WO2015100821A1 - 用于补偿液晶显示器的数据线阻抗的方法 - Google Patents

用于补偿液晶显示器的数据线阻抗的方法 Download PDF

Info

Publication number
WO2015100821A1
WO2015100821A1 PCT/CN2014/071104 CN2014071104W WO2015100821A1 WO 2015100821 A1 WO2015100821 A1 WO 2015100821A1 CN 2014071104 W CN2014071104 W CN 2014071104W WO 2015100821 A1 WO2015100821 A1 WO 2015100821A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
data line
value
compensation
data
Prior art date
Application number
PCT/CN2014/071104
Other languages
English (en)
French (fr)
Inventor
徐向阳
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/240,387 priority Critical patent/US9620069B2/en
Priority to JP2016543713A priority patent/JP6357237B2/ja
Priority to GB1609367.6A priority patent/GB2534817B/en
Priority to KR1020167020080A priority patent/KR20160102285A/ko
Priority to RU2016125811A priority patent/RU2651220C2/ru
Publication of WO2015100821A1 publication Critical patent/WO2015100821A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data

Definitions

  • FIG. 1 is a schematic diagram showing the structure of a panel of a data driving unit (source IC) in the prior art. Referring to Fig. 1, for a large-sized panel, the impedance difference between the intermediate data line of the panel near the data driving unit (source IC) and the data line at both ends of the panel remote from the data driving unit (source IC) is large.
  • Fig. 2 schematically shows the impedance of the data line in an ideal state, wherein the abscissa indicates the row number of the data line, and the ordinate indicates the impedance value of the data line of the different row numbers.
  • R0 schematically represents an ideal impedance (ie, a reference value of impedance compensation)
  • a solid black line schematically represents an impedance value of a data line of a different row number in an ideal state
  • R1 schematically represents a minimum data in an ideal state.
  • Line impedance value ie, a reference value of impedance compensation
  • the data line impedance value is a decreasing arithmetic progression for the data lines X(l) to X( «), and the data line impedance value is incremented for the data line ⁇ ( ⁇ +1) to 2n) The number of arithmetic progressions.
  • the impedance values corresponding to the data lines X(n) and ⁇ ( ⁇ +1) are the smallest, and are the minimum data line impedance values R1.
  • Fig. 3 schematically shows the compensation impedance in an ideal state; wherein the abscissa indicates the row number of the data line, and the ordinate indicates the impedance compensation value.
  • the abscissa indicates the row number of the data line
  • the ordinate indicates the impedance compensation value.
  • the solid black line schematically represents the impedance compensation value of the data lines of different apostrophes in the ideal state.
  • the data line impedance compensation value is an increasing arithmetic progression for the data lines X(l) to X(n), and the data line impedance compensation value is for the data line X (ii+ 1) to X (2n) for delivery Reduced arithmetic progression.
  • the impedance compensation value corresponding to the data line and X(n+1) is the largest, which is R.0-R in FIG. 1, which is the difference between the ideal impedance value and the minimum data line impedance value.
  • Figure 4 shows the total load impedance of the data drive unit under ideal conditions. It can be seen that the function image of the total load impedance under ideal conditions is a straight line, that is, the total impedance values of the loads corresponding to all the data lines are equal, equal to the ideal impedance value R0.
  • Figures 2, 3, and 4 illustrate the results of the prior art impedance compensation scheme in the ideal state T.
  • the data line impedance compensation in the actual situation will be described below with reference to Figs. 5, 6, and 7.
  • the present invention proposes an improved method for compensating the impedance value of the data line.
  • the present invention proposes a method of compensating for the impedance of a data line of a liquid crystal display.
  • the method includes the following steps: setting step: setting a memory and a subtractor; measuring step: measuring an impedance value of the data line to be compensated, and inputting the impedance value into the memory; calculating step: passing the subtractor Calculating the impedance value measured in the measuring step to obtain the impedance compensation value required for the corresponding data line: a compensation step: reading the impedance compensation value obtained in the calculating step by the data driving unit, and compensating according to the impedance
  • the values are impedance compensated for the corresponding data lines to obtain the total load impedance corresponding to the corresponding data lines.
  • the function image of the total impedance of the load according to the method of the present invention is a straight line, i.e., the total load impedance values corresponding to all of the data lines are equal. This is because the method according to the present invention effectively compensates for fluctuations in data line impedance values caused by actual processes. The uniform and ideal display effect is ensured, and the display defects such as vertical black and white bands and color shift are avoided.
  • the memory and the subtractor are disposed on a printed circuit board of the liquid crystal display.
  • the memory and the subtractor are disposed on a printed circuit board of the liquid crystal display.
  • the impedance value of the data line to be compensated is measured by a contact measuring method or a non-contact measuring method.
  • the actual impedance value of the data line to be compensated can be accurately and conveniently obtained, which lays a foundation for the calculation step and the compensation step.
  • the step of traversing is performed in an array substrate testing process. This way of operation can effectively save process procedures and reduce production costs.
  • the impedance values of all the data lines located in the display area and the non-display area of the liquid crystal display are measured.
