donor killing process by multi- After the plate is formed, after forming a center hole or a plurality of through holes in the silicon plate, or after the grinding process.
  • FIG. 7 is a diagrammatic view illustrating a plasma etching apparatus including a silicon focus ring 220 and a silicon upper electrode 230 manufactured according to a method according to an embodiment of the present invention.
  • the plasma etching apparatus includes a silicon focus ring 220 made of a silicon ring manufactured by the above-described manufacturing method, and a silicon upper electrode 230 made of a silicon electrode plate.
  • the plasma etching apparatus includes a chamber 200, a lower electrode 210 on which the wafer 201 is placed, and a lower electrode 210 on which a silicon (not shown) provided in an edge region of the wafer 201 placed on the lower electrode 210, A focus ring 220, a silicon upper electrode 230 provided on the upper side of the lower electrode 210 and integrally formed with the showerhead, first and second silicon electrodes 230 and 230 for supplying power to the lower electrode 210 and the silicon upper electrode 230, 2 power supply units 240 and 250, respectively.
  • the single crystal silicon upper electrode of the [111] direction and the silicon focus ring manufactured by the method of manufacturing a single crystal silicon component for a plasma device improved in durability according to the present invention And the etching rate difference between the silicon upper electrode and the silicon focus ring in the conventional [100] direction was observed in an actual plasma processing facility.
  • the single crystal silicon upper electrode of the [111] direction and the silicon focus ring manufactured by the above method and the silicon focus ring were attached to the [100] single crystal silicon upper electrode and the silicon focus ring plasma processing apparatus formed under the same conditions, W RF power and a 20 W BAIS condition, the etching amount of the upper silicon single crystal silicon electrode and the silicon focus ring per unit time was measured.
  • the measurement results of the etching rate per unit time of the single crystal silicon focus ring in the [111] direction and the single crystal silicon focus ring in the [100] direction according to the present invention were measured according to the following Table 1 And FIG. 8, respectively.
  • the unit of etching amount per unit time of the measured single crystal silicon focus ring is mm / hr.
  • the single crystal silicon ring and the silicon upper electrode for a plasma facility made of single crystal silicon in the [111] direction manufactured by the manufacturing method of the present invention The etching amount per unit time was reduced by about 30% as compared with the monocrystalline silicon product, and thus, the service life and durability were prolonged by at least 30%.
  • the single crystal silicon component used in the plasma processing apparatus of the present invention has a crystal growth direction different from that of monocrystal silicon widely used in the prior art, thereby increasing service life due to increase in durability during use,
  • the impurity is not generated when used in the form of a silicon focus ring or a silicon upper electrode, and thus the process yield can be improved.
  • the silicon focus ring and the silicon upper electrode manufactured according to the manufacturing method of the present embodiment are not limited to the above-described etching apparatus but may be applied to various plasma processing apparatuses, and the present invention is not limited to the above- And may be implemented in various other forms.
  • the above-described embodiments are provided so that the disclosure of the present invention is complete, and those skilled in the art will fully understand the scope of the invention, and the scope of the present invention should be understood by the appended claims .
  • 120b Silicon cylinder
  • 120c Silicon cylinder
  • the present invention relates to a single crystal silicon component used in a plasma processing apparatus and a manufacturing method thereof, and more particularly to a single crystal silicon component used for manufacturing a silicon ring or a silicon electrode plate used in a plasma processing apparatus,
  • a single crystal silicon component used for manufacturing a silicon ring or a silicon electrode plate used in a plasma processing apparatus By changing the crystal orientation of the single crystal silicon used as a component in the processing apparatus, when used in a plasma processing apparatus, it increases the service life and durability and increases the parts replacement cycle to reduce the maintenance cost of the plasma equipment and the parts usage
  • a single crystal silicon component used in a plasma processing apparatus provided in the present invention has a crystal growth direction different from that of monocrystalline silicon widely used in the prior art, Durable There is an advantage that the process yield is increased because no impurities are generated when used in the form of a silicon ring or a silicon electrode plate in a plasma processing apparatus and thus it is industrially applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

The present invention relates to a production method for a silicon material, wherein, at the time of producing a monocrystalline silicon part used in a plasma-processing device, use is made of a monocrystalline silicon obtained by subjecting the monocrystalline silicon material used at that time to crystal growth in the [111] direction, and thus, when same is used by being fitted to the plasma-processing device, there is an increase in the service life and the endurance limit as compared with existing parts using monocrystalline silicon obtained by crystal growth in the [100] direction, such that the part replacement cycle is increased and so it is possible to reduce maintenance and repair costs and the amount of parts used in plasma equipment, and it is possible to improve the processing yield since impurities are not produced when the invention is used after having been machined into the form of a silicon ring or a silicon electrode plate inside a plasma-processing device.

