WO2015099222A1 - Tôle d'acier laminée à chaud qui présente une excellente propriété de soudage et une excellente propriété d'ébarbage, et son procédé de fabrication - Google Patents

Tôle d'acier laminée à chaud qui présente une excellente propriété de soudage et une excellente propriété d'ébarbage, et son procédé de fabrication Download PDF

Info

Publication number
WO2015099222A1
WO2015099222A1 PCT/KR2013/012166 KR2013012166W WO2015099222A1 WO 2015099222 A1 WO2015099222 A1 WO 2015099222A1 KR 2013012166 W KR2013012166 W KR 2013012166W WO 2015099222 A1 WO2015099222 A1 WO 2015099222A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hot
weight
rolled steel
property
Prior art date
Application number
PCT/KR2013/012166
Other languages
English (en)
Korean (ko)
Inventor
서석종
김성일
주세돈
조원태
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2016543061A priority Critical patent/JP6368785B2/ja
Priority to CN201380081907.9A priority patent/CN105849295B/zh
Priority to PCT/KR2013/012166 priority patent/WO2015099222A1/fr
Publication of WO2015099222A1 publication Critical patent/WO2015099222A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Definitions

  • the present invention relates to a hot rolled steel sheet excellent in weldability and burring properties and a method of manufacturing the same.
  • High-strength steel is a cost-effective material for realizing these conflicting demands, and its application is expected to increase over time to meet increasingly stringent regulations. In particular, as interest in collision safety increases, its role is increasing.
  • the strength of the welded part when it is molded or when it is assembled and used as a part is very important from the viewpoint of molding limit and safety. Therefore, in the application of a high strength steel sheet to automobile parts and the like, the strength of the welded part also becomes an important examination subject along with its burring workability.
  • Patent Literature 1 proposes a technique for improving the elongation flangeability by forming ferrite-bainite structure by using three-stage cooling after cooling to a temperature around 700 ° C. after hot rolling, followed by air cooling for a predetermined time, and then cooling and winding again. .
  • the ferrite-bainite structure is controlled so that the ferrite ratio is 80% or more, and the ratio of the crystal grains having a short diameter (ds) and a long diameter (dl) of 0.1 is 80% or more.
  • a technique for producing a hot rolled steel sheet having strength of more than 69 kg / cm 2 and excellent in elongation and stretch flangeability is proposed.
  • the above technique mainly uses the alloying components of Si, Mn, Al, Mo, etc. to manufacture the abnormal composite tissue steel of ferrite-bainite, and such alloying components increase resistance by increasing electrical resistance during electrical resistance welding. There is a problem that the heat generation is severe, or cold welding occurs when the operation lowers the input current value. In addition, Si, Mn, Al and the like to form an oxide during welding, there is a problem of reducing the integrity of the weld.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 6-293910
  • Patent Document 2 Korean Patent Publication No. 2003-0055339
  • One aspect of the present invention is to provide a hot rolled steel sheet excellent in electrical resistance weldability and easy welding work, excellent burring properties and a method of manufacturing the same.
  • One aspect of the present invention is a weight%, C: 0.03 ⁇ 0.1%, Si: 0.01 ⁇ 1.2%, Mn: 1.2 ⁇ 1.9%, Al: 0.01 ⁇ 0.08%, Cr: 0.005 ⁇ 0.8%, Mo: 0.01 ⁇ 0.12 %, P: 0.01% to 0.05%, S: 0.001% to 0.005%, N: 0.001% to 0.01%, the balance Fe and other unavoidable impurities, and each of the above components satisfy the following Equation 1, and the tensile strength and elongation plan Provided is a hot rolled steel sheet excellent in weldability and burring property of multiplying 48000 or more.
  • Equation 1 10.646 + 0.2 [C] + 0.25 [Si] +0.3 [Mn]-0.1 [Cr] + 0.55 [Al] +0.2 [Mo]-4.23 [Ti] -2.5 [Nb]-2.9 [V] ⁇ 11.1
  • Equation 1 C, Si, Mn, Cr, Al, Mo, Ti, Nb, and V represent the content (weight%) of the corresponding element, respectively.
  • Another aspect of the present invention is a method for producing a hot rolled steel sheet having excellent weldability and burring property, in weight%, C: 0.03 to 0.1%, Si: 0.01 to 1.2%, Mn: 1.2 to 1.9%, Al: 0.01 to 0.08% , Cr: 0.005 to 0.8%, Mo: 0.01 to 0.12%, P: 0.01 to 0.05%, S: 0.001 to 0.005%, N: 0.001 to 0.01%, balance Fe and other unavoidable impurities
  • Preparing a steel slab satisfying Equation 1 below reheating the steel slab at 1200 to 1300 ° C., and hot rolling the reheated steel slab to a finish rolling temperature of 850 to 1000 ° C. to obtain a steel sheet.
