WO2015100864A1 - 分析仪流水线的试管架及其移位检测方法和装置 - Google Patents

分析仪流水线的试管架及其移位检测方法和装置 Download PDF

Info

Publication number
WO2015100864A1
WO2015100864A1 PCT/CN2014/074262 CN2014074262W WO2015100864A1 WO 2015100864 A1 WO2015100864 A1 WO 2015100864A1 CN 2014074262 W CN2014074262 W CN 2014074262W WO 2015100864 A1 WO2015100864 A1 WO 2015100864A1
Authority
WO
WIPO (PCT)
Prior art keywords
test tube
voltage
tube rack
shift
detection signal
Prior art date
Application number
PCT/CN2014/074262
Other languages
English (en)
French (fr)
Inventor
杜贤算
胡力坚
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Publication of WO2015100864A1 publication Critical patent/WO2015100864A1/zh
Priority to US15/198,436 priority Critical patent/US10481170B2/en
Priority to US16/576,702 priority patent/US11181539B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/021Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a flexible chain, e.g. "cartridge belt", conveyor for reaction cells or cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/06Test-tube stands; Test-tube holders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0825Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the breast, e.g. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/523Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for generating planar views from image data in a user selectable plane not corresponding to the acquisition plane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4427Device being portable or laptop-like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5292Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves using additional data, e.g. patient information, image labeling, acquisition parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0412Block or rack elements with a single row of samples
    • G01N2035/0413Block or rack elements with a single row of samples moving in one dimension