  • the subtractor acquires the impedance compensation value by acquiring a difference between an impedance value of a data line measured in the measurement step and a reference impedance value.
  • This acquisition method is the quickest, most convenient, and most efficient, and can accurately compensate the data line impedance to obtain equal load total impedance output and uniform display.
  • the total load impedance is equal to the maximum data line impedance value measured in the measuring step.
  • the number of data lines is 2 ⁇ , and the data lines are sequentially arranged from one side to the other side, and the impedance compensation values corresponding to the nth data line and the n +1th data line are equal and The maximum value of the obtained impedance compensation values, and/or the impedance compensation value corresponding to the ith data line and the 2 nth data line are equal and is the minimum value of the acquired impedance compensation values. This matches and complements the data line impedance values measured during the measurement step, ensuring the uniformity of the final load total impedance output.
  • the method according to the invention effectively compensates for fluctuations in the impedance of the data line caused by the actual process with respect to the ideal theoretical value. It ensures a uniform and ideal display effect, avoiding display defects such as vertical black and white bands and color cast.
  • FIG. 1 is a schematic structural view of an array substrate of a thin film transistor liquid crystal display
  • Figure 2 shows the data line impedance distribution under ideal conditions
  • Figure 3 shows the compensated impedance distribution under ideal conditions
  • Figure 4 shows the total load impedance distribution of the data drive unit under ideal conditions
  • Figure 5 shows the actual data line impedance distribution in the prior art
  • Figure 6 shows the compensated impedance distribution in the prior art
  • Figure 7 shows the total load impedance distribution of the data driving unit in the prior art
  • Figure 9 is a schematic illustration of the compensated impedance distribution of the present invention - Figure 10 shows the total load impedance distribution of the data drive unit of the present invention
  • Figure 11 shows a flow chart of a method according to the invention
  • Figure 12 is a diagram showing the signal input and output of the data driving unit according to the present invention.
  • Measurement step The impedance value of the data line to be compensated is measured, and the impedance value is input to the memory.
  • the impedance value of the data line to be compensated can be measured by a contact measurement method or a non-contact measurement method.
  • the measurement steps can be performed in an array substrate test process.
  • the impedance values of all of the data lines located in the display area and the non-display area of the liquid crystal display are measured. In this way, all data lines can be compensated at one time, so that the compensation effect is the best, the display picture is the best, and the vertical black and white band or color shift and color unevenness are avoided in any area.
  • the subtractor can obtain the impedance compensation value by obtaining the difference between the impedance value of the data line traced back in the measuring step and the reference impedance value.
  • the reference impedance value can be the largest data line impedance value measured during the measurement step.
  • the number of data lines is 2 ⁇ , and the data lines are sequentially arranged from one side to the other side, and the impedance compensation values corresponding to the nth data line and the 11th data line are Equal and acquired
  • the maximum value of the impedance compensation values, and/or the impedance compensation value corresponding to the first data line and the second n data line are equal to the minimum value of the obtained impedance compensation values.
  • Figure 8 shows schematically the actual data line impedance measured during the measurement step.
  • the content of Fig. 8 is identical to that of Fig. 5, and is inconsistent with the contents of Fig. 2. This is because the actual process results in an impedance distribution of the actual data line relative to the ideal data line impedance distribution shown in Fig. 2, which is not an arithmetic progression but has an irregular fluctuation deviation.
  • Figure 9 shows the compensated impedance distribution of the method according to the invention.
  • the impedance value of each data line is measured separately according to the method of the present invention and stored by a memory.
  • the subtractor calculates the desired reference impedance value and the data line impedance value in FIG. 8 measured in the measuring step to obtain the difference between the two, and uses the difference as the desired impedance.
  • the compensation value is recorded.
  • Figure 10 shows the total load impedance of the data driving unit of the present invention. It can be seen that the function image of the total impedance of the load according to the method of the present invention is a straight line, that is, the total impedance values of the loads corresponding to all the data lines are equal, equal to the ideal impedance value R0. This is because the method according to the present invention effectively compensates for fluctuations in data line impedance values caused by actual processes.
  • the image of Figure 10 coincides with the image of Figure 4 of the ideal case. The uniform and ideal display effect is ensured, and the display defects such as vertical black and white bands and color shift are avoided.
  • Figure 12 is a diagram showing the signal input and output of the data driving unit according to the present invention. The invention can be assisted in understanding. It can be seen that in the compensation step, the data driving unit receives the signal of the impedance compensation value and outputs the total load impedance signal for the data line.