  • Equation 1 10.646 + 0.2 [C] + 0.25 [Si] +0.3 [Mn]-0.1 [Cr] + 0.55 [Al] +0.2 [Mo]-4.23 [Ti] -2.5 [Nb]-2.9 [V] ⁇ 11.1
  • Equation 1 C, Si, Mn, Cr, Al, Mo, Ti, Nb, and V represent the content (weight%) of the corresponding element, respectively.
  • the product of tensile strength and extension flange is 48000 or more, and the integrity of the welded portion is improved during welding, thereby ensuring a hot rolled steel sheet excellent in weldability and burring property.
  • FIG. 1 is a graph showing a value obtained by substituting the product of the tensile strength (TS) and the elongation flange property (HER) of all the steels of the examples and the formula (1).
  • the present inventors have conducted research to develop a hot rolled steel sheet capable of overcoming the problems that the above-described technologies have not solved. As a result, the hot rolled steel sheet having excellent weldability and burring property can be produced by controlling the composition, microstructure, and processing conditions of the steel. The present invention was confirmed.
  • One aspect of the present invention is a weight%, C: 0.03 ⁇ 0.1%, Si: 0.01 ⁇ 1.2%, Mn: 1.2 ⁇ 1.9%, Al: 0.01 ⁇ 0.08%, Cr: 0.005 ⁇ 0.8%, Mo: 0.01 ⁇ 0.12 %, P: 0.01% to 0.05%, S: 0.001% to 0.005%, N: 0.001% to 0.01%, the balance Fe and other unavoidable impurities, and each of the above components satisfy the following Equation 1, and the tensile strength and elongation plan Provides hot-rolled steel sheet with excellent weldability and burring property of multiplying 48000 or more.
  • Equation 1 10.646 + 0.2 [C] + 0.25 [Si] +0.3 [Mn]-0.1 [Cr] + 0.55 [Al] +0.2 [Mo]-4.23 [Ti] -2.5 [Nb]-2.9 [V] ⁇ 11.1
  • Equation 1 C, Si, Mn, Cr, Al, Mo, Ti, Nb, and V represent the content (weight%) of the corresponding element, respectively.
  • C is the most economical and effective element for strengthening steel. As the amount of carbon added increases, the martensite fraction of the ferritic-martensitic composite steel increases and the tensile strength increases. If the carbon content is less than 0.03% by weight, it is not easy to form martensite phase during cooling after hot rolling. On the other hand, when the carbon content exceeds 0.1% by weight, there is a problem in that excessive strength increase and weldability, formability and toughness are reduced. Therefore, the content of C is preferably contained in 0.03 ⁇ 0.1% by weight.
  • Si deoxidizes molten steel and has a solid solution strengthening effect.
  • a ferrite stabilizing element it has an effect of promoting ferrite transformation during cooling after hot rolling, and is an effective element for increasing the ferrite fraction constituting the matrix of ferritic martensite composite steel.
  • the content of the silicon is less than 0.01% by weight, the ferrite stabilization effect is small, making it difficult to make the matrix into a ferrite structure.
  • the silicon content exceeds 1.2% by weight red scales formed by Si are formed on the surface of the steel sheet during hot rolling, so that the surface quality of the steel sheet is not very bad, and the ductility and weldability are also reduced. Therefore, the content of the silicon is preferably contained in 0.01 to 1.2% by weight.
  • Mn is an effective element to solidify steel and increases the hardenability of steel to facilitate the formation of bainite phase during cooling after hot rolling.
  • the content of the manganese exceeds 1.9% by weight excessively delay the ferrite transformation is difficult to secure the appropriate fraction of the ferrite known matrix.
  • the segregation part in the thickness center during the slab casting in the playing process greatly develops, which impairs the weldability of the final product. Therefore, the content of Mn is preferably contained in 1.2 to 1.9% by weight.
  • Al is a component mainly added for deoxidation, and is a ferrite stabilizing element, and has an effect of helping to form a ferrite phase in steel during cooling after hot rolling.
  • the content of aluminum is less than 0.01% by weight, it is impossible to secure the effect intended for the present invention.
  • the content of aluminum exceeds 0.08% by weight, defects such as corner cracks are easily generated in the slab during continuous casting, and surface defects occur after hot rolling, thereby deteriorating surface quality. Therefore, the content of aluminum is preferably contained in 0.01 to 0.08% by weight.
  • Cr hardens the steel and assists bainite formation by retarding ferrite phase transformation during cooling.
  • the content of Cr is preferably contained in 0.005 ⁇ 0.8% by weight.