Definitions

  • the present application relates to a test tube rack technology of an analyzer pipeline, and more particularly to an analyzer pipeline system, a test tube rack thereof, a shift detection method and device.
  • the test tube rack On the blood cell analysis line, the test tube rack is loaded with test tubes (with blood samples) from the loading platform along the track to the detection area of the blood cell analyzer, and then each time a test tube is moved so that the test tubes pass through the test tubes with or without the test sensors. And the sampling needle, the analyzer detects the number and collects the sample. Since the test tube rack can hold multiple samples, if the test tube rack is not moved due to some factors, such as the motor losing step (ie, the test tube does not move to the predetermined position), the remaining samples can be incorrectly detected and sampled. Eventually, the detection result is inaccurate with the identity of the subject, and there is a great clinical risk.
  • the flow line will detect whether the test tube rack is in place or not, and alarm when the movement is not in place.
  • the existing detection technology uses a fiber optic sensor to detect the characteristic area on the back of the test tube rack, and relies on the difference of the reflected signals in different areas to achieve the in-position detection.
  • a groove 104 having a depth of about 6 mm is processed in the middle of the two test tubes at the back of the test tube rack 101, and the test tube holder 101 is penetrated at the tube position, and the width between the groove 104 and the through region 105 is narrow. Edge 103.
  • the sensor is aligned by the position to align the center of the groove 104.
  • the sensor will move from aligning the previous groove to aligning the next groove, during which the sensor will experience the groove - Edge-test tube-edge-groove five characteristic areas (the tube is penetrated so the sensor will directly detect the tube). Since the groove or the test tube is far away from the sensor, the reflected light is weak; while the edge is close to the distance and the reflected light is strong, the reflected signal will exhibit low-high-low-high-low characteristics during the shifting process.
  • the absolute value discrimination method of the detection signal is adopted, that is, a threshold level is first taken between the groove signal and the edge signal, and the tube rack shifting process compares the signal level with the threshold level, if two higher than the threshold value appear
  • the flat pulse indicates that the shift has passed through two edges, which means that the test tube rack is moved into position.
  • the sensor detection area includes the test tube, if the test tube is not labeled with a barcode, the glass tube may reflect the signal at some angles when the sample is loaded, and a false pulse is formed beyond the threshold, even if the test tube is bar coded. Some bar code paper surfaces are very bright, and may also cause the reflected signal to become very strong, forming a false pulse.
  • test tube shift detection technology has the risk of missed detection for the displacement failure, and the reliability is not high, and there is still a clinical risk.
  • the general detection technology in order to solve the temperature change, the sensor aging, the position of the test tube rack in the guide rail (the guide rail has a certain width, the test tube rack in the width direction of the guide rail, that is, the front and rear direction, can change about 1mm), the test tube rack becomes dirty and other factors
  • the change of the size of the reflected signal affects the reliability of the detection result.
  • the optical fiber sensor is used to widen the gap between the groove signal and the edge signal as much as possible. .
  • the cost of the fiber optic sensor is expensive, which leads to an increase in the cost of the test instrument, which largely limits the wide application of the test tube shift detection technology.
  • test tube rack of an analyzer pipeline the test tube rack is provided with a plurality of test tube positions for accommodating test tubes, and a side of the test tube rack is provided with a light blocking plate spanning a plurality of test tube positions, and the light blocking plate is in phase
  • a second feature area is disposed between two adjacent test tube positions, and a first feature area is between the adjacent two second feature areas, and the first feature area and the second feature area have a step difference of a preset depth.
  • a method for performing displacement detection on a test tube rack of the above analyzer pipeline comprising:
  • test tube rack shift error is determined.
  • a device for performing displacement detection on a test tube rack of the above analyzer pipeline comprising:
  • a characteristic voltage acquiring module configured to acquire a detection signal of the sensor output during a single shift of the test tube rack, and obtain, from the detection signal, an end voltage at the end of the tube rack displacement and a shift between the initial shift and the end of the shift Maximum voltage
  • the shift determination module is configured to determine whether the ratio of the highest voltage component to the end voltage satisfies the first determination condition. If it is satisfied, it is determined that the test tube rack shift is correct, otherwise, the test tube rack shift error is determined.
  • An analyzer pipeline system comprising:
  • a sensor for detecting a first feature area and a second feature area on the test tube rack during the shift of the test tube rack, and outputting a corresponding detection signal
  • the processor includes a test tube rack displacement detecting device coupled to the output end of the sensor, receiving a detection signal output by the sensor, and determining whether the test tube rack is properly displaced.
  • the detection signal is obtained by detecting the first characteristic area and the second characteristic area. Since the test tube is blocked by the light blocking plate, the detection spot is not irradiated to the test tube during the detection process, and thus the detection signal is not subjected to the test tube. Or the bar code paper reflects the signal interference, and will not miss the test when the test tube rack is displaced incorrectly, which improves the reliability.
  • test tube shift detection method belongs to the feature area signal relative value detection method, and the distance sensitivity performance requirement of the photoelectric sensor can be greatly reduced, and the general reflective photoelectric sensor can meet the requirement, and the cost of the sensor can be reduced.
  • FIG. 1 is a schematic structural view of a conventional analyzer pipeline test tube rack
  • FIG. 2 is a schematic view showing the operation of an analyzer pipeline test tube rack and a displacement detecting device thereof in an embodiment
  • FIG. 3 is a schematic structural view of a test tube line of a analyzer in an embodiment
  • Figure 4 is a reflection signal-distance characteristic curve (distance sensitivity curve) of a general-purpose reflective photoelectric sensor
  • FIG. 5 is a schematic flow chart of a method for detecting displacement of a test tube line of a analyzer in an embodiment
  • FIG. 8 is a schematic block diagram of a test tube shift detecting device in an embodiment.
  • Figure 9 is a partial circuit diagram of a shift detecting device in an analyzer pipeline system of an embodiment.
  • FIG. 2 is a schematic view showing the operation of a test tube rack and a displacement detecting device thereof in an analyzer pipeline system according to an embodiment.
  • the analyzer pipeline system includes one or more cascaded analyzers. Only one analyzer is shown in FIG. 2. This embodiment is also illustrated by taking an analyzer as an example.
  • the analyzer can be a pusher, a blood cell analyzer or a biochemical analyzer.
  • the test tube rack 201 is transferred to the detection zone of the analyzer 202, each time a test tube position is moved such that the test tube 203 passes one by one through the first sensor 205 located at the test tube presence detection location 204 and the second sensor located at the sample collection location 206. 207.
  • test tube rack may only lag behind the target position due to motor loss, belt slippage, bar code sticking, etc., and thus the test tube is not advanced.
  • the shelf shift detection also only needs to detect whether the test tube rack is behind or not, and whether the backward distance is within the allowable range, that is, whether it is moved into position.
  • Arrow 209 in Figure 2 is the direction of displacement of the test tube rack.
  • the test tube rack of the analyzer pipeline of an embodiment is provided with a plurality of test tube positions for accommodating the test tube 301, and a side of the test tube rack (for example, a side facing the light sensor) is disposed across the plurality of test tubes.
  • the light-shielding plate 300 has a second feature area 303 disposed between two adjacent test tube positions, and a first feature area 302 between the two adjacent second feature areas 303.
  • the first feature region 302 and the second feature region 303 have a step difference of a predetermined depth.
  • the first feature area 302 and the second feature area 303 are alternately and uniformly disposed on the light blocking plate 300.
  • the second feature region 303 is a groove lower than a predetermined depth of the first feature region 302, or the second feature region 303 is a boss higher than a preset depth of the first feature region 302.
  • the second feature area 303 is a recess that is lower than the preset depth of the first feature area 302 as an example.
  • the first feature region 302 may not be an area specially processed by the light barrier 300, and may be an original sidewall of the test tube rack, and the first feature region 302 and the first feature region are realized by processing the second feature region 303.
  • the second feature region 303 is processed into a groove lower than a predetermined depth of the first feature region 302, or processed into a boss higher than a predetermined depth of the first feature region 302.
  • the step difference between the first feature region 302 and the second feature region 303 can also be achieved by processing the first feature region 302.
  • the first feature region 302 and the second feature region 303 may also be purposely machined into grooves and bosses, respectively, or into bosses and grooves.
  • the second feature area 303 is a groove lower than a preset depth of the first feature area 302, and the preset depth is 5-7 mm. Specifically, it may be 6 mm, and at the same time, the first feature area 302 is a platform. It should be noted that when the sensor is a reflective photoelectric sensor, the detection signal emitted by the sensor is a beam of light. Generally, the widths of the first feature region 302 and the second feature region 303 need to be greater than or equal to the width of the spot. It is ensured that reflected light of different intensities reflected from the first feature region 302 and the second feature region 303 can be obtained.
  • the widths of the first feature region 302 and the second feature region 303 may also be slightly smaller than the width of the spot, provided that the difference reflected from the first feature region 302 and the second feature region 303 can be obtained.
  • the reflected light of intensity In this embodiment, the width of the second feature region 303 can be set to 6 mm, and the width of the first feature region 302 is generally dependent on the width of the tube position.
  • the sensor may also employ an acoustic wave sensor, such as an ultrasonic sensor, to detect the first feature region 302 and the second feature region 303 based on the reflected acoustic intensity.
  • the light blocking plate 300 may be disposed on the upper half or the lower half of the side of the test tube rack. In the present embodiment, preferably, the light blocking plate 300 is disposed on the upper half of the side of the test tube rack to enhance the stability of the test tube rack. Since the analyzer also needs to detect other various parameters during the analysis, in this embodiment, the portion of the test tube rack that is not provided with the light barrier 300 on the side of the test tube rack has the third feature region 304, and the third feature region 304 is disposed at The sides of the tube position are grooves that are lower than the predetermined depth of the side wall of the tube rack, or a boss that is higher than the predetermined depth of the side wall of the tube rack.