Description

내구성이 향상된 플라즈마 처리 장비용 단결정 실리콘 부품 및 이의 제조 방법Monocrystalline silicon parts for plasma processing equipment with improved durability and manufacturing method thereof
본 발명은 플라즈마 처리 장치에 사용되는 단결정 실리콘 부품 및 이의 제조 방법에 관한 것으로, 특히 플라즈마 처리 장치에 사용되는 실리콘 링 또는 실리콘 전극판의 제작에 사용되는 단결정 실리콘 부품 및 이의 제조 방법에 관한 것이다.The present invention relates to a single crystal silicon component used in a plasma processing apparatus and a manufacturing method thereof, and more particularly to a single crystal silicon component used for manufacturing a silicon ring or a silicon electrode plate used in a plasma processing apparatus and a manufacturing method thereof.
본 발명에서는 플라즈마 처리 장치에서 부품으로 사용되는 단결정 실리콘의 결정 방향을 변화시킴으로써, 플라즈마 처리 장치에 장착되어 사용될 때, 사용 수명 및 내구 연한이 증가하고, 부품 교체 주기를 늘려 플라즈마 장비의 유지 보수비용과 부품 사용량을 감소시킬 수 있는 효과가 있는 단결정 실리콘 부품을 제공하는 것을 목적으로 하고 있다. In the present invention, by changing the crystal orientation of the single crystal silicon used as a component in the plasma processing apparatus, it is possible to increase the service life and durability of the plasma processing apparatus, And it is an object of the present invention to provide a single crystal silicon component having an effect of reducing component usage.
또한, 본 발명에서 제공하는 플라즈마 처리 장치에 사용되는 단결정 실리콘 부품은 기존에 널리 사용되는 단결정 실리콘과는 달리 결정성장 방향이 변화됨으로써 사용 중 내구성이 증가되어 사용 수명이 증가될 뿐만 아니라, 플라즈마 처리 장치 내에 실리콘 링 또는 실리콘 전극판의 형태로 가공되어 사용될 때 불순물이 발생되지 않아 공정 수율이 증가하는 장점을 갖는다.In addition, the single crystal silicon component used in the plasma processing apparatus provided in the present invention is different from conventional monocrystalline silicon in that the crystal growth direction is changed, so that durability during use is increased and service life is increased, There is an advantage that process yield is increased because impurities are not generated when the electrode is processed and used in the form of a silicon ring or a silicon electrode plate.
일반적으로 반도체 소자는 반도체 기판 상부에 반도체막, 도전막 또는 절연막을 형성하고, 이러한 다양한 종류의 막들을 반도체 소자의 설계 구조에 따라 식각 및 증착 공정이 반복되어 제조된다. 이러한 반도체 소자의 제조 공정에서 박막의 형성 공정과 식각 공정에 사용되는 플라즈마 설비는 필수적인 핵심 설비로서, 반도체 제조 공정 중에서 널리 사용되고 있다. In general, a semiconductor device is formed by forming a semiconductor film, a conductive film, or an insulating film on a semiconductor substrate, and repeating etching and deposition processes according to the design structure of the semiconductor device. Plasma equipment used in the thin film forming process and etching process in the manufacturing process of semiconductor devices is an essential core equipment and widely used in semiconductor manufacturing processes.
이러한 플라즈마 설비를 사용하는 식각 공정에 대해 예를 들어 설명하면, 소정 두께의 박막이 증착된 반도체 기판을 플라즈마 식각 챔버 내에 로딩한 후 식각 챔버에 반응 가스를 공급하고, 식각 챔버에 고주파 전원을 인가하여 반응 가스를 플라즈마 상태가 되도록 한다. 플라즈마 상태의 반응 가스에 의해 반도체 기판 상부의 증착된 박막이 식각된다. 이때, 상기 플라즈마 상태의 반응 가스에 의해 식각되지 않은 장벽층을 선택적으로 박막 위에 형성함으로써, 원하는 형태와 구조로 상기 증착된 박막의 식각이 가능해진다. For example, a semiconductor substrate having a thin film deposited thereon is loaded into a plasma etching chamber, a reactive gas is supplied to the etching chamber, a high frequency power is applied to the etching chamber, Let the reaction gas be in a plasma state. The deposited thin film on the semiconductor substrate is etched by the reactive gas in the plasma state. At this time, by forming the unetched barrier layer selectively on the thin film by the reactive gas in the plasma state, the deposited thin film can be etched in a desired shape and structure.
플라즈마 식각 공정에 사용되는 플라즈마 처리 장치는 웨이퍼가 안치되는 하부 전극, 웨이퍼의 에지 영역에 마련된 포커스링, 하부 전극 상측에 마련되어 샤워헤드 기능을 갖는 상부 전극 등을 포함한다. 이때, 상기 포커스링과 상부 전극과 같은 부품은 일반적으로 단결정 실리콘을 이용하여 제작되는데, 가장 널리 쉽게 제조되는 단결정의 결정성장방향이 [100] 방향인 단결정 실리콘이 사용되는 것이 일반적이다. 이는 반도체 제조공정에 사용되는 실리콘 웨이퍼의 단결정 방향이 [100]인 것이 일반적이며, 가장 널리 사용되며 물성과 특성이 널리 알려져 있으므로 가공과 관리가 용이하다는 장점으로 인해 현재까지 [100] 결정면으로 성장된 실리콘 부품만이 사용되어 왔다. The plasma processing apparatus used in the plasma etching process includes a lower electrode on which a wafer is placed, a focus ring provided on an edge region of the wafer, and an upper electrode provided on the upper side of the lower electrode and having a showerhead function. At this time, the parts such as the focus ring and the upper electrode are generally fabricated using single crystal silicon. Single crystal silicon having a crystal growth direction [100] is generally used. This is because the direction of the single crystal of the silicon wafer used in the semiconductor manufacturing process is generally [100], and since it is most widely used and its physical properties and characteristics are well known, Only silicon parts have been used.
일반적으로 단결정 실리콘은 잉곳을 용융 대역(Floatzone; FZ)법, 쵸크랄스키(Czochralski; CZ)법 등의 다양한 제작 방법을 이용하여 성장시켜 제조될 수 있다. 통상적인 잉곳 제작 방법은 석영 도가니 내에 다결정 실리콘(Polysilicon)을 포함한 원부자재를 넣고 가열하여 상기 다결정 실리콘을 용융시킨다. 이어서, 단결정 시드(seed)를 용융액 표면 중심부에 접촉시키고, 상기 시드를 천천히 들어올려 실리콘 단결정 잉곳을 성장시킨다. Generally, single crystal silicon can be produced by growing an ingot by various fabrication methods such as a floatzone (FZ) method and a Czochralski (CZ) method. In a typical ingot manufacturing method, a raw material including polysilicon is placed in a quartz crucible and heated to melt the polycrystalline silicon. Then, a single crystal seed is brought into contact with the central portion of the melt surface, and the seed is slowly lifted to grow a silicon single crystal ingot.
플라즈마 처리 장치에 사용되는 포커스링을 제작하기 위해서는, [100] 방향으로 성장된 단결정 실리콘 잉곳을 절단하여 원형의 실리콘 판을 제작한 후, 원형의 실리콘 판의 중심에 중심홀을 형성하여 실리콘 링을 형성하고, 로터리 연삭기 등을 이용하여 실리콘 링의 표면을 그라인딩한 후 실리콘 링의 일면을 매엽식 단면 폴리싱을 통해 폴리싱한다. In order to manufacture a focus ring used in a plasma processing apparatus, a single-crystal silicon ingot grown in the [100] direction is cut to form a circular silicon plate, a center hole is formed in the center of the circular silicon plate, After grinding the surface of the silicon ring by using a rotary grinder or the like, one surface of the silicon ring is polished through the single-leaf cross-sectional polishing.
또한, 상부 전극을 제작하기 위해서는, 원형의 실리콘 판에 복수의 관통홀을 균일하게 형성하고 연삭기 등으로 실리콘 판을 그라인딩한 후, 단면 폴리싱을 통해 플라즈마 처리 장치에 설치될 때 노출되는 일면을 폴리싱을 수행한다. In order to manufacture the upper electrode, a plurality of through-holes are uniformly formed in a circular silicon plate, a silicon plate is ground by a grinder or the like, and then one surface exposed when installed in the plasma processing apparatus is polished .
등록특허 제0918076호에서는 적어도 2회의 그라인딩 공정을 사용하여 실리콘 판 및 실리콘 전극판의 표면에 발생되는 그라인딩 휠 마크를 감소시킴으로써 표면 평탄도를 더욱 향상시킬 수 있고 내부의 데미지를 감소시킬 수 있으며, 플라즈마 처리시 파티클 발생을 방지하는 효과를 제시하고 있다. Japanese Patent Application No. 0918076 discloses a method of reducing grinding wheel marks generated on the surface of a silicon plate and a silicon electrode plate using at least two grinding processes to further improve surface flatness and reduce internal damage, And the effect of preventing particle generation during processing is proposed.
또한, 등록특허 제0922620호에는 플라즈마 처리용 장치에 사용되는 실리콘 링 또는 실리콘 판을 가공하는 평탄화 단계 후에 다단계로 열처리 공정을 수행하여 단결정 실리콘 판의 저항을 안정화시키는 방법이 제시되어 있다.In addition, Japanese Patent No. 0922620 discloses a method of stabilizing the resistance of a single crystal silicon plate by performing a multi-step heat treatment process after a planarization step of processing a silicon ring or a silicon plate used in a plasma processing apparatus.
그리고 등록특허 제0867389호에는 더블 사이드 폴리싱 공정을 사용하여 단결정 실리콘 판의 양면을 동시에 폴리싱 함으로써 폴리싱 공정의 생산성을 향상시킬 수 있고, 표면 평탄도를 향상시킬 수 있어 플라즈마 공정의 진행 시에 파티클 소스를 제거함으로써 플라즈마 공정의 신뢰성을 향상시키는 효과가 제시되어 있다. In addition, in the patent No. 0867389, the double side polishing process is used to simultaneously polish both sides of the single crystal silicon plate, thereby improving the productivity of the polishing process and improving the surface flatness, so that the particle source So that the reliability of the plasma process can be improved.
하지만 상기 등록된 특허에 제시된 플라즈마 처리 설비용 부품인 실리콘 링과 실리콘 전극판은 모두 결정성장 방향이 [100]인 단결정 실리콘을 사용한 것으로, 플라즈마 공정 수율의 향상과 실리콘 부품의 수명 향상을 위한 부품 제조공정 중의 개선 방식은 여전히 한계가 존재한다.However, both the silicon ring and the silicon electrode plate, which are parts for the plasma processing equipment disclosed in the above registered patents, use single crystal silicon having a crystal growth direction of [100], and the production of parts for improving the yield of the plasma process and improving the lifetime of the silicon component There is still a limit to the improvement method in the process.
본 발명은 플라즈마 처리 장치에 사용되는 단결정 실리콘 부품 및 이의 제조 방법에 관한 것으로, 특히 플라즈마 처리 장치에 사용되는 실리콘 링 또는 실리콘 전극판의 제작에 사용되는 단결정 실리콘 부품의 수명을 연장시키고, 사용 중의 불순물 발생을 감소시킴으로써, 원가 절감과 반도체 공정 수율을 향상시키는 것을 목적으로 하고 있다.The present invention relates to a single crystal silicon component used in a plasma processing apparatus and a method of manufacturing the same. More particularly, the present invention relates to a single crystal silicon component used for manufacturing a silicon ring or a silicon electrode plate used in a plasma processing apparatus, Thereby reducing the cost and improving the semiconductor process yield.
좀 더 구체적으로 설명하면, 본 발명은 플라즈마 처리 장치에 사용되는 단결정 실리콘 부품을 제조할 때 사용되는 단결정 실리콘 재료를 [111] 방향으로 결정 성장시킨 단결정 실리콘을 사용함으로써, 플라즈마 처리 장치에 장착되어 사용될 때 기존의 [100] 방향으로 결정 성장된 단결정 실리콘을 사용한 부품에 비해 사용 수명 및 내구 연한이 증가되고, 부품 교체 주기가 증가되어 플라즈마 장비의 유지 보수비용과 부품 사용량을 감소시킬 수 있다. More specifically, the present invention uses monocrystalline silicon in which a single crystal silicon material used for manufacturing a single crystal silicon component used in a plasma processing apparatus is crystal-grown in the [111] direction, The service life and durability are increased and components replacement cycle is increased as compared with the parts using single crystal silicon grown in the crystal orientation in the [100] direction, thereby reducing the maintenance cost of the plasma equipment and the parts usage.
또한, 본 발명에서 제공하는 플라즈마 처리 장치에 사용되는 단결정 실리콘 부품은 기존에 널리 사용되는 단결정 실리콘과는 달리 결정성장 방향이 변화됨으로써 사용 중 내구성이 증가되어 사용 수명이 증가될 뿐만 아니라, 플라즈마 처리 장치 내에 실리콘 링 또는 실리콘 전극판의 형태로 가공되어 사용될 때 불순물이 발생되지 않으므로, 공정 수율을 향상시킬 수 있다.In addition, the single crystal silicon component used in the plasma processing apparatus provided in the present invention is different from conventional monocrystalline silicon in that the crystal growth direction is changed, so that durability during use is increased and service life is increased, Impurities are not generated when used in the form of a silicon ring or a silicon electrode plate in the process of the present invention, so that the process yield can be improved.
상기 목적을 해결하기 위해, 본 발명의 내구성이 향상된 플라즈마 장비용 단결정 실리콘 부품의 제조방법은, 결정방향이 [111]인 단결정 실리콘 잉곳을 준비하는 단계; 실리콘 잉곳으로부터 실리콘 원기둥과 속이 빈 실리콘 실린더(hollow cylinder)를 제조하는 코어링 단계; 상기 코어링 단계를 통해 제조된 실리콘 원기둥을 절단하여 실리콘 판을 형성하고, 상기 속이 빈 실리콘 실린더를 절단하여 내부가 빈 실리콘 링을 형성하는 슬라이싱 단계; 상기 슬라이싱 단계에서 제조된 실리콘 판과 실리콘 링의 표면을 평탄화하는 다단계 그라인딩 단계; 상기 실리콘 판에 복수의 관통홀을 형성하여 실리콘 전극판을 제조하고, 상기 실리콘 링의 안쪽에 계단형 단차를 형성하여 실리콘 링 부재를 제조하는 가공 단계; 실리콘 전극판과 실리콘 링의 제조과정의 미세 손상을 제거하기 위한 알칼리 또는 산 용액의 습식 에칭 단계; 상기 실리콘 전극판과 실리콘 링의 내부에 존재하는 불순물을 제거하는 열처리 단계; 및 불순물이 제거된 실리콘 전극판과 실리콘 링의 표면을 경면화 하는 표면 연마 단계;를 포함하는 내구성이 향상된 플라즈마 장비용 단결정 실리콘 부품의 제조방법를 포함한다. In order to achieve the above object, the present invention provides a method of manufacturing a single crystal silicon component for a plasma device having improved durability, comprising: preparing a single crystal silicon ingot having a crystal orientation of [111]; A coring step of fabricating a silicon cylinder and hollow cylinder from the silicon ingot; A slicing step of cutting the silicon cylinder manufactured through the coring step to form a silicon plate, cutting the hollow silicon cylinder to form a hollow silicon ring therein; A multistage grinding step of smoothing a surface of the silicon plate and the silicon ring manufactured in the slicing step; Forming a plurality of through holes in the silicon plate to produce a silicon electrode plate and forming a stepped step inside the silicon ring to produce a silicon ring member; A wet etching step of alkali or acid solution to remove micro-damage in the manufacturing process of the silicon electrode plate and the silicon ring; A heat treatment step of removing impurities present inside the silicon electrode plate and the silicon ring; And a surface polishing step of mirror-polishing the surface of the silicon ring and the silicon electrode plate from which the impurities have been removed. The present invention also provides a method of manufacturing a monocrystalline silicon part for a plasma device having improved durability.
본 발명의 일 실시예로서 결정 방향이 [111]인 단결정 실리콘 잉곳을 준비하는 단계는, 실리콘 단결정 성장을 통한 실리콘 잉곳의 제조단계에서 성장핵(seed)의 방향을 [111] 방향으로 배치하여 단결정 실리콘을 [111] 방향으로 성장시키는 결정 성장 단계; 및 상기 [111] 방향으로 성장된 단결정 실리콘 잉곳의 양 끝단의 일부를 제거하는 크로핑 단계;를 포함하는 것을 특징으로 하고 있다. In one embodiment of the present invention, the step of preparing a single crystal silicon ingot having a crystal orientation of [111] includes arranging a direction of a growth seed in a [111] direction in the step of manufacturing a silicon ingot through silicon single crystal growth, A crystal growth step of growing silicon in a [111] direction; And a step of removing a part of both ends of the single crystal silicon ingot grown in the [111] direction.
본 발명의 또 다른 실시예인 결정 방향이 [111]인 단결정 실리콘 잉곳을 준비하는 단계는, [100] 방향으로 성장된 실리콘 잉곳을 마그네틱 블럭으로 고정한 후, 실리콘 절단용 와이어를 사용하여 (111) 결정면을 따라 절단하여 [111] 결정방향의 실리콘 원판들을 복수개 제조한 후, 상기 [111] 결정방향의 실리콘 원판들을 적층하여 왁스본딩하는 단계;를 포함한다. The step of preparing a single crystal silicon ingot having a crystal orientation of [111], which is a further embodiment of the present invention, comprises: (1) fixing a silicon ingot grown in the [100] direction with a magnetic block, To produce a plurality of silicon discs in the [111] crystal direction, and then laminating the silicon discs in the [111] crystal direction and wax-bonding them.
상기 [100] 방향으로 성장된 실리콘 잉곳을 정확하게 [111] 방향의 결정면을 갖도록 절단하기 위하여, 상기 [100] 방향으로 성장된 실리콘 잉곳을 정밀 자동 회전 테이블(Precision Automatic Rotation Table)에 고정하고, 레이저 앵글 센서를 사용하여 회전 각도를 정확하게 제어하여, 추후 컷팅되는 면이 [111] 방향이 되도록 할 수 있다. In order to cut the silicon ingot grown in the [100] direction so as to have a crystal face with the [111] direction exactly, the silicon ingot grown in the [100] direction is fixed to a precision automatic rotation table, An angle sensor can be used to precisely control the angle of rotation so that the plane to be cut later becomes the [111] direction.
본 발명의 내구성이 향상된 플라즈마 장비용 단결정 실리콘 부품의 제조방법에서는 상기 열처리 단계 후, 상기 실리콘 전극판과 실리콘 링의 표면에 생성된 산화막을 제거하기 위해 불산을 사용한 추가 세정 단계;를 더 포함할 수 있다. In the method for manufacturing a single crystal silicon component for a plasma device having improved durability according to the present invention, it may further include, after the heat treatment step, a further cleaning step using hydrofluoric acid to remove the oxide film formed on the surface of the silicon electrode plate and the silicon ring have.
또한, 상기 다단계 그라인딩 단계는, 제1차 그라인딩 단계와 상기 제1차 그리인딩 단계보다 낮은 거칠기와 높은 회전 속도 및 낮은 압력으로 제2차 그라인딩 단계를 포함하며, 상기 열처리 단계는, 산소와 불활성 가스의 혼합 분위기 또는 질소와 불활성 가스의 혼합분위기에 진행되고, 적어도 제1온도에서 제1시간 동안 진행된 후, 제2온도에서 제2시간 동안 진행되는 다단계 열처리 공정을 포함하는 것을 특징으로 하고 있다. In addition, the multi-stage grinding step may include a primary grinding step and a secondary grinding step with a lower roughness, a higher rotation speed and a lower pressure than the primary grinding step, And a multistage heat treatment process which proceeds in a mixed gas atmosphere or in a mixed atmosphere of nitrogen and inert gas and proceeds at least at a first temperature for a first time and then for a second time at a second temperature.
그리고, 상기 표면 연마 단계는, 실리콘 전극판과 실리콘 링의 상면과 하면을 동시에 폴리싱하는 더블 폴리싱 단계로 수행되는데, 서로 다른 방향으로 회전하는 상부 폴리싱 패드부와 하부 폴리싱 패드부 사이에 복수의 캐리어가 위치되고, 상기 캐리어 각각에 상기 실리콘 전극판 또는 실리콘 링이 고정되어 경면 연마가 진행된다.The surface polishing step is performed by a double polishing step of simultaneously polishing the upper surface and the lower surface of the silicon electrode plate and the silicon ring. A plurality of carriers are provided between the upper polishing pad portion and the lower polishing pad portion, And the silicon electrode plate or the silicon ring is fixed to each of the carriers so that the mirror polishing proceeds.
본 발명의 다른 실시 형태는 상기 언급된 실리콘 부품의 제조방법으로 제조된, [111] 결정방향을 갖는 단결정 실리콘 재질의 내구성이 향상된 플라즈마 처리장치용 단결정 실리콘 상부 전극과 단결정 실리콘 포커스링을 포함한다.Another embodiment of the present invention includes a monocrystalline silicon focus ring and a monocrystalline silicon focus ring for a plasma processing apparatus having improved durability of a monocrystalline silicon material having a [111] crystal orientation, which is produced by the above-described method for producing a silicon part.
또한, 본 발명의 또 다른 실시 형태는 상기 언급된 실리콘 부품의 제조방법으로 제조된, [111] 결정방향을 가지면서 단결정 실리콘 재질의 내구성이 향상된 플라즈마 처리장치용 단결정 실리콘 상부 전극과 단결정 실리콘 포커스링을 포함하는 플라즈마 처리 장치를 포함한다.Further, another embodiment of the present invention is a manufacturing method of a silicon part, comprising: a single crystal silicon upper electrode for a plasma processing apparatus having a [111] crystal orientation and having improved durability of a single crystal silicon material, And a plasma processing apparatus.
본 발명의 실리콘 부품의 제조방법에 의해 제조된 [111] 방향의 단결정 실리콘 전극과 [111] 방향의 단결정 실리콘 링은 기존의 [100] 방향의 단결정 실리콘 부품에 비해 사용 수명 및 내구 연한이 증가하고, 부품 교체 주기가 증가하여 플라즈마 장비의 유지 보수비용과 부품 사용량을 감소시킬 수 있는 효과가 있다. The single crystal silicon electrode of the [111] direction and the single crystal silicon ring of the [111] direction manufactured by the method for producing a silicon part of the present invention have an increased service life and durability compared to the conventional single crystal silicon component of the [100] , The parts replacement cycle is increased, and the maintenance cost of the plasma equipment and the parts usage amount can be reduced.
또한, 본 발명에서 제공하는 플라즈마 처리 장치에 사용되는 단결정 실리콘 부품은 기존에 널리 사용되는 단결정 실리콘과는 달리 결정성장 방향이 변화됨으로써 사용 중 내구성이 증가되어 사용 수명이 증가될 뿐만 아니라, 플라즈마 처리 장치 내에 실리콘 링 또는 실리콘 전극판의 형태로 가공되어 사용될 때 불순물이 발생되지 않아 공정 수율이 증가하는 장점을 갖는다. In addition, the single crystal silicon component used in the plasma processing apparatus provided in the present invention is different from conventional monocrystalline silicon in that the crystal growth direction is changed, so that durability during use is increased and service life is increased, There is an advantage that process yield is increased because impurities are not generated when the electrode is processed and used in the form of a silicon ring or a silicon electrode plate.
그리고, 제조과정 중에서 실리콘 판을 서로 다른 거칠기로 적어도 2회의 그라인딩 공정을 실시함으로써 실리콘 판의 표면에 발생되는 그라인딩 휠 마크를 감소시켜 평탄도를 향상시킬 수 있고, 내부의 데미지를 감소시킬 수 있으며, 그라인딩 공정 후 에칭 및 클리닝 공정을 실시함으로써 표면 평탄도를 더욱 향상시킬 수 있고, 내부의 데미지를 제거할 수 있다.By performing the grinding process at least two times with different roughness in the manufacturing process, it is possible to reduce the grinding wheel marks generated on the surface of the silicon plate to improve the flatness, reduce the internal damage, By performing the etching and cleaning processes after the grinding process, the surface flatness can be further improved and the internal damage can be removed.
또한, 다단계 열처리 공정을 실시하여 실리콘 포커스링 또는 실리콘 전극 내부의 불순물 함유량을 줄여 비저항을 정확하게 제어하고, 위치에 따라 균일한 비저항을 갖도록 함으로써 높은 밀도와 고른 밀도로 플라즈마를 생성하도록 하여 플라즈마를 이용한 공정 수율을 향상시킬 수 있다.In addition, by performing the multi-step heat treatment process, it is possible to control the resistivity accurately by reducing the impurity content in the silicon focus ring or the silicon electrode and to have a uniform resistivity depending on the position, thereby generating plasma with high density and uniform density, The yield can be improved.
따라서, 본 발명의 방법으로 제조된 단결정 실리콘 부품을 플라즈마 처리 장치의 실리콘 포커스링 및 상부 전극을 이용함으로써 플라즈마 처리시 파티클 발생을 방지할 수 있고, 이에 따라 반도체 소자의 신뢰성을 향상시킬 수 있으며, 플라즈마 공정 수율을 향상시킬 수 있는 효과가 있다.Therefore, by using the silicon focus ring and the upper electrode of the plasma processing apparatus, the single crystal silicon part manufactured by the method of the present invention can prevent the generation of particles during the plasma processing, thereby improving the reliability of the semiconductor element, The process yield can be improved.
도 1은 본 발명의 일 실시 예에 따른 실리콘 부품의 제조 방법을 설명하기 위한 흐름도이다. 1 is a flowchart illustrating a method of manufacturing a silicon part according to an embodiment of the present invention.
도 2와 도 3은 [100] 방향으로 성장된 단결정 실리콘을 사용하여 [111] 결정 방향을 갖는 단결정 실리콘을 제조하는 방법을 도식적으로 나타낸 것이다.FIGS. 2 and 3 schematically show a method for producing single crystal silicon having a [111] crystal orientation by using single crystal silicon grown in the [100] direction.
도 4는 본 발명의 단결정 실리콘 포커스링과 단결정 실리콘 상부 전극을 제조하는 과정을 도식적으로 나타낸 것이다.4 is a schematic view showing a process of manufacturing the single crystal silicon focus ring and the single crystal silicon upper electrode of the present invention.
도 5는 본 발명에서 사용되는 다단계 그라인딩 장비를 도식적으로 나타낸 그림이다.FIG. 5 is a diagram illustrating a multi-stage grinding apparatus used in the present invention.
도 6은 본 발명에서 사용되는 더블 사이드 폴리싱 장비의 하부면 쪽을 도식적으로 나타낸 그림이다.FIG. 6 is a diagram illustrating the lower side of the double side polishing equipment used in the present invention.
도 7은 본 발명의 방법으로 제조된 단결정 실리콘 포커스링과 단결정 실리콘 상부 전극이 설치된 플라즈마 처리 장치를 도식적으로 나타낸 그림이다.FIG. 7 is a diagram schematically showing a plasma processing apparatus equipped with a single-crystal silicon focus ring and a single-crystal silicon upper electrode manufactured by the method of the present invention.
도 8과 도 9는 본 발명의 방법으로 제조된 [111] 방향의 단결정 실리콘 포커스링과 단결정 실리콘 상부 전극의 단위 시간당 식작 속도를 기존의 [100] 방향의 단결정 실리콘 포커스링과 단결정 실리콘 상부 전극의 경우와 비교한 측정 결과 그래프이다.8 and 9 are graphs showing the relationship between the single crystal silicon focus ring in the [100] direction and the single crystal silicon upper electrode manufactured by the method of the present invention, This is a graph of measurement results compared with the case.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. It should be understood, however, that the invention is not limited to the disclosed embodiments, but is capable of other various forms of implementation, and that these embodiments are provided so that this disclosure will be thorough and complete, It is provided to let you know completely. Wherein like reference numerals refer to like elements throughout.
도 1은 본 발명의 일 실시 예에 따른 실리콘 부품의 제조 방법을 설명하기 위한 공정 흐름도이고, 도 2 내지 도 9는 본 발명의 일 실시 예에 따른 실리콘 소재의 제조 방법을 설명하기 위한 참고 도면이다. 이하에서는 도 1의 흐름도를 기준으로 도 2 내지 도 9의 도면을 참조하여 본 발명을 구체적으로 설명하고자 한다. FIG. 1 is a process flow chart for explaining a method of manufacturing a silicon part according to an embodiment of the present invention, and FIGS. 2 to 9 are reference drawings for explaining a method of manufacturing a silicon material according to an embodiment of the present invention . Hereinafter, the present invention will be described in detail with reference to the flow chart of FIG. 1 with reference to FIGS. 2 to 9.
단결정 실리콘의 결정 방향으로는 [100] 및 [111] 방향이 존재한다. 상기 단결정 실리콘의 [111]면은 상기 [100]면에 비해 낮은 표면에너지와 높은 원자밀도 및 유효 결합 밀도를 갖는다. 따라서 본 발명에서는 이러한 [111] 결정 방향의 특징에 착안하여 플러즈마 처리장치의 부품에 사용되는 단결정 실리콘의 재질을 변화시키는 것을 주요한 기술적 특징으로 하고 있다. [100] and [111] directions exist in the crystal direction of the single crystal silicon. The [111] plane of the single crystal silicon has a lower surface energy and higher atom density and effective bonding density than the [100] plane. Therefore, in the present invention, attention is focused on the feature of the [111] crystal direction and the main technical feature is to change the material of the single crystal silicon used in the parts of the plasma processing apparatus.