Abstract

提供了一种用于补偿液晶显示器的数据线阻抗的方法,属于液晶显示技术领域。该方法包括如下步骤:设置步骤:设置存储器和减法器;测量步骤:测量待补偿数据线的阻抗值,并将阻抗值输入到存储器中;计算步骤:通过减法器对在测量步骤中所测量的阻抗值进行计算,获取对应数据线所需的阻抗补偿值;补偿步骤:通过数据驱动单元读取在计算步骤中所获取的阻抗补偿值,并根据阻抗补偿值对相应的数据线进行阻抗补偿以得到与相应数据线相对应的负载总阻抗。该方法保证了均匀、理想的显示效果,避免了垂直黑白带和色偏等显示不良现象。

Description

]¾于补偿液晶显示器的数据线阻抗的方法 技术领域
本发明渉及液晶显示技术领域, 尤其涉及一种用于补偿液晶显示器的数据线 阻抗的方法。 背景技术
为了节省制造成本并降低面板价格,数据驱动单元 (source IC)的设计已在大尺 寸面板中得到广泛应用。
图 1示意性显示了薄膜晶体管液晶显示器的陈列基板的结构示意图。 参照图 1 , 设显示器的数据线共 2n条, 则在图中从一侧至另一侧按顺序将数据线排号。
XI、 X2 X(n-l), X(n) :X(2n- 1)、:X(2n)分别表示液晶显示器的 2n条数据线。
图 1显示了现有技术中数据驱动单元 (source IC)的面板结构示意图。参照图 1, 对于大尺寸面板, 靠近数据驱动单元 (source IC)的面板的中间数据线和远离数据 驱动单元 (source IC)的面板的两端数据线二者的阻抗差异较大。
图 2示意性显示了理想状态下的数据线阻抗,其中横坐标表示数据线的排号, 纵坐标表示不同排号的数据线的阻抗值。在图 2中, R0示意性表示理想阻抗(即 阻抗补偿的基准值), 黑色实线示意性表示理想状态下的不同排号的数据线的阻 抗值, R1示意性表示理想状态下最小的数据线阻抗值。可见理想状态下, 数据线 阻抗值对于数据线 X(l)到 X(«)而言为递减的等差数列,数据线阻抗值对于数据线 Χ(ιι+1)到 2n)而言为递增的等差数列。 其中数据线 X(n)和 Χ(η+1)所对应的阻抗 值最小, 为最小数据线阻抗值 Rl。
图 3示意性显示了理想状态下的补偿阻抗; 其中横坐标表示数据线的排号, 纵坐标表示阻抗补偿值。 如图 3所示, 为了补偿数据线因位置不同而阻抗不等, 在数据驱动单元 (source IC)的内部根据不同数据线之间的阻抗差异, 可以进行固 定阻抗补偿。 黑色实线示意性表示理想状态下的不同棑号的数据线的阻抗补偿 值。 由图 3 可看出, 在理想状态下, 数据线阻抗补偿值对于数据线 X(l)到 X(n) 而言为递增的等差数列, 数据线阻抗补偿值对于数据线 X(ii+1)到 X(2n)而言为递 减的等差数列。其中数据线 和 X(n+1)所对应的阻抗补偿值最大, 为图 1中的 R.0- R〗, 即理想阻抗值与最小的数据线阻抗值的差。
图 4显示了理想状态下数据驱动单元的负载总阻抗。 可以看出理想状态下负 载总阻抗的函数图像是一条直线, 即所有的数据线所对应的负载总阻抗值均相 等, 等于理想阻抗值 R0。
然而, 图 2、 图 3、 图 4所描述的为现有技术中的阻抗补偿技术方案在理想状 态 T的结果。 下面将结合图 5、 图 6、 图 7介绍实际情况中的数据线阻抗补偿情 况。
在现实情况中, 由于受工艺条件限制, 实际的液晶面板数据线阻抗分布并非 如图 2所示, 而是如图 5所示。 图 5中的横坐标表示不同的数据线排号, 图 5的 实线显示了实际情况中不同数据线的阻抗。 与图 2对比, 可见实际情况中数据线 阻抗的分布在最小阻抗 R1和基准阻抗值 R0之间并非等差数列,而是具有 ·定的 无规则波动。
图 6显示了现有技术中的补偿阻抗分布。 图 6的内容与图 3內容一致, 即在 现有技术中, 在实际操作中也是采取理想状态下的补偿方案。 参照图 6, 黑色实 线表示现有技术中不同排号的数据线的阻抗补偿值。 即, 在现有技术的数据线补 偿方案中, 数据线阻抗补偿值对于数据线 X(i)到 Χ(η)而言为递增的等差数列, 数 据线阻抗补偿值对于数据线 X(i H)到 Χ(2ιι)而言为递减的等差数列。 其中数据线 X(n)和 X(n+1)所对应的阻抗补偿值最大, 为图 1中的 R0- R1 , 即理想阻抗值与最 小的数据线阻抗值的差。