  • Mo has the effect of increasing the hardenability of the steel to facilitate the formation of bainite structure. In order to exhibit such an effect of the present invention, it is preferable that 0.01 wt% or more is included. On the other hand, when the content of molybdenum exceeds 0.12% by weight, the weldability is deteriorated due to excessive increase in hardenability, which is also economically disadvantageous. Therefore, the content of Mo is preferably contained in 0.01 to 0.12% by weight.
  • Phosphorus (P) 0.01% to 0.05% by weight
  • the P like Si, has the effect of strengthening solid solution and promoting ferrite transformation. If the content of phosphorus is less than 0.01% by weight is insufficient to obtain the strength to be secured by the present invention. On the other hand, when the content of phosphorus exceeds 0.05% by weight, ductility is lowered due to band organization by micro segregation. Therefore, the P is preferably contained in 0.01 to 0.05% by weight.
  • N is a representative solid solution strengthening element with C, and forms coarse precipitate with Ti, Al, and the like.
  • the solid solution strengthening effect of N is better than carbon, but the problem of toughness is greatly reduced as the amount of N in the steel increases.
  • the nitrogen content of nitrogen is less than 0.001% by weight, the steelmaking industry takes a lot of time, resulting in decreased productivity.
  • the nitrogen content exceeds 0.01% by weight the risk of brittleness is greatly increased. Therefore, the nitrogen is preferably contained in 0.001 to 0.01 wt%.
  • the remaining component of the present invention is iron (Fe).
  • impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification.
  • the sulfur is inevitably contained as an impurity, and combines with Mn to form a non-metallic inclusion and thus greatly reduces the elongation flangeability of the steel.
  • the theoretical sulfur content is advantageously limited to 0% by weight, but inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, the upper limit of the sulfur content in the present invention is preferably limited to 0.01% by weight.
  • the steel of the present invention may further improve the effect of the present invention when additionally adding one or more elements selected from the group consisting of niobium (Nb), titanium (Ti) and vanadium (V) described below. More preferably, the total content of one or more elements selected from the group is 0.001 to 0.15% by weight.
  • Ti is present in the steel as TiN, thereby suppressing the growth of grains during heating for hot rolling.
  • Ti remaining after reacting with nitrogen is dissolved in the steel and bonded with carbon to form TiC precipitates, which is a useful component for improving the strength of steel.
  • Nb and V form carbides in the steel, which are effective for grain refinement, and fine precipitates are formed to improve the strength and toughness of the steel. It stabilizes the solid solution elements such as C and N, which increase the electrical resistivity, thereby mitigating the phenomenon of local spark generation during electric resistance welding, and also suppressing softening of the weld.
  • C, Si, Mn, Cr, Al, Mo, Ti, Nb, and V preferably satisfy Equation 1 below.
  • the electrical resistivity at high temperatures is high, and the weldability is significantly lowered.
  • the lower limit need not be particularly limited, but the lower limit may be limited to 10.5 in consideration of elongation flangeability and elongation. If it is added below, there is a problem that the strength or elongation is inferior rapidly.
  • Equation 1 10.646 + 0.2 [C] + 0.25 [Si] +0.3 [Mn]-0.1 [Cr] + 0.55 [Al] +0.2 [Mo]-4.23 [Ti] -2.5 [Nb]-2.9 [V] ⁇ 11.1
  • Equation 1 C, Si, Mn, Cr, Al, Mo, Ti, Nb, and V represent the content (weight%) of the corresponding element, respectively.
  • the hot rolled high burring steel has a product of tensile strength and extension flange property of 48000 or more.
  • the hot rolled steel sheet preferably comprises a microstructure including a bainite phase in the ferrite structure.
  • a microstructure including a bainite phase in the ferrite structure By including such a microstructure, it is possible to suppress the formation of coarse carbides and to prevent destruction at the interface during plastic deformation.
  • the bainite phase fraction in the ferrite structure is more preferably contained 5 to 20%. If the included bainite phase fraction is less than 5%, the present invention does not secure the strength to be secured, whereas if it exceeds 20%, the elongation is inferior.
  • Another aspect of the present invention is a method for producing a hot rolled steel sheet having excellent weldability and burring property, in weight%, C: 0.03 to 0.1%, Si: 0.01 to 1.2%, Mn: 1.2 to 1.9%, Al: 0.01 to 0.08% , Cr: 0.005 to 0.8%, Mo: 0.01 to 0.12%, P: 0.01 to 0.05%, S: 0.001 to 0.005%, N: 0.001 to 0.01%, balance Fe and other unavoidable impurities