일반적으로 상기 [100] 또는 [111] 방향의 결정면을 갖도록 성장된 단결정 실리콘 잉곳의 제조 방법으로는 미끄럼 전위를 제거하는 제조방법이 알려져 있다. 즉, 결정 방위가 종결정의 축방향과 일치하도록, 종결정을 인상할 때에는 종결정을 융액에 착액시킨 후에 단결정 실리콘의 직경을 서서히 줄이는 네킹(necking) 처리를 실시함으로써 미끄럼 전위를 단결정 실리콘으로부터 용이하게 제거할 수 있다. Generally, a manufacturing method of removing a sliding potential is known as a method of manufacturing a single crystal silicon ingot grown to have a crystal plane in the [100] or [111] direction. That is, when pulling the seed crystal so that the crystal orientation coincides with the axis direction of the crystal axis, the seed crystal is subjected to a necking treatment in which the diameter of the single crystal silicon is gradually reduced after the seed crystal is melted in the melt, Can be removed.
좀 더 구체적으로 설명하면, 석영 도가니 내에 다결정 실리콘(Polysilicon)을 포함한 원부자재를 넣고 1400∼1500 ℃의 온도에서 가열하여 다결정 실리콘을 용융시킨다. 목표로 하는 결정 방향과 동일한 결정 방향을 가진 단결정 시드(seed)를 용융액 표면 중심부에 접촉시킨 후, 상기 시드를 천천히 들어올려 실리콘 단결정 잉곳을 성장시킨다. More specifically, a raw material including polycrystalline silicon is placed in a quartz crucible, and the polycrystalline silicon is melted by heating at a temperature of 1400 to 1500 ° C. A single crystal seed having the same crystal orientation as the target crystal direction is brought into contact with the central portion of the melt surface, and then the seed is slowly lifted to grow a silicon single crystal ingot.
이때, 시드와 석영 도가니를 반대 방향으로 회전시키는 것이 바람직하고, 상기 시드가 단결정 용융액 상측으로 인상될 때,시드와 용융액 표면 사이에는 표면 장력이 발생하게 되어 얇은 실리콘 막들이 시드 표면으로 지속적으로 달라붙게 되고, 동시에 냉각된다. 이러한 과정을 통해서 시드 표면이 냉각되는 동안 용융액 속의 실리콘 원자들은 시드와 동일 방향의 결정 방향성을 갖게 된다. At this time, it is preferable to rotate the seed and the quartz crucible in the opposite direction. When the seed is pulled up to the upper side of the single crystal melt, surface tension is generated between the seed and the surface of the melt so that the thin silicon films continuously stick to the seed surface And cooled at the same time. Through this process, the silicon atoms in the melt have crystal orientation in the same direction as the seed while the seed surface is cooled.
여기서, 용융액의 흐름을 원활하고 안정되게 하기 위해 자기장을 인가할 수도 있는데, 이는 용융액에 자장을 인가함으로써 융액의 점성을 높게 하여, 융액 속의 대류(對流)를 억제하여 안정된 결정 성장을 수행하기 위함이다Here, a magnetic field may be applied in order to make the flow of the melt smooth and stable, in order to increase the viscosity of the melt by applying a magnetic field to the melt, thereby suppressing convection in the melt to perform stable crystal growth
따라서, 본 발명에서는 [111] 방향으로 단결정 성장된 실리콘 잉곳을 제조하기 위하여, 석영 도가니 내에 다결정 실리콘(Polysilicon)을 포함한 원부자재를 넣고 약 1400∼1500 ℃의 온도로 가열하여 상기 다결정 실리콘을 용융시킨 후, [111]의 결정 방향을 갖는 단결정 시드(seed)를 용융액 표면 중심부에 접촉시키고, 상기 시드를 천천히 들어올려 [111] 결정방향을 갖는 실리콘 단결정 잉곳을 성장시킨다. 이렇게 상기 단결정 시드 표면에서 냉각되는 동안 용융액 속의 실리콘 원자들은 시드와 동일 방향의 결정 방향인 [111] 방향을 갖게 되어, [111] 결정 방향을 갖는 단결정 실리콘 잉곳을 제조할 수 있다.Accordingly, in the present invention, in order to produce a silicon ingot grown in the [111] direction, a raw material containing polysilicon is placed in a quartz crucible and heated at a temperature of about 1,400 to 1,500 ° C to melt the polycrystalline silicon , A single crystal seed having a crystal orientation of [111] is brought into contact with the center of the melt surface, and the seed is slowly lifted to grow a silicon single crystal ingot having a [111] crystal orientation. During the cooling at the surface of the single crystal seed, the silicon atoms in the melt have a [111] direction which is the crystal direction in the same direction as the seed, and thus a single crystal silicon ingot having a [111] crystal direction can be produced.
이렇게 처음부터 단결성 실리콘 잉곳을 [111] 방향으로 성장시키는 방법 외에도, 기존의 [100] 방향으로 결정성장된 실리콘 잉곳을 회전시킨 후, 마그네틱 블럭(30)에 고정하여 도 2와 같이 실리콘 saw(10)을 사용하여 [111] 방향으로 절단함으로써, 기존의 원형이 아닌 타원형 모양의 실리콘 원판(20)을 제조할 수 있다. 이렇게 타원형 모양을 갖는 [111] 결정 방향을 갖도록 절단된 실리콘 원판들을 왁스 본딩(Wax Bonding)함으로써, [111] 결정 방향을 갖는 단결정 실리콘 잉곳을 제조할 수도 있다.In addition to the method of growing the monocrystalline silicon ingot in the [111] direction from the beginning, the conventional silicon ingot crystal-grown in the [100] direction is rotated and fixed to the magnetic block 30, 10) to cut in the [111] direction, it is possible to manufacture a silicon disc 20 having an elliptical shape, which is not a conventional circular shape. A single crystal silicon ingot having a [111] crystal orientation can also be produced by wax bonding the original silicon plates cut to have the [111] crystal orientation having the elliptical shape.
이때, 회전되는 [100] 실리콘 잉곳을 마그네틱 블록(30)을 사용하여 회전된 각도를 고정한 후, 연마재를 포함하는 실리콘 절단용 와이어(실리콘 saw, 10)를 사용하여 [111] 결정면으로 절단할 수 있는데, 회전 각도를 좀 더 정확하게 제어하기 위하여 정밀 자동 회전 테이블(40)을 사용할 수 있으며, 회전 각도를 레이저 앵글 센서(50)를 통해 더욱 정밀하게 제어하는 것이 바람직하다(도 3 참조).At this time, the rotated [100] silicon ingot is fixed to the [111] crystal plane by using a silicon saw 10 including an abrasive after fixing the rotated angle by using the magnetic block 30 In order to more precisely control the rotation angle, the precision automatic rotation table 40 can be used, and it is preferable to control the rotation angle more precisely through the laser angle sensor 50 (see FIG. 3).
이러한 방법으로 제조된 [111] 결정 방향을 갖는 단결정 실리콘 잉곳을 코어링하여 속이 빈 실리콘 실린더 및 실리콘 원기둥을 제작한 후 절단하여 실리콘 포커스링 또는 실리콘 판을 형성할 수도 있고, 다른 예로서 실리콘 잉곳을 절단하여 실리콘 판을 형성한 후 실리콘 판을 이용하여 실리콘 포커스링 또는 실리콘 전극판을 형성할 수도 있는데, 이하에서는 전자의 방법을 예로 설명하기로 한다.A single crystal silicon ingot having a [111] crystal orientation prepared in this way may be cored to form a hollow silicon cylinder and a silicon cylinder and then cut to form a silicon focus ring or a silicon plate. Alternatively, a silicon ingot The silicon plate may be cut to form the silicon plate, and then the silicon focus ring or the silicon electrode plate may be formed. Hereinafter, the former method will be described as an example.
앞서 설명한 바와 같은 방법으로, [111] 결정 방향을 갖는, 8인치 이상의 대구경 단결정 실리콘 잉곳을 준비한 후(S110), 필요에 따라 크로핑(Cropping)을 통해 단결정 잉곳 상하부의 불필요한 부분을 절단하여 원통 형상의 [111] 방향의 단결정 실리콘 잉곳(120)을 제조할 수 있으며, 코어링 공정을 실시하여 도 4에 도시된 바와 같이 내부가 비어 있는 실리콘 실린더(120b)을 제작하고, 실리콘 원기둥(120c)을 제작한다(S120).A large-diameter single-crystal silicon ingot of 8 inches or more having a [111] crystal orientation is prepared (S110), and an unnecessary portion of the upper and lower portions of the single crystal ingot is cut through a cropping process, A silicon cylinder 120b having an inner space as shown in FIG. 4 is manufactured, and a silicon cylinder 120c is formed as shown in FIG. (S120).
본 실시 예에서는 [111] 방향의 단결정 실리콘 잉곳을 코어링하여, 실리콘 링을 제작하기 위해 배부가 비어 있는 실리콘 실린더(120b)과 실리콘 전극판을 제조하기 위한 실리콘 원기둥(120c)을 제조하는 방법을 구체적으로 설명한다. In this embodiment, a method of manufacturing a silicon cylinder 120b having an empty portion for producing a silicon ring and a silicon cylinder 120c for manufacturing a silicon electrode plate by coring a single crystal silicon ingot in the [111] direction This will be described in detail.
실리콘 원기둥(120c)은 실리콘 상부 전극(230)의 재료로 사용될 수 있는데, 상기 실리콘 원기둥(120c)을 다시 코어링함으로써, 실리콘 링을 제조하기 위한 내부가 비어 있는 실리콘 원통과 실리콘 원기둥을 다시 제조할 수도 있다. 즉, 필요에 따라 실리콘 중심 원통을 반복적으로 코어링함으로써 사이즈가 작은 실리콘 원통과 실리콘 중심 원통을 반복적으로 제작할 수도 있다.The silicon cylinder 120c can be used as a material for the silicon upper electrode 230 and by re-coring the silicon cylinder 120c, the silicon cylinder and the silicon cylinder with an empty interior for manufacturing a silicon ring can be remanufactured It is possible. That is, it is also possible to repetitively produce a silicon cylinder and a silicon-centered cylinder having a small size by repeatedly coring the silicon-centered cylinder as necessary.
코어링 공정을 통해 제작되는 실리콘 원기둥(120c)의 지름과 실리콘 실린더(120b)의 내경은 제작하고자 하는 실리콘 부품의 치수에 맞게 조절되는 것이 바람직하다. 예를 들어 실리콘 링의 최소 내경이 1이라고 할 경우 실리콘 실린더의 내경 지름은 0.90∼0.99인 것이 바람직하다. 이는 후속 그라인딩 공정 및 내경 폴리싱 공정이 수행될 경우 내경이 증가할 수 있기 때문이다. 상기 범위를 벗어나는 경우 그라인딩 공정 및 폴리싱 공정의 공정 조건 조절이 어려울 수 있다. It is preferable that the diameter of the silicon cylinder 120c and the inner diameter of the silicon cylinder 120b manufactured through the coring process are adjusted according to the dimensions of the silicon component to be manufactured. For example, when the minimum inner diameter of the silicon ring is 1, the inner diameter of the silicon cylinder is preferably 0.90 to 0.99. This is because the inner diameter may increase when the subsequent grinding process and the inner diameter polishing process are performed. If it is out of the above range, it may be difficult to control the process conditions of the grinding process and the polishing process.
또한, 코어링 전에 실리콘 잉곳을 복수의 블록으로 절단한 다음 각 실리콘 블록별로 코어링을 수행할 수도 있으며, 상기 코어링 공정은 실리콘 잉곳의 상면에서 하면까지 한번에 수행하거나, 실리콘 잉곳의 상면에서 하면 방향으로 1차 코어링을 수행한 후 실리콘 잉곳을 뒤집어 하면에서 상면 방향으로 2차 코어링을 수행할 수도 있다. 또한, 상기 코어링 단계 후, 클리닝 공정을 실시하여 코어링 공정시 발생한 파티클 및 이물질을 제거하는 것이 바람직하다. The coring may be performed from the top surface to the bottom surface of the silicon ingot at one time, or may be performed at a time from the top surface of the silicon ingot to the bottom surface of the silicon ingot , The silicon ingot may be inverted to perform the secondary coring in the direction from the lower surface to the upper surface. Further, after the coring step, it is preferable to carry out a cleaning step to remove particles and foreign substances generated in the coring step.
코어링되어 중심에 내부가 비어있는 실리콘 실린더(120b)을 절단(slicing)하여 중심이 비어 있는 실리콘 링(130)을 제작하고, 상기 실리콘 원기둥(120c)을 슬라이싱하여 실리콘 판(140)을 제작한다(S131 및 S132) The silicon cylinder 120b having a hollow center at its center is sliced to prepare a silicon ring 130 having a center at the center and the silicon cylinder 120c is sliced to produce a silicon plate 140 (S131 and S132)
실리콘 링(130)과 실리콘 판(140)은 와이어를 이용한 소잉 공정 또는 다이아몬드를 이용한 절단 공정으로 실리콘 실린더(120b)과 실리콘 원기둥(120c)을 얇은 두께로 절단되어 제조되는데, 슬라이싱 단계를 통해 제조되는 실리콘 링(130)과 실리콘 전극판(160)의 두께는 다양하게 조절될 수 있어, 다양한 제품의 실리콘 포커스링과 실리콘 전극을 제작할 수 있다. 즉, 단일의 실리콘 잉곳(120)에서 동일 두께의 실리콘 링(130)과 실리콘 전극판(160)이 제작될 수 있을 뿐만 아니라, 슬라이싱 단계를 포함한 제조 공정 중에서 공정 변수를 변화시켜 다양한 두께의 실리콘 링(130)과 실리콘 전극판(160)을 제작할 수 있다.The silicon ring 130 and the silicon plate 140 are manufactured by cutting the silicon cylinder 120b and the silicon cylinder 120c to a thin thickness by a sawing process using a wire or a diamond cutting process, The thicknesses of the silicon ring 130 and the silicon electrode plate 160 can be adjusted in various manners, so that a silicon focus ring and a silicon electrode of various products can be manufactured. That is, not only the silicon ring 130 and the silicon electrode plate 160 of the same thickness can be manufactured in the single silicon ingot 120 but also the silicon ring 130 and the silicon electrode plate 160 of the same thickness can be manufactured by changing the process parameters in the manufacturing process including the slicing step, (130) and the silicon electrode plate (160).
이후 적어도 2회의 그라인딩 공정을 실시하여 실리콘 링(130) 및 실리콘 판(140)의 표면을 평탄화한다(S141 및 S142). 도 5에 제시된 바와 같이 상기 그라인딩 공정은 회전 가능한 테이블(70)과, 테이블 상에 마련되며 실리콘 링(130) 또는 실리콘 판(140)을 고정하며 회전 가능한 적어도 세 개의 스테이지(71,72,73)와, 상기 스테이지들 중에서 적어도 두 개 이상의 스테이지상에 고정된 실리콘 링(130) 또는 실리콘 판(140)을 서로 다른 거칠기로 그라인딩하는 적어도 두 개 이상의 그라인딩 휠(74,75)을 포함한다.Thereafter, at least two grinding processes are performed to planarize the surfaces of the silicon ring 130 and the silicon plate 140 (S141 and S142). 5, the grinding process includes a rotatable table 70, at least three stages 71, 72, and 73 that are provided on the table and can rotate and fix the silicon ring 130 or the silicon plate 140, And at least two grinding wheels 74 and 75 for grinding the silicon ring 130 or the silicon plate 140 fixed on at least two of the stages to different roughnesses.
테이블은 예를 들어 시계 방향으로 회전 가능하며, 바람직하게는 원형 형상으로 제작된다. 상기 복수의 스테이지들은 서로 등 간격으로 이격되어 테이블 상에 마련되며, 바람직하게는 시계 방향으로 회전된다. The table is rotatable in the clockwise direction, for example, and is preferably formed in a circular shape. The plurality of stages are provided on the table at equal intervals from each other, and are preferably rotated clockwise.
상기 복수의 스테이지는 테이블 상에 원형으로 오목부가 형성되어 마련될 수 있으며, 원형으로 돌출부가 형성되어 마련될 수 있다. 복수의 스테이지는 그라인딩 공정을 실시하기 위한 실리콘 링(130) 또는 실리콘 판(140)이 로딩된 후 시계 방향으로 회전하면서 그라인딩 휠을 이용하여 상대적으로 거친 제 1 그라인딩 공정과 상대적으로 고운 제 2 그라인딩 공정을 실시하고, 그라인딩 공정이 완료된 실리콘 링(130) 또는 실리콘 판(140)을 언로딩하게 된다. The plurality of stages may be provided with a concave portion formed in a circular shape on a table, and may be provided with a protrusion formed in a circular shape. The plurality of stages may include a relatively rough first grinding process and a relatively fine second grinding process using a grinding wheel rotating clockwise after the silicon ring 130 or the silicon plate 140 for carrying out the grinding process is loaded, And the unloading of the silicon ring 130 or the silicon plate 140 after the grinding process is completed.
복수의 스테이지 내에는 복수의 진공홀이 각각 형성되거나, 포러스 척이 사용될 수 있다. 상기 진공홀을 통해서 스테이지상에 실리콘 링 또는 실리콘 판(140)이 로딩되어 안착된 후 진공 펌프(미도시)에 의해 실리콘 링(130) 또는 실리콘 판(140)과 스테이지 사이의 공기가 상기 복수의 진공홀을 통해 배기되어 실리콘 링(130) 또는 실리콘 판(140)이 스테이지 상에 진공 고정된다. A plurality of vacuum holes may be formed in each of the plurality of stages, or a porous chuck may be used. After the silicon ring or the silicon plate 140 is loaded on the stage through the vacuum hole, the air between the silicon ring 130 or the silicon plate 140 and the stage is vacuumed by the vacuum pump (not shown) The silicon ring 130 or the silicon plate 140 is vacuum-fixed on the stage.
이때, 실리콘 링(130)의 경우에는 진공홀이 실리콘 링(130)에 대응하는 부분에만 형성되는 것이 더욱 바람직하다. 이렇게 진공홀을 이용하면 다양한 사이즈의 실리콘 링(130) 또는 실리콘 판(140)을 진공 고정할 수 있는데, 이러한 진공 고정뿐만 아니라 기계적인 방법 등 다양한 방법으로도 고정될 수 있다.In this case, in the case of the silicon ring 130, it is more preferable that the vacuum hole is formed only in the portion corresponding to the silicon ring 130. When the vacuum hole is used, the silicon ring 130 or the silicon plate 140 having various sizes can be fixed in a vacuum. The vacuum hole can be fixed by various methods such as mechanical method as well as vacuum fixing.
그라인딩 휠(74,75) 각각은 스테이지(72,73)와 일부만 접촉되고 약간의 기울기를 갖도록 설치되는 것이 바람직하다. 예를 들어 그라인딩 휠(74,75)은 스테이지(72,73)의 중앙부를 중심으로 반만 접촉되고, 스테이지(72,73)와 접촉되는 부분 쪽으로 기울어지도록 설치될 수 있다. 그리고, 그라인딩 휠(74,75)은 스테이지(72,73)의 직경보다 작은 직경으로 마련되며, 예를 들어 시계 방향으로 회전하는 것이 바람직하다. It is preferable that each of the grinding wheels 74 and 75 is provided so as to be in only a partial contact with the stages 72 and 73 and to have a slight inclination. For example, the grinding wheels 74 and 75 may be installed so that the grinding wheels 74 and 75 are in half contact with the center of the stages 72 and 73, and are inclined toward the portions in contact with the stages 72 and 73. The grinding wheels 74 and 75 are provided with diameters smaller than the diameters of the stages 72 and 73 and are preferably rotated, for example, in the clockwise direction.
그라인딩 휠(74,75) 각각의 하면에는 서로 다른 사이즈의 그라인딩 부재, 예를 들어 다이아몬드 세그먼트가 설치된다. 그라인딩 휠의 하면에는 200∼400 메쉬(mesh)를 갖는 거친(rough) 다이아몬드 입자가 부착된 세그먼트가 설치되고, 또 다른 그라인딩 휠의 하면에는 1000∼3000 메쉬를 갖는 고운(fine) 다이아몬드 입자가 부착된 세그먼트가 설치되는 것이 바람직하다. On the lower surface of each of the grinding wheels 74 and 75, grinding members of different sizes, for example diamond segments, are provided. On the lower surface of the grinding wheel, there is provided a segment with rough diamond particles having 200 to 400 meshes. On the lower surface of another grinding wheel, fine diamond particles having 1000 to 3000 meshes are attached Segments are preferably provided.
따라서, 하나의 그라인딩 휠(74)에 의해 거친 그라인딩 공정이 실시되고, 또 다른 그라인딩 휠(75)에 의해 고운 그라인딩 공정이 실시된다. 여기서, 거친 다이아몬드 세그먼트는 325 메쉬를 갖고, 고운 다이아몬드 세그먼트는 2000 메쉬를 갖는 것이 바람직하다. 이에 따라 한 장비 내에서 두 개의 그라인딩 휠(74,75)에 의해 거친 그라인딩과 고운 그라인딩이 가능하게 된다. 또한, 그라인딩 휠 각각은 회전 속도, 제거량 및 압력 등이 상이한데, 각각의 그라인딩 조건을 설명하면 다음과 같다. Thus, a rough grinding process is performed by one grinding wheel 74, and a fine grinding process is performed by another grinding wheel 75. [ Here, it is preferable that the rough diamond segment has 325 mesh and the fine diamond segment has 2000 mesh. As a result, coarse grinding and fine grinding can be performed by two grinding wheels 74 and 75 in one equipment. Each of the grinding wheels is different in rotational speed, removal amount, and pressure, and the respective grinding conditions are as follows.
먼저, 그라인딩 휠은 2300∼2700 rpm의 속도로 회전하고, 그라인딩 대상물, 즉 실리콘 링(130) 또는 실리콘 판(140)이 50∼70 ㎛의 두께로 제거되도록 한다. 예를 들어 4.06 ㎜ 두께의 실리콘 링(130) 또는 실리콘 판(140)이 4 ㎜의 두께가 되도록 그라인딩한다. First, the grinding wheel is rotated at a speed of 2300 to 2700 rpm, and the grinding object, that is, the silicon ring 130 or the silicon plate 140 is removed to a thickness of 50 to 70 mu m. For example, a 4.06 mm thick silicon ring 130 or a silicon plate 140 is ground to a thickness of 4 mm.
그라인딩 휠은 2단계의 압력으로 그라인딩 될 수 있는데, 초기 130∼160 ㎛/min의 하강 압력으로 소정 두께 그라인딩한 후 90∼120 ㎛/min의 하강 압력으로 그라인딩하며, 이때 스테이지는 170∼230 rpm의 속도로 회전한다. 또 다른 그라인딩 휠은 2800∼3200 rpm의 속도로 회전하고, 그라인딩 대상물이 10∼30 ㎛의 두께로 제거되도록 한다. The grinding wheel can be ground at a pressure of two stages. Grinding is performed at a down pressure of 90 to 120 占 퐉 / min after grinding a predetermined thickness at an initial lowering pressure of 130 to 160 占 퐉 / min. Speed. Another grinding wheel rotates at a speed of 2800 to 3200 rpm, and the grinding object is removed to a thickness of 10 to 30 mu m.
예를 들어 설명하면, 1차 그라인딩된 4 ㎜ 두께의 실리콘 링(130) 또는 실리콘 판(140)이 3.98 ㎜의 두께가 되도록 그라인딩한다. 추가로 그라인딩 휠은 3단계의 압력으로 그라인딩하는데, 초기 25∼35 ㎛/min의 하강 압력으로 소정 두께 그라인딩한 후 15∼20 ㎛/min의 하강 압력으로 그라인딩하며, 압력을 가하지 않고 그라인딩 휠만을 회전하여 그라인딩 면을 다듬는다. 이때 스테이지는 100∼130rpm의 속도로 회전한다. 그리고, 압력을 가하지 않고 그라인딩 면을 다듬는 공정은 약 10초 정도로 실시하고, 그라인딩 후 그라인딩 휠을 50∼70 ㎛/min의 속도로 약 10초 정도의 시간 동안 상승시킨다. 물론, 이때 다른 그라인딩 휠들의 상기 그라인딩 조건은 다양하게 변형 가능하다. 즉, 실리콘 링(130) 또는 실리콘 판(140)의 두께를 고려하여 그라인딩하여 제거하려는 두께에 따라 회전 속도, 제거량 및 그라인딩 압력 등을 조절할 수 있다.For example, the primary grinding 4 mm thick silicon ring 130 or silicon plate 140 is ground to a thickness of 3.98 mm. In addition, the grinding wheel is grinding at a pressure of three steps, grinding to a predetermined thickness at an initial falling pressure of 25 to 35 μm / min, grinding at a falling pressure of 15 to 20 μm / min, To grind the grinding surface. At this time, the stage rotates at a speed of 100 to 130 rpm. Then, the step of grinding the grinding surface without applying pressure is performed for about 10 seconds, and after grinding, the grinding wheel is raised at a speed of 50 to 70 mu m / min for about 10 seconds. Of course, at this time, the grinding conditions of the other grinding wheels can be variously modified. That is, considering the thickness of the silicon ring 130 or the silicon plate 140, the rotational speed, the removal amount, and the grinding pressure can be adjusted according to the thickness to be removed by grinding.
상기한 그라인딩 장비를 이용한 적어도 2회의 그라인딩 공정에 의해 와이어에 의해 절단된 실리콘 링(130)과 실리콘 판(140)의 상부면과 하부면의 표면을 평탄화시킨다. 즉, 그라인딩 휠를 이용한 거친 그라인딩 공정에 의해 와이어 소잉에 의한 와이어 소우 마크(wire saw mark)를 제거하여 표면 평탄도를 향상시키고, 그라인딩 휠를 이용한 고운 그라인딩 공정에 의해 거친 그라인딩 공정에 의해 발생될 수 있는 그라인딩 휠 마크(grinding wheel mark)를 제거하여 표면 거칠기를 줄이게 된다.The surfaces of the upper and lower surfaces of the silicon ring 140 and the silicon ring 140 cut by the wire are planarized by at least two grinding processes using the above-described grinding equipment. That is, a wire saw mark by wire sawing is removed by a rough grinding process using a grinding wheel to improve surface flatness, and a grinding process that can be generated by a rough grinding process by a fine grinding process using a grinding wheel The grinding wheel mark is removed to reduce the surface roughness.
그라인딩 공정 후, 그라인딩 공정 시 발생한 파티클 및 슬러지를 제거하기 위한 세정 공정을 더 수행할 수 있다. 이때, 세정 공정은 더블 스크러버 공정 또는 롤러타입 스크러버 브러시를 이용할 수 있다. 즉, 더블 스크러버 공정은 상하부 영역에 브러시가 마련된 더블 스크러버 장비를 이용하여 웨이퍼 상하면의 불순물을 동시에 제거할 수 있다.After the grinding process, a cleaning process for removing particles and sludge generated in the grinding process can be further performed. At this time, a double scrubber process or a roller type scrubber brush can be used for the cleaning process. That is, in the double scrubber process, impurities on the upper and lower surfaces of the wafer can be simultaneously removed by using a double scrubber device provided with brushes in the upper and lower areas.
실리콘 링(130)의 내측벽면 및/또는 외측벽면을 가공하여 실리콘 링 부재(150)를 제작하고, 실리콘 판(140)의 홀 천공을 통해 복수의 관통홀(141)을 갖는 실리콘 전극판(160)을 제조한다(S151, S152).The silicon ring member 150 is fabricated by processing the inner wall surface and / or the outer wall surface of the silicon ring 130 and the silicon electrode plate 160 having the plurality of through holes 141 (S151, S152).
실리콘 링 부재(150)는 실리콘 포커스링이 사용되는 용도에 따라 다양한 형태의 가공 공정에 의해 제작될 수 있다. 본 실시 예에서는 실리콘 링(130)의 내측벽면의 일부를 제거하여 계단형의 단차(A)를 갖는 실리콘 링 부재(150)를 제작하였다. 즉, 본 실시 예에 따른 실리콘 링 부재(150)는 그 내측 중앙에 제 1 지름을 갖는 관통홀과 관통홀 상측에 제 1 지름보다 큰 제 2 지름을 갖는 홈을 포함한다. 물론 이에 한정되지 않고, 가공 공정에 의해 실리콘 링 부재(150)는 필요에 따라 연장 돌기, 오목홈을 포함하는 다양한 패턴을 포함할 수도 있다. 중심이 비어 있는 실리콘 링(130)의 내외측면의 가공은 그라인딩 공정을 통해 수행되는 것이 바람직하다. The silicon ring member 150 may be manufactured by various types of processing processes depending on the application in which the silicon focus ring is used. In this embodiment, a part of the inner wall surface of the silicon ring 130 is removed to produce the silicon ring member 150 having the stepped step (A). That is, the silicon ring member 150 according to the present embodiment includes a through-hole having a first diameter at an inner center thereof and a groove having a second diameter larger than the first diameter at an upper side of the through-hole. Of course, the present invention is not limited to this, and the silicone ring member 150 may include various patterns including extended protrusions and recessed grooves as required, by a processing step. It is preferable that the processing of the inner and outer sides of the center-free silicon ring 130 is performed through a grinding process.
이때, 실리콘 링(130)의 가공은 CNC(Computer Numerical Control) 장비 또는 MCT(Machining Center Tool) 장비를 이용하는 것이 바람직하며, 가공 공정 후에 가공 공정 시 발생한 파티클 및 슬러지를 제거하기 위한 세정 공정을 수행할 수 있다. 또한, 가공 공정 후에 제작된 실리콘 링 부재(150)의 불량 검사를 수행할 수도 있다.At this time, it is preferable to use CNC (Machine Numerical Control) equipment or MCT (Machining Center Tool) equipment for the processing of the silicon ring 130, and a cleaning process to remove particles and sludge . It is also possible to perform a defect inspection of the silicon ring member 150 manufactured after the processing step.
또한, 실리콘 판(140)에 복수의 관통홀(141)을 형성하여 실리콘 전극판(160)을 형성하기 전에 실리콘 판(140)의 외경을 규격에 맞게 재그라인딩하는 것이 바람직하다. 이는 앞선 코어링에 의해 제작된 실리콘 원기둥(120c)의 외경은 실리콘 링에 의해 제한되기 때문에 원하는 외경에 맞도록 실리콘 판(140)의 외경을 다시 가공하는 것이 바람직하다. 물론 실리콘 판(140) 외경의 그라인딩은 코어링 공정 후 실리콘 원기둥(120c) 단계에서 수행될 수도 있는데, 이때, 실리콘 판(140)의 외경의 가공은 CNC 장비를 사용하는 것이 바람직하다. It is also preferable that a plurality of through holes 141 are formed in the silicon plate 140 to regrind the outer diameter of the silicon plate 140 before forming the silicon electrode plate 160. This is because it is preferable to process the outer diameter of the silicon plate 140 so as to meet the desired outer diameter because the outer diameter of the silicon cylinder 120c manufactured by the foregoing core ring is limited by the silicon ring. Of course, the grinding of the outer diameter of the silicon plate 140 may be performed in the step of the silicon cylinder 120c after the coring process. In this case, the outer diameter of the silicon plate 140 is preferably CNC equipment.