然而, 由于实际工艺造成了图 5所示的实际数据线的阻抗分布相对于图 2所 示的理想状态的数据线阻抗分布而言具有不规则的波动偏差, 因此根据现有技术 中的补偿方案, 实际补偿后的负载总阻抗如图 7所示。 图 7中的黑色实线示意性 显示了现有技术中数据驱动单元的负载总阻抗。参照图 7可看出,在实际情况中, 因工艺条件造成的波动并不能进行改善, 图 7中的图像无法与理想的图 4的图像 相重合。 而当工艺条件波动幅度达到一定程度, 就会影响显示效果, 如造成垂直 黑白带和色偏等显示不良现象。 发明內容
针对上述现有技术中的问题, 即现有技术中的用于补偿数据线阻抗值的方法 不能够消除实际工艺所造成的数据线阻抗波动, 导致补偿后的负载总阻抗相对于 理想负载总阻抗而言存在偏差, 本发明提出了一种改进的] ¾于补偿数据线阻抗值 的方法。
本发明提出了一种 ^于补偿液晶显示器的数据线阻抗的方法。
所述方法包括如下歩骤: 设置步骤: 设置存储器和减法器; 测量步骤: 测量 待补偿数据线的阻抗值, 并将所述阻抗值输入到所述存储器中; 算步骤: 通过 所述减法器对在测量步骤中所测量的阻抗值进行计算, 获取对应数据线所需的阻 抗补偿值:补偿步骤:通过数据驱动单元读取在计算步骤中所获取的阻抗补偿值, 并根据所述阻抗补偿值对相应的数据线进行阻抗补偿以得到与相应数据线相对 应的负载总阻抗。
根据本发明的方法的负载总阻抗的函数图像是一条直线, 即所有的数据线所 对应的负载总阻抗值均相等。 这是由于根据本发明的方法有效对实际工艺所造成 的数据线阻抗值波动进行了补偿。 保证了均匀、 理想的显示效果, 避免了垂直黑 白带和色偏等显示不良现象。
优选地, 在所述设置步骤中, 将所述存储器和所述减法器设置在所述液晶显 示器的印刷电路板上。如此布置, 可有利地节省面板空间、制造工序和制造成本。
优选地, 在所述测量步骤中, 通过接触式测量方法或非接触式测量方法来测 量待补偿数据线的阻抗值。如此可精准、方便地获取待补偿数据线的实际阻抗值, 为†算步骤和补偿步骤奠定基础。
优选地, 在阵列基板测试工序中进行所述溯量步骤。 如此的操作方式可以有 效节省工艺程序、 降低生产成本。
优选地, 在所述测量歩骤中, 测量位于液晶显示器的显示区域和非显示区域 中的所有数据线的阻抗值。
这样可以一次性对所有的数据线进行 偿, 使得补偿效果最好, 显示画面最 佳, 在任何区域避免垂直黑白带或色偏、 色不均现象。
优选地, 在所述计算步骤中, 所述减法器通过获取在所述测量歩骤中所测得 的数据线的阻抗值与基准阻抗值之间的差值来获取所述阻抗补偿值。 如此的获取 方式最为快捷、 方便、 高效, 能够精准地对数据线阻抗进行补偿, 以得到均等的 负载总阻抗输出和均一的显示画面。
优选地, 所述基准阻抗值为在测量步骤中所测量的最大的数据线阻抗值。 优选地, 在所述 偿步骤后, 所有数据线所对应的负载总阻抗都相等。 如此, 数据线阻抗的差异得到了有效补偿, 而保证了显示器显示画面的均一性, 避免 了色不均现象和其它的显示不良现象。
优选地, 所述负载总阻抗等于在所述测量步骤中所测得的最大的数据线阻抗 值。
优选地, 设数据线的数量为 2τι条, 从一侧至另一侧按顺序将数据线排号, 则 第 n条数据线和第 n+l条数据线所对应的阻抗补偿值相等且为所获取的阻抗补偿 值中的最大值, 和 /或第 i条数据线和第 2n条数据线所对应的阻抗补偿值相等且 为所获取的阻抗补偿值中的最小值。 这与在测量步骤中所测得的数据线阻抗值相 匹配和互补, 保证了最后的负载总阻抗输出的均一性。
根据本发明的方法有效对实际工艺所造成的数据线阻抗值相对于理想理论值 的波动进行了补偿。 保证了均匀、 理想的显示效果, 避免了垂直黑白带和色偏等 显示不良现象。
上述技术特征可以各种适合的方式组合或由等效的技术特征来替代, 只要能 够达到本发明的目的。 附图说明
在下文中将基于仅为非限定性的实施例并参考 ϋ图来对本发明进行更详细的 描述。 其中;
图 1显示了薄膜晶体管液晶显示器的阵列基板的结构示意图;
图 2显示了理想状态下的数据线阻抗分布- 图 3显示了理想状态下的补偿阻抗分布;
图 4显示了理想状态下数据驱动单元的负载总阻抗分布;
图 5显示了现有技术中的实际数据线阻抗分布;
图 6显示了现有技术中的补偿阻抗分布;
图 7显示了现有技术中数据驱动单元的负载总阻抗分布;
图 8示意性显示了本发明的实际数据线阻抗分布;