  • Preparing a steel slab satisfying Equation 1 below reheating the steel slab at 1200 to 1300 ° C., and hot rolling the reheated steel slab to a finish rolling temperature of 850 to 1000 ° C. to obtain a steel sheet.
  • Equation 1 10.646 + 0.2 [C] + 0.25 [Si] +0.3 [Mn]-0.1 [Cr] + 0.55 [Al] +0.2 [Mo]-4.23 [Ti] -2.5 [Nb]-2.9 [V] ⁇ 11.1
  • Equation 1 C, Si, Mn, Cr, Al, Mo, Ti, Nb, and V represent the content (weight%) of the corresponding element, respectively.
  • the slab which satisfies the above-mentioned component system it is preferable to reheat the slab which satisfies the above-mentioned component system at 1200-1300 degreeC.
  • the reheating temperature is less than 1200 ° C, the precipitates are not sufficiently reused, so that precipitates such as NbC and TiC are reduced in the process after hot rolling.
  • strength falls by abnormal grain growth of austenite grains. Therefore, it is preferable to limit the reheating temperature of the slab to 1200 to 1300 ° C.
  • Hot rolling may be performed on the slab reheated as described above. At this time, it is preferable to perform finish rolling at 850-1000 degreeC. If the hot finish rolling temperature is less than 850 °C rolling load is greatly increased. On the other hand, when the hot finishing rolling temperature exceeds 1000 ° C., the structure of the steel sheet becomes coarse and the steel becomes brittle, the scale becomes thick, and surface quality deterioration such as hot rolling scale defect occurs. Therefore, the hot finish rolling is preferably limited to 850 ⁇ 1000 °C.
  • the hot rolled steel sheet it is preferable to primary-cool the hot rolled steel sheet as described above. In addition, it is preferable to primary cool until it reaches 500-750 degreeC from the said finishing hot rolling temperature of the said hot rolled sheet steel.
  • the temperature at which the primary cooling is terminated is less than 500 ° C., most of the microstructures in the steel have bainite, and thus the microstructures of the present invention cannot be secured.
  • the temperature exceeds 750 ° C. coarse ferrite and pearlite structures are formed to reduce the strength of the steel.
  • the cooled steel sheet is subjected to air cooling for 4 to 10 seconds.
  • air cooling for 4 to 10 seconds.
  • the ferrite fraction is increased to decrease the martensite fraction, thereby failing to secure the strength and elongation to be secured by the present invention.
  • After the cooling step may further comprise the step of winding to facilitate storage and movement of the cooled steel sheet.
  • the pickled steel sheet may be manufactured by further including the step of removing the surface layer portion scale and oiling the steel sheet prepared by the above method after natural cooling.
  • the steel slab satisfying the component system shown in Table 1 below was heated to 1250 ° C. and hot-rolled at the temperature shown in Table 2 below. Thereafter, primary cooling at a cooling rate of 70 ° C./sec to a temperature of 680 ° C., air cooling for 6 seconds, and secondary cooling at a cooling rate of 70 ° C./sec to a temperature of 450 ° C., followed by the temperatures shown in Table 2 below Wound up in.
  • Yield strength (YS), tensile strength (TS), elongation at break (T-El), and elongated flange property (Hole Expanding Ratio, HER) of the final hot-rolled steel sheet obtained by completing the winding process were shown in Table 2 below.
  • the bainite fraction in the ferrite structure was observed at 500 magnification using an optical microscope after etching the final hot rolled steel sheet, and then fractionated with an image analyzer.
  • weldability of the final hot rolled steel sheet is also shown in Table 2 below.
  • the weldability was measured by the uniaxial tensile test method after welding under the conditions shown in Table 3. At this time, the weldability was evaluated as being poor when the welded part was broken.
  • Inventive Examples 1 to 6 satisfy the component range and manufacturing conditions proposed by the present invention, it is possible to secure a hot rolled steel sheet having a high value of the product of tensile strength and elongated flange property and excellent weldability. You can check it.
  • Comparative Examples 1, 4, 5, 6 and 7 do not satisfy the equation (1) can be confirmed that the weldability is inferior.
  • Comparative Examples 2, 3 and 8 although the value of the product of tensile strength and extension flange property satisfied the value of the range proposed by the present invention, it does not satisfy the equation 1, it can be confirmed that the weldability is inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