이러한 외경의 가공 후에 실리콘 판(140)을 세정하고, 검사를 수행할 수 있다. 실리콘 판(140)의 외경을 가공한 후 실리콘 판(140)을 천공 장비의 기판 상에 본딩시킨다. 즉, 홀 천공을 위한 유리 기판 상에 실리콘 판(140)을 본딩한다. 그리고, 드릴 또는 초음파를 이용한 천공 공정을 통해 복수의 관통홀(141)을 형성한다. After the outer diameter machining, the silicon plate 140 can be cleaned and the inspection can be performed. After machining the outer diameter of the silicon plate 140, the silicon plate 140 is bonded onto the substrate of the perforation equipment. That is, the silicon plate 140 is bonded onto the glass substrate for hole punching. A plurality of through holes 141 are formed through a drilling process using a drill or an ultrasonic wave.
여기서, 초음파를 이용한 천공 공정은 수백 개 이상의 홀을 동시에 천공할 수 있기 때문에 생산성을 향상시킬 수 있으며, 상기 천공 공정을 통해 실리콘 판(140) 전체에 홀을 형성할 수 있다. 물론 실리콘 판(140)의 직경이 클 경우에는 실리콘 판(140)을 복수의 영역으로 분할한 다음 각 영역 별로 천공 공정을 수행할 수 있다. 이후, 천공 공정 후에 천공 공정 시 발생한 파티클 및 슬러지를 제거하기 위한 세정 공정을 수행하게 되며, 복수의 관통홀(141)이 형성된 실리콘 전극판(160)의 불량 검사를 수행할 수도 있다.Here, since the hole drilling process using the ultrasonic wave can drill several hundred or more holes at the same time, the productivity can be improved and holes can be formed in the entire silicon plate 140 through the drilling process. Of course, when the diameter of the silicon plate 140 is large, the silicon plate 140 may be divided into a plurality of regions, and then a perforation process may be performed for each region. Thereafter, a cleaning process is performed to remove particles and sludge generated in the perforation process after the perforation process, and a defect inspection of the silicon electrode plate 160 having a plurality of through holes 141 may be performed.
실리콘 링에 단차(A)를 형성한 실리콘 링 부재(150)을 형성하고, 실리콘 판(140)에 복수의 관통홀(141)을 형성시킴으로써 실리콘 전극판(160)을 제조한 후, 상기 실리콘 링 부재(150) 및 실리콘 전극판(160)의 그라인딩 휠 마크를 더욱 완화하고 데미지를 제거하기 위해 에칭 공정 및 클리닝 공정을 수행한다(S160).After the silicon ring member 150 having the stepped portion A formed on the silicon ring is formed and a plurality of through holes 141 are formed in the silicon plate 140 to form the silicon electrode plate 160, An etching process and a cleaning process are performed to further alleviate the grinding wheel marks of the member 150 and the silicon electrode plate 160 and to remove damage (S160).
상기 에칭 공정은 KOH 및/또는 NaOH를 포함하는 알칼리계 케미컬 또는 HNO3와 같은 산성 케미컬을 사용한다. 그리고, 에칭 공정 후에는 SC1(NH4OH+ H2O2+H2O)을 이용한 클리닝 공정을 수행한다. 또한, 에칭 공정과 클리닝 공정 사이에는 린싱 공정을 실시하는 것이 바람직한데, 이러한 에칭 공정 및 클리닝 공정에 의해 실리콘 링 부재(150) 또는 실리콘 전극판(160)의 그라인딩 휠 마크가 더욱 완화되고 데미지가 제거된다.The etching step is an acidic chemical, such as alkali chemical or HNO 3 containing KOH and / or NaOH. Then, the etching step after the cleaning step is performed using SC1 (NH 4 OH + H 2 O 2 + H 2 O). In addition, it is preferable to perform a rinsing process between the etching process and the cleaning process. By this etching process and the cleaning process, the grinding wheel marks of the silicon ring member 150 or the silicon electrode plate 160 are further relaxed, do.
실리콘 링 부재(150) 및 실리콘 전극판(160)의 에칭 공정 및 클리닝 공정을 더욱 상세히 설명하면 다음과 같다.The etching process and the cleaning process of the silicon ring member 150 and the silicon electrode plate 160 will be described in more detail as follows.
먼저, 초순수(Deionized Water)를 이용하여 실리콘 링 부재(150) 및 실리콘 전극판(160)을 상온에서 300초 정도 린싱(rinsing)한 후 KOH, H2O2 및 초순수가 1:1:15 정도로 혼합된 혼합 용액을 이용하여 65∼75 ℃의 온도에서 약 300초 동안 1차 에칭 공정을 수행한다. 이어서 초순수를 이용하여 상온에서 300초 정도 1차 에칭 용액을 린싱한 후, 45 %의 KOH 용액을 이용하여 60∼70 ℃의 온도에서 300초 정도 2차 에칭 공정을 수행한다. 이후 초순수를 이용하여 상온에서 300초 정도 2차 에칭 용액을 린싱하고, NH4OH, H2O2 및 H2O가 1:1:10으로 혼합된 SC1 용액을 이용하여 65∼75 ℃의 온도에서 300초 정도 클리닝 공정을 수행한다. 계속하여, 초순수를 이용하여 상온에서 약 300초 동안 클리닝 용액을 린싱하고, 35∼55℃의 초순수에 30초 정도 실리콘 링 부재(150) 또는 실리콘 전극판(160)을 담근 후 서서히 들어올려 건조시킨 후 70∼90 ℃의 온도에서 100초 정도 에어 드라이 공정을 수행한다. 이러한 에칭 공정과 클리닝 공정은 미세 먼지가 발생되지 않는 클린 룸 내에서 수행되는 것이 바람직하다.First, the silicone ring member 150 and the silicon electrode plate 160 are rinsed at room temperature for about 300 seconds using deionized water, and KOH, H 2 O 2, and ultrapure water are mixed at a ratio of about 1: 1: 15 The mixed solution is used to perform a primary etching process at a temperature of 65 to 75 ° C for about 300 seconds. Subsequently, the first etching solution is rinsed at a room temperature for about 300 seconds using ultrapure water, and then a secondary etching process is performed at a temperature of 60 to 70 ° C. for about 300 seconds using a 45% KOH solution. Subsequently, the secondary etching solution was rinsed at a room temperature for about 300 seconds using ultrapure water, and the SC1 solution mixed with NH 4 OH, H 2 O 2, and H 2 O at a ratio of 1: 1: The cleaning process is performed for about 300 seconds. Subsequently, the cleaning solution was rinsed at room temperature for about 300 seconds using ultra-pure water, and the silicone ring member 150 or the silicon electrode plate 160 was immersed in ultrapure water at 35 to 55 ° C. for about 30 seconds, The air drying process is then performed at a temperature of 70 to 90 DEG C for about 100 seconds. It is preferable that the etching process and the cleaning process are performed in a clean room where no fine dust is generated.
이렇게 에칭 및 클리닝 공정을 거친 후에, 열처리 공정에 의한 도너 킬링 공정을 수행하여 실리콘 링 부재(150) 및 실리콘 전극판(160) 내의 저항을 안정화시키는 것이 바람직한데, 상기 열처리 공정은 다단계 열처리 공정 또는 고온 열처리 공정으로 실시할 수 있다(S170).After the etching and cleaning processes, it is preferable to perform the donor killing process by the heat treatment process to stabilize the resistance in the silicon ring member 150 and the silicon electrode plate 160. The heat treatment process may be a multi-stage heat treatment process, The heat treatment may be performed at step S170.
도너 킬링 공정은 실리콘 링 부재(150) 및 실리콘 전극판(160)의 열처리를 통해 이들 내부의 불순물, 특히 산소를 제거하는 공정이다. 열처리는 퍼니스 타입, 오븐 타입 또는 벨트 타입을 포함하는 다양한 열처리 기구가 사용될 수 있다. 열처리 기구는 온도 및 시간을 세팅할 수 있는 프로그램이 가능한 기구를 이용하여 정확한 열처리가 가능하도록 한다. 그리고, 열처리 온도 및 시간은 프로그램에 의해 디지털 또는 아날로그 등으로 결과물을 기록할 수 있는 것이 바람직하다.The donor killing process is a process for removing impurities, particularly oxygen, from the inside through the heat treatment of the silicon ring member 150 and the silicon electrode plate 160. Various types of heat treatment apparatuses including a furnace type, an oven type or a belt type can be used as the heat treatment. The heat treatment apparatus enables a precise heat treatment using a programmable mechanism capable of setting the temperature and time. It is preferable that the heat treatment temperature and the time can record the result by digital or analog etc. by a program.
다단계 열처리 공정은 온도를 상승시키면서 다단계로 실시하는데, 일 예로서 3단계로 온도를 상승시키면서 실시한다. 즉, 상온에서 1∼100 ℃/min의 온도 상승률로 제 1 온도까지 상승시킨 후 1∼60분간 열처리하고, 이어서 상기 제 1 온도에서 1∼100 ℃/min의 온도 상승률로 제 2 온도까지 상승시킨 후 1∼60분간 열처리를 진행한 후, 상기 제 2 온도에서 1∼100 ℃/min의 온도 상승률로 제 3 온도까지 상승시킨 후 1∼180분간 열처리할 수 있다. 이후 상기 제 3 온도에서 1∼100 ℃/min의 온도 하강률로 상온까지 온도를 낮추게 된다. 여기서, 제 1 온도는 바람직하게 100∼300 ℃이고, 제 2 온도는 300∼500 ℃가 바람직하며, 제 3 온도는 600∼1000 ℃인 것이 바람직하다. The multistage heat treatment process is carried out in multiple steps while raising the temperature. For example, the temperature is raised in three steps. That is, the temperature is raised to a first temperature at a temperature rise rate of 1 to 100 ° C / min at room temperature, and then heat-treated for 1 to 60 minutes. Thereafter, the temperature is raised from the first temperature to the second temperature at a rate of 1 to 100 ° C / After the heat treatment is performed for 1 to 60 minutes, the temperature is increased from the second temperature to the third temperature at a rate of 1 to 100 ° C / min, and then the heat treatment is performed for 1 to 180 minutes. Then, the temperature is lowered to room temperature at a temperature lowering rate of 1 to 100 ° C / min at the third temperature. Here, the first temperature is preferably 100 to 300 ° C, the second temperature is preferably 300 to 500 ° C, and the third temperature is preferably 600 to 1000 ° C.
또한, 상기 열처리 공정은 산소 및 불활성 가스 또는 질소 및 불활성 가스를 공급하여 실시하는 것이 바람직한데, 이렇게 열처리 공정을 실시한 후 공급된 가스에 따라 산화막 또는 질화막이 실리콘 링 부재(150) 또는 실리콘 전극판(160) 상에 성장될 수 있으며, 이렇게 성장된 산화막 또는 질화막은 추후 진행될 수 있는 그라인딩, 불화 수소를 이용한 습식 식각 또는 폴리싱에 의해 제거된다.The annealing process is preferably performed by supplying oxygen and an inert gas or nitrogen and an inert gas. After the annealing process, an oxide film or a nitride film is formed on the silicon ring member 150 or the silicon electrode plate 160, and the grown oxide film or nitride film is removed by grinding, wet etching or polishing using hydrogen fluoride, which can be performed later.
상기 열처리는 다단계 열처리 공정뿐만 아니라 고온 열처리 공정을 실시할 수도 있는데, 이 경우 상온에서 1∼100 ℃/min의 온도 상승률로 600∼1000 ℃까지 상승시킨 후 1∼180분간 열처리한다. 이후 1∼100 ℃/min의 온도 하강률로 상온까지 온도를 낮추게 된다.The heat treatment may be performed not only in a multistage heat treatment process but also in a high temperature heat treatment process. In this case, the temperature is raised to 600 to 1000 ° C at a temperature rise rate of 1 to 100 ° C / min at room temperature and then heat treated for 1 to 180 minutes. Then, the temperature is lowered to room temperature at a temperature lowering rate of 1 to 100 ° C / min.
이렇게 다단계 열처리 공정과 같은 도너 킬링 공정에 의해 실리콘 링 부재(150) 및 실리콘 전극판(160)의 저항을 안정화시킨 다음 실리콘 링 부재(150) 및 실리콘 전극판(160)의 저항을 측정하고, 실리콘 소재의 이력 관리를 위해 레이저 마킹을 실시한다.The resistances of the silicon ring member 150 and the silicon electrode plate 160 are stabilized by the donor killing process such as the multistage heat treatment process and then the resistance of the silicon ring member 150 and the silicon electrode plate 160 is measured, Laser marking is performed for the history management of the material.
다음 단계로, 더블 사이드 폴리싱 공정을 실시하여 실리콘 링 부재(150) 및 실리콘 전극판(160)의 양면을 평탄화시키고, 표면 거칠기를 줄여 단결정 실리콘 포커스링(220) 및 실리콘 상부 전극(230)을 제작한다(S180).In the next step, the double side polishing process is performed to planarize both surfaces of the silicon ring member 150 and the silicon electrode plate 160 to reduce the surface roughness, thereby manufacturing the single crystal silicon focus ring 220 and the silicon upper electrode 230 (S180).
폴리싱 공정은 먼저, 단차 폴리싱 공정으로 실리콘 링 부재(150)의 단차 영역의 평탄도를 향상시킬 수 있고, 표면 거칠기를 5Å이하로 유지할 수 있다. 즉, 실리콘 링 부재(150)의 내측 면 및 단차 표면(관통홀과 홈 영역)을 폴리싱하며, 이후, 세정 공정이 수행된다. 상기 세정 공정 후에는 더블 사이드 폴리싱 장비를 이용하여 실리콘 링 부재(150) 또는 실리콘 전극판(160)의 상면 및 하면을 동시에 폴리싱한다(도 6 참조).The polishing process can first improve the flatness of the stepped region of the silicon ring member 150 by the stepwise polishing process and maintain the surface roughness at 5 Å or less. That is, the inner surface and the stepped surface (through-hole and groove region) of the silicone ring member 150 are polished, and then a cleaning process is performed. After the cleaning process, the upper and lower surfaces of the silicon ring member 150 or the silicon electrode plate 160 are simultaneously polished using a double side polishing apparatus (see FIG. 6).
더블 사이드 폴리싱 장비는 상부 폴리싱 패드부와 하부 폴리싱 패드부(90)를 포함한다. 상기 하부 폴리싱 패드부는 원형의 하부 플레이트(91)와, 하부 플레이트 상에 설치된 하부 폴리싱 패드(92)와, 하부 폴리싱 패드 상에 소정의 관통홀을 갖는 복수의 캐리어(93)를 포함한다. 캐리어(93)의 관통홀(94)내는 실리콘 링 부재(150) 또는 실리콘 전극판(140)이 위치 고정되고, 이에 따라 이들의 이탈을 방지한다. The double side polishing equipment includes an upper polishing pad portion and a lower polishing pad portion 90. The lower polishing pad portion includes a circular lower plate 91, a lower polishing pad 92 provided on the lower plate, and a plurality of carriers 93 having predetermined through holes on the lower polishing pad. The silicon ring member 150 or the silicon electrode plate 140 is positioned and fixed in the through hole 94 of the carrier 93 to prevent them from escaping.
여기서, 상부 폴리싱 패드(미도시)와 하부 플레이트(91)는 서로 다른 방향으로 회전하면서 실리콘 링 부재(150) 또는 실리콘 전극판(160)의 상면 및 하면을 동시에 폴리싱한다. 또한, 복수의 캐리어(93)도 회전하는 것이 바람직하다. 한편, 하나의 캐리어(93) 내에 복수의 관통홀(94)이 형성될 수 있다. 즉, 하나의 캐리어(93) 내에 2 내지 4개의 관통홀(94)이 형성되어 한번에 더블 사이드 폴리싱 공정을 실시하는 실리콘링 부재(150) 또는 실리콘 전극판(160)의 수를 증가시킬 수 있다.Here, the upper polishing pad (not shown) and the lower plate 91 are rotated in different directions to simultaneously polish the upper surface and the lower surface of the silicon ring member 150 or the silicon electrode plate 160. It is also preferable that the plurality of carriers 93 rotate as well. On the other hand, a plurality of through holes 94 may be formed in one carrier 93. That is, two to four through holes 94 may be formed in one carrier 93 to increase the number of the silicon ring member 150 or the silicon electrode plate 160 that performs the double side polishing process at one time.
그리고, 더블 사이드 폴리싱 공정용 장비는 실리콘 링 부재(150) 또는 실리콘 전극판(160)의 형상, 사이즈 또는 두께에 관계없이 캐리어(93)만을 변경하여 폴리싱을 수행할 수 있다. 그리고, 폴리싱 공정시 주입되는 슬러리 및 계면 활성제를 조절하여 실리콘 링 부재(150) 또는 실리콘 전극판(160)의 상면 및 하면의 표면 거칠기를 제어할 수 있다. The apparatus for double side polishing process can perform polishing by changing only the carrier 93 regardless of the shape, size or thickness of the silicon ring member 150 or the silicon electrode plate 160. The surface roughness of the upper surface and the lower surface of the silicon ring member 150 or the silicon electrode plate 160 can be controlled by controlling the slurry and the surfactant injected during the polishing process.
즉, 일반적인 폴리싱은 단면 폴리싱으로 실리콘 판의 한 면에 왁스를 코팅하고 폴리싱 헤드에 접착하여 사용하였다. 이로 인해 왁스 코팅의 균일도에 따라 평탄도가 달라질 수 있었다. 그러나, 본 발명에 따른 더블 사이드 폴리싱의 경우 왁스 코팅 공정을 수행하지 않는다. 이는 가공하고자 하는 실리콘 링 부재(150) 또는 실리콘 전극판(160)의 두께에 맞는 캐리어를 제작하고 실리콘 링 제품의 사이즈에 맞게 캐리어 홀을 만들어 공정을 진행하기 때문이다.That is, general polishing was performed by coating wax on one surface of a silicon plate with a cross-section polishing and adhering to a polishing head. As a result, the flatness can be varied depending on the uniformity of the wax coating. However, in the case of the double side polishing according to the present invention, the wax coating process is not performed. This is because a carrier suitable for the thickness of the silicon ring member 150 or the silicon electrode plate 160 to be processed is manufactured and a carrier hole is formed in accordance with the size of the silicon ring product.
상기 더블 사이드 폴리싱 공정의 구체적인 공정 조건을 예를 들어 살펴보면, 0.1∼1.0 ㎏/㎠의 압력으로 상부 폴리싱 패드부(미도시)는 약 10∼20 rpm의 회전수로 반시계 방향으로 회전하고, 하부 폴리싱 패드부(90)는 약 30∼40 rpm의 회전수로 시계 방향으로 회전한다. 이때, 캐리어(93)도 약 10∼20 rpm의 회전수로 시계 방향으로 회전한다. 또한, 제 1 슬러리를 3∼5 ℓ/min의 양으로 유입시켜 폴리싱한 후 필요에 따라 제 2 슬러리를 2∼3 ℓ/min의 양으로 유입시켜 폴리싱한다. 여기서, 제 1 슬러리는 제 2 슬러리보다 연마 입자의 사이즈가 큰 슬러리이고, 제1 슬러리를 이용한 폴리싱에 의해 실리콘 링 부재(150) 또는 실리콘 전극판(160)이 폴리싱되고, 제 2 슬러리를 이용한 폴리싱에 의해 실리콘 링 부재(150) 또는 실리콘 전극판(160)의 표면 거칠기를 더욱 향상시킨다. 또한, 제 2 슬러리를 이용한 폴리싱 이후에 케미컬을 유입시킬 수도 있는데, 이는 실리콘 링 부재(150) 또는 실리콘 전극판(160) 표면의 파티클 부착을 방지하여 이후 클리닝 공정을 완벽하게 할 수 있도록 한다.For example, the upper polishing pad portion (not shown) rotates counterclockwise at a rotation speed of about 10 to 20 rpm at a pressure of 0.1 to 1.0 kg / cm 2, The polishing pad portion 90 rotates clockwise at a rotation speed of about 30 to 40 rpm. At this time, the carrier 93 also rotates clockwise at a rotation speed of about 10 to 20 rpm. Further, the first slurry is introduced at an amount of 3 to 5 L / min and polished, and if necessary, the second slurry is introduced at an amount of 2 to 3 L / min to polish. Here, the first slurry is a slurry having a larger size of abrasive grains than the second slurry. The silicon ring member 150 or the silicon electrode plate 160 is polished by polishing using the first slurry, and polishing using the second slurry The surface roughness of the silicon ring member 150 or the silicon electrode plate 160 is further improved. In addition, it is also possible to introduce the chemical after the polishing using the second slurry, which prevents particles from adhering to the surface of the silicon ring member 150 or the silicon electrode plate 160 so that the cleaning process can be completed later.
이와 같은 더블 사이드 폴리싱 공정을 통해 실리콘 링 부재(150) 또는 실리콘 전극판(160)의 상면과 하면의 평탄도를 향상시킬 수 있고, 표면 거칠기를 5Å이하로 유지할 수 있다. 표면 거칠기를 1 내지 5Å으로 유지하여 실리콘 웨이퍼의 표면 거칠기인 2Å과 유사하게 유지할 수 있다. 이와 같이 실리콘 링의 표면 거칠기를 웨이퍼의 표면 거칠기와 유사하게 하여 웨이퍼 상측의 플라즈마 균일도를 높여 플라즈마 처리 효율을 향상시킬 수 있다.The double side polishing process can improve the flatness of the upper surface and the lower surface of the silicon ring member 150 or the silicon electrode plate 160 and maintain the surface roughness to 5 Å or less. The surface roughness can be maintained at 1 to 5 angstroms and can be maintained similar to the surface roughness of the silicon wafer of 2 angstroms. In this way, the surface roughness of the silicon ring is made similar to the surface roughness of the wafer, and the plasma uniformity on the upper side of the wafer is increased to improve the plasma processing efficiency.
상기 더블 사이드 폴리싱 공정 후 클리닝 공정을 실시하여 슬러리 및 파티클을 제거한다. 이를 통해 본 실시 예에 따른 실리콘 포커스링을 제작한다. 이어서, 제작 완료된 실리콘 포커스링의 규격을 측정하고, 파이널 세정을 수행한다. 실리콘 포커스링의 규격 측정을 위하여 3D 인스펙션을 실시하는 것이 바람직하다. 그리고, 파이널 세정 후에 육안 검사를 실시한다. 육안 검사로는 표면 검사 및 에지 칩핑 검사를 수행하고, 이를 통해 파티클 및 딥 스크레치를 검사할 수 있다.After the double side polishing process, a cleaning process is performed to remove slurry and particles. Thus, a silicon focus ring according to the present embodiment is fabricated. Then, the standard of the manufactured silicon focus ring is measured, and final cleaning is performed. It is preferable to perform a 3D inspection to measure the size of the silicon focus ring. Then, visual inspection is performed after final cleaning. Visual inspection includes surface inspection and edge chipping inspection, which allows inspection of particles and deep scratches.
물론 본 발명의 일 실시 예에 따른 실리콘 전극은 이에 한정되지 않고, 실리콘 전극의 전체 직경이 상기 실리콘 원기둥의 직경보다 클 경우에는 복수의 몸체를 이용하여 실리콘 전극을 제작할 수 있다.Of course, the silicon electrode according to an embodiment of the present invention is not limited to this, and when the total diameter of the silicon electrode is larger than the diameter of the silicon cylinder, the silicon electrode can be manufactured using a plurality of bodies.
한편, 상기 실시 예에서는 적어도 2회의 그라인딩 공정과 에칭 및 클리닝 공정을 실시하는 것으로 설명되었으나, 에칭 및 클리닝 공정은 선택적으로 실시할 수도 있는데, 이는 그라인딩 공정 후 표면 평탄화 및 결함 양상에 따라 에칭 및 클리닝 공정을 선택적으로 실시할 수 있음을 의미한다.Although the grinding step and the etching step and the cleaning step are performed at least two times in the above embodiment, the etching and cleaning steps may be selectively performed. This may be performed after the grinding step by etching and cleaning according to surface planarization and defect patterns Quot; can be selectively performed.
또한, 상기 실시 예에서는 다단계 열처리에 의한 도너 킬링 공정을 실리콘 링 부재(150) 및 실리콘 판(140)에 복수의 관통홀(141)을 형성한 후 실시하였으나, 이에 국한되지 않고 실리콘 실린더(120b) 및 실리콘 원기둥(120c)를 절단한 후 실시할 수도 있고, 평탄화 공정 후에 실시할 수도 있다. 다른 예로서 실리콘 잉곳을 절단하여 실리콘 판을 형성한 후 실리콘 판의 중심에 중심홀 또는 복수의 관통홀을 형성하여 실리콘 포커스링 또는 실리콘 전극판을 형성하는 경우에는 다단계 열처리에 의한 도너 킬링 공정을 실리콘 판을 형성한 후, 실리콘 판에 중심홀 또는 복수의 관통홀을 형성한 후, 또는 그라인딩 공정 후에 실시할 수도 있다.In the above embodiments, the donor killing process by the multi-stage heat treatment is performed after the plurality of through holes 141 are formed in the silicon ring member 150 and the silicon plate 140. However, And the silicon cylinder 120c may be cut, or may be performed after the planarization process. As another example, when a silicon ingot is cut to form a silicon plate and a center hole or a plurality of through holes are formed at the center of the silicon plate to form a silicon focus ring or a silicon electrode plate, the donor killing process by multi- After the plate is formed, after forming a center hole or a plurality of through holes in the silicon plate, or after the grinding process.
도 7은 상술한 본 발명의 일 실시 예에 따른 방법에 따라 제작된 실리콘 포커스링(220)과 실리콘 상부 전극(230)을 구비하는 플라즈마 식각 장치를 도식적으로 나타낸 그림이다.7 is a diagrammatic view illustrating a plasma etching apparatus including a silicon focus ring 220 and a silicon upper electrode 230 manufactured according to a method according to an embodiment of the present invention.
상기 플라즈마 식각 장치는 앞서 설명한 제조 방법으로 제작된 실리콘 링으로 제조된 실리콘 포커스링(220)과 실리콘 전극판으로 제조된 실리콘 상부 전극(230)을 구비한다. 도 7에 도시된 바와 같이 플라즈마 식각 장치는 챔버(200)와, 웨이퍼(201)가 안치되는 하부 전극(210)과, 하부전극(210) 상에 안치된 웨이퍼(201)의 가장자리 영역에 마련된 실리콘 포커스링(220)과, 하부 전극(210)에 상측에 마련되고 샤워헤드 일체형의 실리콘 상부 전극(230)과, 하부 전극(210)과 실리콘 상부 전극(230)에 전원을 공급하는 제 1 및 제 2 전원 공급부(240, 250)를 구비한다.The plasma etching apparatus includes a silicon focus ring 220 made of a silicon ring manufactured by the above-described manufacturing method, and a silicon upper electrode 230 made of a silicon electrode plate. 7, the plasma etching apparatus includes a chamber 200, a lower electrode 210 on which the wafer 201 is placed, and a lower electrode 210 on which a silicon (not shown) provided in an edge region of the wafer 201 placed on the lower electrode 210, A focus ring 220, a silicon upper electrode 230 provided on the upper side of the lower electrode 210 and integrally formed with the showerhead, first and second silicon electrodes 230 and 230 for supplying power to the lower electrode 210 and the silicon upper electrode 230, 2 power supply units 240 and 250, respectively.
이하의 실시 예와 비교 예에서는, 이상과 같이 살펴본 방법으로 제조된 본 발명의 내구성이 향상된 플라즈마 장비용 단결정 실리콘 부품의 제조방법으로 제조된 [111] 방향의 단결정 실리콘 상부 전극과 실리콘 포커스링을 사용한 경우와 기존의 [100] 방향의 실리콘 상부 전극과 실리콘 포커스링의 식각률 차이를 실제 플라즈마 처리 설비에서 관찰하였다.In the following Examples and Comparative Examples, the single crystal silicon upper electrode of the [111] direction and the silicon focus ring manufactured by the method of manufacturing a single crystal silicon component for a plasma device improved in durability according to the present invention, And the etching rate difference between the silicon upper electrode and the silicon focus ring in the conventional [100] direction was observed in an actual plasma processing facility.
[실시예][Example]
이상의 방법으로 제조된 [111] 방향의 단결정 실리콘 상부 전극과 실리콘 포커스링을, 동일한 조건으로 형성된 [100] 방향의 단결정 실리콘 상부 전극과 실리콘 포커스링의 플라즈마 처리 장치에 장착한 후, 45 mTorr, 800 W의 RF power 및 20 W의 BAIS 조건에서 운전한 후, 단위 시간당 상기 단결정 실리콘 상부 전극과 실리콘 포커스링의 식각량을 측정하였다.The single crystal silicon upper electrode of the [111] direction and the silicon focus ring manufactured by the above method and the silicon focus ring were attached to the [100] single crystal silicon upper electrode and the silicon focus ring plasma processing apparatus formed under the same conditions, W RF power and a 20 W BAIS condition, the etching amount of the upper silicon single crystal silicon electrode and the silicon focus ring per unit time was measured.
단결정 실리콘 포커스링을 외주 방향으로 21 point에 대하여 측정하여, 본 발명의 [111] 방향의 단결정 실리콘 포커스링과 [100] 방향의 단결정 실리콘 포커스링의 단위 시간당 식각량의 측정 결과를 아래의 표 1과 도 8에 나타내었다. 이때 측정된 단결정 실리콘 포커스링의 단위시간당 식각량의 단위는 mm/hr이다.The measurement results of the etching rate per unit time of the single crystal silicon focus ring in the [111] direction and the single crystal silicon focus ring in the [100] direction according to the present invention were measured according to the following Table 1 And FIG. 8, respectively. The unit of etching amount per unit time of the measured single crystal silicon focus ring is mm / hr.
측정위치Measuring position [100] 단결정 실리콘 포커스링[100] single crystal silicon focus ring [111] 단결정 실리콘 포커스링[111] single crystal silicon focus ring
1One 0.00220.0022 0.00160.0016
22 0.00200.0020 0.00150.0015
33 0.00220.0022 0.00150.0015
44 0.00230.0023 0.00160.0016
55 0.00240.0024 0.00170.0017
66 0.00260.0026 0.00170.0017
77 0.00280.0028 0.00180.0018
88 0.00270.0027 0.00200.0020
99 0.00270.0027 0.00200.0020
1010 0.00270.0027 0.00190.0019
1111 0.00260.0026 0.00190.0019
1212 0.00260.0026 0.00190.0019
1313 0.00270.0027 0.00190.0019
1414 0.00270.0027 0.00190.0019
1515 0.00270.0027 0.00190.0019
1616 0.00280.0028 0.00200.0020
1717 0.00290.0029 0.00200.0020
1818 0.00300.0030 0.00210.0021
1919 0.00310.0031 0.00220.0022
2020 0.00330.0033 0.00230.0023
2121 0.00350.0035 0.00260.0026