图 9示意性显示了本发明的补偿阻抗分布- 图 10显示了本发明的数据驱动单元的负载总阻抗分布;
图 11显示了根据本发明的方法的流程图; 图 12显示了根据本发明的数据驱动单元的信号输入、 输出示意图。
在图中, 相同的构件由相同的附图标记标示。 跗图并未按照实际的比例绘制。 具体实施方式
下面将参照^图来详细地介绍本发明。
图 1 1显示了根据本发明的方法的流程图。 可以参照图 11来进行理解。
本发明提出了一种用于补偿液晶显示器的数据线阻抗的方法, 其包括如下歩 骤:
(一) 设置步骤: 设置存储器和减法器。
可以将存储器和减法器设置在液晶显示器的印刷电路板上。 即图 1 中所示的 印刷电路板 1的位置处。
(二) 测量歩骤: 测量待 偿数据线的阻抗值, 并将所述阻抗值输入到所述 存储器中。
可以通过接触式测量方法或非接触式测量方法来测量待补偿数据线的阻抗 值。 为了节省工艺 间和成本, 可以在阵列基板测试工序中进行所述测量歩骤。 优选地, 测量位于液晶显示器的显示区域和非显示区域中的所有数据线的阻抗 值。 这样可以一次性对所有的数据线进行补偿, 使得补偿效果最好, 显示画面最 佳, 在任何区域避免垂直黑白带或色偏、 色不均现象。
(三)计算步骤; 通过所述减法器对在测量步骤中所测量的阻抗值进行计算, 获取对应数据线所需的阻抗补偿值。
减法器可以通过获取在测量步骤中所溯得的数据线的阻抗值与基准阻抗值之 间的差值来获取阻抗补偿值。 该基准阻抗值可以为在测量步骤中所测量的最大的 数据线阻抗值。
(四)补偿步骤: 通过数据驱动单元读取在计算步骤中所获取的阻抗补偿值, 并根据所述阻抗补偿值对相应的数据线进行阻抗补偿以得到与相应数据线相对 应的负载总阻抗。
优选地, 经过补偿后, 所有数据线所对应的负载总阻抗都相等。 该负载总阻 抗倒如可以等于在所述测量歩骤中所测得的最大的数据线阻抗值。
在一个实施例中, 设数据线的数量为 2ιι条, 从一侧至另一侧按顺序将数据线 排号, 剣第 n条数据线和第 11+1条数据线所对应的阻抗补偿值相等且为所获取的 阻抗补偿值中的最大值, 和 /或第 1条数据线和第 2η条数据线所对应的阻抗补偿 值相等旦为所获取的阻抗补偿值中的最小值。
下面将结合爾图来详述根据本发明的方法。
图 8示意性显示了在测量步骤中所测得的实际数据线阻抗。 图 8的内容与图 5內容一致, 而与图 2的内容不一致。 这是由于实际工艺造成了实际的数据线的 阻抗分布相对于图 2所示的理想状态的数据线阻抗分布而言, 并非等差数列, 而 是具有不规则的波动偏差。
图 9显示了根据本发明的方法的补偿阻抗分布。
根据本发明的方法单独测量每条数据线的阻抗值, 并通过存储器将其存储。 在启动液晶显示器时, 减法器将所期望的基准阻抗值与在测量步骤中所测量的图 8 中的数据线阻抗值进行运算, 获取二者差值, 并将该差值作为所需的阻抗补偿 值记录下来。
参照图 9, 可看出, 在根据本发明的数据线补偿方案中, 数据线阻抗 偿值 对于数据线 X(l)到 Χ ι}而言为具有波动的总体上?1·的数列,数据线阻抗补偿值对 于数据线 X(n+1)到 X(2n)而言为具有波动的总体下降的数列。但其图像并非直线, 而是具有波动。 图 9所示的阻抗补偿值的图像对应于图 8的阻抗值的波动而言也 具有互补性的波动。 其中数据线 X(n)和 X(n+i)所对应的阻抗补偿值最大, 为图 i 中的 R0- Ri , 即理想阻抗值与最小的数据线阻抗值的差。
图 10显示了本发明的数据驱动单元的负载总阻抗。可以看出根据本发明的方 法的负载总阻抗的函数图像是一条直线, 即所有的数据线所对应的负载总阻抗值 均相等, 等于理想阻抗值 R0。这是由于根据本发明的方法有效对实际工艺所造成 的数据线阻抗值波动进行了补偿。 图 10的图像与理想情况的图 4的图像相重合。 保证了均匀、 理想的显示效果, 避免了垂直黑白带和色偏等显示不良现象。
图 12显示了根据本发明的数据驱动单元的信号输入、输出示意图。可以辅助 理解本发明。 可以看出在 偿步骤中, 数据驱动单元接收阻抗补偿值的信号, 并 输出针对数据线的负载总阻抗信号。
虽然已经参考优选实施例对本发明进行了描述, 但在不脱离本发明的范围的 情况下, 可以对其进行各种改进并且可以用等效物替换其中的部件。 本发明并不 局限于文中公幵的特定实施例, 而是包括落入权利要求的范圈內的所有技术方