  • the side wall of the test tube rack refers to the surface to which the light blocking plate 300 on the test tube rack is attached, as shown by 305 in FIG.
  • the lower half of the side of the test tube rack and the position of the test tube remain in front and rear for detection of other parameters, such as scanning of the test tube barcode.
  • the test tube rack of the analyzer pipeline provided by the embodiment is configured to adjust the focus of the sensor reflection light path to the center of the groove (second feature area) by position adjustment, and the distance between the sensor and the first feature area is about At the point of reflection peak position of the sensor, each time the test tube rack is displaced, the sensor scans from the center of a groove on the test tube rack to the center of the next groove, and the distance between the light reflection surface and the sensor is also far-near. - In the far process, the reflected signal synchronously exhibits a weak-strong-weak change process.
  • the depth of the test tube rack groove is 6 mm, and the step difference of 6 mm can obtain a signal strength variation of not less than 50% for the general reflection type photoelectric sensor, which is sufficient to ensure the displacement of the test tube rack. The accuracy.
  • Figure 4 is the reflected signal-distance characteristic curve (distance sensitivity curve) of the general reflective photoelectric sensor.
  • a strip groove 303 having a width of 6 mm and a depth of 6 mm exists in the middle of the adjacent two test tube positions on the side of the test tube rack, and a tube position (20 mm) is spaced between the adjacent two grooves 303.
  • the groove 303 is a complete first feature area 302 (platform), rather than front and rear through, the structural feature of the upper part of the entire test tube frame is "... groove 303 - platform 302 - groove 303 - platform 302 - Groove 303", the above feature is the area detected by the sensor.
  • the second feature area 303 is a boss
  • the structural feature of the upper side of the entire test tube rack is "...
  • boss 303 - platform 302 - boss 303 - platform 302 - boss 303 - boss 303 - boss 303 " Since the test tube position (first characteristic area 302) is not penetrated back and forth, the sensor does not detect the test tube 301, and the reflected signal is not affected by the test tube or the barcode paper, so there is no false signal that causes the missed detection.
  • the test tube rack shift detection method of the embodiment includes:
  • Step 501 Acquire a detection signal of the sensor output during a single shift of the test tube rack.
  • the test tube rack is shifted from the beginning to the stop to a single shift.
  • Step 502 Perform amplification and digital filtering on the detection signal to eliminate noise, interference of local entanglement factors on the surface of the test tube frame, and obtain a more realistic signal.
  • the digital filtering can select a median filtering algorithm.
  • Step 503 Acquire an initial voltage V_ORI at the initial stage of the test tube shift, an end voltage V_END at the end of the shift, and a maximum voltage V_EXT between the shift initial and the end of the shift from the digitally filtered signal.
  • the detection signal is correspondingly “...low-high-low-high-low...”
  • the maximum value voltage V_EXT is the maximum voltage V_MAX
  • the detection signal is correspondingly "...high-low-high-low-high"
  • the maximum value voltage V_EXT is the minimum voltage V_MIN.
  • the maximum value voltage V_EXT is taken as the maximum value voltage V_MAX, that is, the second characteristic area in the test tube rack is taken as an example.
  • FIG. 6 is a complete detection signal of the single-displacement process of the test tube rack recorded in the embodiment.
  • the initial voltage V_ORI of the detection signal is measured at the beginning of the shift, and the signal point is defined as the starting point; then the end voltage V_END is measured when the tube rack shift is just stopped, and the signal point is defined as the end point; After the groove-platform-groove of the test tube rack, the signal will show a bell-shaped change, and the maximum voltage V_MAX is sought between the start point and the end point.
  • the second characteristic area on the test tube rack is a boss
  • the corresponding detection signal is an inverted bell shape, at which time a minimum voltage V_MIN is sought between the start point and the end point.
  • Step 504 It is determined whether the ratio of the maximum voltage V_MAX and the initial voltage V_ORI satisfies the second determining condition, and whether the ratio of the maximum voltage V_MAX and the ending voltage V_END satisfies the first determining condition, and if both are satisfied, it is determined that the test tube is moved. The bit is correct, otherwise, it is judged that the test tube rack is displaced incorrectly. It should be understood that in other embodiments, it may also be determined whether only the ratio of the maximum voltage V_MAX and the end voltage V_END satisfies the first determination condition. If it is satisfied, it is determined that the test tube rack is correctly displaced. Otherwise, it is determined that the test tube rack is shifted. In the present embodiment, in order to ensure the accuracy of the judgment, the judgment of the ratio of the maximum voltage V_MAX to the initial voltage V_ORI is increased.
  • the first determining condition includes that the ratio of the maximum voltage V_MAX to the ending voltage V_END is greater than the first discriminating coefficient k1
  • the second determining condition includes that the ratio of the maximum voltage V_MAX to the initial voltage V_ORI is greater than the second discriminating coefficient k2
  • k1 and k2 are constants greater than one.
  • the values of k1 and k2 are related to the relative difference between the signal of the test tube rack platform and the groove signal. The larger the difference is, the larger k1 and k2 are.
  • the signal difference between the test tube rack platform and the groove is related to the sensor's reflected signal-distance characteristics, groove depth and other factors. In a specific example, for a general-purpose reflective photoelectric sensor, in the case where the tube holder groove depth is 6 mm, k1 and k2 may take values of 1.5 to 2.0, and usually k1 and k2 may take the same value.
  • the first determination condition when the first characteristic area of the test tube rack is a boss, the first determination condition includes that the ratio of the minimum voltage V_MIN to the end voltage V_END is smaller than the first discrimination coefficient k3, and the second determination condition includes the minimum voltage V_MIN and The ratio of the initial voltage V_ORI is smaller than the second discrimination coefficient k4, and the relationship is expressed as follows:
  • k3 and k4 are constants greater than 0 and less than 1, and the value forms are similar to the above k1 and k2, and are not described herein again.
  • V_ORI corresponds to a groove area on the test tube rack
  • V_END corresponds to the next groove area
  • V_MAX corresponds to the platform area of the test tube rack, that is, The displacement undergoes the groove-platform-groove process, and the test tube rack must be moved to the destination point, ie the current shift is correct. If V_MAX/V_END>k1 Not true, indicating that a groove on the test tube rack left the sensor, but the next groove failed to reach the sensor, the platform area of the test tube rack stayed at the sensor, and the test tube rack was displaced incorrectly.
  • V_MAX/V_ORI>k2 If it is not established, it means that the test tube rack is stuck in the previous platform area. Generally, when the test tube rack shift error occurs, the next shift will be performed before the next shift. Therefore, equation (2) is usually established.
  • step 504 determines that the test tube rack is displaced incorrectly, the alarm device is controlled to perform an alarm. In this embodiment, when it is determined in step 504 that the test tube rack is displaced incorrectly, the following steps are further included:
  • Step 505 Control the test tube rack to perform heavy load shifting, and obtain a detection signal of the sensor output during the heavy load shift.
  • the heavy-duty shift means that when the current shift of the test tube rack is determined to be wrong, the test tube rack is again shifted to shift the test tube rack to the correct target position.
  • the driving mechanism for shifting the test tube rack is generally a stepping motor, and the motor has a specific step length, which is just equal to the distance of one shift, and when the shift is wrong for heavy load shift, the test tube rack The required shift distance must be less than one step, but the motor still drives the test tube rack displacement in the original step. Since there is a blocking mechanism at the target position, the test tube rack does not shift beyond the target position. .
  • Step 506 Re-acquire the initial voltage, the end voltage and the maximum voltage in combination with the detection signal of the last shift, and then go to step 504.
  • step 506 Re-acquire the end voltage at the end of the heavy load shift.
  • step 505 and step 506 may be: if it is determined in step 504 that the test tube rack is moved incorrectly, the system will cache two signal feature points of V_ORI and V_MAX, and then perform heavy shifting. And obtain the same three signal feature points of the heavy load shift process, namely the initial voltage V_ORI, the maximum voltage V_MAX and the end voltage V_END.
  • the storage step is added, and the storage shift process is acquired.
  • the reload shift may be one time or any number of times until the reacquired initial voltage V_ORI, the maximum voltage V_MAX, and the end voltage V_END satisfy the judgment condition, that is, until the test tube rack is displaced correctly.
  • FIG. 7 is a complete detection signal of the tube reload shift process recorded in a specific application example.
  • the test tube rack is displaced for the first time, it is stuck at the corresponding position of the rising edge of the signal.
  • the maximum voltage V_MAX is equal to the end voltage V_END, and V_MAX/V_END>k1 is not satisfied, so the heavy load shift is automatically performed.
  • the highest point of the signal is obtained during the first heavy load shift, which corresponds to the test tube platform area, but the test tube rack is stuck at the corresponding position of the falling edge of the signal, and the end voltage is too large, and the criterion is still not satisfied, and the second weight is performed. Load shift.
  • the second heavy-duty shifting test tube rack moves to the target position, the end voltage corresponds to the groove area, and the maximum voltage is still the highest point voltage at the first heavy load, thus satisfying the criterion. 6 and 7, it can be seen that although the heavy load shift is performed a plurality of times, the obtained maximum voltage is the same as that at the time of successful single shift, and the initial voltage and the end voltage are also the same. That is to say, in the shift detection method provided by the embodiment, the key features of the signal are not lost, and the detection signal after the heavy load shift is equivalent to the detection signal obtained by the single displacement of the test tube rack, so the entire shift process is High reliability does not cause false negative missed detection.
  • the test tube shift detection method provided in this embodiment belongs to the feature area signal relative value detection method, and the distance sensitivity performance requirement of the photoelectric sensor can be greatly reduced, and the general reflective photoelectric sensor can meet the requirement, and the cost of the sensor can be reduced.