상기 단결정 실리콘 포커스링의 측정 방법과 동일하게 [111] 방향의 단결정 실리콘 상부 전극에 대해서도 동일한 실험을 진행하였으며, 상부 전극의 지름을 따라 41point에 대해서 기존의 [100] 방향의 실리콘 상부전극과 식각량을 비교하여 측정하였으며, 이때의 식각량의 단위는 mm이고, 150시간의 공정 진행 후 측정된 식각량의 값을 의미한다. 그 결과를 다음의 표 2와 도면 9에 나타내었다.The same experiment was carried out for the [111] direction single crystal silicon upper electrode in the same manner as the above-mentioned single crystal silicon focus ring measurement method. For the 41 points along the diameter of the upper electrode, And the unit of the etching amount is mm, which means the value of the etching amount measured after 150 hours of the process. The results are shown in the following Table 2 and FIG.
측정위치Measuring position [100] 단결정 상부전극[100] Single crystal upper electrode [111] 단결정 상부전극[111] single crystal upper electrode
1One 0.0650.065 0.0450.045
22 0.0750.075 0.0520.052
33 0.0850.085 0.0600.060
44 0.0920.092 0.0640.064
55 0.0990.099 0.0690.069
66 0.1050.105 0.0740.074
77 0.1110.111 0.0780.078
88 0.1160.116 0.0810.081
99 0.1220.122 0.0850.085
1010 0.1270.127 0.0890.089
1111 0.1320.132 0.0920.092
1212 0.1360.136 0.0950.095
1313 0.1400.140 0.0980.098
1414 0.1450.145 0.1020.102
1515 0.1490.149 0.1040.104
1616 0.1520.152 0.1060.106
1717 0.1560.156 0.1090.109
1818 0.1590.159 0.1110.111
1919 0.1620.162 0.1130.113
2020 0.1640.164 0.1150.115
2121 0.1660.166 0.1160.116
2222 0.1640.164 0.1150.115
2323 0.1620.162 0.1130.113
2424 0.1600.160 0.1120.112
2525 0.1570.157 0.1100.110
2626 0.1540.154 0.1080.108
2727 0.1510.151 0.1060.106
2828 0.1480.148 0.1040.104
2929 0.1440.144 0.1010.101
3030 0.1400.140 0.0980.098
3131 0.1370.137 0.0960.096
3232 0.1330.133 0.0930.093
3333 0.1280.128 0.0900.090
3434 0.1230.123 0.0860.086
3535 0.1180.118 0.0830.083
3636 0.1130.113 0.0790.079
3737 0.1070.107 0.0750.075
3838 0.1000.100 0.0700.070
3939 0.0920.092 0.0640.064
4040 0.0810.081 0.0570.057
4141 0.0710.071 0.0500.050