Claims

要求
1 . 用于补偿液晶显示器的数据线阻抗的方法, 其中, 包括如下步骤: 设置步骤: 设置存储器和减法器- 测量歩骤: 测量待补偿数据线的阻抗值, 并将所述阻抗值输入到所述存储器 计算步骤: 通过所述减法器对在测量步骤中所测量的阻抗值进行计算, 获取 对应数据线所需的阻抗补偿值;
补偿步骤: 通过数据驱动单元读取在计算歩骤中所获取的阻抗补偿值, 并根 据所述阻抗补偿值对相应的数据线进行阻抗补偿以得到与相应数据线相对应的 负载总阻抗。
2. 根据权利要求 1所述的方法, 其中, 在所述设置歩骤中, 将所述存储器和 所述减法器设置在所述液晶显示器的印剧电路板上。
3. 根据权利要求 1所述的方法, 其中, 在所述测量歩骤中, 通过接触式测量 方法或非接触式测量方法来测量待补偿数据线的阻抗值。
4. 根据权利要求 1所述的方法, 其中, 在阵列基板测试工序中迸行所述测量 步骤。
5. 根据权利要求 1所述的方法, 其中, 在所述测量步骤中, 溯量位于液晶显 示器的显示区域和非显示区域中的所有数据线的阻抗值。
6, 根据权利要求 1所述的方法, 其中, 在所述计算步骤中, 所述减法器通过 获取在所述测量歩骤中所测得的数据线的阻抗值与基准阻抗值之间的差值来获 取所述阻抗补偿值。
7. 根据权利要求 4所述的方法, 其中, 在所述 ^算歩骤中, 所述减法器通过 获取在所述测量步骤中所测得的数据线的阻抗值与基准阻抗值之间的差值来获 取所述阻抗补偿值。
8. 根据权利要求 5所述的方法, 其中, 在所述 算步骤中, 所述减法器通过 获取在所述測量步骤中所测得的数据线的阻抗值与基准阻抗值之间的差值来获 取所述阻抗补偿值。
9. 根据权利要求 6所述的方法, 其中, 所述基准阻抗值为在溯量歩骤中所测 量的最大的数据线阻抗值。
10. 根据权利要求 7所述的方法, 其中, 所述基准阻抗值为在测量步骤中所 】1 . 根据权利要求 8 所述的方法, 其中, 所述基准阻抗值为在测量歩骤中所 测量的最大的数据线阻抗值。
12. 根据权利要求 i 所述的方法, 其中, 在所述补偿歩骤后, 所有数据线所 对应的负载总阻抗都相等。
13. 根据权利要求 4所述的方法, 其中, 在所述补偿歩骤后, 所有数据线所 对应的负载总阻抗都相等。
14. 根据权利要求 5 所述的方法, 其中, 在所述补偿歩骤后, 所有数据线所 对应的负载总阻抗都相等。
15. 根据权利要求 12所述的方法, 其中, 所述负载总阻抗等于在所述溯量歩 骤中所测得的最大的数据线阻抗值》
16. 根据权利要求 13所述的方法, 其中, 所述负载总阻抗等于在所述测量步 骤中所测得的最大的数据线阻抗值。
17. 根据权利要求 14所述的方法, 其中, 所述负载总阻抗等于在所述测量步 骤中所测得的最大的数据线阻抗值。
18. 根据权利要求 1所述的方法, 其中, 设数据线的数量为 2τι条, 从一侧至 另一侧按顺序将数据线排号, 则第 η条数据线和第 il+ 条数据线所对应的阻抗补 偿值相等且为所获取的阻抗补偿值中的最大值, 和 Ζ或第 i条数据线和第 2n条数 据线所对应的阻抗补偿值相等 为所获取的阻抗补偿值中的最小值。
19. 根据权利要求 4所述的方法, 其中, 设数据线的数量为 2ι 条, 从一侧至 另一侧按顺序将数据线排号, 则第 η条数据线和第 η÷1条数据线所对应的阻抗补 偿值相等且为所获取的阻抗补偿值中的最大值, 和 /或第 1条数据线和第 2η条数 据线所对应的阻抗补偿值相等旦为所获取的阻抗 偿值中的最小值。
20. 根据权利要求 5所述的方法, 其中, 设数据线的数量为 2τι条, .从 ·侧至 另一侧按顺序将数据线排号, 则第 η条数据线和第 -1条数据线所对应的阻抗补 偿值相等且为所获取的阻抗补偿值中的最大值, 和 /或第 1条数据线和第 2τι条数
PCT/CN2014/071104 2013-12-31 2014-01-22 用于补偿液晶显示器的数据线阻抗的方法 WO2015100821A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/240,387 US9620069B2 (en) 2013-12-31 2014-01-22 Method for compensating impedances of data lines of liquid crystal display
JP2016543713A JP6357237B2 (ja) 2013-12-31 2014-01-22 液晶表示装置のデータラインの抵抗の補償方法
GB1609367.6A GB2534817B (en) 2013-12-31 2014-01-22 Method for compensating impedances of data lines of liquid crystal display
KR1020167020080A KR20160102285A (ko) 2013-12-31 2014-01-22 액정 디스플레이의 데이터라인 저항을 보상하기 위한 방법
RU2016125811A RU2651220C2 (ru) 2013-12-31 2014-01-22 Способ компенсации импедансов линий данных жидкокристаллического дисплея