  • the test tube rack shift detection method can only stop and alarm immediately when the test tube rack is not in the current position, and does not support the whole system to automatically perform the re-transition or continuous multiple shift process to eliminate the fault.
  • the degree is low, which is easy to cause user dissatisfaction.
  • the heavy-duty shift function is further added, that is, the breakpoint recovery detection technology is realized, and in the case that the test tube rack is not in the current position, the breakpoint recovery detection technology can be used to reload the load until the test tube rack moves to the test tube rack.
  • Target location high level of intelligence, and a better user experience.
  • the apparatus for measuring the tube rack displacement of the analyzer pipeline in an embodiment in a specific example, includes the feature.
  • the characteristic voltage obtaining module 601 is configured to acquire a detection signal of the sensor output during the single shift of the test tube rack, and obtain the end voltage at the end of the tube rack shift and the maximum value between the shift initial and the shift end from the detection signal. Voltage.
  • the shift determination module 602 is configured to determine whether the ratio of the maximum voltage to the end voltage satisfies the first determination condition. If it is satisfied, it is determined that the test tube rack shift is correct, otherwise, the test tube rack shift error is determined.
  • the characteristic voltage obtaining module 601 is further configured to: after acquiring the detection signal output by the sensor during the single shift of the test tube rack, obtain the initial voltage at the initial stage of the test tube shift from the single-shifted detection signal. .
  • the shift determination module 602 is further configured to: when determining whether the ratio of the maximum voltage to the end voltage meets the first determination condition, further determine whether the ratio of the maximum voltage to the initial voltage satisfies the second determination condition, and if both are satisfied, It is judged that the test tube rack is displaced correctly, otherwise, it is judged that the test tube rack is displaced incorrectly.
  • the first determining condition includes that the ratio of the maximum voltage to the ending voltage is greater than the first determining coefficient, and the second determining condition includes that the ratio of the maximum voltage to the initial voltage is greater than the second determining coefficient; or the first determining condition includes The ratio of the maximum voltage to the end voltage is smaller than the first discrimination coefficient, and the second determination condition includes that the ratio of the maximum voltage to the initial voltage is smaller than the second determination coefficient.
  • the shift determination module 602 may further control the alarm device to perform an alarm after determining that the test tube rack is displaced incorrectly.
  • the apparatus for tube rack displacement detection further includes a heavy load shifting module 603.
  • the heavy load shifting module 603 is configured to control the test tube rack to perform heavy load shift after the shift determination module 602 determines that the test tube rack is displaced incorrectly, and obtain the detection signal outputted by the sensor during the heavy load shift, combined with the last shift
  • the shift determining module 602 determines whether the ratio of the re-acquired maximum voltage to the end voltage satisfies the first determination condition, and the re-acquired maximum voltage and initial voltage Whether the ratio satisfies the second judgment condition, if both are satisfied, it is determined that the test tube rack shift is correct; otherwise, the control heavy load shift module 603 continues the heavy load shift until it is determined that the test tube rack shift is correct. It should be noted that if only the ratio of the maximum value voltage to the end voltage is determined to satisfy the first determination condition during the last shift process, only the maximum value
  • the heavy-duty shifting module 603 controls the test-tube rack to perform heavy-duty shifting, and reacquires the initial voltage, the ending voltage, and the maximum voltage:
  • the initial voltage, the end voltage, and the maximum voltage are obtained from the detection signal outputted by the sensor, and the initial voltage and the end of the buffer are detected from the detection signal outputted by the sensor during the last shift.
  • the voltage is compared with the maximum voltage; the smaller of the two initial voltages is selected as the current initial voltage; when the maximum voltage is the maximum value, the larger of the two highest voltages is selected as the current maximum voltage, when When the maximum value voltage is the minimum value, the smaller of the two highest value voltages is selected as the current maximum value voltage; the end voltage obtained during the current heavy load shift is selected as the current end voltage.
  • the heavy load shifting module 603 sequentially integrates the detection signals output by the sensors during the multiple shifting process into a complete detection signal, and obtains an initial voltage, an ending voltage, and a maximum voltage from the complete detection signal.
  • the apparatus for performing displacement detection on the test tube rack of the analyzer pipeline adopts the feature area signal relative value detection method, so that the distance sensitivity performance requirement of the photoelectric sensor can be greatly reduced, and the general reflective photoelectric sensor can satisfy Requirements can reduce the cost of the sensor.
  • An analyzer pipeline system of one embodiment includes one or more cascaded analyzers; a test tube rack provided by the above embodiment; a drive mechanism for driving the shift of the test tube rack; and for detecting during the shift of the test tube rack a first characteristic area and a second characteristic area on the test tube rack, and outputting a sensor corresponding to the detection signal; and a processor, the processor includes a test tube rack displacement detecting device, the test tube rack displacement detecting device is coupled to the output end of the sensor, and the receiving sensor The output detection signal determines whether the test tube rack is displaced correctly.
  • the test tube rack displacement detecting device acquires an initial voltage at the initial stage of the single shift of the test tube rack and an end at the end of the single shift based on the detection signals output by the sensor according to the first feature region and the second feature region.
  • the voltage and the maximum value between the initial shift and the end of the single shift and determine whether the ratio of the maximum voltage to the end voltage satisfies the first judgment condition, and whether the ratio of the maximum voltage to the initial voltage satisfies the second judgment Condition, if both are satisfied, it is judged that the test tube rack is displaced correctly, otherwise, it is judged that the test tube rack is displaced incorrectly.
  • the test tube rack displacement detecting device is further configured to control the test tube rack to perform heavy load shift after determining that the test tube rack is displaced, and obtain the detection signal outputted by the sensor during the heavy load shifting process, combined with the detection signal of the last shift, Re-acquiring the initial voltage, the end voltage, and the maximum voltage, determining whether the ratio of the re-acquired maximum voltage to the end voltage satisfies the first determination condition, and whether the ratio of the re-acquired maximum voltage to the initial voltage satisfies the second determination condition, if If both are satisfied, it is judged that the test tube rack is displaced correctly. Otherwise, the test tube rack is continuously controlled to perform heavy load shift until it is judged that the test tube rack is displaced correctly.
  • the sensor 801 includes a first sensor 205 located at the presence or absence of the test bit 204, and a second sensor 207 located at the sample collection location 206.
  • the first sensor 205 and the second sensor 207 are two identical reflective photoelectric sensors, and the first sensor 205 is configured to confirm whether the test tube rack is moved into position on the presence or absence of the test tube, and the position is shifted. An error can result in a wrong sample (test tube) number; a second sensor 207 can be used on the sample acquisition location, where a shift error can result in a sample acquisition error.
  • the test tube rack has 10 test tube positions, and the first sensor 205 and the second sensor 207 are separated by 6 test tube positions.
  • the number of test tube positions separated by the first sensor 205 and the second sensor 207 can be determined according to specific Need to set up.
  • the two sensors are separated by 6 test tubes. Since the test tube rack has 10 test tube positions, in some positions, the two sensors can simultaneously detect the test tube rack, and the detection result of one of the sensors can be fixed.
  • the two sensors are set to ensure that all the tubes can be detected for displacement when passing through the test tube with or without the test position.
  • only one sensor can be used, but in order to ensure all
  • the test tube can be displaced when the test tube is in the presence or absence of the test position and the sample collection position, and the test tube holder must be extended a portion, and the characteristic area for the test tube shift detection is also provided on the portion.
  • the present embodiment preferably employs two sensors.
  • FIG. 8 is a partial specific circuit of the test tube rack displacement detecting device.
  • the amplifying circuit 803 and the digital filter 804 are located between the sensor 801 and the processing circuit 802 for amplifying the detection signal output by the sensor and performing digital filtering processing.
  • the processing circuit 802 obtains an initial voltage, an end voltage, and a maximum voltage from the digitally filtered processed signal;
  • the driving circuit 805 is located between the sensor 801 and the processor 802 for driving the sensor to transmit the detection signal.
  • the processing circuit 802 can also be used to control the alarm device (not shown in the drawing) to make an alarm after determining that the test tube rack is displaced.
  • the test tube rack has only a first feature area and a second feature area for shift detection, and the sensor detection area is avoided In the test tube, the detection signal is not interfered by the reflection signal of the test tube or the barcode paper, and the test tube rack is not missed in the case of displacement error, thereby improving the reliability.
  • the test tube shift detection method belongs to the feature area signal relative value detection method, that is, the relative displacement of the signal at the weak point of the strong signal is used to discriminate the displacement of the test tube rack, and the distance sensitivity performance requirement of the photoelectric sensor can be greatly reduced.
  • the universal reflective photoelectric sensor can meet the requirements and reduce the cost of the sensor.
  • the shift can be carried out by itself until the test tube rack is moved to the target position, that is, the breakpoint recovery detection technology is realized, and no abnormality is required when the test tube rack is displaced abnormally.
  • the system can be allowed to automatically perform heavy-duty shifting and finally reach the target position, thereby improving the intelligence of the instrument. Since the time interval from the previous shift to the heavy-duty shift is short, the user cannot perceive that the instrument has experienced an abnormality. Good user experience
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM) or a random storage memory (Random). Access Memory, RAM), etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Clinical Laboratory Science (AREA)
  • Quality & Reliability (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种分析仪流水线的试管架,所述试管架(201)设置有多个用于容纳试管(203)的试管位,试管架(201)一侧面设置有横跨多个试管位的挡光板(300),所述挡光板(300)上在相邻两个试管位之间设置有第二特征区域(303),相邻两个第二特征区域(303)之间为第一特征区域(302),第一特征区域(302)和第二特征区域(303)具有预设深度的台阶落差。