상기 표 1과 표 2의 측정 결과에서 확인할 수 있듯이, 본 발명의 제조 방법으로 제조된 [111] 방향의 단결정 실리콘으로 제조된 플라즈마 설비용 단결정 실리콘 링과 실리콘 상부 전극은 기존의 [100] 방향의 단결정 실리콘 제품에 비해 단위 시간당 식각량이 약 30% 감소되었으며, 이에 따라 사용 수명 및 내구 연한이 적어도 30% 이상 연장되는 효과가 있음을 확인할 수 있다. As can be seen from the measurement results of Tables 1 and 2, the single crystal silicon ring and the silicon upper electrode for a plasma facility made of single crystal silicon in the [111] direction manufactured by the manufacturing method of the present invention, The etching amount per unit time was reduced by about 30% as compared with the monocrystalline silicon product, and thus, the service life and durability were prolonged by at least 30%.
또한, 본 발명에서 제공하는 플라즈마 처리 장치에 사용되는 단결정 실리콘 부품은 기존에 널리 사용되는 단결정 실리콘과는 달리 결정성장 방향이 변화됨으로써 사용 중 내구성이 증가로 인한 사용 수명의 증가뿐만 아니라, 플라즈마 처리 장치 내에서 실리콘 포커스링 또는 실리콘 상부 전극의 형태로 사용될 때 불순물이 발생되지 않으므로, 공정 수율을 향상시킬 수 있다. In addition, the single crystal silicon component used in the plasma processing apparatus of the present invention has a crystal growth direction different from that of monocrystal silicon widely used in the prior art, thereby increasing service life due to increase in durability during use, The impurity is not generated when used in the form of a silicon focus ring or a silicon upper electrode, and thus the process yield can be improved.
본 실시예의 제작 방법에 따라 제조된 실리콘 포커스링 및 실리콘 상부 전극은 그 사용처가 상술한 식각 장치에 한정되지 않고, 다양한 플라즈마 처리 장치에 적용될 수 있으며, 상기에서 서술된 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 즉, 상기의 실시예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 범위는 본원의 특허 청구 범위에 의해서 이해되어야 한다.The silicon focus ring and the silicon upper electrode manufactured according to the manufacturing method of the present embodiment are not limited to the above-described etching apparatus but may be applied to various plasma processing apparatuses, and the present invention is not limited to the above- And may be implemented in various other forms. In other words, the above-described embodiments are provided so that the disclosure of the present invention is complete, and those skilled in the art will fully understand the scope of the invention, and the scope of the present invention should be understood by the appended claims .