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310751723.0 2013-12-31
CN201310751723.0A CN103761950B (zh) 2013-12-31 2013-12-31 用于补偿液晶显示器的数据线阻抗的方法

Publications (1)

Publication Number Publication Date
WO2015100821A1 true WO2015100821A1 (zh) 2015-07-09

Family

ID=50529179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071104 WO2015100821A1 (zh) 2013-12-31 2014-01-22 用于补偿液晶显示器的数据线阻抗的方法

Country Status (7)

Country Link
US (1) US9620069B2 (zh)
JP (1) JP6357237B2 (zh)
KR (1) KR20160102285A (zh)
CN (1) CN103761950B (zh)
GB (1) GB2534817B (zh)
RU (1) RU2651220C2 (zh)
WO (1) WO2015100821A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576804B (zh) * 2015-11-23 2017-04-01 友達光電股份有限公司 可調整驅動訊號的顯示器及其調整方法
US20180254004A1 (en) * 2017-03-06 2018-09-06 Novatek Microelectronics Corp. Integrated circuit for driving display panel and fan-out compensation method thereof
KR102580221B1 (ko) 2018-12-04 2023-09-20 삼성디스플레이 주식회사 표시 장치 및 이를 이용한 표시 패널의 구동 방법
US11864435B2 (en) * 2019-11-15 2024-01-02 Chengdu Boe Optoelectronics Technology Co., Ltd. Array substrate and display device
CN115527496A (zh) * 2022-10-08 2022-12-27 厦门天马显示科技有限公司 一种显示面板的驱动补偿方法、补偿系统和显示设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293476A (zh) * 1999-10-19 2001-05-02 东芝株式会社 用于抑制传输线内的电压起伏的方法以及系统
EP1298810A2 (en) * 2001-09-27 2003-04-02 Kabushiki Kaisha Toshiba Portable type radio equipment
US20070085609A1 (en) * 2005-09-30 2007-04-19 Grigory Itkin Transmitting arrangement and method for impedance matching
CN102347745A (zh) * 2010-08-04 2012-02-08 国基电子(上海)有限公司 自适应阻抗匹配电路