Description

分析仪流水线的试管架及其移位检测方法和装置
【技术领域】
本申请涉及分析仪流水线的试管架技术,尤其涉及一种分析仪流水线系统及其试管架、移位检测方法和装置。
【背景技术】
在血细胞分析流水线上,试管架装载着试管(装有血液样本)从装载平台沿着轨道被皮带传送到血细胞分析仪的检测区,然后每次移动一个试管位使得试管逐一经过试管有无检测传感器和采样针,被分析仪检测编号并进行样本采集。由于试管架可装有多个样本,如果由于某些因素,如电机丢步,致使试管架移动不到位(即试管没有移动到预定的位置),那么可导致剩余样本被错误检测编号和采样,最终导致检测结果与被检测者身份对应错乱,存在很大的临床风险。
为避免出现临床风险,流水线上将对试管架移动是否到位进行检测,在移动不到位情况下报警。现有的检测技术使用光纤传感器来检测试管架背面的特征区域,依靠不同区域反射信号的不同来实现到位检测。请参考图1,试管架101背面两试管位中间被加工出深度约6mm的凹槽104,而试管架101在试管位处是前后贯通的,凹槽104和贯通区105之间是宽度较窄的棱边103。传感器通过位置调节来对准凹槽104的中心,试管架101每次移动一个试管位,传感器将从对准上一个凹槽移到对准下一个凹槽,这个过程中传感器将经历凹槽-棱边-试管-棱边-凹槽五个特征区域(试管位贯通因此传感器将直接探测到试管)。由于凹槽或试管与传感器距离远,反射光弱;而棱边距离近,反射光强,因此移位过程中反射信号将出现低-高-低-高-低的特征。
一般的采用检测信号绝对值判别法,即先在凹槽信号与棱边信号中间取一阈值电平,试管架移位过程把信号电平与阈值电平对比,如果出现两个高于阈值电平的脉冲,说明移位经过了两个棱边,也即说明试管架移动到位。但由于传感器检测区域包括了试管,如果试管没有贴上条码,在装有样本情况下在某些角度上玻璃试管反射信号有可能很强,超出阈值形成假脉冲,即使试管贴上了条码,但有些条码纸表面非常光亮,同样可能导致反射信号变得很强,形成假脉冲。那么在两个凹槽之间将可能存在多个高于阈值的脉冲,在试管架移位失败情况下造成假阴性判断。即该试管架移位检测技术对移位失败存在漏检的风险,可靠性不高,仍存在临床风险。
此外,一般检测技术为了解决温度变化、传感器老化、试管架在导轨内位置变化(导轨有一定宽度,试管架在导轨宽度方向,即前后方向,可改变约1mm)、试管架变脏等因素导致反射信号大小变化进而影响到检测结果可靠性的问题,只能选择反射信号对距离变化很敏感的高性能光电传感器——光纤传感器,目的是尽可能拉大凹槽信号和棱边信号的大小差距。但光纤传感器造价昂贵,导致检测仪器成本升高,很大程度上限制了试管架移位检测技术的广泛应用。
【发明内容】
基于此,有必要提供一种具有高检测可靠性,低成本的分析仪流水线系统及其试管架、移位检测方法和装置。
一种分析仪流水线的试管架,所述试管架设置有多个用于容纳试管的试管位,所述试管架一侧面设置有横跨多个试管位的挡光板,所述挡光板上在相邻两个试管位之间设置有第二特征区域,相邻两个第二特征区域之间为第一特征区域,所述第一特征区域和第二特征区域具有预设深度的台阶落差。
一种对上述分析仪流水线的试管架进行移位检测的方法,包括:
获取试管架单次移位过程中传感器输出的检测信号,并从该单次移位的检测信号中获取试管架移位结束时的结束电压和移位初始与移位结束之间的最值电压;
判断所述最值电压与结束电压的比值是否满足第一判断条件,如果满足,则判断为试管架移位正确,否则,判断为试管架移位错误。
一种对上述分析仪流水线的试管架进行移位检测的装置,包括:
特征电压获取模块,用于获取试管架单次移位过程中传感器输出的检测信号,并从所述检测信号中获取试管架移位结束时的结束电压和移位初始与移位结束之间的最值电压;
移位判断模块,用于判断所述最值电压分与结束电压的比值是否满足第一判断条件,如果满足,则判断为试管架移位正确,否则,判断为试管架移位错误。
一种分析仪流水线系统,包括:
分析仪;
上述的试管架;
驱动机构,用于驱动试管架移位;
传感器,用于在试管架移位过程中检测试管架上第一特征区域和第二特征区域,并输出对应检测信号;及
处理器,所述处理器包括试管架移位检测装置,所述试管架移位检测装置耦合到传感器的输出端,接收传感器输出的检测信号,判断试管架是否移位正确。
上述试管架在移位检测过程中,通过检测第一特征区域和第二特征区域获取检测信号,由于试管被挡光板遮挡,检测过程中,检测光斑不会照射到试管,因而检测信号不受试管或条码纸反射信号干扰,在试管架移位错误情况下不会漏检,提高了可靠性。
另外,试管架移位检测方法属于特征区域信号相对值检测法,对光电传感器的距离灵敏度性能要求可大幅降低,通用的反射式光电传感器就可满足要求,可以降低传感器的成本。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为传统的分析仪流水线试管架的结构示意图;
图2为一实施方式中的分析仪流水线试管架及其移位检测装置的工作示意图;
图3为一实施方式中分析仪流水线试管架的结构示意图;
图4为通用的反射型光电传感器的反射信号-距离特征曲线(距离灵敏度曲线);
图5为一实施方式中分析仪流水线试管架移位检测方法的流程示意图;
图6为一实施方式中记录的试管架单次移位过程完整的检测信号;
图7为一具体实施方式记录的试管重载移位过程完整的检测信号;
图8为一实施方式中试管架移位检测装置的模块示意图;及
图9为一实施方式分析仪流水线系统中移位检测装置的部分具体电路图。
【具体实施方式】
以下说明提供了用于完全理解各个实施例以及用于本领域的技术人员实施的特定细节。然而,本领域的技术人员应该理解,无需这样的细节亦可实践本发明。在一些实例中,为了避免不必要地混淆对实施例的描述,没有详细示出或描述公知的结构和功能。
除非上下文清楚地要求,否则,贯穿本说明书和权利要求的用语“包括”、“包含”等应以包含性的意义来解释而不是排他性或穷尽性的意义,即,其含义为“包括,但不限于”。
图2为一实施方式的分析仪流水线系统中试管架及其移位检测装置的工作示意图。分析仪流水线系统包括一台或多台级联的分析仪,图2中只示出了一台分析仪,本实施例也以一台分析仪为例进行说明。分析仪可以是推片机、血细胞分析仪或生化分析仪。在流水线上,试管架201被传送到分析仪202的检测区,每次移动一个试管位使得试管203逐一经过位于试管有无检测位204的第一传感器205和位于样本采集位206的第二传感器207。由于分析仪流水线试管架的每次移位,目标位置上都有阻挡机构208阻挡,因而试管架只可能由于电机丢步、皮带打滑、条码粘贴等原因落后于目标位置而不会超前,因此试管架移位检测也只需检测试管架是否落后,落后的距离是否在允许范围内,即是否移动到位。图2中箭头209为试管架的移位方向。
请参考图3,一实施方式的分析仪流水线的试管架设置有多个用于容纳试管301的试管位,试管架一侧面(例如朝向光传感器的一侧)设置有横跨多个试管位的挡光板300,挡光板300上在相邻两个试管位之间设置有第二特征区域303,相邻两个第二特征区域303之间为第一特征区域302。第一特征区域302和第二特征区域303具有预设深度的台阶落差。第一特征区域302和第二特征区域303交替均匀设置在挡光板300上。
在具体实施例中,第二特征区域303为低于第一特征区域302预设深度的凹槽,或者第二特征区域303为高于第一特征区域302预设深度的凸台。本申请实施例中主要以第二特征区域303为低于第一特征区域302预设深度的凹槽为例进行说明。
需要说明的是,第一特征区域302可以不是特意对挡光板300进行加工得到的一个区域,可以是试管架原有的侧壁,通过加工第二特征区域303来实现第一特征区域302和第二特征区域303之间的台阶落差。比如,将第二特征区域303加工成低于第一特征区域302预设深度的凹槽,或者加工成高于第一特征区域302预设深度的凸台。当然,在某些实施例中,也可以通过加工第一特征区域302来实现第一特征区域302和第二特征区域303之间的台阶落差。在某些实施例中,也可以特意将第一特征区域302和第二特征区域303分别加工成凹槽和凸台,或者加工成凸台和凹槽。
本实施例中,第二特征区域303为低于第一特征区域302预设深度的凹槽,该预设深度为5~7mm。具体的,可以为6mm,同时,第一特征区域302即为一平台。需要说明的是,当传感器为反射型光电传感器时,其发射的探测信号为一束光,一般的,第一特征区域302和第二特征区域303的宽度需要都大于或等于光斑的宽度,以保证可以得到表征从第一特征区域302和第二特征区域303反射的不同强度的反射光。在某些实施例中,第一特征区域302和第二特征区域303的宽度也可以略小于光斑的宽度,但其前提是可以得到表征从第一特征区域302和第二特征区域303反射的不同强度的反射光。本实施例中,可以将第二特征区域303的宽度设置为6mm,而第一特征区域302的宽度通常依赖于试管位的宽度。在其它实施例中,传感器也可以采用声波传感器,例如超声波传感器,根据反射的声波强度来探测识别第一特征区域302和第二特征区域303。
挡光板300可以设置在试管架侧面的上半部分或下半部分,本实施例中,优选的,将挡光板300设置在试管架侧面的上半部分,以加强试管架的稳定性。由于在分析过程中,分析仪还需要检测其它各种各样的参数,因此,本实施例中,试管架侧面没有设置挡光板300的部分具有第三特征区域304,第三特征区域304设置在试管位的两侧,为低于试管架侧壁预设深度的凹槽,或者为高于试管架侧壁预设深度的凸台。试管架的侧壁是指试管架上挡光板300所贴附的面,如图3中305所示。同时试管架侧面的下半部分、试管位处依然保持前后贯通,以用于其它参数的检测,例如试管条码的扫描。
本实施例提供的分析仪流水线的试管架在进行移位检测时,通过位置调节把传感器反射光路的焦点对准凹槽(第二特征区域)的中心,传感器与第一特征区域的距离约在传感器的反射峰值位置点上,试管架每移位一次,传感器就从对准试管架上一个凹槽中心扫描到下一个凹槽中心,探测光反射面与传感器的距离也就经历了远-近-远的过程,反射信号同步呈现弱-强-弱的变化过程。本实施例中,试管架凹槽的深度为6mm,而6mm的台阶落差对于通用的反射型光电传感器而言,都可以获得不小于50%的信号强弱变化,足够保证对试管架移位检测的准确性。
请参考图4,为通用的反射型光电传感器的反射信号-距离特征曲线(距离灵敏度曲线),图中传感器与反射面的距离从0.2 inch增大到 0.42 inch 时检测信号衰减50%(1 inch=25.4mm),因此,本实施例中只需要采用通用的反射型光电传感器就能满足试管架的移位检测要求。
一实施方式的分析仪流水线的试管架,试管架侧面上部相邻两个试管位中间存在一个宽6mm、深6mm的条形凹槽303,相邻两凹槽303间隔一个试管位(20mm),且凹槽303之间是完整的第一特征区域302(平台),而非前后贯通的,整个试管架侧面上部的结构特征就为“……凹槽303-平台302-凹槽303-平台302-凹槽303……”,上述特征即为传感器探测的区域。当第二特征区域303为凸台时,整个试管架侧面上部的结构特征就为“……凸台303-平台302-凸台303-平台302-凸台303……”。由于试管位(第一特征区域302)处不是前后贯通的,传感器不会探测到试管301,反射信号不受试管或者条码纸的影响,因此不会出现导致漏检的假信号。
请参考图5,基于上述实施例提供的分析仪流水线的试管架,一实施方式的试管架移位检测方法,包括:
步骤501:获取试管架单次移位过程中传感器输出的检测信号。试管架从开始移位到移位停止为一个单次移位。
步骤502:对检测信号进行放大和数字滤波处理,以消除噪声、试管架表面局部坑洼不平等因素的干扰,获取更真实的信号。具体的,数字滤波可以选择中值滤波算法。
步骤503:从数字滤波后的信号中获取试管架移位初始时的初始电压V_ORI、移结束时的结束电压V_END和移位初始与移位结束之间的最值电压V_EXT。需要说明的是,当试管架中第二特征区域为凹槽时,检测信号相应的为“……低-高-低-高-低……”,最值电压V_EXT为最大值电压V_MAX;当试管架中第二特征区域为凸台时,检测信号相应的为“……高-低-高-低-高……”,最值电压V_EXT为最小值电压V_MIN。本实施例以最值电压V_EXT为最大值电压V_MAX,即试管架中第二特征区域为凹槽为例,进行说明。
请参考图6,为本实施例中记录的试管架单次移位过程完整的检测信号。首先在移位刚开始时测出检测信号的初始电压V_ORI,并定义该信号点为起始点;然后在试管架移位刚停止时测出结束电压V_END,并定义该信号点为结束点;由于经历了试管架的凹槽-平台-凹槽,信号将呈现钟形变化,这时在起始点和结束点之间寻找最大值电压V_MAX。当试管架上的第二特征区域为凸台时,相应的检测信号为倒钟形变化,这时在起始点和结束点之间寻找最小值电压V_MIN。
步骤504:判断最大值电压V_MAX与初始电压V_ORI的比值是否满足第二判断条件,最大值电压V_MAX与结束电压V_END的比值是否满足第一判断条件,如果两者同时满足,则判断为试管架移位正确,否则,判断为试管架移位错误。应当理解,在其它实施例中,也可以只判断最大值电压V_MAX与结束电压V_END的比值是否满足第一判断条件,如果满足,则判断为试管架移位正确,否则,判断为试管架移位错误,本实施例中,为了保证判断的准确性,增加了对最大值电压V_MAX与初始电压V_ORI的比值的判断。