La présente invention se rapporte, selon un aspect : à un acier laminé à chaud et à taux d'ébarbage élevé qui présente une excellente propriété de soudage par résistance électrique, ce qui permet de faciliter des opérations de soudage ; et à son procédé de fabrication.
PCT/KR2013/012166 2013-12-26 2013-12-26 Tôle d'acier laminée à chaud qui présente une excellente propriété de soudage et une excellente propriété d'ébarbage, et son procédé de fabrication WO2015099222A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016543061A JP6368785B2 (ja) 2013-12-26 2013-12-26 溶接性及びバーリング性に優れた熱延鋼板及びその製造方法
CN201380081907.9A CN105849295B (zh) 2013-12-26 2013-12-26 焊接性和去毛刺性优异的热轧钢板及其制备方法
PCT/KR2013/012166 WO2015099222A1 (fr) 2013-12-26 2013-12-26 Tôle d'acier laminée à chaud qui présente une excellente propriété de soudage et une excellente propriété d'ébarbage, et son procédé de fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/012166 WO2015099222A1 (fr) 2013-12-26 2013-12-26 Tôle d'acier laminée à chaud qui présente une excellente propriété de soudage et une excellente propriété d'ébarbage, et son procédé de fabrication

Publications (1)

Publication Number Publication Date
WO2015099222A1 true WO2015099222A1 (fr) 2015-07-02

Family

ID=53479053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012166 WO2015099222A1 (fr) 2013-12-26 2013-12-26 Tôle d'acier laminée à chaud qui présente une excellente propriété de soudage et une excellente propriété d'ébarbage, et son procédé de fabrication

Country Status (3)

Country Link
JP (1) JP6368785B2 (fr)
CN (1) CN105849295B (fr)
WO (1) WO2015099222A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110088337A (zh) * 2016-12-13 2019-08-02 Posco公司 低温下冲缘加工性优异的高强度复合组织钢及其制造方法
EP4036267A4 (fr) * 2019-09-27 2023-06-07 Baoshan Iron & Steel Co., Ltd. Acier à phase complexe ayant une faculté d'expansion de trous élevée et procédé de fabrication pour celui-ci
WO2023218229A1 (fr) * 2022-05-13 2023-11-16 Arcelormittal Tôle d'acier laminée à chaud et son procédé de fabrication