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273284A (ja) * 1992-03-30 1993-10-22 Toshiba Corp 液晶表示装置の抵抗欠陥集計データシステム
JP2848139B2 (ja) * 1992-07-16 1999-01-20 日本電気株式会社 アクティブマトリクス型液晶表示装置とその駆動方法
JPH0950259A (ja) * 1995-08-04 1997-02-18 Sharp Corp 表示装置の駆動回路
FR2764424B1 (fr) * 1997-06-05 1999-07-09 Thomson Lcd Procede de compensation d'un circuit capacitif perturbe et application aux ecrans de visualisation matriciels
TW538602B (en) * 2001-10-24 2003-06-21 Realtek Semi Conductor Co Ltd Circuit and method for automatically changing matching resistance
JP2004086093A (ja) * 2002-08-29 2004-03-18 Sharp Corp 液晶駆動装置
JP3619819B2 (ja) * 2002-09-06 2005-02-16 日本電産リード株式会社 基板検査装置及び基板検査方法
KR20040060619A (ko) * 2002-12-30 2004-07-06 삼성전자주식회사 액정 표시 장치
JP2005077527A (ja) * 2003-08-28 2005-03-24 Optrex Corp 画像表示素子の駆動回路
JP2006023589A (ja) * 2004-07-08 2006-01-26 Sanyo Electric Co Ltd 液晶表示装置
JP2007003553A (ja) * 2005-06-21 2007-01-11 Seiko Instruments Inc エリアフォトセンサ付きマトリクス表示装置
BRPI0813525A2 (pt) * 2007-07-11 2014-12-23 Sony Corp Dispositivo de exibição, e, método de acionamento de um dispositivo de exibição.
CN101521492B (zh) * 2008-02-29 2013-09-11 瑞昱半导体股份有限公司 阻抗匹配电路及其相关方法
EP2453432B1 (en) * 2009-07-10 2017-02-15 Sharp Kabushiki Kaisha Display device
US20130141401A1 (en) * 2011-12-02 2013-06-06 Shenzhen China Star Optoelectronics Technology Co., Ltd. Driving circuit of lcd and driving method thereof
CN203300186U (zh) * 2013-05-31 2013-11-20 深圳市华星光电技术有限公司 主动矩阵显示面板及扫描驱动电路
CN103337233B (zh) * 2013-06-09 2016-03-30 京东方科技集团股份有限公司 显示驱动芯片、显示驱动芯片组件、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293476A (zh) * 1999-10-19 2001-05-02 东芝株式会社 用于抑制传输线内的电压起伏的方法以及系统
EP1298810A2 (en) * 2001-09-27 2003-04-02 Kabushiki Kaisha Toshiba Portable type radio equipment
US20070085609A1 (en) * 2005-09-30 2007-04-19 Grigory Itkin Transmitting arrangement and method for impedance matching
CN102347745A (zh) * 2010-08-04 2012-02-08 国基电子(上海)有限公司 自适应阻抗匹配电路

Also Published As

Publication number Publication date
KR20160102285A (ko) 2016-08-29
US20150185575A1 (en) 2015-07-02
JP6357237B2 (ja) 2018-07-11
RU2651220C2 (ru) 2018-04-18
RU2016125811A (ru) 2018-01-10
JP2017503210A (ja) 2017-01-26
CN103761950B (zh) 2016-02-24
GB2534817A (en) 2016-08-03
GB201609367D0 (en) 2016-07-13
US9620069B2 (en) 2017-04-11
CN103761950A (zh) 2014-04-30
GB2534817B (en) 2020-08-19

Similar Documents

Publication Publication Date Title
WO2015100821A1 (zh) 用于补偿液晶显示器的数据线阻抗的方法
US20080303770A1 (en) Liquid Crystal Display Device
KR101393635B1 (ko) 표시 장치의 구동 장치 및 이를 포함하는 표시 장치
US8023058B2 (en) Panel assembly for display device, display device including the same, and repairing method for display device
US8345026B2 (en) Display apparatus
JP2008116964A (ja) 液晶表示装置及びその駆動方法
KR101351381B1 (ko) 액정표시장치와 그 구동방법
KR20080092819A (ko) 액정표시장치
US8207930B2 (en) Display device including a test pad configuration for an improved inspection test
JP2017156446A (ja) 表示装置及び表示装置の検査方法
TWI501125B (zh) 觸控顯示裝置
WO2013170591A1 (zh) 一种液晶显示面板的驱动方法、装置和液晶显示器
US20110109662A1 (en) Driving apparatus and driving method of liquid crystal display
US11217129B2 (en) Display panel facilitating detection of a shift register without needing to pry up the display panel and display device
KR101337258B1 (ko) 액정 표시 장치
KR20080035086A (ko) 액정 표시 장치
US7834650B2 (en) Method and apparatus for testing liquid crystal display using probe unit reduced the number of connecter pads
KR102296768B1 (ko) 표시패널 및 표시패널의 검사 방법
KR20120128904A (ko) 액정 표시 장치의 구동 장치 및 방법
US20110298768A1 (en) Apparatus and method for driving display device
KR101580092B1 (ko) 액정 표시장치의 검사방법 및 이를 위한 검사장치
KR20080048161A (ko) 액정 표시 장치 및 이의 검사 방법
KR101713270B1 (ko) 액정 디스플레이 패널의 절단 방법
KR102156772B1 (ko) 표시장치
KR20070001373A (ko) 액정 표시 장치의 구동 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14240387

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201609367

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140122

ENP Entry into the national phase

Ref document number: 2016125811

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016543713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167020080

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14877522

Country of ref document: EP

Kind code of ref document: A1