本实施例中,第一判断条件包括最大值电压V_MAX与结束电压V_END的比值大于第一判别系数k1,第二判断条件包括最大值电压V_MAX与初始电压V_ORI的比值大于第二判别系数k2,其关系表示如下:
V_MAX/V_END>k1 式(1)
V_MAX/V_ORI>k2 式(2)
本实施例中,k1、k2为大于1的常数。k1、k2的取值与试管架平台信号与凹槽信号的相对差异有关,相差越大则k1、k2越大。而试管架平台和凹槽的信号差异又与传感器的反射信号-距离特征、凹槽深度等因素相关。在一具体实例中,对于通用的反射型光电传感器,在试管架凹槽深度为6mm的情况下,k1、k2可取值1.5~2.0,通常k1与k2可取相同的值。
在其它实施例中,试管架的第一特征区域为凸台时,第一判断条件包括最小值电压V_MIN与结束电压V_END的比值小于第一判别系数k3,第二判断条件包括最小值电压V_MIN与初始电压V_ORI的比值小于第二判别系数k4,其关系表示如下:
V_MIN/V_END<k3 式(3)
V_MIN/V_ORI<k4 式(4)
此时,k3、k4为大于0小于1的常数,其取值形式与上述k1、k2相似,此处不再赘述。
在一次移位过程中,当式(1)和式(2)都成立时,V_ORI对应试管架上一个凹槽区域,V_END对应下一个凹槽区域,而V_MAX对应试管架的平台区域,即说明移位经历了凹槽-平台-凹槽过程,试管架必然是移动到了目的点,即当前移位正确。如果V_MAX/V_END>k1 不成立,说明试管架上一个凹槽离开了传感器,但下一个凹槽未能到达传感器,试管架的平台区域停留在了传感器处,试管架移位错误。如果V_MAX/V_ORI>k2 不成立,则说明试管架卡在了上一个平台区域,一般的,当发生试管架移位错误时,都会先校正后才进行下一次移位,因此,式(2)通常都是成立的。
在某些实施例中,如果步骤504判断到试管架移位错误时,则控制报警装置进行报警,而本实施例中,在步骤504判断到试管架移位错误时,还包括下面步骤:
步骤505:控制试管架进行重载移位,并获取重载移位过程中传感器输出的检测信号。重载移位是指,在判断到试管架当前移位错误时,控制试管架再次进行移位,以将试管架移位到正确的目标位置。需要说明的是,试管架移位的驱动机构一般为步进电机,电机具有特定的步长,该步长刚好等于一次移位的距离,在移位错误进行重载移位时,试管架所需要的移位距离必然是小于一个步长的,但电机还是以原先的步长驱动试管架移位,由于在目标位置上存在阻挡机构,因此试管架并不会出现移位超过目标位置的情况。
步骤506:结合上一次移位的检测信号,重新获取初始电压、结束电压和最值电压,之后转到步骤504。在其它实施例中,如果步骤503中只获取移结束时的结束电压V_END用于判断试管架是否移位错误,则步骤506中也可以只需要重新获取重载移位结束时的结束电压。
在一具体实施例中,实现步骤505和步骤506的具体方式可以是:步骤504中如果判断到试管架当次移动错误,系统将缓存V_ORI、V_MAX两个信号特征点,然后进行重载移位,并获取重载移位过程同样的三个信号特征点,即初始电压V_ORI、最大值电压V_MAX和结束电压V_END。然后比较缓存的V_ORI和重载移位的V_ORI,取其小者为信号初始电压V_ORI;再比较缓存的V_MAX和重载移位的V_MAX,取其大者为信号最大值V_MAX;加上重载移位得到的结束电压V_END,三个信号特征点再进行式(1)和式(2)的判别:满足判据则说明重载移位成功,试管架最终到达了目标位置;不满足判据则说明重载移位失败,试管架没有到达目标点。另一种方式可以是:保存从起始点到结束点的完整检测信号(波形),然后拼接到重载移位检测信号(波形)中,再从中找出V_ORI、V_MAX、V_EDN三个特征点。
通常的,在试管架移位检测方法中并不存在存储的步骤,当前获取的信息将会被下一次获取的信息直接顶替,而本实施例中,增加了存储步骤,存储移位过程中获取的特征点电压,或存储移动过程中完整的检测信号,以便进行重载移位。
应当说明的是,重载移位可以是一次,也可以任意次,直到重新获取的初始电压V_ORI、最大值电压V_MAX和结束电压V_END满足判断条件,即直到试管架移位正确。
请参考图7,其为一具体应用例中记录的试管重载移位过程完整的检测信号。试管架在第一次移位时卡在信号上升沿对应位置上,此时最大值电压V_MAX等于结束电压V_END,不满足V_MAX/V_END>k1,所以自动进行重载移位。第一次重载移位时获得了信号最高点,它对应试管架平台区域,但试管架又卡在信号下降沿对应位置上,结束电压过大,仍不满足判据,进行第二次重载移位。第二次重载移位试管架移动到目标位置,结束电压对应凹槽区域,而最大值电压仍是第一次重载时的最高点电压,因而满足判据。对比图6和图7可知,虽然进行了多次重载移位,但得到的最大值电压和单次移位成功时的相同,初始电压和结束电压也分别相同。也就是说,本实施例提供的移位检测方法,信号关键特征不会丢失,重载移位后的检测信号等价于试管架单次移位成功得到的检测信号,所以整个移位过程都具备高度的可靠性不会出现假阴性漏检问题。
本实施例提供的试管架移位检测方法属于特征区域信号相对值检测法,对光电传感器的距离灵敏度性能要求可大幅降低,通用的反射式光电传感器就可满足要求,可以降低传感器的成本。
目前采用的试管架移位检测方法中,在试管架当次移动不到位情况下只能立刻停机并进行报警,并不支持整机系统自动执行再次或连续多次移位流程来消除故障,智能程度低,容易引起用户不满。而本实施例进一步增加了重载移位功能,即实现了断点恢复检测技术,在试管架当次移动不到位的情况下,可以通过断点恢复检测技术自行重载移位直至试管架移动到目标位置,智能程度高,具有更好的用户体验。本领域技术人员应当理解,基于上述实施例中的试管架,除了本实施例中提供的检测方案外,也可以采用其他的检测方案,例如现有的绝对值检测方案。
请参考图8,基于上述实施例提供的试管架移位检测方法,一实施方式的分析仪流水线的试管架移位检测的装置,在一种具体实例中,试管架移位检测的装置包括特征电压获取模块601和移位判断模块602。
特征电压获取模块601用于获取试管架单次移位过程中传感器输出的检测信号,并从检测信号中获取试管架移位结束时的结束电压和移位初始与移位结束之间的最值电压。
移位判断模块602用于判断最值电压与结束电压的比值是否满足第一判断条件,如果满足,则判断为试管架移位正确,否则,判断为试管架移位错误。
本实施例中,特征电压获取模块601还用于在获取试管架单次移位过程中传感器输出的检测信号后,从该单次移位的检测信号中获取试管架移位初始时的初始电压。移位判断模块602还用于在判断最值电压与结束电压的比值是否满足第一判断条件时,还判断最值电压与初始电压的比值是否满足第二判断条件,如果两者同时满足,则判断为试管架移位正确,否则,判断为试管架移位错误。
在具体实施例中,第一判断条件包括最值电压与结束电压的比值大于第一判别系数,第二判断条件包括最值电压与初始电压的比值大于第二判别系数;或者第一判断条件包括最值电压与结束电压的比值小于第一判别系数,第二判断条件包括最值电压与初始电压的比值小于第二判别系数。
在某些施例中,移位判断模块602在判断到试管架移位错误后,还可以进一步控制报警装置进行报警。
本实例中,试管架移位检测的装置还进一步包括重载移位模块603。重载移位模块603用于在移位判断模块602判断到试管架移位错误后,控制试管架进行重载移位,并获取重载移位过程中传感器输出的检测信号,结合上一次移位的检测信号,重新获取初始电压、结束电压和最值电压;移位判断模块602判断重新获取的最值电压与结束电压的比值是否满足第一判断条件,重新获取的最值电压与初始电压的比值是否满足第二判断条件,如果两者同时满足,则判断为试管架移位正确,否则,控制重载移位模块603继续进行重载移位直至判断到试管架移位正确。需要说明的是,如果在上一次移位过程中只判断最值电压与结束电压的比值是否满足第一判断条件,则在重载移位过程中只需要重新获取最值电压与结束电压即可。
在具体实施例中,重载移位模块603在控制试管架进行重载移位,重新获取初始电压、结束电压和最值电压时为:
在重载移位过程中,从传感器输出的检测信号中获取初始电压、结束电压和最值电压,将其与缓存的从上一次移位过程中传感器输出的检测信号中获取的初始电压、结束电压和最值电压进行比较;选择两个初始电压中的小者为当前的初始电压;当最值电压为最大值时,选择两个最值电压中的大者为当前的最值电压,当最值电压为最小值时,选择两个最值电压中的小者为当前的最值电压;选择当前重载移位过程中获取的结束电压作为当前的结束电压。或者重载移位模块603将多次移位过程中传感器输出的检测信号顺序整合成完整的检测信号,从完整的检测信号中获取初始电压、结束电压和最值电压。
一实施方式的对分析仪流水线的试管架进行移位检测的装置采用的是特征区域信号相对值检测法,因此对光电传感器的距离灵敏度性能要求可大幅降低,通用的反射式光电传感器就可满足要求,可以降低传感器的成本。
一实施方式的分析仪流水线系统,包括一台或多台级联的分析仪;上述实施例提供的试管架;用于驱动试管架移位的驱动机构;用于在试管架移位过程中检测试管架上第一特征区域和第二特征区域,并输出对应检测信号的传感器;和处理器,处理器包括试管架移位检测装置,试管架移位检测装置耦合到传感器的输出端,接收传感器输出的检测信号,判断试管架是否移位正确。
在具体实施例中,试管架移位检测装置基于传感器根据第一特征区域和第二特征区域输出的检测信号,获取试管架单次移位初始时的初始电压、单次移位结束时的结束电压和单次移位初始与单次移位结束之间的最值电压;并判断最值电压与结束电压的比值是否满足第一判断条件,最值电压与初始电压的比值是否满足第二判断条件,如果两者同时满足,则判断为试管架移位正确,否则,判断为试管架移位错误。
试管架移位检测装置还用于在判断到试管架移位错误后控制试管架进行重载移位,并获取重载移位过程中传感器输出的检测信号,结合上一次移位的检测信号,重新获取初始电压、结束电压和最值电压,判断重新获取的最值电压与结束电压的比值是否满足第一判断条件,重新获取的最值电压与初始电压的比值是否满足第二判断条件,如果两者同时满足,则判断为试管架移位正确,否则,继续控制试管架进行重载移位直至判断到试管架移位正确。
请参考图2,本实施例中,传感器801包括位于试管有无检测位204的第一传感器205,和位于样本采集位206上的第二传感器207。在具体实施例中,第一传感器205和第二传感器207为两个相同的反射型光电传感器,第一传感器205用于在试管有无检测位上确认试管架是否移动到位,该位置上移位错误可导致样本(试管)编号错误;第二传感器207用于样本采集位上,该位置上移位错误可导致样本采集错误。一般的,试管架具有10个试管位,第一传感器205和第二传感器207间隔6个试管位,在其它实施例中,第一传感器205和第二传感器207间隔的试管位个数可以根据具体需要设置。两个传感器间隔6个试管位,由于试管架有10个试管位,因此在某些位置上两个传感器可以同时检测到试管架,固定取其中一个传感器的检测结果即可。设置两个传感器是为了保证所有试管在经过试管有无检测位和样本采集位时都可以进行移位检测,当然,在某些实施例中,也可以只采用一个传感器,但此时为了保证所有试管在经过试管有无检测位和样本采集位时都可以进行移位检测,就必须将试管架延长一部分,该部分上同样设置有用于试管架移位检测的特征区域。而做这样的设置会增加试管架的长度,不符合实际需要,因此,本实施例优选的采用两个传感器。
请参考图8,为试管架移位检测装置的部分具体电路,放大电路803和数字滤波器804位于传感器801和处理电路802之间,用于对传感器输出的检测信号放大后,进行数字滤波处理,处理电路802从数字滤波处理后的信号中获取初始电压、结束电压和最值电压;驱动电路805位于传感器801和处理器802之间,用于驱动传感器发射探测信号。本实施例中,处理电路802还可以用于在判断到试管架移位错误后控制报警装置(附图未示出)进行报警。
一实施方式的分析仪流水线系统及其试管架、移位检测方法和装置中,第一方面,试管架只具有用于移位检测的第一特征区域和第二特征区域,传感器探测区域避开了试管,检测信号不受试管或条码纸反射信号干扰,在试管架移位错误情况下不会漏检,提高了可靠性。第二方面,试管架移位检测方法属于特征区域信号相对值检测法,即通过强处信号相对弱处信号的相对倍数来判别试管架的移位,对光电传感器的距离灵敏度性能要求可大幅降低,通用的反射式光电传感器就可满足要求,可以降低传感器的成本。第三方面,在试管架当次移动不到位的情况下,可以自行重载移位直至试管架移动到目标位置,即实现了断点恢复检测技术,在试管架移位出现异常情况下无需停机即可以容许系统自动执行重载移位,最终达到目标位置,从而提高了仪器的智能化程度,由于前一次移位到重载移位的时间间隔很短,用户不能察觉仪器出现过异常,具有更好的用户体验
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括 如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体 (Read-Only Memory,ROM) 或随机存储记忆体(Random Access Memory,RAM)等。
以上内容是结合具体的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请发明构思的前提下,还可以做出若干简单推演或替换。