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109202028B (zh) * 2018-09-10 2020-03-10 武汉科技大学 一种高延伸凸缘钢板及其制备方法
KR102164078B1 (ko) * 2018-12-18 2020-10-13 주식회사 포스코 성형성이 우수한 고강도 열연강판 및 그 제조방법
KR102209552B1 (ko) * 2018-12-19 2021-01-28 주식회사 포스코 구멍확장성이 우수한 고강도 열연강판 및 그 제조방법
JP2021179414A (ja) * 2020-05-14 2021-11-18 Jfeスチール株式会社 熱間圧延鋼帯の蛇行量測定装置及び熱間圧延鋼帯の蛇行量測定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216247A (ja) * 2006-02-15 2007-08-30 Jfe Steel Kk 連続鋳造スラブの製造方法並びに高張力熱延鋼板、高張力冷延鋼板及び高張力亜鉛めっき鋼板の製造方法
JP2007327098A (ja) * 2006-06-07 2007-12-20 Sumitomo Metal Ind Ltd 高強度熱延鋼板およびその製造方法
JP2009270171A (ja) * 2008-05-09 2009-11-19 Sumitomo Metal Ind Ltd 熱間圧延鋼板およびその製造方法
JP2010189738A (ja) * 2009-02-20 2010-09-02 Jfe Steel Corp 加工性に優れた高強度熱延鋼板およびその製造方法
JP2012188731A (ja) * 2011-02-24 2012-10-04 Jfe Steel Corp 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4066905B2 (ja) * 2003-07-31 2008-03-26 Jfeスチール株式会社 溶接熱影響部靱性に優れた低降伏比高強度高靱性鋼板の製造方法
ES2391164T3 (es) * 2003-09-30 2012-11-22 Nippon Steel Corporation Chapa delgada de acero laminado en frío, de alta resistencia, con alto límite de elasticidad, y superior ductilidad y soldabilidad, chapa delgada de acero galvanizado por inmersión en caliente, de alta resistencia, con alto límite de elasticidad, chapa delgada de acero galvanizado y recocido por inmersión en caliente, de alta resistencia, con alto límite de eleasticidad, y métodos para la producción de las mismas
JP5068688B2 (ja) * 2008-04-24 2012-11-07 新日本製鐵株式会社 穴広げ性に優れた熱延鋼板
JP5068689B2 (ja) * 2008-04-24 2012-11-07 新日本製鐵株式会社 穴広げ性に優れた熱延鋼板
JP5338525B2 (ja) * 2009-07-02 2013-11-13 新日鐵住金株式会社 バーリング性に優れた高降伏比型熱延鋼板及びその製造方法
BR112014002875B1 (pt) * 2011-08-09 2018-10-23 Nippon Steel & Sumitomo Metal Corporation chapas de aço laminadas a quente, e métodos para produção das mesmas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216247A (ja) * 2006-02-15 2007-08-30 Jfe Steel Kk 連続鋳造スラブの製造方法並びに高張力熱延鋼板、高張力冷延鋼板及び高張力亜鉛めっき鋼板の製造方法
JP2007327098A (ja) * 2006-06-07 2007-12-20 Sumitomo Metal Ind Ltd 高強度熱延鋼板およびその製造方法
JP2009270171A (ja) * 2008-05-09 2009-11-19 Sumitomo Metal Ind Ltd 熱間圧延鋼板およびその製造方法
JP2010189738A (ja) * 2009-02-20 2010-09-02 Jfe Steel Corp 加工性に優れた高強度熱延鋼板およびその製造方法
JP2012188731A (ja) * 2011-02-24 2012-10-04 Jfe Steel Corp 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110088337A (zh) * 2016-12-13 2019-08-02 Posco公司 低温下冲缘加工性优异的高强度复合组织钢及其制造方法
EP3556889A4 (fr) * 2016-12-13 2019-10-23 Posco Acier multi-phases a haute resistance presentant d'excellentes proprietes de bourrage a basse temperature et son procede de production
JP2020509172A (ja) * 2016-12-13 2020-03-26 ポスコPosco 低温域におけるバーリング性に優れた高強度複合組織鋼及びその製造方法
CN110088337B (zh) * 2016-12-13 2021-09-24 Posco公司 低温下冲缘加工性优异的高强度复合组织钢及其制造方法
EP4036267A4 (fr) * 2019-09-27 2023-06-07 Baoshan Iron & Steel Co., Ltd. Acier à phase complexe ayant une faculté d'expansion de trous élevée et procédé de fabrication pour celui-ci
WO2023218229A1 (fr) * 2022-05-13 2023-11-16 Arcelormittal Tôle d'acier laminée à chaud et son procédé de fabrication