[부호의 설명][Description of Symbols]
1 : [100] 방향으로 결정 성장된 잉곳 10 : 실리콘 saw1: Ingot 10 crystal grown in [100] direction 10: Silicon saw
20 : [111] 방향으로 절단된 실리콘 원판 30 : 마그네틱 블럭20: Silicon disc 30 cut in the [111] direction 30: Magnetic block
40 : 정밀 자동 회전 테이블 50 : 레이저 앵글 센서40: precision automatic rotation table 50: laser angle sensor
71, 72, 73 : 스테이지 74, 75 : 그라인딩 휠71, 72, 73: stage 74, 75: grinding wheel
90 : 하부 폴리싱 패드부 91 : 하부 플레이트90: lower polishing pad part 91: lower plate
92 : 하부 폴리싱 패드 93 : 캐리어92: lower polishing pad 93: carrier
120 : [111] 결정 방향 실리콘 잉곳120: [111] crystal orientation silicon ingot
120b : 실리콘 실린더 120c : 실리콘 원기둥120b: Silicon cylinder 120c: Silicon cylinder
130 : 실리콘 링 140 : 실리콘 판130: silicon ring 140: silicon plate
141 : 관통홀 150 : 실리콘 링 부재141: Through hole 150: Silicone ring member
160 : 실리콘 전극판 200 : 챔버160: silicon electrode plate 200: chamber
201 : 실리콘 웨이퍼 210 : 하부 전극201: silicon wafer 210: lower electrode
220 : 단결정 실리콘 포커스링 230 : 단결정 실리콘 상부 전극220: single crystal silicon focus ring 230: single crystal silicon upper electrode
240, 250 : 전원 공급부240, 250: Power supply
본 발명은 플라즈마 처리 장치에 사용되는 단결정 실리콘 부품 및 이의 제조 방법에 관한 것으로, 특히 플라즈마 처리 장치에 사용되는 실리콘 링 또는 실리콘 전극판의 제작에 사용되는 단결정 실리콘 부품 및 이의 제조 방법에 관한 것으로, 플라즈마 처리 장치에서 부품으로 사용되는 단결정 실리콘의 결정 방향을 변화시킴으로써, 플라즈마 처리 장치에 장착되어 사용될 때, 사용 수명 및 내구 연한이 증가하고, 부품 교체 주기를 늘려 플라즈마 장비의 유지 보수비용과 부품 사용량을 감소시킬 수 있는 효과가 있는 단결정 실리콘 부품을 제공하는 것을 목적으로 하고 있으며, 본 발명에서 제공하는 플라즈마 처리 장치에 사용되는 단결정 실리콘 부품은 기존에 널리 사용되는 단결정 실리콘과는 달리 결정성장 방향이 변화됨으로써 사용 중 내구성이 증가되어 사용 수명이 증가될 뿐만 아니라, 플라즈마 처리 장치 내에 실리콘 링 또는 실리콘 전극판의 형태로 가공되어 사용될 때 불순물이 발생되지 않아 공정 수율이 증가하는 장점이 있으므로, 산업상 이용가능성이 있다.The present invention relates to a single crystal silicon component used in a plasma processing apparatus and a manufacturing method thereof, and more particularly to a single crystal silicon component used for manufacturing a silicon ring or a silicon electrode plate used in a plasma processing apparatus, By changing the crystal orientation of the single crystal silicon used as a component in the processing apparatus, when used in a plasma processing apparatus, it increases the service life and durability and increases the parts replacement cycle to reduce the maintenance cost of the plasma equipment and the parts usage A single crystal silicon component used in a plasma processing apparatus provided in the present invention has a crystal growth direction different from that of monocrystalline silicon widely used in the prior art, Durable There is an advantage that the process yield is increased because no impurities are generated when used in the form of a silicon ring or a silicon electrode plate in a plasma processing apparatus and thus it is industrially applicable.