Claims (20)

  1. 一种分析仪流水线的试管架,所述试管架具有多个用于容纳试管的试管位,其特征在于:
    所述试管架一侧面设置有横跨多个试管位的挡光板,所述挡光板上在相邻两个试管位之间设置有第二特征区域,相邻两个第二特征区域之间为第一特征区域,所述第一特征区域和第二特征区域具有预设深度的台阶落差。
  2. 如权利要求1所述的试管架,其特征在于,所述第二特征区域为低于第一特征区域预设深度的凹槽,或者所述第二特征区域为高于第一特征区域预设深度的凸台。
  3. 如权利要求1所述的试管架,其特征在于,所述预设深度为5~7mm。
  4. 如权利要求1所述的试管架,其特征在于,所述挡光板设置在试管架侧面的上半部分。
  5. 一种使用权利要求1所述分析仪流水线的试管架进行移位检测的方法,其特征在于,包括如下步骤:
    获取试管架单次移位过程中传感器输出的检测信号,并从该单次移位的检测信号中获取试管架移位结束时的结束电压和移位初始与移位结束之间的最值电压;及
    判断所述最值电压与结束电压的比值是否满足第一判断条件,如果满足,则判断为试管架移位正确,否则,判断为试管架移位错误。
  6. 如权利要求5所述的方法,其特征在于,在获取试管架单次移位过程中传感器输出的检测信号后,还从该单次移位的检测信号中获取试管架移位初始时的初始电压;
    在判断所述最值电压与结束电压的比值是否满足第一判断条件时,还判断所述最值电压与初始电压的比值是否满足第二判断条件,如果两者同时满足,则判断为试管架移位正确,否则,判断为试管架移位错误。
  7. 如权利要求6所述的方法,其特征在于,所述第一判断条件包括所述最值电压与结束电压的比值大于第一判别系数,所述第二判断条件包括所述最值电压与初始电压的比值大于第二判别系数;或者所述第一判断条件包括所述最值电压与结束电压的比值小于第一判别系数,所述第二判断条件包括所述最值电压与初始电压的比值小于第二判别系数。
  8. 如权利要求5所述的方法,其特征在于,在判断到试管架移位错误后控制报警装置进行报警,或者在判断到试管架移位错误后,还包括:
    控制试管架进行重载移位,并获取重载移位过程中传感器输出的检测信号,结合上一次移位的检测信号,重新获取结束电压和最值电压;及
    判断重新获取的最值电压与结束电压的比值是否满足第一判断条件,如果满足,则判断为试管架移位正确,否则,继续控制试管架进行重载移位直至判断到试管架移位正确。
  9. 如权利要求6所述的方法,其特征在于,在判断到试管架移位错误后控制报警装置进行报警,或者在判断到试管架移位错误后,还包括:
    控制试管架进行重载移位,并获取重载移位过程中传感器输出的检测信号,结合上一次移位的检测信号,重新获取初始电压、结束电压和最值电压;及
    判断重新获取的最值电压与结束电压的比值是否满足第一判断条件,重新获取的最值电压与初始电压的比值是否满足第二判断条件,如果两者同时满足,则判断为试管架移位正确,否则,继续控制试管架进行重载移位直至判断到试管架移位正确。
  10. 如权利要求8所述的方法,其特征在于,重载移位后重新获取初始电压、结束电压和最值电压包括:
    在重载移位过程中,从传感器输出的检测信号中获取初始电压、结束电压和最值电压,将其与缓存的从上一次移位过程中传感器输出的检测信号中获取的初始电压、结束电压和最值电压进行比较;选择两个初始电压中的小者为当前的初始电压;当最值电压为最大值时,选择两个最值电压中的大者为当前的最值电压,当最值电压为最小值时,选择两个最值电压中的小者为当前的最值电压;选择当前重载移位过程中获取的结束电压作为当前的结束电压;或者
    将多次移位过程中传感器输出的检测信号顺序整合成完整的检测信号,从所述完整的检测信号中获取初始电压、结束电压和最值电压。
  11. 一种使用权利要求1所述分析仪流水线的试管架进行移位检测的装置,其特征在于,包括:
    特征电压获取模块,用于获取试管架单次移位过程中传感器输出的检测信号,并从所述检测信号中获取试管架移位结束时的结束电压和移位初始与移位结束之间的最值电压;及
    移位判断模块,用于判断所述最值电压与结束电压的比值是否满足第一判断条件,如果满足,则判断为试管架移位正确,否则,判断为试管架移位错误。
  12. 如权利要求11所述的装置,其特征在于,所述特征电压获取模块还用于在获取试管架单次移位过程中传感器输出的检测信号后,从该单次移位的检测信号中获取试管架移位初始时的初始电压;及
    所述移位判断模块还用于在判断所述最值电压与结束电压的比值是否满足第一判断条件时,还判断所述最值电压与初始电压的比值是否满足第二判断条件,如果两者同时满足,则判断为试管架移位正确,否则,判断为试管架移位错误。
  13. 如权利要求12所述的装置,其特征在于,所述第一判断条件包括所述最值电压与结束电压的比值大于第一判别系数,所述第二判断条件包括所述最值电压与初始电压的比值大于第二判别系数;或者所述第一判断条件包括所述最值电压与结束电压的比值小于第一判别系数,所述第二判断条件包括所述最值电压与初始电压的比值小于第二判别系数。
  14. 如权利要求11所述的装置,其特征在于,所述移位判断模块在判断到试管架移位错误后,还用于控制报警装置进行报警,或者还包括:
    重载移位模块,用于在移位判断模块判断到试管架移位错误后,控制试管架进行重载移位,并获取重载移位过程中传感器输出的检测信号,结合上一次移位的检测信号,重新获取结束电压和最值电压;及
    所述移位判断模块判断重新获取的最值电压与结束电压的比值是否满足第一判断条件,如果满足,则判断为试管架移位正确,否则,控制重载移位模块继续进行重载移位直至判断到试管架移位正确。
  15. 如权利要求12所述的装置,其特征在于,所述移位判断模块在判断到试管架移位错误后,还用于控制报警装置进行报警,或者还包括:
    重载移位模块,用于在移位判断模块判断到试管架移位错误后,控制试管架进行重载移位,并获取重载移位过程中传感器输出的检测信号,结合上一次移位的检测信号,重新获取初始电压、结束电压和最值电压;及
    所述移位判断模块判断重新获取的最值电压与结束电压的比值是否满足第一判断条件,重新获取的最值电压与初始电压的比值是否满足第二判断条件,如果两者同时满足,则判断为试管架移位正确,否则,控制重载移位模块继续进行重载移位直至判断到试管架移位正确。
  16. 如权利要求14所述的装置,其特征在于,所述重载移位模块在控制试管架进行重载移位,重新获取初始电压、结束电压和最值电压时为:
    在重载移位过程中,从传感器输出的检测信号中获取初始电压、结束电压和最值电压,将其与缓存的从上一次移位过程中传感器输出的检测信号中获取的初始电压、结束电压和最值电压进行比较;选择两个初始电压中的小者为当前的初始电压;当最值电压为最大值时,选择两个最值电压中的大者为当前的最值电压,当最值电压为最小值时,选择两个最值电压中的小者为当前的最值电压;选择当前重载移位过程中获取的结束电压作为当前的结束电压;或者
    重载移位模块将多次移位过程中传感器输出的检测信号顺序整合成完整的检测信号,从所述完整的检测信号中获取初始电压、结束电压和最值电压。
  17. 一种分析仪流水线系统,其特征在于,包括:
    分析仪;
    如权利要求1所述的试管架;
    驱动机构,用于驱动试管架移位;
    传感器,用于在试管架移位过程中检测试管架上第一特征区域和第二特征区域,并输出对应检测信号;及
    处理器,所述处理器包括试管架移位检测装置,所述试管架移位检测装置耦合到传感器的输出端,接收传感器输出的检测信号,判断试管架是否移位正确。
  18. 如权利要求17所述的分析仪流水线系统,其特征在于,所述试管架移位检测装置基于传感器根据第一特征区域和第二特征区域输出的检测信号,获取试管架单次移位初始时的初始电压、单次移位结束时的结束电压和单次移位初始与单次移位结束之间的最值电压;并判断所述最值电压与结束电压的比值是否满足第一判断条件,所述最值电压与初始电压的比值是否满足第二判断条件,如果两者同时满足,则判断为试管架移位正确,否则,判断为试管架移位错误。
  19. 如权利要求18所述的分析仪流水线系统,其特征在于,所述试管架移位检测装置还用于在判断到试管架移位错误后控制试管架进行重载移位,并获取重载移位过程中传感器输出的检测信号,结合上一次移位的检测信号,重新获取初始电压、结束电压和最值电压,判断重新获取的最值电压与结束电压的比值是否满足第一判断条件,重新获取的最值电压与初始电压的比值是否满足第二判断条件,如果两者同时满足,则判断为试管架移位正确,否则,继续控制试管架进行重载移位直至判断到试管架移位正确。
  20. 如权利要求17所述的分析仪流水线系统,其特征在于,所述传感器包括位于试管有无检测位的第一传感器,和位于样本采集位上的第二传感器。
PCT/CN2014/074262 2013-12-31 2014-03-28 分析仪流水线的试管架及其移位检测方法和装置 WO2015100864A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/198,436 US10481170B2 (en) 2013-12-31 2016-06-30 Test tube rack of analyzer pipeline, shift detection method and device using the same
US16/576,702 US11181539B2 (en) 2013-12-31 2019-09-19 Shift detection method and analyzer pipeline