Also Published As

Publication number Publication date
JP2017504724A (ja) 2017-02-09
CN105849295B (zh) 2019-02-19
JP6368785B2 (ja) 2018-08-01
CN105849295A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2015174605A1 (fr) Feuille d'acier laminé à froid de résistance élévée présentant une excellente ductilité, feuille d'acier galvanisé zingué au feu et son procédé de fabrication
WO2015099222A1 (fr) Tôle d'acier laminée à chaud qui présente une excellente propriété de soudage et une excellente propriété d'ébarbage, et son procédé de fabrication
WO2016104975A1 (fr) Matériau d'acier haute résistance pour récipient sous pression ayant une ténacité remarquable après traitement thermique post-soudure (pwht), et son procédé de production
WO2018117501A1 (fr) Tôle d'acier de résistance ultra-élevée présentant une excellente pliabilité et son procédé de fabrication
WO2018074887A1 (fr) Armature de béton armé à haute résistance et procédé de fabrication de ladite armature de béton armé à haute résistance
WO2018110853A1 (fr) Acier à deux phases à haute résistance présentant d'excellentes propriétés d'ébavurage dans une plage de basse température, et son procédé de production
WO2020050573A1 (fr) Tôle d'acier à résistance et ductilité ultra élevées possédant un excellent rapport de rendement et son procédé de fabrication
WO2018117646A1 (fr) Tôle d'acier épaisse ayant une excellente résistance à l'impact cryogénique et son procédé de fabrication
WO2017188654A1 (fr) Tôle d'acier à très haute résistance et à haute ductilité ayant un excellent rapport d'élasticité et son procédé de fabrication
WO2017105026A1 (fr) Tôle d'acier de très haute résistance présentant une excellente aptitude au traitement de conversion chimique et d'expansion de trou et son procédé de fabrication
WO2017171366A1 (fr) Tôle d'acier laminée à froid à résistance élevée ayant d'excellentes limite d'élasticité et ductilité, plaque d'acier revêtue et son procédé de fabrication
WO2020022778A1 (fr) Tôle d'acier à haute résistance présentant une excellente propriété de résistance aux chocs et son procédé de fabrication
WO2020067752A1 (fr) Tôle d'acier laminée à froid à haute résistance ayant un rapport d'expansion de trou élevé, tôle d'acier galvanisée à chaud par trempe à haute résistance, et procédés de fabrication associés
WO2017222159A1 (fr) Tôle d'acier laminée à froid de haute résistance ayant une excellente aptitude au façonnage et procédé pour la fabriquer
WO2018117470A1 (fr) Tôle d'acier haute résistance ayant une excellente aptitude au soyage à basse température et son procédé de fabrication
WO2020111856A2 (fr) Tôle à haute résistance ayant une excellente ductilité et une excellente ténacité à basse température et son procédé de fabrication
WO2021117989A1 (fr) Tôle d'acier laminée à froid à résistance ultra-élevée et son procédé de fabrication
WO2021010599A2 (fr) Acier inoxydable austénitique ayant une résistance améliorée et procédé de fabrication associé
WO2013154254A1 (fr) Tôle d'acier laminée à chaud à teneur élevée en carbone présentant une excellente uniformité et son procédé de fabrication
WO2016093513A2 (fr) Tôle d'acier biphasé ayant une excellente formabilité et son procédé de fabrication
WO2019125018A1 (fr) Tôle d'acier laminée à froid à ultra-haute résistance et son procédé de fabrication
WO2017086745A1 (fr) Tôle d'acier haute résistance laminée à froid ayant une excellente aptitude au traitement sous cisaillement, et son procédé de fabrication
WO2021091140A1 (fr) Acier à haute résistance ayant un taux d'élasticité élevé et une excellente durabilité, et procédé de production de celui-ci
WO2015060499A1 (fr) Tôle d'acier à résistance élevée et riche en manganèse ayant d'excellentes propriétés de résistance aux vibrations et son procédé de fabrication
WO2021112488A1 (fr) Acier épais à phase composite ayant une excellente durabilité et son procédé de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016543061

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900292

Country of ref document: EP

Kind code of ref document: A1