Claims (10)

  1. 결정방향이 [111]인 단결정 실리콘 잉곳을 준비하는 단계;
    실리콘 잉곳으로부터 실리콘 원기둥과 속이 빈 실리콘 실린더(hollow cylinder)를 제조하는 코어링 단계;
    상기 코어링 단계를 통해 제조된 실리콘 원기둥을 절단하여 실리콘 판을 형성하고, 상기 속이 빈 실리콘 실린더를 절단하여 내부가 빈 실리콘 링을 형성하는 슬라이싱 단계;
    상기 슬라이싱 단계에서 제조된 실리콘 판과 실리콘 링의 표면을 평탄화하는 다단계 그라인딩 단계;
    상기 실리콘 판에 복수의 관통홀을 형성하여 실리콘 전극판을 제조하고, 상기 실리콘 링의 안쪽에 계단형 단차를 형성하여 실리콘 링 부재를 제조하는 가공 단계;
    실리콘 전극판과 실리콘 링의 제조과정의 미세 손상을 제거하기 위한 알칼리 또는 산 용액의 습식 에칭 단계;
    상기 실리콘 전극판과 실리콘 링의 내부에 존재하는 불순물을 제거하는 열처리 단계; 및
    불순물이 제거된 실리콘 전극판과 실리콘 링의 표면을 경면화 하는 표면 연마 단계;를 포함하는 내구성이 향상된 플라즈마 장비용 단결정 실리콘 부품의 제조방법
    Preparing a single crystal silicon ingot having a crystal orientation [111];
    A coring step of fabricating a silicon cylinder and hollow cylinder from the silicon ingot;
    A slicing step of cutting the silicon cylinder manufactured through the coring step to form a silicon plate, cutting the hollow silicon cylinder to form a hollow silicon ring therein;
    A multistage grinding step of smoothing a surface of the silicon plate and the silicon ring manufactured in the slicing step;
    Forming a plurality of through holes in the silicon plate to produce a silicon electrode plate and forming a stepped step inside the silicon ring to produce a silicon ring member;
    A wet etching step of alkali or acid solution to remove micro-damage in the manufacturing process of the silicon electrode plate and the silicon ring;
    A heat treatment step of removing impurities present inside the silicon electrode plate and the silicon ring; And
    And a surface polishing step of mirror-polishing the surface of the silicon ring and the silicon electrode plate from which the impurities have been removed.
  2. 제1항에 있어서,
    상기 결정 방향이 [111]인 단결정 실리콘 잉곳을 준비하는 단계는,
    실리콘 단결정 성장을 통한 실리콘 잉곳의 제조단계에서 성장핵(seed)의 발향을 (111) 방향으로 배치하여 단결정 실리콘을 [111] 방향으로 성장시키는 결정 성장 단계; 및
    상기 [111] 방향으로 성장된 단결정 실리콘 잉곳의 양 끝단의 일부를 제거하는 크로핑 단계;를 포함하는 것을 특징으로 하는 내구성이 향상된 플라즈마 장비용 단결정 실리콘 부품의 제조방법
    The method according to claim 1,
    The step of preparing the single crystal silicon ingot having the crystal orientation [111]
    A crystal growth step of growing monocrystalline silicon in the [111] direction by arranging the orientation of the growth nuclei in the (111) direction in the step of manufacturing the silicon ingot through the silicon single crystal growth; And
    And a curing step of removing a part of both ends of the single crystal silicon ingot grown in the [111] direction to form a single crystal silicon ingot.
  3. 제1항에 있어서,
    상기 결정 방향이 [111]인 단결정 실리콘 잉곳을 준비하는 단계는,
    [100] 방향으로 성장된 실리콘 잉곳을 마그네틱 블럭으로 고정한 후, 실리콘 절단용 와이어를 사용하여 (111) 결정면을 따라 절단하여 [111] 결정방향의 실리콘 원판들을 복수개 제조한 후, 상기 [111] 결정방향의 실리콘 원판들을 적층하여 왁스본딩하는 단계;를 포함하는 것을 특징으로 하는 내구성이 향상된 플라즈마 장비용 단결정 실리콘 부품의 제조방법
    The method according to claim 1,
    The step of preparing the single crystal silicon ingot having the crystal orientation [111]
    The silicon ingots grown in the [100] direction are fixed with a magnetic block and then cut along the (111) crystal plane using a silicon cutting wire to produce a plurality of silicon original plates in the [111] crystal direction, Laminating and wax-bonding silicon discs oriented in the direction of the silicon substrate
  4. 제1항에 있어서,
    상기 열처리 단계 후, 상기 실리콘 전극판과 실리콘 링의 표면에 생성된 산화막을 제거하기 위해 불산을 사용한 추가 세정 단계;를 더 포함하는 것을 특징으로 하는 내구성이 향상된 플라즈마 장비용 단결정 실리콘 부품의 제조방법
    The method according to claim 1,
    Further comprising the step of using a hydrofluoric acid to remove the oxide film formed on the surface of the silicon ring and the silicon electrode plate after the heat treatment step.
  5. 제1항에 있어서,
    상기 다단계 그라인딩 단계는, 제1차 그라인딩 단계와 상기 제1차 그리인딩 단계보다 낮은 거칠기와 높은 회전 속도 및 낮은 압력으로 제2차 그라인딩 단계를 포함하는 것을 특징으로 하는 내구성이 향상된 플라즈마 장비용 단결정 실리콘 부품의 제조방법
    The method according to claim 1,
    Wherein the multistage grinding step comprises a primary grinding step and a secondary grinding step with a lower roughness, a higher rotation speed and a lower pressure than the primary grinding step. Manufacturing method of silicon parts
  6. 제1항에 있어서,
    상기 열처리 단계는, 산소와 불활성 가스의 혼합 분위기 또는 질소와 불활성 가스의 혼합분위기에 진행되고, 적어도 제1온도에서 제1시간 동안 진행된 후, 제2온도에서 제2시간 동안 진행되는 다단계 열처리 공정을 포함하는 것을 특징으로 하는 내구성이 향상된 플라즈마 장비용 단결정 실리콘 부품의 제조방법
    The method according to claim 1,
    The heat treatment step is a step of performing a multi-step heat treatment process that proceeds in a mixed atmosphere of oxygen and an inert gas or a mixed atmosphere of nitrogen and an inert gas, proceeds at least at a first temperature for a first time, and then proceeds at a second temperature for a second time A method of manufacturing a monocrystalline silicon part for a plasma device having improved durability
  7. 제1항에 있어서,
    상기 표면 연마 단계는, 실리콘 전극판과 실리콘 링의 상면과 하면을 동시에 폴리싱하는 더블 폴리싱 단계를 포함하고, 서로 다른 방향으로 회전하는 상부 폴리싱 패드부와 하부 폴리싱 패드부 사이에 복수의 캐리어가 위치되어, 상기 캐리어 각각에 상기 실리콘 전극판 또는 실리콘 링이 고정되는 것을 특징으로 하는 내구성이 향상된 플라즈마 장비용 단결정 실리콘 부품의 제조방법
    The method according to claim 1,
    The surface polishing step includes a double polishing step of simultaneously polishing the upper surface and the lower surface of the silicon electrode plate and the silicon ring and a plurality of carriers are positioned between the upper polishing pad portion and the lower polishing pad portion which rotate in different directions , And the silicon electrode plate or the silicon ring is fixed to each of the carriers. The method of manufacturing a monocrystalline silicon part for a plasma device having improved durability
  8. 제1항 내지 제7항 중 어느 하나의 실리콘 부품의 제조방법으로 제조되고, [111] 결정방향을 갖는 단결정 실리콘 재질의, 내구성이 향상된 플라즈마 처리장치용 단결정 실리콘 상부 전극A single crystal silicon upper electrode for a plasma processing apparatus having improved durability and made of a single crystal silicon material having a [111] crystal orientation, which is manufactured by the method for manufacturing a silicon part according to any one of claims 1 to 7
  9. 제1항 내지 제7항 중 어느 하나의 실리콘 부품의 제조방법으로 제조되고, [111] 결정방향을 갖는 단결정 실리콘 재질의, 내구성이 향상된 플라즈마 처리장치용 단결정 실리콘 포커스링A single crystal silicon focus ring for a plasma processing apparatus improved in durability and made of a single crystal silicon material produced by a manufacturing method of a silicon part according to any one of claims 1 to 7 and having a [111] crystal orientation
  10. 제1항 내지 제7항 중 어느 하나의 실리콘 부품의 제조방법으로 제조되고, [111] 결정방향을 갖는 단결정 실리콘 재질의, 내구성이 향상된 플라즈마 처리장치용 단결정 실리콘 상부 전극과 단결정 실리콘 포커스링을 포함하는 플라즈마 처리 장치A single crystal silicon upper electrode and a single crystal silicon focus ring for a plasma processing apparatus of improved durability and made of a single crystal silicon material having a [111] crystal orientation, which is manufactured by the manufacturing method of any one of claims 1 to 7, A plasma processing apparatus
PCT/KR2014/005687 2013-12-30 2014-06-26 Monocrystalline silicon part for plasma-processing device of improved durability, and production method for same WO2015102183A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130167390A KR101485830B1 (en) 2013-12-30 2013-12-30 Single Crystal Silicon Componet with Improved Durability for Plasma Appratus and Preparation Method Thereof
KR10-2013-0167390 2013-12-30

Publications (1)

Publication Number Publication Date
WO2015102183A1 true WO2015102183A1 (en) 2015-07-09

Family

ID=52592460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005687 WO2015102183A1 (en) 2013-12-30 2014-06-26 Monocrystalline silicon part for plasma-processing device of improved durability, and production method for same

Country Status (2)

Country Link
KR (1) KR101485830B1 (en)
WO (1) WO2015102183A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101628689B1 (en) 2016-01-29 2016-06-09 하나머티리얼즈(주) Silicon carbide parts for plasma apparatus and manufacturing method thereof
KR102426127B1 (en) * 2022-03-14 2022-07-27 (주)코마테크놀로지 Regenerative top electrode processing method for etching having a curved surface and variable thickness using electrode for discharge processing
KR102426136B1 (en) * 2022-03-14 2022-07-27 (주)코마테크놀로지 Upper electrode processing method for etching having a curved surface and variable thickness using electrode for discharge processing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050006157A (en) * 2002-04-17 2005-01-15 램 리서치 코포레이션 Silicon parts for plasma reaction chambers
KR20060127495A (en) * 2005-06-07 2006-12-13 주식회사 글로실 Cathode electrode of single crystal silicon having specified orientation and wafer etching system using it
KR100918076B1 (en) * 2007-08-24 2009-09-22 하나실리콘(주) Method of manufacturing a silicon matter for plasma processing apparatus
KR100922620B1 (en) * 2007-08-24 2009-10-21 하나실리콘(주) Method of manufacturing a silicon matter for plasma processing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867389B1 (en) 2007-08-24 2008-11-06 하나실리콘(주) Method of manufacturing a silicon matter for plasma processing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050006157A (en) * 2002-04-17 2005-01-15 램 리서치 코포레이션 Silicon parts for plasma reaction chambers
KR20060127495A (en) * 2005-06-07 2006-12-13 주식회사 글로실 Cathode electrode of single crystal silicon having specified orientation and wafer etching system using it
KR100918076B1 (en) * 2007-08-24 2009-09-22 하나실리콘(주) Method of manufacturing a silicon matter for plasma processing apparatus
KR100922620B1 (en) * 2007-08-24 2009-10-21 하나실리콘(주) Method of manufacturing a silicon matter for plasma processing apparatus

Also Published As

Publication number Publication date
KR101485830B1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
US20100006081A1 (en) Method for manufacturing silicon matter for plasma processing apparatus
KR100858441B1 (en) Method for manufacturing silicon ring
CN110079862B (en) Silicon carbide single crystal substrate, silicon carbide epitaxial substrate, and methods for producing these
KR100637915B1 (en) Silicon electrode plate
JP2007053178A (en) Method of manufacturing silicon wafer
KR101485830B1 (en) Single Crystal Silicon Componet with Improved Durability for Plasma Appratus and Preparation Method Thereof
JP2010034128A (en) Production method of wafer and wafer obtained by this method
JP6493253B2 (en) Silicon wafer manufacturing method and silicon wafer
KR100922620B1 (en) Method of manufacturing a silicon matter for plasma processing apparatus
JP4248804B2 (en) Semiconductor wafer and method for manufacturing semiconductor wafer
KR101515373B1 (en) Preparation Method of Single Crystal Silicon Componet with Improved Durability for Plasma Appratus
KR20190040328A (en) Silicon wafer polishing method, silicon wafer manufacturing method, and silicon wafer
KR100918076B1 (en) Method of manufacturing a silicon matter for plasma processing apparatus
KR100779728B1 (en) Method for manufacturing silicon matter for plasma processing apparatus
KR100922621B1 (en) Method of manufacturing a silicon matter for plasma processing apparatus
KR100867389B1 (en) Method of manufacturing a silicon matter for plasma processing apparatus
JP2011124578A (en) Method of producing semiconductor wafer
JP7172878B2 (en) Method for measuring resistivity of single crystal silicon
JP7570489B2 (en) Parts for semiconductor device manufacturing equipment, semiconductor device manufacturing equipment including the same, and method for manufacturing semiconductor device
KR102577497B1 (en) Part for semiconductor device manufacturing apparatus, semiconductor device manufacturing apparatus including same, and manufacturing method for semiconductor device
JP4655861B2 (en) Manufacturing method of substrate for electronic device
TWI857908B (en) Upper electrode, semiconductor device fabrication apparatus including the same, and method of fabricating semiconductor device including the same
KR101984223B1 (en) A Cathode Electrode for Plasma Apparatus and Preparation Method Thereof
TWI655326B (en) Wafer and method of manufacturing the same
TW202437329A (en) Component for semiconductor device fabrication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14876268

Country of ref document: EP

Kind code of ref document: A1