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310754647.9 2013-12-31
CN201310754647.9A CN104741162B (zh) 2013-12-31 2013-12-31 分析仪流水线的试管架及其移位检测方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/198,436 Continuation US10481170B2 (en) 2013-12-31 2016-06-30 Test tube rack of analyzer pipeline, shift detection method and device using the same

Publications (1)

Publication Number Publication Date
WO2015100864A1 true WO2015100864A1 (zh) 2015-07-09

Family

ID=53493070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074262 WO2015100864A1 (zh) 2013-12-31 2014-03-28 分析仪流水线的试管架及其移位检测方法和装置

Country Status (3)

Country Link
US (1) US10481170B2 (zh)
CN (1) CN104741162B (zh)
WO (1) WO2015100864A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415627A (zh) * 2020-12-16 2021-02-26 深圳市爱康生物科技有限公司 一种应用于实验室流水线设备的试管检测装置及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105809601A (zh) * 2016-04-06 2016-07-27 吴剑杨 一种医疗实验室样本管理系统
CN108614304A (zh) * 2018-06-26 2018-10-02 湖南乾康科技有限公司 一种急诊位试管检测机构
CN109596847B (zh) * 2018-12-13 2022-06-28 湖南爱威医疗科技有限公司 试管检测方法、装置、计算机设备和存储介质
CN110208560B (zh) * 2019-06-26 2024-08-02 迈克医疗电子有限公司 试管检测装置及试管检测方法
CN110456424A (zh) * 2019-08-16 2019-11-15 桂林优利特医疗电子有限公司 一种试管识别装置及尿液分析仪
CN110764098B (zh) * 2019-11-25 2024-09-20 山东艾科达生物科技有限公司 多杯位环境杯体在位状态并行检测装置及其系统和方法
US20240207858A1 (en) * 2021-04-27 2024-06-27 Quest Diagnostics Investments Llc. Warning system for a decapping/capping system
CN114054124B (zh) * 2021-10-22 2023-01-10 迈克医疗电子有限公司 试管架定位方法、样本传输装置及存储介质
CN114047557B (zh) * 2021-10-22 2023-11-14 迈克医疗电子有限公司 试管检测方法及样本传输装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1326077A2 (en) * 1995-07-14 2003-07-09 Bayer Corporation Sample transport system comprising magnets
CN1932514A (zh) * 2006-09-30 2007-03-21 江西特康科技有限公司 血细胞分析仪送样方式及自动送样装置
WO2009064748A1 (en) * 2007-11-16 2009-05-22 Abbott Laboratories Rack for sample containers with error indicator
CN102486824A (zh) * 2010-12-02 2012-06-06 深圳迈瑞生物医疗电子股份有限公司 一种条码扫描装置及其血液细胞分析仪
CN102527458A (zh) * 2010-12-31 2012-07-04 深圳迈瑞生物医疗电子股份有限公司 试管架固定装置和方法、及其血液分析装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317269A (ja) * 2003-04-16 2004-11-11 Hitachi High-Technologies Corp 自動分析装置
US8028843B2 (en) * 2009-05-15 2011-10-04 Hamilton Company Shift and scan test tube rack apparatus and method
CN103540517B (zh) * 2010-07-23 2017-05-24 贝克曼考尔特公司 处理样本的系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1326077A2 (en) * 1995-07-14 2003-07-09 Bayer Corporation Sample transport system comprising magnets
CN1932514A (zh) * 2006-09-30 2007-03-21 江西特康科技有限公司 血细胞分析仪送样方式及自动送样装置
WO2009064748A1 (en) * 2007-11-16 2009-05-22 Abbott Laboratories Rack for sample containers with error indicator
CN102486824A (zh) * 2010-12-02 2012-06-06 深圳迈瑞生物医疗电子股份有限公司 一种条码扫描装置及其血液细胞分析仪
CN102527458A (zh) * 2010-12-31 2012-07-04 深圳迈瑞生物医疗电子股份有限公司 试管架固定装置和方法、及其血液分析装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415627A (zh) * 2020-12-16 2021-02-26 深圳市爱康生物科技有限公司 一种应用于实验室流水线设备的试管检测装置及方法

Also Published As

Publication number Publication date
CN104741162B (zh) 2018-05-25
US10481170B2 (en) 2019-11-19
CN104741162A (zh) 2015-07-01
US20180136245A9 (en) 2018-05-17
US20160327585A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
WO2015100864A1 (zh) 分析仪流水线的试管架及其移位检测方法和装置
US5466945A (en) Apparatus for detecting proper positioning of objects in a holder
JPH11204619A (ja) ウェーハ挿入状態感知装置
JPH0677307A (ja) 透明基板検出装置及び基板検出装置
US11181539B2 (en) Shift detection method and analyzer pipeline
US4806723A (en) Weld monitoring
CN109060672A (zh) 光学检测系统
US20010020685A1 (en) Detector and method for detecting plate-shaped or sheet-shaped body
US4652125A (en) Film inspection system
KR20240023186A (ko) 과일 선별 장치 및 방법
JPS59182341A (ja) 試料発光の異方性測定装置
CN220762357U (zh) 一种自动夹紧的测试仪
JP3067032B2 (ja) 物品検出装置
US5357332A (en) Apparatus for, and method of, determining the effectiveness of a splice of optical fiber
CN218767357U (zh) 一种运动检测机构及移门
CN211824284U (zh) 一种非接触式板材测厚装置
JPH0964713A (ja) タッチキー
JPH02294959A (ja) 磁気テープの始端終端検出装置
JPS58143444A (ja) 光学式情報記録装置
JPS586662A (ja) 光センサ及び光センサの信号情報処理方法
JP2001133411A (ja) 卵の非破壊内部検査装置
JP3264089B2 (ja) 人体検出装置
JP3401816B2 (ja) 光電スイッチ
WO2018105607A1 (ja) 測定装置、測定異常検知方法、およびプログラム
JPS63234153A (ja) 架空電線用探傷装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 16-11-2016 )

122 Ep: pct application non-entry in european phase

Ref document number: 14876347

Country of ref document: EP

Kind code of ref document: A1